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Abstract –The problem of interpolation a set of data is 
an old one, but the demanding of flexibility and high 
speed in operating on-line and in real time processing 
need to find new methods and improve the old ones [1]. 
The main properties of B-spline functions offer the 
possibility to implement algorithms of interpolation in a 
faster and optimal manner. A function can be 
represented by B-spline functions with a set of 
coefficients. For interpolative signal reconstruction it is 
necessary to calculate those coefficients. In this paper, 
for cubic spline interpolation it is analyzed a known 
algorithm and some of his deficiencies. Also there are 
relieved some possibilities for developing new algorithms 
that could eliminate those problems. It is presented 
another way to determine the initial coefficients by using 
the polynomial representation on short intervals of the 
spline function and his derivatives. Based on this results 
are made several observations for further use in 
improving the algorithm.  
Keywords: interpolation, B-spline functions 
 

I. INTRODUCTION 
 
In many applications are given some samples of a 
signal and it is necessary to estimate the values 
between them. The interpolation problem it is an 
actual matter although great mathematicians with 
hundred years ago approached it. This interpolation 
process supposes to find a function that can 
approximate the given data. Usually, the signals in 
digital signal processing are represented by equally 
spaced samples. For interpolation can be used the 
spline functions with uniform knots and unit spacing. 
Polynomial spline functions have been used in many 
applications because of their main properties: 
continuous piecewise polynomial of degree n with 
derivatives up to order n-1. Another advantage is that 
a spline function can be obtained as a linear 
combination of shifted B-spline functions and a set of 
coefficients. The B-splines are maybe the simplest 
functions and the most used of them are cubic splines. 
The section II presents some properties of the B-
spline functions and the problem of spline 
interpolation. 
Having a set of data, to determine the interpolation 
function it is necessary to calculate the spline 
coefficients. In their work Michael Unser and his 

team give an algorithm to find those coefficients, 
algorithm that need some boundary conditions for 
calculating initial coefficients [3], [4], [5].  In section 
III is presented their algorithm that use simple digital 
filter techniques. 
By section IV are analyzed some results obtained for 
known signals. Samples from sine and cosine 
functions, from a straight line are used to calculate the 
B-spline coefficients and then the interpolated values 
for a specific interpolation factor. 
In section V it is presented a new approach for 
calculating initial B-spline coefficients. The solution 
does not need to perform an extension on Z for the 
input signal function. There are presented some 
results in comparison with the other algorithm. 
 

II. B-SPLINE FUNCTIONS 
 

The spline functions are piecewise polynomials of 
degree n with continuity of the spline and its 
derivatives up to order (n-1) at the knots [2]. In this 
work are used only functions with uniform knots and 
unit spacing. 
A spline function f n(x) is uniquely characterized by 
the B-spline coefficients c(k) , where: 
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For n = 3 we have the cubic B-spline function which 
is often used for performing high-quality interpolation 
[3]: 
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The B-spline interpolation problem traditionally it is 
resolved by using matrices and standard numerical 
techniques. The algorithms are long and are necessary 
many operations to determine the solutions. A faster 
way to resolve the problem is to use simpler digital 
filter technique. Unser use the discrete B-spline 
functions and define the indirect and direct B-spline 
transforms [3], [4]. The B-spline coefficients can be 
obtained by linear filtering. Having a set of data the 
spline coefficients are calculated such that the 
function goes through the data points exactly. The 
interpolated values of the signal are obtained also by 
digital filtering. 
 

III. SPLINE INTERPOLATION ALGORITHM 
 
To perform an interpolation process for a set of N 
samples it is necessary to find the interpolation 
function in (1).The input data are lettering by {s(0), 
s(1), s(2),…, s(N-1)}. For that we have to calculate 
the B-spline coefficients. A solution proposed by     
M. Unser [3], [4] is to apply for the input signal a 
digital filter, called direct B-spline filter: 
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b1

3(k) is the discrete B-spline function of degree n=3 
(cubic). It is said that the coefficients can be 
calculated by “direct B-spline transform”. 
This filter is implemented by 2 filters: first a causal 
filter and the second anti-causal. A recursive 
algorithm it is given to calculate the B-spline 
coefficients: 
 

c+(k) = s(k) + z1 c+(k-1), k = 1, … , N-1       (5) 
 

c-(k) = z1 (c-(k + 1) - c+(k)), k = N-2, … , 0 (6) 
 

where: 321 +−=z  and c(k) = 6c-(k). 
For that it is necessary to establish some initial 
conditions. To recover exactly the initial samples by 
convolving c(k) with b1

