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Abstract – This algorithm is one of the methods that use 
spline functions for interpolation. In the context of 
general interpolation the coefficients are calculated 
using the values of the function and function’s 
derivatives in the knots. Compared with another known 
algorithm, in this case is not necessary to perform the 
signal extension. But appear another problem: how to 
calculate the values for the derived function. Three 
methods are presented to resolve this. All the methods 
were applied for several input signals. From the 
practical results were made some conclusions. 
Keywords: interpolation, B-spline functions, divided 
differences 
 

I. INTRODUCTION 
 
In this world of speed and high performances the 
interpolation problem remains on actuality. The 
traditional methods are improved and always are 
searched new ways to obtain better results with 
minimum costs. In this paper is presented a new 
algorithm for determine the B-spline coefficients in 
the generalized interpolation approach. All started 
with an algorithm presented in the specialty literature 
that has some disadvantages.  
In Section II are presented the concepts of general and 
traditional interpolation and an algorithm for B-spline 
interpolation that use a modern technique. This 
algorithm was implemented and several observations 
were made [4]. To eliminate some disadvantages were 
searched another improved algorithms. In Section III 
are calculated the initial coefficients for interpolation 
using the properties of the spline functions: 
polynomial on short intervals, continuous and 
differentiable. The coefficients are determined from 
the input samples and from the derived function 
values in the knots. This method eliminates the signal 
extension necessary in the other algorithm. Section IV 
presents the new algorithm for calculating all the 
coefficients. This algorithm is based also on the 
derived function in the knots. The problem is to 
calculate those values. For that are presented three 
methods. The practical results of implementing all 
tree methods are discussed in Section V. There is 

made also a comparison with the Unser’s algorithm 
results. 
 

II. INTERPOLATION 
 
A. Traditional Interpolation 
 
Consider y ={y(k)}, k = 0,N-1 a set of  discrete data, 
regularly sampled. To find the interpolated value f (x) 
it is necessary to calculate: 
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This is the traditional method to perform the 
interpolation: using the input data and the basis 
function values )( kxi −ϕ  that give the sample 
weights. 
 
B. Generalized Interpolation 
 
Another way to perform the interpolation is to use the 
generalized formulation [5]: 
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In this case the interpolated values are obtained from 
the coefficients c(k) and not directly from the sample 
values y(k). This method requires two different steps: 
determining the coefficients from the input data and 
calculate the interpolated values with those 
coefficients. It can be considered that the traditional 
interpolation is a particular case for c(k) = y(k). 
 
C. Unser’s B-spline Interpolation Algorithm 
 
The spline functions were used from a long time in 
problems of traditional interpolation. These are 
polynomial functions of degree n on adjacent intervals 
connected in the knots. The function and his derived 
up to n-1 order are continuous.  These properties 
make the spline functions easy and convenient to use. 
For performing high-quality interpolation are often 
used the cubic spline function (n=3). In the traditional 
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manner the spline interpolation is performed by 
matrix algebra methods and there is necessary a great 
amount of operations.  
Another approach is to use digital filtering techniques.  
Michael Unser and his team developed an algorithm 
that uses digital filters for interpolation [6], [7], [8].  
For the cubic B-spline function β 3 (x) in (3) it is 
defined the discrete B-spline function b1

3(k) and the 
direct B-spline filter (4). 
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Applying this filter to the input signal are obtained the 
spline coefficients c(k). The operation is called “direct 
B-spline transform”.  The interpolated function 
fn(x/m) by a factor m, denoted )(xf n

m  will be:  
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This operation is called “indirect B-spline transform” 
and it is implemented also by digital filtering [6], [8]. 
For calculating the coefficients the direct B-spline 
filter is implemented by 2 filters: first a causal filter 
and the second anti-causal. The recursive algorithm 
demands some initial conditions. Is performed the 
signal extension by mirroring and they are taken a 
finite number of samples. The initial conditions 
introduce some side errors for the coefficients [4]. 
Those errors are transmitted in the interpolated signal 
and could have great importance especially if the 
input signal contains a small number of samples. 
 

