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Rezumat,

In cadrul tezei sunt propuse diverse solutii pentru mode-
larea si optimizarea sistemelor de conducere fuzzy. Contributiile
cercetarii sunt reprezentate de: definirea problemelor de optimi-
zare a regulatoarelor fuzzy de tip Takagi-Sugeno cu sensibilitate
parametrica redusa, a problemelor de optimizare parametrica a
modelelor fuzzy de tip Takagi-Sugeno cu dinamica, noi algoritmi
inspirati din naturda aplicati in rezolvarea acestor probleme de
optimizare prin minimizarea a diverse functii obiectiv si rezultate-
le Tmbunatatite obtinute in urma aplicarii algoritmilor. Calitatea
rezultatelor obtinute este evaluatd prin prisma unor indicatori de
performanta originali. Solutiile propuse sunt validate experimen-
tal pentru trei echipamente de laborator: un servosistem neliniar,
un sistem anti-blocaj al rotilor si un sistem cu levitatie magneti-
ca.
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Fig. 4.3.2. Control signal u versus time, applied to real-world process and
to T-S fuzzy model: training data from 0 s to 100 s, validation data starting
with 100 s to 350 s.

Fig. 4.3.3. Real-time experimental results: wheel slip 2 versus time for ini-
tial T-S fuzzy model and for real-world process.

Fig. 4.3.4. Real-time experimental results: wheel slip 1 versus time for T-S
fuzzy model after optimization by SA algorithm and for real-world process.
Fig. 4.3.5. Objective function J versus iteration number . for validation

data set.

Fig. 4.4.1 INTECO magnetic levitation system with two electromagnets set-
up and block diagram.

Fig. 4.4.1. Control signal u as HAHF signal versus time, applied to real-
world process and to T-S fuzzy model in the training experiment.

Fig. 4.4.2. Control signal u as LALF signal versus time, applied to real-world
process and to T-S fuzzy model in the first validation experiment.

Fig. 4.4.3. Control signal u as LALFHAHF signal versus time, applied to real-
world process and to T-S fuzzy model in the second validation experiment.
Fig. 4.4.4. Real-time experimental results for training data: output versus
time for real-world process (solid), for initial T-S fuzzy model (dotted) and
for optimized T-S fuzzy model (dashed). FM indicates fuzzy model.

Fig. 4.4.5. Real-time experimental results for first validation data: output
versus time for real-world process (solid), for initial T-S fuzzy model (dot-
ted) and for optimized T-S fuzzy model (dashed). FM indicates fuzzy model.
Fig. 4.4.6. Real-time experimental results for second validation data: output
versus time for real-world process (solid), for initial T-S fuzzy model (dot-
ted) and for optimized T-S fuzzy model (dashed). FM indicates fuzzy model.
Fig. 4.4.7. Evolution of the objective function versus the iteration index in
the SA algorithm.
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1. INTRODUCTION

1.1 MOTIVATION BEHIND THE RESEARCH

A consistent way to achieve the performance specifications of fuzzy control
systems involves tuning the parameters of fuzzy controllers or fuzzy models with
the aid of defined optimization problems with variables matching those parameters.
The performance specifications are met by solving these optimization problems that
ensure the optimal tuning of fuzzy controllers and fuzzy models. This process may
lead to multi-objective optimization problems due to the complexity of the process
and controller’s structures and nonlinearities as the objective functions associated to
the optimization problems could be non-convex and non-differentiable.

For control systems, the performance indices are usually expressed as em-
pirical control system performance indices (e.g., overshoot, settling time, phase
margin, etc.). A common practice of achieving the desired performance specifica-
tions of fuzzy control systems is to define them through optimization problems
based on objective functions, which use as variables the tuning parameters of the
controller, with the appropriate constraints imposed. Optimal tuning parameters are
reached by solving these optimization problems, which, in most cases, implies the
minimization of the objective functions. The optimal tuning of fuzzy controllers is
applied in this thesis in the context of the above mentioned systematic way to de-
sign and tune these nonlinear controllers.

For the design and tuning of optimal control systems, idealized linear or lin-
earized models of the controlled processes are generally used. Nevertheless, indus-
trial processes are subjected to parametric variations of the controlled processes,
which can put the systems in undesired states or even unstable ones. In order to
avoid these situations, a sensitivity analysis with respect to the parametric varia-
tions of controlled processes is required and state sensitivity models with respect to
the variable parameters of the controlled process are derived. The parameters are
considered variable if the initial process models are nonlinear and next linearized
around several operating points in order to ensure the convenient and easily under-
standable controller design and tuning. The objective functions considered in this
thesis will include the output sensitivity functions in appropriate sensitivity models,
so optimal controllers with a reduced parametric sensitivity are offered because the
optimization problems are defined such that to minimize the objective functions.

Solving the optimization problems specific to the optimal tuning of fuzzy
controllers is a complex task due to the complicated expressions of the objective
functions and the risk of getting trapped in local minima situations. This depends on
the processes and on the fuzzy controller structures, with suggestive examples dis-
cussed in [Prei97], [Pre99], [Pre04], [Prei02], [Fen06], [Prei06], [Lin11], [Oh11],
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1.1 Motivation behind the research 17

[Prella], [Teol2], [Angl13], [Blal3], [Joel3], [Moh14]. In order to reduce the
computational cost for minimizing these objective functions nature-inspired algo-
rithms can be used due to their derivative-free characteristic. Additionally, the use
of these nature-inspired algorithms to optimally tune the parameters of fuzzy con-
trollers can offer the following advantages: reduced running costs, transparency in
the design, low-cost design and implementation, and gradient information replaced
by actual objective function value.

The first objective of the research carried out in this thesis is the optimal
tuning of fuzzy controllers using nature-inspired optimization algorithms. The opti-
mization problems are defined such that to include objective functions that ensure
the sensitivity reduction with respect to the parametric variations of the controlled
processes.

The problem of fuzzy modeling by means of Takagi-Sugeno (T-S) fuzzy
models has been approached in the recent literature. The models can be considered
in the general framework of fuzzy models for several processes [Joh10], [Vas10],
[Hab10]. Some representative applications will be discussed as follows. By analyzing
the braking process and the dynamic model of vehicle and wheel behavior, a T-S
fuzzy model of deceleration in proposed in [Zhel1l]. Using the computation of mini-
mum and maximum values of input variables and the local linearization at several
operating points, two discrete time dynamic T-S fuzzy models of Anti-lock Braking
System (ABS) processes are proposed in [Prel2c], based on the modal equivalence
principle [Gal95] and on the sector nonlinearity approach [Oht01].

A fuzzy neural network that contains sensor intelligence in order to estimate
the true gap in a range of temperature after training is suggested in [Yon11]. A lin-
ear T-S fuzzy model obtained using a linear self-constructing neural fuzzy inference
network applied to an optimal fuzzy controller is introduced in [Yu03] to model a
nonlinear magnetic bearing system. A design method of T-S fuzzy models for mag-
netic bearing of high-speed motors is described in [Wan10] in the context of parallel
distributed compensation controllers. An analysis concerning the stability of T-S
fuzzy control systems controlling Single Input-Single Output nonlinear time-varying
system is presented in [Prel1f].

The very good quality of T-S fuzzy models is necessary for both fuzzy mod-
eling and describing the dynamics and nonlinearities of nonlinear dynamic process-
es, and for getting simple models that are useful in the model-based design of fuzzy
controllers. Once the fuzzy models are obtained, several approaches are given in the
literature to improve their quality (i.e., performance) by optimally tuning the pa-
rameters of these models, on the bases of the appropriate definition of optimization
problems that target the minimization of objective functions in order to reduce as
much as possible the modeling errors.

Taking into account the structure of fuzzy models, several parameters of
each of the modules of these models can be optimally tuned: parameters from the
fuzzification module, parameters from the inference engine (including the rule base
and the rule antecedents of T-S fuzzy models), and parameters from the defuzzifica-
tion module. Applications on optimal tuning of fuzzy models concern the tuning of
the parameters of input membership functions in fuzzy control systems for general
nonlinear systems [Liu00], the optimization of the parameters in the rule anteced-
ents and consequents of Takagi-Sugeno fuzzy models [AIm10], the optimal tuning
of the rule base and of the parameters in the inference engine [Bod05], the optimi-
zation of the fuzzy rule base [Cab06], and the reduction of the rule base and infer-
ence engine of fuzzy controllers [Pir13].
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18 Introduction - 1

The second objective of the research carried out in this thesis is the opti-
mal tuning of the parameters of the input membership functions of the dynamic
fuzzy models of processes using nature-inspired optimization algorithms. The opti-
mization problems are defined such that to include objective functions that ensure
the reduction of the modeling errors towards the minimization of the objective func-
tions. The thesis will be focused on the optimal tuning of some parameters of the
input membership functions of T-S fuzzy models.

The latest solutions for solving optimization problems comprising parameter
tuning of fuzzy controllers and fuzzy models are built upon nature-inspired optimiza-
tion algorithms that include Simulated Annealing (SA) [Prellc], [Prel2b], Particle
Swarm Optimization (PSO) [Oh11], [Prel3a], Gravitational Search Algorithms
(GSAs) [Dav13], [Prel3b], Charged System Search (CSS) algorithms [Prel4c], ge-
netic algorithms [Oni12], Ant Colony Optimization [Chal2]. These solutions com-
prise both objectives of the thesis.

1.2 THESIS OVERVIEW

This thesis is organized in five chapters. A brief description of these chapters
is presented in the following section:

Chapter 1 contains the introduction in which the motivation for the pre-
sented research is described.

Chapter 2 introduces in the first part an original design and tuning method
for Takagi-Sugeno proportional-integral fuzzy controllers for nonlinear servo sys-
tems with a reduced parametric sensitivity. The class of nonlinear servo systems is
structured as a series connection of second-order dynamics with an integral compo-
nent, and saturation and dead zone static nonlinearity placed on the process input.

The design method ensures the parameter tuning of the fuzzy controllers by
solving four types of optimization problems, which constitute the goal of this thesis,
using nature-inspired optimization algorithms. The optimization problems are de-
fined along with their corresponding objective functions and the required constraint.
The rationale for employing nature-inspired algorithms for solving the optimization
problems contained by the proposed design method is supported by a bibliographic
research in the second part of the chapter.

In Chapter 3 nature-inspired algorithm based solutions are proposed for
solving the optimizations problems defined in the previous chapter. The seven algo-
rithms used here contain four standard algorithm versions of: Simulated Annealing,
Particle Swarm Optimization, Gravitational Search Algorithms and Charged System
Search; one hybrid algorithm based on Particle Swarm Optimization and Gravita-
tional Search Algorithm and two adaptive versions of Gravitational Search Algo-
rithms and Charged System Search algorithms which use parameter variations
based on a learning model. The implementation of these nature-inspired algorithms
is carried out according to the fourth step of the novel designh method dedicated to
the Takagi-Sugeno PI-fuzzy controllers described in Chapter 2.

The results corresponding to each of the optimization problems obtained as
a result of several simulation runs are synthetized with complete values of the opti-
mal controller tuning parameters and the minimum values of the objective func-
tions. Along with these simulation results, experimental results are presented, for
each proposed nature-inspired algorithm-based solution, in order to validate the
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1.2 Thesis overview 19

proposed method. The search process is portrayed for each solution by a number of
illustrations presenting the evolution of exploration agents. The quality of the ob-
tained results is evaluated using three original performance indices which assess the
convergence of the solution by monitoring the mean value of the objective function
during a number of algorithm runs, the average number of required algorithm steps
for convergence speed and an accuracy index to evaluate the precision of the solu-
tion.

Chapter 4 is dedicated to solving two optimization problems concerning the
input membership functions of Takagi-Sugeno models initially obtained by the modal
equivalence principle. The Takagi-Sugeno models are applied to two laboratory
equipment setups: an anti-lock braking system and a magnetic levitation system.
The modeling approach used in this chapter employs Simulated Annealing algorithm
to optimize the parameters of Takagi-Sugeno fuzzy models.

The proposed modelling approach is different to other approaches because it
starts with the first-principle mathematical model of the process and it offers a
strong advantage by the verification of the performance of the optimal Takagi-
Sugeno fuzzy models in terms of real-time experiments on two types of laboratory
equipment. Another important aspect of the proposed modeling approach is its ap-
plicability to a wide category of industrial applications with suitable generalizations
of reduced complexity degree. Although this modelling approach cannot guarantee
that the global minimum of objective functions is reached, a considerable decrease
of objective functions values was observed during the real-time experiments, clearly
indicating the performance improvement offered by the optimally tuned Takagi-
Sugeno fuzzy models.

Chapter 5 addresses three categories of problems by restating and synthe-
sizes the conclusions drawn in the previous chapters of this thesis and adding new
information. First, the new contributions proposed in this thesis are presented. Sec-
ond, the future research directions are pointed out. Third, the dissemination of re-
sults is offered, by giving the list of papers, their impact factors and indexing in sev-
eral international databases and by highlighting the independent citations of these
papers and the impact factors.
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2. PROBLEM SETTING CONCERNING THE OPTIMAL
TUNING OF FUZZY CONTROLLERS WITH A REDUCED
PROCESS PARAMETRIC SENSITIVITY

2.1. CONTROL SYSTEM MODELS, SENSITIVITY MODELS
AND DEFINITIONS OF OPTIMIZATION PROBLEMS

The fuzzy control system structure is presented in Fig. 2.1 as a set-point fil-
ter fuzzy control system structure derived from [Pre09a], where FC is the fuzzy con-
troller, P is the process, F is the set-point filter, r is the reference input (the set-

point), 7, is the filtered reference input, d is the disturbance input, y is the con-
trolled output, u is the control signal, e is the control error:

e=n-y, (2.1)

a=[a; a, .. amP]TeRmP is the process parameter vector with the ele-

ments a,, t=1.mp, which are the parameters of the process,

p=[p Py - pq]T eR? is the controller parameter vector with the elements
Py, y=1l..q, which are the tuning parameters of the controller and the filter parame-

ters can be included in this vector as indicated in Fig. 2.1, and the superscript T
indicates the matrix transposition. The fuzzy control system structure presented in
Fig. 2.1 belongs to the two-degree-of-freedom (2-DOF) control system structures.

Fig. 2.1. Structure of set-point filter fuzzy control system.

As shown in [Ara03], [Vis04], [Vrall], [Alal12], [Ghal2], [Hul2], [Iwal2],
[Kan12], [Pell12], [Szal2], [Vil12], [Kum13], the 2-DOF control system structures
(with PI and PID controllers) have an advantage over the one-degree-of-freedom
(1-DOF) control system structures by high performance in reference input tracking
and regulation in the presence of disturbance inputs. The main drawback of 2-DOF
linear controllers is that the overshoot reduction is paid by a slower response with
respect to the reference input. Several ways to introduce this additional block in
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2.1 Control system models, sensitivity models and definitions of optimization... 21

fuzzy control systems are presented in [Pre09a] and [Prella]. The introduction of
fuzzy logic in 2-DOF control system structures leads to improved control system
performance indices in both tracking and regulation; very good results in different
applications are reported in [Preil0], [Dralla], [Liul2], [Sil12], [Stil2a], [Sti12b],
[Prel3a].

This thesis will consider a crisp set-point filter F. The set-point filter can be
considered as a fuzzy logic block as well and accordingly designed and tuned, but
this will represent a direction of future research. Fig. 2.1 highlights the linear set-
point filter F, the fuzzy controller FC as a nonlinear system and the nonlinear pro-
cess P.

The process is represented by the Single Input-Single Output (SISO) dis-
crete-time state-space model [Prel3a]:

Xp(tg +1) =fpy(xp (1), a,u(ty),d(t;)),
Y(tg) =gpa(Xp(tyg).a,d(1q)), (2.2)
Xp(ta40) = Xpo>
where t,;, N is the initial time moment, ¢,, t; eN, t; 2t,,, is the discrete
time argument, xp=[xp; Xxp, .. xp,n]TeR" is the state vector of the process,
xpo €eR” is the initial state vector of the process, and the functions

fp, :R"™™*2 5R" and gp, :R"™"* 5 R are differentiable with respect to the pa-
rameter a,, r=1..mp. The state-space models presented in (2.2) is a nonlinear

model without direct feedthrough, and it can be obtained from a SISO continuous-
time state-space model accepting that the inputs v and d are changing at the dis-
crete sampling intervals, i.e., accepting the presence of the zero-order hold (ZOH).

The set-point filter is modeled by the following nonlinear SISO discrete-time
state-space model that can be also derived from a SISO continuous-time state-
space model:

Xp(tg +1) =1y (Xp(t4),p,7(14)),
1(ta) = &ra(Xp (12).0,1(14)), (2.3)
Xp(t40) = XFo»
where xp =[xp; Xp; .. xF’,,F]T eR"" is the state vector of the set-point fil-
ter and xp,eR" is the initial state vector of the set-point filter. The functions

fry ;R SR and g, ;R 5 R should contribute to the assurance of the

differentiability of state-space model of the fuzzy control system with respect to the
parameter a,, r=1..mp.

