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Rezumat,  

În cadrul tezei sunt propuse diverse soluţii pentru mode-
larea şi optimizarea sistemelor de conducere fuzzy. Contribuţiile 
cercetării sunt reprezentate de: definirea problemelor de optimi-
zare a regulatoarelor fuzzy de tip Takagi-Sugeno cu sensibilitate 
parametrică redusă, a problemelor de optimizare parametrică a 
modelelor fuzzy de tip Takagi-Sugeno cu dinamică, noi algoritmi 
inspiraţi din natură aplicaţi în rezolvarea acestor probleme de 
optimizare prin minimizarea a diverse funcţii obiectiv şi rezultate-
le îmbunătăţite obţinute în urma aplicării algoritmilor. Calitatea 
rezultatelor obţinute este evaluată prin prisma unor indicatori de 
performanţă originali. Soluţiile propuse sunt validate experimen-
tal pentru trei echipamente de laborator: un servosistem neliniar, 
un sistem anti-blocaj al roţilor şi un sistem cu levitaţie magneti-
că. 
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Fig. 3.8.22. Simulation results of fuzzy control systems with different values 
of Pk  parameter: 126=Pk  (solid), 140=Pk  (dashed) and 156=Pk  (dotted) for 

objective function 
Pk

J ,4  and weighting parameter 1.42)( 2 =
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Fig. 3.8.23. Objective function 
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Fig. 3.8.24. Simulation results of fuzzy control systems with different values 
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1. INTRODUCTION 

 
 

1.1 MOTIVATION BEHIND THE RESEARCH  

 
A consistent way to achieve the performance specifications of fuzzy control 

systems involves tuning the parameters of fuzzy controllers or fuzzy models with 
the aid of defined optimization problems with variables matching those parameters. 
The performance specifications are met by solving these optimization problems that 
ensure the optimal tuning of fuzzy controllers and fuzzy models. This process may 
lead to multi-objective optimization problems due to the complexity of the process 
and controller’s structures and nonlinearities as the objective functions associated to 
the optimization problems could be non-convex and non-differentiable. 

For control systems, the performance indices are usually expressed as em-
pirical control system performance indices (e.g., overshoot, settling time, phase 
margin, etc.). A common practice of achieving the desired performance specifica-
tions of fuzzy control systems is to define them through optimization problems 
based on objective functions, which use as variables the tuning parameters of the 
controller, with the appropriate constraints imposed. Optimal tuning parameters are 
reached by solving these optimization problems, which, in most cases, implies the 
minimization of the objective functions. The optimal tuning of fuzzy controllers is 
applied in this thesis in the context of the above mentioned systematic way to de-
sign and tune these nonlinear controllers. 

For the design and tuning of optimal control systems, idealized linear or lin-
earized models of the controlled processes are generally used. Nevertheless, indus-
trial processes are subjected to parametric variations of the controlled processes, 
which can put the systems in undesired states or even unstable ones. In order to 
avoid these situations, a sensitivity analysis with respect to the parametric varia-
tions of controlled processes is required and state sensitivity models with respect to 
the variable parameters of the controlled process are derived. The parameters are 
considered variable if the initial process models are nonlinear and next linearized 
around several operating points in order to ensure the convenient and easily under-
standable controller design and tuning. The objective functions considered in this 
thesis will include the output sensitivity functions in appropriate sensitivity models, 
so optimal controllers with a reduced parametric sensitivity are offered because the 
optimization problems are defined such that to minimize the objective functions. 

Solving the optimization problems specific to the optimal tuning of fuzzy 
controllers is a complex task due to the complicated expressions of the objective 
functions and the risk of getting trapped in local minima situations. This depends on 
the processes and on the fuzzy controller structures, with suggestive examples dis-
cussed in [Prei97], [Pre99], [Pre04], [Prei02], [Fen06], [Prei06], [Lin11], [Oh11], 
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[Pre11a], [Teo12], [Ang13], [Bla13], [Joe13], [Moh14]. In order to reduce the 
computational cost for minimizing these objective functions nature-inspired algo-
rithms can be used due to their derivative-free characteristic. Additionally, the use 
of these nature-inspired algorithms to optimally tune the parameters of fuzzy con-
trollers can offer the following advantages: reduced running costs, transparency in 
the design, low-cost design and implementation, and gradient information replaced 
by actual objective function value. 

The first objective of the research carried out in this thesis is the optimal 
tuning of fuzzy controllers using nature-inspired optimization algorithms. The opti-
mization problems are defined such that to include objective functions that ensure 
the sensitivity reduction with respect to the parametric variations of the controlled 
processes. 

The problem of fuzzy modeling by means of Takagi-Sugeno (T-S) fuzzy 
models has been approached in the recent literature. The models can be considered 
in the general framework of fuzzy models for several processes [Joh10], [Vas10], 
[Hab10]. Some representative applications will be discussed as follows. By analyzing 
the braking process and the dynamic model of vehicle and wheel behavior, a T-S 
fuzzy model of deceleration in proposed in [Zhe11]. Using the computation of mini-
mum and maximum values of input variables and the local linearization at several 
operating points, two discrete time dynamic T-S fuzzy models of Anti-lock Braking 
System (ABS) processes are proposed in [Pre12c], based on the modal equivalence 
principle [Gal95] and on the sector nonlinearity approach [Oht01]. 

A fuzzy neural network that contains sensor intelligence in order to estimate 
the true gap in a range of temperature after training is suggested in [Yon11]. A lin-
ear T-S fuzzy model obtained using a linear self-constructing neural fuzzy inference 
network applied to an optimal fuzzy controller is introduced in [Yu03] to model a 
nonlinear magnetic bearing system. A design method of T-S fuzzy models for mag-
netic bearing of high-speed motors is described in [Wan10] in the context of parallel 
distributed compensation controllers. An analysis concerning the stability of T-S 
fuzzy control systems controlling Single Input-Single Output nonlinear time-varying 
system is presented in [Pre11f]. 

The very good quality of T-S fuzzy models is necessary for both fuzzy mod-
eling and describing the dynamics and nonlinearities of nonlinear dynamic process-
es, and for getting simple models that are useful in the model-based design of fuzzy 
controllers. Once the fuzzy models are obtained, several approaches are given in the 
literature to improve their quality (i.e., performance) by optimally tuning the pa-
rameters of these models, on the bases of the appropriate definition of optimization 
problems that target the minimization of objective functions in order to reduce as 
much as possible the modeling errors. 

Taking into account the structure of fuzzy models, several parameters of 
each of the modules of these models can be optimally tuned: parameters from the 
fuzzification module, parameters from the inference engine (including the rule base 
and the rule antecedents of T-S fuzzy models), and parameters from the defuzzifica-
tion module. Applications on optimal tuning of fuzzy models concern the tuning of 
the parameters of input membership functions in fuzzy control systems for general 
nonlinear systems [Liu00], the optimization of the parameters in the rule anteced-
ents and consequents of Takagi-Sugeno fuzzy models [Alm10], the optimal tuning 
of the rule base and of the parameters in the inference engine [Bod05], the optimi-
zation of the fuzzy rule base [Cab06], and the reduction of the rule base and infer-
ence engine of fuzzy controllers [Pir13]. 
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The second objective of the research carried out in this thesis is the opti-
mal tuning of the parameters of the input membership functions of the dynamic 
fuzzy models of processes using nature-inspired optimization algorithms. The opti-
mization problems are defined such that to include objective functions that ensure 
the reduction of the modeling errors towards the minimization of the objective func-
tions. The thesis will be focused on the optimal tuning of some parameters of the 
input membership functions of T-S fuzzy models. 

The latest solutions for solving optimization problems comprising parameter 
tuning of fuzzy controllers and fuzzy models are built upon nature-inspired optimiza-
tion algorithms that include Simulated Annealing (SA) [Pre11c], [Pre12b], Particle 
Swarm Optimization (PSO) [Oh11], [Pre13a], Gravitational Search Algorithms 
(GSAs) [Dav13], [Pre13b], Charged System Search (CSS) algorithms [Pre14c], ge-
netic algorithms [Oni12], Ant Colony Optimization [Cha12]. These solutions com-
prise both objectives of the thesis. 

 
 

1.2 THESIS OVERVIEW 

 
This thesis is organized in five chapters. A brief description of these chapters 

is presented in the following section: 
Chapter 1 contains the introduction in which the motivation for the pre-

sented research is described. 
Chapter 2 introduces in the first part an original design and tuning method 

for Takagi-Sugeno proportional-integral fuzzy controllers for nonlinear servo sys-
tems with a reduced parametric sensitivity. The class of nonlinear servo systems is 
structured as a series connection of second-order dynamics with an integral compo-
nent, and saturation and dead zone static nonlinearity placed on the process input.  

The design method ensures the parameter tuning of the fuzzy controllers by 
solving four types of optimization problems, which constitute the goal of this thesis, 
using nature-inspired optimization algorithms. The optimization problems are de-
fined along with their corresponding objective functions and the required constraint. 
The rationale for employing nature-inspired algorithms for solving the optimization 
problems contained by the proposed design method is supported by a bibliographic 
research in the second part of the chapter. 

In Chapter 3 nature-inspired algorithm based solutions are proposed for 
solving the optimizations problems defined in the previous chapter. The seven algo-
rithms used here contain four standard algorithm versions of: Simulated Annealing, 
Particle Swarm Optimization, Gravitational Search Algorithms and Charged System 
Search; one hybrid algorithm based on Particle Swarm Optimization and Gravita-
tional Search Algorithm and two adaptive versions of Gravitational Search Algo-
rithms and Charged System Search algorithms which use parameter variations 
based on a learning model. The implementation of these nature-inspired algorithms 
is carried out according to the fourth step of the novel design method dedicated to 
the Takagi-Sugeno PI-fuzzy controllers described in Chapter 2. 

The results corresponding to each of the optimization problems obtained as 
a result of several simulation runs are synthetized with complete values of the opti-
mal controller tuning parameters and the minimum values of the objective func-
tions. Along with these simulation results, experimental results are presented, for 
each proposed nature-inspired algorithm-based solution, in order to validate the 
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proposed method. The search process is portrayed for each solution by a number of 
illustrations presenting the evolution of exploration agents. The quality of the ob-
tained results is evaluated using three original performance indices which assess the 
convergence of the solution by monitoring the mean value of the objective function 
during a number of algorithm runs, the average number of required algorithm steps 
for convergence speed and an accuracy index to evaluate the precision of the solu-
tion. 

Chapter 4 is dedicated to solving two optimization problems concerning the 
input membership functions of Takagi-Sugeno models initially obtained by the modal 
equivalence principle. The Takagi-Sugeno models are applied to two laboratory 
equipment setups: an anti-lock braking system and a magnetic levitation system. 
The modeling approach used in this chapter employs Simulated Annealing algorithm 
to optimize the parameters of Takagi-Sugeno fuzzy models. 

The proposed modelling approach is different to other approaches because it 
starts with the first-principle mathematical model of the process and it offers a 
strong advantage by the verification of the performance of the optimal Takagi-
Sugeno fuzzy models in terms of real-time experiments on two types of laboratory 
equipment. Another important aspect of the proposed modeling approach is its ap-
plicability to a wide category of industrial applications with suitable generalizations 
of reduced complexity degree. Although this modelling approach cannot guarantee 
that the global minimum of objective functions is reached, a considerable decrease 
of objective functions values was observed during the real-time experiments, clearly 
indicating the performance improvement offered by the optimally tuned Takagi-
Sugeno fuzzy models. 

Chapter 5 addresses three categories of problems by restating and synthe-
sizes the conclusions drawn in the previous chapters of this thesis and adding new 
information. First, the new contributions proposed in this thesis are presented. Sec-
ond, the future research directions are pointed out. Third, the dissemination of re-
sults is offered, by giving the list of papers, their impact factors and indexing in sev-
eral international databases and by highlighting the independent citations of these 
papers and the impact factors. 
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2. PROBLEM SETTING CONCERNING THE OPTIMAL 

TUNING OF FUZZY CONTROLLERS WITH A REDUCED 

PROCESS PARAMETRIC SENSITIVITY 

 
 

2.1.  CONTROL SYSTEM MODELS,  SENSITIVITY MODELS 

AND DEFINITIONS OF OPTIMIZATION PROBLEMS 

 
The fuzzy control system structure is presented in Fig. 2.1 as a set-point fil-

ter fuzzy control system structure derived from [Pre09a], where FC is the fuzzy con-
troller, P is the process, F is the set-point filter, r is the reference input (the set-

point), 1r  is the filtered reference input, d is the disturbance input, y is the con-

trolled output, u is the control signal, e is the control error: 
 yre −= 1 , (2.1) 

P

P

mT
m Rα ∈= ]...[ 21 ααα  is the process parameter vector with the ele-

ments Pm...1  , =τατ , which are the parameters of the process, 
qT

q Rρ ∈= ]...[ 21 ρρρ  is the controller parameter vector with the elements 

q...1  , =γργ , which are the tuning parameters of the controller and the filter parame-

ters can be included in this vector as indicated in Fig. 2.1, and the superscript T 
indicates the matrix transposition. The fuzzy control system structure presented in 
Fig. 2.1 belongs to the two-degree-of-freedom (2-DOF) control system structures. 

 

 
Fig. 2.1. Structure of set-point filter fuzzy control system. 

 
As shown in [Ara03], [Vis04], [Vra11], [Ala12], [Gha12], [Hu12], [Iwa12], 

[Kan12], [Pel12], [Sza12], [Vil12], [Kum13], the 2-DOF control system structures 
(with PI and PID controllers) have an advantage over the one-degree-of-freedom 
(1-DOF) control system structures by high performance in reference input tracking 
and regulation in the presence of disturbance inputs. The main drawback of 2-DOF 
linear controllers is that the overshoot reduction is paid by a slower response with 
respect to the reference input. Several ways to introduce this additional block in 
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fuzzy control systems are presented in [Pre09a] and [Pre11a]. The introduction of 
fuzzy logic in 2-DOF control system structures leads to improved control system 
performance indices in both tracking and regulation; very good results in different 
applications are reported in [Prei10], [Dra11a], [Liu12], [Sil12], [Sti12a], [Sti12b], 
[Pre13a]. 

This thesis will consider a crisp set-point filter F. The set-point filter can be 
considered as a fuzzy logic block as well and accordingly designed and tuned, but 
this will represent a direction of future research. Fig. 2.1 highlights the linear set-
point filter F, the fuzzy controller FC as a nonlinear system and the nonlinear pro-
cess P. 

The process is represented by the Single Input-Single Output (SISO) dis-
crete-time state-space model [Pre13a]: 
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)),(),(,),(()1(

00 PdP

ddPPdd

dddPPddP

t

tdtgty

tdtutt

xx

αx

αxfx

=

=
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 (2.2) 

where N∈0dt  is the initial time moment, N∈dd tt   , , 0dd tt ≥ , is the discrete 

time argument, nT
nPPPP xxx Rx ∈= ]...[ ,2,1,  is the state vector of the process, 

n
P Rx ∈0  is the initial state vector of the process, and the functions 

nmn
Pd

P RRf →++ 2
:  and RR →++ 1

: Pmn
Pdg  are differentiable with respect to the pa-

rameter Pm...1  , =τατ . The state-space models presented in (2.2) is a nonlinear 

model without direct feedthrough, and it can be obtained from a SISO continuous-
time state-space model accepting that the inputs u and d are changing at the dis-
crete sampling intervals, i.e., accepting the presence of the zero-order hold (ZOH). 

The set-point filter is modeled by the following nonlinear SISO discrete-time 
state-space model that can be also derived from a SISO continuous-time state-
space model: 
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 (2.3) 

where F

F

nT
nFFFF xxx Rx ∈= ]...[ ,2,1,  is the state vector of the set-point fil-

ter and Fn
F Rx ∈0  is the initial state vector of the set-point filter. The functions 

FF nqn
Fd RRf →++ 1

:  and RR →++ 1
:

qn
Fd

Fg  should contribute to the assurance of the 

differentiability of state-space model of the fuzzy control system with respect to the 
parameter Pm...1  , =τατ . 

The fuzzy controller is characterized by the general nonlinear SISO discrete-
time state-space model: 
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 (2.4) 

where C

C

nT
nCCCC xxx Rx ∈= ]...[ ,2,1,  is the state vector of the controller, 

Cn
C Rx ∈0  is the initial state vector of the controller. The functions CC nqn

Cd RRf →++ 1
:  

and RR →++ 1
:

qn
Cd

Cg  in the model (2.4) should also contribute to the assurance of 
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the differentiability of state-space model of the fuzzy control system with respect to 
the parameter Pm...1  , =τατ . Moreover, the convergence of the objective functions 

requires that the controller should have an integral component in order to ensure 
the zero steady-state value of the control error e for several types of disturbance 
inputs. 

The state vector of the process Px , the state vector of the controller Cx  and 

the state vector of the set-point filter Fx  are grouped in the state vector of the con-

trol system x: 
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 (2.5) 

The state-space models (2.2) – (2.4) are merged using equations (2.1) and 
(2.5). This leads to the following discrete-time state-space model of the fuzzy con-
trol system: 
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where the functions FCPFC nnnqmnnn
d

+++++++ → RRf
2

:  and 

RR →++++ 1
: PFC mnnn

Pdh  are differentiable with respect to the process parameter 

Pm...1  , =τατ . 

The state sensitivity functions FC nnn ++= ...1  ,, υλ υατ , and the output sensi-

tivity function 
τασ  are defined as follows [Ros00]: 
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where the subscript 0 indicates the nominal value of the process parameter 
Pm...1  , =τατ , which is subjected to variations. These variations justify the sensitivity 

reduction and the design and tuning of fuzzy controllers with a reduced parametric 
sensitivity. 

Using equations (2.7) to calculate the partial derivatives in the model (2.6), 
the state sensitivity models of the fuzzy control system with respect to the process 
parameter Pm...1  , =τατ , are: 
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The initial state variables are important in the analysis of the state sensitivi-
ty models (2.8). 

The following discrete-time objective functions are defined to ensure the 
sensitivity reduction with respect to the modifications of Pm...1  , =τατ : 
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where Pm...1  , =τγ
τα , are the weighting parameters. The objective function 

)(,1 ρ
ταJ  is referred to as the sum of squared control errors plus squared output sen-

sitivity function, the objective function )(,2 ρ
ταJ  is referred to as the sum of absolute 

control errors plus squared output sensitivity function, the objective function 
)(,3 ρ

ταJ  is referred to as the sum of squared control errors multiplied by time plus 

squared output sensitivity function, and the objective function )(,4 ρ
ταJ  is referred to 

as the sum of absoluter control errors multiplied by time plus squared output sensi-
tivity function. The vector variable of the objective functions ρ  will be omitted in the 
sequel in certain situations for the sake of simplicity. 

The convergence of the objective functions defined in (2.9) – (2.12) requires 
that the steady-state values of the functions in the right-hand terms should be zero. 
Since the zero steady-state value of the control error e for several types of disturb-
ance inputs is guaranteed by controllers with an integral component, the zero 
steady-state value of the output sensitivity function 

τασ  is also necessary. 

In practical control problem solutions the sums in (2.9) – (2.12) should be 
truncated such that to capture all transients of the fuzzy control systems during the 
time horizon. The time horizon should include the moments when the objective 
functions reach their steady-state values. The upper limit of the sum depends on the 
dynamics of the particular process under consideration. 

The minimization of the objective functions defined in (2.9) – (2.12) aims 
the sensitivity reduction, and it is expressed in terms of the optimization problems: 
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* ==
∈

τ
τα ρρ

ρρ

, (2.16) 

where *ρ  is the optimal controller parameter vector, i.e., the optimal value 
of the vector ρ , and ρD  is the feasible domain of ρ . Several constraints including 

the stability of the fuzzy control system can be imposed and expressed by means of 
ρD . Such constraints can be expressed as several stability conditions that are de-

rived generally for nonlinear systems [Pas04], [Dan05], [Pre06a], [Pre07], [Bla10], 
[Hot10], [Li10], [Bla11], [Vil13], or specifically for fuzzy control systems with 
Mamdani fuzzy controllers [Pre97], [Sug99], [Pre06b], [Liu10b], or with Takagi-
Sugeno fuzzy controllers [Skr05], [Fen06], [Pre09c], [Pre11a], [Pre13e], [Cha14], 
or they can account for various regimes of the control systems [Car05], [Fil08], 
[Fil09], [Dan11], [Wan12b], [Fer13], [Hus13], [Cor14], [Wu14]. 

This thesis will consider only the output sensitivity functions in the objective 
functions (2.9) – (2.12). The state sensitivity functions can be considered as well, 
and this represents a direction of future research. 

Let the process as part of servo systems be characterized by the following 
nonlinear continuous-time time-invariant Single Input-Single Output (SISO) state-
space model which defines a rather general class of servo systems: 
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where t is the continuous time argument, 0  , ≥∈ tt R , Pk  is the process 

gain, ΣT  is the small time constant, the control signal u is a pulse width modulated 

duty cycle, and m is the output of the saturation and dead zone static nonlinearity 
specific to the actuator. The nonlinearity is modeled by the first equation in (2.17) 
with the parameters au , bu  and cu , with ba uu <<0 , bc uu <<0 . The state-space 

model (2.17) includes the actuator and measuring element dynamics. The state 
vector )(tPx  is expressed as follows in (angular) position applications for 2=n : 

 TT
PPP tttxtxt ])()([])()([)( 2,1, ωα==x , (2.18) 

where )(tα  is the angular position and )(tω  is the angular speed. The pro-
cess structure is illustrated in Fig. 2.2. 
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Fig. 2.2. Structure of process with saturation and dead zone static nonlinearity. 

 
The nonlinearity in (2.17) is neglected in the following simplified model of 

the process expressed as the transfer function )(sP :  
 )]1(/[)( sTsksP EP Σ+= . (2.19) 

This transfer function is considered for u as input and y as output. The 
equivalent process gain is EPk : 
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Therefore, )(sP  can be used in the controller design and tuning in two cases 
out of the five cases concerning the nonlinearity in (2.17). 

The process models (2.17) and (2.19) can be employed in the control de-
signs of servo systems in various applications accepting that the parameters Pk  and 

ΣT  depend on the operating point. Therefore, the design of control systems with a 

reduced parametric sensitivity with respect to Pk  and ΣT  is justified. In this con-

text, 2=Pm , and the process parameter vector obtains the following particular ex-

pression in the design of control systems with a reduced process parametric sensi-
tivity for this class of servo systems: 

 Σ=== TkP
T

2121   ,  ,][ ααααα . (2.21) 

As shown in [Ast95], [Prei99], [Pre09a], the PI controllers can cope with the 
process modeled in (2.19) if they are inserted in 2-DOF linear control system struc-
tures as that shown in Fig. 2.1 with a PI controller instead of FC. The transfer func-
tion of the PI controller is: 

 icC
i

C
i

c Tkk
sT

k
s

sT
ksC =+=

+
=   ),

1
1()

1
()( , (2.22) 

where ck  is the controller gain and iT  is the integral time constant. The PI 

controllers can be tuned by the Extended Symmetrical Optimum (ESO) method 
[Prei99] to guarantee a desired compromise to the performance specifications (i.e., 
maximum values of control system performance indices) imposed to the control 
system using a single design parameter referred to as β , with the recommended 
values within 201 ≤< β . The diagrams presented in Fig. 2.3 can be used in setting 
the value of the design parameter β  and, therefore, the compromise to the control 
system performance indices expressed as percent overshoot [%] 1σ , settling time st  

and rise time rt . 
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Fig. 2.3. Control system performance indices with respect to reference input versus 

design parameter β  in the ESO method. 

 
The PI tuning conditions specific to the ESO method are: 

 )  /(1  ,   ),   /(1 2
ΣΣΣ === TkkTTTkk EPCiEPc ββββ . (2.23) 

Fig. 2.3 is important because both possible values of 
EPk  according to 

(2.20) should be used in setting certain values of β  which ensure the fulfillment of 
the performance specifications imposed to the control system. A simple version of 
set-point filter which ensures the performance improvement of the linear control 
system by the cancellation of a zero in the closed-loop transfer function with respect 
to the reference input is: 
 ) 1/(1)( sTsF Σ+= β . (2.24) 

The Takagi-Sugeno PI-fuzzy controllers (T-S PI-FCs) are designed starting 
with the linear PI controllers such that to ensure the further improvement of the 
control system performance indices for the nonlinear process modeled in (2.17). The 
structure and the input membership functions of a simple T-S PI-FC are presented in 

Fig. 2.4, where 1−
q  is the backward shift operator. 

 

 
Fig. 2.4. Structure and input membership functions of Takagi-Sugeno PI-fuzzy con-

troller. 

 
More membership functions can be defined but they complicate the rule 

base. One solution to deal with such situations while focusing on the design of sim-
ple fuzzy controllers is represented by fuzzy rule interpolation [Bar95], [Bar96], 
[Koc97], [Yam06], [Joh10]. 
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Fig. 2.4 points out the increment of control error )1()()( −−=∆ ddd tetete  and 

the increment of control signal )1()()( −−=∆ ddd tututu . These increments offer the 

dynamics of the T-S PI-FC and they result from discretizing the continuous-time PI 
controller. Tustin’s method leads to the incremental form of the discrete-time PI 
controller: 
 )]( )([)( ddPd teteKtu µ+∆=∆ , (2.25) 

and to its parameters: 
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ss
icP

TT

TT
TkK
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=−=

 2

 2
  ),

2
( µ , (2.26) 

where sT  is the sampling period set in accordance with the requirements of 

quasi-continuous digital control [Ise89]. 
The Two Inputs-Single Output fuzzy controller (TISO-FC) block presented in 

Fig. 2.4 is characterized by the weighted average method in the defuzzification 
module, and by the SUM and PROD operators in the inference engine. The rule base 
of the TISO-FC block is formulated as the decision table presented in Table 2.1, and 
the consequents of the fuzzy control rules are modeled by means of the two func-
tions: 
 )( )( )],( )([)( 121 dCdCddPdC tftfteteKtf ηµ =+∆= . (2.27) 

The parameter η  is introduced in (2.27) to reduce the overshoot of the 
fuzzy control system when )( dte  and )( dte∆  have the same signs. Fig. 2.4 and Table 

2.1 point out the tuning parameters of these simple T-S PI-FCs: β  (for the linear 
part of the controllers design), and eB , eB∆  and η  (for the fuzzy part of the control-

lers design). 
The rule base presented in Table 2.1 can be formulated such that to contain 

only two rules because the tuning of simple T-S PI-FCs is targeted. The simplicity is 
ensured by the reduced number of input membership functions shown in Fig. 2.4, by 
the symmetry of the rule base and by the simple design method dedicated to T-S 
PI-FCs. 
 

Table 2.1. Decision table of TISO-FC block. 

 
)(te∆  )(te  

N  ZE  P  

P  )()( 1 dCd tftu =∆  )()( 1 dCd tftu =∆  )()( 2 dCd tftu =∆  

ZE  )()( 1 dCd tftu =∆  )()( 1 dCd tftu =∆  )()( 1 dCd tftu =∆  

N  )()( 2 dCd tftu =∆  )()( 1 dCd tftu =∆  )()( 1 dCd tftu =∆  

 
The modal equivalence principle [Gal95] results in the following tuning 

equation, which reduces the number of tuning parameters of the T-S PI-FC: 
 ee BB  µ=∆ . (2.28) 

The application of the ESO method and of the modal equivalence principle 
yields only three tuning parameters for the T-S PI-FCs, 3=q . These parameters are 
included in the controller parameter vector involved in the optimization problems 
defined in (2.13) – (2.16): 
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 ηρρβρρρρ ==== 321321   ,  ,  ,][ e
T Bρ . (2.29) 

The design method dedicated to the simple T-S PI-FCs with the previously 
defined structure consists of the following steps that result in the optimal controller 

parameter vector *ρ  obtained by nature-inspired algorithms: 
Step 1. Apply the ESO method to tune the parameters of continuous-time 

linear PI controllers, set the sampling period, apply Tustin’s method that leads to 
(2.26), derive the state sensitivity models with respect to Pk  and ΣT , and insert the 

sensitivity models in the fuzzy control system structure involved in simulations and 
experiments in order to evaluate the objective functions. 

Step 2. Set the weighting parameters Pm...1  , =τγ
τα , the objective functions 

defined in (2.9) – (2.12), to meet the performance specifications of fuzzy control 
systems, set dft  to replace infinity in (2.9) – (2.12) such that the finite time horizon 

includes all transients of the fuzzy control systems until the objective functions 
reach the steady-state values, and set the feasible domains ρD  to include all con-

straints imposed to the elements of ρ . 
Step 3. Map the optimization problems (2.13) – (2.16) onto the nature-

inspired algorithms. 
Step 4. Apply the nature-inspired algorithms that give the optimal parame-

ter vector *ρ  and the optimal parameters: 
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2
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1

*   ,  ,  ,][ ρηρρβρρρ ==== e
T Bρ , (2.30) 

and next the following tuning condition obtained from (2.28) using (2.23) 
and (2.26) for the optimal controller parameters: 
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Several details concerning the application of this design method will be pre-
sented as follows. These details represent also the preparation for the implementa-
tion of the nature-inspired algorithms involved in the steps 3 and 4. 

Accepting that the inputs u and d are changing at the discrete sampling in-
tervals, the following discrete-time state-space model of the process is obtained 
from (2.17): 
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The state-space model (2.32) is a particular expression of the state-space 
model (2.2). The discretization of the process model given in (2.17) is done such 
that the models (2.17) and (2.32) should exhibit the same response at the discrete 
time moments defined by the discrete sampling intervals. The choice of sT  depends 

on the time constant(s) of the process, and it should fulfill, as mentioned before, the 
conditions of quasi-continuous digital control. 

The derivation of the state-space model of the T-S PI-FC is supported by the 
definition of the state variables 1,Cx  and 2,Cx : 
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These two state variables ( 2=Cn  in the general state-space model (2.4)) 

are highlighted in Fig. 2.5. Fig. 2.5 and (2.33) are used in the derivation of the fol-
lowing discrete-time state-space model of the T-S PI-FC: 
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where the nonlinear input-output map of the TISO-FC block is: 
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The state-space model (2.34) is a particular expression of (2.4). 
 

 
Fig. 2.5. Equivalent structure of Takagi-Sugeno PI-fuzzy controller. 

