
Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara 
 

Seria ELECTRONICĂ şi TELECOMUNICAŢII 
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS 

 
Tom 51(65), Fascicola 2, 2006 

 

Real-Time Process Monitoring in Operating System Linux 
 

Zdenek Slanina, Vilem Srovnal1 
 

                                                      
1 Department of Measurement and Control, VSB Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech 

Republic, e-mail zdenek.slanina@vsb.cz 

Abstract – The article deals with a design of system 
module for the selected processes monitoring in the 
operating system RT-Linux. The designed module will 
be able to observe states of selected processes in real-
time (start, stop, interruption ...) and visualize changes 
of states on the remote Linux system. For the better 
explanation of problems are given basic characteristics 
of operating systems Linux and RT-Linux. There are 
described the initiate problems solution, process states 
monitoring and time sequence of task processing in real 
time.  
Keywords: Linux, RT-Linux, process, scheduling, 
monitoring, embedded systems, real-time systems 
 

I. INTRODUCTION 
 

The present technological processes control uses 
number of technical resources as intelligent sensors, 
microcontrollers, PLC's, personal computers and 
workstations. The communication between resources  
is realized by different types of industrial buses, 
computer networks and operating systems.  
If control systems are realized with personal 
computers, these computers demand the real-time 
processing mode. There are required the preemptive 
multi-processing of concurrent tasks or the pseudo-
parallel technique of processing.  
The real-time operation systems are ready to process 
external events any time. The processing of demanded 
solutions is obtained in prior given intervals. The 
system can accept data as casual events or data are 
periodically scanned in intervals in advance with 
respect of appropriate application.  
Real-time systems have to react at signals from 
external environment, events, according to given time 
pre-limits. The proper behavior of such system 
depends not only on evaluation's results executed by 
processes, but also on the elapsed time for their 
evaluation. The delayed reaction need not to be up-to-
date for the appropriate control action, the delay can 
cause crash of the corresponding application [4], [5]. 
The design of control system needs the knowledge of 
its behavior in many situations as standard or 
emergency and so on. The creation of monitoring 
kernel module is very useful for the system debugging  
and error detection especially in the real-time 
processing. 
  

II. OPERATING SYSTEM LINUX 
 

Basic description 
 

The operating system Linux is obtainable in the form 
of free distributed implementation of UNIX kernel 
[1]. This is the base of lowest operating system level. 
The operating system core is compiled and installed 
on the computer with many specific free distributed 
programs, which make possible to design the complex 
operating system. Such installations are called Linux 
systems while kernels are not unique. The complicate 
installation originates a Linux distribution [2].  
Distributions are realized by various mediums 
(floppy, CD). There are combined kernels and many 
next support programs, programming languages and 
utilities. The X-Windows server is involved as 
graphical user interface of UNIX systems too.  
The kernel is the crucial part of each operating 
system. Linux kernel is compiled by several important 
subsystems (modules), which are briefly described 
below. The created interface between the user, 
operating system and hardware is shown on the figure 
1. 
Files and devices are controlled by the small number 
of functions in Linux. These functions are called as 
system calls. They are Linux components and make 
interface between the operating system and 
applications [3]. 
The problem is the efficiency direct using of these 
functions for inputs and outputs. The performance of 
system goes down as a result of switching between 
user and kernel mode all the time. Function’s libraries 
are used scores of time. It is possible to use the 
function, which is dedicated directly to work with the 
specific device. Linux provides a range of standard 
libraries as the sophisticated interface for devices and 
disc files. 

 
Kernel modules 

 
Virtual File System (VFS) creates the universal 
interface for the using of various file systems. The 
each type of file systems provides the implementation 
of specific set of operations, which are common for 
all file systems. 

152

BUPT



If any system component sends the request to use the 
one of file systems, its request goes through VFS. 
VFS forwards it to the relevant file system driver. 
VFS provides the user interface both for file systems 
(FAT, ext2...) and devices. The kernel provides the 
unified interface for user applications.  
Devices include partly hardware devices (hard disc, 
tape memory...) partly software devices (/dev/random 
- device for generating of random data...). Special 
services require networks. While these services are 
non-standard (different then for file systems), they 
belong to the VFS too. Users communicate as with 
network devices as with standard devices.  
 

