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Abstract – A new gradient approach to adaptive 
subspace-based frequency estimation of multiple real 
valued sine waves is considered in this paper. The new 
approach proposed here combines the normalized 
gradient subspace tracking technique based on Oja 
learning rule - NOOja (for the signal subspace update) 
with the ESPRIT-like frequency estimation of real-
valued sinusoids (for frequency values retrieval). 
Consequently, a new adaptive subspace-tracking 
algorithm for frequency estimation is proposed. The 
method proposed brings a significant reduction in 
arithmetical complexity at the same level of accuracy. 
The algorithm is tested in numerical simulations and 
compared to complex-valued NOja method. 
Keywords: subspace tracking, frequency estimation, 
real-valued data, R-ESPRIT, NOja 
 

I. INTRODUCTION 
 

Adaptive subspace tracking for determining time-
varying frequencies of sine wave carriers is a research 
field still under study. Not only old techniques have 
been optimized [6], [7], but also new algorithms have 
been developed in order to improve the accuracy of 
the methods or to decrease the computational burden 
[2], [8]. 
However, traditional methods present the major 
drawback of assuming that the data are complex-
valued and this implies additional computational 
effort. All super-resolution subspace block methods 
(MUSIC, ESPRIT etc.) are based on a complex-
valued signal model, as they have initially been 
designed for array processing [4]. Only recently 
Mahata and Söderström developed an ESPRIT-like 
method to estimate the real-valued sinusoidal 
frequencies [1], [9]. This new non-iterative method, 
called R-ESPRIT by the authors, is based on a real-
valued signal model and brings a spectacular 
reduction in the number of operations required to 
compute the frequency estimates. 
It is then natural to think about adaptive methods able 
to take advantage of this much lower complexity. In 
the present paper we have made a further step to the 
work presented in [2] in the context of projection 
approximation subspace tracking and adapted the 
well-known normalized orthogonal gradient subspace-

tracking algorithm based on Oja learning rule NOOja 
to the real-valued signal model. 
Similar to the method presented in [2] for PAST 
algorithm, the subspace tracking-type NOOja method 
is modified for applying R-ESPRIT for real sinusoids 
retrieval. We will name the new algorithm R-NOOja. 
From the author’s knowledge, the new method has 
never been published before. 
We will compare the performances and the 
complexity of the newly derived algorithm with the 
NOOja method based on the complex-valued data 
model. 
  

II. SIGNAL MODEL 
 
The signal model is presented in [2]. We will briefly 
review it here for present paper consistency. 
The input signal consists in a number r of sinusoidal 
signals that may well be sine wave carriers, embedded 
in white Gaussian noise: 
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where ks  is the amplitude, kω  is the angular 
frequency of the of the kth sinusoid and )(tn represents 
the corrupting additive zero-mean white noise. The 
phases r

kk 1}{ =φ  are random variables uniformly 
distributed in the ],[ ππ−  interval. 
The compact subspace representation dedicated for 
real valued sinusoids differs from the classical 
complex-valued signal model [1]. We have to obtain 
an alternative snapshot vector so that its noise-free 
part lies in a subspace of dimension r. To that aim, we 
will introduce the following input vectors: 
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where the snapshot vector dimension rn 2> . From 
the above definitions we obtain 

)()()( ttt rrrr nsAx +=    (5) 
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where )(trs  is an 1×r  vector given by 
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where kkk ωφφ )2/1(−=+  for rk ≤≤1 . rA  is an 
rn × matrix given by 
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The noise snapshot vector )(trn in this modified 
model is given by 
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One can show [1] that rA  is a full column rank 
matrix. The important fact here is that the noise-free 
part of )(trx  lies in an r-dimensional subspace that is 
different from the complex-valued data model, where 
the dimension of the signal subspace is 2r. 
Further on, let us introduce 
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The noise vectors )(tcn  and )(tbn  are random 
vectors, mutually independent, with 
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We may then consider the eigenvalue decomposition 
T
rrr