 
Introducing the state variable of the filter Fx , the continuous-time state-

space model of the set-point filter with the transfer function defined in (2.24) is: 
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because 1=Fn  in (2.3). Accepting again that the inputs u and d are chang-

ing at the discrete sampling intervals, the following discrete-time state-space model 
of the set-point filter results from (2.36): 
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The state-space model (2.37) is a particular expression of (2.3). 
The state vector x of the control system is next obtained by merging the 

state variables of the process, of the T-S PI-FC and of the set-point filter: 
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 T
FCCPP

T
F

T
C

T
P

T xxxxxxxxxx ][][][ 2,1,2,1,54321 === xxxx . (2.38) 

Equation (2.38) is a particular expression of equation (2.5) for 
5122 =++=++ FC nnn . 

Using the control system structure given in Fig. 2.1, the equations (2.32), 
(2.33) and (2.37), and the notations defined in (2.38), the expression of )( dte  and 

)( dte∆  are: 
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The expression of the control signal results from (2.34) and (2.39): 
 ))()()(),()(()()( 415153 dddddFCdd txtxtxtxtxftxtu −−−+= . (2.40) 

The state-space models of the process, of the T-S PI-FC and of the set-point 
filter expressed in (2.32), (2.34) and (2.37), with the set-point filter considered for 
the nominal process parameter 0ΣT , are next merged using (2.39), (2.40) and the 

control system structure given in Fig. 2.1. Therefore, the discrete-time state-space 
model of the fuzzy control system is: 
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 ))()()(),()(()()1( 4151533 dddddFCdd txtxtxtxtxftxtx −−−+=+ , (2.43) 

 )()()1( 154 ddd txtxtx −=+ , (2.44) 
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 )()( 1 dd txty = . (2.46) 

Using the formulas (2.8) in the state-space model (2.41) – (2.46) for con-
stant inputs of the control system, viz. const)( 0 == rtr  and const)( 0 == dtd , the dis-

crete-time state sensitivity model of the fuzzy control system with respect to Pk  is: 
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and the discrete-time state sensitivity model of the fuzzy control system 
with respect to ΣT  is: 
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where the nominal control system trajectory is set by the state vector 
5

543210 ])()()()()([)( Rx ∈= T
dddddd txtxtxtxtxt . The subscript 0 in (2.47) – (2.58) 

indicates not just the nominal trajectory of the fuzzy control system, i.e., the trajec-
tory for the nominal values of the process parameters Pk  and ΣT  but also the nom-

inal values of Pk  and ΣT . 
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Since the discrete-time state-space model of the fuzzy control system given 
in (2.41) – (2.46) is not differentiable with respect to the process parameters Pk  

and ΣT  because of the nonlinearity of the process and of the structure of the T-S PI-

FC, the state sensitivity models (2.47) – (2.52) and (2.53) – (2.58) are not defined 
at the break points bd utu −=)( , cd utu −=)( , ad utu =)(  and bd utu =)( . Therefore, the 

closed intervals in (2.47), (2.48), (2.53) and (2.54) should be replaced by open 
intervals. The closed intervals are actually used in practical implementations in order 
to obtain values of the state sensitivity functions at those points. 

The structure of the T-S PI-FC does not ensure the differentiability of the 
function FCf  with respect to e  and e∆ . This is not a problem because the nature-

inspired algorithms are in fact derivative-free optimization algorithms. The following 
finite difference formulas are applied to carry out the numerical differentiations that 

lead to the estimated derivatives 
0
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implementation of the state sensitivity models: 
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The formulas given in (2.59) and (2.60) are justified because of the quasi-
continuous digital control design and implementation of the T-S PI-FCs. 

The dynamic regimes considered in solving the optimization problems (2.13) 
– (2.16) by nature-inspired algorithms are characterized by the step-type modifica-

tion of magnitude 0r  of the angular position reference input. These regimes employ 

the initial state vector which sets the initial point of the nominal fuzzy control sys-

tem trajectory that is set to the origin of the state-space 5
0 ]00000[)0( Rx ∈= T . 

Other dynamic regimes characterized by different modifications of the reference 
input and/or of the disturbance input yield similar results but different controller 
tuning parameters. 

The design method and the nature-inspired algorithms are applied to the 
design of T-S PI-FCs for a case study that deals with the angular position of the ex-
perimental setup built around a DC servo system laboratory equipment [Int07b]. 
The experimental setup is illustrated in Fig. 2.6 and in Fig. 2.7. An optical encoder is 
used for the measurement of the angle and a tacho-generator for the measurement 
of the angular speed. The speed can also be estimated from the angle measure-
ments. The PWM signals that are proportional with the control signal are produced 
by the actuator in the power interface. The main features of the experimental setup 
are [Int07b]: rated amplitude of V 24 , rated current of A 1.3 , rated torque of 

cm N 15 , rated speed of rpm  3000 , and weight of inertial load of kg 03.2 . The nominal 
values of the parameters of the process model given in (2.17) and (2.20), obtained 
by a least squares algorithm, are 15.0=au , 1=bu , 15.0=cu , 14000 == EPP kk , and 

s 92.00 =ΣT . 
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Fig. 2.6. Structure of experimental setup. 

 

 
Fig. 2.7. Experimental setup in the Intelligent Control Systems Laboratory of the 

Politehnica University of Timisoara. 

 
The weighting parameters in the objective functions (2.9) – (2.12) were set 

such that to obtain a ratio of {0, 0.1, 1, 10} of the initial values of the first and sec-
ond terms in the sums. The following values were obtained and used in the case 
study: 

 - for )(,1 ρ
Pk

J : 

 }35721357,0.210.0,0021357.0,0{)( 2 ∈
Pk

γ , (2.61) 

 - for )(,1 ρ
ΣT

J : 

 }1871.7187,17.,17187.0,0{)( 2 ∈
ΣT

γ , (2.62) 

 - for )(,2 ρ
Pk

J : 

 }86858,0.6850.0,006858.0,0{)( 2 ∈
Pk

γ , (2.63) 

 - for )(,2 ρ
ΣT

J : 
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 }69566695,0.660.0,0066695.0,0{)( 2 ∈
ΣT

γ , (2.64) 

 - for )(,3 ρ
Pk

J : 

 }187,391.873.9187,39.,0{)( 2 ∈
Pk

γ , (2.65) 

 - for )(,3 ρ
ΣT

J : 

 }.9338.693,386,8693.3,0{)( 2 ∈
ΣT

γ , (2.66) 

 - for )(,4 ρ
Pk

J : 

 }1.42,14.2,142.0,0{)( 2 ∈
Pk

γ , (2.67) 

 - for )(,4 ρ
ΣT

J : 

 }85,15.88515885,1.58.0,0{)( 2 ∈
ΣT

γ . (2.68) 

 
The variables of the objective function were initialized taking into considera-

tion the following boundaries which define the search domain ρD , which is also the 

feasible domain of ρ : 
 }75.025.0|{}4020|{}173|{ ≤≤×≤≤×≤≤= ηηββ ee BBDρ . (2.69) 

The nature-inspired optimization algorithms presented in the next chapter 
were run for the dynamic regimes characterized by the rad  400 == rr  step type mod-

ification of the reference input and zero disturbance input, 00 == dd . 

In order to guarantee the stability of the fuzzy control systems for every po-
tential solution belonging to the search domain ρD  with the obtained fuzzy control-

ler tuning parameters, an additional inequality-type constraint is enforced in order 
to ensure the convergence of the objective function: 
 |)()(||)()(| 0trtrtrty dydd −≤− ε . (2.70) 

where t0 is the initial time moment, td is the final time moment, and 001.0=yε  

for a 2% settling time. The condition (2.70) is checked in steady-state regimes, so 
theoretically ∞→dt  as shown in (2.9) – (2.12), but td takes practically a finite value 

to capture the transients in the fuzzy control systems’ response. The condition 
(2.68) guarantees the stability of the fuzzy control systems, and it also ensures the 
zero steady-state control error. 

 
 

2.2.  STATE-OF-THE-ART ANALYSIS FOR THE OPTIMAL 

TUNING OF FUZZY CONTROLLERS BASED ON NATURE-
INSPIRED ALGORITHMS 

 
Nature-inspired algorithms proved to be successful solutions to optimization 

problems in many applications [Che08], [Jaj11], [Kav13a], [Pan13]. Optimal tuning 
of fuzzy controllers is one of these problems, as they can cope with non-convex or 
non-differentiable objective functions because of controllers’ structures and nonline-
arities, of process’s complexity in industrial applications and of performance specifi-
cations that can lead to multi-objective optimization problems [Guo07], [Mar11], 
[Nik13]. 
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The analysis of the state-of-the-art concerning the optimal tuning of fuzzy 
controllers based on nature-inspired algorithms is organized as follows from the 
point of view of the specific algorithms considered with this regard. The most im-
portant algorithms from the point of view of validation by real-time experimental 
results will be pointed out as follows and treated in the next chapter. Having in mind 
the point of view of real-time experimental results has resulted in a total of seven 
algorithms; that is the reason why genetic algorithms are not considered in this the-
sis and analyzed in this sub-chapter. 

Simulated annealing was recently applied to solve similar problems with 
non-convex objective functions in various domains: traffic control [Hai10], biomedi-
cal applications [Kar88], economy theory [Oli14], routing problems [Cir14], image 
processing [Asa12], [San12], material molding [Wan12a], cellular manufacturing 
[Ark07] or supply management [Gol13]. Simulated annealing is involved in finding 
the optimal parameters of a robust proportional-integral-derivative (PID) controller 
in [Abd08], which is used in a power system stabilizer. The geometrical dimension 
and section parameter of a robot mechanism is optimized in [Chu04] by a fuzzy 
self-tuning PID controller tuned by simulated annealing for suppressing residual 
vibration. A trajectory tracking algorithm of a mobile robot developed based on a 
combined control scheme with proportional-derivative (PD)-fuzzy controller and 
separate integral component with parameters tuned using simulated annealing is 
proposed in [Lia10]. 

Simulated annealing performed well in combination with other algorithms. 
Optimal integral gains for integral gain control, and proportional-integral-derivative 
gains for PID control, are computed by a genetic algorithm and by hybrid genetic 
algorithm-simulated annealing algorithms in [Gho04] and applied to the optimiza-
tion of certain transient responses of interconnected three equal generating areas in 
power systems. 

Particle swarm optimization (PSO) has emerged as one of the most success-
ful and versatile nature-inspired algorithms. The application domains for this algo-
rithm include: microwave applications [Deb14], supply chain management [Sad14], 
structural control [Nom07] or economic dispatch [Nik11]. PSO algorithms have 
proven successful results in the optimal tuning of fuzzy controllers as shown in the 
following applications: induction motor drives [Wai07], mobile robot navigation 
[Jua11], radio frequency identification [Kuo14], stock index forecasting [Sin14], 
backlight compensation [Lin09a], signal validation [Oli09], fuzzy systems design 
[Cas12], train lateral suspension model [Li12a], photovoltaic systems [Kha10a], 
robot manipulation [Sol13], linear induction motor [Wai07], voltage control strategy 
[Zir13] and functional-link-based neural fuzzy network [Lin09b]. Another successful 
application of PSO is presented in [Sak13] as an optimal fuzzy control system is 
proposed to reduce frequency deviations in a simulated PV-diesel hybrid system. In 
[Jua05] an adaptive recurrent fuzzy controller is suggested using a Takagi-Sugeno 
recurrent fuzzy network tuned offline by PSO, and the results are validated on a 
water bath temperature system. A new PID-type fuzzy logic controller tuning strate-
gy is proposed using a PSO-based approach in [Bou12] with confirmed results using 
simulated and experimental tests involving an electrical DC drive benchmark. The 
paper [Zir13] suggests the use of interval type-2 fuzzy logic controller to control a 
flexible-joint robot with voltage control strategy, with the parameters of the primary 
membership functions optimally tuned using PSO. A valve with nonlinear dynamic 
behavior is controlled in [Coe08] using a PSO-based optimized PID-fuzzy controller. 
A combination of fuzzy logic and PSO for the optimal tuning of the most popular 
existing proportional-integral (PI) frequency controllers in the AC microgrid systems 
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is introduced in [Bev12], and the control system performance is compared with PI-
fuzzy and Ziegler-Nichols PI-based control structures. Other examples of successful 
applications of PSO algorithms to the tuning of fuzzy controllers are given in 
[Cas10], where the results are verified through simulated results and in [Mal13], 
with results validated using real experiments. 

In a pursuit to improve the performance of PSO algorithms, several adaptive 
versions of the initial PSO algorithm emerged, and they are briefly discussed as fol-
lows. The paper [Yan10] describes a fuzzy backstepping controller design for per-
manent magnet synchronous motor with the parameters of nonlinear controller 
based on backstepping technique which is adjusted by fuzzy logic control, and the 
fuzzy logic control is optimized by adaptive weighted PSO; the proposed optimal 
controller is verified by simulation, and the results show that the controller has ro-
bust and good dynamic response. 

In addition to the adaptive versions, algorithm hybridization has also been 
employed as a solution for increasing the algorithm’s performance. The paper 
[Tal11a] proposes a PSO algorithm combined with tabu search in order to generate 
fuzzy controller with only three rules by adjusting the membership functions and 
fuzzy rules according to different environments and validate the results using the 
control of angle of an inverted pendulum. A hybrid PSO and pattern search opti-
mized PI-fuzzy controller is proposed in [Sah15] and applied to the automatic gen-
eration control of multi-area power systems; simulation results are offered. 

A more recent nature-inspired algorithm is the Gravitational Search Algo-
rithm (GSA), which although is a fairly new addition it has already proven as a via-
ble solution with solid performance. Successful application domains of GSAs include: 
edge detection [Der14], feature selection [Lia13a], pattern recognition [Gon15], 
image segmentation [Kum14], task scheduling [Zar14], data mining [Hat12], 
anomaly detection [She14], supply chains [Pei14], hydrothermal systems [Yua14], 
water turbines regulation [Che14], optimal reactive power dispatch [Sha14] or wind 
power [Ji14]. An optimal solution using GSA for path planning of mobile robots op-
erating in static environments, such that to ensure the collision avoidance of poten-
tial environmental obstacles and danger zones, is proposed in [Pur13a]. Solutions 
for embedding nature-inspired algorithms combined with the classical backpropaga-
tion algorithm in the training of convolutional neural networks for optical character 
recognition systems with improved performance are described in [Fed12a], 
[Fed12b]. Promising results were obtained when the GSA was employed for fuzzy 
control optimization problems, discussed as follows. In [She13] one of the parame-
ters of GSA is controlled using a fuzzy logic controller to achieve better optimization 
results and to increase the convergence rate. An optimization approach of a PID-
fuzzy controller using genetic algorithms, a bacterial foraging optimization algorithm 
and a GSA is introduced in [Aza13] for load frequency control in power systems, 
validated by simulation results. In [Roy13] a hybrid design methodology for stable 
adaptive fuzzy controllers dedicated to a certain nonlinear system is proposed, with 
the GSA-based design and hybrid GSA-Lyapunov concurrent design methodologies, 
and simulation results are included. 

In recent publications adaptive versions of the GSA have appeared along 
with the standard version of the algorithm. An adaptive variant of GSA developed 
using the 5E learning model [Bal06] exhibits significant performance increases for 
the optimal tuning of T-S PI-FCs [Dav12a], [Pre12a], [Pre13b], [Pre13c], [Dav14a]. 
The optimal tuning of PI controllers using adaptive GSA for a class of servo systems 
characterized by saturation and dead zone static nonlinearities and second-order 
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models with an integral component is suggested in [Pre14a]; the optimal tuning of 
an anti-windup block is carried out as well. 

Out of the hybridization attempts concerning the GSA, the most successful 
one is with the PSO algorithm. This hybrid algorithm shows promising results in 
[Mir10], and it is applied in various domains: flow-based anomaly detection [Jad13], 
emission load dispatch [Jia14], economic and emission dispatch [Dub13], landslide 
displacement [Lia13b], voltage instability [Man14], supply chain [Pei14] and path 
planning [Pur13b]. As in the case of GSA, an adaptive version using the 5E learning 
model [Bal06] is developed in [Pre14b] for the hybrid PSO-GSA algorithm, and ap-
plied to controller tuning in order to offer control systems with T-S PI-FCs that en-
sure a reduced process parametric sensitivity. 

One of the latest nature-inspired algorithms that show a solid performance 
is Charged System Search (CSS). The applications domain of CSS algorithms in-
clude: neural networks training [Per13], optimization of concrete structures 
[Kav12a], seismic design of steel frames [Kav14a], design of structures [Kav13b], 
cost optimization [Kav12a], power dispatch problems [Ozy12], frame structures 
[Kav12b] and optimal power flow problems [Nik12]. CSS algorithms are successfully 
applied for the optimal tuning of PI controllers dedicated to a class of second-order 
processes with an integral component and variable parameters [Pre11b], [Pre12d]. 

An adaptive version based on the 5E learning model [Bal06] is applied in 
[Pre14c] to the parameter tuning of the CSS algorithm. This adaptive CSS algorithm 
shows the control system performance improvement when used to give a solution to 
the optimization problems that aim the minimization of objective functions in the 
optimal tuning of T-S PI-FCs. 

 
 

2.3.  CHAPTER CONCLUSIONS 

 
This sub-chapter is dedicated to summarizing the information presented 

throughout this chapter and highlighting new contributions based on these materi-
als. 

The first part of this chapter introduces the definition of optimization prob-
lems, which will be solved in the next chapter with the aid of nature-inspired algo-
rithms, together with the presentation of the process models, state sensitivity mod-
els, definition of discrete-time objective functions and a design method for optimal 
fuzzy controllers with a reduced parametric sensitivity tuned by the Extended Sym-
metrical Optimum method. 

The second part of the chapter was dedicated to a bibliographic analysis of 
nature-inspired algorithms applications with regard to the optimization of fuzzy con-
trollers. The focus of this analysis included the following algorithms: Simulated An-
nealing, Particle Swarm Optimization, Gravitational Search Algorithm, Hybrid Parti-
cle Swarm Optimization - Gravitational Search Algorithm and Charged System 
Search. The rationale for this nature-inspired algorithm selection was their applica-
tion for solving the optimization problems introduced in the sub-chapter 2.1, in the 
course of the following chapter. This selection is not permanent as other algorithms 
might be employed for solving these optimization problems in the potential scope of 
a future research, as mentioned in the dedicated sub-chapter of Chapter 5. 

The new contributions extracted from this chapter are presented as fol-
lows. 
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1. New discrete-time state-space models of T-S PI-FCs characterized by the 

manipulation of the dynamics elements in the structure of these controllers such 
that to define two state variables. The models proposed in the framework of this 
contribution are published in: 

R.-E. Precup, R.-C. David, E. M. Petriu, M.-B. Rădac, S. Preitl, J. Fodor, 
Evolutionary optimization-based tuning of low-cost fuzzy controllers for ser-
vo systems, Knowledge-Based Systems, vol. 38, pp. 74-84, Jan. 2013, im-
pact factor (IF) = 3.058, IF according to 2013 Journal Citation Reports (JCR) 
released by Thomson Reuters in 2014 = 3.058. 
 
2. New discrete-time state sensitivity models of fuzzy control systems with 

respect to two parameters of the controlled process represented by a class of non-
linear servo systems. The fuzzy control systems include T-S PI-FCs, and the class of 
nonlinear servo systems is structured as a series connection of second-order dy-
namics with an integral component, and saturation and dead zone static nonlinearity 
placed on the process input. The models proposed in the framework of this contribu-
tion are published in: 

R.-E. Precup, R.-C. David, S. Preitl, E. M. Petriu, J. K. Tar, Optimal control 
systems with reduced parametric sensitivity based on particle swarm optimi-
zation and simulated annealing, in Intelligent Computational Optimization in 
Engineering Techniques and Applications, editors: M. Köppen, G. Schaefer, 
A. Abraham, Studies in Computational Intelligence, vol. 366, Springer-
Verlag, Berlin, Heidelberg, pp. 177-207, 2011, indexed in Thomson Reuters 
Web of Science (formerly ISI Web of Knowledge). 
 
3. A novel design method dedicated to the simple T-S PI-FCs for servo sys-

tems with a reduced parametric sensitivity, namely with a reduced process gain 
sensitivity and with a reduced process small time constant sensitivity. The design 
method ensures the parameter tuning of the fuzzy controllers by solving four types 
of optimization problems using nature-inspired optimization algorithms. The design 
method proposed in the framework of this contribution is published and organized in 
several versions in: 

R.-C. David, R.-E. Precup, S. Preitl, J. K. Tar, J. Fodor, Parametric sensitivi-
ty reduction of PI-based control systems by means of evolutionary optimiza-
tion algorithms, Proceedings of 6th IEEE International Symposium on Applied 
Computational Intelligence and Informatics (SACI 2011), Timisoara, Roma-
nia, pp. 241-246, 2011, indexed in IEEE Xplore, INSPEC, SCOPUS. 
 

BUPT



 

 
 
 

3. NATURE-INSPIRED ALGORITHMS FOR THE 

OPTIMAL TUNING OF FUZZY CONTROLLERS WITH A 

REDUCED PROCESS PARAMETRIC SENSITIVITY 

 
 

3.1.  SIMULATED ANNEALING ALGORITHMS 

 
Simulated Annealing (SA) is a random-search technique, derived from a 

metallurgy process which describes the way in which the metal cools and freezes 
into a minimum energy crystalline structure and the search for a minimum in a 
more general system. For this process, the selected cooling schedule has a decisive 
role in the final properties of the substance: if a fast cooling schedule is used the 
resulting substance will be easily broken due to an imperfect structure, so as to 
avoid this scenario an appropriate cooling schedule has to be employed, for the re-
sulting structure to be well organized and strong. 

According to [Kir83], the operating mechanism of the SA algorithm mimics a 
ball that can bounce over mountains from valley to valley. The process begins at a 
high temperature, which enables the ball to make very high bounces, thus enabling 
it to access any valley, given enough bounces. As the temperature declines, the ball 
cannot bounce so high and it can settle to become trapped in relatively small ranges 
of valleys [Led07]. A generating distribution produces possible valleys or states to 
be explored. An acceptance distribution is also defined, which depends on the differ-
ence between the function value corresponding to the explored valley and the last 
saved lowest valley. The decision making on staying in the valley is based on the 
acceptance distribution in a probabilistic framework. The generating and acceptance 
distributions depend on the current temperature value. 

With the purpose of decreasing the computational complexity of the SA al-
gorithm, two additional iteration indices are introduced in [Pre11c], namely the suc-
cess rate sr and the rejection rate rr. The success rate sr aims the acceleration of the 
cooling process by forcing a jump in temperature when the minimum value of the 
fitness function changes for a preset number of times at the same temperature lev-
el. The rejection rate rr is proposed as an alternative index to assess and set the 
convergence of the algorithm, and it is reset only when small values of the fitness 
function are found and not when the temperature cools. 

Using the SA algorithm implies the following steps described in [Pre13a] and 
[Pre11c]: 

Step 1. Generate the initial solution, in line with (2.29), conduct the follow-
ing operations: generate a random initial solution ζ  and calculate its fitness value 

)(ζf  according to (2.9) – (2.12), set the minimum temperature 
minθ , using the nota-

tion k  for the current iteration index, initialize the maximum allowed number of 
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iterations 
maxk  for each temperature step, the maximum accepted success rate 

maxrs , 

the maximum accepted rejection rate 
maxrr , and the minimum accepted value of the 

fitness function 
minf , set the initial temperature 

0θ , i.e., the temperature 
kθ  for 0=k , 

and set the initial rejection rate 0=rr . 

Step 2. Set the initial value of the iteration index 0=k  and the initial success 
rate 0=rs . 

Step 3. Generate a new probable solution ψ  in the vicinity of ζ  by disturb-
ing ζ , and calculate its fitness value )(ψf . 

Step 4. Accept or not the new solution by means of the change of fitness 
expressed as the difference 

ψζf∆ : 

 )()( ζψψζ fff −=∆ . (3.1) 

If 0≤∆ ψζf , accept ψζ =  as the new vector solution. Otherwise, set the random 

parameter 
kq , 10 ≤≤ kq , and calculate the probability 

ψp  of ψ  to be the next solution: 

 )exp(
k

f
p

θ
ψζ

ψ

∆
−= . (3.2) 

If 
kqp >ψ
, ψζ =  is the new solution. 

Step 5. If the new solution is accepted, then update the new solution and f, 
increment k  and reset 0=rr . Otherwise, increment 

rr . If 
rr  has reached its maxi-

mum value 
maxrr , go to step 8; otherwise, continue with the next step. Increment 

rs . 

If 
rs  has reached its maximum value 

maxrs , continue with the next step; otherwise, 

increment k . If k  has reached its maximum value 
maxk , continue with the next step; 

otherwise, go to step 2. 
Step 6. The temperature is decreased in terms of the temperature decre-

ment rule, referred to also as the cooling schedule, which gives the next tempera-
ture 

1+kθ : 

 
kcsk θαθ =+1 . (3.3) 

where 1  const, <= cscs αα . 

Step 7. If 
minθθ >k

 or 
min)( ff >ζ , go to step 2. Otherwise, continue with the 

next step. 
Step 8. The algorithm is stopped, and the last vector solution ζ  is the final 

solution. 
The steps described before are displayed in Fig. 3.1.1. 
The SA algorithm described above was employed as a nature-inspired algo-

rithm in the step 4 of the design method dedicated to the simple T-S PI-FCs pre-
sented in Sub-chapter 2.1. In order to obtain an efficient cooling schedule for solv-
ing the optimization problems described by the objective (fitness) functions 

Pk
J ,4...1  

and 
ΣT

J ,4...1  from (2.9) – (2.12) the parameter 
csα  in (3.3) was set to 9.0=csα . This 

value was not arbitrarily chosen, as it was previously selected in [Pre11c] as a 
trade-off between convergence accuracy and the probability of avoiding being 
trapped into a local minimum. The values of the parameters set in the step 1 of the 
SA algorithm are: maximum success rate 50max =rs , maximum rejection rate 

1000max =rr , maximum allowed number of iterations for each temperature step 

BUPT



44   Nature-inspired algorithms for the optimal tuning of fuzzy controllers … – 3 

300max =k  with the initial temperature set to 10 =θ  and the minimum tempera-

ture 8
min 10

−=θ . 

 

Fig. 3.1.1. Flowchart of Simulated Annealing algorithm. 

 
The values of the optimal controller tuning parameters and the minimum 

values of the objective functions 
Pk

J ,4...1  and 
ΣT

J ,4...1  (i.e., min,4...1 Pk
J  and min,4...1 ΣT

J ) 

are presented in Tables 3.1.1 – 3.1.8.  
 

Due to the stochastic characteristic of the SA algorithm, several runs of the 
algorithm were required before drawing a final result for each of the objective func-
tions. Fig. 3.1.2 illustrates the evolutions of the parameters of the T-S PI-FC (i.e., 
the variables of the objective functions) and of the objective function during the 
iterations of the SA algorithm. This parameter progression graphics correspond to 
the objective function 

Pk
J ,2  and to the weighting parameter 0=

Pk
γ . A comprehen-

sive analysis of the SA convergence based on the average values of the optimal 
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objective function values along with two newly defined performance indices will be 
presented in Sub-chapter 3.8. 

Table 3.1.1. Results for the SA-based minimization of 
Pk

J ,1 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,1 Pk
J  

0 0.1386 39.9986 0.74998 3.1430 0.0044 2.8916 390462 

0.0021357 0.1384 39.9998 0.74996 3.1473 0.0044 2.8955 393513 

0.021357 0.1398 39.9973 0.74993 3.1158 0.0044 2.8665 420962 

0.21357 0.1372 39.9681 0.74901 3.1724 0.0044 2.9186 695455 
 

Table 3.1.2. Results for the SA-based minimization of 
ΣT

J ,1 . 

2)(
Σ

γ T
 *

eB∆  *
eB  *η  *β  *

ck  *
iT  min,1 ΣT

J  

0 0.1386 39.9956 0.7497 3.14236 0.0044 2.891 390483 

0.17187 0.1397 39.4088 0.7441 3.07071 0.0044 2.8251 639539 

1.7187 0.1261 39.739 0.7482 3.43036 0.0042 3.1559 2865980 

17.187 0.0128 20.0221 0.2507 16.9996 0.0019 15.64 22808700 
 

Table 3.1.3. Results for the SA-based minimization of 
Pk

J ,2 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,2 Pk
J  

0 0.085591 39.9994 0.7498 5.0852 0.0034 4.6784 22980.3 

0.006858 0.085575 39.9974 0.7499 5.0858 0.0034 4.679 32597.7 

0.06858 0.081367 38.4081 0.7339 5.1363 0.0034 4.7254 118869 

0.6858 0.012814 20.0137 0.2573 16.9816 0.0019 15.6231 874238 
 

Table 3.1.4. Results for the SA-based minimization of 
ΣT

J ,2 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,2 ΣT
J  

0 0.0856 39.9916 0.7494 5.0857 0.0034 4.67887 22990.2 

0.0066695 0.0855 39.9921 0.7499 5.0875 0.0034 4.68046 32518.2 

0.066695 0.0779 36.6549 0.7496 5.1209 0.0034 4.71122 117383 

0.66695 0.0128 20.0285 0.2501 16.995 0.0019 15.6354 865024 
 

Table 3.1.5. Results for the SA-based minimization of 
Pk

J ,3 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,3 Pk
J  

0 0.0856 39.9908 0.7494 5.0853 0.0034 4.6785 2986410 

3.9187 0.0853 39.8962 0.7467 5.0867 0.0034 4.6798 8480520 

39.187 0.0842 39.5241 0.7464 5.1093 0.0034 4.7005 57590600 

391.87 0.0337 39.8288 0.7424 12.8479 0.0022 11.8201 527966000 
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Table 3.1.6. Results for the SA-based minimization of 
ΣT

J ,3 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,3 ΣT
J  

0 0.0856 39.9908 0.7494 5.0853 0.0034 4.6785 2986410 

3.8693 0.0836 39.6254 0.7375 5.158 0.0034 4.7454 8208700 

38.693 0.0827 39.2911 0.7303 5.1673 0.0034 4.7539 54280900 

386.93 0.0286 34.5289 0.7477 13.1202 0.0021 12.0706 527790000 

 

Table 3.1.7. Results for the SA-based minimization of 
Pk

J ,4 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,4 Pk
J  

0 0.085594 39.9994 0.7499 5.085 0.0034 4.6782 153104 

0.142 0.081086 38.3744 0.7491 5.1495 0.0034 4.7378 328330 

1.42 0.077329 36.6807 0.715 5.1614 0.0034 4.7485 2056520 

14.2 0.023008 20.4916 0.2511 9.6863 0.0025 8.9114 19284900 

 

Table 3.1.8. Results for the SA-based minimization of 
ΣT

J ,4 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,4 ΣT
J  

0 0.0856 39.9994 0.7499 5.085 0.0034 4.6782 153104 

0.15885 0.0827 39.1723 0.7298 5.152 0.0034 4.7398 354836 

1.5885 0.0424 20.1246 0.6618 5.1617 0.0034 4.7488 2200250 

15.885 0.0202 20.2201 0.2531 10.9026 0.0024 10.0304 21605800 

 
Fig. 3.1.3 illustrates the evolution of the vector solution ρ  to the optimiza-

tion problem (2.14) in the search domain ρD , which is also the feasible domain of 

ρ  during several iterations of the SA algorithm. 
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Fig. 3.1.2. T-S PI-FC tuning parameters and objective function evolution vs. itera-
tion index: eB  versus k (a), β  versus k (b), η  versus k (c), and 

Pk
J ,2  versus k (d). 