 
 

Fig. 1. Amplitudes in the standing wave 
 

The memory manager provides following functions:  
 

• Virtual address space – the operating system 
provides the virtual memory. The size of 
virtual memory is much greater than the size 
of physical memory in the system. 

• Memory protection - each process in the 
system has its own virtual address space. 
Virtual address spaces are completely 
mutually separated. The running application 
process doesn't affect other processes. The 
hardware mechanism of virtual memory 
protects relevant memory areas against 
writing. The code and data are protected in 
the memory against destructive operations of 
other applications. 

• Memory mapping – the memory mapping 
serves for mapping program's images and 
data files to the address space of the process. 
When the memory mapping is used the 
content of file is directly linked with the 
virtual address space of the process.  

• Physical memory allocation – the memory 
manager subsystem allows each running 
process to allocate appropriate part of the 
system physical memory. 

• Virtual memory sharing – while the virtual 
memory allocate to the process the separated 
address space, within the running of 
processes are situations when processes need 
to share virtual memory among themselves. 

Dynamic libraries are the one example of 
sharing code by several processes. The 
shared memory is also a buffer, which is 
used in the interprocesses communication 
when information is exchanged among 
processes. The Linux supports the 
interprocesses communication by using 
UNIX system V IPC mechanism. 

 
Linux provides the virtual memory system as the 
extension of RAM memory. The efficient size of 
memory is much greater. The kernel swaps contents 
of just unused memory blocks on the disc and releases 
memory for other functions. If it is requested the 
content of blocks is loaded back to the memory. These 
operations are the fully transparent for users. Running 
Linux programs allocate only the appropriate size of 
accessible physical memory and don't take care of the 
virtual disc space. Of course, disc operations are not 
as quick as on the physical memory - RAM. 
Linux use the plain file or the special disc area for 
swapping. The advantage of independent disc 
segment is speed. The advantage of swap file is 
possibility to change size of swap space simply. If the 
size of swap space is known, then is better using a 
disc segment. In case of no direct demands is better 
using a swap file. Linux provides multiple usages of 
swap areas or swap files. 
The process management module control 
multitasking. It concerns the creating of processes and 
switching processor among active processes. Linux 
threads implementation is called one-to-one executed 
at kernel level. Each thread means independent  
process for the kernel. The scheduler of processes 
doesn't make differences between processes and 
threads. Disadvantage of this model is too big 
overhead through threads switching. P-thread library 
is provided for threads, which are implementing in 
agreement with POSIX standard. 
The data structure task_struct enable the process 
management in Linux. The terms task and process are 
equivalent in Linux. The task_struct describes 
properties and states of processes in the system. These 
data structures create the task vector, which is the 
array of pointers to all structures task_struct in the 
system. It means that maximal number of processes is 
limited by the size of task vector (512 items 
implicitly). The new structure task_struct is allocated 
in the memory as the part of vector task during a 
process creation. There is possible a reference by the  
current pointer to the actual process for the searching 
facilitation. Individual items of task_struct are 
separated to several areas. 
The first is a state - the state of the process changes 
according to processing conditions. Processes in 
Linux are found in following states: 
 

• RUNNING - process is running now 
(actually process) or it is ready to run 
(process waiting for the processor). 

153

BUPT



• INTERRUPTIBLE - process is waiting for 
processing and it is wake up by signal or 
timer expiration. 

• UNINTERRUPTIBLE - process waiting for 
processing and it can't be wake up.  

• ZOMBIE - finished process with structure 
task_struct in vector task by any reason. This 
process is inactive. 

• STOPPED - process was stopped by any 
signal usually. In that state is a debugged 
process by example. 

• EXCLUSIVE – this state is created as a 
logical combination of states with state 
INTERRUPTIBLE and 
UNINTERRUPTIBLE. 