III. NEW INITIAL B-SPLINE COEFFICIENTS 
 
To perform the spline interpolation in the traditional 
manner are used the known input samples and some 
values of the derived function. From this idea, to 
determine the new initial coefficients there were 
evaluated also the derivatives for the input function. 
Consider  f(x)  an approximation for the cubic spline 
function that pass trough all the input values:  f(k) = 
y(k), k = 0, N-1. In the knots f(k) represent the 
convolution between the coefficients’ string and the 
cubic B-spline function (2). The relation involving the 
function and the coefficients c(k) can be write: 

 
6f(k) = 4 c(k) + c(k-1) + c(k+1)         (6) 

 
The cubic B-spline function derivatives of first and 
second order are analyzed. From these ones are 
determined the relations between the f(k) derivatives 
and the coefficients: 
 

  f’(k) = 0 c (k) - ½ c (k-1) + ½ c (k+1)   (7) 
 f”(k) = -2 c (k) + c (k-1) + c (k+1)                 (8) 

 
The formulas (6), (7) and (8) are evaluated for k=2 to 
determine the initial values. The first 3 coefficients 
can be obtained by: 
 

c (2) = f (2) - f”(2)/6           (9) 
c (0) = c (2) – 2f’(1)            (10) 

4
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Compared with the Unser’s algorithm, in this new 
approach is not necessary to perform the signal 
extension. But it has to establish a way to determine 
the values for the function derivatives of order one 
and two. These values must be obtained by numerical 
methods only from the input samples. The problem is 
to calculate f’(1) and f’’(2) from the known signal 
values. The interpolation function is a   B-spline 
(piecewise polynomial), so we can approximate f (k) 
by a polynomial function on short intervals. With this 
polynomial and his derivatives we calculate the values 
for the first 3 coefficients. 
 
IV. A NEW ALGORITM BASED ON NUMERICAL 

DIFERENTIATION 
 
With 3 initial values calculated it can be established 
an algorithm to determine the other coefficients. From 
the relation (7) it can be established a general 
formulation in every knot: 
 

c(k+1) - c(k-1) = 2 f’ (k)     (12) 
 
The algorithm supposes to use the function 
derivatives and to impose their values. This type of 
interpolation is called Hermite interpolation. 
In the knots the values of the function  f (k) must be 
equal to the input data samples: 

     f (k) = y (k) for k = 0, 1, … , N-1    (13) 
Dealing with discrete dates, now the problem it is to 
perform the numerical differentiation.  There are 
discussed 3 methods for calculating those. 
 
A. The First Method 
 
It is used the classical definition for the divided 
differences [1],[2]: 
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The divided differences of order 2: 
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In this case the algorithm for calculating the 
coefficients for the input signal y(k) became: 
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c(k+1) - c(k-1) = 2[ y(k+1) - y(k)]   (16) 

 
B. The Second Method 
 
Stanasila [3] defines the next divided differences: 
- the divided differences at left: 
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 - the divided differences at right: 
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- by averaging it is obtained: 
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The same relation can be found by calculating the 
central derivative for a polynomial function that goes 
through 3 points.  
In this case the initial values are: 
 

c (2) = y (2) –(y(3)-2y(2)+y(1))/6  
c (0) = c (2) – y(2)+y(0)     

4
)2()0()1(6)1( ccyc −−

=  

 
For any k value the iterative relation for calculating 
the coefficients became: 
 

c(k+1) - c(k-1) = y(k+1) – y(k-1)   (21) 
 
As it can be observed any differences between 2 
coefficients c(k+h) and c(k) depends of the samples 
values in k+h and k points only. 
 
C. The Third Method 
 
The convergence properties can be improved by 
stronger conditions of continuity. It means that the 
interpolation function is continuous and his 
derivatives up to the fourth order are continuous 
f(x)∈C4. This is demonstrated by a theorem in [1]. So 
we consider f(x) a polynomial function of 4 degree: 
 

   f(x) = a + b x  +d x 2 + e x 3+ g x 4    (22) 
 

The function is piecewise polynomial, so it can be 
analyzed on short intervals. The function and the 
function derivatives of order 1 and 2 have been 
evaluated on the interval [0;4] and are obtained the 
next relations: 
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The general formulation for the firs derivative is: 
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For  f(k) = y(k), the algorithm for calculating the 
coefficients became: 
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(24) 
It has to demonstrate the algorithm convergence. For 
that are take into consideration a finite number of 
successive iterations: 
 

c(3)- c(1)=[y(0)-8 y(1)+8 y(3)- y(4)]/6 
c(5)- c(3)=[y(2)-8 y(3)+8 y(5)- y(6)]/6 
c(7)- c(5)=[y(4)-8 y(5)+8 y(7)- y(8)]/6 
...... 
c(k)- c(k-2)=[y(k-3)-8 y(k-2)+8 y(k)- y(k+1)]/6 

⇒  c(k)- c(1)= [ 8y(k) - y(k-1)- y(k+1)+8 y(1)+ y(0)+ 
+ y(2)]/6 

⇒  c(k)- c(1)= {y(k)-[y(k+1)-2y(k)+y(k-1)]/6}- 
   -{y(1)-[y(2)-2y(1)+y(0)]/6} (25) 

 
Any differences c(k) - c(1) does not depending on 
intermediary values, but only the ones related to y(k) 
and  y(1). It can be observed that the expressions in 
square brackets in (25) represent the divided 
differences of second order by Stanasila’s definition 
determined in the k and 1 points [3]. The values for 
c(k) and c(1) are not bounded by intermediary 
samples of the function, so this function can be 
arbitrary between k and 1. In this case the method 
could be generalized and used also for discontinuous 
signals.  
 