The solution obtained from the implementation of the SA for the optimiza-
tion problems presented in Chapter 2 was tested on the experimental setup de-
scribed in Chapter 2. Several experimental results are reported in [Pre12b]. As used 
in the evaluations of the objective functions presented in this Sub-chapter, the dy-
namic regimes characterized by the rad  400 =r  step type modification of the refer-

ence input and zero disturbance input, 00 =d , the real-time experimental results 

are obtained in the same conditions. In addition, a step type disturbance input of 
200 −=d  was applied at the time moment 25 s. An example of real-time experi-

mental results of the fuzzy control system with the T-S PI-FC and the optimal pa-
rameters obtained by the SA-based minimization of the objective function 

Pk
J ,2  for 

the value of the weighting parameter 0.006858)( 2 =
Pk

γ  is presented in Fig. 3.1.4. 
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Fig. 3.1.3. Vector solution ρ  to the optimization problem (2.14) in the search do-

main ρD  for four values of iteration index k: 1=k  (a), 4=k  (b), 9=k  (c), and 

17=k  (d). 

 

Fig. 3.1.4. Real-time experimental results of the fuzzy control system with the SA-
based optimized T-S PI-FC. 
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The results of the real-time experiments present the output of the system 
and of the controller and prove the disturbance rejection and the presence of the 
insensitivity zone in the real-world controlled plant. An insensitivity zone of such 
magnitude in the actuator is therefore difficult to use for precise positioning because 
the control signal is subjected to oscillations. 

 
 

3.2.  PARTICLE SWARM OPTIMIZATION ALGORITHMS 

 
Particle Swarm Optimization (PSO) is a population based stochastic optimi-

zation technique that was developed and initially introduced by Kennedy and Eber-
hard [Ken95a], [Ken95b]. As one of the most recognized nature-inspired algo-
rithms, PSO is inspired by the behavior of entities observed in flocks of birds or 
schools of fishes. The movement of the population, characterized by agents, in PSO 
is guided by simple laws that repeat at each iteration, helping these agents, which 
represent candidate solutions, flow through the search-domain. Each agent has as-
signed a multidimensional vector that is updated according to the calculated velocity 
which takes into consideration the best position explored by the agent and best so-
lution explored by the swarm. 

As shown in [Ken95a], [Ken95b], PSO is based on two fundamental disci-
plines, social science and computer science. Social concepts like evaluation, compar-
ison and imitations of other individuals are typically associated with intelligent 
agents that interact in order to adapt to the environment and develop optimal pat-
terns of behavior. Mutual learning allows individuals to become similar and trans-
gress to more adaptive patterns of behavior. The swarm intelligence is based on the 
following principles [Val08]: 

1. The proximity principle, i.e., the population should be able to carry out 
simple time and space calculations. 

2. The quality principle, i.e., the population should be able to respond to 
quality factors in the environment. 

3. The diverse response principle, i.e., the population should not commit its 
activity to excessively long narrow channels. 

4. The stability principle, i.e., the population should not change its behavior 
every time the environment changes. 

5. The adaptability principle, i.e., the population should be able to change its 
behavior when it is worth the computational price. 

The PSO algorithm starts with a random generation of candidate solutions 
which are continuously improved toward the optimal solutions. From this point of 
view PSO can be considered as an evolutionary algorithm that is similar to the ge-
netic algorithms. The PSO algorithm uses the following computational attributes: 
individual particles are updated in parallel, a new value depends on the previous and 
its neighbors, all updates are based on the same rules. In the PSO algorithm instead 
of evolutionary operators, the agents are set in the D-dimensional search space 
search space DR  with randomly chosen velocities and positions knowing their best 
values so far and the positions in the search space qR . For each particle in the 
search space there is data about the position and velocity at each step of the itera-
tion. The velocity of each particle is adjusted according to its previous flying experi-
ence and the experience of the other particles. 
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A swarm particle can be represented by the two q-dimensional vectors 
qT

iqiii xxx RX ∈= ]...[ 21
 standing for the particle position and the particle velocity 

T
iqiii vvv ]...[ 21=V . In addition, the best position achieved by the particle is the 

vector T
iqiiBesti ppp ]...[ 21, =P  and the best position explored by the entire swarm so 

far is the vector T
gqggBestg ppp ]...[ 21, =P . For our optimization problems defined in 

(2.13) – (2.16), iX  is defined in accordance to (2.29) resulting in a 3=q  dimension-

al search space. The particle velocity and position update equations that govern the 
PSO algorithm can be expressed in terms of the state-space equations also given in 
[Kha07]: 
 ))(())(()()()1( ,22,11 krckrckkwk iBestiiBestgii XPXPVV −+−+=+ , (3.4) 

 )1()()1( ++=+ kkk iii VXX , (3.5) 

where: 
21   , rr  – random variables with uniform distribution between 0 and 1, 

nii ...1  , =  – the index of the current particle in the swarm, n – the number of particles 
in the swarm, max...1  , kkk =  – the index of the current iteration, maxk  – the maximum 

number of iterations. The parameter )(kw  in (3.4) stands for the inertia weight, 
which shows the effect of the previous velocity vector on the new vector. Upper maxw  

and lower minw  limits are imposed to )(kw  in order to prevent the particle from mov-

ing too rapidly in the search space. The constants 0  , 21 >cc  represent the weighting 

factors of the stochastic acceleration terms that pull each particle towards their end 
position. Low values allow particles to roam far from the target regions before being 
tugged back. On the other hand, high values result in an abrupt movement towards, 
or past, target regions. 

The individuals (particles) within the swarm learn from each other, and 
based on the knowledge obtained then move to become similar to their “better” 
previously obtained position and their “better” neighbor. The individuals within a 
neighborhood communicate with each other. Different neighborhood topologies can 
emerge on the basis of the communication of a particle within the swarm. A star-
type topology is created in the majority of cases. In that topology each particle can 
communicate with every other individual forming a fully connected social network, 
so that each particle could access the overall best position. The PSO algorithm can 
be expressed according to the following steps [Ken95a], [Ken95b], [Kha07], 
[Val08]: 

Step 1. Initialize the swarm placing particles at random positions inside the 
search domain ρD , set the iteration index 0=k , set the search process iteration limit 

maxk , define the weighting factors 
21   , cc  and the inertia weight parameter )(kw : 

 
max

minmax
max)(

k

ww
kwkw

−
−= . (3.6) 

The best particle position vector 
Besti ,P  is initialized with the initial positions 

of the agents and the best swarm position vector 
Bestg ,P  is initialized with the posi-

tion of the first agent. 
Step 2. Evaluate the fitness of each particle using the objective (fitness) 

functions (2.9) – (2.12) based on their current position. 
Step 3. Compare the performance of each individual to its best performance 

so far, and eventually update the best particle position vector 
Besti ,P : 
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 )())((  if  ),( ,,4..1,4..1, BestiiiBesti JkJk PXXP
ττ αα <= . (3.7) 

Step 4. Compare the performance of each particle to the best global perfor-
mance, and eventually update the best swarm position vector 

Bestg ,P : 

 )())((  if  ),( ,,4..1,4..1, BestgiiBestg JkJk PXXP
ττ αα <= . (3.8) 

Step 5. Change the velocity of each particle according to (3.4). 
Step 6. Move each particle to its new position according to (3.5). 
Step 7. Increment the iteration index k  and go to step 2, until the search 

process iteration limit maxk  is reached. 

Step 8. The algorithm is terminated, and the swarm best position 
Bestg ,P  is 

the final solution. 
 

 

 

Fig. 3.2.1. Flowchart of Particle Swarm Optimization algorithm. 

The simple model used in PSO has proven that it can cope with high com-
plexity problems as shown in [Dav09], [Pre11c], [Dav12d], [Pre13a]. In addition to 
the initial version of PSO, which was developed to operate with real value search 
domains, an alternative version was introduced by Kennedy and Eberhart [Ken97] 
for the purpose of dealing with discrete valued search spaces. The binary version of 
PSO is required to deal with these finite domains. 

The differences between the two versions of PSO are focused around the 
representation of particle position vector and movement definition. The position vec-
tor is constructed around the discrete values defined by the search domain, with the 
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movement represented by the agent’s probability of changing state in for that di-
mension. 

The flowchart of the PSO algorithm is presented in Fig. 3.2.1. 
In order to integrate the PSO-based solution in the fourth step of the design 

method dedicated to the simple T-S PI-FCs presented in Sub-chapter 2.1, the PSO 
algorithm parameters, mentioned in the first step of the above algorithm descrip-
tion, had to be set in such a manner to achieve a prime search process. Based on 
the previous work presented in [Pre09b], [Dav11], [Pre11c], [Pre13a], the number 
of used agents 20=n  was set and the maximum number of iterations was set to 

100max =k . In order to have a good balance between exploration and exploitation 

characteristics of the algorithm the weighting parameters were set as 9.0,3.0 21 == cc . 

For the setup of the inertia weight parameter )(kw  a linear decrease was employed 

throughout the interval determined by 9.0max =w  and 5.0min =w  according to (3.6). 

Table 3.2.1. Results for the PSO-based minimization of 
Pk

J ,1 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,1 Pk
J  

0 0.145191 40 0.75 3 0.004483 2.76 392076 

0.0021357 0.145191 40 0.75 3 0.004483 2.76 395143 

0.021357 0.139548 40 0.75 3.12109 0.004395 2.8714 420966 

0.21357 0.145191 40 0.75 3 0.004483 2.76 698859 
 

Table 3.2.2. Results for the PSO-based minimization of 
ΣT

J ,1 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,1 ΣT
J  

0 0.145191 40 0.75 3 0.004483 2.76 392076 

0. 17187 0.145191 40 0.75 3 0.004483 2.76 641826 

1.7187 0.144715 39.8689 0.75 3 0.004483 2.76 1007420 

17.187 0.012792 20 0.25 17 0.001883 15.64 22809200 
 

Table 3.2.3. Results for the PSO-based minimization of 
Pk

J ,2 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,2 Pk
J  

0 0.085597 40 0.75 5.08485 0.003443 4.67806 22975.7 

0.006858 0.085597 40 0.75 5.08485 0.003443 4.67806 32579.1 

0.06858 0.085597 40 0.75 5.08485 0.003443 4.67806 119010 

0.6858 0.012792 20 0.25 17 0.001883 15.64 874183 
 

Table 3.2.4. Results for the PSO-based minimization of 
ΣT

J ,2 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,2 ΣT
J  

0 0.085597 40 0.75 5.08485 0.003443 4.67806 22975.7 

0.0066695 0.085597 40 0.75 5.08486 0.003443 4.67807 32481.3 

0.066695 0.070551 33.4137 0.75 5.15341 0.00342 4.74114 108043 

0.66695 0.012792 20 0.25 17 0.001883 15.64 864943 
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Table 3.2.5. Results for the PSO-based minimization of 
Pk

J ,3 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,3 Pk
J  

0 0.085597 40 0.75 5.08485 0.003443 4.67806 2984780 

3.9187 0.085597 40 0.75 5.08485 0.003443 4.67806 8472200 

39.187 0.085003 40 0.75 5.12035 0.003431 4.71072 57631000 

391.87 0.03284 40 0.75 13.2449 0.002133 12.1853 527908000 
 

Table 3.2.6. Results for the PSO-based minimization of 
ΣT

J ,3 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,3 ΣT
J  

0 0.085597 40 0.75 5.08485 0.003443 4.67806 2984780 

3.8693 0.085597 40 0.75 5.08485 0.003443 4.67806 8499440 

38.693 0.082991 39.3271 0.75 5.15624 0.003419 4.74374 57664100 

386.93 0.032083 38.5553 0.75 13.0679 0.002148 12.0224 527679000 
 

Table 3.2.7. Results for the PSO-based minimization of 
Pk

J ,4 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,4 Pk
J  

0 0.085597 40 0.75 5.08485 0.003443 4.67806 152970 

0.142 0.085597 40 0.75 5.08485 0.003443 4.67806 351814 

1.42 0.084488 40 0.75 5.15154 0.003421 4.73942 1891650 

14.2 0.02317 20 0.25 9.3881 0.002534 8.63706 19274400 
 

Table 3.2.8. Results for the PSO-based minimization of 
ΣT

J ,4 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,4 ΣT
J  

0 0.085597 40 0.75 5.08485 0.003443 4.67806 152970 

0. 15885 0.084379 40 0.748922 5.15818 0.003419 4.74553 379355 

1.5885 0.084508 40 0.75 5.15031 0.003421 4.73829 2123110 

15.885 0.020733 20 0.25 10.4906 0.002397 9.65135 21595700 

 
Tables 3.2.1 – 3.2.8 contain the values of the optimal controller tuning pa-

rameters and the minimum values of the objective functions 
Pk

J ,4...1  and 
ΣT

J ,4...1  

(i.e., min,4...1 Pk
J  and min,4...1 ΣT

J ). In order to overcome the uncertain characteristic of 

the PSO algorithm, several re-runs were required in order to obtain the desired re-
sults for each of the objective functions. The data presented in these tables was 
obtained after several re-runs of the algorithm, that were required in order to deal 
with the arbitrary characteristic of the PSO algorithm. A more detailed analysis 
based on the average values of the objective functions, together with two newly 
introduced algorithm performance indices is presented in Sub-chapter 3.8. 
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Fig. 3.2.2. T-S PI-FC tuning parameters and objective function evolution vs. itera-
tion index: eB  versus k (a), β  versus k (b), η  versus k (c), and 

Pk
J ,2  versus k (d). 

In order to have a better representation of the search process, Fig. 3.2.2 
presents the evolution of parameters defined by the search domain in the case of 
objective function 

Pk
J ,2  and weighting parameter 0=

Pk
γ . 

An evolutionary display throughout the search process for all PSO’s particles 
(agents), expressed as vector solutions ρ  to the optimization problem (2.14) com-
prised in the search domain ρD , is presented in Fig. 3.2.3. 

The results of the PSO-based solution to the optimization problems present-
ed in this thesis were verified using the experimental system presented in Chapter 
2. A set of experimental results is given in [Pre13a]. The proposed approach pre-
sented in this Sub-chapter uses the digital simulation of the fuzzy control system 
behavior with respect to the step-type modification of the reference input 

rad  400 =r , and zero disturbance input, 00 =d . The experiments were conducted 

using a similar setup with the control systems using an additional PI controller to 
the T-S PI-FCs for comparison purposes. A sample of the real-time experimental 
results that corresponds to the control systems with the controllers and the parame-
ters given for the objective function 

Pk
J ,1  and for the value of the weighting parame-

ter 0.0021357)( 2 =
Pk

γ  is presented in Fig. 3.2.4. 
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Fig. 3.2.3. Vector solution ρ  to the optimization problem (2.14) in the search do-

main ρD  for four values of iteration index k: 1=k  (a), 15=k  (b), 60=k  (c), and 

100=k  (d). 

For the additional PI controller mentioned in the experimental study case 
and used for comparison, the average value of the design parameter β  taken into 
account was 7=β . This controller was tuned by the ESO method. 

Fig. 3.2.4 shows, as expected, the performance improvement exhibited by 
the control system with the fuzzy controller (T-S PI-FC) compared to the control 
system with the linear (PI) controller, namely the settling time is reduced. The pro-
posed tuning approach has proved to be effective in reference input tracking and 
load disturbance regulation when controlling the real-world servo system targeting 
the reduced process gain sensitivity. The experimental results validate the solution 
offered by means of this nature-inspired optimization algorithm, the tuning ap-
proach and the fuzzy controllers. 
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Fig. 3.2.4. Real-time experimental results: controlled output and control signal of 
the control system with the PI controller (dashed line) and of the control system 

with the T-S PI-FC (solid line). 

 
 

3.3.  GRAVITATIONAL SEARCH ALGORITHMS 

 
The Gravitational Search Algorithm (GSA) [Ras07], [Ras09] is inspired by 

Newtonian physics principals of gravity and interaction between masses [Sch03], 
[Hol05]. As described by the law of gravity, each agent, also referred to as object, 
interacts with the existing population. This interaction is proportional to each agent’s 
mass, expressed in accordance to its fitness, and inversely proportional to the dis-
tance between them. Also, the attraction effect between the particles of the uni-
verse is introduced through the gravitational constant. The variation of the gravita-
tional constant is modeled by the following decrease laws in relation with GSA’s iter-
ations: 

  ) (1)( 0
max

g
k

k
kg −=ψ , (3.9) 

  ) exp()(
max

0
k

k
gkg ζ−= , (3.10) 

where )(kg  is the value of the gravitational constant at the current iteration 

index k , 
maxk  is the maximum number of iterations, )0(0 gg = , and 0>ψ , 0>ζ  are 

parameters that are set in order to ensure GSA’s convergence and to influence the 
search accuracy as well. 

The decrease of the gravitational constant outlined in equations (3.9) and 
(3.10) targets the modeling and the simulation of the effect of decreasing gravity. 
These equations show the decrease of the gravitational constant with age, which in 
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GSA is represented by the iteration index. The GSA’s convergence and search accu-
racy is influenced by the chosen values for parameters ψ  and ζ  for which the de-
signer’s experience is employed. 

As mentioned in [Ras10], particles, referred to also as agents, are used in 
the GSA, and their performance is represented through their masses. The gravity 
force attracts each of these particles, leading to the global movement of all particles 
towards the particles with heavier masses. The exploitation step of the algorithm is 
guaranteed by the heavy masses (which correspond to good solutions, i.e., solutions 
close to the optimum) moving more slowly than the lighter ones. 

Considering N agents and a q-dimensional search space, the position of th
i  

agent is defined by the vector iX : 

 Nixxx qTq
i

d
iii ...1  ,]......[ 1 =∈= RX , (3.11) 

where d
ix  is the position of the th

i  agent in th
d  dimension, qd ...1= . The posi-

tion vector iX will be replaced by the controller parameter vector (2.29) involved in 

the optimization problems described by (2.13) – (2.16). 
The force acting on th

i  agent from th
j  agent is defined as follows at the iter-

ation index k : 

 )]()([
)()(

)()(
)()( kxkx

kxkr

kmkm
kgkF d

i
d
jd

jij

AjPid
ij −

+
=

ε
, (3.12) 

where )(kmAi
 is the active gravitational mass related to th

i  agent, )(kmPj
 is the 

passive gravitational mass related to th
j  agent, 0>ε  is a small constant, and )(krij  is 

the Euclidian distance between th
i  and th

j  agents (used instead of the squared dis-
tance to simplify the GSA): 
 ||)()(||)( kkkr jiij XX −= . (3.13) 

To ensure the stochastic characteristic of the GSA the total force acting on 
th
i  agent in th

d  dimension, )(kF d
i , is a randomly weighted sum of all forces exerted 

from the other agents: 

 ∑
≠=

=
N

ijj

d
ijj

d
i kFkF

,1

)()( ρ , (3.14) 

where 
jρ , 10 ≤≤ jρ , is a randomly generated number. The law of motion 

leads to the acceleration )(kad
i  of thi  agent at the iteration index k  in th

d  dimension: 

 
)(

)(
)(

km

kF
ka

Ii

d
id

i = , (3.15) 

where )(tmIi
 is the inertia mass related to th

i  agent. 

The next velocity of an agent, )1( +kv
d
i

, is considered as a fraction of its cur-

rent velocity added to its acceleration. Therefore, the position and velocity of an 
agent are updated in terms of the following state-space equations [Ras07], [Ras09]: 

 
),1()()1(

),()()1(

++=+

+=+

kvkxkx

kakvkv

d
i

d
i

d
i

d
i

d
ii

d
i ρ  (3.16) 

where 
iρ , 10 ≤≤ iρ , is a uniform random variable. 

The gravitational and inertial masses are [Ras07], [Ras09]: 
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1

iIiPiiA

N

j

j

i
i

i
i

mmmm

kn

kn
km
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kn

===
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−

−
=

∑
=

 (3.17) 

where )(kf i  is the fitness value of th
i  agent at the iteration index k , and the 

terms )(kb  (corresponding to the best agent) and )(kw  (corresponding to the worst 

agent) are defined as follows: 

 
).(max)(

),(min)(

...1

...1

kfkw

kfkb

j
nj

j
nj

=

=

=

=
 (3.18) 

GSA consists of the following steps illustrated in Fig. 3.3.1 as the GSA’s 
flowchart: 

Step 1. Generate the initial population of agents, i.e., initialize the q-
dimensional search space, the number of agents N, set the iteration index 0=k , set 
the search process iteration limit maxk  and initialize randomly the agents’ position 

vector )0(iX . 

Step 2. Evaluate the agents’ fitness according to (2.9) – (2.12). 
Step 3. Update the population of agents, i.e., compute the terms )(kg , )(kb , 

)(kw  and )(kmi
 using equations (3.9) or (3.10), (3.17) and (3.18) for Ni ...1= . 

Step 4. Calculate the total force in all directions )(kF d
i , Ni ...1= , using equa-

tion (3.14). 
Step 5. Calculate the agents’ accelerations )(kad

i
 according to (3.15). 

Step 6. Update the agents’ velocities )1( +kv
d
i

 and positions )1( +kx
d
i

 using 

(3.16) for Ni ...1= . 
Step 7. Increment k and go to step 2 until the maximum number of itera-

tions is reached, i.e., until 
maxkk = . 

Step 8. Stop and save the final solution in the vector iX  obtained so far. 

A GSA-based solution for the optimization problems (2.13) – (2.16) is im-
plemented with the introduction of the GSA in the fourth step of the design method 
detailed in Sub-chapter 2.1. Employing the experience of [Dav11], [Pre11d], 
[Pre11e], [Dav12d], [Pre12a], [Dav13], the GSA parameters were chosen in order 
to achieve the best search performance. The number of agents was set to 20=N  
with a maximum number of iterations 100max =k . Using the search domain ρD  defined 

in (2.67) the dimension size was set as 3=d . The decrease law (3.10) of the gravi-
tational constant was applied, with the initial value )0(0 gg =  set to 1000 =g  and 5.8=ζ . 

The ε  value from (3.12) was set to 410−=ε  in order to avoid possible divisions by 
zero. The results corresponding to the objective functions are presented in Tables 
3.3.1 – 3.3.8. 

As in the case of other nature-inspired algorithms, the GSA solution required 
several re-runs before obtaining the final results for each of the 

Pk
J ,4...1  and 

ΣT
J ,4...1  

objective functions. This aspect will be approached in Sub-chapter 3.8 using the 
average values of the objective functions together with three algorithm performance 
indices. 
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Fig. 3.3.1. Flowchart of Gravitational Search Algorithm. 
 

Table 3.3.1. Results for the GSA-based minimization of 
Pk

J ,1 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,1 Pk
J

 
0 0.138541 40 0.75 3.14374 0.004379 2.89224 390459 

0.0021357 0.138462 39.9979 0.75 3.14537 0.004378 2.89374 393520 

0.021357 0.139267 40 0.75 3.12737 0.00439 2.87718 421083 

0.21357 0.134318 39.7505 0.75 3.2222 0.004325 2.96442 695544 

 

Table 3.3.2. Results for the GSA-based minimization of 
ΣT

J ,1 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,1 ΣT
J  

0 0.138541 40 0.75 3.14374 0.004379 2.8922 390459 

0.17187 0.142008 39.3697 0.75 3.01888 0.004469 2.7774 618429 

1.7187 0.129304 36.4119 0.75 3.0663 0.004434 2.821 2861380 

17.187 0.01281 20 0.287 16.9763 0.001884 15.618 22794600 
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Table 3.3.3. Results for the GSA-based minimization of 
Pk

J ,2 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,2 Pk
J  

0 0.085582 40 0.7384 5.08576 0.003443 4.6789 23041.8 

0.006858 0.081221 37.9584 0.75 5.08532 0.003443 4.6785 32718 

0.06858 0.085461 40 0.75 5.09296 0.00344 4.6855 119183 

0.6858 0.0128 20.0057 0.25 16.9947 0.001883 15.635 874127 

 

Table 3.3.4. Results for the GSA-based minimization of 
ΣT

J ,2 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,2 ΣT
J  

0 0.081626 38.1835 0.75 5.09006 0.003441 4.6829 23167.7 

0.0066695 0.080257 37.8053 0.75 5.1256 0.003429 4.7156 32814.3 

0.066695 0.078426 36.8115 0.75 5.10741 0.003435 4.6988 117880 

0.66695 0.013045 20.3962 0.25 17 0.001883 15.64 864208 

 

Table 3.3.5. Results for the GSA-based minimization of 
Pk

J ,3 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,3 Pk
J  

0 0.0845 39.5685 0.6933 5.0948 0.0034 4.6872 3086210 

3.9187 0.0807 37.7003 0.75 5.0851 0.00344 4.6782 8513560 

39.187 0.0627 29.7309 0.75 5.1586 0.00342 4.746 57875400 

391.87 0.032 38.8976 0.7161 13.2043 0.00214 12.148 527538000 

Table 3.3.6. Results for the GSA-based minimization of 
ΣT

J ,3 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,3 ΣT
J  

0 0.0845 39.5685 0.6933 5.09481 0.00344 4.6872 3086210 

3.8693 0.0853 40 0.75 5.10019 0.003438 4.6922 8521880 

38.693 0.0773 36.9454 0.75 5.20265 0.003404 4.7864 58013600 

386.93 0.0318 38.5452 0.7434 13.1971 0.002137 12.141 527719000 

 

Table 3.3.7. Results for the GSA-based minimization of 
Pk

J ,4 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,4 Pk
J  

0 0.0848 40 0.75 5.1325 0.003427 4.72191 155631 

0.142 0.0855 40 0.75 5.0851 0.003443 4.67833 352168 

1.42 0.083 39.5146 0.75 5.1788 0.003412 4.76449 2142170 

14.2 0.0269 22.0776 0.25316 8.9187 0.0026 8.20516 19276900 
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Table 3.3.8. Results for the GSA-based minimization of 
ΣT

J ,4 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,4 ΣT
J  

0 0.0848 40 0.75 5.1325 0.003427 4.7219 155631 

0.15885 0.0847 40 0.75 5.1357 0.003426 4.7248 381779 

1.5885 0.0783 36.887 0.75 5.1242 0.00343 4.7142 2409020 

15.885 0.0216 20.3656 0.25 10.234 0.002427 9.415 21602000 

 
Fig. 3.3.2 presents a description of the evolution of the variables of the ob-

jective function and of the objective function 
Pk

J ,2  during the search process. The 

weighting parameter 0=
Pk

γ  was considered. 

In addition to Fig. 3.3.2, which gives a representation focused on the best 
position of the algorithm iterations, Fig. 3.3.3 exemplifies the movements of all 
agents used in GSA during the search process in order to better recognize the ex-
ploration and exploitation capabilities of the algorithm. 

 

 

Fig. 3.3.2. T-S PI-FC tuning parameters and objective function evolution vs. 
iteration index: eB  versus k (a), β  versus k (b), η  versus k (c), and 

Pk
J ,2  versus k 

(d). 
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The results obtained for the GSA-based solution to the optimization prob-
lems described in Chapter 2, were validated in [Pre11e] using the experimental set-
up described in Chapter 2. The presentation of the real-time experimental results is 
organized in terms of plotting the evolutions of the control signal (representing the 
PWM duty cycle, u) and of the controlled output (representing the angular position, 
y) versus time, and of evaluating the objective functions for the control systems on 
the real-world process represented by the experimental setup. The experimental 
results were obtained for the step-type angular position reference input of 

rad  400 =r . The experiments were conducted for the control systems with both the 

PI controller and the T-S PI-FC. The parameters used on the real-world process in 
order to evaluate the objective function 

Pk
J ,1  and the value of the weighting param-

eter 0.06858)( 2 =
Pk

γ  in order to record the control systems’ responses (i.e., the con-

trol signals and the controlled outputs) in a comparative manner. 
The average value of the design parameter β  of the PI controller was 7=β . 

This controller was tuned by the ESO method. 
 

 

Fig. 3.3.3. Vector solution ρ  to the optimization problem (2.14) in the 

search domain ρD  for four values of iteration index k: 1=k  (a), 15=k  (b), 60=k  

(c), and 100=k  (d). 
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Fig. 3.3.4. Control signal and controlled output (angular position) of the control sys-
tem with the PI controller (dashed) and of the control system with the T-S PI-FC 

(solid). 

 
It can be observed from Fig. 3.3.4 that the differences between the results 

are somehow similar because of the equivalence between the PI controller and the 
T-S PI-FC. However, the control systems appear to be sensitive to different random 
disturbances that act as static friction which has a different unpredictable value each 
time. Even more insight can be gained when the objective functions are analyzed. 
They have different values than those from the simulations and the corresponding 
time responses are different. The reason for these is represented by the same as-
pects mentioned before and in addition to the uncertainty in the model. However it 
will be discussed and shown as follows that the tuning parameters of the T-S PI-FCs 
obtained through the implementation of the GSA-based solution ensures the strong 
decrease of the objective functions. 

 
 

3.4.  HYBRID PARTICLE SWARM OPTIMIZATION-

GRAVITATIONAL SEARCH ALGORITHMS 

 
The hybridization of nature-inspired algorithms evolved as a solution neces-

sary in overcoming certain shortcomings observed during the use of original conven-
tional of these classical algorithms. In [Mir10] a hybridization of PSO and GSA algo-
rithms is proposed with the objective of obtaining an improved search technique, 
which aims to incorporate the advances of both algorithms. In order to achieve this 
goal, the ability of social thinking in PSO is interrelated with the local search capabil-
ity of GSA. 