 
The Linux and Unix use in the file descriptors 
attributes for the unauthorized access protection. Each 
file and directory has its owners. Attributes define the 
access right for user (owner), group and anyone. The 
basic file protection defines other three protection bits 
as rights for read, write and execution. Each group of 
users can have another access rights. For example, the 
owner can read and write in the file, group can read 
only and all other users (processes) have the access to 
the file disabled. 
The group definition enables to assign privileges to 
the groups of users, not only to one user or all users in 
the system. The right for process execution is possible 
assigned to number of groups (maximal number is 32 
implicitly). These groups are saved to the group’s 
vector in the structure task_struct of each process. If a 
group has access rights to a file and the process 
belongs to this group, then the process has group  
rights to the file. 
There are user and group pairs of process attributes in 
the structure above: 
 

• uid and gid - identifiers of user and group in 
the name of user running process 

• effective uid and gid - some processes change 
their uid and gid within running process, 
their own are saved as attributes in inods of 
executing image. These processes are called 
setuid processes and they are very useful 
because they present way to restrict access to 
services executed by name of any other as 
network daemons. Effective uid and gid are 
set according to attributes of setuid process, 
values of uid and gid are unchanged. 
Effective uid and gid use the kernel for 
checking of access rights. 

• filesystem uid and gid - similar to effective 
uid and gid. They are used for access rights 
checking to file system. It is necessary for 
connected file systems, when NFS server in 
user mode need access to files as some 
process. In this case, filesystem uid and gid 
are changed instead of effective uid and gid. 
This way eliminates the situation when some 
sends to the server the kill signal. Kill signals 

are submitted to processes with effective uid 
and gid. 

• saved uid and gid - values required by 
POSIX standard and they are used in 
processes changing uid and gid of the 
process using system calls. When values of 
uid and gid are changed, real values of uid 
and gid are saved in them. 

 
Each process has its process identifier. Identifier is 
not an index in the task vector, it is only a number. In 
the Linux there is no system process to depend on any 
other processes. All processes have their generic 
processes excluding the initial process. Each 
task_struct structure of each process contains a  
pointer to its generic process and siblings (rest 
processes with the same generic process) and pointers 
to its descent processes. Moreover all processes in the 
system are related in the both directions list, its root is 
task_struct structure of init process. The kernel uses 
this list to the view above all processes in the system. 
The kernel keeps information about time of process 
starting and the total processor time of process. The 
kernel keeps also values, which processing time is the 
process in the system and user mode. The Linux 
supports interval timers of processes. Process can call 
set timers using system calls to call signal after time 
period is expired. These timers can be one-off or 
periodic. 
All processes run partly in the user mode and partly in 
the system mode. These modes are supported by the 
low-level hardware. There is a specific security 
mechanism for the switching between user and system 
mode. In the user mode, a process has obviously 
minor privileges than in the system mode. 
Always when system calls are used, the processing is 
switched from the user mode to the system mode. The 
kernel works in the name of process in the time of 
system mode. Linux uses preemptive tasks planning. 
The one of planning strategies is round-robin. The 
each process is running a set time (for example 200 
ms). When this time expired, other process use 
processor and previous process has to wait for the 
next opportunity to run. This time period is called 
time-slice. 
The scheduler decides which process will run. Linux 
scheduler selects the actual processes on the base of 
priority algorithm. The scheduler saves the actual 
process status, values of processor registries and other 
context information to data structure task_struct when 
the new process is choosing. Then the scheduler 
restores the state of new planned process. The 
scheduler keeps following information in structure 
task_struct of each process for a realization of 
planning strategies: 
 

• policy - scheduling strategy is associated to 
the relevant process. There are two types of 
processes in Linux - standard and real-time. 
Real-time processes have higher priorities 
than all other processes. If real-time process 

154

BUPT



is ready to go, it will be run. Two strategies 
are applied for realtime processes either 
round-robin or FIFO (First In First Out). In 
round-robin scheduling is used the cyclic 
switching of processes. They are executed 
cyclic in queue. The strategy FIFO means 
execution of processes in the order of ready 
to execution. 