The fuzzy controller is characterized by the general nonlinear SISO discrete-
time state-space model:

XC(td + 1) = de (XC(td )a pae(t))a
ulty) = gca (Xc(ta),p,e(ta)), (2.4)
Xc(t40) = Xco>
where xc=[xc; xcp - xcﬂnC]TeR"C is the state vector of the controller,
Xco €R™ is the initial state vector of the controller. The functions fg, :R"™* 5 R"

and gc; ;R 5 R in the model (2.4) should also contribute to the assurance of
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22 Problem setting concerning the optimal tuning of fuzzy controllers with... - 2

the differentiability of state-space model of the fuzzy control system with respect to
the parameter «,, r=1..mp. Moreover, the convergence of the objective functions

requires that the controller should have an integral component in order to ensure
the zero steady-state value of the control error e for several types of disturbance
inputs.

The state vector of the process x,, the state vector of the controller x. and

the state vector of the set-point filter x, are grouped in the state vector of the con-
trol system x:

Xp
— _ T n+ne+ng
X=|Xc [=[x X3 o Xppgn, ] €RTTOTE,
Xr
. (2.5)
Xpy if v=1..n,
X, =y XCuoen» if v=n+l.n+nc, v=l.n+nc+ng.
XFonong if v=n+nec+l.n+nec+ng,

The state-space models (2.2) - (2.4) are merged using equations (2.1) and
(2.5). This leads to the following discrete-time state-space model of the fuzzy con-
trol system:
x(ty; +1)
fpa (Xp(ty), 0. 8ca X (tq)P 8ralXp (tg).p. 7 (tg)] = gpalXp(tg). 0, d(ty)]},d(ty))
= fea X (ta)s P 8ra [Xp (t2)s P, 7 (tg)] = g palXp(tg) 0, d(t4)]}
frg (Xp (t3),9,7(1g))

=1 (X(tg ), 0,07t d(t) = [/1(ta)  [2(td) o Frengsn, €I (2.6)
Y(tq) =gpa(Xp(ty),0,d (1)) = hpy (x(t4),0,d(t,)),
Xpo
X(t30) =| Xco |
XFo
where the functions £, RMTCTIE Mg grtnctng and

hpy : R™ctmetmetl g are differentiable with respect to the process parameter
o, t=1.mp.
The state sensitivity functions 4, ,, v=1.n+nc+np, and the output sensi-

tivity function o, are defined as follows [Ros00]:

0.

A v ={ﬂ} » Og ={ ¥ } ,v=l.n+nc+ng, t=l.mp, (2.7)
oa, .0 oa, 2.0

where the subscript 0 indicates the nominal value of the process parameter

a,, r=1..mp, which is subjected to variations. These variations justify the sensitivity

reduction and the design and tuning of fuzzy controllers with a reduced parametric
sensitivity.

Using equations (2.7) to calculate the partial derivatives in the model (2.6),
the state sensitivity models of the fuzzy control system with respect to the process

parameter o, r =1..mp, are:
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S A o (1)
ﬁ*a,,u (tg +1) = {|:—:| j’oz,,v (ta)}+ |:—:| >
; ax, a0 oa, a0
ou, (m)=2{{%} @,,mrm{%} , (2.8)
v=1 v a0 v a0

/’tar’u(tdo):o, v=1..n +}’lc +l’lF, T=l...mP.

The initial state variables are important in the analysis of the state sensitivi-
ty models (2.8).

The following discrete-time objective functions are defined to ensure the
sensitivity reduction with respect to the modifications of «,, r=1..mp:

i, ()= i{ez(rd,p) +(7a, ) [0g, (tg: )} T =1mp, (2.9)
;=0
J2a, (p)=iﬂe(rd,p)w(ya,)z[aa, (tg.M} 7=1.mp, (2.10)
t,=0
J3a, (p)=i{tde2(rd,p)+<ya,)2[aa, (tag.pI*} T=1.mp, (2.11)
t,;=0
Jia, (P) = i{rd |e(tq.p) | +(74,) [0, (tg-PI ), 7 =1mp, (2.12)
;=0

where y, ,7=1..mp, are the weighting parameters. The objective function
i, (P) IS referred to as the sum of squared control errors plus squared output sen-
sitivity function, the objective function J,, (p) is referred to as the sum of absolute

control errors plus squared output sensitivity function, the objective function
J3q (P) is referred to as the sum of squared control errors multiplied by time plus

squared output sensitivity function, and the objective function J,, (p) is referred to

as the sum of absoluter control errors multiplied by time plus squared output sensi-
tivity function. The vector variable of the objective functions p will be omitted in the

sequel in certain situations for the sake of simplicity.

The convergence of the objective functions defined in (2.9) - (2.12) requires
that the steady-state values of the functions in the right-hand terms should be zero.
Since the zero steady-state value of the control error e for several types of disturb-
ance inputs is guaranteed by controllers with an integral component, the zero
steady-state value of the output sensitivity function o, is also necessary.

In practical control problem solutions the sums in (2.9) - (2.12) should be
truncated such that to capture all transients of the fuzzy control systems during the
time horizon. The time horizon should include the moments when the objective
functions reach their steady-state values. The upper limit of the sum depends on the
dynamics of the particular process under consideration.

The minimization of the objective functions defined in (2.9) - (2.12) aims
the sensitivity reduction, and it is expressed in terms of the optimization problems:
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p* = argmin Jy, (p), 7=1.mp, (2.13)
peD, i

p* = argmin J,, (p), 7 =1..mp, (2.14)
peD, i

p* = argmin J3, (p), 7 =1..mp, (2.15)
peD, :

p* = argmin Jy, (p), c=1..mp, (2.16)
peD, ‘

where p" is the optimal controller parameter vector, i.e., the optimal value
of the vector p, and D, is the feasible domain of p . Several constraints including

the stability of the fuzzy control system can be imposed and expressed by means of
D, . Such constraints can be expressed as several stability conditions that are de-

rived generally for nonlinear systems [Pas04], [Dan05], [Pre06a], [Pre07], [Bla10],
[Hot10], [Li10], [Blal1], [Vil13], or specifically for fuzzy control systems with
Mamdani fuzzy controllers [Pre97], [Sug99], [Pre06b], [Liul0b], or with Takagi-
Sugeno fuzzy controllers [Skr05], [Fen06], [Pre09c], [Prella], [Prel3e], [Chal4],
or they can account for various regimes of the control systems [Car05], [Fil08],
[Fil09], [Dan11], [Wan12b], [Fer13], [Hus13], [Corl4], [Wul4].

This thesis will consider only the output sensitivity functions in the objective
functions (2.9) - (2.12). The state sensitivity functions can be considered as well,
and this represents a direction of future research.

Let the process as part of servo systems be characterized by the following
nonlinear continuous-time time-invariant Single Input-Single Output (SISO) state-
space model which defines a rather general class of servo systems:

-1, if u(t) <-uy,
MO U e <u(t)<—u,,
Uup —U,
m(t) = 0, if —u, u@®)|<u,,
MOy () <uy,
Up —Uqy
1 ifu(t)=uy,
0 1 0 1
Xp(t)= t t d(1), 2.17
xp (1) L) —l/TJXP(){kP/TJm(){O} () ( )

y@)=[1 0]xp(),
where t is the continuous time argument, reR, >0, kp is the process
gain, Ts is the small time constant, the control signal u is a pulse width modulated

duty cycle, and m is the output of the saturation and dead zone static nonlinearity
specific to the actuator. The nonlinearity is modeled by the first equation in (2.17)
with the parameters u,, u, and u., with 0<u, <u;, O<u,<u,. The state-space

model (2.17) includes the actuator and measuring element dynamics. The state
vector xp(¢) is expressed as follows in (angular) position applications for n=2:
Xp(0)=[xpy (1) xpa2 (0] =[a(t) @®]", (2.18)
where «(¢) is the angular position and () is the angular speed. The pro-
cess structure is illustrated in Fig. 2.2.
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i 5

1P
ke
Fig. 2.2. Structure of process with saturation and dead zone static nonlinearity.

The nonlinearity in (2.17) is neglected in the following simplified model of
the process expressed as the transfer function P(s):

P(s) = kgp [s(1+ Tys)] . (2.19)

This transfer function is considered for u as input and y as output. The
equivalent process gain is kgp :

kp

, i —uy <u(t) <-u,,
kpp =410 He (2.20)

k .
P ifu, <u(t)<u,.
Up —Ug

Therefore, P(s) can be used in the controller design and tuning in two cases

out of the five cases concerning the nonlinearity in (2.17).
The process models (2.17) and (2.19) can be employed in the control de-
signs of servo systems in various applications accepting that the parameters &, and

Ts depend on the operating point. Therefore, the design of control systems with a
reduced parametric sensitivity with respect to kp and Ty is justified. In this con-
text, mp =2, and the process parameter vector obtains the following particular ex-

pression in the design of control systems with a reduced process parametric sensi-
tivity for this class of servo systems:
a=[a; ), o =kp, ay=Ts. (2.21)
As shown in [Ast95], [Prei99], [Pre09a], the PI controllers can cope with the
process modeled in (2.19) if they are inserted in 2-DOF linear control system struc-
tures as that shown in Fig. 2.1 with a PI controller instead of FC. The transfer func-
tion of the PI controller is:

1+sT; 1
C)=k,(—)= kc(l+—T ), kc =k T3, (2.22)
N S1;

where £k, is the controller gain and 7; is the integral time constant. The PI

controllers can be tuned by the Extended Symmetrical Optimum (ESO) method
[Prei99] to guarantee a desired compromise to the performance specifications (i.e.,
maximum values of control system performance indices) imposed to the control
system using a single design parameter referred to as g, with the recommended

values within 1< <20. The diagrams presented in Fig. 2.3 can be used in setting
the value of the design parameter g and, therefore, the compromise to the control
system performance indices expressed as percent overshoot o, [%], settling time ¢,
and rise time ¢, .
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Fig. 2.3. Control system performance indices with respect to reference input versus
design parameter g in the ESO method.

The PI tuning conditions specific to the ESO method are:
ke =V(BB kip T3). Ty =BTy ke =1/GB kgp Ty) - (2.23)
Fig. 2.3 is important because both possible values of k., according to

(2.20) should be used in setting certain values of g which ensure the fulfillment of

the performance specifications imposed to the control system. A simple version of

set-point filter which ensures the performance improvement of the linear control

system by the cancellation of a zero in the closed-loop transfer function with respect
to the reference input is:

F(s)=1/(1+ BTss) . (2.24)

The Takagi-Sugeno PI-fuzzy controllers (T-S PI-FCs) are designed starting

with the linear PI controllers such that to ensure the further improvement of the

control system performance indices for the nonlinear process modeled in (2.17). The

structure and the input membership functions of a simple T-S PI-FC are presented in

Fig. 2.4, where ¢! is the backward shift operator.

elfy)

J'lu I:-fd‘:]= 1 Lt Efdj

Aelg) || TIO-FC

B, 01 B, e':fdjr
_B_{llg Bﬂg .ﬂ';él:fd:]
Fig. 2.4. Structure and input membership functions of Takagi-Sugeno PI-fuzzy con-
troller.

More membership functions can be defined but they complicate the rule
base. One solution to deal with such situations while focusing on the design of sim-
ple fuzzy controllers is represented by fuzzy rule interpolation [Bar95], [Bar96],
[Koc97], [YamO06], [Joh10].
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Fig. 2.4 points out the increment of control error Ae(t;)=e(t;)—e(t; —1) and
the increment of control signal Au(zy)=u(t;)-u(t; —1) . These increments offer the

dynamics of the T-S PI-FC and they result from discretizing the continuous-time PI
controller. Tustin’s method leads to the incremental form of the discrete-time PI
controller:

Au(ty)=K p[Ae(ty)+ pmey)], (2.25)
and to its parameters:
Kp=k (T L 27T (2.26)
P~ c(i_z)aﬂ_ZTi_Tsl .

where T, is the sampling period set in accordance with the requirements of

quasi-continuous digital control [Ise89].
The Two Inputs-Single Output fuzzy controller (TISO-FC) block presented in
Fig. 2.4 is characterized by the weighted average method in the defuzzification
module, and by the SUM and PROD operators in the inference engine. The rule base
of the TISO-FC block is formulated as the decision table presented in Table 2.1, and
the consequents of the fuzzy control rules are modeled by means of the two func-
tions:
Jertq) = K plAety)+ pety)), foa(ta) =1 fer(ta) - (2.27)
The parameter n is introduced in (2.27) to reduce the overshoot of the
fuzzy control system when e(z;) and Ae(t;) have the same signs. Fig. 2.4 and Table
2.1 point out the tuning parameters of these simple T-S PI-FCs: g (for the linear
part of the controllers design), and B,, B,, and n (for the fuzzy part of the control-

lers design).

The rule base presented in Table 2.1 can be formulated such that to contain
only two rules because the tuning of simple T-S PI-FCs is targeted. The simplicity is
ensured by the reduced number of input membership functions shown in Fig. 2.4, by
the symmetry of the rule base and by the simple design method dedicated to T-S
PI-FCs.

Table 2.1. Decision table of TISO-FC block.

Ae(t) e(t)
N ZE P
P Au(ty) = fe1(tg) Au(ty) = fe1(tg) Aultyg) = fea(ty)
ZE Au(ty) = fe1(tg) Au(ty) = fer(tg) Au(ty) = fe1(tg)
N Au(ty) = fea(ta) Au(ty) = fer(tq) Au(ty) = fer(tq)

The modal equivalence principle [Gal95] results in the following tuning
equation, which reduces the number of tuning parameters of the T-S PI-FC:
Bpr,=uB,. (2.28)
The application of the ESO method and of the modal equivalence principle
yields only three tuning parameters for the T-S PI-FCs, ¢ =3. These parameters are
included in the controller parameter vector involved in the optimization problems
defined in (2.13) - (2.16):
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p=lpr P2 P31 P1=PB pr=B. p3=1. (2.29)
The desigh method dedicated to the simple T-S PI-FCs with the previously
defined structure consists of the following steps that result in the optimal controller

parameter vector p° obtained by nature-inspired algorithms:

Step 1. Apply the ESO method to tune the parameters of continuous-time
linear PI controllers, set the sampling period, apply Tustin’s method that leads to
(2.26), derive the state sensitivity models with respect to kp and Ty, and insert the

sensitivity models in the fuzzy control system structure involved in simulations and
experiments in order to evaluate the objective functions.
Step 2. Set the weighting parameters y, , r=1..mp, the objective functions

defined in (2.9) - (2.12), to meet the performance specifications of fuzzy control
systems, set ¢, to replace infinity in (2.9) - (2.12) such that the finite time horizon

includes all transients of the fuzzy control systems until the objective functions
reach the steady-state values, and set the feasible domains D, to include all con-

straints imposed to the elements of p.

Step 3. Map the optimization problems (2.13) - (2.16) onto the nature-
inspired algorithms.
Step 4. Apply the nature-inspired algorithms that give the optimal parame-

ter vector p° and the optimal parameters:
p=lp ) s B =p B =0 0 =5, (2.30)
and next the following tuning condition obtained from (2.28) using (2.23)
and (2.26) for the optimal controller parameters:
B\ T g (2.31)
Aeizﬂ*Tszs e .
Several details concerning the application of this design method will be pre-
sented as follows. These details represent also the preparation for the implementa-
tion of the nature-inspired algorithms involved in the steps 3 and 4.
Accepting that the inputs u and d are changing at the discrete sampling in-
tervals, the following discrete-time state-space model of the process is obtained
from (2.17):

—1, if u(td)é—ub,
u(ty)+u, .
— =, if —uy <u(ty)<-u.,
Mb —Mc
m(ty)= 0, if —u, Suty)Lu,,
W) ZUa ey )<y,
Up —Uqy
1, ifu(ty)=uy,
TS
xpi(tg +D)=xp; ;) + 15[l —exp(—T—)]XP,z(td)
b
T.
+kp[T, +Tx exp(—T—S)—Tz]m(td)+Tsd(td), (2.32)
b

xpalty +1)= [exp(—%)]xp,z(rdn kpll- exp(—%nm(m,
> >

Wtg)=xp (tg).
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The state-space model (2.32) is a particular expression of the state-space
model (2.2). The discretization of the process model given in (2.17) is done such
that the models (2.17) and (2.32) should exhibit the same response at the discrete

time moments defined by the discrete sampling intervals. The choice of 7 depends
on the time constant(s) of the process, and it should fulfill, as mentioned before, the
conditions of quasi-continuous digital control.
The derivation of the state-space model of the T-S PI-FC is supported by the
definition of the state variables x-; and x¢;:
xc(tg) =ulty —1),
xca(tg) =elty —1).
These two state variables (n. =2 in the general state-space model (2.4))

are highlighted in Fig. 2.5. Fig. 2.5 and (2.33) are used in the derivation of the fol-
lowing discrete-time state-space model of the T-S PI-FC:

xei(tg +1) =xc1(tg)+ freleltg).elty) —xc(tq)),
xcpltyg +) =e(ty), (2.34)
u(ty) =xc1(tq)+ frelelty)selty) —xc(tq))s

where the nonlinear input-output map of the TISO-FC block is:
frc iR 5 R, fre(elty).Aclty)

(2.33)

(2.35)
= fre((tq) —xpi(tg)r(tq) —xpi(tq) —xc2(tq))-
The state-space model (2.34) is a particular expression of (2.4).
e — Aulty) ()
- Ly f
Lt éﬁ.e(fdj TISO-FC | =4 2
2 x,g,g':f.-z’:'_ ul:fd-—l:l 1
g

%o (85
Fig. 2.5. Equivalent structure of Takagi-Sugeno PI-fuzzy controller.