The operating mechanism of the PSO algorithm, based on the use of swarm 
particles, also called agents, is employed in the framework of the hybrid Particle 
Swarm Optimization-Gravitational Search Algorithm (PSOGSA). The agents continue 
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to be characterized by the vectors 
iX  (the particle position vector) and 

iV  (the par-

ticle velocity vector) [Ken95a], [Ken95b]: 

 
,]......[

,]......[

1

1

Tq
i

d
iii

Tq
i

d
iii

vvv

xxx

=

=

V

X  (3.19) 

where Nii ...1  , = , is the index of current agent in the swarm, N represents 

the size of the swarm, and q represents the dimension of search space. The particle 
position vector will have a 3=q  dimension in order to suit (2.29) for optimization 
problems (2.13) – (2.16).  Assume 

Bestg ,P  be the best swarm position vector: 

 .]......[ 1
,

Tq
g

d
ggBestg ppp=P  (3.20) 

Bestg ,P  is used as in the case of PSO, and they is updated according to (3.8). 

The computation of the initial values of 
Bestg ,P  will be presented as follows in the first 

step of the hybrid PSOGSA. 
The integration of PSO’s exploitation capabilities and GSA’s exploration abili-

ties is highlighted during the agents velocities and positions update according to: 
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where 
2..1r  are uniformly distributed random variables, 10 2,1 ≤≤ r  , and 

2,1c , 

02,1 ≥c , are represent weighting factors; parameter )(kw  stands for the inertia 

weight and )(ka d
i  is the acceleration expressed in (3.15). 

The hybrid PSOGSA algorithm consists of the following steps, presented also 
in Fig. 3.4.1: 

Step 1. Generate the initial population of agents, i.e., initialize the q-
dimensional search space, the number of agents N, set the iteration index 0=k , set 
the search process iteration limit maxk , the weighting factors 

21   , cc  the inertia weight 

parameter )(kw  according to (3.6) and initialize randomly the agents’ position vector 

)0(iX . Define the gravitational constant decrease law. 

The best particle position vector 
Besti,P  is initialized with the initial positions 

of the agents and the best swarm position vector 
Bestg ,P  is initialized with the posi-

tion of the first agent. 
Step 2. Evaluate the agents’ fitness described by (2.9) – (2.12). 
Step 3. Compare the performance of each particle to the best global perfor-

mance, and eventually update the best swarm position vector 
Bestg ,P  according to 

(3.8). 
Step 4. Calculate the agents’ accelerations )(kad

i
 according to (3.15). 

Step 5. Update the agents’ velocities )1( +kv
d
i

 and positions )1( +kx
d
i

 using 

(3.21) for Ni ...1= . 
Step 6. Continue incrementing k and go to step 2 until the maximum num-

ber of iterations is reached, i.e., until 
maxkk = . 

Step 7. Terminate and retrieve the final solution in the vector iX  obtained 

so far. 
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Fig. 3.4.1. Flowchart of hybrid Particle Swarm Optimization-Gravitational Search 
Algorithm. 

 
In accordance with the fourth step of the design method dedicated to the 

simple T-S PI-FCs detailed in Sub-chapter 2.1, the hybrid PSOGSA was involved in 
this step in order to solve the optimization problems corresponding to the objective 
functions 

Pk
J ,4...1  and 

ΣT
J ,4...1  from (2.9) – (2.12). Employing the hybrid PSOGSA 

requires the definition of all algorithm’s parameters specified in step 1, and these 
values are presented as follows. The number of agents was set to 20=N . The maxi-
mum number of iterations of the search process was set to 100max =k . As in the case 

of GSA, the decrease law (3.10) of the gravitational constant was used, with the 
initial value 

0g  set to 1000 =g  and 5.8=ζ . The ε  value from (3.12), introduced to 

avoid possible divisions by zero, was set to 410−=ε . From the PSO part, the 
weighting parameters were set to 3.021 == cc  in order to ensure a good balance be-

tween exploration and exploitation characteristics. The inertia weight parameters 
outlined in (3.6) were set to 9.0max =w  and 5.0min =w . 
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Table 3.4.1. Results for the PSOGSA-based minimization of 
Pk

J ,1 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,1 Pk
J  

0 0.1362 40 0.75 3.19747 0.004342 2.94168 390671 

0.0021357 0.1384 40 0.75 3.14728 0.004376 2.8955 393510 

0.021357 0.1379 40 0.75 3.15765 0.004369 2.90504 420934 

0.21357 0.1353 40 0.75 3.21885 0.004327 2.96134 695405 
 

Table 3.4.2. Results for the PSOGSA-based minimization of 
ΣT

J ,1 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,1 ΣT
J  

0 0.1362 40 0.75 3.19747 0.004342 2.94168 390671 

0.17187 0.1382 40 0.75 3.15222 0.004373 2.90005 636904 

1.7187 0.1443 40 0.75 3.01759 0.004469 2.77618 2480870 

17.187 0.0128 20 0.2511 17 0.001883 15.64 22790300 
 

Table 3.4.3. Results for the PSOGSA-based minimization of 
Pk

J ,2 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,2 Pk
J  

0 0.0809 37.8291 0.75 5.0852 0.003443 4.67842 23119.3 

0.006858 0.0781 36.5224 0.75 5.0869 0.003442 4.67999 32844.2 

0.06858 0.0834 39.009 0.75 5.0867 0.003442 4.67976 119057 

0.6858 0.0128 20 0.2502 17 0.001883 15.64 873204 
 

Table 3.4.4. Results for the PSOGSA-based minimization of 
ΣT

J ,2 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,2 ΣT
J  

0 0.073 34.639 0.75 5.164 0.00349 4.75094 23691.9 

0.0066695 0.0686 32.4755 0.75 5.1505 0.00349 4.73854 32207.1 

0.066695 0.0841 39.8589 0.3458 5.1571 0.0034 4.74457 109204 

0.66695 0.0128 20 0.25 17 0.0019 15.64 864943 
 

Table 3.4.5. Results for the PSOGSA-based minimization of 
Pk

J ,3 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,3 Pk
J  

0 0.0756 35.561 0.8835 5.1202 0.0034 4.71054 2903740 

3.9187 0.0856 40 0.75 5.0849 0.0034 4.67807 8472280 

39.187 0.0845 39.7112 0.75 5.1164 0.0034 4.70705 57920700 

391.87 0.0315 40 0.75 13.7866 0.002 12.6836 528181000 
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Table 3.4.6. Results for the PSOGSA-based minimization of 
Pk

J ,3 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,3 Pk
J  

0 0.075573 35.561 0.8835 5.1201 0.0034 4.7105 2903740 

3.8693 0.084103 40 0.75 5.1751 0.0034 4.7611 8632620 

38.693 0.082147 39.9614 0.75 5.293 0.0034 4.8696 56738000 

386.93 0.031254 40 0.75 13.9168 0.002 12.804 528146000 

 

Table 3.4.7. Results for the PSOGSA-based minimization of 
Pk

J ,4 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,4 Pk
J  

0 0.0856 40 0.75 5.08538 0.003443 4.67855 153530 

0.142 0.0856 40 0.73 5.0852 0.003443 4.67839 353343 

1.42 0.0841 40 0.75 5.16972 0.003415 4.75615 2132880 

14.2 0.0229 20 0.25 9.50746 0.002518 8.74686 19274000 
Table 3.4.8. Results for the PSOGSA-based minimization of 

ΣT
J ,4 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,4 ΣT
J  

0 0.0855 40 0.75 5.085 0.0034 4.6785 153530 

0.15885 0.0855 40 0.75 5.085 0.0034 4.678 379380 

1.5885 0.1344 37.0232 0.75 3 0.0045 2.76 1003440 

15.885 0.0194 20 0.25 11.2378 0.0023 10.3387 21610900 

 
The results containing the minimized values of the objective functions 

Pk
J ,4...1  and 

ΣT
J ,4...1  (i.e., min,4...1 Pk

J  and min,4...1 ΣT
J ) are presented in Tables 3.4.1 – 

3.4.8 together with the optimal controller tuning parameters.  
Despite the hybridization of two nature-inspired algorithms, the random 

characteristic was not eliminated, and several simulations were required before ob-
taining the final results. An analysis centered on average values of the objective 
functions and two newly introduced performance indices will be detailed in Sub-
chapter 3.8. 
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Fig. 3.4.2. T-S PI-FC tuning parameters and objective function evolution vs. itera-
tion index: eB  versus k (a), β  versus k (b), η  versus k (c), and 

Pk
J ,2  versus k (d). 

Fig. 3.4.2 describes the evolution of the controller tuning parameters and of 
the intermediate values of objective function 

Pk
J ,2  during the search process. The 

weighting parameter 0=
Pk

γ  was considered in the optimization problem. 

 
Fig. 3.4.3 illustrates the evolution of all agents during the search process is 

presented at four steps: 1=k , 15=k , 60=k  and 100=k . 
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Fig. 3.4.3. Vector solution ρ  to the optimization problem (2.14) in the search do-

main ρD  for four values of iteration index k: 1=k  (a), 15=k  (b), 60=k  (c), and 

100=k  (d). 

For the sake of comparison, Fig. 3.4.4 includes a comparison with the T-S 
PI-FC tuned by PSO and with the T-S PI-FC tuned by GSA in the same conditions. 
The same values of the parameters of PSO and GSA are used (taken from the pa-
rameters of PSOGSA), and the parameters corresponding to the objective 

ΣT
J ,1  and 

weighting parameter 17187 0.)( 2 =
ΣT

γ  from Table 3.2.2 and Table 3.3.2 are used. The 

performance improvement ensured by the PSOGSA algorithm is highlighted in Fig. 
3.4.4. 
 

 

Fig. 3.4.4. Fuzzy control system responses: with initial T-S PI-FC (line-dotted), PSO-
based T-S PI-FC (solid), GSA-based T-S PI-FC (discontinuous line), hybrid PSOGSA-

based T-S PI-FC (dotted).
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3.5.  CHARGED SYSTEM SEARCH ALGORITHMS 

 
The specific features of Charged System Search (CSS) algorithms concern 

the random determination of the initial positions of charged particles (CPs) and the 
initial velocities of CPs set to zero. Each CP has an associated magnitude of charge 

icq ,
 and as a result it creates an electrical field around its space. The magnitude of 

the charge at iteration k is defined considering the quality of its solution as: 
 Ni

kgkg

kgkg
kq

worstbest

besti
ic ...1  ,

)()(

)()(
)(, =

−

−
= , (3.22) 

where )(kgbest  and )(kgworst  are the so far best and the worst fitness of all CPs 

at iteration k, )(kgi  is the objective function value or the fitness function value of thi  

CP at iteration k, and N  is the total number of CPs. The separation distance 
ijr  be-

tween two CPs at iteration k is defined as [Pre12d]: 
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where 
sq  is the dimension of the search space, (k)iX  and (k)jX  are the posi-

tion vectors of th
i  and th

j  CP at iteration k, respectively, (k)bestX  is the position of the 

best current CP at iteration k, 0  , >εε , is a constant introduced to avoid singularities, 
and the Euclidean norm is considered in (3.23). 

For the optimization problems presented in (2.13) – (2.16), a 3=q -
dimensional search space is required, according to (2.19). 

The electric forces between any two CPs are used in increasing CSS algo-
rithm’s exploitation ability. The good CPs can attract the other CPs and the bad ones 
repel the others, proportional to their rank 

ijc  [Kav10a], [Kav10b], [Kav10c], 

[Pre12d]: 

 




 <−

=
,otherwise   ,1

,  if  ,1 ji
ij

gg
c  (3.24) 

where the parameter 
ijc  determines the type and the degree of influence of 

each CP on the other CPs, considering their fitness apart from their charges. 
The value of the resultant electrical force iF  acting on thi  CP at iteration k is 

[Kav10a]: 
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where Nji ...1, = . Equation (3.25) shows that each CP is considered as a 
charged sphere with radius a having a uniform volume charge density. 

The new position (vector) )1( +kiX  and velocity (vector) )1( +kiV  of each CP is 

determined in terms of [Kav10a], [Kav10b], [Kav10c], [Pre14c]: 
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where k  is the current iteration index which is dropped out at certain varia-
bles for the sake of simplicity, )(kka  is the acceleration parameter at iteration k , 

)(kkv  is the velocity parameter at iteration k , which controls the influence of the 

previous velocity, 
1ir  and 

2ir  are two random numbers uniformly distributed in the 

range 1,0 21 << ii rr , im  is the mass of th
i  CP, Ni ...1= , which is set here as equal to 

jcq ,
, 

and k∆  is the time step set to 1. 

 

Fig. 3.5.1. Flowchart of Charged System Search algorithm. 

The effect of the pervious velocity and the resultant force acting on a CP can 
be decreased or increased based on the values of )(kka  and )(kkv , respectively. Since 

)(kka  is the parameter related to the attracting forces; selecting a large value of 

)(kka  may cause a fast convergence and choosing a small value can increase the 

computational time. )(kkv  controls the exploration process. The following modifica-

tions of )(kkv  and )(kkv  with respect to the iteration index are applied [Pre14c]: 

 )1(5.0)(  ),1(3)(
maxmax k

k
kk

k

k
kk va +=−= , (3.27) 

where maxk  is the maximum number of iterations. 

The CSS algorithm consists of the following steps [Pre12d]: 

BUPT



72   Nature-inspired algorithms for the optimal tuning of fuzzy controllers … – 3 

Step 1. Initialize the dimensional search space, the number of CPs N , set 
the iteration index 0=k , set the search process iteration limit 

maxk and randomly 

generate the CPs’ position vector )0(iX , Ni ...1= . 

Step 2. Evaluate the CPs’ fitness in line with (2.9) – (2.12). 
Step 3. Update )(kgbest  and )(kgworst

, and update )(, kq ic
 using (3.22) for Ni ...1= . 

Step 4. Update the values of )(kka  and )(kkv  according to (3.27). 

Step 5. Compute the total force in different directions using (3.23), (3.24) 
and (3.25). 

Step 6. Update the CPs’ velocities and positions using (3.26). 
Step 7. Increment k  and go to step 2 until the maximum number of itera-

tions is reached, i.e., 
maxkk = . 

Step 8. Save the optimal parameter vector as the position vector corre-
sponding to the minimum value of objective (fitness) function. 

These steps are included in the flowchart of the CSS algorithm as presented 
in Fig. 3.5.1. 

 
 

Table 3.5.1. Results for the CSS-based minimization of 
Pk

J ,1 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,1 Pk
J  

0 0.1408 40 0.75 3.0937 0.0044 2.846 390621 

0.0021357 0.1452 40 0.75 3 0.0045 2.76 395143 

0.021357 0.142 40 0.75 3.0664 0.0044 2.821 421548 

0.21357 0.1452 40 0.7434 3 0.0045 2.76 698489 

 
 

Table 3.5.2. Results for the CSS-based minimization of 
ΣT

J ,1 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,1 ΣT
J  

0 0.1452 40 0.75 3 0.0042 2.76 392076 

0.17187 0.1342 40 0.75 3.2453 0.0043 2.9857 640415 

1.7187 0.1418 39.0736 0.75 3 0.0045 2.76 2867160 

17.187 0.0128 20 0.25 17 0.0019 15.64 22809200 

 
 

Table 3.5.3. Results for the CSS-based minimization of 
Pk

J ,2 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,2 Pk
J  

0 0.0856 40 0.75 5.085 0.0034 4.6784 22979.9 

0.006858 0.0852 40 0.75 5.111 0.0034 4.7024 32749.4 

0.06858 0.0844 39.5179 0.75 5.097 0.0034 4.689 119197 

0.6858 0.0129 20 0.25 17 0.0019 15.64 874183 
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Table 3.5.4. Results for the CSS-based minimization of 
ΣT

J ,2 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,2 ΣT
J  

0 0.0856 40 0.75 5.0852 0.0034 4.6784 22979.9 

0.0066695 0.085 40 0.75 5.1183 0.0034 4.7088 32661.5 

0.066695 0.0853 40 0.75 5.1007 0.0034 4.6927 118170 

0.66695 0.0128 20 0.25 17 0.0019 15.64 864943 
 

Table 3.5.5. Results for the CSS-based minimization of 
Pk

J ,3 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,3 Pk
J  

0 0.0779 36.563 0.75 5.1096 0.003435 4.701 3089410 

3.9187 0.0854 40 0.75 5.0961 0.003439 4.688 8491810 

39.187 0.0849 40 0.75 5.1447 0.0034 4.7332 57665900 

391.87 0.0369 40 0.75 11.7966 0.0023 10.8529 528840000 
 

Table 3.5.6. Results for the CSS-based minimization of 
Pk

J ,3 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,3 Pk
J  

0 0.0851 40 0.75 5.1167 0.0034 4.70733 3033090 

3.8693 0.0855 39.9368 0.7282 5.1026 0.0034 4.69442 8555190 

38.693 0.1449 40 0.75 3.0066 0.0045 2.76606 52611000 

386.93 0.0339 40 0.75 12.8174 0.0022 11.792 530435000 

 
Table 3.5.7. Results for the CSS-based minimization of 

Pk
J ,4 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,4 Pk
J  

0 0.0845 40 0.75 5.1497 0.003421 4.73768 155252 

0.142 0.0845 40 0.75 5.151 0.003421 4.7389 354007 

1.42 0.084 39.8938 0.75 5.1678 0.003415 4.75435 2142920 

14.2 0.0225 20 0.25 9.6546 0.002499 8.88227 19379100 
 

Table 3.5.8. Results for the CSS-based minimization of 
ΣT

J ,4 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,4 ΣT
J  

0 0.0845 40 0.75 5.1497 0.003421 4.73768 155252 

0.15885 0.0847 40 0.75 5.1365 0.003426 4.72559 380819 

1.5885 0.085 40 0.75 5.1216 0.003431 4.7119 2419410 

15.885 0.0207 20 0.25 10.4964 0.002396 9.65673 21711500 
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Fig. 3.5.2. T-S PI-FC tuning parameters and objective function evolution vs. itera-
tion index: eB  versus k (a), β  versus k (b), η  versus k (c), and 

Pk
J ,2  versus k (d). 

The CSS algorithm previously descried was employed in the step 4 of the 
design method dedicated to the simple T-S PI-FCs presented in Sub-chapter 2.1. 
Before a CSS-based solution could be used, all algorithm parameters required ini-
tialization. The number of used CPs was set as 20=N , the maximum number of iter-
ations was set to 100max =k . For the sake of simplicity each CP is considered as a 

charged sphere with radius 1=a  having a uniform volume charge density. The con-
stant ε  in (3.23) was set to 4

10
−=ε . 

The results representing the optimal controller tuning parameters and the 
minimized values of the objective functions 

Pk
J ,4...1  and 

ΣT
J ,4...1  (i.e., min,4...1 Pk

J  and 

min,4...1 ΣT
J ) are presented in Tables 3.5.1 – 3.5.8. A consequence of the degrees of 

freedom represented by the arbitrary CSS parameters requires several restarts of 
the search process before a final solution can be obtained. This aspect will be ana-
lyzed in Sub-chapter 3.8 based on the average values of the objective functions and 
two newly introduced performance indices. 

Fig. 3.5.2 illustrates an evolutionary representation of the controller tuning 
parameters and of the objective function 

Pk
J ,2  along the algorithm’s iterations. The 

weighting parameter 0=
Pk

γ  was considered. 
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Several snapshots of all CPs during the search process are shown in Fig. 
3.5.3 in order to give a better representation of algorithm’s exploration and exploi-
tation capabilities. 
 

 

Fig. 3.5.3. Vector solution ρ  to the optimization problem (2.14) in the search do-

main ρD  for four values of iteration index k: 1=k  (a), 15=k  (b), 60=k  (c), and 

100=k  (d). 

 
The solution based on the CSS algorithm to the optimization problems pre-

sented in Chapter 2 is validated in [Pre12d] through experimental results for the 
experimental setup presented in Chapter 2. The experimental results were obtained 
for the step-type angular position reference input of rad  400 =r , and they were con-

ducted for the control systems with both the PI controller and the T-S PI-FC. A sam-
ple of the real-time experimental that corresponds to the objective function 

Pk
J ,1  

and for the 0.006858)( 2 =
Pk

γ  value of the weighting parameter is presented in Fig. 

3.5.4. 
The additional PI controller mentioned in this experimental study had the 

value of the design parameter β  set to 7=β . This controller was tuned by the ESO 
method. 
 

BUPT



76   Nature-inspired algorithms for the optimal tuning of fuzzy controllers … – 3 

 

Fig. 3.5.4. Controlled output of the control system with the PI controller (solid line) 
and of the fuzzy control system (dashed line). 

 
The objective function measured for the fuzzy control system is smaller 

compared to that of the control system with the linear (PI) controller [Pre12d]. In 
addition, the improvements of the settling time and of the overshoot ensured by the 
fuzzy control system are highlighted in Fig. 3.5.4. Therefore, the use of the CSS 
algorithm in the optimal tuning of fuzzy controllers is justified. 

 
 

3.6.  ADAPTIVE GRAVITATIONAL SEARCH ALGORITHMS 

 
Although the standard GSA has already shown promising results illustrated 

in [Pre13a], a good computational efficiency and ease of implementation, it uses 
several predefined parameters and schedules which fail to take into consideration 
the state of the search process. Hence, the algorithm can become computationally 
inefficient as the exploration-exploitation ratio could become inefficient and the al-
gorithm might get trapped in local minima situations. 

Therefore, the most important and interesting goals in GSA development are 
optimal resource usage and avoiding local optima. The adaptive GSA proposed in 
[Pre12a], [Pre13d] offers a superior search process compared to the standard GSA 
by improving the exploration of the search space as it continues the development of 
the stage based adaptation of algorithm parameters [Liu10a]. This improvement is 
ensured by the use of a learning model for the algorithm, inspired by the 5E learn-
ing cycle discussed in [Byb02] and [Bal06]. 

As the standard GSA, the adaptive version is governed by the same operat-
ing mechanism which is based on the use of agents (i.e., particles) and on Newton’s 
law of gravity [Ras09], [Ras10]. The algorithm consists of the following stages: 

I. Engagement. The initial N  agents number is defined and their positions 
are generated randomly: 
 Nixxx i

Tq
i

d
iii ...1  ,  ,]......[ 1 === ρXX , (3.28) 

where 
iX  is agents’ position vector, d

ix  is the position of thi  agent in thd  di-

mension of the 3=q -dimensional search space, as results from (2.29) in order to 
solve the optimization problems (2.13) – (2.16). The maximum number of iterations 
maxk  of the search process is set and the iteration index k  is set to 0=k  and will be 

incremented at the end of the iteration according to step 7 in Fig. 3.6.1. 
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II. Exploration. This stage allows the algorithm to discover the extent of the 
search space. The following linear decrease law of the gravitational constant is em-
ployed: 
 )1 ()(

max
0

k

k
gkg ψ−= , (3.29) 

where )(kg  is the value of gravitational constant at current iteration index k, 

0g  is the initial )(kg , and 0>ψ  is an a priori set parameter which ensures a trade-off 

to GSA’s convergence and search accuracy. 
The agent’s velocities and positions are updated using: 
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where 10  , ≤ρ≤ρ ii
, is a uniform random variable; )(kadi  is the acceleration 

of thi  agent in thd  dimension: 
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where 10  , ≤≤ jj σσ , is a random generated number, )(km Ii
, )(kmPi

 and )(kmAj
 

are the inertial, passive and active gravitational masses related to thi  and thj  agent, 

0>ε  is a relatively small constant, and )(krij  is the Euclidian distance between thi  and 
thj  agents: 
 ||)()(||)( kkkr jiij XX −= . (3.32) 

The expressions of the active gravitational mass and of the inertial mass are 
calculated in terms of: 
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Stage II of the adaptive GSA is carried out for the first 15% iterations (i.e., 
runs) in the search process. 

III. Explanation. Algorithm’s parameters restrict agents’ movement during 
the next 45% iterations in the search process, by the introduction of a more aggres-
sive decrease law of )(kg  according to: 

 ) exp()(
max

0
k

k
gkg ζ−= , (3.34) 

where 0>ζ  is an a priori set parameter which affects GSA’s convergence 
and search accuracy. 

IV. Elaboration. The remaining 40% of iterations are characterized by set-
ting the general position for the optimal value of the fitness function and leaving the 
remaining time to refine the obtained results. The value of )(kg  stops decreasing, 
and during this stage the worst agents’ positions are reset to the best values ob-
tained so far after each run. 

V. Evaluation. The tuned parameters, obtained at the end of the search pro-
cess, are applied to the real-world optimization problem in order to evaluate the 
quality of the solution. 

BUPT



78   Nature-inspired algorithms for the optimal tuning of fuzzy controllers … – 3 

Fig. 3.6.1 illustrates the adaptive GSA’s stages. 
The five stages of the proposed adaptive GSA are different to those ones 

presented in the non-adaptive GSA in several formulations [Ras09], [Pre11d], 
[Pre11e], that consist of the stages I, III and V, but with a single and fixed constant 
decrease law of the gravitational constant and without resetting the worst fitness 
and position. 

 

 

Fig. 3.6.1. Flowchart of Adaptive Gravitational Search Algorithm. 

The computational complexity of this optimization algorithm is influenced by 
the complexity of the evaluation of the objective function (viz., the fitness function) 
and by the number of runs of the GSA. For the objective functions considered in this 
thesis, each variable (i.e., tuning parameter of the fuzzy controller) is altered sepa-
rately at every stage and a new evaluation of the objective function is required in 
order to determine the variation impact. This results in an increase of the number of 
evaluations of the objective functions, which is proportional to the number of varia-
bles. In case of this adaptive GSA the computational complexity varies as function of 
which stage the search process is involved. Stage III is the most computationally 
intensive one because two parameters are modified simultaneously. 
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Introducing this adaptive GSA in the fourth step of the design method dedi-
cated to the simple T-S PI-FCs presented in Sub-chapter 2.1 required the setting of 
algorithm’s parameters. The number of used agents 20=N  was set and the maxi-
mum number of iterations was set to 100max =k . The ψ  and 

0g  parameters in (3.29) 

were set as 5.0=ψ  and 1000 =g . The ε  parameter in (3.31) was set to 410−=ε  in order 

to avoid possible divisions by zero. The ζ  parameter in (3.34) was set to 5.8=ζ , 
and 

0g  was kept the same as in (3.29). 

The simulation results for the optimal controller tuning parameters and the 
minimized values of the objective functions are presented in Tables 3.6.1 – 3.6.8. 
As in case of the normal GSA, the adaptive version required repeated runs of the 
simulations before obtaining the final results. The Sub-chapter 3.8 contains an anal-
ysis focused on this algorithm arbitrary characteristic based on the average values 
of the objective functions and three performance indices. 

Table 3.6.1. Results for the adaptive GSA-based minimization of 
Pk

J ,1 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,1 Pk
J  

0 0.1386 40 0.75 3.143 0.004379 2.8917 390459 

0.0021357 0.1379 40 0.75 3.1576 0.004369 2.90502 393510 

0.021357 0.1379 40 0.75 3.1573 0.004369 2.90467 421036 

0.21357 0.1374 39.8401 0.75 3.1566 0.00437 2.90404 695019 
 

Table 3.6.2. Results for the adaptive GSA-based minimization of 
ΣT

J ,1 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,1 ΣT
J  

0 0.1386 40 0.75 3.1432 0.004379 2.8917 390459 

0.17187 0.1393 40 0.75 3.1261 0.004391 2.87602 637573 

1.7187 0.1387 39.5837 0.75 3.1074 0.004404 2.85879 2856930 

17.187 0.0128 20.0053 0.25 17 0.001883 15.64 22806100 
 

Table 3.6.3. Results for the adaptive GSA-based minimization of 
Pk

J ,2 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,2 Pk
J  

0 0.0843 39.4214 0.75 5.0872 0.0034 4.6802 23042.5 

0.006858 0.0848 39.6633 0.75 5.0918 0.0034 4.6844 32704.3 

0.06858 0.0849 40 0.75 5.1263 0.0034 4.7161 119101 

0.6858 0.0128 20.0052 0.25 17 0.0019 15.64 874136 
 

Table 3.6.4. Results for the adaptive GSA-based minimization of 
ΣT

J ,2 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,2 ΣT
J  

0 0.0843 39.4214 0.75 5.0872 0.003442 4.6802 23042.5 

0.0066695 0.0855 40 0.75 5.0928 0.00344 4.6854 32599.4 

0.066695 0.084 39.803 0.75 5.1574 0.003419 4.7448 116083 

0.66695 0.0128 20.0053 0.25 17 0.001883 15.64 864596 
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Table 3.6.5. Results for the adaptive GSA-based minimization of 
Pk

J ,3 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,3 Pk
J  

0 0.0851 40 0.75 5.1118 0.0034 4.70288 3025720 

3.9187 0.0849 39.6832 0.75 5.0876 0.0034 4.68074 8483290 

39.187 0.0712 35.1788 0.75 5.3772 0.0033 4.947 57354700 

391.87 0.0323 40 0.75 13.471 0.0021 12.3934 527357000 

 

Table 3.6.6. Results for the adaptive GSA-based minimization of 
Pk

J ,3 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,3 Pk
J  

0 0.0856 39.9958 0.75 5.0849 0.0034 4.678 2984880 

3.8693 0.0856 40 0.75 5.087 0.0034 4.68 8502740 

38.693 0.0812 40 0.3804 5.3617 0.0034 4.9328 57918400 

386.93 0.0324 38.6831 0.75 12.978 0.0022 11.9398 527683000 

 

Table 3.6.7. Results for the adaptive GSA-based minimization of 
Pk

J ,4 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,4 Pk
J  

0 0.0845 40 0.75 5.1528 0.0034 4.7406 155249 

0.142 0.083 38.7878 0.75 5.0857 0.0034 4.6788 353686 

1.42 0.084 39.9504 0.415 5.1342 0.0034 4.7234 2143540 

14.2 0.023 20.3629 0.25 9.5955 0.0025 8.8279 19277500 

Table 3.6.8. Results for the adaptive GSA-based minimization of 
Pk

J ,4 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,4 Pk
J  

0 0.0845 40 0.75 5.1529 0.0034 4.7407 155249 

0.15885 0.0846 40 0.75 5.1431 0.0034 4.7316 380396 

1.5885 0.0491 23.2926 0.75 5.1583 0.0034 4.7456 2337150 

15.885 0.0207 20.0066 0.25 10.5253 0.0024 9.6833 21600800 

 
Fig. 3.6.2 presents the evolution of the tuning parameters of the T-S PI-FC 

and of the objective function 
Pk

J ,2  along the iterations of the optimization process. 

The weighting parameter 0=
Pk

γ  was considered. 

Fig. 3.6.3 illustrates the evolution of all agents’ positions for the adaptive 
GSA after the first four stages of the search process. 
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Fig. 3.6.2. T-S PI-FC tuning parameters and objective function evolution vs. itera-
tion index: eB  versus k (a), β  versus k (b), η  versus k (c), and 

Pk
J ,2  versus k (d). 