• priority – the scheduler assigns the priority to 
the process. It is a quantity of the time (in 
jiffy units), that process can use, when it is 
running. The priority of processes is possible 
to change using system calls and with renice 
command.  

• rt_priority - Linux supports real-time 
processes with high priority than other 
processes in the system. This item allows to 
scheduler assign to each process its relative 
priority. The priority of real-time processes is 
possible to change using system calls. 

• counter - number of time jiffy when the 
process is running. At the process planning is 
this value set as the priority value. The 
counter is decremented with every time 
pulse. 

 
The scheduler is activated in several points in the 
kernel: actual process is transferred to queue of 
waiting processes; system call is finished; before the 
switching of process from system to the kernel mode. 
The next reason is the decrement of counter value to 
zero.  
Process selection to execution – the scheduler looks 
in the priority queue of processes. If the  realtime 
process is in the queue, its rate is higher than standard 
processes. The weight of standard process is equal to 
the counter value. The real-time process weight is 
1000 higher. It means that real-time processes will 
execute before standard processes. The actual process, 
which is running (value counter is decremented) has 
handicap before other processes  with the same 
priority. When priorities of processes are equal, the 
scheduler chooses the first process in the queue. The 
actual process is scheduled for the end of queue at the 
switching. Processes are executed one by one in the 
balanced system with same priorities of processes. It 
is round-robin planning – the cyclic planning of 
processes. The sequence of waiting processes is 
possible to change.  
Process switch - if switching conditions occurs, the 
actual process is stopped and the new process is ready 
to run. The running process uses registers and 
processor and system memories. The every call of 
routines sets parameters in registers and use values in 
the stack, for example, to save a return address of 
calling routine. If the process is suspending, it is 
necessary to save its state including the program 
counter and all registers of processor to its task_struct 
structure. Then the state of new planned process is 
necessary to restore. This operation is a machine 

dependent, each processor use an own way with the 
hardware support. 
The process switch is the last scheduler's operation. 
The saved context of previous process is image of 
hardware context in time of end of process 
scheduling. So when is loaded a new process, there 
are know information about the situation before, 
including the content of counter of instructions and 
registers. 
 

III. OPERATING SYSTEM RT-LINUX 
 
There are two different approaches to obtain RT tasks 
executing in Linux: 

1. Improving the Linux kernel preemption. 
2. Adding a new software layer beneath Linux 

kernel with full control of interrupts and 
processor key features. 

 
These two approaches are known as "preemption 
improvement" and "interrupt abstraction"  
respectively.  This second approach is the one used by 
RTLinux.  
RT-Linux scheduler uses Linux kernel as its inactive 
task. Linux is running in the case that no realtime 
process in the real-time mode is active. The process in 
Linux unblocks interruption or prevent switch in any 
time. This mechanism is possible thanks to the 
software emulation of hardware interruption. 
There are important features, which are achieved in 
real-time processing in the kernel mode: 
 

• Thread processing is in the operating 
memory of kernel. 

• Threads processing is in the kernel mode and 
threads have complete access to basic layer.  

• Application is compiled and installed in the 
same memory space like real-time operating 
system. System calls are implemented using 
simple system call that doesn't use software 
interruption by the reason of decrement time 
of operating system overhead. 

 
RT-Linux is following the POSIX 1003.13 minimal 
realtime operating system standard. The design of RT-
Linux is subordinated to POSIX requirements. The 
system can run on i386, PPC and ARM architectures.  
Following tools are provided for applications 
debugging: 
 

• Debugging at source code level with SMP 
support at the target machine, cross-
debugging is not possible. 

• Tracing - kernel tracing and application 
events. 

• POSIX tracing. 
 