Introducing the state variable of the filter x;, the continuous-time state-
space model of the set-point filter with the transfer function defined in (2.24) is:

. 1 1
Xp(t) = *(ﬂ_Tz)xF (0)+ (ﬂ_rz)r(t)’ (2.36)

1) =xp (1),
because nj, =1 in (2.3). Accepting again that the inputs v and d are chang-

ing at the discrete sampling intervals, the following discrete-time state-space model
of the set-point filter results from (2.36):

T T.
xp(ty +1)=exp(- 5 }2 )xp (1) +[1-exp(= A }2 Nr(ta), (2.37)

n(tq)=xp(ty).
The state-space model (2.37) is a particular expression of (2.3).
The state vector x of the control system is next obtained by merging the
state variables of the process, of the T-S PI-FC and of the set-point filter:
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T T T T T
X:[Xl Xy X3 X4 XS] :[XP Xc XF]:[XP,I ijz xC,l xC,Z XF] . (2.38)

Equation (2.38) is a particular expression of equation (2.5) for
n+nc+np =24+2+1=5.
Using the control system structure given in Fig. 2.1, the equations (2.32),
(2.33) and (2.37), and the notations defined in (2.38), the expression of e(z;) and
Ae(t;) are:
e(ty)=n(tg)—x1(tg)=xs5(4)—x1(t),
Ae(tg)=e(tyg)—elty —1)=xs5(t4) —x1(tg) —x4(tg).
The expression of the control signal results from (2.34) and (2.39):
u(ty)=x3(tg)+ fre(xs(tyg) —x1(tg),x5(tg) — x1(tg) = x4(tg)) - (2.40)
The state-space models of the process, of the T-S PI-FC and of the set-point

filter expressed in (2.32), (2.34) and (2.37), with the set-point filter considered for
the nominal process parameter Ty, are next merged using (2.39), (2.40) and the

control system structure given in Fig. 2.1. Therefore, the discrete-time state-space
model of the fuzzy control system is:

(2.39)

T
xi(tg +1) = x(ty) + Tx[1- eXp(—T—S)]xP,z(fd)

b
+Tyd(tg) + kplT, + Ty exp(—) =T (2.41)
b
*1, ifu(td)Sfub,
x3(g) + fre (s (tg) = X1 (14), X5 (1q) = 1 (1q) — x4 (tg)) + u, i —uy <u(ty) < -u
, s
ub—uc
0, if—u, < ulty) < u,,
X3(tg) + fre(0s(tq) =0 () Xs(tq) = 0 (tg) = X4 (tg) ~ttq 1 <ult;)<u
up—u, ; a a) <Ups
1, ifu(td)Zub,

x(ty +1) = [exp({—snxz(rd) +hpll— exp(f%)]

s >
—1, if u(td)s —Uup,
x3(td)+fFC(x5(td)_XI(Z))a_xflitd)_xl(td)_x4(td))+”c, i~y <uty) <—u,, (2.42)
0, it —u, < ulty) < uy,
() + fre(xs(ta) =0 (0) Xs(ta) =0 () = X4 (tg) ~tta 1o <ulty) <up
up —u,
’ 1, ifu(ty) 2 up,
x3(tg + ) =x300)+ fre(xs(tg) —x1(tg), x5 () = x1(tg) — x4 (t2)) 4 (2.43)
x4ty + D) =x50,)—x1(14), (2.44)
5t +1) =P as(eg) - exp ), (2.45)
Wtg)=x(1q) (2.46)

Using the formulas (2.8) in the state-space model (2.41) - (2.46) for con-
stant inputs of the control system, viz. r() =7y =const and d(¢t)=d, =const, the dis-

crete-time state sensitivity model of the fuzzy control system with respect to %, is:
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Ty
A g +1) =24 1(1g)+Txoll —eXP(—T—)]/ikP,z(fd)
0
TS
+[Ts + T35 eXP(—T—)—Tzo]
%0
—1, ifu(td)é—ub,
x30(tg) + fre(xs0(tq)
_xlO(td)aXSO(td)_xlo(td)_x40(td))+”c’ if —uy <uty) < -u,,
Up —Ue
0, if —u, u(ty)<Lu,,
x30(tg) + frc(xs0(tq)
—Moﬁdlxm(w)—XmUd)—MmUdD—“a, ifu, <u(ty)<uy,
Up —Uy
1, ifu(td)Zub,
T.
+kpolTy +Txg exp(———) =Tz ]
Tsy
O’ ifu(td)é—ub,
S rctq)
A t)+| ——21 (4 t;))—A t
kp3a) { delt,) 0( ep,5(ta) =2, 1(ta))
0 t
| DD | G )=, 1), 400D
aAe(ta') 0 .
, it —uy <u(ty)<-u,,
Up —ue
0, if —u, <ulty)|<u,,
S rctq)
A t)+| ——21 (14 t;))—A t
kp3a) { delt,) 0( ep,5Ea) =2, 1(ta))
0 t
{W} (i ) = Ay 100) = 2y 4 (1)
dhe(ty) |, .
, ifu, <u(ty)<uy,
Up —u,
0, if u(ty)=up, (2.47)
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TS TS

A, 2 (tg +1) =[exp(——) My, 2 (tg) +[1—exp(——)]

Tyo Tso

—1, ifu(td)S—ub,
x30(tq) + fre(xs0(tg)
—Xlo(fd),xso(fd)—Xlo(fd)—x40(fd))+uc, i~y <ulty)<-u,,

Up —U,

0, if —u, Ju(ty)ILu,,
x30(tq) + fre(xso(tq)
_x10(td)ax50(td)_xlo(td)_x40(td))+“c’ i, <uty)<up,

Up —Ug
1, ifu(td)Zub,
T
+kpoll—exp(— TS )]
0
0, ifu(td)S—ub,

S rcta)
A t)+| ———4 | (4 ti)—A t
kp3a) { 2e(t,) 0( kp,5(Ea) = Ak, 1(80))

+{ach (ta)

6Ae(td) :|O(ﬂ’k1"’5 (td)_ﬂ’kp,l(td)_lkp’él_(ld ))

, if —uy <u(ty)<-u,,
Up —Ue
0, if —u, <ulty)<u,,
Of - (t
fFC(d)} G 5(t) =2, 1(t0)
0

4@,,3(%){ delty)

+{ach (ta)

dhe(ty) :|0(lkp°5(td)_/Ikp,l(td)_/lkpA(td)) (2.48)

,  ifu, <u(ty)<uy,

Up —Uy

0, ifu(ty)=uy,

ISrcta)
Oe(ty)

App3 g +D) =2, 3(t5) +{ } (A, 5q) = 24,1 (g))
0

(2.49)

0
+ HZE—(%)L%@,S (ta) = A1 (ta) = A4, 4(10)),
Apaa +1) = A, s(tq) = A, 1(8a) (2.50)
T.
A, 5(tg +1) :eXp(—ﬂZfzo Wi, 5(ta) (2.51)
Oy (tg) = A, 1 (1) (2.52)

and the discrete-time state sensitivity model of the fuzzy control system
with respect to Ty is:
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T.
A (g D) =27, 1(1g)+ Txoll - eXP(*T—S)]/iTE 20)
0

TS 7’.’5‘ TS 7’.’5‘ TS
+[1-exp(- T )_(E) exp(— T Mo (tq) +kpol( T )exp(— T )-1]
-1, ifu(ty)<-uy,
x30(tg) + fre(xs50(tq)
—x10(tq)> Xs50 (tq) = %10 (Lq) = X9 (14)) + 1, if —uy <u(ty) <,
Up —u,
0, if —u, Ju(ty)|Lu,,
x30(tg) + frc (xs0(tq)
—x19(tg),%50(tq) = X190 (Fg) — %40 (14)) — 1ty L ifu, <ulty)<up,
Up —uy
1, if u(ty)>uy,

T
+kpolTy + Ty exp(——) —Tx]
Tsq

0, ifu(td)é—ub,

ﬂrz,gad){%c”‘”} (G s(ta) =2, 1 t0)
delty) |

of
+ {gzs((tfd)) } (Ar, 5(q) = A, 1(Eq) = A1y 4(1g))
47 Jo , if —uy <u(ty)<-u,,
Up —ue
0, if —u, <ulty)|<u,,
0

zrz,gad){’;ifgﬂ (Ary 5(ta) Az, 1(2)

0

of
+|ig£§((ttdd)):|0(/1]‘z’5(td)iTZ’l(td)}sz,“(td))

N ifua<u(td)<ub,
Up —Uy

0, if u(ty)=up, (2.53)
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T T. T
A, 2 (tg +1) =[exp(——) Az, 2 (tg) +(—)exp(——)]xz0(tg)
Ty Tso Tsq
T T.
—kpo(—)exp(-——)]
U5 Txo
—1, ifu(td)s—ub,
x30(tg)+ fre (x50 (1q)
_xlo(td)aXSO(td)_xlo(td)_x40(td))+”c’ if —u <uty) <,
Up —u,

. 0, if —u, Ju(ty)|Lu,,
x30(tg)+ fre(xso(tg)
_xlO(td):XSO(td)_xlO(td)_x4O(td))_ua’ i u, <u(ty)<uy,

Up —Uy
1, ifu(td)Zub,
T.
+kp0[l—exp(—TS )]
0
O, ifu(td)é—ub,
S rctq)

/ITE,S(td)‘F|: } (A1, 5a) =27, 1(14))
0

de(ty)

Of re(t
+|:m:| (ﬁTZ’S(td)_ﬁTz,l(td)_ﬁ“TzA(td))
— iy <ulty) <,
Uy —U,
0, if —u, Juty)|<uy,
ISrclta)

/ITE,S(td)‘F|: } (A1, 5a) =27, 1(14))
0

Oe(ty)
+{achad)

aA@(l‘d) :|0(/1T2,5(td)_ifz’l(l‘d)—}bTZA(td))

, ifu, <u(ty)<up,

Up —Uy
0, if u(ty)=up, (2.54)
0
300+ = gy 5000+ {%} (i 5(04) = A1 00)
e(ty) |,

N (2.55)

+ {—8250:) LMTZ,S (ta) = A, 1 (tq) = Ag, 4 (4)),
Ara(tq + 1) =Ag 5(14) = A7, 1 (14) (2.56)

T,

Ar, 5(tg + D) =exp(-—=—)z,_ s5(ty), (2.57)

1y.,5a exp T A, 5(ta
or, (tg) = A7, 1(tq) (2.58)

where the nominal control system trajectory is set by the state vector
Xo(ty) =[x1(ty) x2(tg) x3(ty) x4(t5) xs5(ty)]" €eR>. The subscript 0 in (2.47) - (2.58)

indicates not just the nominal trajectory of the fuzzy control system, i.e., the trajec-
tory for the nominal values of the process parameters kp, and 75 but also the nom-

inal values of kp and Ts .
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Since the discrete-time state-space model of the fuzzy control system given
in (2.41) - (2.46) is not differentiable with respect to the process parameters kp

and Ts because of the nonlinearity of the process and of the structure of the T-S PI-
FC, the state sensitivity models (2.47) - (2.52) and (2.53) - (2.58) are not defined
at the break points u(t;)=-u,, u(ty)=-u,, ulty)=u, and u(t;)=u, . Therefore, the
closed intervals in (2.47), (2.48), (2.53) and (2.54) should be replaced by open
intervals. The closed intervals are actually used in practical implementations in order
to obtain values of the state sensitivity functions at those points.

The structure of the T-S PI-FC does not ensure the differentiability of the
function fr- with respect to e and Ae. This is not a problem because the nature-
inspired algorithms are in fact derivative-free optimization algorithms. The following
finite difference formulas are applied to carry out the numerical differentiations that

U rc (m} and {affc (ta)
0

lead to the estimated derivatives { } which are used in the
0

de(ty) OAe(ty)
implementation of the state sensitivity models:
ty)—f ty —1 .
Fect)] Srco(ta) = frco(ta )) if eg(tg) % e (g ~1), (2.59)
66‘(1 ) ~ eO(td)_e()(td _l) . *
d 0 0, lf@o(td)zeo(td—l),

Frclts) Jrcota) = freoty =1)

S | T Aepty)—Aeg(ty —1)
{ OAe(ty) L 0, if Aeg (1) = Aeg(ty —1).
The formulas given in (2.59) and (2.60) are justified because of the quasi-
continuous digital control design and implementation of the T-S PI-FCs.
The dynamic regimes considered in solving the optimization problems (2.13)
- (2.16) by nature-inspired algorithms are characterized by the step-type modifica-

tion of magnitude 7, of the angular position reference input. These regimes employ

. if Aeg(ty) # Aeg(ty —1), (2.60)

the initial state vector which sets the initial point of the nominal fuzzy control sys-
tem trajectory that is set to the origin of the state-space x,(0)=[0 0 0 0 0]' eR’.

Other dynamic regimes characterized by different modifications of the reference
input and/or of the disturbance input yield similar results but different controller
tuning parameters.

The design method and the nature-inspired algorithms are applied to the
design of T-S PI-FCs for a case study that deals with the angular position of the ex-
perimental setup built around a DC servo system laboratory equipment [Int07b].
The experimental setup is illustrated in Fig. 2.6 and in Fig. 2.7. An optical encoder is
used for the measurement of the angle and a tacho-generator for the measurement
of the angular speed. The speed can also be estimated from the angle measure-
ments. The PWM signals that are proportional with the control signal are produced
by the actuator in the power interface. The main features of the experimental setup
are [Int07b]: rated amplitude of 24V, rated current of 3.1A, rated torque of
15Ncm, rated speed of 3000 rpm, and weight of inertial load of 2.03kg. The nominal

values of the parameters of the process model given in (2.17) and (2.20), obtained
by a least squares algorithm, are u, =0.15, u, =1, u,.=0.15, kpy =kgpy =140, and

TZO =0.92s.
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Powrer
Intetface
FRE D f 3
r—-—=71T - =7~ Fotentiometer |
| Tacho ¥ Backlash Wheel |

I DC motor mes Load 4} ®_|
| Encoder l

Fig. 2.7. Experimental setup in the Intelligent Control Systems Laboratory of the
Politehnica University of Timisoara.

The weighting parameters in the objective functions (2.9) - (2.12) were set
such that to obtain a ratio of {0, 0.1, 1, 10} of the initial values of the first and sec-
ond terms in the sums. The following values were obtained and used in the case
study:

- for Jy,(p):
(74,)° €1{0,0.0021357,0.021357,0.21357} , (2.61)

- for Jyz (p):
(7,)* €1{0,0.17187.1.7187,17.187}, (2.62)

- for ok, (P)
(74,)” € {0,0.006858,0.06858,0.6858}, (2.63)

- for oz, (P):
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(7z,)* €{0,0.0066695,0.066695,0.66695} , (2.64)

- for Js;, (p) :
(74,)° €10,3.9187,39.187,391.87}, (2.65)

- for J3z (p) :
(7,)” €1{0.3.8693,38.693,386.93} , (2.66)

- for Ju,(p):
(74,)° €10,0.142,1.42,14.2} , (2.67)

- for Juz (p):
(7,)* €{0,0.15885,1.5885,15.885} . (2.68)

The variables of the objective function were initialized taking into considera-

tion the following boundaries which define the search domain Dy, which is also the
feasible domain of p :

D, ={f13< f<1Tyx{B, |20< B, <40} x {]0.25< 77 <0.75} . (2.69)

The nature-inspired optimization algorithms presented in the next chapter
were run for the dynamic regimes characterized by the r =7, =40 rad step type mod-

ification of the reference input and zero disturbance input, d =d;,=0.

In order to guarantee the stability of the fuzzy control systems for every po-
tential solution belonging to the search domain D, with the obtained fuzzy control-

ler tuning parameters, an additional inequality-type constraint is enforced in order
to ensure the convergence of the objective function:

|¥(ta)=r(ta) € 2y | 7(tg) =r(t0)] - (2.70)

where ty is the initial time moment, t; is the final time moment, and &, =0.001

for a 2% settling time. The condition (2.70) is checked in steady-state regimes, so
theoretically ¢, >« as shown in (2.9) - (2.12), but ts takes practically a finite value

to capture the transients in the fuzzy control systems’ response. The condition
(2.68) guarantees the stability of the fuzzy control systems, and it also ensures the
zero steady-state control error.