The solution obtained by the presented adaptive GSA algorithm to the opti-
mization problems presented in Chapter 2 was also validated by the use of the ex-
perimental setup presented in Chapter 2. The real-time experimental results with 
dynamic regimes characterized by the rad  400 =r  step type modification presented 

in [Pre12a], show the performance improvement ensured by the fuzzy controller in 

case of the objective function 
ΣT

J ,1  and the weighting parameter 17187 0.)( 2 =
ΣT

γ . 

The experiments were conducted for the control systems with both the PI controller 
(i.e., the linear control system) and the T-S PI-FC. 

The PI controller used for comparison was tuned by the ESO method. The 
design parameter β  was set to 4=β . 

The real-time experimental results show the performance improvement en-
sured by the fuzzy controller. Although the differences between the outputs are ra-
ther small (overshoots and settling times), they are important because the values of 
the objective function are significantly different. The values of the objective function 
measured during all experiments show the reduction of the objective function of the 
fuzzy control system compared to the linear one although this is not visible in the 
control systems responses. 
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Fig. 3.6.3. Vector solution ρ  to the optimization problem (2.14) in the search do-

main ρD  for four values of iteration index k: 1=k  (a), 15=k  (b), 60=k  (c), and 

100=k  (d). 

 

Fig. 3.6.4. Real-time experimental results of control system with PI controller a); 
and the fuzzy control system with T-S PI-FC b). 
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3.7.  ADAPTIVE CHARGED SYSTEM SEARCH ALGORITHMS 

 
As in the case of adaptive GSA, the same framework can be integrated for 

the classical version of the CSS algorithm. The adaptation uses the specific features 
of CSS algorithms, which are based on the interactions between charged particles 
(CP) as they are moving through a predefined search domain, starting with arbi-
trarily determined initial positions with zero initial velocities. The CP is characterized 
by an associated magnitude of charge 

iq  and as a result it creates an electrical field 

around its space. The magnitude of the charge at iteration k is defined considering 
the quality of its solution as: 
 Ni

kgkg

kgkg
kq

worstbest

besti
ic ...1  ,

)()(

)()(
)(, =

−

−
= , (3.35) 

where )(kgbest  and )(kgworst  are the so far best and the worst fitness of all CPs 

at iteration k, )(kgi  is the objective function value or the fitness function value of thi  

CP at iteration k, and N is the total number of CPs. The separation distance 
ijr  be-

tween two CPs at iteration k is defined as: 
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where )(kiX  and )(kjX  are the positions of th
i  and th

j  CP at iteration k, re-

spectively, )(kbestX  is the position of the best current CP at iteration k, and the rela-

tive small parameter 0>ε  is introduced to avoid singularities. 
For the optimization problems described by (2.13) – (2.16), qR  will be de-

fined in accordance to (2.29) resulting in a 3=q -dimensional search space. 
The exploitation ability of CSS algorithms is increased by the electric forces 

between CPs. When a search space is a noisy domain, having a complete search 
before converging to a result is necessary. In such a condition, the addition of the 
ability of repelling forces to the algorithm may improve its performance. Good CPs 
can attract the other agents and bad CPs repel the others, proportional to their rank 

ijc : 
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, if1 ji
ij

ff
c  (3.37) 

The rank 
ijc  sets the type and the degree of influence of each CP on the oth-

er CPs considering their fitness function values apart from their charges. This means 
that good agents are awarded the capability of attraction and bad ones are given 
the repelling feature, resulting in the improvement of the exploration and exploita-
tion abilities of the algorithm. When a good agent attracts a bad one, the exploita-
tion ability is provided for the algorithm; on the other hand, when a bad agent re-
pels a good CP, the exploration is provided. 

The value of the resultant electrical force 
iF  acting on th

i  CP at iteration k is: 
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Equation (3.25) shows that each CP is considered as a charged sphere with 
radius a having a uniform volume charge density. 

The new position of thi  CP, )1( +kiX , and the new velocity of th
i  CP, )1( +kiV , 

are obtained in terms of [Kav10a], [Kav10b], [Pre12a], [Kav12e]: 
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where k is the current iteration index, )(kka  is the acceleration parameter, vk  

is the velocity parameter, 1ir  and 2ir  are two random numbers uniformly distributed 

in the range of (0, 1), 
im  is the mass of thi  CP, Ni ...1= , 

ii qm =  in the sequel, and k∆  

is the time step set to 1. 
The effect of previous velocity and the resultant force acting on a CP can be 

decreased or increased on the basis of the values of )(kkv  and )(kka , respectively. 

Excessive search in the early iterations may improve the exploration ability; howev-
er, a gradual decrease is advised in [Kav10a], [Kav10b], [Kav10c]. Since )(kka  is 

the parameter related to the attracting forces, selecting a large value for this pa-
rameter may cause a fast convergence and choosing a small value can increase the 
computational time. In fact, )(kka  is a control parameter of the exploitation; there-

fore, choosing an incremental function can improve the performance of the algo-
rithm. In addition, the direction of the pervious velocity of a CP is not necessarily 
the same as the resultant force. Thus, it can be concluded that the velocity parame-
ter vk  controls the exploration process, so an increasing function can be selected. 

Therefore, based on extended experimental practice, we suggest the following modi-
fications of )(kka  and )(kkv  with respect to the iteration index k: 

 )1(5.0)(  ),1(3)(
maxmax k

k
kk

k

k
kk va +=−= , (3.40) 

where 
maxk  is the maximum number of iterations. 

The adaptive CSS algorithm is expressed in terms of the following five stag-
es, I, II, III, IV and V, illustrated in Fig. 3.7.1 and described as follows. 

I. Engagement. This stage is dedicated to the initialization of adaptive CSS 
algorithm’s population and parameters. 

II. Exploration. The adaptive CSS algorithm is run with no modifications of 
)(kka  and )(kkv , so no constraints are applied to charged particles’ movements. This 

stage accounts for the first 20% out of 
maxk  iterations. 

III. Explanation. The adaptive CSS algorithm is run using the linear modifi-
cations of ak  and vk  according to (3.40). 

The next 40% out of 
maxk  iterations are assigned to this stage. The adapta-

tion is obtained on the basis of experience in adaptive GSA algorithm [Pre12d]. 
IV. Elaboration. This stage uses the last 40% out of 

maxk  iterations in adap-

tive CSS algorithm’s search process runs. In addition, at each run the agent’s posi-
tion with the worst fitness is reset to the position of the agent with the best fitness. 

V. Evaluation. Charged particles’ positions are mapped onto the variables of 
the optimization problem, and the objective functions are evaluated using the real-
world model of the optimization problem to evaluate the obtained solution. 
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Some aspects concerning the stages of this algorithm are presented as fol-
lows. The search process in CSS algorithms depends generally on the number of 
agents N, on the maximum number of iterations 

maxk , and on the parameters )(kka  

and )(kkv  and ε . Stage I concerns the generation of the initial population of CPs, 

i.e., the initialization of the q-dimensional search space, of N, the initialization of the 
iteration index k  to 0=k  and will be incremented at the end of the iteration accord-
ing to step 7 in Fig. 3.7.1., the random initialization of charged particles’ position 
vector 

iX , and the initialization of 
maxk . Since N and 

maxk  are constant, the adaptive 

CSS algorithm presented in this sub-chapter carries out the adaptation of )(kka  and 

)(kkv  to k . 

 

 

Fig. 3.7.1. Flowchart of adaptive Charged System Search algorithm. 

 
Stage II allows the algorithm to discover the extent of the search space. 

This stage is characterized by conserving the initial parameters values during the 
first 20% out of 

maxk  runs of the search process. 

BUPT



86   Nature-inspired algorithms for the optimal tuning of fuzzy controllers … – 3 

This adaptive CSS algorithm restricts charged particles’ movements in stage 
III by the introduction of the modification laws for )(kka  and )(kkv  in terms of (3.40) 

in order to reduce inter-CP distances. 
Stage IV is characterized by setting the general position for the optimal val-

ue of fitness function and leaving the remaining time to refine the obtained results. 
The values of all parameters are frozen, and only the worst charged particles’ posi-
tions are reset to the best values obtained so far after each run. 

Stage V focuses on the evaluation of real-world optimization problem’s per-
formance for the location of the best position vector obtained during the search pro-
cess. The obtained solution is mapped onto the real-world optimization problem and 
tested at this stage. 

The adaptive CSS was employed as a nature-inspired algorithm in the step 4 
of the design method dedicated to the simple T-S PI-FCs presented in Sub-chapter 
2.1. The introduction of the solution based adaptive CSS required the priori setting 
of the algorithm’s parameters given as follows. The number of CPs was set to 20=N . 
The maximum number of iterations of the search process was set to 100max =k . As in 

the case of the standard version of CSS, each CP has a uniform volume charge den-
sity and is considered as a charged sphere with radius 1=a . In order to avoid a pos-
sible division be zero ε  parameter in (3.36) was set to 410−=ε . 

 

Table 3.7.1. Results for the adaptive CSS-based minimization of 
Pk

J ,1 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,1 Pk
J  

0 0.1385 40 0.75 3.1435 0.0044 2.892 390459 

0.0021357 0.1337 40 0.75 3.2567 0.0043 2.996 394347 

0.021357 0.1409 40 0.75 3.092 0.0044 2.8446 421167 

0.21357 0.1427 40 0.7402 3.053 0.0044 2.8087 698092 

 

Table 3.7.2. Results for the adaptive CSS-based minimization of 
ΣT

J ,1 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,1 ΣT
J  

0 0.1385 40 0.75 3.1441 0.0044 2.8926 390460 

0.17187 0.1452 40 0.74804 3 0.0045 2.76 638752 

1.7187 0.1435 39.5422 0.75 3 0.0045 2.76 2857120 

17.187 0.0128 20 0.25 17 0.0019 15.64 22809200 

 

Table 3.7.3. Results for the adaptive CSS-based minimization of 
Pk

J ,2 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,2 Pk
J  

0 0.0859 40 0.75 5.0849 0.0034 4.678 22975.7 

0.006858 0.0858 40 0.75 5.0914 0.0034 4.68 32684.9 

0.06858 0.0855 40 0.75 5.0899 0.0034 4.6827 118951 

0.6858 0.0128 20 0.25 17 0.0019 15.64 874183 
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Table 3.7.4. Results for the adaptive CSS-based minimization of 
ΣT

J ,2 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,2 ΣT
J  

0 0.0856 40 0.75 5.0849 0.0034 4.6781 22976 

0.0066695 0.0853 40 0.7480 5.1049 0.0034 4.6965 32647.4 

0.066695 0.1414 38.9685 0.3229 3 0.0045 2.76 117239 

0.66695 0.0128 20 0.25 16.9989 0.0019 15.6389 864126 
 

Table 3.7.5. Results for the adaptive CSS-based minimization of 
Pk

J ,3 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,3 Pk
J  

0 0.0850 39.7528 0.75 5.0866 0.0034 4.6797 2991580 

3.9187 0.0853 40 0.75 5.1002 0.00344 4.6922 8488570 

39.187 0.0843 40 0.7249 5.1617 0.0034 4.7487 57651100 

391.87 0.0176 20 0.75 12.3501 0.0022 11.3621 528696000 
 

Table 3.7.6. Results for the adaptive CSS-based minimization of 
Pk

J ,3 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,3 Pk
J  

0 0.0856 40 0.7496 5.0848 0.0034 4.6781 2985290 

3.8693 0.0781 36.9602 0.4503 5.1486 0.0034 4.7367 8452010 

38.693 0.0845 39.9978 0.7498 5.1492 0.0034 4.7373 50884400 

386.93 0.0332 40 0.75 13.1011 0.0021 12.053 527661000 
 

Table 3.7.7. Results for the adaptive CSS-based minimization of 
Pk

J ,4 . 

2)(
Pk

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,4 Pk
J  

0 0.0845 40 0.75 5.1529 0.0034 4.7407 155249 

0.142 0.0845 40 0.75 5.1515 0.0034 4.7394 353981 

1.42 0.0797 37.5427 0.75 5.1246 0.0034 4.7146 2132650 

14.2 0.0379 20 0.5719 5.7422 0.0032 5.2828 19046800 

 
Table 3.7.8. Results for the adaptive CSS-based minimization of 

Pk
J ,4 . 

2)(
ΣT

γ  *
eB∆  *

eB  *η  *β  *
ck  *

iT  min,4 Pk
J  

0 0.0856 40 0.75 5.0861 0.0034 4.6792 154343 

0.15885 0.0856 40 0.7498 5.0853 0.0034 4.6785 379823 

1.5885 0.0844 40 0.4389 5.1568 0.0034 4.7443 2406310 

15.885 0.0209 20 0.25 10.3913 0.0024 9.56 21595900 

 
Results pertaining to the simulations required for the objective functions 

Pk
J ,4...1  and 

ΣT
J ,4...1  (i.e., min,4...1 Pk

J  and min,4...1 ΣT
J ) are presented in Tables 3.7.1 – 

3.7.8. The results from the mentioned tables were obtained after several restarts of 
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the adaptive CSS algorithm for every objective function, that were imposed as a 
consequence for the degrees of freedom of the arbitrary variables contained by the 
search process, with the aim of ensuring the optimal controller tuning parameters 
and the minimized values of the objective functions. An in-depth analysis of this 
aspect is presented in Sub-chapter 3.8 with the focus on the average values of the 
objective functions along with three performance indices. 

In Fig. 3.7.2, the progress of the search process is tracked for the best CP 
results. Each graph corresponds to the parameters given by the algorithm together 
with the values corresponding to the objective function 

Pk
J ,2 . The weighting param-

eter 0=
Pk

γ  was considered. 

 

Fig. 3.7.2. T-S PI-FC tuning parameters and objective function evolution vs. itera-
tion index: eB  versus k (a), β  versus k (b), η  versus k (c), and 

Pk
J ,2  versus k (d). 

 
Fig. 3.7.3 displays the movement of all CPs employed by the adaptive CSS 

at the end of the first four stages of the algorithm. 
 

BUPT



3.7 Adaptive Charged System Search algorithms   89 

 

Fig. 3.7.3. Vector solution ρ  to the optimization problem (2.14) in the search do-

main ρD  for four values of iteration index k: 1=k  (a), 15=k  (b), 60=k  (c), and 

100=k  (d).
 

 

Fig. 3.7.4. Real-time experimental results of control systems with initial PI controller 
(dotted), initial T-S PI-FC (dashed), standard CSS-based tuned T-S PI-FC (dash-

dotted) and adaptive CSS-based tuned T-S PI-FC (solid). 

 
The adaptive CSS algorithm-based solution for the optimization problems 

presented in Chapter 2 is also validated by an experimental case study dealing with 
the optimal tuning of a T-S PI-FC for the position control of a nonlinear servo sys-
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tem in [Pre14c]. The experiments were conducted for a rad  400 =r  step-type modifi-

cation of the angular position reference and for both PI and T-S PI-FC controllers. 
The experimental results for four controller architectures corresponding to the ob-

jective function 
Pk

J ,2  and the value of the weighting parameter 0.006858)( 2 =
Pk

γ  are 

represented in Fig. 3.7.4: (i) a linear control system with PI controller tuned by the 
ESO method, (ii) a fuzzy control system with T-S PI-FC obtained from the PI con-
troller by the modal equivalence principle, (iii) a fuzzy control system with T-S-PI-FC 
tuned by the standard CSS algorithm, and (iv) the fuzzy control system with T-S-PI-
FC tuned by the adaptive CSS algorithm. 

The control system with PI controller, with the responses presented in Fig. 
3.7.4, uses a PI controller tuned by the ESO method for 4=β . The experimental 
results illustrate the performance improvements offered by the adaptive CSS algo-
rithm. The non-adaptive CSS algorithm was tested in the same conditions using the 
parameters taken from the parameters of the adaptive CSS algorithm. 

 
 

3.8.  CHAPTER CONCLUSIONS 

 
If the previous sections were dedicated to the introduction of several na-

ture-inspired algorithms and presenting the solutions they provided for the optimi-
zation problems defined in Chapter 2, this section proposes a performance compari-
son of these algorithms with regards to the values of the objective functions in the 
optimization problems. 

As previously mentioned, the algorithms required several restarts before the 
optimal values were obtained in order to overcome the random characteristic com-
mon to all nature-inspired algorithms. Therefore, the averages of the best obtained 
values for each combination of objective function and weighting parameter are tak-
en into consideration. The best values are the smallest values in the context of the 
optimization problems (2.13) – (2.16) that target the minimization of several objec-
tive functions. 

The first comparison criterion is represented by the average value of each 
objective function (2.9) – (2.12) obtained by running a certain nature-inspired op-
timization algorithm. The notation for this criterion is )( min, ταiJAvg , and it is calculat-

ed in terms of: 

 ∑
=

=
bestN

j

j
i

best
i J

N
JAvg

1

)(
min,min,

1
)(

ττ αα , (3.41) 

where min, ταiJ
 is the value of the objective function obtained by running a 

certain nature-inspired optimization algorithm considering one of the four expres-
sions given in (2.9) – (2.12) and one weighting parameter, the subscript ,4...1  , =ii  
describes one of the four objective functions defined in (2.9) – (2.12), the process 
parameter is Pm...1  , =τατ , 2=Pm  for the process considered in this thesis, },{ Σ∈ TkPτα  

according to (2.21), bestN  represents the number of best values (i.e., the smallest 

values) obtained for each of objective function and weighting parameter, and the 
superscript ,...1  , bestNjj =  indicates the value of the objective function min, ταiJ

 ob-

BUPT



3.8 Chapter conclusions   91 

tained by one of the best 
bestN  runs of a certain nature-inspired optimization algo-

rithm, so )(
min,

j
iJ τα

 is the value of the objective function min, ταiJ
 obtained by the run 

,...1  , bestNjj =  of a certain nature-inspired optimization algorithm. 

The results given in Tables 3.8.1.1 – 3.8.1.8 represent the average of the 
best 5=bestN  obtained values for each combination of objective function and 

weighting parameter. However, different values but the same qualitative conclusions 
can be drawn for other values of bestN . 

By analyzing the performance of all proposed nature-inspired algorithms it 
can be observed that no algorithm has a dominant position compared to the others, 
as the values of the proposed comparison criterion are relatively close. In addition, 
the best values for each combination of objective function and weighting parameter 
may be given by different algorithms in each of these cases. If the comparison is 
restricted to the adaptive and regular versions of GSA and CSS algorithms, it can be 
observed that the adaptive version of each algorithm outperforms the regular ver-
sion. 

 
 

Table 3.8.1.1. Average values of objective function after the minimization of 
Pk

J ,1 . 

2)( Pkγ  SA PSO GSA PSOGSA CSS 
Adaptive 

GSA 
Adaptive 

CSS 

0 390491 392076 390478 391608 391275 390459 391151 

0.0021357 393539 395143 393695 394638 395143 393514 394878 

0.021357 421009 422158 421134 421547 422273 421053 421965 

0.21357 696481 698859 696247 697464 698736 695394 697879 
 
 

Table 3.8.1.2. Average values of objective function after the minimization of 
ΣT

J ,1 . 

2)( ΣTγ  SA PSO GSA PSOGSA CSS Adaptive 
GSA 

Adaptive 
CSS 

0 390506 392076 390478 391608 392076 390459 390519 

0.17187 639824 641826 631780 638308 640890 638372 639991 

1.7187 2869153 1234553 2867530 2116253 2867807 2862040 2860877 

17.187 22810300 22809200 22803933 22802567 22809200 22807400 22809200 

 
 

Table 3.8.1.3. Average values of objective function after the minimization of 
Pk

J ,2 . 

2)( Pkγ  SA PSO GSA PSOGSA CSS Adaptive 
GSA 

Adaptive 
CSS 

0 23017 23012 23511 23965 23129 23129 22976 

0.006858 32647 32579 32817 36335 37931 32749 32847 

0.06858 118967 119048 119306 119807 119467 119375 119075 

0.6858 874484 874183 874149 873857 874183 874162 874183 
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Table 3.8.1.4. Average values of objective function after the minimization of 
ΣT

J ,2 . 

2)( ΣTγ  SA PSO GSA PSOGSA CSS Adaptive 
GSA 

Adaptive 
CSS 

0 22992 22976 23238 24518 23129 23144 22978 

0.0066695 32522 32481 32951 32773 33555 32642 32660 

0.066695 117587 114650 118230 114712 118173 117630 118078 

0.66695 865200 864943 864579 864943 864943 864770 864661 
 

Table 3.8.1.5. Average values of objective function after the minimization of 
Pk

J ,3 . 

2)( Pkγ  SA PSO GSA PSOGSA CSS Adaptive 
GSA 

Adaptive 
CSS 

0 2990690 2988143 3091163 31451967 3733680 3088620 3062597 

3.9187 8487570 8472373 8574770 8537903 9310780 8514653 8530910 

39.187 57650267 57839600 57974500 57972133 57848667 57655800 57765700 

391.87 528113333 527919000 528306666 529213333 530061000 527891667 528767000 

 
Table 3.8.1.6. Average values of objective function after the minimization of 

ΣT
J ,3 . 

2)( ΣTγ  SA PSO GSA PSOGSA CSS Adaptive 
GSA 

Adaptive 
CSS 

0 2990690 2988143 3109277 3145197 37149067 3024803 3054703 

3.8693 8402737 8499467 8666530 8659013 9265960 8524953 8584443 

38.693 56659057 57975700 58157367 57705200 56420533 57987133 51137567 

386.93 528041333 527755000 527868666 529023333 530442000 527702667 527876333 

 
Table 3.8.1.7. Average values of objective function after the minimization of 

Pk
J ,4 . 

2)( Pkγ  SA PSO GSA PSOGSA CSS 
Adaptive 

GSA 
Adaptive 

CSS 

0 153815 152975 160314 161796 178955 157367 155518 

0.142 344696 352223 354148 385251 356694 354547 354712 

1.42 2105230 1982330 2145623 2147777 2150850 2143730 2140853 

14.2 19291467 19274833 19278100 19291867 19396400 19278667 19206067 

 

Table 3.8.1.8. Average values of objective function after the minimization of 
ΣT

J ,4 . 

2)( ΣTγ  SA PSO GSA PSOGSA CSS 
Adap-
tive 
GSA 

Adaptive 
CSS 

0 153815 152975 160314 161796 167011 157382 154753 

0.15885 371836 379400 384154 397527 418335 381176 381516 

1.5885 2324983 2161323 2415300 2305900 2428513 2359830 2413023 

15.885 21641033 21596000 21623233 21674533 21732867 21610633 21634533 
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The second comparison criterion is based on a newly introduced perfor-
mance indices referred to as convergence speed ( sc ). As defined in [Pre13a], the 

convergence speed represents the number of evaluations of the objective functions 
until their minimum value is found. 

This approach is extremely important for the nature-inspired optimization 
algorithms applied to the optimal tuning of the parameters of controllers. The algo-
rithm complexity analysis is generally used in the analysis of numerical algorithms 
including optimization ones in the general context of computer science, where as-
sessing the amount of required resources to execute these algorithms is discussed. 
The algorithm complexity analysis is not carried out in this thesis, since: 

 
• the optimization algorithms treated in this thesis are designed to 

work with a fixed number of inputs (i.e., the variables of the objec-
tive functions, namely the tuning parameters of the controllers), 
however the algorithms used in computer science are designed to 
work with inputs of arbitrary length, the number of inputs set in the 
algorithms treated in this thesis is fixed to three in order to have a 
reasonable dimension of the search space, 
 

• the optimization algorithms are executed offline and only the evalua-
tion of the objective function, conducted by simulations and/or ex-
periments, requires strong time resources on the control system 
side, which are much more costly compared to the resources on the 
algorithm execution side. 

 

In this context, the convergence speed sc  is an indication on the complexity 

of these algorithms. However, in the general application of these algorithms to vari-
ous applications involving different objective functions with several numbers of vari-
ables, the algorithm complexity analysis becomes strictly necessary. The data corre-
sponding to this second performance criterion represents the degree of algorithm 
iterations coverage before finding the final solution.  

The results presented in Tables 3.8.2.1 – 3.8.2.8 contain the average values 
of the convergence speed sc  calculated for the best five runs, used for the previous 

comparison criterion as well. Each algorithm was considered, for each combination 
of objective function from (2.9) – (2.12) and weighting parameter. 

Tables 3.8.2.1 – 3.8.2.8 show that the results obtained when the adaptive 
GSA and CSS algorithms were used are consistently superior to those offered by the 
non-adaptive algorithm versions. Local minima traps are also avoided when using 
the adaptive algorithm versions by the introduction of improved exploration and 
exploitation capabilities. On the negative side, finding the solution after a predefined 
number of iterations may results in longer time runs for the adaptive GSA and CSS 
algorithms. 
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Table 3.8.2.1. Average values of convergence speed sc  for the minimization of 
Pk

J ,1 . 

2)( Pkγ  sc  SA sc  PSO sc  GSA sc  

PSOGSA 
sc  CSS sc  Adap-

tive GSA 
sc  Adap-

tive CSS 

0 4143 218 1554 190 757 1298 1306 

0.0021357 2595 141 932 356 118 1421 1406 

0.021357 3072 485 477 1072 246 1749 1207 

0.21357 975 134 1186 1287 347 1777 455 

 

 

Table 3.8.2.2. Average values of convergence speed sc  for the minimization of 
ΣT

J ,1 . 

2)( Pkγ  sc  SA sc  PSO sc  GSA sc  

PSOGSA 
sc  CSS sc  Adap-

tive GSA 
sc  Adap-

tive CSS 

0 2370 218 1554 190 99 1298 1004 

0.17187 437 217 1511 696 918 1695 1317 

1.7187 470 1451 1142 1802 729 1677 1364 

17.187 2291 223 1528 785 76 1421 215 

 

 

Table 3.8.2.3. Average values of convergence speed sc  for the minimization of 

Pk
J ,2 . 

2)( Pkγ  sc  SA sc  PSO sc  GSA sc  

PSOGSA 
sc  CSS sc  Adap-

tive GSA 
sc  Adap-

tive CSS 

0 3035 1906 1399 1660 1358 1718 1905 

0.006858 2894 1704 1172 400 609 1839 1135 

0.06858 165 1623 915 1613 973 1142 1935 

0.6858 2748 105 1846 678 53 891 78 

 

 

Table 3.8.2.4. Average values of convergence speed sc  for the minimization of 

ΣT
J ,2 . 

2)( Pkγ  sc  SA sc  PSO sc  GSA sc  

PSOGSA 
sc  CSS sc  Adap-

tive GSA 
sc  Adap-

tive CSS 

0 3919 1766 391 1097 1358 1667 1963 

0.0066695 4144 1728 1160 942 1607 1514 1049 

0.066695 1890 1496 828 1348 1360 1675 1821 

0.66695 2102 118 1421 128 60 1809 765 
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Table 3.8.3.5. Average values of convergence speed sc  for the minimization of 

Pk
J ,3 . 

2)( Pkγ  sc  SA sc  PSO sc  GSA sc  

PSOGSA 
sc  CSS sc  Adap-

tive GSA 
sc  Adap-

tive CSS 

0 1494 1647 596 723 136 1777 1816 

3.9187 1149 1832 1359 1090 1596 1768 828 

39.187 865 1270 803 1132 1549 1396 1411 

391.87 465 755 1443 1039 834 1722 1449 

 
 

Table 3.8.2.6. Average values of convergence speed sc  for the minimization of 

ΣT
J ,3 . 

2)( Pkγ  sc  SA sc  PSO sc  GSA sc  

PSOGSA 
sc  CSS sc  Adap-

tive GSA 
sc  Adap-

tive CSS 

0 1494 1647 769 723 617 1739 1863 

3.8693 3256 1832 690 520 1260 1685 1145 

38.693 860 1268 670 1344 1384 1534 1751 

386.93 835 1510 1288 935 1091 1335 1403 

 
 

Table 3.8.2.7. Average values of convergence speed sc  for the minimization of 

Pk
J ,4 . 

2)( Pkγ  sc  SA sc  PSO sc  GSA sc  

PSOGSA 
sc  CSS sc  Adap-

tive GSA 
sc  Adap-

tive CSS 

0 2233 1618 499 1826 1325 1480 1659 

0.142 2411 1634 694 1053 1168 1234 1457 

1.42 1012 1804 545 1223 1286 1696 1581 

14.2 612 1398 1530 1434 319 1848 199 

 
 

Table 3.8.2.8. Average values of convergence speed sc  for the minimization of 

ΣT
J ,4 . 

2)( Pkγ  sc  SA sc  PSO sc  GSA sc  

PSOGSA 
sc  CSS sc  Adap-

tive GSA 
sc  Adap-

tive CSS 

0 2233 1618 499 1826 1167 1711 1984 

0.15885 1344 1366 766 1361 1479 1714 1585 

1.5885 381 1672 725 1644 1267 1727 1649 

15.885 632 1371 1580 1685 492 1852 1735 
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As the performance index sc  focuses on how fast a solution is found, it can 

miss other relevant information on the overall solution’s quality. This limitation can 
be mitigated by the introduction of the third performance index, namely the accura-
cy rate ra  defined as follows as the percent standard deviation of the objective 

functions obtained by running a certain optimization algorithm divided to the aver-
age value )( min, ταiJAvg  of each objective function (2.9) – (2.12) obtained by running 

a certain nature-inspired optimization algorithm: 

 4...1  ,
)(

)(
 100)(

min,

min,
min,

% === i
JAvg

JStDev
JStDeva

i

i
ir

τ

τ

τ
α

α
α , (3.42) 

where the average value )( min, ταiJAvg  of each objective function (2.9) – 

(2.12) obtained by running a certain nature-inspired optimization algorithm is de-
fined in (3.41), and the standard deviation )( min, ταiJStDev  is calculated in terms of: 

 ∑
=

−
−

=
bestN

j

i
j

i
best

i JAvgJ
N

JStDev

1

2
min,

)(
min,min, ))((

1

1
)(

τττ ααα , (3.43) 

and the other notations are explained in relation with (3.41). 
Tables 3.8.3.1 – 3.8.3.8 show the average values based on the best 5=bestN  

runs that are in the case of previous comparison indices as well. These values corre-
spond to the values of ra  presented comparatively for all proposed nature-inspired 

algorithms discussed up to now and each combination of objective function and 
weighting parameter. 