3(k) are used mirror-
symmetric boundary conditions: s(k) = s(l) for 
(k+l)mod (2N-2) = 0. The resulting signal is periodic 
with period 2N-2. For the first recursion we have the 
next initialization: 
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Practically is not efficient to calculate this. For the 
periodic signal resulted by mirroring the input data the 
relation became: 
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The author propose for using in practice the formula 
(9), with k0 >log ε/log | z1|, where ε is the desired level 
of precision [3]. In the literature it is not pointed out 
the exact signification and how ε have an effect on the 
calculating the coefficients process. By taking 
different values for ε it was observed that only a few 
coefficients are affected at the beginning and the end 
of the data string. For a given signal the intermediate 
values are the same in cases of different values for ε. 
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For the second recursion it is used: 
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Having the B-spline coefficients, the signal 
interpolation by an integral factor m it is completed by 
fn(x/m), denoted by )(xf n

m  . From (1) we obtain: 
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This operation is called “indirect B-spline transform” 
and it is implemented by digital filtering [5], [6].  
 

IV. THE ANALYZIS OF THE UNSER’S 
ALGORITHM 

 
The presented algorithm was implemented and there 
were calculated the B-spline coefficients and the 
recovered signal in some particular cases. There are 
used more arrays of initial data with N samples of sine 
or cosine functions.  
The samples s(k) are defined by s(k)=sin(2πk/M) or  
s(k)=cos(2πk/M) with k=0, …, N-1, were M=12, 50, 100 
or 120. The N samples represent 1, 3 or 5 periods of 
the functions for different sampling frequencies. It 
was analyzed also the case of a straight line. The 
value for k0 in (9) was selected to k0=7. From the 
results there were done several observations. 
The B-spline coefficients follow the signal variation 
and are close to the samples values. In figure 1 are 
presented the differences between the coefficients and 
the input data values for s(k)=sin(2πk/120) with N=361. 
In all studied cases the values of the B-spline 
coefficients are almost equal with the samples values. 
In the case of cardinal spline functions the coefficients 
are exactly the input data. But those functions are no 
longer compactly supported. There is lost the 
advantage of calculating any value of the interpolation 
polynomial using maximum (n+1) B-spline functions 
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(for the sampling points are necessary only n 
functions). 

 

For sine and cosine functions have been calculated the 
B-spline coefficients for different sampling 
frequencies. There were taken one period of the signal 
and then three periods. In each case were obtained 
different values for the coefficients. Generally c(k) 
depends on the signal sampling frequency (sampling 
unit). In Table 1 are compared the coefficients c(k) for 
different sampling frequencies in the case of sine 
function: sin(2πk/M). The values are obtained on the 
same points α of the input function characteristic. 

Table 2 present the same coefficients, but for the 
cosine function: cos(2πk/M). The values depend not 
only of the shape of the function, but also of the 
sampling frequency.  
Studying the case of sine and cosine functions it is 
clearly that for great sampling frequencies the values 
of c(k) and s(k) are very close (differences of 
maximum 10-4 order for M=120). At smaller sampling 

frequency the differences are increasing (10-2 for 
cosine and 10-1 for sine functions when M=12).  
In the case of the odd functions by performing the 
mirror extension [5] for the input signal, the functions 
derivatives are no longer continues. 
The coefficients obtained for one or more periods are 
not the same. For the second period, the coefficients 
are different in comparison with the first period, but 
are almost equals with the ones in the next periods.  In 
Table 1 and Table 2 are observed the differences 
between c(0) from the first period and his 
correspondents in second and third periods. Those last 
ones are almost equal. 
For the intermediary periods the values are the same 
and some differences are present at the beginning of 
the first period and at the end of the last. The firsts 
and lasts few coefficients have values close to the 
others, but not equal. 
Between firsts and lasts coefficients appear a sort of 
symmetry. It can be said that we have a “side effect”. 
This side effect can be due to the initial conditions. 
Those coefficients introduce some errors at the 
beginning and the end of the sequence in the signal 
reconstruction. 
In the case of the sine function we observe that the 
difference between c(0) and c(M) is greater than in the 
case of cosine function. For the odd functions the 
mirror-symmetric conditions introduce bigger errors. 