T
rrrr GΣGSΛSR +=    (13) 

where rΛ  is an rr ×  diagonal matrix containing the 
r dominant eigenvalues of rR  on the diagonal. The 

rn ×  matrix rS  is composed of the corresponding 
left eigenvectors. In the same perspective, rΣ is a 
diagonal matrix containing the remaining rn −  
eigenvalues of rR . The )( rnn −×  matrix rG  is 
composed of the corresponding left eigenvectors.  The 
columns of rG  are orthogonal to those of rS . 
One can show (see [1]) that 
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The columns of rS  form an orthonormal basis of the 
column space of rA . The idea is to adaptively obtain 
an estimate of rS  from the data via the normalized 
orthogonal gradient adaptive subspace tracking 
method NOOja, which will then be processed to 
obtain the frequency estimates. 
  

III. ALGORITHMS 
 

A. R-Esprit 
 
The R-ESPRIT algorithm is an ESPRIT-like 
estimation method of real-valued sinusoidal 
frequencies. The algorithm has been proposed and has 
been presented in detail in [1] and [9]. We will 
resume as in [2] the main aspects of this method as it 
represents a key factor in developing our new 
adaptive method. R-ESPRIT relies on the signal 
model presented in Section 2 of the present paper. 
The basic idea is to make use of two nn ×− )2(  
Toeplitz matrices 
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From the definition of   matrix (see relation (7)) the 
following identity holds: 

rrrrr DATAT )1()2( =    (18) 
where rD  is the following diagonal matrix: 

{ })cos(,),cos(diag 1 nrD ωω …=  . (19) 
Let us also introduce the following matrix 

rrrr D CCΦ 1−=   .  (20) 
Then, the algorithm may be derived as follows: 
a) It is first required to estimate rŜ  from the input 
data. 
b) This estimate will be used in estimating rΦ̂ , from 
(14) and (18), as 

rrrrr STSTΦ ˆ)ˆ(ˆ )2(1)1( −=  .  (21) 

c) The eigendecomposition of rΦ̂  will lead us to rD̂ , 
following equation (20). 
d) Knowing rD̂ , frequency values easily result from: 

rkkkDrk ,,1)},(ˆ{cos 1 …== −ω   (22) 
This finally gives the frequency estimates. The 
dimension of the signal subspace is reduced to r from 
2r i.e. the case of traditional ESPRIT method for r 
real-valued sine waves. 
 

  

24

BUPT



B. The R-NOOja algorithm 
 
In this chapter we will derive a novel adaptive method 
for estimating the signal subspace rŜ  from the input 
data. This algorithm is based on the NOOja adaptive 
method proposed in [7] and modified for the real data 
model presented in Section 2 of this paper. We will 
therefore refer to this algorithm as R-NOOja. From 
the authors’ knowledge, this method has never been 
published in this form before. 
Let n

r R∈x be the input data vector at time t defined 
as in relation (5), with the correlation matrix 

}{ H
rrr E xxR = . 

 Note here that r represents the number of real 
sinusoids, which is half the number of complex 
sinusoids used in traditional adaptive methods for 
tracking frequencies of real sine waves. This is the 
first level of reduction in arithmetical complexity. The 
second level comes from the use of R-ESPRIT 
technique, a much simpler method adapted for real 
sinusoids environments, instead of ESPRIT, 
traditionally proposed for complex-valued signal 
environments. 
We are interested to recursively estimate the signal 
subspace rŜ , therefore to compute the signal 
subspace estimate at the time instant t from the 
subspace estimate at t – 1 and the new arriving sample 
vector rx . 
As in [7] we know that if we consider the following 
cost function: 
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where )(trW is a real-valued rn×  matrix, then 
following the theory in [3] and [5], we can prove that 
the matrix )()( nrtr <∈ ×rnRW  minimizing ))(J( trW  

is a good estimate for the signal subspace )(ˆ trS  of the 
correlation matrix )(trR . 
We can compute the gradient of the cost function  
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and we can write the signal subspace update as 
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where 0>μ  represents the adaptation step and )(ˆ tR  
represents the estimate of the correlation matrix R  at 
time instant t.  
The simplest method to estimate matrix )(tR  is to 

consider the instantaneous estimate )()()(ˆ ttt HxxR =  
according to LMS method from adaptive filtering. 
The following recursive formulas for updating the 
signal subspace result: 