The results outline that PSO and adaptive GSA and CSS algorithms have an 
improved search process which lead to the convergence to the optimal solution at 
the end of the search process. The accuracy rate values clearly show that the adap-
tive version of the algorithms have a higher accuracy rate of finding closer optimal 
solutions thus increasing the confidence in the solutions provided. Therefore, all 
search iterations are used compared to the non-adaptive GSA and CSS algorithms, 
which converge too early, leading to an unnecessary computational cost. 

Table 3.8.3.1. Average values of accuracy rate ra  for the minimization of min,1 Pk
J . 

2)( Pkγ  ra  SA ra  PSO ra  

GSA 

ra  

PSOGS
A 

ra  CSS ra  Adap-

tive GSA 
ra Adaptive 

CSS 

0 0.0069 0 0.0044 0.2071 0.1887 0.000148 0.2131 

0.0021357 0.0058 0 0.0731 0.2481 0 0.001761 0.1164 

0.021357 0.0114 0.2445 0.0202 0.248 0.1513 0.0049 0.1881 

0.21357 0.1306 0 0.0881 0.261 0.03057 0.0748 0.1579 

Table 3.8.3.2. Average values of accuracy rate ra  for the minimization of 
ΣT

J ,1 . 

2)( Pkγ  ra  SA ra  PSO ra  

GSA 
ra  

PSOGSA 
ra  CSS ra  Adap-

tive GSA 
ra Adaptive 

CSS 

0 0.0058 0 0.0044 0.2071 0 0.0001 0.0256 

0.1.7187 0.0483 0 1.8307 0.2431 0.1265 0.1592 0.2395 

1.7187 0.1208 30.0018 0.1889 46.4322 0.0262 0.2249 0.1836 

17.187 0.0072 0 0.0355 0.0466 0 0.005 0 
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Table 3.8.3.3. Average values of accuracy rate ra  for the minimization of 
Pk

J ,2 . 

2)( Pkγ  ra  SA ra  

PSO 
ra  GSA ra  

PSOGSA 
ra  CSS ra  Adap-

tive GSA 
ra Adaptive 

CSS 

0 0.1379 0.2702 2.1778 5.6485 0.5706 0.6448 0.0012 

0.006858 0.1871 0.0007 0.431 13.1324 12.232 0.1393 0.5406 

0.06858 0.0859 0.0386 0.0995 0.604 0.217 0.296 0.0947 

0.6858 0.0356 0 0.0022 0.0647 0 0.0027 0 

 
 

Table 3.8.3.4. Average values of accuracy rate ra  for the minimization of 
ΣT

J ,2 . 

2)( Pkγ  ra  SA ra  PSO ra  GSA 
ra  

PSOGS
A 

ra  CSS ra  Adap-

tive GSA 
ra Adaptive 

CSS 

0 0.0153 0 0.3492 3.5956 0.57057 0.5949 0.0158 

0.0066695 0.0166 0.0002 0.4084 1.7745 3.62334 0.1992 0.0391 

0.066695 0.1663 5.008 0.2566 4.2211 0.0044 1.1587 0.6747 

0.66695 0.0182 0 0.0402 0 0 0.0174 0.0536 

 
 

Table 3.8.3.5. Average values of accuracy rate ra  for the minimization of 
Pk

J ,3 . 

2)( Pkγ  ra  SA ra  PSO ra  GSA 
ra  

PSOGS
A 

ra  CSS ra  Adap-

tive GSA 
ra Adaptive 

CSS 

0 0.124 0.1947 0.2775 7.6804 15.7606 2.5354 2.922 

3.9187 0.0828 0.0023 0.8176 0.9114 14.3521 0.3981 0.6518 

39.187 0.1057 0.3247 0.1682 0.1196 0.2858 0.4541 0.1772 

391.87 0.0278 0.0024 0.126024 0.2839 0.1999 0.0968 0.013 

 
 

Table 3.8.3.6. Average values of accuracy rate ra  for the minimization of 
ΣT

J ,3 . 

2)( Pkγ  ra  SA ra  PSO ra  GSA ra  

PSOGSA 
ra  CSS ra  Adap-

tive GSA 
ra Adap-

tive CSS 

0 0.1239 0.1947 0.9032 7.6804 16.6725 1.305 1.9679 

3.8693 1.9998 0.0004 2.1453 0.3398 12.3669 0.2309 1.8345 

38.693 3.6376 0.4655 0.2552 1.5364 5.8569 0.1364 0.7596 

386.93 0.078 0.0169 0.0449 0.2351 0.0012 0.0035 0.0586 
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Table 3.8.3.7. Average values of accuracy rate ra  for the minimization of 
Pk

J ,4 . 

2)( Pkγ  ra  SA ra  PSO ra  GSA ra  

PSOGSA 
ra  CSS ra  Adap-

tive GSA 
ra Adaptive 

CSS 

0 0.4009 0.0036 4.7067 8.6845 22.7708 1.5897 0.2075 

0.142 4.1121 0.1977 0.5175 9.3238 1.3021 0.2964 0.1918 

1.42 2.0071 6.5054 0.2305 0.8542 0.4006 0.0154 0.3384 

14.2 0.0345 0.0035 0.0055 0.1564 0.154 0.0096 0.7184 

 

Table 3.8.3.8. Average values of accuracy rate ra  for the minimization of 
ΣT

J ,4 . 

2)( Pkγ  ra  SA ra  PSO ra  GSA ra  

PSOGSA 
ra  CSS ra  Adap-

tive GSA 
ra Adaptive 

CSS 

0 0.4009 0.0036 4.7067 8.6845 12.0122 1.606 0.4585 

0.15885 3.9602 0.0171 0.7031 3.9545 13.0819 0.1772 0.3969 

1.5885 4.7276 2.4878 0.2899 6.8972 0.4505 1.3744 0.2548 

15.885 0.1503 0.0012 0.1241 0.4167 0.1695 0.04186 0.155 

 
The results show the reduced sensitivity of the initial conditions associated 

to the sensitivity models of the optimization problems solved by the nature-inspired 
algorithms. Therefore, the optimal values of the controller tuning parameters exhibit 
reduced sensitivity with respect to the initial conditions of the sensitivity models. 

Figs. 3.8.1 – 3.8.8 highlight the controlled output (y) versus time and the 
behavior of the control systems optimized by the minimization of the objective func-
tions 

τα,iJ
, ,4...1=i  },{ Σ∈ TkPτα , and the parameters of the optimal T-S PI-FCs ob-

tained by the nature-inspired algorithms. The simulation scenario is characterized by 
the application of a rad  400 =r  unit step reference input, followed by a 0.1 step dis-

turbance input after 500 s from the total 1000 s simulation time. 
The results shown in Figs. 3.8.1 – 3.8.8 were obtained using only one set of 

fuzzy controller parameters because the nature-inspired algorithms applied in solv-
ing the same optimization problems lead to very close solutions. The fuzzy controller 
parameters were chosen arbitrarily from all proposed nature-inspired algorithms. 

The nature-inspired algorithms are treated randomly in Figs. 3.8.1 – 3.8.8. 
However, Figs. 3.8.1 – 3.8.8 are presented in the ascending order of the objective 
functions. This style of presentation has been chosen in order to highlight the fact 
that the empirical control system performance indices (overshoot and settling time) 
are very close for the same objective function that is minimized and for the same 
process parameter that is considered in the sensitivity models. 

As expected, Figs. 3.8.1 – 3.8.8 illustrate that the overshoot and the settling 
time depend on the objective function and on the process parameter that is consid-
ered in the sensitivity models. These results are justified by different dynamical re-
gimes of the fuzzy control systems. 

Fig. 3.8.1 presents the simulation results corresponding to the objective 
function 

Pk
J ,1  and to the following controller parameters obtained by the GSA: 

 40* =eB ,   75.0* =η ,   3.14374* =β  and weighting parameter  0)( 2 =
Pk

γ  for a); 

39.9979* =eB ,   75.0* =η , 3.14537* =β  and weighting parameter 0.0021357)( 2 =
Pk

γ  for 
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b);  40* =eB ,   75.0* =η ,  3.12737* =β  and weighting parameter 0.021357)( 2 =
Pk

γ  for 

c); 39.7505* =eB ,   75.0* =η ,  3.2222* =β  and weighting parameter 0.21357)( 2 =
Pk

γ  for 

d) as retrieved from Table 3.3.1. 

 

Fig. 3.8.1. Simulation results of optimal fuzzy control systems obtained for objective 

function 
Pk

J ,1  and different values of the weighting parameter 
Pk

γ : 0=γ
Pk

 (a), 

0.0021357)( 2 =
Pk

γ  (b), 0.021357)( 2 =
Pk

γ  (c), and 0.21357)( 2 =
Pk

γ  (d). 

 
Fig. 3.8.2 illustrates the simulation results corresponding to the objective 

function 
ΣT

J ,1  and to the controller parameters obtained by the adaptive CSS algo-

rithm with the parameters from Table 3.7.2:  40* =eB ,   75.0* =η ,   5.08485* =β  and 

weighting parameter  0=γ
Pk

for (a); 40* =eB , 0.748044* =η , 5.08485* =β  and 

weighting parameter 17187.0)( 2 =
ΣT

γ  for (b); 39.5422* =eB ,   75.0* =η , 5.08485* =β  

and weighting parameter 1.7187)( 2 =
ΣT

γ  for (c); 02* =eB ,   25.0* =η ,  17* =β  and 

weighting parameter 17.187)( 2 =
ΣT

γ  for (d). 
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Fig. 3.8.2. Simulation results of optimal fuzzy control systems obtained for objective 
function 

ΣT
J ,1  and different values of the weighting parameter 

ΣT
γ : 0=

ΣT
γ  (a), 

0.17187)( 2 =
ΣT

γ  (b), 1.7187)( 2 =
ΣT

γ  (c), and 17.187)( 2 =
ΣT

γ  (d). 

 
In Fig. 3.8.3 the simulation results corresponding to the objective function 

Pk
J ,2  and to the following controller parameters obtained by the PSO algorithm: 

 40* =eB ,   75.0* =η ,   5.08485* =β and weighting parameter  0=
Pk

γ  for (a); 40* =eB , 

  75.0* =η , 5.08485* =β  and weighting parameter 0.006858)( 2 =
Pk

γ  for (b);  40* =eB , 

  75.0* =η , 5.08485* =β  and weighting parameter 0.06858)( 2 =
Pk

γ  for (c); 02* =eB , 

  25.0* =η ,  17* =β  and weighting parameter 0.6858)( 2 =
Pk

γ  for (d), as found in Ta-

ble 3.2.3 are given. 
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Fig. 3.8.3. Simulation results of optimal fuzzy control systems obtained for objective 
function 

Pk
J ,2  and different values of the weighting parameter 

Pk
γ : 0=

Pk
γ  (a), 

0.006858)( 2 =
Pk

γ  (b), 0.06858)( 2 =
Pk

γ  (c), and 0.6858)( 2 =
Pk

γ  (d). 

 
In Fig. 3.8.4 the simulation results corresponding to the objective function 

ΣT
J ,2  and to the following controller parameters obtained by the adaptive GSA algo-

rithm: 39.4214* =eB ,   75.0* =η , 5.08716* =β  and weighting parameter  0=
Pk

γ  for 

(a); 04* =eB ,   75.0* =η , 5.09279* =β  and weighting parameter 0.0066695)( 2 =
ΣT

γ  for 

(b); 39.803* =eB ,   75.0* =η , 5.15735* =β  and weighting parameter 0.066695)( 2 =
ΣT

γ  

for (c); 20.0053* =eB ,   25.0* =η ,  17* =β  and weighting parameter 0.66695)( 2 =
ΣT

γ  

for (d), matching Table 3.3.4 are shown. 
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Fig. 3.8.4. Simulation results of optimal fuzzy control systems obtained for objective 
function 

ΣT
J ,2  and different values of the weighting parameter 

ΣT
γ : 0=

ΣT
γ  (a), 

 0.0066695)( 2 =
ΣT

γ  (b), 0.066695)( 2 =
ΣT

γ  (c), and 0.66695)( 2 =
ΣT

γ  (d). 

 
The simulation results corresponding to the objective function 

Pk
J ,3  based 

on the results retrieved from Table 3.1.5 and on the following controller parameters 

obtained by the SA algorithm:  39.9908* =eB ,   0.749364* =η ,   5.08527* =β  and 

weighting parameter  0=
Pk

γ  for (a); 39.8962* =eB ,   0.746735* =η , 5.0867* =β  and 

weighting parameter 3.9187)( 2 =
Pk

γ  for (b); 39.5241* =eB ,   0.746393* =η , 5.10925* =β  

and weighting parameter 39.5241)( 2 =
Pk

γ  for (c); 39.8288* =eB  , 0.742363* =η , 

 12.8479* =β  and weighting parameter 39.8288)( 2 =
Pk

γ  for (d), are highlighted in Fig. 

3.8.5. 
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Fig. 3.8.5. Simulation results of optimal fuzzy control systems obtained for objective 
function 

Pk
J ,3  and different values of the weighting parameter 

Pk
γ : 0=

Pk
γ  (a), 

3.9187)( 2 =
Pk

γ  (b), 39.187)( 2 =
Pk

γ  (c), and 391.87)( 2 =
Pk

γ  (d). 

 
Fig. 3.8.6 presents the simulation results corresponding to the objective 

function 
ΣT

J ,3  and to the controller parameters obtained by the GSA algorithm: 

39.5685* =eB , 0.693304* =η , 5.09481* =β  and weighting parameter  0=
Pk

γ  for (a); 

40* =eB ,   75.0* =η , 5.10019* =β  and weighting parameter 3.8693)( 2 =
ΣT

γ  for (b); 

36.9454* =eB ,   75.0* =η , 5.20265* =β  and weighting parameter 38.693)( 2 =
ΣT

γ  for (c); 

38.5452* =eB , 0.743411* =η , 13.1971* =β  and weighting parameter 386.93)( 2 =
ΣT

γ  for 

(d), as presented in Table 3.3.6. 
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Fig. 3.8.6. Simulation results of optimal fuzzy control systems obtained for objective 
function 

ΣT
J ,3  and different values of the weighting parameter 

ΣT
γ : 0=

ΣT
γ  (a), 

3.8693)( 2 =
ΣT

γ  (b), 38.693)( 2 =
ΣT

γ  (c), and 386.93)( 2 =
ΣT

γ  (d). 

 
Fig. 3.8.7 offers the simulation results obtained for the objective function 

Pk
J ,4 , as found in Table 3.5.7 for the following controller parameters computed by 

the CSS algorithm:  40* =eB ,   75.0* =η ,  5.14965* =β  and weighting parameter 

 0=
Pk

γ  for (a); 04* =eB ,   75.0* =η , 5.15098* =β  and weighting parameter 

0.142)( 2 =
Pk

γ  for (b); 39.8938* =eB ,   75.0* =η ,  5.16777* =β  and weighting parameter 

1.42)( 2 =
Pk

γ  for (c); 02* =eB ,   25.0* =η ,  9.65464* =β  and weighting parameter 

14.2)( 2 =
Pk

γ  for (d). 
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Fig. 3.8.7. Simulation results of optimal fuzzy control systems obtained for objective 
function 

Pk
J ,4  and different values of the weighting parameter 

Pk
γ : 0=

Pk
γ  (a), 

0.142)( 2 =
Pk

γ  (b), 1.42)( 2 =
Pk

γ  (c), and 14.2)( 2 =
Pk

γ  (d). 

 
Fig. 3.8.8 presents the simulation results for the objective function 

ΣT
J ,4  us-

ing the following controller parameters obtained from by the PSOGSA algorithm: 

 40* =eB ,   75.0* =η , 5.08538* =β  and weighting parameter  0=
Pk

γ  for (a); 40* =eB , 

  75.0* =η , 5.08486* =β  and weighting parameter 0.15885)( 2 =
ΣT

γ  for (b); 

37.0232* =eB ,   75.0* =η , 3* =β  and weighting parameter 1.5885)( 2 =
ΣT

γ  for (c); 

02* =eB ,   25.0* =η , 11.2378* =β  and weighting parameter 15.885)( 2 =
ΣT

γ  for (d) as 

described in Table 3.4.8. 
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Fig. 3.8.8. Simulation results of optimal fuzzy control systems obtained for objective 
function 

ΣT
J ,4  and different values of the weighting parameter 

ΣT
γ : 0=

ΣT
γ  (a), 

0.15885)( 2 =
ΣT

γ  (b), 1.5885)( 2 =
ΣT

γ  (c), and 15.885)( 2 =
ΣT

γ  (d). 

 
The parametric sensitivity reduction will be proved as follows by conducting 

the digital simulation of the fuzzy control system behaviors for different values of 
the process parameters Pk  and ΣT  with respect to the nominal values 

14000 == EPP kk  and s 92.00 =ΣT , respectively. Experiments are not conducted as the 

laboratory experimental setup does not allow for modifications of these process pa-
rameters. 

The demonstration is based on simulations involving the variation of process 
parameters in conjunction with the initial and optimal values of the T-S PI-FCs. Two 
aspects regarding the variation of the process parameters will be presented for each 
objective function and process parameter: first is the variation of the values of ob-
jective function for different values of the process parameter handled in the current 
optimization and the second aspect is the output variation of the fuzzy control sys-
tem. 

The results corresponding to the first aspect of this demonstration for each 

objective function given in (2.9) – (2.12) and for the process parameter Pk  are 
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presented in Figs. 3.8.9, 3.8.13, 3.8.17 and 3.8.21. Figs. 3.8.11, 3.8.15, 3.8.19 and 
3.8.23 give the results for the process parameter ΣT . For simplicity, the presented 

figures describe only the case of unitary ratio for the weighting parameter. 
The output variation of the fuzzy control system that minimizes the objec-

tive functions (2.9) – (2.12) for the process parameter Pk  is illustrated in Figs. 

3.8.10, 3.8.14, 3.8.18 and 3.8.22. The results for the process parameter ΣT  are 

presented in Figs. 3.8.12, 3.8.16, 3.8.20 and 3.8.24. As in the case of the previous 
aspect, only the case of unitary ratio for the weighting parameter was considered. 

 

Fig. 3.8.9. Objective function 
Pk

J ,1  values for weighting parameter 0.021357)( 2 =
Pk

γ  

and different values of the process parameter 
},154 151.2 148.4, 145.6, 142.8, 140, 137.2, 134.4, 131.6, 128.8, 126,{∈Pk . 

 
Fig. 3.8.10. Simulation results of fuzzy control systems with different values of Pk  

parameter: 126=Pk  (solid), 140=Pk  (dashed) and 156=Pk  (dotted) for objective 

function 
Pk

J ,1  and weighting parameter 0.021357)( 2 =
Pk

γ . 
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Fig. 3.8.11. Objective function 
ΣT

J ,1  values for weighting parameter 1.7187)( 2 =
ΣT

γ  

and different values of the process parameter 
1.012} 0.9936, 0.9752, 0.9568, 0.9384, 0.92, 0.9016, 0.8832, 0.8648, 0.8464, 0.828,{∈ΣT . 

 

 
Fig. 3.8.12. Simulation results of fuzzy control systems with different values of ΣT  

parameter: 828.0=ΣT  (solid), 92.0=ΣT  (dashed) and 012.1=ΣT  (dotted) for objective 

function 
ΣT

J ,1  and weighting parameter 1.7187)( 2 =
ΣT

γ . 
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Fig. 3.8.13. Objective function 
Pk

J ,2  values for weighting parameter 0.06858)( 2 =
Pk

γ  

and different values of the process parameter  
}154,2.151,4.148,6.145,8.142,140,2.137,4.134,6.131,3.128,126{∈Pk . 

 

 
Fig. 3.8.14. Simulation results of fuzzy control systems with different values of Pk  

parameter: 126=Pk  (solid), 140=Pk  (dashed) and 156=Pk  (dotted) for objective 

function 
Pk

J ,2  and weighting parameter 0.06858)( 2 =
ΣT

γ . 
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Fig. 3.8.15. Objective function 
ΣT

J ,2  values for weighting parameter 0.066695)( 2 =
ΣT

γ  

and different values of the process parameter 
1.012} 0.9936, 0.9752, 0.9568, 0.9384, 0.92, 0.9016, 0.8832, 0.8648, 0.8464, 0.828,{∈ΣT . 

 

 
Fig. 3.8.16. Simulation results of fuzzy control systems with different values of ΣT  

parameter: 828.0=ΣT  (solid), 92.0=ΣT  (dashed) and 012.1=ΣT  (dotted) for objective 

function 
ΣT

J ,2  and weighting parameter 0.066695)( 2 =
ΣT

γ . 
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Fig. 3.8.17. Objective function 
Pk

J ,3  values for weighting parameter 39.187)( 2 =
Pk

γ  

and different values of the process parameter 
},154 151.2 148.4, 145.6, 142.8, 140, 137.2, 134.4, 131.6, 128.8, 126,{∈Pk . 

 

 
Fig. 3.8.18. Simulation results of fuzzy control systems with different values of Pk parameter:  

126=Pk  (solid), 140=Pk  (dashed) and 156=Pk  (dotted) for objective function 
Pk

J ,3 and 

weighting parameter 39.187)( 2 =
Pk

γ . 
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Fig. 3.8.19. Objective function 
ΣT

J ,3  values for weighting parameter 38.693)( 2 =
ΣT

γ  

and different values of the process parameter 
1.012} 0.9936, 0.9752, 0.9568, 0.9384, 0.92, 0.9016, 0.8832, 0.8648, 0.8464, 0.828,{∈ΣT . 

 

 
Fig. 3.8.20. Simulation results of fuzzy control systems with different values of 

ΣT parameter: 828.0=ΣT  (solid), 92.0=ΣT  (dashed) and 012.1=ΣT  (dotted) for objec-

tive function 
ΣT

J ,3  and weighting parameter 38.693)( 2 =
ΣT

γ . 

 

BUPT



3.8 Chapter conclusions   113 

 

Fig. 3.8.21. Objective function 
Pk

J ,4  values for weighting parameter 1.42)( 2 =
Pk

γ  

and different values of the process parameter 
},154 151.2 148.4, 145.6, 142.8, 140, 137.2, 134.4, 131.6, 128.8, 126,{∈Pk . 

 

 
Fig. 3.8.22. Simulation results of fuzzy control systems with different values of Pk  

parameter: 126=Pk  (solid), 140=Pk  (dashed) and 156=Pk  (dotted) for objective 

function 
Pk

J ,4  and weighting parameter 1.42)( 2 =
Pk

γ . 
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Fig. 3.8.23. Objective function 
ΣT

J ,4  values for weighting parameter 1.5885)( 2 =
ΣT

γ  

and different values of the process parameter 
1.012} 0.9936, 0.9752, 0.9568, 0.9384, 0.92, 0.9016, 0.8832, 0.8648, 0.8464, 0.828,{∈ΣT . 

 

 
Fig. 3.8.24. Simulation results of fuzzy control systems with different values of ΣT  

parameter: 828.0=ΣT  (solid), 92.0=ΣT  (dashed) and 012.1=ΣT  (dotted) for objective 

function 
ΣT

J ,4  and weighting parameter 1.5885)( 2 =
ΣT

γ . 

 
In a similar test setup as for Figs. 3.8.1 – 3.8.8, the results presented here 

clearly demonstrate the reduced sensitivity of the fuzzy control systems when the 
optimal tuning parameters were applied. The performance improvement is con-
sistent in the case of process parameter variations, as showed by the reduced val-
ues of the objective functions and better responses for the fuzzy control systems in 
all scenarios. 

In this chapter, five nature-inspired optimization algorithms were presented 
in subchapters 3.1 – 3.5 and applied to the optimal tuning of the parameters of 
fuzzy controllers, along with two newly developed adaptive versions for two of them 
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in subchapters 3.6 and 3.7. Based on these proposed algorithms, optimal solutions 
were obtained to each of the optimization problems (2.13) – (2.16) described in the 
previous chapter by finding the near minimal values of the objective functions (2.9) 
– (2.12). For every algorithm a parameter evolution analysis was presented, fo-
cused on two points of view: the first presented the best solution evolution for each 
step of the search process and the later a global view of all agents’ positions in the 
search domain at certain stages. 

Further on, three indices were defined in order to assess the performance of 
these algorithms. Each index corresponds to a performance criterion: the average 
value of the objective functions presents the algorithms’ capabilities to overcome 
local minima situations, the convergence speed describes how fast the final solu-
tions are found in the search process, and the accuracy rate measures the precision 
of the algorithms’ solutions. 

Finally, the solutions obtained based on the nature-inspired algorithms were 
validated through simulations and experiments that proved the reduced sensitivity 
with respect to the process parameters considered in the derivation of the sensitivity 
models. 

The new contributions of this chapter can be summed up as follows: 
 
1. The original application of Simulated Annealing algorithms to solve four 

types of optimization problems such that to carry out the optimal tuning of the pa-
rameters of T-S PI-FCs dedicated to the control of a class of nonlinear servo sys-
tems. The results concerning the application of these algorithms are published in: 

R.-E. Precup, R.-C. David, E. M. Petriu, S. Preitl, M.-B. Rădac, Fuzzy control 
systems with reduced parametric sensitivity based on simulated annealing, 
IEEE Transactions on Industrial Electronics, vol. 59, no. 8, pp. 3049-3061, 
Aug. 2012, impact factor (IF) = 5.165, IF according to 2013 Journal Citation 
Reports (JCR) released by Thomson Reuters in 2014 = 6.500. 
 
2. The original application of Particle Swarm Optimization algorithms to 

solve four types of optimization problems such that to carry out the optimal tuning 
of the parameters of T-S PI-FCs dedicated to the control of a class of nonlinear ser-
vo systems. The results concerning the application of these algorithms are published 
in: 

R.-E. Precup, R.-C. David, S. Preitl, E. M. Petriu, Design aspects of optimal 
PI controllers with reduced sensitivity for a class of servo systems using PSO 
algorithms, Facta Universitatis Series: Automatic Control and Robotics, vol. 
8, no. 1, pp. 1-12, 2009. 
 
3. The original application of Gravitational Search Algorithms to solve four 

types of optimization problems such that to carry out the optimal tuning of the pa-
rameters of T-S PI-FCs dedicated to the control of a class of nonlinear servo sys-
tems. The results concerning the application of these algorithms are published in: 

R.-C. David, R.-E. Precup, E. M. Petriu, M.-B. Rădac, S. Preitl, Gravitational 
search algorithm-based design of fuzzy control systems with a reduced par-
ametric sensitivity, Information Sciences (Elsevier Science), vol. 247, pp. 
154-173, Oct. 2013, impact factor (IF) = 3.893, IF according to 2013 Jour-
nal Citation Reports (JCR) released by Thomson Reuters in 2014 = 3.893. 
 
4. The original application of a version of hybrid Particle Swarm Optimiza-

tion-Gravitational Search Algorithms to solve four types of optimization problems 
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such that to carry out the optimal tuning of the parameters of T-S PI-FCs dedicated 
to the control of a class of nonlinear servo systems. The results concerning the ap-
plication of these algorithms are published in: 

R.-C. David, R.-E. Precup, E. M. Petriu, C. Purcaru, S. Preitl, PSO and GSA 
algorithms for fuzzy controller tuning with reduced process small time con-
stant sensitivity, Proceedings of 2012 16th International Conference on Sys-
tem Theory, Control and Computing (ICSTCC 2012), Sinaia, Romania, 6 pp., 
2012, indexed in IEEE Xplore, INSPEC, SCOPUS. 
 
5. The original application of Charged System Search algorithms to solve 

four types of optimization problems such that to carry out the optimal tuning of the 
parameters of T-S PI-FCs dedicated to the control of a class of nonlinear servo sys-
tems. The results concerning the application of these algorithms are published in: 

R.-E. Precup, R.-C. David, E. M. Petriu, S. Preitl, M.-B. Rădac, Charged sys-
tem search algorithms for optimal tuning of PI controllers, Proceedings of 1st 
IFAC Conference on Embedded Systems, Computational Intelligence and 
Telematics in Control (CESCIT 2012), editors: K. Schilling, E. Leutert, Würz-
burg, Germany, pp. 115-120, 2012, indexed in SCOPUS. 
 
6. A novel class of adaptive GSAs with improved exploration and exploita-

tions capabilities inspired by the 5E learning model used in education. The adaptive 
GSAs are developed around the basic version of GSA, and their three new functions 
are: 

• the adaptation of two depreciation laws of the gravitational constant to the 
iteration index, 

• the adaptation of a parameter in the weighted sum of all forces exerted 
from the other agents to the iteration index, 

• the resetting at each run of adaptive GSA agents’ worst fitnesses and posi-
tions to their best values. 
These new adaptive GSAs are published in: 
R.-E. Precup, R.-C. David, E.M. Petriu, S. Preitl, M.-B. Rădac, Novel adap-
tive gravitational search algorithm for fuzzy controlled servo systems, IEEE 
Transactions on Industrial Informatics, vol. 8, no. 4, pp. 791-800, Nov. 
2012, impact factor (IF) = 3.381, IF according to 2013 Journal Citation Re-
ports (JCR) released by Thomson Reuters in 2014 = 8.785. 
 
7. The original application of the new adaptive GSAs to solve four types of 

optimization problems such that to carry out the optimal tuning of the parameters of 
T-S PI-FCs dedicated to the control of a class of nonlinear servo systems. The re-
sults concerning the application of these algorithms are published in: 

R.-E. Precup, R.-C. David, E. M. Petriu, S. Preitl, M.-B. Rădac, Experiments 
in fuzzy controller tuning based on an adaptive gravitational search algo-
rithm, Proceedings of the Romanian Academy, Series A: Mathematics, Phys-
ics, Technical Sciences, Information Science, vol. 14, no. 4, pp. 360-367, 
Dec. 2013, impact factor (IF) = 1.115, IF according to 2013 Journal Citation 
Reports (JCR) released by Thomson Reuters in 2014 = 1.115. 
 
8. A novel class of adaptive CSS algorithms with improved exploration and 

exploitations capabilities inspired by the 5E learning model used in education. The 
adaptive CSS algorithms are developed around the basic version of CSS algorithms, 
and their two new functions are: 
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• the adaptation of the acceleration, velocity, and separation distance param-
eters to the iteration index, 

• the substitution of the worst charged particles’ fitness function values and 
positions with the best performing particle data. 
These new adaptive CSS algorithms are published in: 
R.-E. Precup, R.-C. David, E. M. Petriu, St. Preitl and M.-B. Radac, Novel 
adaptive charged system search algorithm for optimal tuning of fuzzy con-
trollers, Expert Systems with Applications, vol. 41, no. 4, part 1, pp. 1168-
1175, March 2014, impact factor (IF) = 1.965, IF according to 2013 Journal 
Citation Reports (JCR) released by Thomson Reuters in 2014 = 1.965. 
 