For the signal reconstruction and interpolation, in all 
cases studied, were observed those side effects. At the 
beginning and the end of the data sequence the errors 
are higher then the others.  
Considering the input signal s(k)= sin(2πk/120) we 
calculated the B-spline coefficients and completed the 
interpolation by factor 2.  For the first and last few 
points the errors are e=10-3 and decrease fast to e=10-8 

Table 2. Coefficients for  s(k)= cos(2πk/M), k0=7 
First period Second period Third period 

α M 
k c(k) k c(k) k c(k) 

12 0 1.0467677172 (M+0) 1.0467457811 (2M+0) 1.0467457811 
0 

120 0 1.0004237020 (M+0) 1.0004570305 (2M+0) 1.0004570305 

12 1 0.9065025600 (M+1) 0.9065084377 (2M+1) 0.9065084377 
π/6 

120 10 0.8664212037 (M+10) 0.8664212038 (2M+10) 0.8664212038 

12 2 0.5233744655 (M+2) 0.5233728905 (2M+2) 0.5233728905 
π/3 

120 20 0.5002285152 (M+20) 0.5002285152 (2M+20) 0.5002285152 

Table 1. Coefficients for  s(k)= sin(2πk/M), k0=7 
First period Second period Third period 

α M 
k c(k) k c(k) k c(k) 

12 0 -0.3021395140 (M+0) -0.0000000413 (2M+0) 0.0000000413 
0 

120 0 -0.0302443872 (M+0) 0 (2M+0) 0 

12 1 0.6043309293 (M+1) 0.5233729016 (2M+1) 0.5233727360 
π/6 

120 10 0.5002284575 (M+10) 0.5002285152 (2M+10) 0.5002285152 

12 2 0.8848157966 (M+2) 0.9065084347 (2M+2) 0.9065090142 
π/3 

120 20 0.8664212038 (M+20) 0.8664212038 (2M+20) 0.8664212038 

Fig.1Diferences between B-spline coefficients and input data  
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in the interpolated points. The algorithm has excellent 
properties of convergence. At the input data points the 
values obtained are exactly excepting the 2 extremely 
points. For calculating every interpolated value are 
necessary the coefficient for the current point c(k) and 
some anterior and posterior coefficients. For the first 
and last 2 points of the string some of those 
coefficients are not known (example c(-1)) and 
considered zero. This is one of the causes for the side 
errors that appear in every cases when perform 
interpolation. 
For s(k) = cos(2πk/120) the results are comparative. It 
was done the interpolation by 2 and the errors at the 
beginning and the end of the results array are smaller, 
starting from 10-6 and decay faster then for the above 
function.  Similar results have been obtained in the 
cases of the studied signals with other sampling unit 
(M=50, 100). The errors for the B-spline coefficients 
have a real significance in the interpolation process. 
For initializing c+(0) are used a finite number k0 of 
samples. Extending the signal by mirroring [3],[5] it 
was calculated c+(0) in the relation (8). The results for 
coefficients, signal reconstruction and interpolation by 
2 are better than in the case of using (9) for 
initialization, with k0=7. For the cosine signal 
cos(2πk/120) the interpolation errors at the beginning 
and the end of the string are much smaller then for 
k0=7. Compared with the same case of initialization 
for sin(2πk/120) the results are better too. But the 
errors decay slower compared with the cosine 
function case. It can be said that the mirror extension 
present disadvantages for the odd functions. 
The coefficients for the extended signals are similar 
with the values obtained in the second and third 
period of the signals for k0=7. It can be said that the 
values for c(k) corresponding to the second period in 
Table 1 and Table 2  (where k0=7) in fact represents 
the coefficients for k0= ∞. If we can take the 
coefficients values from the intermediary period then 
the initialization is not necessary to be very precise. 
But in this case are necessary an increased amount of 
numerical operations. 
If the input samples correspond to a straight line  
s(k)= 1, N=50, the B-spline coefficients c(k) are 
calculated and presented in Table 3. At the beginning 
and at the end the coefficients have values different 
from 1. But they converge fast to 1.   We perform the 
interpolation of the signal by the integral factor 2 and 
obtain the values y(k/2) presented in the third column 
of Table 3. 
Excepting the first and last values, in data points the 
signal is exactly recovered. Between those points, the 
interpolated values have errors for some positions. 
There is shown again that the algorithm has a good 
convergence due to polynomial spline properties.  But 
for some oscillations in coefficients sequence are 
obtained oscillations in the interpolated signal. This 
could be an inconvenient if the input signal has a 
small number of samples.  
For the errors that appear in the process of 
determination the B-spline coefficients a possible 