)()1()( ttt r
T
rr xWy −=   (26) 

)]()()1(
)1()1()()(

)()(2[)1()(

ttt
tttt

tttt

T
rrr

r
T
r

T
rr

T
rrrr

yyW
WWyx
yxWW

−−
−−−

+−= μ
  (27) 

Further on, we see that we may approximate 
rr

T
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where rI  is the rr ×  identity matrix. Thus, we obtain 
a simplified version of the gradient method that 
represents, in fact, the Oja learning rule: 
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Approximation (28) is based on the observation that, 
for stationary signals, )(trW  will converge towards a 

matrix with orthonormal columns (if 0)(
→∞

→=
t

tμμ ), 
or almost orthonormal (if μ  is small and constant). 
In order to obtain the normalized orthogonal version 
of Oja algorithm we will add an orthonormalization 
step of the real-valued matrix )(trW  and we will 
write 

( ) 2/1)()()()( −= tttt r
T
rrr WWWW  (30) 

where ( ) 2/1)()( −tt r
T
r WW  denotes the inverse of the 

square root for the matrix ( ))()( tt r
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Taking into account that )(trW  is now orthogonal at 
each iteration, i.e. IWW =)()( tt r

T
r , we may write 
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The optimal variable stepsize at time instant t 
becomes 
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where one can show that 0)()( 22 ≤− tt rr xy . 
Following the relations (1) to (35) and adapting the 
method in [7] we can easily derive a new normalized 
orthogonal subspace tracking gradient algorithm 
based on Oja learning rule and adapted to real 
sinusoidal carrier environments. We name this 
method R-NOOja. We will prove in the next section 
that the newly derived method performs as well as 
complex-valued NOOja algorithm at a much less 
computational burden. 
Table 1 briefly presents the subspace tracking 
R-NOOja algorithm adapted for sinusoidal carriers 
frequency identification. Here )(trx  represents the 
input vector at time t.  

25

BUPT



 
Table 1 
R-NOOJA ALGORITHM FOR REAL-VALUED 
FREQUENCY ESTIMATION 

sinusoids real ofnumber =r  
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Estimated frequencies vector f  is obtained by 
applying R-ESPRIT method (see section 3.1.) to the 
orthonormal basis rW of signal subspace. 
Here μ  and γ  represent two positive constants 
( 10 << μ ) that help in improving the numerical 
stability of the algorithm [7]. 
 
 

IV. SIMULATION RESULTS 
 

A. Evaluation of arithmetical complexity 
 
We evaluate the computational effort for the main 
loop of each algorithm in order to better compare the 
two methods R-NOOja and NOOja in the context of 
real-valued sinusoidal carriers frequency 
identification. Performance of subspace tracking-type 
algorithms depends not only on the number r of 
sinusoids, but also on the dimension n of the input 
vector )(trx .  
We obtain the following estimations for the 
arithmetical complexity of the main loop (where 

operation means real numbers addition or 
multiplication): 

iterationoperationsrnnrNOOja /16241918: +++
iterationoperationsrnnrNOOjaR /1612219: +++−

Even if both algorithms are )(nrO , we can clearly see 
that R-NOOja algorithm requires fewer operations 
than NOOja method for computing the update of the 
signal subspace estimate rW . Further gain in 
computational burden comes from the use of R-
ESPRIT instead of ESPRIT for the values of the 
frequency estimates. A detailed comparison of these 
two block methods from complexity point of view 
may be found in [9]. 
From extensive simulations, we may state that the 
overall computational effort for R-NOOja is only 
about 40% as compared to complex-valued NOOja 
for the same input vector dimension. We have 
checked the results with MATLAB flops routine. 
 