2.2. STATE-OF-THE-ART ANALYSIS FOR THE OPTIMAL
TUNING OF FUZZY CONTROLLERS BASED ON NATURE-
INSPIRED ALGORITHMS

Nature-inspired algorithms proved to be successful solutions to optimization
problems in many applications [Che08], [Jaj11], [Kav13a], [Pan13]. Optimal tuning
of fuzzy controllers is one of these problems, as they can cope with non-convex or
non-differentiable objective functions because of controllers’ structures and nonline-
arities, of process’s complexity in industrial applications and of performance specifi-
cations that can lead to multi-objective optimization problems [Guo07], [Marl1],
[Nik13].
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The analysis of the state-of-the-art concerning the optimal tuning of fuzzy
controllers based on nature-inspired algorithms is organized as follows from the
point of view of the specific algorithms considered with this regard. The most im-
portant algorithms from the point of view of validation by real-time experimental
results will be pointed out as follows and treated in the next chapter. Having in mind
the point of view of real-time experimental results has resulted in a total of seven
algorithms; that is the reason why genetic algorithms are not considered in this the-
sis and analyzed in this sub-chapter.

Simulated annealing was recently applied to solve similar problems with
non-convex objective functions in various domains: traffic control [Hai10], biomedi-
cal applications [Kar88], economy theory [Oli14], routing problems [Cirl4], image
processing [Asal2], [Sanl12], material molding [Wan12a], cellular manufacturing
[Ark07] or supply management [Gol13]. Simulated annealing is involved in finding
the optimal parameters of a robust proportional-integral-derivative (PID) controller
in [Abd08], which is used in a power system stabilizer. The geometrical dimension
and section parameter of a robot mechanism is optimized in [Chu04] by a fuzzy
self-tuning PID controller tuned by simulated annealing for suppressing residual
vibration. A trajectory tracking algorithm of a mobile robot developed based on a
combined control scheme with proportional-derivative (PD)-fuzzy controller and
separate integral component with parameters tuned using simulated annealing is
proposed in [Lial0].

Simulated annealing performed well in combination with other algorithms.
Optimal integral gains for integral gain control, and proportional-integral-derivative
gains for PID control, are computed by a genetic algorithm and by hybrid genetic
algorithm-simulated annealing algorithms in [Gho04] and applied to the optimiza-
tion of certain transient responses of interconnected three equal generating areas in
power systems.

Particle swarm optimization (PSO) has emerged as one of the most success-
ful and versatile nature-inspired algorithms. The application domains for this algo-
rithm include: microwave applications [Deb14], supply chain management [Sad14],
structural control [NomOQ07] or economic dispatch [Nik11]. PSO algorithms have
proven successful results in the optimal tuning of fuzzy controllers as shown in the
following applications: induction motor drives [Wai07], mobile robot navigation
[Juall], radio frequency identification [Kuol14], stock index forecasting [Sin14],
backlight compensation [Lin09a], signal validation [0Oli09], fuzzy systems design
[Cas12], train lateral suspension model [Lil2a], photovoltaic systems [Khal0a],
robot manipulation [Sol13], linear induction motor [Wai07], voltage control strategy
[zZir13] and functional-link-based neural fuzzy network [Lin09b]. Another successful
application of PSO is presented in [Sak13] as an optimal fuzzy control system is
proposed to reduce frequency deviations in a simulated PV-diesel hybrid system. In
[Jua05] an adaptive recurrent fuzzy controller is suggested using a Takagi-Sugeno
recurrent fuzzy network tuned offline by PSO, and the results are validated on a
water bath temperature system. A new PID-type fuzzy logic controller tuning strate-
gy is proposed using a PSO-based approach in [Boul2] with confirmed results using
simulated and experimental tests involving an electrical DC drive benchmark. The
paper [Zir13] suggests the use of interval type-2 fuzzy logic controller to control a
flexible-joint robot with voltage control strategy, with the parameters of the primary
membership functions optimally tuned using PSO. A valve with nonlinear dynamic
behavior is controlled in [Coe08] using a PSO-based optimized PID-fuzzy controller.
A combination of fuzzy logic and PSO for the optimal tuning of the most popular
existing proportional-integral (PI) frequency controllers in the AC microgrid systems
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is introduced in [Bev12], and the control system performance is compared with PI-
fuzzy and Ziegler-Nichols PI-based control structures. Other examples of successful
applications of PSO algorithms to the tuning of fuzzy controllers are given in
[Cas10], where the results are verified through simulated results and in [Mal13],
with results validated using real experiments.

In a pursuit to improve the performance of PSO algorithms, several adaptive
versions of the initial PSO algorithm emerged, and they are briefly discussed as fol-
lows. The paper [Yan10] describes a fuzzy backstepping controller design for per-
manent magnet synchronous motor with the parameters of nonlinear controller
based on backstepping technique which is adjusted by fuzzy logic control, and the
fuzzy logic control is optimized by adaptive weighted PSO; the proposed optimal
controller is verified by simulation, and the results show that the controller has ro-
bust and good dynamic response.

In addition to the adaptive versions, algorithm hybridization has also been
employed as a solution for increasing the algorithm’s performance. The paper
[Tallla] proposes a PSO algorithm combined with tabu search in order to generate
fuzzy controller with only three rules by adjusting the membership functions and
fuzzy rules according to different environments and validate the results using the
control of angle of an inverted pendulum. A hybrid PSO and pattern search opti-
mized PI-fuzzy controller is proposed in [Sah15] and applied to the automatic gen-
eration control of multi-area power systems; simulation results are offered.

A more recent nature-inspired algorithm is the Gravitational Search Algo-
rithm (GSA), which although is a fairly new addition it has already proven as a via-
ble solution with solid performance. Successful application domains of GSAs include:
edge detection [Derl4], feature selection [Lial3a], pattern recognition [Gonl5],
image segmentation [Kum14], task scheduling [Zarl4], data mining [Hatl2],
anomaly detection [Shel4], supply chains [Peil4], hydrothermal systems [Yual4],
water turbines regulation [Chel4], optimal reactive power dispatch [Shal4] or wind
power [Jil4]. An optimal solution using GSA for path planning of mobile robots op-
erating in static environments, such that to ensure the collision avoidance of poten-
tial environmental obstacles and danger zones, is proposed in [Purl3a]. Solutions
for embedding nature-inspired algorithms combined with the classical backpropaga-
tion algorithm in the training of convolutional neural networks for optical character
recognition systems with improved performance are described in [Fedl2a],
[Fed12b]. Promising results were obtained when the GSA was employed for fuzzy
control optimization problems, discussed as follows. In [Shel3] one of the parame-
ters of GSA is controlled using a fuzzy logic controller to achieve better optimization
results and to increase the convergence rate. An optimization approach of a PID-
fuzzy controller using genetic algorithms, a bacterial foraging optimization algorithm
and a GSA is introduced in [Azal3] for load frequency control in power systems,
validated by simulation results. In [Roy13] a hybrid design methodology for stable
adaptive fuzzy controllers dedicated to a certain nonlinear system is proposed, with
the GSA-based design and hybrid GSA-Lyapunov concurrent design methodologies,
and simulation results are included.

In recent publications adaptive versions of the GSA have appeared along
with the standard version of the algorithm. An adaptive variant of GSA developed
using the 5E learning model [Bal06] exhibits significant performance increases for
the optimal tuning of T-S PI-FCs [Dav12a], [Prel2a], [Pre13b], [Prel3c], [Davi4a].
The optimal tuning of PI controllers using adaptive GSA for a class of servo systems
characterized by saturation and dead zone static nonlinearities and second-order
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models with an integral component is suggested in [Prel4a]; the optimal tuning of
an anti-windup block is carried out as well.

Out of the hybridization attempts concerning the GSA, the most successful
one is with the PSO algorithm. This hybrid algorithm shows promising results in
[Mir10], and it is applied in various domains: flow-based anomaly detection [Jad13],
emission load dispatch [Jial4], economic and emission dispatch [Dub13], landslide
displacement [Lial3b], voltage instability [Man14], supply chain [Peil4] and path
planning [Purl3b]. As in the case of GSA, an adaptive version using the 5E learning
model [Bal06] is developed in [Prel4b] for the hybrid PSO-GSA algorithm, and ap-
plied to controller tuning in order to offer control systems with T-S PI-FCs that en-
sure a reduced process parametric sensitivity.

One of the latest nature-inspired algorithms that show a solid performance
is Charged System Search (CSS). The applications domain of CSS algorithms in-
clude: neural networks training [Perl13], optimization of concrete structures
[Kav12a], seismic design of steel frames [Kavl4a], design of structures [Kav13b],
cost optimization [Kavl2a], power dispatch problems [Ozy12], frame structures
[Kav12b] and optimal power flow problems [Nik12]. CSS algorithms are successfully
applied for the optimal tuning of PI controllers dedicated to a class of second-order
processes with an integral component and variable parameters [Prellb], [Prel2d].

An adaptive version based on the 5E learning model [Bal06] is applied in
[Prel4c] to the parameter tuning of the CSS algorithm. This adaptive CSS algorithm
shows the control system performance improvement when used to give a solution to
the optimization problems that aim the minimization of objective functions in the
optimal tuning of T-S PI-FCs.

2.3. CHAPTER CONCLUSIONS

This sub-chapter is dedicated to summarizing the information presented
throughout this chapter and highlighting new contributions based on these materi-
als.

The first part of this chapter introduces the definition of optimization prob-
lems, which will be solved in the next chapter with the aid of nature-inspired algo-
rithms, together with the presentation of the process models, state sensitivity mod-
els, definition of discrete-time objective functions and a design method for optimal
fuzzy controllers with a reduced parametric sensitivity tuned by the Extended Sym-
metrical Optimum method.

The second part of the chapter was dedicated to a bibliographic analysis of
nature-inspired algorithms applications with regard to the optimization of fuzzy con-
trollers. The focus of this analysis included the following algorithms: Simulated An-
nealing, Particle Swarm Optimization, Gravitational Search Algorithm, Hybrid Parti-
cle Swarm Optimization - Gravitational Search Algorithm and Charged System
Search. The rationale for this nature-inspired algorithm selection was their applica-
tion for solving the optimization problems introduced in the sub-chapter 2.1, in the
course of the following chapter. This selection is not permanent as other algorithms
might be employed for solving these optimization problems in the potential scope of
a future research, as mentioned in the dedicated sub-chapter of Chapter 5.

The new contributions extracted from this chapter are presented as fol-
lows.
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1. New discrete-time state-space models of T-S PI-FCs characterized by the
manipulation of the dynamics elements in the structure of these controllers such
that to define two state variables. The models proposed in the framework of this
contribution are published in:

R.-E. Precup, R.-C. David, E. M. Petriu, M.-B. Radac, S. Preitl, J. Fodor,

Evolutionary optimization-based tuning of low-cost fuzzy controllers for ser-

vo systems, Knowledge-Based Systems, vol. 38, pp. 74-84, Jan. 2013, im-

pact factor (IF) = 3.058, IF according to 2013 Journal Citation Reports (JCR)

released by Thomson Reuters in 2014 = 3.058.

2. New discrete-time state sensitivity models of fuzzy control systems with
respect to two parameters of the controlled process represented by a class of non-
linear servo systems. The fuzzy control systems include T-S PI-FCs, and the class of
nonlinear servo systems is structured as a series connection of second-order dy-
namics with an integral component, and saturation and dead zone static nonlinearity
placed on the process input. The models proposed in the framework of this contribu-
tion are published in:

R.-E. Precup, R.-C. David, S. Preitl, E. M. Petriu, J. K. Tar, Optimal control

systems with reduced parametric sensitivity based on particle swarm optimi-

zation and simulated annealing, in Intelligent Computational Optimization in

Engineering Techniques and Applications, editors: M. Képpen, G. Schaefer,

A. Abraham, Studies in Computational Intelligence, vol. 366, Springer-

Verlag, Berlin, Heidelberg, pp. 177-207, 2011, indexed in Thomson Reuters

Web of Science (formerly ISI Web of Knowledge).

3. A novel design method dedicated to the simple T-S PI-FCs for servo sys-
tems with a reduced parametric sensitivity, namely with a reduced process gain
sensitivity and with a reduced process small time constant sensitivity. The design
method ensures the parameter tuning of the fuzzy controllers by solving four types
of optimization problems using nature-inspired optimization algorithms. The design
method proposed in the framework of this contribution is published and organized in
several versions in:

R.-C. David, R.-E. Precup, S. Preitl, J. K. Tar, J. Fodor, Parametric sensitivi-

ty reduction of PI-based control systems by means of evolutionary optimiza-

tion algorithms, Proceedings of 6t IEEE International Symposium on Applied

Computational Intelligence and Informatics (SACI 2011), Timisoara, Roma-

nia, pp. 241-246, 2011, indexed in IEEE Xplore, INSPEC, SCOPUS.
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3. NATURE-INSPIRED ALGORITHMS FOR THE
OPTIMAL TUNING OF FUZZY CONTROLLERS WITH A
REDUCED PROCESS PARAMETRIC SENSITIVITY

3.1. SIMULATED ANNEALING ALGORITHMS

Simulated Annealing (SA) is a random-search technique, derived from a
metallurgy process which describes the way in which the metal cools and freezes
into @ minimum energy crystalline structure and the search for a minimum in a
more general system. For this process, the selected cooling schedule has a decisive
role in the final properties of the substance: if a fast cooling schedule is used the
resulting substance will be easily broken due to an imperfect structure, so as to
avoid this scenario an appropriate cooling schedule has to be employed, for the re-
sulting structure to be well organized and strong.

According to [Kir83], the operating mechanism of the SA algorithm mimics a
ball that can bounce over mountains from valley to valley. The process begins at a
high temperature, which enables the ball to make very high bounces, thus enabling
it to access any valley, given enough bounces. As the temperature declines, the ball
cannot bounce so high and it can settle to become trapped in relatively small ranges
of valleys [Led07]. A generating distribution produces possible valleys or states to
be explored. An acceptance distribution is also defined, which depends on the differ-
ence between the function value corresponding to the explored valley and the last
saved lowest valley. The decision making on staying in the valley is based on the
acceptance distribution in a probabilistic framework. The generating and acceptance
distributions depend on the current temperature value.

With the purpose of decreasing the computational complexity of the SA al-
gorithm, two additional iteration indices are introduced in [Prellc], namely the suc-
cess rate s, and the rejection rate r. The success rate s, aims the acceleration of the
cooling process by forcing a jump in temperature when the minimum value of the
fitness function changes for a preset number of times at the same temperature lev-
el. The rejection rate r, is proposed as an alternative index to assess and set the
convergence of the algorithm, and it is reset only when small values of the fitness
function are found and not when the temperature cools.

Using the SA algorithm implies the following steps described in [Pre13a] and
[Prelic]:

Step 1. Generate the initial solution, in line with (2.29), conduct the follow-

ing operations: generate a random initial solution ¢ and calculate its fitness value
7(© according to (2.9) - (2.12), set the minimum temperature g using the nota-

min /

tion k for the current iteration index, initialize the maximum allowed number of
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iterations r_, for each temperature step, the maximum accepted success rate s, ,
the maximum accepted rejection rate ,, and the minimum accepted value of the
fitness function r, . , set the initial temperature g, i.e., the temperature ¢, for r=o,
and set the initial rejection rate , =o.

Step 2. Set the initial value of the iteration index (=0 and the initial success
rate s, =o0.

Step 3. Generate a new probable solution y in the vicinity of ¢ by disturb-
ing ¢, and calculate its fitness value 7).

Step 4. Accept or not the new solution by means of the change of fitness
expressed as the difference 4y, :

max /

My =)= f©) - (3.1)
If Ay <0, accept ¢=y as the new vector solution. Otherwise, set the random
parameter ¢, , 0<q, <1, and calculate the probability ,, of y to be the next solution:

A
- (.2

If p, >qis c=v is the new solution.

Step 5. If the new solution is accepted, then update the new solution and f,
increment % and reset , -—o. Otherwise, increment , . If , has reached its maxi-
mum value

- max » 90 tO step 8; otherwise, continue with the next step. Increment , .
If 5, has reached its maximum value continue with the next step; otherwise,
increment ¢ . If x has reached its maximum value ¢ continue with the next step;

otherwise, go to step 2.

Step 6. The temperature is decreased in terms of the temperature decre-
ment rule, referred to also as the cooling schedule, which gives the next tempera-
ture g,,,:

rmax !

max /

9k+1 :acsgk ' (33)
where g, =const, @, <1
Step 7. If ¢, >0,,, OF £ > fu, 90 to step 2. Otherwise, continue with the

next step.
Step 8. The algorithm is stopped, and the last vector solution ¢ is the final

solution.

The steps described before are displayed in Fig. 3.1.1.

The SA algorithm described above was employed as a nature-inspired algo-
rithm in the step 4 of the design method dedicated to the simple T-S PI-FCs pre-
sented in Sub-chapter 2.1. In order to obtain an efficient cooling schedule for solv-
ing the optimization problems described by the objective (fitness) functions J; 4,

min

and Jy 47, from (2.9) - (2.12) the parameter o in (3.3) was set to o, =09. This
value was not arbitrarily chosen, as it was previously selected in [Prellc] as a
trade-off between convergence accuracy and the probability of avoiding being
trapped into a local minimum. The values of the parameters set in the step 1 of the
SA algorithm are: maximum success rate . =50, maximum rejection rate

rmax =1000, Maximum allowed number of iterations for each temperature step
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k,

max

-1078.