cause is that on principle the input signal is 
considered of infinite duration (extended to k∈Z) [3], 
[4]. In practice, for the recursive algorithm, the 
initialization is done in k = 0 and is limited to a k0. If 
it is done a signal extension on both sides and 
performed the interpolation, in the center area the 
results are very good. In this way the middle area is 
the interval were the input samples are defined and 
the side errors present no more importance.  
 
Table 3. Input signal  s(k)= 1, k0=7 

k c(k) y(k/2) 
0 0.999637023 0.8333107558 
  0.9791538800 
1 1.0000097259 1 
  1.0000026699 
2 0.9999973939 1 
  0.9999992845 
3 1.0000006982 1 
  1.0000001916 
4 0.9999998128 1 

… … … 
30 1 1 
  1 

31 1 1 
… … … 
49 1 1 
  0.9791666666 

50 1 0.8333333333 
 
In the case of the straight line we took for input much 
more samples. For calculating c+(0) it is used the 
relation (7): 
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All the values for B-spline coefficients are equal to 1. 
The samples obtained for the interpolated signal by 
the integral factor 2 are presented in Table 4, along 
with the coefficients.  
 
Table 4. Input signal  s(k)= 1, k0=∞ 

k c(k) y(k/2) 
0 1 0.8333333333 
  0.9791666666 
1 1 1 
  1 
2 1 1 
  1 
3 1 1 
  1 
4 1 1 

… … … 
30 1 1 
  1 

31 1 1 
… … … 
49 1 1 
  0.9791666666 

50 1 0.8333333333 
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We see that still exist a side effect due to the 2 
coefficients that are not known at the beginning and 
the end of the data string.  
In conclusion, to reduce the side effect it is necessary 
to perform a signal extension on both sides, but it is 
essentially to establish the right way to do it.  The 
presented examples show that the extension of a 
signal by using its mirror image it is not an optimal 
solution in all the cases. The extension can be 
performed for the coefficients string too. We searched 
another approach for calculate the B-spline 
coefficients.  
 

V. NEW METHOD FOR CALCULATING THE 
INITIAL B-SPLINE COEFFICIENTS 

 
It was searched a way to initialize the spline 
coefficients without performing the signal extension 
on Z. For the new coefficients it is used the notation: 
cn(k). For the given set of data {s(0), s(1), s(2),…, 
s(N-1)} we consider f(x) the interpolation function. 
We seek for that one to be a cubic spline function. An 
important property of those functions is that they are 
piecewise polynomial functions. 
From the convolution of the coefficients with the 
cubic B-spline function in formula (1) it can be write 
the next relation: 
 

6f(k) = 4 cn(k) + cn(k-1) + cn(k+1)         (13) 
 
This is happening in the function knots. Also in the 
sample points, the relations between the function 
derivatives and the B-spline coefficients are: 

 
        f’(k) = 0 cn (k) - ½ cn (k-1) + ½ cn (k+1)   (14) 

      f”(k) = -2 cn (k) + cn (k-1) + cn (k+1)            (15) 
 

Those relations help us to evaluate the properties and 
the values for the B-spline coefficients. For k=2 it can 
be deduced: 
 

cn (2) = f (2) - f”(2)/6      (16) 
cn (0) = cn (2) – 2f’(1)       (17) 

4
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The problem is how to calculate f’(1) and f’’(2) from 
the known samples. The interpolation function is a B-
spline (piecewise polynomial), so we can approximate 
f (k) by a polynomial function on short intervals. With 
this polynomial and his derivatives we calculate the 
values for the first 3 coefficients. 
Consider f a polynomial function of 4-th order (pass 
trough 5 points): 
 

   f(x) = a + b x  +d x 2 + e x 3+ g x 4     (19) 
 