9. The original application of the new adaptive CSS algorithms to solve four 

types of optimization problems such that to carry out the optimal tuning of the pa-
rameters of T-S PI-FCs dedicated to the control of a class of nonlinear servo sys-
tems. The results concerning the application of these algorithms are published in: 

R.-C. David, R.-E. Precup, E. M. Petriu, St. Preitl, M.-B. Rădac, L.-O. Fedo-
rovici, Adaptive evolutionary optimization algorithms for simple fuzzy controller tun-
ing dedicated to servo systems, in: Fuzzy Modeling and Control: Theory and Applica-
tions, F. Matia, G. N. Marichal and E. Jimenez, Eds., Atlantis Computational Intelli-
gence Systems, vol. 9, Atlantis Press and Springer International Publishing, Cham, 
Heidelberg, New York, Dordrecht, London, pp. 159-173, 2014, indexed in Springer 
Link. 

 
10. The definition of three original performance indices to assess the quality 

of nature-inspired optimization algorithms: 
• the average value of each objective function, 
• the convergence speed, 
• the accuracy rate. 

A part of these indices is proposed in: 
R.-E. Precup, R.-C. David, E. M. Petriu, S. Preitl, M.-B. Rădac, Gravitational 
search algorithms in fuzzy control systems tuning, Proceedings of 18th IFAC 
World Congress, Milano, Italy, pp. 13624-13629, 2011, indexed in SCOPUS. 
 
11. The quality assessment of the performance of nature-inspired optimiza-

tion algorithms based on three original performance indices considering a certain 
number of runs (five in these thesis) of each nature-inspired optimization algorithm. 
The results concerning the quality assessment of the nature-inspired optimization 
algorithms applied to PI controller tuning are published in: 

R.-C. David, R.-E. Precup, S. Preitl, J. K. Tar, J. Fodor, Three evolutionary 
optimization algorithms in PI controller tuning, in: Applied Computational In-
telligence in Engineering and Information Technology, editors: R.-E. Precup, 
S. Kovacs, S. Preitl, E. M. Petriu, Topics in Intelligent Engineering and In-
formatics, vol. 1, Springer-Verlag, Berlin, Heidelberg, pp. 95-106, 2012, in-
dexed in Springer Link. 
 
12. The validation of all new results by simulations using the detailed fuzzy 

control system models and by experiments conducted on the real-world laboratory 
servo system. Simulation results are presented in all publications. Experimental re-
sults are published in: 

R.-E. Precup, R.-C. David, E. M. Petriu, S. Preitl, M.-B. Rădac, Fuzzy logic-
based adaptive gravitational search algorithm for optimal tuning of fuzzy 
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controlled servo systems, IET Control Theory and Applications, vol. 7, no. 1, 
pp. 99-107, Jan. 2013, impact factor (IF) = 1.844, IF according to 2013 
Journal Citation Reports (JCR) released by Thomson Reuters in 2014 = 
1.844. 
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4. OPTIMAL TUNING OF INPUT MEMBERSHIP 

FUNCTIONS OF TAKAGI-SUGENO FUZZY MODELS 

BASED ON SIMULATED ANNEALING ALGORITHMS 

 
 

4.1.  PROBLEM SETTING CONCERNING THE OPTIMAL 

TUNING OF INPUT MEMBERSHIP FUNCTIONS OF TAKAGI-

SUGENO FUZZY MODELS BASED ON NATURE-INSPIRED 

ALGORITHMS 

 
As mentioned in Sub-chapter 1.1, several parameters that belong to the 

blocks in the structure of Takagi-Sugeno (T-S) fuzzy models can be optimally tuned. 
The optimal tuning of a part of the parameters of the input membership functions is 
treated in this thesis. This is organized in terms of the modeling approach that con-
sists of the following steps: 

Step 1. The structure of the dynamic T-S fuzzy model is set, namely the 
number of operating points that is equal to the number of rules, the number of input 
linguistic terms (LTs) of the input variables, the shapes of the membership functions 
(m.f.s) of the input LTs, the operators in the inference engine, and the method for 
defuzzification. 

Step 2. The nonlinear continuous-time state-space model of the process is 
linearized at a number of important operating points, and this number is equal to 
the number of rules of the dynamic T-S fuzzy model. This leads to a set of linearized 
continuous-time local process models, which are placed in the rule consequents of 
the continuous-time T-S fuzzy model, and they related to the modal values of the 
input m.f.s, which are exactly the coordinates of the operating points in terms of the 
modal equivalence principle [Gal95]. The sampling period is set, and the models in 
the consequents of the T-S fuzzy model are discretized accounting for the zero-
order hold resulting in the rule base of the discrete-time T-S fuzzy model. 

Step 3. Considering the parameter vector ρ  that consists of a part of the pa-
rameters of the input membership functions of the dynamic T-S fuzzy model, the 
following optimization problem is defined: 
 

)(minarg
          

* ρρ

ρ

J

D∈

= , (4.1) 

where *ρ  is the optimal parameter vector of the fuzzy model and the solu-
tion to the optimization problem, and D is the feasible domain of ρ . The objective 
function )(ρJ  in (4.1) is defined as: 
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where )()( ρρ kky λ=  is the process output at thk  sampling interval, )(, ρmky  is the 

fuzzy model output, )()()( ,, ρρρ mkkmk yye −=  is the modeling error, and N is the length of 

the time horizon. The optimization problem (4.1), with the objective function (4.2), 
aims the minimization of the mean square modeling error. 

Step 4. A nature-inspired optimization algorithm is applied to solve the op-
timization problem (4.1), i.e., to obtain the optimal input membership function pa-
rameters, which lead to the optimal dynamic T-S fuzzy model of the process. 

The input variables specified in the step 1 of the modeling approach are in 
fact the scheduling variables that are involved in the premise part of the dynamic T-
S fuzzy model rules. 

The steps 1 and 2 produce the initial dynamic T-S fuzzy model of the pro-
cess, and the step 4 produces the optimized dynamic T-S fuzzy model of the pro-
cess. These two steps of the fuzzy modeling approach can be replaced by an appro-
priate fuzzy model identification technique. 

Some recent applications of fuzzy model identification techniques are dis-
cussed as follows. An attractive result is formulated in [Anh12] as an inverse adap-
tive fuzzy model trained by PSO algorithm. An extended allied fuzzy C-means algo-
rithm is introduced in [Moh13] and optimized using PSO. A hyperplane prototype 
fuzzy clustering model is proposed in [Li12b] using a GSA-based hyperplane cluster-
ing algorithm to improve the performance of the fuzzy clustering algorithm in the 
fuzzy space partition of the fuzzy model identification technique. A fuzzy model 
identification technique for a nonlinear model predictive control is optimized in 
[Sy08] using the branch and bound method and genetic algorithm. An interval fuzzy 
model identification technique is developed in [Kha10b] using the interval fuzzy 
model that is based on lower and upper fuzzy models or a fuzzy model with a set of 
lower and upper parameters. A method to obtain computationally efficient low-order 
process models for large-scale processes based on the combination of orthogonal 
decompositions, black-box system identification techniques and non-linear spline-
based blending is described in [Wat10]. A self-extracting rules fuzzy control method 
is introduced in [Lu10] for dealing with complex thermal processes. 

The approach presented in this sub-chapter is applied in the next sub-
chapters to the fuzzy modeling of two nonlinear processes using the Simulated An-
nealing (SA) algorithm as the nature-inspired optimization algorithm in the step 4. 
These processes are an Anti-lock Braking System (ABS) and a magnetic levitation 
system, and the proposed dynamic T-S fuzzy models are validated by real-time ex-
perimental results on laboratory equipment. 

 
 

4.2.  STATE-OF-THE-ART ANALYSIS FOR THE OPTIMAL 

TUNING OF INPUT MEMBERSHIP FUNCTIONS OF TAKAGI-
SUGENO FUZZY MODELS BASED ON NATURE-INSPIRED 

ALGORITHMS 

 
The analysis of the state-of-the-art concerning the optimal tuning of input 

membership functions of Takagi-Sugeno fuzzy models based on nature-inspired al-
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gorithms is first considered in a more general framework of the optimal tuning of 
parameters of Takagi-Sugeno fuzzy models. This bibliographic analysis presents a 
general view of different approaches concerning the optimization of fuzzy control 
systems in the first part, from the point of view of the fuzzy model structure, and 
later focuses on applications of nature-inspired algorithms with regard to general 
optimization of fuzzy systems. 

Since the structure of fuzzy models consists of the well-known fuzzification 
module, rule base and inference engine and defuzzification module, the analysis will 
be organized in three separate categories because the optimal tuning of the param-
eters in the defuzzification module is not carried out in the literature as far as the 
author knows: 

(i) The optimal tuning of the parameters in the fuzzification module 
with focus on the optimal tuning of the parameters of the input 
membership functions. 

(ii) The optimal tuning of the rule base and of the parameters in the in-
ference engine. 

(iii) Cross-module optimization, i.e., the optimal tuning of several pa-
rameters that belong to different blocks in the structure of the Tak-
agi-Sugeno fuzzy models. 

(i) A first result containing the optimal tuning of the membership functions, 
is represented in [Esm02] as a learning algorithm based on PSO for the membership 
functions automatic adjustment. The tuning of Gaussian membership functions is 
carried out in [Tay11]. An adaptive fuzzy logic controller based on genetic algo-
rithms used for optimizing the internal parameters of fuzzy membership functions is 
described in [Far07]. The shape of membership functions is adjusted in [Mer11] 
using a clonal selection algorithm. [Kha08] propose a method for optimizing the 
membership functions of a fuzzy logic controller using genetic algorithms. A hybrid 
procedure based on PSO and gradient descent algorithms is proposed in [Kha10c] to 
obtain membership functions with a superior performance. 

(ii) One of the results concerning the optimal tuning of the rule base and of 
the parameters in the inference engine is given in [Bod05], where evolutionary op-
timization tools are employed in the optimization of normalized root mean square 
error of the training data which is minimized for the fine-tuning of the fuzzy rule 
base parameters. Hybrid tabu search and PSO algorithms are used in [Tal11b] to 
dynamically adjust the membership functions and fuzzy rules according to different 
environments. A bacterial evolutionary algorithm is applied in [Cab06] to determine 
the fuzzy rule base of fuzzy systems. A PSO algorithm is employed in [Zha12] to 
deal with fuzzy rule interpolation with fuzzy measure-based antecedent variables 
and fuzzy rule interpolation based on polygonal membership functions. A bacterial 
foraging optimization algorithm is used in [Kam12] to determine the rule base of 
fuzzy models. The structure and the parameters of a fuzzy rule base are generate 
automatically by a PSO algorithm in [Che12]. A method to build a T-S fuzzy model 
with optimal rules using a combination of chaotic PSO and Gustafson-Kessel cluster-
ing algorithm is proposed in [Coe07]. An Ant Colony Optimization algorithm is used 
in [Jua08] for rule base optimization in fuzzy controller design. A method for opti-
mizing the rule base of a Mamdani-type fuzzy controller using an integer evolution-
ary algorithm is described [Meg13]. 

A partitioning of the fuzzy inference system is carried out in [Jua09] on the 
basis of ant colony optimization combined with fuzzy-Q learning for finding the best 
pheromone trail.  A neuro-fuzzy system using a PSO algorithm is proposed in 
[Tur12] to optimize fuzzy systems with the use of neuro-fuzzy techniques emerged 
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from the fusion of neural networks and fuzzy inference systems. A soft computing 
optimizer is introduced in [Fuj07] to obtain a fuzzy inference system with the use of 
genetic algorithms. 

(iii) An example of cross-module optimization by nature inspired algorithms 
is presented in [Abo13], where a self-tuning fuzzy PID controller based on PSO is 
proposed; the PSO algorithm optimally tunes the rule base, the scaling factors, the 
membership function parameters and the optimal range of the tuning parameters of 
the linear PID controller. The rule base and the membership functions of a hierar-
chical fuzzy control system are optimized in [Xia10] with the use of genetic algo-
rithm. 

Several applications of fuzzy models optimized by nature-inspired algo-
rithms are discussed as follows. These applications are organized on the algorithms 
considered, focusing, as mentioned in Sub-chapter 2.2, the validation of the results 
(namely, the fuzzy models) by real-time experiments. 

Popular applications of simulated annealing include the optimal tuning of 
fuzzy models for robotic systems [Hos14], performance drilling [Hab07], [Hab09], 
autonomous robot path planning [Mar98], data mining [Moh08], inventory man-
agement [Mil12], network topology [Kha09], project scheduling [Shu08] or renewa-
ble energy [Gar13]. A variation called orthogonal simulated annealing algorithm is 
used in an optimization problem that optimizes a fuzzy neural network model for the 
tuning of PID controllers in [Ho06]; various test plants with under-damped respons-
es are considered. Simulated annealing showed a strong performance when com-
bined with other algorithms. For example, in [Tor11] the fuzzy classifier is a cooper-
ation of the simulated annealing and the subtractive clustering method as the simu-
lated annealing is used in order to optimize the subtractive clustering parameters. 
Along with the standard version of simulated annealing, different adaptive versions 
emerged. A fuzzy adaptive simulated annealing is introduced in [Agu12]. A fuzzy 
adaptive simulated annealing-genetic algorithm is proposed in [Pen14]. 

A PSO-based example of T-S neuro-fuzzy network optimization using is pre-
sented in [Lin08]. A neuro-fuzzy inference system is tuned in [Oli09] by a PSO algo-
rithm and applied to monitoring the relevant sensor in a nuclear power plant. The 
paper [Ma10] introduces an algorithm for T-S fuzzy modeling based on PSO, in 
which the solution is represented by both a binary value vector and a real value 
vector with corresponding equations for parameters update. The rule base of a T-S 
fuzzy model is optimized in [Jos12] using a PSO algorithm in order to minimize the 
output error surface of a nonlinear water level tank process. A fuzzy adaptive PSO 
algorithm is introduced in [Wu11] in order to identify a subset of features embedded 
out of a large dataset that is contaminated with high dimensional noise; the ap-
proach is divided into three stages, namely core feature subset selection, feature 
subset selection and spam filtering, leading to an optimal feature subset. An im-
proved PSO algorithm is suggested in [Tan08] using a self-adaptive idea, which in-
troduces the concept of dynamic learning factor. 

A hybridization of cooperative PSO and cultural algorithm is suggested in 
[Lin09b] with the scope of increasing the global search capacity using the belief 
space; experimental results concerning the prediction of the number of sunspots are 
presented. A combination of PSO and black stork foraging process used in functional 
neural fuzzy networks is proposed in [Ham12], with experimental results related to 
solving the Iris and Breast cancer benchmark classification problems. A fuzzy PSO is 
introduced in [Alf11], with the PSO algorithm enhanced by a fuzzy inertia weight to 
rationally balance the global and local exploitation abilities. A chaos PSO algorithm is 
proposed in [Jia12]; this algorithm combines the strengths of chaos optimization 
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algorithm and PSO, and it optimizes T-S fuzzy models that are employed in con-
strained predictive control and validated by simulation tests. 

A swarm intelligence-based classifier is described in [Ask12] using a fuzzy 
system designed for intelligently updating the effective parameters of GSA, which 
are used to construct a decision function estimation algorithm from feature space; 
the classifier is applied to a pattern recognition problem with nonlinear, overlapping 
class boundaries and different feature space dimensions. A T-S fuzzy model identifi-
cation problem is solved in [Xue14] using an improved GSA based on silhouette 
index considered for both the intra-cluster cohesion and the inter-cluster separation, 
one cluster representing a fuzzy rule; cluster center is regarded as the Gaussian 
membership function center parameter, which is identified by this GSA. The paper 
[Jas14] deals with the problem of contact-state recognition for force-controlled ro-
botic tasks by developing the corresponding contact formation classifiers using a 
GSA-based search fuzzy clustering algorithm that is validated through experimental 
results. A T-S fuzzy model identification method based on chaotic GSA is proposed 
in [Li13] and applied to the modeling of hydraulic turbine governing system with 
experimental results. A stochastic optimization approach to solve optimal bidding 
strategy problem in a pool based electricity market using fuzzy adaptive GSA is pre-
sented in [Vij13] and validated through simulations. A solution to feature selection 
using fuzzy grids-based association rules mining whose training parameters are op-
timized by GSA is presented in [She13] and validated using experimental results. 

In recent publications adaptive versions of the GSA have appeared along 
with the standard version of the algorithm. One such adaptive version is character-
ized in [Vij13] by fuzzy rule-based systems applied to design the gravitational con-
stant. Another adaptive quantum-inspired GSA is proposed in [Ibr14]. The combina-
tion with fuzzy logic leads to further performance improvement for this algorithm as 
shown in [Dum15], where simulations for several benchmark test functions are pre-
sented. 

Along with the standard versions presented in Sub-chapter 2.4, improved 
versions for the standard form of the CSS algorithm have been developed with the 
scope of performance improvement. A combination of the CSS algorithm and the 
force method is applied to the simultaneous analysis and design of structures in 
[Kav14b]. A CSS-based approach that applies a construction factor to prevent con-
verging to a local optimum is proposed in [Lin13]. A CSS algorithm is utilized in 
[Kav14c] as a search engine in combination with clustering and particle regenera-
tion procedures. All these applications are validated by simulation results.

 
 
4.3.  SIMULATED ANNEALING-BASED OPTIMAL TUNING 

OF INPUT MEMBERSHIP FUNCTIONS OF TAKAGI-SUGENO 

FUZZY MODELS FOR A LABORATORY ANTI-LOCK BRAKING 

SYSTEM 

 
The development of Takagi-Sugeno fuzzy models for Anti-lock Braking Sys-

tems (ABSs) is a challenging task because of their process nonlinearities and the 
importance they impose to the automotive safety systems as they are used to pre-
vent wheel locking. The INTECO ABS setup used in the experimental tests, consists 
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of two wheels as described in Fig. 4.3.1, which makes it different compared to the 
regular ABS setups based on electro-hydraulic actuators. 
 

 
Fig. 4.3.1 INTECO ABS experimental setup and block diagram. 

 
A simple approach to fuzzy modeling of ABSs will be presented in this sub-

chapter following the methodology introduced in Sub-chapter 4.1. This approach 
starts with the T-S fuzzy model of the nonlinear state-space model of the ABS la-
boratory equipment [Int07a], which is derived by linear modal equivalence principle 
starting with the first-principle equations [Int07a], [Dav14b]: 
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where J1 and J2 are the moments of inertia of the wheels, x1 and x2 are the 
angular velocities, d1 and d2 are the friction coefficients in the wheels’ axes, M10 and 
M20 are the static friction torques that oppose the normal rotation, M1 is the brake 
torque, r1 and r2 are the radii of the wheels, Fn is the normal force that the upper 
wheel pushes upon the lower wheel, )(λµ  is the friction coefficient depending on the 
slip, and 

1x&  and 
2x&  are the angular accelerations of the wheels. 

The identification by measurements and experiments leads to the following 
parameter values [Pre12c]: 
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The definitions of the longitudinal slip λ  which plays the role of controlled 
output in the slip control system and of the nonlinear factor )(λS  are: 
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where m 37.0=L  is arm’s length, which fixes the upper wheel, and o
61.65=ϕ  is 

the angle between the normal direction in wheels’ contact point and L’s direction. 
The nonlinear state-space equations of the process are: 
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where u is the control signal applied to the DC motor, which drives the up-
per wheel and the nonlinear model of the actuator, and the nonlinearity of the actu-
ator is highlighted in the third equation. The expressions of the parameters in (4.6) 
are [Dav14b]: 
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The introduction of λ  as controlled output in the model (4.6) is done by the 
substitution of 

1x  from (4.5). The state-space equations of ABS process are: 
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they point out the state vector x, which is also the scheduling vector of the 
dynamic T-S fuzzy model: 
 T

Mx ][ 12λ=x , (4.9) 

where T indicates the matrix transposition, and the first group of dynamic T-
S fuzzy models of the process is characterized in [Pre12c], [Dav14b] by the four 
input variables 

1Z , 
3Z , 

40Z  and 
5Z . These variables belong to the input (scheduling) 

vector: 
 T

ZZZZ ][ 54031=z , (4.10) 

The derivation of these dynamic T-S fuzzy models starts with the graphical 
calculation of the following sectors of the input variables: 
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540

31

−≤≤−−≤≤−
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Furthermore, in order to derive the T-S fuzzy model, the membership func-
tions of input variables λ , 

2x  and 
1M  have to be defined. First, the domains of varia-

tion of the three state variables have to be set for all ABS operating regimes 
[Dav14b]: 
 100 ,17820 ,11.0 12 ≤≤≤≤≤≤ Mxλ . (4.12) 

In accordance with the first step of the T-S fuzzy modeling approach de-
scribed in Sub-chapter 4.1, the first phase is represented by the fuzzification pro-
cess, which is done with the aid of LTs assigned to the input variables, i.e., the 
scheduling variables. They are defined as: for the first input variable, λ , the follow-
ing five linguistic terms with triangular membership functions are introduced: 

5...1,, =jLT jλ : 
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where the variable vector ρ  of the objective function contains the variable 
parameters 5...1,, =ja jλ , and 5...1,, =jc jλ ; the parameters 5...1,, =jb jλ , which represent 

modal values of membership functions, are fixed: 1.01, =λb , 2.02, =λb , 4.03, =λb , 8.04, =λb  

and 15, =λb . 

The second input variable, 
2x , uses two linguistic terms 2...1,,2

=jLT jx
 with tri-

angular shapes for the membership functions of the same type as the ones in 
(4.13): ]1,0[]150,0[:

1,2
→

xLTµ  and ]1,0[]180,50[:
2,2

→
xLTµ . As in the case of the first input varia-

ble, the variable parameters 2...1,,2
=ja jx

, and 2...1,,2
=jc jx

, belong to the variable vector 

ρ , and the parameters 2...1,,2
=jb jx

, are fixed: 501,2
=xb  and 1502,2

=xb . 

For the remaining input variable 
1M , one linguistic term, 

1,1MLT  with a trian-

gular membership function type ]1,0[]11,0[:
1,1

→
MLTµ  of same type as in (4.13), is used. 

Variable parameters 
1,1Ma  and 

1,1Mc  are included in vector ρ , and the fixed parameter 

1,1Mb  has the value: 101,1
=Mb .  

For the second step of the modeling approach, the complete rule base of 
this set of dynamic T-S fuzzy models is defined as the rules 10...1 , =iRi , with each 
resulting rule being assigned to a continuous-time state-space model (4.8) obtained 
for the modal values of the input membership functions and linearized at one of the 
ten operating points. The complete rule base of the continuous-time dynamic T-S 
fuzzy model is: 

 





=

+=





=

+=

+

+

.

,
THEN  IS M AND  IS  xAND  IS  IF:

...

 
,

,
THEN  IS M AND  IS  xAND  IS  IF:

10,,

10,10,1

1,12,25,
10

1,,

1,1,1

1,11,21,
1

12

12

kdmk

kdkdk

Mx

kdmk

kdkdk

Mx

y

u
LTLTLTR

y

u
LTLTLTR

xC

BxAx

xC

BxAx

λ

λ

λ

λ
 (4.14) 

The following matrices are next exemplified for the consequents of the rules 
1R  and 10R : 
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The initial T-S fuzzy model in (4.14) is obtained by discretization of the con-
tinuous-time state-space models given in (4.8) accepting the zero-order hold and 
the sampling period set to s 01.0=sT  and by the application of the modal equivalence 
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principle to the rule consequent parameters from (4.15) as the coordinates of the 
operating points represent the modal values of the membership functions. For the 
inference engine the SUM and PROD operators are used and the weighted average 
method is employed for defuzzification. 

In the third step of the modeling approach, the parameter vector of the 
fuzzy model is defined as: 

 
.]

[

1,1,2,2,1,1,

5,5,4,4,3,3,2,2,1,1,

112222

T
MMxxxx cacaca

cacacacaca λλλλλλλλλλ=ρ  (4.16) 

The SA algorithm is applied in the last step of the modeling approach as a 
nature-inspired optimization algorithm employed to solve the optimization problem 
defined in (4.1). This algorithm, detailed in Sub-chapter 3.1, is implemented follow-
ing the given description, using the following relations between the fitness function 
and the objective function defined in (4.2), and between the parameter vectors (the 
vector variables of the functions): 
 ϕϕ ==== ρψρρψρ   ,  ),()(  ),()( fJfJ . (4.17) 

The original solution used in the initial stage of the SA algorithm [Dav14b] 
was: 
 T

]110180501500    1.18.014.08.02.04.01.02.00[=ρ  (4.18) 

at the starting temperature 10 =θ . The SA specific implementation parame-

ters 
maxrr  and of 

maxrs  were set to 100max =rr  and 50max =rs . 

The final solution vector: 
 

T]04.113227.05.18085.5916902202.012.1847.0

9578.04019.08471.02295.04067.009901.01614.0008615.0[*

−

=ρ  (4.19) 

was found after 84 iterations of the algorithm at the temperature 
090235.084 =θ . 

The evolution of the control signal u versus time is taken from [Dav14b], 
and presented in Fig. 4.3.2. This control signal was generated in order to cover dif-
ferent ranges of magnitudes and shows 35000 input-output data points which are 
separated in the training data and the validation data set for cross-validation and to 
assess the performance of the T-S fuzzy models. The training set consists of the 
first 10000=N  data points and corresponds to 0 s to 100 s interval, with the remain-
ing 25000=N  data points starting with 100 s to 350 s interval representing the valida-
tion data set. 
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Fig. 4.3.2. Control signal u versus time, applied to real-world process and to T-S 

fuzzy model: training data from 0 s to 100 s, validation data starting with 100 s to 
350 s. 

 

 
Fig. 4.3.3. Real-time experimental results: wheel slip λ  versus time for initial T-S 

fuzzy model and for real-world process. 
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Fig. 4.3.4. Real-time experimental results: wheel slip λ  versus time for T-S fuzzy 

model after optimization by SA algorithm and for real-world process. 

The experimental results conducted in order to validate the obtained dy-
namic T-S fuzzy model are presented in Figs. 4.3.3 and 4.3.4 and represent the 
outputs of the ABS laboratory setup equipment. The graphs display the performance 
of the T-S fuzzy model before the application of the SA algorithm and of the T-S 
fuzzy model after the application of the SA algorithm. The performance improve-
ment from the point of view the modeling errors is highlighted in Figs. 4.3.3 and 
4.3.4, as it is significantly improved in training and validation data sets. 

The objective function values evolution during the SA-based optimization is 
presented in Fig. 4.3.5. The data presented in this graphic relates to the training 
data set. 

 
Fig. 4.3.5. Objective function J versus iteration number µ  for validation data set. 
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4.4.  SIMULATED ANNEALING-BASED OPTIMAL TUNING 

OF INPUT MEMBERSHIP FUNCTIONS OF TAKAGI-SUGENO 

FUZZY MODELS FOR A LABORATORY MAGNETIC 

LEVITATION SYSTEM 

 
The application of T-S fuzzy models to the magnetic levitation problem for a 

metallic sphere maintained in an electromagnetic field resembling the block diagram 
presented in Fig. 4.4.1 is considered in this sub-chapter. The importance of precise 
model development for the magnetic levitation system consists in their extensibility 
to other systems with high performance [Dra11b], [Dra13]. For these types of mag-
netic levitation systems, the use of fuzzy models is justified by their process specific 
nonlinearity. 

Additionally, the use of SA algorithm is introduced in the step 4 of the fuzzy 
modeling approach given in Sub-chapter 4.1. The application of the four steps of the 
fuzzy modeling approach is described as follows. 

 

 
Fig. 4.4.1 INTECO magnetic levitation system with two electromagnets setup and 

block diagram. 

The fuzzy modeling approach for the magnetic levitation problem starts with 
the first-principle state-space model of a magnetic levitation system with two elec-
tromagnets [Int08]: 
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where: 
1uu =  is the control signal (voltage applied to the upper electromag-

net), the disturbance input is 
2ud =  (voltage applied to the lower electromagnet), 

1,0049.0 21 ≤≤ uu , 
ix  are state variables: 

1x  - sphere position, mx 016.00 1 ≤≤ ; 
2x  - sphere 

speed, 
3x  and 

4x  are currents in the upper and lower electromagnetic coil 

AxxA 38.2,038.0 43 ≤≤ , and y  is the controlled output. The numerical values correspond-

ing to these parameters are taken from [Int08] and given in Table 4.4.1. 
 

Table 4.4.1. Numerical values of the parameters of the magnetic levitation system 
with two electromagnets [Int08]. 

Parameter Numerical Value Unit 
m 0.0571 (for the big sphere) [kg] 
g 9.81 [m/s2] 

Fem1, Fem2 Functions of x1 and x3 [N] 
FemP1 1.7521∙10-2 [H] 
FemP2 5.8231∙10-3 [m] 
fi(x1) Function of x1 [1/s] 
fiP1 1.4142∙10-4 [m∙s] 
fiP2 4.5626∙10-3 [m] 
ci 0.0243 [A] 
ki 2.5165 [A] 
xd The distance between electromagnets without 

the sphere diameter (depends on the sphere) 
[m] 

iMIN 0.03884 [A] 
uMIN 0.00498 [V] 

 
Two input variables, i.e., scheduling variables are considered for the T-S 

fuzzy model. The input variables are the first two state variables in (4.20), namely 
1x  and 

2x . 

The fourth-order model (4.20) is next reduced to a third-order state-space 
model, for 02 =u : 
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 (4.21) 

where the elements of the matrices A  and B  are [Dav12c]: 
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In order to stabilize the sphere from the magnetic levitation system, a state 

feedback control structure is designed by the pole placement method to stabilize the 
unstable linearized state-space model in (4.21) with the state feedback gain matrix: 
 ]0075.0536[=T

ck . (4.23) 

This leads to the following closed-loop third order continuous-time state-
space linearized model: 

 [ ]T
T

x
xxx

y

r
321  ,

  
∆∆∆=







=

+=
x

xC

BxAx&
. (4.24) 

The input of the stabilized process represents the input of the stabilized pro-
cess u from (4.20) extended with the state feedback matrix gain in (4.30), which is 
the same as the reference input of the control system. 