=300 with the initial temperature set to g, =1 and the minimum tempera-

Step 1. Generate and
evaluate initial solution

Step 2. Set the initial value of
the iteration index and the
initial success rate

ture ¢

min

v

Step 3. Generate and
evaluate new solution

Step 4. Accept
New Solution?

Step 5. Update
solution and states

h
Step 6. Update
temperature

Step 7.End
Search?

Step 8. Stop and save
solution

Fig. 3.1.1. Flowchart of Simulated Annealing algorithm.

The values of the optimal controller tuning parameters and the minimum
values of the objective functions J, 4, and J, 47 (i.e., Ji 4p,min @Nd J\_47 min)

are presented in Tables 3.1.1 - 3.1.8.

Due to the stochastic characteristic of the SA algorithm, several runs of the
algorithm were required before drawing a final result for each of the objective func-
tions. Fig. 3.1.2 illustrates the evolutions of the parameters of the T-S PI-FC (i.e.,
the variables of the objective functions) and of the objective function during the
iterations of the SA algorithm. This parameter progression graphics correspond to
the objective function Jok, and to the weighting parameter 7e, =0+ A comprehen-

sive analysis of the SA convergence based on the average values of the optimal
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objective function values along with two newly defined performance indices will be
presented in Sub-chapter 3.8.

Table 3.1.1. Results for the SA-based minimization of Jy; .

7, By, B, n i ke I Jikpmin
0 0.1386 39.9986 0.74998  3.1430 0.0044 2.8916 390462
0.0021357 0.1384 39.9998 0.74996  3.1473 0.0044 2.8955 393513
0.021357 0.1398 39.9973 0.74993  3.1158 0.0044 2.8665 420962
0.21357 0.1372 39.9681 0.74901 3.1724 0.0044 2.9186 695455
Table 3.1.2. Results for the SA-based minimization of Jyr .
(rr,)’ By, B, 7 i ke T 17 min
0 0.1386 39.9956 0.7497  3.14236 0.0044 2.891 390483
0.17187 0.1397 39.4088 0.7441  3.07071 0.0044 2.8251 639539
1.7187 0.1261 39.739 0.7482  3.43036 0.0042 3.1559 2865980
17.187 0.0128 20.0221  0.2507 16.9996 0.0019 15.64 22808700
Table 3.1.3. Results for the SA-based minimization of J,, .
7,)? By, B, n i ke T J2.kp min
0 0.085591 39.9994  0.7498 5.0852  0.0034 4.6784 22980.3
0.006858  0.085575  39.9974  0.7499 5.0858  0.0034 4.679 32597.7
0.06858 0.081367  38.4081  0.7339 5.1363  0.0034 4.7254 118869
0.6858 0.012814  20.0137 0.2573 16.9816 0.0019  15.6231 874238
Table 3.1.4. Results for the SA-based minimization of J, 7 .
7z, Bie B, n Vi k. T J2.1; min
0 0.0856 39.9916  0.7494 5.0857 0.0034  4.67887 22990.2
0.0066695 0.0855 39.9921  0.7499 5.0875 0.0034 4.68046 32518.2
0.066695 0.0779 36.6549  0.7496 5.1209 0.0034 4.71122 117383
0.66695 0.0128 20.0285  0.2501 16.995 0.0019 15.6354 865024
Table 3.1.5. Results for the SA-based minimization of J3; .
7,) B, B, n" 5 k. T I3 kp min
0 0.0856  39.9908  0.7494 5.0853 0.0034 4.6785 2986410
3.9187 0.0853 39.8962  0.7467 5.0867 0.0034 4.6798 8480520
39.187 0.0842 39.5241  0.7464 5.1093 0.0034 4.7005 57590600
391.87 0.0337 39.8288 0.7424  12.8479 0.0022 11.8201 527966000
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Table 3.1.6. Results for the SA-based minimization of J3r .

*

*

(rr,)’ B, B, n* ' k. T, J3.1, min
0 0.0856 39.9908 0.7494 5.0853 0.0034 4.6785 2986410
3.8693 0.0836 39.6254  0.7375 5.158 0.0034 4.7454 8208700
38.693 0.0827 39.2911  0.7303 5.1673 0.0034 4.7539 54280900
386.93 0.0286 34.5289 0.7477 13.1202 0.0021  12.0706 527790000
Table 3.1.7. Results for the SA-based minimization of J,; .
7k, )2 BZe B: 77* ﬂ* k: Tz* J4,kp min
0 0.085594 39.9994  0.7499 5.085 0.0034 4.6782 153104
0.142 0.081086 38.3744 0.7491 5.1495 0.0034 4.7378 328330
1.42 0.077329 36.6807 0.715 5.1614 0.0034  4.7485 2056520
14.2 0.023008 20.4916  0.2511 9.6863 0.0025 8.9114 19284900
Table 3.1.8. Results for the SA-based minimization of J, 7 .
() By, B, n" 5" k. T J 4.7, min
0 0.0856 39.9994  0.7499 5.085 0.0034  4.6782 153104
0.15885 0.0827 39.1723  0.7298 5.152 0.0034  4.7398 354836
1.5885 0.0424 20.1246  0.6618 5.1617 0.0034  4.7488 2200250
15.885 0.0202 20.2201  0.2531 10.9026  0.0024 10.0304 21605800

Fig. 3.1.3 illustrates the evolution of the vector solution p to the optimiza-

tion problem (2.14) in the search domain D

[ 4

p during several iterations of the SA algorithm.

which is also the feasible domain of
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Fig. 3.1.2. T-S PI-FC tuning parameters and objective function evolution vs. itera-
tion index: B, versus k (a), B versus k (b), n versus k (c), and Jz,k,, versus k (d).

The solution obtained from the implementation of the SA for the optimiza-
tion problems presented in Chapter 2 was tested on the experimental setup de-
scribed in Chapter 2. Several experimental results are reported in [Prel12b]. As used
in the evaluations of the objective functions presented in this Sub-chapter, the dy-
namic regimes characterized by the 5, =40 rad step type modification of the refer-

ence input and zero disturbance input, d, =0, the real-time experimental results

are obtained in the same conditions. In addition, a step type disturbance input of
dy=-20 was applied at the time moment 25 s. An example of real-time experi-

mental results of the fuzzy control system with the T-S PI-FC and the optimal pa-
rameters obtained by the SA-based minimization of the objective function J,,,  for

the value of the weighting parameter (7kp)2 =0.006858 is presented in Fig. 3.1.4.
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Fig. 3.1.3. Vector solution p to the optimization problem (2.14) in the search do-
main D, for four values of iteration index k: k=1 (a), k=4 (b), k=9 (c), and

k=17 (d).
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The results of the real-time experiments present the output of the system
and of the controller and prove the disturbance rejection and the presence of the
insensitivity zone in the real-world controlled plant. An insensitivity zone of such
magnitude in the actuator is therefore difficult to use for precise positioning because
the control signal is subjected to oscillations.

3.2. PARTICLE SWARM OPTIMIZATION ALGORITHMS

Particle Swarm Optimization (PSO) is a population based stochastic optimi-
zation technique that was developed and initially introduced by Kennedy and Eber-
hard [Ken95a], [Ken95b]. As one of the most recognized nature-inspired algo-
rithms, PSO is inspired by the behavior of entities observed in flocks of birds or
schools of fishes. The movement of the population, characterized by agents, in PSO
is guided by simple laws that repeat at each iteration, helping these agents, which
represent candidate solutions, flow through the search-domain. Each agent has as-
signed a multidimensional vector that is updated according to the calculated velocity
which takes into consideration the best position explored by the agent and best so-
lution explored by the swarm.

As shown in [Ken95a], [Ken95b], PSO is based on two fundamental disci-
plines, social science and computer science. Social concepts like evaluation, compar-
ison and imitations of other individuals are typically associated with intelligent
agents that interact in order to adapt to the environment and develop optimal pat-
terns of behavior. Mutual learning allows individuals to become similar and trans-
gress to more adaptive patterns of behavior. The swarm intelligence is based on the
following principles [Val08]:

1. The proximity principle, i.e., the population should be able to carry out

simple time and space calculations.

2. The quality principle, i.e., the population should be able to respond to

quality factors in the environment.

3. The diverse response principle, i.e., the population should not commit its

activity to excessively long narrow channels.

4. The stability principle, i.e., the population should not change its behavior

every time the environment changes.

5. The adaptability principle, i.e., the population should be able to change its

behavior when it is worth the computational price.

The PSO algorithm starts with a random generation of candidate solutions
which are continuously improved toward the optimal solutions. From this point of
view PSO can be considered as an evolutionary algorithm that is similar to the ge-
netic algorithms. The PSO algorithm uses the following computational attributes:
individual particles are updated in parallel, a new value depends on the previous and
its neighbors, all updates are based on the same rules. In the PSO algorithm instead
of evolutionary operators, the agents are set in the D-dimensional search space
search space rR? with randomly chosen velocities and positions knowing their best
values so far and the positions in the search space RrR?. For each particle in the
search space there is data about the position and velocity at each step of the itera-
tion. The velocity of each particle is adjusted according to its previous flying experi-
ence and the experience of the other particles.
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A swarm particle can be represented by the two g-dimensional vectors
X;=[xg % o xyl €RY standing for the particle position and the particle velocity

Vi=[va vp - v, - In addition, the best position achieved by the particle is the
vector p, ;. =[py pa - pg,]" @nd the best position explored by the entire swarm so
far is the vector P, ;. =[p, pg - pgl" - FOr our optimization problems defined in
(2.13) - (2.16), x; is defined in accordance to (2.29) resulting in a 4=3 dimension-

al search space. The particle velocity and position update equations that govern the

PSO algorithm can be expressed in terms of the state-space equations also given in
[Kha07]:

Vitk+1)=w(k)V;(k)+c1r1(Pg pey — X (k) +Cary (P peg — X (K)) 1 (3.4)

X, (k+1)=X,(k)+V,(k+1) (3.5)

where: 4, », - random variables with uniform distribution between 0 and 1,

i, i=1..n — the index of the current particle in the swarm, n - the number of particles

in the swarm, &, k=1.k,, - the index of the current iteration, ¢, - the maximum

number of iterations. The parameter wk) in (3.4) stands for the inertia weight,

which shows the effect of the previous velocity vector on the new vector. Upper v, .

and lower . limits are imposed to w(k) in order to prevent the particle from mov-

ing too rapidly in the search space. The constants ., ¢, >0 represent the weighting
factors of the stochastic acceleration terms that pull each particle towards their end
position. Low values allow particles to roam far from the target regions before being
tugged back. On the other hand, high values result in an abrupt movement towards,
or past, target regions.

The individuals (particles) within the swarm learn from each other, and
based on the knowledge obtained then move to become similar to their “better”
previously obtained position and their “better” neighbor. The individuals within a
neighborhood communicate with each other. Different neighborhood topologies can
emerge on the basis of the communication of a particle within the swarm. A star-
type topology is created in the majority of cases. In that topology each particle can
communicate with every other individual forming a fully connected social network,
so that each particle could access the overall best position. The PSO algorithm can
be expressed according to the following steps [Ken95a], [Ken95b], [Kha07],
[Val08]:

Step 1. Initialize the swarm placing particles at random positions inside the
search domain D, , set the iteration index k=0, set the search process iteration limit

knax » d€fine the weighting factors ., ., and the inertia weight parameter w) :

W(k):wmax,kw. (3.6)

kmax

The best particle position vector p, ,,, Iis initialized with the initial positions
of the agents and the best swarm position vector p_ ., is initialized with the posi-

tion of the first agent.
Step 2. Evaluate the fitness of each particle using the objective (fitness)
functions (2.9) - (2.12) based on their current position.
Step 3. Compare the performance of each individual to its best performance
so far, and eventually update the best particle position vector p,

i,Best *
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P; pest = Xi(k), if Jy 4.4 (X;(K) <J1 4,0, (P pest) - (3.7)

Step 4. Compare the performance of each particle to the best global perfor-

mance, and eventually update the best swarm position vector p, ,,, :

Py e = Xi (k) if 1 40 (Xi(K) <J1 40 (Pg gest) - (3.8)

Step 5. Change the velocity of each particle according to (3.4).

Step 6. Move each particle to its new position according to (3.5).

Step 7. Increment the iteration index ¢ and go to step 2, until the search
process iteration limit k__ is reached.

max

Step 8. The algorithm is terminated, and the swarm best position p

g,Best IS

the final solution.

< Step 1. Initialize swarm /
»

| Step 2. Evaluate particles fitness’s |

h
Step 3. Update each individual’s
best performance

Step 4. Update global swarm
performance

v
Step 5. Modify the particles
velocity

Step 6. Move particles to new
positions

Step 7. 1s last
iteration reached?

Step 8. Terminate and save
solution

Fig. 3.2.1. Flowchart of Particle Swarm Optimization algorithm.

The simple model used in PSO has proven that it can cope with high com-
plexity problems as shown in [Dav09], [Prellc], [Dav12d], [Prel3a]. In addition to
the initial version of PSO, which was developed to operate with real value search
domains, an alternative version was introduced by Kennedy and Eberhart [Ken97]
for the purpose of dealing with discrete valued search spaces. The binary version of
PSO is required to deal with these finite domains.

The differences between the two versions of PSO are focused around the
representation of particle position vector and movement definition. The position vec-
tor is constructed around the discrete values defined by the search domain, with the
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movement represented by the agent’s probability of changing state in for that di-
mension.

The flowchart of the PSO algorithm is presented in Fig. 3.2.1.

In order to integrate the PSO-based solution in the fourth step of the design
method dedicated to the simple T-S PI-FCs presented in Sub-chapter 2.1, the PSO
algorithm parameters, mentioned in the first step of the above algorithm descrip-
tion, had to be set in such a manner to achieve a prime search process. Based on
the previous work presented in [Pre09b], [Dav11], [Prelic], [Prel3a], the number
of used agents n=20 was set and the maximum number of iterations was set to

ke =100. In order to have a good balance between exploration and exploitation
characteristics of the algorithm the weighting parameters were set as ¢, =0.3,¢, =09.
For the setup of the inertia weight parameter w(k) a linear decrease was employed
throughout the interval determined by w__ =09 and ,_, =0.5 according to (3.6).

max

Table 3.2.1. Results for the PSO-based minimization of Jy; .

71,) B, B, n B k. T J1kp min
0 0.145191 40 0.75 3 0.004483 2.76 392076
0.0021357 0.145191 40 0.75 3 0.004483 2.76 395143
0.021357 0.139548 40 0.75 3.12109 0.004395 2.8714 420966
0.21357 0.145191 40 0.75 3 0.004483 2.76 698859
Table 3.2.2. Results for the PSO-based minimization of Jr .
(rr,) B, B, n" 5" k. T J 175 min
0 0.145191 40 0.75 3 0.004483 2.76 392076
0.17187 0.145191 40 0.75 3 0.004483 2.76 641826
1.7187  0.144715 39.8689 0.75 3 0.004483 2.76 1007420
17.187  0.012792 20 0.25 17 0.001883 15.64 22809200
Table 3.2.3. Results for the PSO-based minimization of J,; .
7i,)’ B, B, 7 B k. 7 J2 kp min
0 0.085597 40 0.75 5.08485 0.003443 4.67806  22975.7
0.006858 0.085597 40 0.75 5.08485 0.003443 4.67806  32579.1
0.06858 0.085597 40 0.75 5.08485 0.003443 4.67806 119010
0.6858  0.012792 20 0.25 17 0.001883 15.64 874183
Table 3.2.4. Results for the PSO-based minimization of J, 7 .
()’ Bie B, n i ke T J2.1; min
0 0.085597 40 0.75  5.08485 0.003443 4.67806 22975.7
0.0066695 0.085597 40 0.75 5.08486 0.003443 4.67807 32481.3
0.066695 0.070551 33.4137 0.75 5.15341  0.00342 4.74114 108043
0.66695 0.012792 20 0.25 17 0.001883 15.64 864943
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Table 3.2.5. Results for the PSO-based minimization of J3 .