Memory management: 

• static 

155

BUPT



• dynamic - dynamic memory allocation is not 
available (functions malloc and free); RT-
Linux doesn't allows it nor use internally  

• protected address space - application threads 
and RT-Linux threads run at same address 
space; by some point of view is Linux host 
system for RTLinux; Linux has complete 
control above system memory  

 
Interprocess communication: 

• FIFO - communication mechanism is 
determined to communication between real-
time processes and Linux user processes (not 
compatible with POSIX norm) 

 
Synchronization: 

• mutexes - POSIX mutexes; system allows 
PRIORITY_PROTECT protocol for 
handling with priority inversion problem 

• condition variables - POSIX condition 
variables 

• semaphores - POSIX semaphores 
 
Nowadays are developed various new components for 
RT-Linux for more effective work with, for 
measurement and control is Linux interface Comedi, 
etc. 
 

IV. MONITORING MODULE 
 
The basic goal of monitoring module is the maximal  
usage of data structure task_struct contains all 
information about processes in system Linux. Then 
the process monitoring is possible separate to two 
basic parts. 
The first part is a process status, which is read from 
the task vector. This procedure has to be very fast. In 
the case when this procedure is integrated with 
scheduler, it will have following consequences. Each 
reading of status evokes a delay of process switching; 
it can be a problem in real-time systems. The effective 
processor time is decreased as a result of following 
actions: switch for status reading; own reading; 
compare with table of desired monitored processes; 
writing of data in case of positive result; switching 
back to the actual process. On the other side, when the 
monitoring is finished, the processor will have more 
system time for other process services.  
If the actual process is the one of monitored 
processes, the status information of actual process is 
at disposal to the second part of monitoring system. 
The second part is a visualization system, which is 
running slowly. Changes in kernel are very quick and 
in the case of exact visualization, it is not scan able by 
the operator. The second part writes data in the given 
format on the appropriate device. It is possible use as 
the device a monitor, hard disk or Ethernet. In the 
case of remote visualization and unavailability of 
devices above is possible to create the special device 
for direct connection with PC buses (PCI, PC/104 ...). 

The format of written data is depended on the used 
device, for example, in the memory medium (hard 
disk) is saved names of processes and times. For the 
visualization on the monitor is used the one of graphic 
libraries (GtK).  
 

 
 

Fig. 2. The monitoring example 
 
The monitoring example is shown on the figure 2. 
There is an example of processes which are scanning 
by the monitoring module. There are processes with 
numbers (1 to 7). Processes 2 to 6 are application 
processes which are debugging. Processes 1 and 7 are 
system processes, e.g. drivers for measurement cards, 
etc. The monitoring module allows saving time data  
to the file. It is possible analyze a system behavior 
after the system halt: events in system; exact times of 
input or output events; times of processing; feedback 
reactions. It is possible to visualize a behavior on the 
remote computer. The block diagram of monitoring 
system is shown on the figure 3. 
 

 
 

Fig. 3. The block diagram of process monitoring 
 

V. CONCLUSION 
 
The main goal of this project is a support of 
embedded systems design. The designer obtains 
information of process behavior in the phase of 
design, testing and real operation. Because in phase of 

156

BUPT



testing is difficult catch all situations, usage of such 
system could be expedient. 
It is possible a testing if the chosen hardware is 
suitable for the real-time application or it is necessary 
use a more powerful hardware. 
 
Acknowledgement: This work was supported by the 
Ministry of Education of the Czech Republic under 
Project 1M0567.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

REFERENCES 
 
[1] Sobell M.G.: A practical guide to Linux, Addison-Wesley 1997 
[2] Matthew N., Stones R.: Beginning Linux programming, Wrox 
Press 2000 
[3] Rubini A., Corbet J.: Linux device drivers, Computer Press 2001 
[4] Srovnal, V.: Operating Systems for Real-time Control, VŠB 
Technical University of Ostrava 2003 (In Czech) 
[5] Kocis T., Srovnal V.: Operating Systems for Embedded 
Computers. In : Programmable Devices and Systems 2003-IFAC 
Workshop, Pergamon Press-Elsevier 2003, pp. 359-364 

157

BUPT