V. COMPARATIVE RESULTS 
 
All tree methods were implemented to determine the 
coefficients and the algorithms were applied for 
several known signals. Some significant results are 
gone be presented along. The input signal were 
y(k)=sin(2πk/M) or y(k)=cos(2πk/M), k = 0, N-1 for 
different values of M and N. Were analyzed situations 
for diverse sampling frequencies (different values for 
M). For the periodic signals the input string has a 
small number of samples (M=12 and N=13) 
corresponding to one period or an increased number 
of samples equivalent to more than two periods.  
For the same input string were calculated the 
coefficients c(k) using each of the three methods and 
it was performed the interpolation in every case. The 
interpolated values are obtained by the same method 
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like in the Unser’s algorithm using the equation (5). It 
was performed the interpolation by factor m=2. 
The results are comparative for the sine and cosine 
signals. If M=12 the input signal has a small number 
of samples. Applying the A method for calculating the 
coefficients the interpolation errors are of 10-1 order. 
Almost all the interpolated values are influenced by 
errors of this range. For the same input string the 
interpolation errors are 10-2 in case of B and 10-3 for C 
methods. 
For a signal with a greater number of samples per 
period (M=120) the differences between the tree 
methods are significant. The interpolation errors are 
10-3 with the classical definition for the divided 
differences. Using the B method these errors became 
10-4. If the derived function values are calculated by 
the polynomial of degree 4 then the interpolation 
errors are decreasing to 10-7. By increasing the 
sampling frequency for the input signal are reduced 
the interpolation errors. 
For y(k)=cos(2πk/M) being the input signal, some 
results are presented in Table 1. In two cases: M=12 
and M=120 are given the interpolation errors for some 
distinctive points α on the function characteristic.  
 
Table1. Interpolation errors for y(k)=cos(2πk/M). 

α M A method B method C method 

12 -0.05502116 -0.00817301 0.00024929 π/3 120 -0.00068398 -0.00022684 -0.00000005
12 -0.03867513 -0.03867513 -0.00099717π/2 120 -0.00091239 -0.00045525 -0.00000015
12 -0.12200846 -0.06630823 -0.00274223π 120 -0.00136921 -0.00091207 -0.00000040

 
As it can be seen the A method has results that are not 
too good. The improved method B can offer 
acceptable errors for some applications. It has the 
advantage of simplicity and requires a relative small 
number of operations. The algorithm has better results 
by using the polynomial function of degree 4. But in 
this case are necessary additional operations. 
Decreasing errors is possible by increasing the 
computational costs. The operations are not 
complicated and they don’t take much time for 
calculating in applications that require better results.  
The results can be compared with the ones obtained 
with the Unser’s algorithm where for determining the 
coefficients it is applied the direct B-spline transform. 
The errors in this case are greater at the beginning and 
the end of the data string compared with the data in 
the middle [4]. This is due to the finite number of 
samples used at the initialization procedure for 
determining the coefficients. For M=12 the side 
values present errors of 10-1 order and the others have 
interpolation errors of 10-3. For M=120 the 
interpolation errors are 10-8 up to 10-6 at the beginning 
and at the end.  
The new algorithm has the advantage that the errors 
introduced by the method of determining the 

coefficients are the same for all the interpolated 
samples. 
In all studied cases the firsts and lasts 2 interpolated 
values are influenced by greater errors.  These are 
introduced by the interpolation method. Every 
interpolated value is obtained from the coefficient 
corresponding to the current point and some anterior 
and posterior coefficients (convolution in (5)). Some 
of these (c(-1) and c(N) for example) are not known 
and considered zero when calculate the interpolated 
values on the sides of the string. This problem appears 
also at the Unser’s algorithm. It can be resolved and it 
will be discussed in to a further paper. 

 
VI. CONCLUSIONS 

 
The algorithm use known techniques combined in 
new manner. The main advantage of this one 
compared with the Unser’s algorithm is that the input 
signal don’t have to be extended to establishes the 
initial conditions. The coefficients are calculated 
using the input samples and the values for the first 
derivative of the input function in the sampling points. 
The problem was to determine these values only from 
the input data. One of the presented methods (the C 
method) offers very good results for the interpolation. 
The function is approximated by a polynomial of forth 
order. From this is established the recursion formula 
for calculate the coefficients. 
The algorithm offers simplicity of implementation. It 
was applied on input signals that are continuous for 
different sampling frequencies. The presented 
methods will be tested on other types of signals to 
observe if the results are as good as the presented 
ones.   
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