7,)? Bie B, n Vi k. T 3.k min
0 0.085597 40 0.75 5.08485 0.003443  4.67806 2984780
3.9187 0.085597 40 0.75 5.08485 0.003443  4.67806 8472200
39.187 0.085003 40 0.75 5.12035 0.003431  4.71072 57631000
391.87  0.03284 40 0.75 13.2449 0.002133  12.1853 527908000
Table 3.2.6. Results for the PSO-based minimization of J; .
)’ By, B, n" a k, 7 J3.1; min
0 0.085597 40 0.75 5.08485 0.003443 4.67806 2984780
3.8693 0.085597 40 0.75 5.08485 0.003443 4.67806 8499440
38.693 0.082991 39.3271 0.75 5.15624 0.003419 4.74374 57664100
386.93 0.032083 38.5553 0.75 13.0679 0.002148 12.0224 527679000
Table 3.2.7. Results for the PSO-based minimization of J,; .
71,)’ B, B, n" 5 k. 7 J4 4y min
0 0.085597 40 0.75 5.08485 0.003443 4.67806 152970
0.142  0.085597 40 0.75 5.08485 0.003443 4.67806 351814
1.42  0.084488 40 0.75 5.15154  0.003421 4.73942 1891650
14.2 0.02317 20 0.25 9.3881 0.002534 8.63706 19274400
Table 3.2.8. Results for the PSO-based minimization of J, 7, .
O, )’ BZe B: 77>}< ﬂ* k: Tz%< J4’T2 min
0 0.085597 40 0.75 5.08485  0.003443 4.67806 152970
0.15885 0.084379 40 0.748922 5.15818  0.003419  4.74553 379355
1.5885  0.084508 40 0.75 5.15031  0.003421  4.73829 2123110
15.885 0.020733 20 0.25 10.4906  0.002397 9.65135 21595700

Tables 3.2.1 - 3.2.8 contain the values of the optimal controller tuning pa-
rameters and the minimum values of the objective functions J; 4,, and J; 47

(i.e., Ji 4k,min @Nd Jy 47 min ). In order to overcome the uncertain characteristic of

the PSO algorithm, several re-runs were required in order to obtain the desired re-
sults for each of the objective functions. The data presented in these tables was
obtained after several re-runs of the algorithm, that were required in order to deal
with the arbitrary characteristic of the PSO algorithm. A more detailed analysis
based on the average values of the objective functions, together with two newly
introduced algorithm performance indices is presented in Sub-chapter 3.8.
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Fig. 3.2.2. T-S PI-FC tuning parameters and objective function evolution vs. itera-
tion index: B, versus k (a), B versus k (b), n versus k (c), and Jz,k,, versus k (d).

In order to have a better representation of the search process, Fig. 3.2.2
presents the evolution of parameters defined by the search domain in the case of
objective function J,,, and weighting parameter ,, -o.

An evolutionary display throughout the search process for all PSO’s particles
(agents), expressed as vector solutions p to the optimization problem (2.14) com-

prised in the search domain D, , is presented in Fig. 3.2.3.

The results of the PSO-based solution to the optimization problems present-
ed in this thesis were verified using the experimental system presented in Chapter
2. A set of experimental results is given in [Prel3a]. The proposed approach pre-
sented in this Sub-chapter uses the digital simulation of the fuzzy control system
behavior with respect to the step-type modification of the reference input
rp =40 rad, and zero disturbance input, d, =0. The experiments were conducted

using a similar setup with the control systems using an additional PI controller to
the T-S PI-FCs for comparison purposes. A sample of the real-time experimental
results that corresponds to the control systems with the controllers and the parame-
ters given for the objective function J,;, and for the value of the weighting parame-

ter (74,)* =0.0021357 is presented in Fig. 3.2.4.
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Be B

Fig. 3.2.3. Vector solution p to the optimization problem (2.14) in the search do-
main D, for four values of iteration index k: k=1 (a), k=15 (b), k=60 (c), and
k=100 (d).

For the additional PI controller mentioned in the experimental study case
and used for comparison, the average value of the design parameter g taken into
account was g =7. This controller was tuned by the ESO method.

Fig. 3.2.4 shows, as expected, the performance improvement exhibited by
the control system with the fuzzy controller (T-S PI-FC) compared to the control
system with the linear (PI) controller, namely the settling time is reduced. The pro-
posed tuning approach has proved to be effective in reference input tracking and
load disturbance regulation when controlling the real-world servo system targeting
the reduced process gain sensitivity. The experimental results validate the solution
offered by means of this nature-inspired optimization algorithm, the tuning ap-
proach and the fuzzy controllers.
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Experimental results: linear control,
60

fuzzy control

40

y [rad]

20

o o
= N

u [PWM duty cycle]

Fig. 3.2.4. Real-time experimental results: controlled output and control signal of
the control system with the PI controller (dashed line) and of the control system
with the T-S PI-FC (solid line).

3.3. GRAVITATIONAL SEARCH ALGORITHMS

The Gravitational Search Algorithm (GSA) [Ras07], [Ras09] is inspired by
Newtonian physics principals of gravity and interaction between masses [Sch03],
[Hol05]. As described by the law of gravity, each agent, also referred to as object,
interacts with the existing population. This interaction is proportional to each agent’s
mass, expressed in accordance to its fitness, and inversely proportional to the dis-
tance between them. Also, the attraction effect between the particles of the uni-
verse is introduced through the gravitational constant. The variation of the gravita-
tional constant is modeled by the following decrease laws in relation with GSA’s iter-
ations:

g(k):w(l—k" )% 7 (3.9)

max

2(k) = ggexp(—£ ——) (3.10)

max

where g(k) is the value of the gravitational constant at the current iteration

index k, &, is the maximum number of iterations, g,=g(0), and y>0, ¢>0 are

parameters that are set in order to ensure GSA’s convergence and to influence the
search accuracy as well.

The decrease of the gravitational constant outlined in equations (3.9) and
(3.10) targets the modeling and the simulation of the effect of decreasing gravity.
These equations show the decrease of the gravitational constant with age, which in

max
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GSA is represented by the iteration index. The GSA’s convergence and search accu-
racy is influenced by the chosen values for parameters y and ¢ for which the de-

signer’s experience is employed.

As mentioned in [Ras10], particles, referred to also as agents, are used in
the GSA, and their performance is represented through their masses. The gravity
force attracts each of these particles, leading to the global movement of all particles
towards the particles with heavier masses. The exploitation step of the algorithm is
guaranteed by the heavy masses (which correspond to good solutions, i.e., solutions
close to the optimum) moving more slowly than the lighter ones.

Considering N agents and a g-dimensional search space, the position of
agent is defined by the vector x; :

X, =[x .. x,d xl-"]T eR?,i=1..N, (3.11)
where ,¢ is the position of the ;% agent in 4" dimension, 4=1.4. The posi-
tion vector x; will be replaced by the controller parameter vector (2.29) involved in

the optimization problems described by (2.13) - (2.16).
The force acting on ;% agent from ;" agent is defined as follows at the iter-

ation index & :
m p; (k)m 4; (k)

Fil (k)= g(k) ;
rip (k) +ax ()

[x§ (k)= x{ (k)] + (3.12)

where n,k) is the active gravitational mass related to ;" agent, u, ) is the
passive gravitational mass related to ;" agent, >0 is a small constant, and r(k) 1S

the Euclidian distance between i and ;" agents (used instead of the squared dis-
tance to simplify the GSA):
i () =l X (k) = X ()| - (3.13)
To ensure the stochastic characteristic of the GSA the total force acting on
i" agent in 4" dimension, F¢(), is a randomly weighted sum of all forces exerted
from the other agents:
N
FA =D piFf (k) (3.14)
J=lj#i
where pir 0<p; <1, is a randomly generated number. The law of motion

leads to the acceleration /() of i" agent at the iteration index & in 4" dimension:
d
af (k=S8 (3.15)
my; (k)
where (s is the inertia mass related to ;™ agent.
The next velocity of an agent, v¢(+1), is considered as a fraction of its cur-

rent velocity added to its acceleration. Therefore, the position and velocity of an
agent are updated in terms of the following state-space equations [Ras07], [Ras09]:

v (k)= i (k) + aff (k). (3.16)
x8 (k+ D) =xf (k) + v (k+1),

where 4, 0<p <1, is @ uniform random variable.

The gravitational and inertial masses are [Ras07], [Ras09]:
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Jite)—w(k)
b(k)—w(k)
n; (k) (3.17)

N
Z”j(k)
Jj=1
Mmy; =mp; =mp =m;,
where 7, is the fitness value of ;/ agent at the iteration index &, and the
terms b(k) (corresponding to the best agent) and wk) (corresponding to the worst

agent) are defined as follows:

n; (k)=

m; (k)=

b(k)= min f; (k).

J
w(k) = max S k).
Jj=l..n ~

(3.18)

GSA consists of the following steps illustrated in Fig. 3.3.1 as the GSA's
flowchart:

Step 1. Generate the initial population of agents, i.e., initialize the g-
dimensional search space, the number of agents N, set the iteration index «t=0, set
the search process iteration limit x . and initialize randomly the agents’ position
vector x;(0) .

Step 2. Evaluate the agents’ fitness according to (2.9) - (2.12).

Step 3. Update the population of agents, i.e., compute the terms gx), »%),
w(k) and m, k) using equations (3.9) or (3.10), (3.17) and (3.18) for i=1..~.

Step 4. Calculate the total force in all directions rék), i=1..~, using equa-
tion (3.14).

Step 5. Calculate the agents’ accelerations ¢ (k) according to (3.15).

Step 6. Update the agents’ velocities ¢x+1) and positions ¢k +1) using
(3.16) for i=1..N.

Step 7. Increment k and go to step 2 until the maximum number of itera-
tions is reached, i.e., until =, -

Step 8. Stop and save the final solution in the vector x, obtained so far.

A GSA-based solution for the optimization problems (2.13) - (2.16) is im-
plemented with the introduction of the GSA in the fourth step of the design method
detailed in Sub-chapter 2.1. Employing the experience of [Davl1l], [Prelid],
[Prelle], [Davl2d], [Prel2a], [Dav13], the GSA parameters were chosen in order
to achieve the best search performance. The number of agents was set to n=20
with a maximum number of iterations &, =100. Using the search domain D, defined

max

in (2.67) the dimension size was set as 4=3. The decrease law (3.10) of the gravi-
tational constant was applied, with the initial value g, =g(0) setto g,=100 and ¢=85.

The ¢ value from (3.12) was set to =10 in order to avoid possible divisions by
zero. The results corresponding to the objective functions are presented in Tables
3.3.1 - 3.3.8.

As in the case of other nature-inspired algorithms, the GSA solution required
several re-runs before obtaining the final results for each of the J; 4;, and J; 47

objective functions. This aspect will be approached in Sub-chapter 3.8 using the
average values of the objective functions together with three algorithm performance
indices.
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Step 1. Generate initial
population

»)

| Step 2. Evaluate population fitness |

Step 3. Update population of
agents

Step 4. Calculate total force in all
directions
v

Step 5. Calculate the agents’
accelerations

.

Step 6. Update the agents’
positions and velocities

Step 7. Increment k

No until k=ke?

Step 8. Stop and save final
solution

Fig. 3.3.1. Flowchart of Gravitational Search Algorithm.

Table 3.3.1. Results for the GSA-based minimization of Jy; .

J .
71y’ Br, B, 7 5 ke 7 L min
0 0.138541 40 0.75 3.14374 0.004379 2.89224 390459
0.0021357 0.138462 39.9979 0.75 3.14537 0.004378 2.89374 393520
0.021357 0.139267 40 0.75 3.12737 0.00439 2.87718 421083

0.21357 0.134318 39.7505 0.75 3.2222 0.004325 2.96442 695544

Table 3.3.2. Results for the GSA-based minimization of J;r .

* * * *

(rr,)? B, B, 7 Vi k. T, J 175 min

0 0.138541 40 0.75 3.14374 0.004379 2.8922 390459

0.17187 0.142008 39.3697 0.75 3.01888 0.004469 2.7774 618429

1.7187 0.129304 36.4119 0.75 3.0663 0.004434  2.821 2861380

17.187 0.01281 20 0.287 16.9763 0.001884 15.618 22794600
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Table 3.3.3. Results for the GSA-based minimization of J,,; .

*

7, ) BZe B, 77* ﬂ* k: Tz%< stkp min
0 0.085582 40 0.7384 5.08576 0.003443 4.6789  23041.8
0.006858 0.081221 37.9584 0.75 5.08532 0.003443 4.6785 32718
0.06858 0.085461 40 0.75 5.09296 0.00344 4.6855 119183
0.6858 0.0128 20.0057 0.25 16.9947 0.001883 15.635 874127
Table 3.3.4. Results for the GSA-based minimization of J, 7 .
(7’TE )2 BZe B: 77* ﬂ* kj Tl* JZ,TZ min
0 0.081626 38.1835 0.75 5.09006 0.003441 4.6829 23167.7
0.0066695 0.080257 37.8053  0.75 5.1256  0.003429 4.7156 32814.3
0.066695 0.078426 36.8115 0.75 5.10741 0.003435 4.6988 117880
0.66695 0.013045 20.3962  0.25 17 0.001883  15.64 864208
Table 3.3.5. Results for the GSA-based minimization of J3, .
)’ B, B, n B k. 7’ J3,kp min
0 0.0845 39.5685  0.6933 5.0948 0.0034 4.6872 3086210
3.9187 0.0807 37.7003 0.75 5.0851 0.00344  4.6782 8513560
39.187 0.0627  29.7309 0.75 5.1586 0.00342 4.746 57875400
391.87  0.032 38.8976  0.7161  13.2043  0.00214  12.148 527538000
Table 3.3.6. Results for the GSA-based minimization of J3r, .
(rry )? BZe B: 77* ﬂ* k: Tl* J3,Tz min
0 0.0845 39.5685 0.6933 5.09481 0.00344 4.6872 3086210
3.8693 0.0853 40 0.75 5.10019 0.003438  4.6922 8521880
38.693 0.0773  36.9454 0.75  5.20265 0.003404 4.7864 58013600
386.93 0.0318 38.5452 0.7434 13.1971 0.002137 12.141 527719000
Table 3.3.7. Results for the GSA-based minimization of Jy,; .
7, Bae B, 7 i k. T Ja.kp min
0 0.0848 40 0.75 5.1325 0.003427 4.72191 155631
0.142  0.0855 40 0.75 5.0851 0.003443 4.67833 352168
1.42 0.083 39.5146 0.75 5.1788 0.003412 4.76449 2142170
14.2  0.0269 22.0776 0.25316 8.9187 0.0026 8.20516 19276900

BUPT



3.3 Gravitational Search algorithms

61

Table 3.3.8. Results for the GSA-based minimization of J, . .

(rr,) B, B, n" 5" k. T J 4,1, min

0 0.0848 40 0.75 5.1325 0.003427 4.7219 155631
0.15885 0.0847 40 0.75 5.1357 0.003426 4.7248 381779
1.5885 0.0783 36.887 0.75 5.1242 0.00343 4.7142 2409020
15.885  0.0216 20.3656  0.25 10.234  0.002427  9.415 21602000

Fig. 3.3.2 presents a description of the evolution of the variables of the ob-
jective function and of the objective function J,; during the search process. The

weighting parameter 7k, =0 Was considered.

In addition to Fig. 3.3.2, which gives a representation focused on the best
position of the algorithm iterations, Fig. 3.3.3 exemplifies the movements of all
agents used in GSA during the search process in order to better recognize the ex-

ploration and exploitation capabilities of the algorithm.
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Fig. 3.3.2. T-S PI-FC tuning parameters and objective function evolution vs.

iteration index: B, versus k (a), B versus k (b), n versus k (c), and Jz,k,, versus k

(d).
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The results obtained for the GSA-based solution to the optimization prob-
lems described in Chapter 2, were validated in [Prelle] using the experimental set-
up described in Chapter 2. The presentation of the real-time experimental results is
organized in terms of plotting the evolutions of the control signal (representing the
PWM duty cycle, u) and of the controlled output (representing the angular position,
y) versus time, and of evaluating the objective functions for the control systems on
the real-world process represented by the experimental setup. The experimental
results were obtained for the step-type angular position reference input of
ry =40 rad . The experiments were conducted for the control systems with both the

PI controller and the T-S PI-FC. The parameters used on the real-world process in
order to evaluate the objective function J,;, and the value of the weighting param-
eter (;/,{P)2 =0.06858 in order to record the control systems’ responses (i.e., the con-

trol signals and the controlled outputs) in a comparative manner.
The average value of the design parameter g of the PI controller was g=7.

This controller was tuned by the ESO method.

Be p

Fig. 3.3.3. Vector solution p to the optimization problem (2.14) in the
search domain D, for four values of iteration index k: k=1 (a), k=15 (b), k=60

(c), and k=100 (d).
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Control (PVWM d. c.)

Position (rad)

Time (s)

Fig. 3.3.4. Control signal and controlled output (angular position) of the control sys-
tem with the PI controller (dashed) and of the control system with the T-S PI-FC
(solid).

It can be observed from Fig. 3.3.4 that the differences between the results
are somehow similar because of the equivalence between the PI controller and the
T-S PI-FC. However, the control systems appear to be sensitive to different random
disturbances that act as static friction which has a different unpredictable value each
time. Even more insight can be gained when the objective functions are analyzed.
They have different values than those from the simulations and the corresponding
time responses are different. The reason for these is represented by the same as-
pects mentioned before and in addition to the uncertainty in the model. However it
will be discussed and shown as follows that the tuning parameters of the T-S PI-FCs
obtained through the implementation of the GSA-based solution ensures the strong
decrease of the objective functions.

3.4. HYBRID PARTICLE SWARM OPTIMIZATION-
GRAVITATIONAL SEARCH ALGORITHMS

The hybridization of nature-inspired algorithms evolved as a solution neces-
sary in overcoming certain shortcomings observed during the use of original conven-
tional of these classical algorithms. In [Mir10] a hybridization of PSO and GSA algo-
rithms is proposed with the objective of obtaining an improved search technique,
which aims to incorporate the advances of both algorithms. In order to achieve this
goal, the ability of social thinking in PSO is interrelated with the local search capabil-
ity of GSA.