The first step of the methodology presented in Sub-chapter 4.1 starts with 
the fuzzification phase, by setting the largest domains of variation for the two state 
variables in all operating regimes: 
 765.188.757 ,2.02.0 31 ≤≤−≤≤− xx . (4.25) 

Also, for fuzzification, linguistic terms assigned to the input variables are 
employed and defined as: the input variable 1x  has three linguistic terms, 

3...1,,1
=jLT jx , with triangular m.f.s. They are defined and referred to as 1,1x

LT , with 

the universe of discourse [ ]02.0− , 2,1x
LT , with the universe of discourse [ ]1.01.0− , 

and 3,1x
LT , with the universe of discourse [ ]2.00 . These triangular m.f.s can be ex-

pressed as: 
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where the initial modal values of the m.f.s are the parameters jxa ,1 , jxb ,1 , 

and jxc ,1 , 3...1=j . The parameters 3...1,,1 =ja jx
, and 3...1,,1 =jc jx

, which indicate the 

modal values of the m.f.s, are fixed, with the values given in Table 4.4.2 [Dav12c]. 
The parameters 3...1,,1 =jb jx

 are variable. 

 
Table 4.4.2. Modal values of the linguistic terms. 

 

Linguistic terms 
3...1,,1

=jLT jx  

Triangular membership functions 

jxa ,1  jxb ,1  jxc ,1  

1,1x
TL  -0.2 -0.1 0 

2,1x
TL  -0.1 0 0.1 

3,1x
TL  0 0.1 0.2 

 
For the second input variable 3x , are defined three linguistic terms, 

3...1,,3
=jLT jx , with the first and third being modeled by trapezoidal membership 

functions, and the second one modeled by a Gaussian membership function. The 
universes of discourse of the membership functions of these linguistic terms are: 
[ ]3785.4757.8−  for 1,3x

LT , [ ]3785.4753.3  for 2,3x
LT , and [ ]765.183785.4  for 3,3x

LT . The 

expressions of the trapezoidal membership functions are: 
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 (4.27) 

and the second linguistic term is modeled by the Gaussian membership 
function: 

 ]
2

)(
exp[)(

2
2,3

2
2,33

32,3
x

x
LT

b

ax
x

x

−
−=µ . (4.28) 

The parameters 
2,3xa , 

3,3xb  and 
1,3xc  are variable. The parameters }3,1{,,3 ∈ja jx

, 

}3,1{,,3 ∈jb jx
, 

2,3xb , }3,1{,,3 ∈jc jx
, and }3,1{,,3 ∈jd jx

, are fixed. The initial m.f.s of the fuzzy 

sets that correspond to the linguistic terms of the input variables 
1x  and 

3x  are given 

in Table 4.4.3 [Dav12c]. 
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Table 4.4.3. Parameters of trapezoidal linguistic terms. 

Linguistic terms, 
}3,1{,,3

=jLT jx
 

Trapezoidal membership functions 

}3,1{,,3 =ja jx

 
}3,1{,,3 =jb jx  

}3,1{,,3 =jc jx

 
}3,1{,,3 =jd jx  

1,3x
TL  -8.757 -8.757 -1.251 4.3785 

3,3x
TL  4.3785 11.259 18.765 18.765 

 
 

Table 4.4.4. Operating points coordinates. 

Co-
ordi-
nates 

Operating points 

1A  2A  3A  4A  5A  6A  7A  8A  9A  

10x  0.007 0.007 0.008 0.008 0.009 0.009 0.007 0.008 0.009 

20x  0 0 0 0 0 0 0 0 0 

30x  0.285 0.6 0.3 0.6 0.3 0.285 0.3 0.285 0.6 

40x  0 0 0 0 0 0 0 0 0 

 
The nine operating points ),,,( 40302010 xxxxA j

, 9...1=j , have the coordinates con-

tained by Table 4.4.4. 
The linearization of the nonlinear models (4.21) at these operating points is 

carried out in the step 2 of the fuzzy modeling approach. This results in nine contin-
uous-time state-space models as described by Table 4.4.5. 

 
Table 4.4.5. Numerical values of continuous-time state-space models. 

 

Operating 
point 

Continuous-time state-space models corresponding to oper-
ating point ),,,( 40302010 xxxxAj

, 9...1=j  

1A  ]001[;

376.53

0

0

;
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2A  ]001[;

376.53

0

0

;

149.62-05218.1

19.01-0979.15

010

222 =
















=
















= TcBA
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3A  ]001[;
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0

0
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These continuous-time state-space models are discretized using the sam-

pling period s 005.0=sT . The discrete-time state-space models are comprised in Table 

4.4.6. 
 
Table 4.4.6. Numerical values of discrete-time state-space models. 

 

Operating point 
Discrete-time state-space models corresponding to oper-

ating point ),,,( 40302010 xxxxA j
, 9...1=j  
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1A  ]001[;
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The rule base of the discrete-time dynamic T-S fuzzy model is expressed on 
the basis of the modal equivalence principle [Gal95] that guarantees the equiva-
lence between the fuzzy models and the set of discrete-time nonlinear state-space 
ones for the modal values of the inputs. Consequently, the complete rule base of the 
discrete-time dynamic T-S fuzzy model with the input m.f.s previously described, 
consists of the rules 9...1 , =iR i : 

 

, THEN  IS  AND  IS  IF:

...

, THEN  IS  AND  IS  IF:

9,,

9,9,1
3,,33,,1

9

1,,

1,1,1
1,,31,,1

1

31

31





=

+=





=

+=

+

+

kdmk
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kdkdk
xkxk

y

u
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y

u
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xC

BxAx

xC

BxAx

 (4.29) 

where k is the index of the current sampling interval, i is the index of the 
current rule, and j is the index of the current linguistic term. 

For example, the matrices of the state-space models in the rule consequents 
of 1

R  and 9
R  are: 

 

].001[,

1.472

06461.0

00012.0

,

0.09682633.790.37

0.03415-679.00.1642-

0.00011-0044.01.002

],001[,
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,
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0.00009-0047.00.9982
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 (4.30) 

The SUM and PROD operators are used in the inference engine, and the 
weighted average method is employed for defuzzification. 

The SA algorithm is employed in the step 4 of the fuzzy modeling approach 
given in Sub-chapter 4.1 to solve the optimization problem defined in (4.1). For 
this, the SA algorithm presented in detail in Sub-chapter 3.1 is implemented follow-
ing the steps presented there and by following relations between the fitness and 
objective functions and parameter vector as they are contained in the third step of 
our T-S fuzzy modeling approach: 
 ϕϕ ==== ρψρρψρ   ,  ),()(  ),()( fJfJ . (4.31) 

The SA algorithm starts with a parameter vector ρ  of the fuzzy model 
[Dav12c]: 
 T

]26.113785.4251.11.001.0[ −−=ρ  (4.32) 

at the initial temperature 10 =θ  and using maximum rejection and success 

rates of 1000max =rr  and 50max =rs , it finds the final solution vector *
ρ  after 176 itera-

tions at a temperature of 9
176 109.82741 −⋅=θ : 

 T
]3821.149424.51094.10401.00001.00751.0[

* −−=ρ . (4.33) 

Several experiments were conducted in order to validate this T-S fuzzy 
model and the fuzzy modeling approach. First the T-S fuzzy model was trained, as 
described in [Dra11b], [Dra13] using the control signal u  that was generated such 
that to cover different ranges of magnitudes as high amplitude and high frequency 
(HAHF) signal presented in Fig. 4.4.1. 
 

BUPT



138   Optimal tuning of input membership functions of Takagi-Sugeno fuzzy… - 4  

 
Fig. 4.4.1. Control signal u as HAHF signal versus time, applied to real-world pro-

cess and to T-S fuzzy model in the training experiment. 

 
The validation of the T-S fuzzy model was performed using the control signal 

u, that was generated to cover different ranges of magnitudes in two cases corre-
sponding to two validation experiments, the low amplitude and low frequency (LALF) 
signal presented in Fig. 4.4.2, and the low amplitude, low frequency, high amplitude 
and high frequency (LALFHAHF) signal presented in Fig. 4.4.3. 
 

 
Fig. 4.4.2. Control signal u as LALF signal versus time, applied to real-world process 

and to T-S fuzzy model in the first validation experiment. 
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Fig. 4.4.3. Control signal u as LALFHAHF signal versus time, applied to real-world 

process and to T-S fuzzy model in the second validation experiment. 

 
 

 
Fig. 4.4.4. Real-time experimental results for training data: output versus time for 

real-world process (solid), for initial T-S fuzzy model (dotted) and for optimized T-S 
fuzzy model (dashed). FM indicates fuzzy model. 
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Fig. 4.4.5. Real-time experimental results for first validation data: output versus 

time for real-world process (solid), for initial T-S fuzzy model (dotted) and for opti-
mized T-S fuzzy model (dashed). FM indicates fuzzy model. 

The experimental results reported in [Dra11b] are presented in Fig. 4.4.4, 
Fig. 4.4.5 and Fig. 4.4.6 as follows: 

� Fig. 4.4.4 illustrates the system response obtained for the training data 
set (Fig. 4.4.1). 

� Fig. 4.4.5 and Fig. 4.4.6 illustrate the system response obtained for the 
two validation data sets (Fig. 2 and Fig. 3). 

� The objective function versus the iteration index in SA algorithm is 
shown in Fig. 4.4.7. 
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Fig. 4.4.6. Real-time experimental results for second validation data: output versus 
time for real-world process (solid), for initial T-S fuzzy model (dotted) and for opti-

mized T-S fuzzy model (dashed). FM indicates fuzzy model. 

 
Figs. 4.4.4 - 4.4.6 demonstrate the strong performance improvement of the 

T-S fuzzy model by the application of the SA algorithm from the point of view of the 
alleviation of the modeling errors. Starting the two validation experiments with the 
objective function 00055.0=J , the objective function measured after the application of 
the SA algorithm for the LALF control signal is 000203.0=LALFJ , and the objective func-

tion measured after the application of the SA algorithm for the LALFHAHF control 
signal is 001197.0=LALFHAHFJ . 

The evolution of the objective function versus the iteration index illustrated 
in Fig. 4.4.7 shows that the solution to the optimization problem (4.1) obtained by 
the SA algorithm ensures a strong decrease of the objective function. Although the 
minimum of the objective function cannot be guaranteed, Fig. 4.4.7 suggests that 
the improvement can continue by considering a larger number of iterations. 
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Fig. 4.4.7. Evolution of the objective function versus the iteration index in the SA 

algorithm. 

 

 
4.5.  CHAPTER CONCLUSIONS 

 
This sub-chapter is dedicated to briefly summarize the information present-

ed up to here during this chapter, together with the new contributions which are 
later supported by a list of disseminated publications. 

In the course of this chapter an optimization problem concerning the input 
membership functions of T-S fuzzy models has been initially described in Sub-
chapter 4.1. In Sub-chapter 4.2 a bibliographic research for optimal tuning of input 
membership functions of T-S fuzzy models was presented. 

A novel method to obtain discrete-time T-S fuzzy models dedicated to ABSs 
has been introduced in Sub-chapter 4.3. The models are based on SA-based optimi-
zation of T-S fuzzy models initially obtained by the modal equivalence principle. One 
of the advantages of the proposed solution is the ease of implementation for the 
obtained models, which can be further adapted to other categories of industrial ap-
plications. The drawbacks of this method are restricted to the arbitrary behavior 
introduced by the SA algorithm. 

In Sub-chapter 4.4 an approach to the fuzzy modeling of magnetic levitation 
systems is offered. This approach is based on the implementation of SA algorithms 
to optimize the parameters of T-S fuzzy models initially obtained in terms of the 
modal equivalence principle. A new T-S fuzzy model of a magnetic levitation system 
with two electromagnets laboratory equipment is offered. The new modeling ap-
proach is important because it is applicable with adequate but not complicated gen-
eralizations to a wide category of industrial applications. Similar other T-S fuzzy 
models can be obtained in order to be further used in the T-S fuzzy controller design 
and tuning. 
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The new contributions of this chapter are summarized as follows. 
 
1. A modeling approach that ensures the optimal tuning of a part of the pa-

rameters of the input membership functions of T-S fuzzy models is presented in 
Sub-chapter 4.1. The approach is based on the definition of an optimization prob-
lem, which is solved using nature-inspired optimization algorithms. 

 
2. An original approach to fuzzy modeling of Anti-lock Braking Systems us-

ing Simulated Annealing optimized variable parameters of input membership func-
tions is proposed in: 

R.-C. David, R.-B. Grad, R.-E. Precup, M.-B. Rădac, C.-A. Dragoş and E. M. 
Petriu, An approach to fuzzy modeling of anti-lock braking systems, in: Soft Compu-
ting in Industrial Applications, V. Snasel, P. Kromer, M. Koppen and G. Schaefer, 
Eds., Advances in Intelligent Systems and Computing, Springer International Pub-
lishing, Berlin, Heidelberg, vol. 223, pp. 83-93, 2014, indexed in Springer Link. 

 
3. An original approach to fuzzy modeling of magnetic levitation systems us-

ing Simulated Annealing optimized variable parameters of input membership func-
tions is described in: 

C.-A. Dragoş, R.-E. Precup, R.-C. David, S. Preitl, A.-I. Stînean and E. M. 
Petriu, Simulated annealing-based optimization of fuzzy models for magnetic levita-
tion systems, Proceedings of 2013 Joint IFSA World Congress and NAFIPS Annual 
Meeting IFSA/NAFIPS 2013, Edmonton, AB, Canada, pp. 286-291, 2013, indexed in 
Thomson Reuters Web of Science (formerly ISI Web of Knowledge or ISI Proceed-
ings). 

R.-C. David, C.-A. Dragoş, R.-G. Bulzan, R.-E. Precup, E. M. Petriu and M.-
B. Rădac, An approach to fuzzy modeling of magnetic levitation systems, Interna-
tional Journal of Artificial Intelligence, vol. 9, no. A12, pp. 1-18, 2012, indexed in 
SCOPUS. 

 
4. New discrete-time T-S fuzzy models for Anti-lock Braking Systems and for 

magnetic levitation systems, derived on the basis of the modal equivalence principle 
with rule consequents containing the state-space models of the local state feedback 
control system structures are proposed as initial fuzzy models, to be next optimized, 
in: 

R.-E. Precup, S. V. Spătaru, M.-B. Rădac, E. M. Petriu, S. Preitl, C.-A. 
Dragoş, R.-C. David, Experimental results of model-based fuzzy control solutions 
for a laboratory antilock braking system, in: Human-Computer Systems Interaction: 
Backgrounds and Applications 2, Part 2, Z. S. Hippe, J. L. Kulikowski and T. 
Mroczek, Eds., Advances in Intelligent and Soft Computing, vol. 99, Springer-Verlag, 
Berlin, Heidelberg, pp. 223-234, 2012, indexed in Thomson Reuters Web of Science 
(formerly ISI Web of Knowledge or ISI Proceedings). 

These contributions have the following advantages: 
1) They give solutions with relatively reduced degree of complexity. 
2) They have potential for generalization to a wide category of applications. 
3) The performance improvement of the T-S fuzzy models is demonstrated 

by experimental results using laboratory equipment. 
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5. NEW CONTRIBUTIONS, FUTURE RESEARCH 

DIRECTIONS AND DISSEMINATION OF RESULTS 

 
 

5.1.  NEW CONTRIBUTIONS 

 
The research direction of this thesis has been focused on the development of 

feasible solutions dedicated to the modeling and optimization of fuzzy control sys-
tems with reduced sensitivity. The rationale of this research is synthesized in the 
following concepts: 

� Optimization of T-S PI-FCs through minimization of various objective 
functions; 

� Computationally efficient control solutions by avoiding high complexity 
degree derivative calculations; 

� Reduced implementations costs for the proposed solutions; 
� Demonstration of control solutions’ potential in various experimental test 

environments; 
� Extensibility potential to other optimization problems. 
The new contributions presented in the course of this thesis, also pointed 

out in chapters 2, 3, and 4, can be summarized as: 
• New discrete-time state-space models of T-S PI-FCs characterized by 

the manipulation of the dynamics elements in the structure of these 
controllers such that to define two state variables; 

• New discrete-time state sensitivity models of fuzzy control systems with 
respect to two parameters of the controlled process represented by a 
class of nonlinear servo systems. The fuzzy control systems include T-S 
PI-FCs, and the class of nonlinear servo systems is structured as a series 
connection of second-order dynamics with an integral component, and 
saturation and dead zone static nonlinearity placed on the process input; 

• A novel design method dedicated to the simple T-S PI-FCs for servo sys-
tems with a reduced parametric sensitivity, namely with a reduced pro-
cess gain sensitivity and with a reduced process small time constant 
sensitivity. The design method ensures the parameter tuning of the 
fuzzy controllers by solving four types of optimization problems using 
nature-inspired optimization algorithms; 

• The original application of Simulated Annealing algorithms to solve four 
types of optimization problems such that to carry out the optimal tuning 
of the parameters of T-S PI-FCs dedicated to the control of a class of 
nonlinear servo systems; 

• The original application of Particle Swarm Optimization algorithms to 
solve four types of optimization problems such that to carry out the op-
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timal tuning of the parameters of T-S PI-FCs dedicated to the control of 
a class of nonlinear servo systems; 

• The original application of Gravitational Search Algorithms to solve four 
types of optimization problems such that to carry out the optimal tuning 
of the parameters of T-S PI-FCs dedicated to the control of a class of 
nonlinear servo systems; 

• The original application of a version of hybrid Particle Swarm Optimiza-
tion-Gravitational Search Algorithms to solve four types of optimization 
problems such that to carry out the optimal tuning of the parameters of 
T-S PI-FCs dedicated to the control of a class of nonlinear servo sys-
tems; 

• The original application of Charged System Search algorithms to solve 
four types of optimization problems such that to carry out the optimal 
tuning of the parameters of T-S PI-FCs dedicated to the control of a 
class of nonlinear servo systems; 

• A novel class of adaptive GSAs with improved exploration and exploita-
tions capabilities inspired by the 5E learning model used in education. 
The adaptive GSAs are developed around the basic version of GSA, and 
their three new functions are: 

o the adaptation of two depreciation laws of the gravitational con-
stant to the iteration index, 

o the adaptation of a parameter in the weighted sum of all forces 
exerted from the other agents to the iteration index, 

o the resetting at each run of adaptive GSA agents’ worst fitness’s 
and positions to their best values; 

• The original application of the new adaptive GSAs to solve four types of 
optimization problems such that to carry out the optimal tuning of the 
parameters of T-S PI-FCs dedicated to the control of a class of nonlinear 
servo systems; 

• A novel class of adaptive CSS algorithms with improved exploration and 
exploitations capabilities inspired by the 5E learning model used in edu-
cation. The adaptive CSS algorithms are developed around the basic 
version of CSS algorithms, and their two new functions are: 

o the adaptation of the acceleration, velocity, and separation dis-
tance parameters to the iteration index, 

o the substitution of the worst charged particles’ fitness function 
values and positions with the best performing particle data; 

• The original application of the new adaptive CSS algorithms to solve four 
types of optimization problems such that to carry out the optimal tuning 
of the parameters of T-S PI-FCs dedicated to the control of a class of 
nonlinear servo systems; 

• The definition of three original performance indices to assess the quality 
of nature-inspired optimization algorithms: 

o the average value of each objective function, 
o the convergence speed, 
o the accuracy rate; 

• The quality assessment of the performance of nature-inspired optimiza-
tion algorithms based on three original performance indices considering 
a certain number of runs (five in these thesis) of each nature-inspired 
optimization algorithm; 
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• The validation of all new results by simulations using the detailed fuzzy 
control system models and by experiments conducted on the real-world 
laboratory servo system. Simulation results are presented in all publica-
tions; 

• A modeling approach that ensures the optimal tuning of a part of the pa-
rameters of the input membership functions of T-S fuzzy models, based 
on the definition of an optimization problem, which is solved using na-
ture-inspired optimization algorithms; 

• An original approach to fuzzy modeling of Anti-lock Braking Systems us-
ing Simulated Annealing optimized variable parameters of input mem-
bership functions; 

• An original approach to fuzzy modeling of magnetic levitation systems 
using Simulated Annealing optimized variable parameters of input mem-
bership functions; 

• New discrete-time T-S fuzzy models for Anti-lock Braking Systems, de-
rived on the basis of the modal equivalence principle with rule conse-
quents containing the state-space models of the local state feedback 
control system structures are proposed as initial fuzzy models, to be 
next optimized. 

 

 
5.2.  FUTURE RESEARCH DIRECTIONS 

 
Starting with the new contributions presented in the previous sub-chapter, 

the research contained in this thesis, can be extended in the following future re-
search directions: 

• Extending the presented solutions to other sensitivity-based optimization 
problems in the time domain and frequency domain; 

• Fuzzy modeling of nonlinear dynamic processes by the parametric optimi-
zation using new nature-inspired algorithms; 

• Extending the fuzzy controller tuning approach by including stability condi-
tions; 

• Introducing and extending fuzzy logic in the tuning of nature-inspired algo-
rithms in order to limit the degrees of freedom represented by the free 
parameters; 

• Developing new solutions based on algorithm hybridization for alleviating 
the drawbacks encountered in standard versions; 

• Use of the proposed modeling approach in various industrial applications. 
• Extension of the modeling approach to the optimal tuning of the parame-

ters of the fuzzy models included in other modules of the fuzzy model 
structure (rule base, inference engine and/or defuzzification module). 
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5.3.  DISSEMINATION OF RESULTS 

 
The new contributions resulted from the research work presented in this 

thesis are included in the following publications list: 
 
1. R.-E. Precup, R.-C. David, E. M. Petriu, S. Preitl, M.-B. Rădac, Fuzzy con-

trol systems with reduced parametric sensitivity based on simulated an-
nealing, IEEE Transactions on Industrial Electronics, vol. 59, no. 8, pp. 
3049-3061, 2012, impact factor (IF) = 5.165, IF according to 2013 
Journal Citation Reports (JCR) released by Thomson Reuters in 2014 = 
6.500. 

Cited in: 

1. M. A. Hosen, A. Khosravi, S. Nahavandi, D. Creighton, Improving the 
Quality of Prediction Intervals through Optimal Aggregation, IEEE 
Transactions on Industrial Electronics, DOI: 
10.1109/TIE.2014.2383994, 2014, impact factor (IF) = 6.500, IF 
according to 2013 Journal Citation Reports (JCR) released by Thom-
son Reuters in 2014 = 6.500. 

2. A. Saleem, B. Taha, T. Tutunji, A. Al-Qaisi, Identification and cascade 
control of servo-pneumatic system using Particle Swarm Optimizati-
on, Simulation Modelling Practice and Theory, vol. 52, pp. 164-179, 
2015, impact factor (IF) = 1.050, IF according to 2013 Journal Cita-
tion Reports (JCR) released by Thomson Reuters in 2014 = 1.050. 

3. S. I. Han, J. M. Lee, Fuzzy Echo State Neural Networks and Funnel 
Dynamic Surface Control for Prescribed Performance of a Nonlinear 
Dynamic System, IEEE Transactions on Industrial Electronics, vol. 
61, no. 2, pp. 1099-1112, 2014, impact factor (IF) = 6.500, IF ac-
cording to 2013 Journal Citation Reports (JCR) released by Thomson 
Reuters in 2014 = 6.500. 

4. A. G.Yepes, A. Vidal, O. Lopez, J. Doval-Gandoy, Evaluation of Tech-
niques for Cross-Coupling Decoupling Between Orthogonal Axes in 
Double Synchronous Reference Frame Current Control, IEEE Trans-
actions on Industrial Electronics, vol. 61, no. 2, pp. 1099-1112, 
2014, impact factor (IF) = 6.500, IF according to 2013 Journal Cita-
tion Reports (JCR) released by Thomson Reuters in 2014 = 6.500. 

5. S. Blazic, On Periodic Control Laws for Mobile Robots, IEEE Transac-
tions on Industrial Electronics, vol. 61, no. 7, pp. 3660-3670, 2014, 
impact factor (IF) = 6.500, IF according to 2013 Journal Citation 
Reports (JCR) released by Thomson Reuters in 2014 = 6.500. 

6. J. M. Ojeda, J. M. Fuertes, E. Grisful, Holistic indices for productivity 
control assessment, applied to the comparative analysis of PID and 
fuzzy controllers within an Isasmelt furnace, IEEE Transactions on 
Industrial Informatics, vol. 10, no. 1, pp. 92-98, 2014, impact factor 
(IF) = 8.785, IF according to 2013 Journal Citation Reports (JCR) re-
leased by Thomson Reuters in 2014 = 8.785. 

7. H. Huang, Y. Jin, B. Huang, H.-G. Qiu, Mixed Replenishment Policy for 
ATO Supply Chain Based on Hybrid Genetic Simulated Annealing Al-
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gorithm, Mathematical Problems in Engineering, article number 
574827, 2014, impact factor (IF) = 1.082, IF according to 2013 
Journal Citation Reports (JCR) released by Thomson Reuters in 2014 
= 1.082. 

8. J.-C. Hung, Multichannel Time-Delay and Signal Model Estimation with 
Missing Observations, Circuits, Systems, and Signal Processing, vol. 
33, no. 1, pp. 257-274, 2014, impact factor (IF) = 1.264, IF accord-
ing to 2013 Journal Citation Reports (JCR) released by Thomson 
Reuters in 2014 = 1.264. 

9. D. Cai, Z. Zhuo, J. Wang, J. Wu, J. Tang, Distribution of thermo seeds 
in magnetic induction therapy based on the simulated annealing al-
gorithm, Qinghua Daxue Xuebao/Journal of Tsinghua University, vol. 
54, no. 2, pp. 153-158, 2014, indexed in SCOPUS. 

10. B. Xing, W.-J. Gao, Gravitational Search Algorithm, Chapter 22 in 
Innovative Computational Intelligence: A Rough Guide to 134 Clever 
Algorithms, Intelligent Systems Reference Library, vol. 62, Springer 
International Publishing, Cham, Heidelberg, New York, Dordrecht, 
London, pp. 355-364, 2014, indexed in Springer Link. 

11. F. Salem, E. H. E. Bayoumi, Robust Fuzzy-PID control of three-motor 
drive system using Simulated Annealing Optimization, Journal of 
Electrical Engineering, Vol. 13, Issue 3, 2013, pp. 284-292, indexed 
in SCOPUS. 

12. X.-H. Yan, G.-B. Cai, B. Ning, W. Shangguan, Research on multi-
objective high-speed train operation optimization based on differen-
tial evolution, Tiedao Xuebao/Journal of the China Railway Society, 
vol. 35, no. 9, pp. 65-71, 2013, indexed in SCOPUS. 

13. A. Biswas, K. K. Mishra, S. Tiwari, A. K. Misra, Physics-Inspired Op-
timization Algorithms: A Survey, Journal of Optimization, vol. 2013, 
article ID 438152, 16 pp., 2013. 

14. B. Yue, Z. Peng, Q. Zhang, A New Grouping Simulated Annealing Al-
gorithm, International Journal of Digital Content Technology and its 
Applications, vol. 7, no. 8, pp. 218-228, 2013. 

15. L. F. C. Figueredo, F. B. Cavalcanti, J. Y. Ishihara, G. A. Borges, 
Novel stabilization technique for the H∞ control of systems with 
time-varying input delay, Proceedings of 2013 American Control 
Conference ACC 2013, Washington, DC (USA), pp. 1739-1744, 
2013, indexed in Thomson Reuters Web of Science (formerly ISI 
Web of Knowledge or ISI Proceedings). 

16. S. Chang, Y. Wang, X. Wei, Optimal soft lunar landing based on dif-
ferential evolution, Proceedings of 2013 IEEE International Confer-
ence on Industrial Technology ICIT 2013, Cape Town, Western Cape 
(South Africa), pp. 152-156, 2013, indexed in Thomson Reuters 

Web of Science (formerly ISI Web of Knowledge or ISI Proceed-

ings). 
17. A. G. Yepes, A. Vidal Jano Malvar, O. Lopez, J. Doval-Gandoy, F. D. 

Freijedo, Ineffectiveness of orthogonal axes cross-coupling decou-
pling technique in dual sequence current control, Proceedings of 
2013 IEEE Energy Conversion Congress and Exposition ECCE 2013, 
Denver, CO (USA), pp. 1047-1053, 2013, indexed in Thomson 

Reuters Web of Science (formerly ISI Web of Knowledge or ISI 

Proceedings). 
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18. D. S. Chivilikhin, V. I. Ulyantsev, A. A. Shalyto, Solving Five Instanc-
es of the Artificial Ant Problem with Ant Colony Optimization, Pro-
ceedings of 2013 IFAC Conference on Manufacturing, Modelling, 
Management, and Control IFAC MIM '2013, Saint Petersburg (Rus-
sia), pp. 1077-1082, 2013, indexed in SCOPUS. 

19. F. Yao, Z. Dong, K. Meng, Z. Xu, H. Iu and K. Wong, Quantum-
Inspired Particle Swarm Optimization for Power System Operations 
Considering Wind Power Uncertainty and Carbon Tax in Australia, 
IEEE Transactions on Industrial Informatics, vol. 8, no. 4, pp. 880-
888, 2012, impact factor (IF) = 3.381, IF according to 2013 Journal 
Citation Reports (JCR) released by Thomson Reuters in 2014 = 
8.785. 

20. Y. J. Liu, Y. D. Xie, H. Wang, Fuzzy PID Control for Valve-Controlled 
Cylinder Hydraulic System, Applied Mechanics and Materials, vol. 
212-213, pp. 1244-1248, 2012, indexed in Thomson Reuters Web 

of Science (formerly ISI Web of Knowledge or ISI Proceedings). 
21. P. C. Shill, Md. F. Amin, M. A. H. Akhand, K. Murase, Optimization of 

interval type-2 fuzzy logic controller using quantum genetic algo-
rithms, Proceedings of 2012 IEEE International Conference on Fuzzy 
Systems FUZZ-IEEE 2012, Brisbane (Australia), 8 pp., 2012, in-
dexed in Thomson Reuters Web of Science (formerly ISI Web of 
Knowledge or ISI Proceedings). 

22. L.-O. Fedorovici, A comparison between two character recognition 
approaches, Facta Universitatis Series Automatic Control and Robot-
ics, vol. 10, no. 2, pp. 125-140, 2011. 
 

2. R.-E. Precup, R.-C. David, E. M. Petriu, M.-B. Rădac, S. Preitl, J. Fodor, 
Evolutionary optimization-based tuning of low-cost fuzzy controllers for 
servo systems, Knowledge-Based Systems (Elsevier Science), vol. 38, 
pp. 74-84, 2013, impact factor (IF) = 3.058, IF according to 2013 Jour-
nal Citation Reports (JCR) released by Thomson Reuters in 2014 = 
3.058. 

Cited in: 

1. P. Gil, C. Lucena, A. Cardoso, L. Palma, Gains Tuning of Fuzzy PID 
Controllers for MIMO Systems: A Performance-Driven Approach, 
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