B. Algorithms behavior in stationary 
environments 

 
We study the statistical properties of both R-NOOja 
and NOOja algorithms in stationary environments. 
We are interested to see if the reduction in 
arithmetical complexity affects the algorithm 
performance. We present the results obtained for the 
two algorithms when retrieving two sinusoids of 
normalized frequencies 2.0,1.0 21 == ff , embedded 
in background white noise. We have considered 

5.0=μ  and 10=γ  for both methods in order to 
achieve best numerical stability. 
We calculate the bias and variance of the estimated 
frequencies for various signal lengths N and for 
various signal-to-noise ratios. In each case, we run 
100 independent simulations. Each time we compute 
the Cramer-Rao bound (CRB) to verify the accuracy 
of the estimates. 
 
 
Table 2 
STATISTICAL RESULTS FOR R-NOOJA (n=2r+5) 
N SNR 

(dB) 
Bias 

f1 

Var 
f1 

Bias 
f2 

Var 
f2 

CRB 
 x10-4 x10-4 x10-4 x10-4 x10-4 

0 7.22 61.15 8.16 42.17 3.96 
10 -1.26 15.32 2.05 15.17 1.25 
20 -0.55 4.76 0.46 4.91 0.40 

100 

30 -0.20 1.50 0.12 1.56 0.13 
 x104 x10-4 x10-4 x10-4 x10-5 

0 1.79 51.92 2.62 46.67 13.90 
10 -1.46 15.40 0.59 13.45 4.39 
20 -0.62 4.78 -0.030 4.36 1.39 

200 

30 -0.21 1.50 -0.008 1.38 0.44 
 x10-5 x10-4 x10-5 x10-4 x10-5 

0 116.78 52.68 95.45 49.09 3.50 
10 25.54 14.27 10.59 13.57 1.11 
20 6.84 4.48 1.08 4.24 0.35 

500 

30 2.00 1.42 0.12 1.34 0.11 
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Table 3 
STATISTICAL RESULTS FOR NOOJA (n=2r+5) 
N SNR 

(dB) 
Bias 

f1 

Var 
f1 

Bias 
f2 

Var 
f2 

CRB 
 x10-4 x10-4 x10-4 x10-4 x10-4 

0 -8.98 157.03 16.52 90.50 3.96 
10 0.38 20.02 1.71 17.26 1.25 
20 0.60 6.77 0.33 5.66 0.40 

100 

30 0.76 2.17 -0.06 1.81 0.13 
 x10-4 x10-4 x10-4 x10-4 x10-5 

0 -7.56 64.34 2.06 59.10 13.9 
10 1.57 22.14 -1.16 18.16 4.39 
20 -0.61 7.35 -0.39 5.86 1.39 

200 

30 -0.21 2.33 -0.13 1.84 0.44 
 x10-5 x10-4 x10-5 x10-4 x10-5 

0 -97.99 65.63 164.5 63.89 3.50 
10 -5.54 22.00 -8.37 20.90 1.11 
20 2.47 6.86 5.11 5.92 0.35 

500 

30 0.92 2.19 1.26 1.90 0.11 
 
 
Tables 2 and 3 present the statistical performances 
R-NOOja and NOOja algorithms, respectively. We 
see that R-NOOja overall performs about the same as 
NOOja at a much lower arithmetical complexity. We 
also see that both algorithms converge in less than 
100 iterations. 
 

IV. CONCLUSIONS 
 
In the present paper we have moved forward to the 
work presented in [2] and adapted the normalized 
gradient subspace tracking technique based on Oja 
learning rule - NOOja [3], [7] to the real-valued signal 
model. Thus, we derive another novel gradient 
subspace method, optimized for tracking real 
sinusoidal carriers in noise. We name this method 
R-NOOja. The new algorithm uses the real data 
model. We compare its performances to the complex-

valued NOOja algorithm. We conclude that R-NOOja 
has about the same performances as NOOja in 
stationary environments, but at much lower 
computational effort. 
It seems that we can further mitigate the major 
drawback in the use of subspace tracking-type 
algorithms, their high arithmetical complexity.  
This paper follows-up the authors work in [2] in the 
field of optimizing adaptive subspace tracking 
methods like [6] for estimating frequencies of real 
valued sinusoids in noise. This is also the perspective 
of our future studies. 
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