The operating mechanism of the PSO algorithm, based on the use of swarm
particles, also called agents, is employed in the framework of the hybrid Particle
Swarm Optimization-Gravitational Search Algorithm (PSOGSA). The agents continue
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to be characterized by the vectors x, (the particle position vector) and v, (the par-
ticle velocity vector) [Ken95a], [Ken95b]:

1 d T
X, =[x; .. xf .. xI1",

(3.19)
V; =[v,1 v,-d v,-q]T,
where j, i =1..N, is the index of current agent in the swarm, N represents
the size of the swarm, and g represents the dimension of search space. The particle
position vector will have a 4=3 dimension in order to suit (2.29) for optimization
problems (2.13) - (2.16). Assume P, s be the best swarm position vector:

Pg,Best:[p‘lg pg pg]T (3'20)

P, 5 1S Used as in the case of PSO, and they is updated according to (3.8).

The computation of the initial values of p, ,,, Wwill be presented as follows in the first

step of the hybrid PSOGSA.
The integration of PSO’s exploitation capabilities and GSA’s exploration abili-
ties is highlighted during the agents velocities and positions update according to:
Wt 1) = w(k) v (k) + €111 [Py post (k) = x{ ()] + 3 ryaf (k) if m; (k) >0,
! W(k) v (k) + 11 [Py ey (k) — x{ ()] otherwise, (3.21)
xf (k+1)=x? (k) +ve (k+1), d=1..q, i=1..N,
where , , are uniformly distributed random variables, o<;,<1 , and ¢,
¢, >0, are represent weighting factors; parameter k) stands for the inertia

weight and ¢ (k) is the acceleration expressed in (3.15).

The hybrid PSOGSA algorithm consists of the following steps, presented also
in Fig. 3.4.1:

Step 1. Generate the initial population of agents, i.e., initialize the g-
dimensional search space, the number of agents N, set the iteration index rt=0, set
the search process iteration limit . , the weighting factors , ., the inertia weight
parameter w() according to (3.6) and initialize randomly the agents’ position vector
x,(0) . Define the gravitational constant decrease law.

The best particle position vector p, ,,, is initialized with the initial positions

of the agents and the best swarm position vector p is initialized with the posi-

g,Best
tion of the first agent.

Step 2. Evaluate the agents’ fithess described by (2.9) - (2.12).

Step 3. Compare the performance of each particle to the best global perfor-
mance, and eventually update the best swarm position vector p, ., according to
(3.8).

Step 4. Calculate the agents’ accelerations ¢ (k) according to (3.15).

Step 5. Update the agents’ velocities ¢(k+1) and positions x?k+1) using
(3.21) for i=1.N.

Step 6. Continue incrementing k and go to step 2 until the maximum num-
ber of iterations is reached, i.e., until r=¢_,_ .

Step 7. Terminate and retrieve the final solution in the vector x; obtained

so far.
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Step I. Generate initial
population

»)

| Step 2. Evaluate population fitness \

Step 3. Update each agent’s best
position vector

'

Step 4. Update best global swarm
position vector

y

Step 5. Calculate the agents’
accelerations

Step 6. Update the agents’
positions and velocities

Step 7. Increment k
until A=kyx?

Step 8. Terminate and retrieve
last solution

Fig. 3.4.1. Flowchart of hybrid Particle Swarm Optimization-Gravitational Search
Algorithm.

In accordance with the fourth step of the design method dedicated to the
simple T-S PI-FCs detailed in Sub-chapter 2.1, the hybrid PSOGSA was involved in
this step in order to solve the optimization problems corresponding to the objective
functions J; 4, and J; 47 from (2.9) - (2.12). Employing the hybrid PSOGSA

requires the definition of all algorithm’s parameters specified in step 1, and these
values are presented as follows. The number of agents was set to » =20. The maxi-
mum number of iterations of the search process was set to «__ —100. As in the case

of GSA, the decrease law (3.10) of the gravitational constant was used, with the
initial value g, set to g,=100 and ¢=85. The g value from (3.12), introduced to
avoid possible divisions by zero, was set to s=10%. From the PSO part, the
weighting parameters were set to ¢, =¢, =0.3 in order to ensure a good balance be-

tween exploration and exploitation characteristics. The inertia weight parameters
outlined in (3.6) were setto w_, =09 and w,_, =05.
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Table 3.4.1. Results for the PSOGSA-based minimization of Jy, .

7, )? BZe B: 77* ﬂ* k: Tz%< JU‘P min
0 0.1362 40 0.75 3.19747 0.004342 2.94168 390671
0.0021357 0.1384 40 0.75 3.14728 0.004376 2.8955 393510
0.021357 0.1379 40 0.75 3.15765 0.004369 2.90504 420934
0.21357 0.1353 40 0.75 3.21885 0.004327 2.96134 695405
Table 3.4.2. Results for the PSOGSA-based minimization of J;r, .
(rr,)’ B, B, n" 5" k. T’ J1. Ty min
0 0.1362 40 0.75 3.19747 0.004342 2.94168 390671
0.17187 0.1382 40 0.75 3.15222 0.004373 2.90005 636904
1.7187 0.1443 40 0.75 3.01759 0.004469 2.77618 2480870
17.187  0.0128 20 0.2511 17 0.001883 15.64 22790300
Table 3.4.3. Results for the PSOGSA-based minimization of J,, .
)’ By, B, n" 5 k. T’ J2.k, min
0 0.0809 37.8291 0.75 5.0852 0.003443 4.67842  23119.3
0.006858 0.0781 36.5224 0.75 5.0869 0.003442 4.67999  32844.2
0.06858 0.0834 39.009 0.75 5.0867 0.003442 4.67976 119057
0.6858  0.0128 20 0.2502 17 0.001883 15.64 873204
Table 3.4.4. Results for the PSOGSA-based minimization of J, 7 .
(1, B, B, n" 5" k. 7 J2.7; min
0 0.073 34.639 0.75 5.164 0.00349 4.75094 23691.9
0.0066695 0.0686  32.4755 0.75 5.1505 0.00349 4.73854  32207.1
0.066695  0.0841  39.8589 0.3458 5.1571 0.0034 4.74457 109204
0.66695 0.0128 20 0.25 17 0.0019 15.64 864943
Table 3.4.5. Results for the PSOGSA-based minimization of J3, .
,) By, B, n B k. T’ J3 kp min
0 0.0756 35.561 0.8835 5.1202 0.0034 4.71054 2903740
3.9187 0.0856 40 0.75 5.0849  0.0034 4.67807 8472280
39.187 0.0845 39.7112 0.75 5.1164  0.0034 4.70705 57920700
391.87 0.0315 40 0.75 13.7866  0.002 12.6836 528181000

BUPT



3.4 Hybrid Particle Swarm Optimization-Gravitational Search algorithms 67

Table 3.4.6. Results for the PSOGSA-based minimization of J;3, .

O, ) BZe B: 77* ﬂ* k: T;'* 3.k min

0 0.075573 35.561 0.8835 5.1201 0.0034 4.7105 2903740

3.8693 0.084103 40 0.75 5.1751 0.0034 4.7611 8632620
38.693 0.082147 39.9614 0.75 5.293 0.0034 4.8696 56738000
386.93 0.031254 40 0.75 13.9168 0.002 12.804 528146000

Table 3.4.7. Results for the PSOGSA-based minimization of Jy, .

x, ) BZe B: 77* ﬂ* k: Tz* J4,kp min
0 0.0856 40 0.75 5.08538 0.003443 4.67855 153530
0.142 0.0856 40 0.73 5.0852 0.003443 4.67839 353343
1.42 0.0841 40 0.75 5.16972 0.003415 4.75615 2132880
14.2 0.0229 20 0.25 9.50746 0.002518 8.74686 19274000

Table 3.4.8. Results for the PSOGSA-based minimization of Jyr .

(1)’ B, B, 7 B k. T J4,7, min
0 0.0855 40 0.75 5.085 0.0034 4.6785 153530
0.15885 0.0855 40 0.75 5.085 0.0034 4.678 379380
1.5885 0.1344 37.0232 0.75 3 0.0045 2.76 1003440
15.885 0.0194 20 0.25 11.2378 0.0023 10.3387 21610900

The results containing the minimized values of the objective functions
Jiak, and Jy 4z (i€, Ji 4p,min @Nd Ji 47 min ) @re presented in Tables 3.4.1 -

3.4.8 together with the optimal controller tuning parameters.

Despite the hybridization of two nature-inspired algorithms, the random
characteristic was not eliminated, and several simulations were required before ob-
taining the final results. An analysis centered on average values of the objective
functions and two newly introduced performance indices will be detailed in Sub-
chapter 3.8.
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Fig. 3.4.2. T-S PI-FC tuning parameters and objective function evolution vs. itera-
tion index: B, versus k (a), B versus k (b), n versus k (c), and Jok, versus k (d).

Fig. 3.4.2 describes the evolution of the controller tuning parameters and of
the intermediate values of objective function J,; during the search process. The

weighting parameter 7k, =0 was considered in the optimization problem.

Fig. 3.4.3 illustrates the evolution of all agents during the search process is
presented at four steps: k=1, k=15, k=60 and k=100.
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- ..25“-_‘ 20 e : ; 6 : 8 .10 = e

Be p

Fig. 3.4.3. Vector solution p to the optimization problem (2.14) in the search do-
main D, for four values of iteration index k: k=1 (a), k=15 (b), k=60 (c), and

k=100 (d).

For the sake of comparison, Fig. 3.4.4 includes a comparison with the T-S
PI-FC tuned by PSO and with the T-S PI-FC tuned by GSA in the same conditions.
The same values of the parameters of PSO and GSA are used (taken from the pa-
rameters of PSOGSA), and the parameters corresponding to the objective Jir, and

weighting parameter (7Tz)2 =0.17187 from Table 3.2.2 and Table 3.3.2 are used. The

performance improvement ensured by the PSOGSA algorithm is highlighted in Fig.

3.4.4.

]
=

—
[}

position (rad)

0 0.5 1 14 2 2.5 3

time (s]

Fig. 3.4.4. Fuzzy control system responses: with initial T-S PI-FC (line-dotted), PSO-
based T-S PI-FC (solid), GSA-based T-S PI-FC (discontinuous line), hybrid PSOGSA-

based T-S PI-FC (dotted).
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3.5. CHARGED SYSTEM SEARCH ALGORITHMS

The specific features of Charged System Search (CSS) algorithms concern
the random determination of the initial positions of charged particles (CPs) and the
initial velocities of CPs set to zero. Each CP has an associated magnitude of charge
q.; and as a result it creates an electrical field around its space. The magnitude of

the charge at iteration k is defined considering the quality of its solution as:
4o = 8i(k) = 8pest (K) CislN (3.22)
’ gbe.vt(k) — 8worst (k)
where g, (k) and g, () are the so far best and the worst fitness of all CPs
at iteration k, g,k is the objective function value or the fitness function value of ;"
CP at iteration k, and N is the total number of CPs. The separation distance 7 be-
tween two CPs at iteration k is defined as [Pre12d]:
(k) = 1 X; (k) - X; (0]
v ! (X; (k) + X ; (k)
2
where ¢ is the dimension of the search space, x;x) and x,k are the posi-

(3.23)

. Xo(k)eR?, 0eli, j,best} !
= Xpest (K) || +6X (k)

tion vectors of /#* and ;* CP at iteration k, respectively, x,,.() is the position of the
best current CP at iteration k, ¢, >0, is a constant introduced to avoid singularities,

and the Euclidean norm is considered in (3.23).

For the optimization problems presented in (2.13) - (2.16), a ¢=3-
dimensional search space is required, according to (2.19).

The electric forces between any two CPs are used in increasing CSS algo-
rithm’s exploitation ability. The good CPs can attract the other CPs and the bad ones
repel the others, proportional to their rank ¢ [Kav1i0a], [Kav10b], [Kav1O0c],

[Prel2d]:
o :{“’ i g <gp (3.24)

1, otherwise,

where the parameter ., determines the type and the degree of influence of

each CP on the other CPs, considering their fitness apart from their charges.
The value of the resultant electrical force r, acting on ;# CP at iteration k is

[Kav10a]:

q; (0 (0 g,y N (GRS IR ATEORTS (3.25)
(k) =a. (k (XK = X (k - .
Fi(6)=g;00) ) (~——+ 20 D= X, ), i) =y ot

it ) a Ty

where ; j=1.~. Equation (3.25) shows that each CP is considered as a

charged sphere with radius a having a uniform volume charge density.
The new position (vector) x,+1) and velocity (vector) v,«+1) of each CP is

determined in terms of [Kav10a], [Kav10b], [Kav10c], [Prel4c]:
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X;(k+1)= ilka(k)(ﬂ)(Ak)z + 12k, (K) Vi (k) Ak + X (k),
m; (3.26)
X;(k+1) - X;(k)
Ak ’
where f is the current iteration index which is dropped out at certain varia-

bles for the sake of simplicity, ,(x) is the acceleration parameter at iteration f,
k(0 is the velocity parameter at iteration k, which controls the influence of the
previous velocity, r, and r, are two random numbers uniformly distributed in the

Vi(k+1) =

range 0<r,,n, <1, m; is the mass of ;# CP, i=1.~, which is set here as equal to 4,
and ax is the time step set to 1.

Step I. Initialize search space
and generate population

o

v
| Step 2. Evaluate each CPs’ fitness |

Step 3. Update g, andg__,and
update g,

+
Step 4. Update values of k, and

v
Step 5. Compute the total attraction
forces

Step 6. Update the CPs’ positions
and velocities

Step 7. Increment k
until k=k,.?

Step 8. Stop and save final
solution

Fig. 3.5.1. Flowchart of Charged System Search algorithm.

The effect of the pervious velocity and the resultant force acting on a CP can
be decreased or increased based on the values of , ) and (), respectively. Since

k,(k) is the parameter related to the attracting forces; selecting a large value of
k,(ky may cause a fast convergence and choosing a small value can increase the
computational time. ) controls the exploration process. The following modifica-
tions of x,x) and &, k) with respect to the iteration index are applied [Prel4c]:

ka(k):3(1—kk ), kv(k):0.5(1+kk ) (3.27)

max max

where __ is the maximum number of iterations.

max

The CSS algorithm consists of the following steps [Prel2d]:
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Step 1. Initialize the dimensional search space, the number of CPs N, set
the iteration index k=0, set the search process iteration limit £ _and randomly

generate the CPs’ position vector x,(0), i=1..N.

Step 2. Evaluate the CPs’ fitness in line with (2.9) - (2.12).
Step 3. Update g, () and g, . (), and update 4 k) using (3.22) for i=1.N.

Step 4. Update the values of k) and k&) according to (3.27).

Step 5. Compute the total force in different directions using (3.23), (3.24)
and (3.25).

Step 6. Update the CPs’ velocities and positions using (3.26).

Step 7. Increment k& and go to step 2 until the maximum number of itera-
tions is reached, i.e., r =

Step 8. Save the optimal parameter vector as the position vector corre-
sponding to the minimum value of objective (fitness) function.

These steps are included in the flowchart of the CSS algorithm as presented
in Fig. 3.5.1.

Table 3.5.1. Results for the CSS-based minimization of Jy; .

s, )’ BZe B: 77>}< ﬂ* k: Tz%< JU‘P min

0 0.1408 40 0.75 3.0937 0.0044 2.846 390621
0.0021357  0.1452 40 0.75 3 0.0045 2.76 395143
0.021357 0.142 40 0.75 3.0664 0.0044 2.821 421548
0.21357 0.1452 40 0.7434 3 0.0045 2.76 698489

Table 3.5.2. Results for the CSS-based minimization of Jy .

)’ B, B, n" 5 k. T J1.1; min
0 0.1452 40 0.75 3 0.0042 2.76 392076
0.17187 0.1342 40 0.75  3.2453 0.0043 2.9857 640415
1.7187  0.1418 39.0736  0.75 3 0.0045 2.76 2867160
17.187  0.0128 20 0.25 17 0.0019 15.64 22809200

Table 3.5.3. Results for the CSS-based minimization of J,, .

71,)’ B, B, 7 B k. 7 J2 kp min

0 0.0856 40 0.75 5.085 0.0034 4.6784 22979.9
0.006858 0.0852 40 0.75 5.111 0.0034 4.7024 32749.4
0.06858 0.0844 39.5179 0.75 5.097 0.0034 4.689 119197
0.6858 0.0129 20 0.25 17 0.0019 15.64 874183
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Table 3.5.4. Results for the CSS-based minimization of J, 7 .