The function and the function derivatives of order 1 
and 2 have been evaluated on the interval [0;4] and 
are obtained the next relations: 
 

12
)4()2(18)1(10)0(3)1(' fffff ++−−
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The main condition is that the interpolation function 
to pass through the input samples: f(k)=s(k) for 
k=0,1…, N-1. By using (20) and (21) in relations 
(16), (17) and (18) are calculated the initial 
coefficients cn(0), cn(1) and cn(2) without performing 
any signal extension.  
Those 3 coefficients have been calculated for the 
previous studied signals. Some results are presented in 
Table 5 for sine functions and Table 6 for cosine 
functions. The coefficients calculated with the new 
relations (in the last column) are compared with the 
corresponding coefficients in Unser’s algorithm, for 
k0=7 and k0=∞. 
The coefficients for s(k)=sin(2πk/M) are presented in 
Table 5 for two situations: M=12 and M=120.  As it 
can be seen the new values are much closer to the 
ideal values that the ones for k0=7.  The differences 
between cn(k) and c(k) for k0=∞ are in order of 10-3 
for M=12. For a higher sampling frequency the 
differences decrease to 10-7 (M-120). 
 
Table 5. Coefficients for s(k)=sin(2πk/M) 

M k c(k) cn(k) 
k0=7 -0.3021395140 0 
k0=∞ -0.0000000413 -0.0035163260 

k0=7 0.6043309293  1 
k0=∞ 0.5233729016 0.5244880516 

k0=7 0.8848157966 

12 

2 
k0=∞ 0.9065084347 0.9055641193 

k0=7 -0.0302443872 0 
k0=∞ 0 -0.0000000544 

k0=7 0.0604638345 1 
k0=∞ 0.0523598753 0.0523598917 

k0=7 0.1024047866 

120 

2 
k0=∞ 0.1045762359 0.1045762250 

 
In case of s(k)= cos(2πk/M) the values are presented 
in Table 6. The results are similar: differences of 
order 10-7 for M=120.  
 
Table 6. Coefficients for s(k)=cos(2πk/M) 

M k c(k) cn(k) 
k0=7 1.0467677172 0 
k0=∞ 1.0467457811 1.0495366943 

k0=7 0.9065025600 1 
k0=∞ 0.9065084377 0.9059470100 

k0=7 0.5233744655 

12 

2 
k0=∞ 0.5233728905 0.5228276880 

k0=7 1.0004237020 0 
k0=∞ 1.0004570305 1.0004569306 

k0=7 0.9990948692 1 
k0=∞ 0.9990859389 0.9990859898 

k0=7 0.9949740293 

120 

2 
k0=∞ 0.9949764222 0.9949763183 

 
Having calculated the initial B-spline coefficients the 
next step is to establish the algorithm for calculating 
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the others. It has to perform the interpolation with 
those new coefficients and compare the results with 
the existing ones.  

VI. CONCLUSIONS 
 
In the studied articles this cubic spline interpolation 
was used for image processing [3], [5], [6]. All the 
results referred to techniques used in this area. We 
took the algorithm and applied it for some usually 
digital signals. The observations and conclusions 
regarding the coefficients were used for finding an 
improved method to perform cubic spline 
interpolation. The B-spline coefficients depend of the 
sampling frequency, of the input samples values, are 
close to those and follow the signal variation. The 
algorithm has excellent properties of convergence due 
to the spline function nature. It presents some side 
errors that have a great importance in the interpolation 
process. Those errors are due to the finite length of 
the input signal and to the extension by mirroring for 
some functions.  It was searched a way to eliminate 
the oscillations in interpolated signal by reducing the 
oscillations in coefficients series. 
By the process presented in section V is given an 
alternative to calculate the initial terms with minimum 
errors. There were elaborated and tested a few 
algorithms for eliminating ones of the deficiencies in 
the presented one and reducing the interpolation 
errors. The B-spline coefficients are calculated in a 
simple manner and the side effect can be negligible in 
the interpolated signal. Those algorithms must be 
finished and then published in to a further work. 
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