(1, B\, B, n" 5" k. T J2,7, min
0 0.0856 40 0.75 5.0852 0.0034 4.6784 22979.9
0.0066695 0.085 40 0.75 5.1183 0.0034 4.7088 32661.5
0.066695 0.0853 40 0.75 5.1007 0.0034 4.6927 118170
0.66695 0.0128 20 0.25 17 0.0019 15.64 864943
Table 3.5.5. Results for the CSS-based minimization of J3; .
", B B, n i ke T 3.k min
0 0.0779  36.563 0.75 5.1096 0.003435 4.701 3089410
3.9187 0.0854 40 0.75 5.0961 0.003439 4.688 8491810
39.187 0.0849 40 0.75 5.1447 0.0034 4.7332 57665900
391.87 0.0369 40 0.75 11.7966 0.0023 10.8529 528840000
Table 3.5.6. Results for the CSS-based minimization of J3; .
)’ By B, n Vi k. T 3.k min
0 0.0851 40 0.75 5.1167 0.0034 4.70733 3033090
3.8693 0.0855 39.9368 0.7282 5.1026 0.0034 4.69442 8555190
38.693 0.1449 40 0.75 3.0066 0.0045 2.76606 52611000
386.93 0.0339 40 0.75 12.8174 0.0022 11.792 530435000
Table 3.5.7. Results for the CSS-based minimization of J,; .
71,)’ B, B, 7 B k. T J 4.k min
0 0.0845 40 0.75 5.1497 0.003421 4.73768 155252
0.142  0.0845 40 0.75 5.151 0.003421 4.7389 354007
1.42 0.084 39.8938 0.75 5.1678 0.003415 4.75435 2142920
14.2 0.0225 20 0.25 9.6546 0.002499 8.88227 19379100
Table 3.5.8. Results for the CSS-based minimization of J, 7 .
(1, B, B, n" 5 k. T J 4.1, min
0 0.0845 40 0.75 5.1497 0.003421 4.73768 155252
0.15885 0.0847 40 0.75 5.1365 0.003426 4.72559 380819
1.5885  0.085 40 0.75 5.1216 0.003431 4.7119 2419410
15.885  0.0207 20 0.25 10.4964 0.002396 9.65673 21711500
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Fig. 3.5.2. T-S PI-FC tuning parameters and objective function evolution vs. itera-
tion index: B, versus k (a), B versus k (b), n versus k (c), and Jz,k,, versus k (d).

The CSS algorithm previously descried was employed in the step 4 of the
design method dedicated to the simple T-S PI-FCs presented in Sub-chapter 2.1.
Before a CSS-based solution could be used, all algorithm parameters required ini-
tialization. The number of used CPs was set as ~ =20, the maximum number of iter-

ations was set to ., =100. For the sake of simplicity each CP is considered as a
charged sphere with radius 4«=1 having a uniform volume charge density. The con-
stant ¢ in (3.23) was set to ¢=10"*.

The results representing the optimal controller tuning parameters and the
minimized values of the objective functions J; 44, and J, 45 (i.e., J 44, mn and
Ji..41, min ) @re presented in Tables 3.5.1 - 3.5.8. A consequence of the degrees of

freedom represented by the arbitrary CSS parameters requires several restarts of
the search process before a final solution can be obtained. This aspect will be ana-
lyzed in Sub-chapter 3.8 based on the average values of the objective functions and
two newly introduced performance indices.

Fig. 3.5.2 illustrates an evolutionary representation of the controller tuning
parameters and of the objective function Jyk, along the algorithm’s iterations. The

weighting parameter ,, -0 was considered.
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Several snapshots of all CPs during the search process are shown in Fig.
3.5.3 in order to give a better representation of algorithm’s exploration and exploi-
tation capabilities.

8

Be B

Fig. 3.5.3. Vector solution p to the optimization problem (2.14) in the search do-
main D, for four values of iteration index k: k=1 (a), k=15 (b), k=60 (c), and

k=100 (d).

The solution based on the CSS algorithm to the optimization problems pre-
sented in Chapter 2 is validated in [Pre12d] through experimental results for the
experimental setup presented in Chapter 2. The experimental results were obtained
for the step-type angular position reference input of ry, =40 rad, and they were con-
ducted for the control systems with both the PI controller and the T-S PI-FC. A sam-
ple of the real-time experimental that corresponds to the objective function ik,

and for the (;/kp)2 =0.006858 value of the weighting parameter is presented in Fig.

3.5.4.
The additional PI controller mentioned in this experimental study had the
value of the design parameter g set to #=7. This controller was tuned by the ESO

method.

BUPT



76 Nature-inspired algorithms for the optimal tuning of fuzzy controllers ... - 3

Experimental results: ___linear control, _ _ _ fuzzy control
60 : : :
T 40
g
> 20
0

Time [s]

Fig. 3.5.4. Controlled output of the control system with the PI controller (solid line)
and of the fuzzy control system (dashed line).

The objective function measured for the fuzzy control system is smaller
compared to that of the control system with the linear (PI) controller [Prel2d]. In
addition, the improvements of the settling time and of the overshoot ensured by the
fuzzy control system are highlighted in Fig. 3.5.4. Therefore, the use of the CSS
algorithm in the optimal tuning of fuzzy controllers is justified.

3.6. ADAPTIVE GRAVITATIONAL SEARCH ALGORITHMS

Although the standard GSA has already shown promising results illustrated
in [Prel3a], a good computational efficiency and ease of implementation, it uses
several predefined parameters and schedules which fail to take into consideration
the state of the search process. Hence, the algorithm can become computationally
inefficient as the exploration-exploitation ratio could become inefficient and the al-
gorithm might get trapped in local minima situations.

Therefore, the most important and interesting goals in GSA development are
optimal resource usage and avoiding local optima. The adaptive GSA proposed in
[Pre12a], [Pre13d] offers a superior search process compared to the standard GSA
by improving the exploration of the search space as it continues the development of
the stage based adaptation of algorithm parameters [Liul0a]. This improvement is
ensured by the use of a learning model for the algorithm, inspired by the 5E learn-
ing cycle discussed in [Byb02] and [Bal06].

As the standard GSA, the adaptive version is governed by the same operat-
ing mechanism which is based on the use of agents (i.e., particles) and on Newton’s
law of gravity [Ras09], [Ras10]. The algorithm consists of the following stages:

I. Engagement. The initial ¥ agents number is defined and their positions
are generated randomly:

X; =[x/ . xf X1 X, =p i=1.N, (3.28)

where x, is agents’ position vector, ¢ is the position of /" agent in 4" di-
mension of the 4=3-dimensional search space, as results from (2.29) in order to

solve the optimization problems (2.13) - (2.16). The maximum number of iterations
k. Of the search process is set and the iteration index & is set to x=0 and will be

incremented at the end of the iteration according to step 7 in Fig. 3.6.1.
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II. Exploration. This stage allows the algorithm to discover the extent of the
search space. The following linear decrease law of the gravitational constant is em-
ployed:

k )i (3.29)

max

glk)y=go(1-y

where g) is the value of gravitational constant at current iteration index k,
g, Is the initial gk), and y >0 is an a priori set parameter which ensures a trade-off

to GSA’s convergence and search accuracy.
The agent’s velocities and positions are updated using:

vil (k+1) = povfl (k) +a (k) (3.30)
x& (k+1) = x{ (k) + v (k+1),
where p,, 0<p, <1, is a uniform random variable; /) is the acceleration
of i agentin 4" dimension:
‘ | ﬁ . &Emp Ry (R ()~ ! (b)) (3.31)
! (r (k) + & (K)) ’

where 5, 0<5, <1, is @ random generated number, ), mpk) and m, @)

are the inertial, passive and active gravitational masses related to i and ;™ agent,

¢>0 is a relatively small constant, and ry (k) is the Euclidian distance between ;™ and
;M agents:

1 () =l X; () = X (k) ||+ (3.32)

The expressions of the active gravitational mass and of the inertial mass are
calculated in terms of:
Silk) - ,-Tlaxn S k)

n; (k) =— ,
min f;(k)— max f;(k)
Jj=l.n Jj=l.n
) (3.33)
mithy =

D )
Jj=1
my; =mp =m.
Stage II of the adaptive GSA is carried out for the first 15% iterations (i.e.,
runs) in the search process.
III. Explanation. Algorithm’s parameters restrict agents’ movement during
the next 45% iterations in the search process, by the introduction of a more aggres-
sive decrease law of g(k) according to:

£ = goexp(-¢ ) (3.34)

where ;>0 is an a priori set parameter which affects GSA’s convergence
and search accuracy.

1IV. Elaboration. The remaining 40% of iterations are characterized by set-
ting the general position for the optimal value of the fitness function and leaving the
remaining time to refine the obtained results. The value of ) stops decreasing,
and during this stage the worst agents’ positions are reset to the best values ob-
tained so far after each run.

V. Evaluation. The tuned parameters, obtained at the end of the search pro-
cess, are applied to the real-world optimization problem in order to evaluate the
quality of the solution.
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Fig. 3.6.1 illustrates the adaptive GSA’s stages.

The five stages of the proposed adaptive GSA are different to those ones
presented in the non-adaptive GSA in several formulations [Ras09], [Prelld],
[Prelle], that consist of the stages I, III and V, but with a single and fixed constant
decrease law of the gravitational constant and without resetting the worst fitness

and position.
Step 1. Generate initial :
population | Stage I: Engagement

| Step 2. Evaluate the agent’s fitness |
60% K <K Z Ko

15% Fopay <Jk < 60% Ky

Step 3. Update
gravitational constant

v
Step 3. Reset worst
position to global best

r
Step 3. Update
gravitational

o e 1

: exponentially
constant linear |+ L — = 1|
Stage Hll Explanation
_______________________ Step 4. Calculate total force ¢———- _ __________
Stage I1: Exploration $ Stage IV: Elaboration

Step 5. Calculate the
agents’ accelerations
v
Step 6. Update the agents’
positions and velocities

Step 7. Increment k&
until A=kpx?

i Step 8. Stop and save final i Stage V: Evaluation
i solution |

Fig. 3.6.1. Flowchart of Adaptive Gravitational Search Algorithm.

The computational complexity of this optimization algorithm is influenced by
the complexity of the evaluation of the objective function (viz., the fitness function)
and by the number of runs of the GSA. For the objective functions considered in this
thesis, each variable (i.e., tuning parameter of the fuzzy controller) is altered sepa-
rately at every stage and a new evaluation of the objective function is required in
order to determine the variation impact. This results in an increase of the number of
evaluations of the objective functions, which is proportional to the number of varia-
bles. In case of this adaptive GSA the computational complexity varies as function of
which stage the search process is involved. Stage III is the most computationally
intensive one because two parameters are modified simultaneously.
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3.6 Adaptive Gravitational Search Algorithms 79

Introducing this adaptive GSA in the fourth step of the design method dedi-
cated to the simple T-S PI-FCs presented in Sub-chapter 2.1 required the setting of
algorithm’s parameters. The number of used agents ~=20 was set and the maxi-
mum number of iterations was set to «,, =100. The , and g, parameters in (3.29)
were set as y =05 and g, =100. The ¢ parameter in (3.31) was set to ¢=10"* in order
to avoid possible divisions by zero. The ¢ parameter in (3.34) was set to ¢=35,
and g, was kept the same as in (3.29).

The simulation results for the optimal controller tuning parameters and the
minimized values of the objective functions are presented in Tables 3.6.1 - 3.6.8.
As in case of the normal GSA, the adaptive version required repeated runs of the
simulations before obtaining the final results. The Sub-chapter 3.8 contains an anal-

ysis focused on this algorithm arbitrary characteristic based on the average values
of the objective functions and three performance indices.

max

Table 3.6.1. Results for the adaptive GSA-based minimization of J;; .

) B, B, n" s k. T J1,kp min

0 0.1386 40 0.75 3.143 0.004379 2.8917 390459
0.0021357 0.1379 40 0.75 3.1576 0.004369 2.90502 393510
0.021357  0.1379 40 0.75 3.1573 0.004369 2.90467 421036
0.21357  0.1374 39.8401 0.75 3.1566 0.00437 2.90404 695019

Table 3.6.2. Results for the adaptive GSA-based minimization of J,r .

() By, B, n A k. 7 J 1,7 min

0 0.1386 40 0.75 3.1432 0.004379 2.8917 390459

0.17187 0.1393 40 0.75 3.1261 0.004391 2.87602 637573
1.7187 0.1387 39.5837 0.75 3.1074 0.004404 2.85879 2856930
17.187 0.0128 20.0053 0.25 17 0.001883 15.64 22806100

Table 3.6.3. Results for the adaptive GSA-based minimization of J,; .

i, By, B, n" s k. T’ J2,kp min
0 0.0843 39.4214  0.75  5.0872 0.0034 4.6802  23042.5
0.006858 0.0848 39.6633  0.75  5.0918 0.0034 4.6844  32704.3
0.06858  0.0849 40 0.75 5.1263 0.0034 47161 119101
0.6858  0.0128 20.0052  0.25 17 0.0019 15.64 874136

Table 3.6.4. Results for the adaptive GSA-based minimization of J, 7 .

(1, B, B, n" 5 k. T J2.7; min

0 0.0843 39.4214 0.75 5.0872 0.003442 4.6802 23042.5
0.0066695 0.0855 40 0.75 5.0928 0.00344 4.6854 32599.4
0.066695 0.084 39.803 0.75 5.1574 0.003419 4.7448 116083
0.66695 0.0128 20.0053 0.25 17 0.001883 15.64 864596
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Table 3.6.5. Results for the adaptive GSA-based minimization of Js; .

71,)’ By, B, n" B k. T’ I3k min

0 0.0851 40 0.75 5.1118 0.0034 4.70288 3025720

3.9187 0.0849 39.6832 0.75 5.0876 0.0034 4.68074 8483290
39.187 0.0712 35.1788 0.75 5.3772 0.0033 4.947 57354700
391.87 0.0323 40 0.75 13.471 0.0021 12.3934 527357000

Table 3.6.6. Results for the adaptive GSA-based minimization of J3, .

)’ By B, 7 i ke T J3.kp min
0 0.0856 39.9958 0.75 5.0849 0.0034 4.678 2984880

3.8693 0.0856 40 0.75 5.087 0.0034 4.68 8502740

38.693 0.0812 40 0.3804 5.3617 0.0034 4.9328 57918400

386.93 0.0324  38.6831 0.75 12.978 0.0022 11.9398 527683000

Table 3.6.7. Results for the adaptive GSA-based minimization of J,, .

7, Bae B, 7 i ke T Jakp min
0 0.0845 40 0.75 5.1528 0.0034 4.7406 155249
0.142 0.083 38.7878 0.75 5.0857 0.0034 4.6788 353686
1.42 0.084 39.9504 0.415 5.1342 0.0034 4.7234 2143540
14.2 0.023 20.3629 0.25 9.5955 0.0025 8.8279 19277500

Table 3.6.8. Results for the adaptive GSA-based minimization of J,; .

(1, By, B, n" 5 k. T J 4.k, min
0 0.0845 40 0.75 5.1529 0.0034 4.7407 155249
0.15885 0.0846 40 0.75 5.1431 0.0034 4.7316 380396
1.5885 0.0491 23.2926 0.75  5.1583 0.0034 4.7456 2337150
15.885 0.0207 20.0066 0.25  10.5253 0.0024 9.6833 21600800

Fig. 3.6.2 presents the evolution of the tuning parameters of the T-S PI-FC
and of the objective function J,, along the iterations of the optimization process.

The weighting parameter 7k, =0 Was considered.

Fig. 3.6.3 illustrates the evolution of all agents’ positions for the adaptive

GSA after the first four stages of the search process.
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Fig. 3.6.2. T-S PI-FC tuning parameters and objective function evolution vs. itera-
tion index: B, versus k (a), B versus k (b), n versus k (c), and Jok, versus k (d).

The solution obtained by the presented adaptive GSA algorithm to the opti-
mization problems presented in Chapter 2 was also validated by the use of the ex-
perimental setup presented in Chapter 2. The real-time experimental results with
dynamic regimes characterized by the r, =40 rad step type modification presented

in [Prel2a], show the performance improvement ensured by the fuzzy controller in
case of the objective function J,r and the weighting parameter (7T>;)2 =0.17187.

The experiments were conducted for the control systems with both the PI controller
(i.e., the linear control system) and the T-S PI-FC.

The PI controller used for comparison was tuned by the ESO method. The
design parameter g was setto f=4.

The real-time experimental results show the performance improvement en-
sured by the fuzzy controller. Although the differences between the outputs are ra-
ther small (overshoots and settling times), they are important because the values of
the objective function are significantly different. The values of the objective function
measured during all experiments show the reduction of the objective function of the
fuzzy control system compared to the linear one although this is not visible in the
control systems responses.
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Fig. 3.6.3. Vector solution p to the optimization problem (2.14) in the search do-
main D, for four values of iteration index k: k=1 (a), k=15 (b), k=60 (c), and

k=100 (d).
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Fig. 3.6.4. Real-time experimental results of control system with PI controller a);
and the fuzzy control system with T-S PI-FC b).
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3.7. ADAPTIVE CHARGED SYSTEM SEARCH ALGORITHMS

As in the case of adaptive GSA, the same framework can be integrated for
the classical version of the CSS algorithm. The adaptation uses the specific features
of CSS algorithms, which are based on the interactions between charged particles
(CP) as they are moving through a predefined search domain, starting with arbi-
trarily determined initial positions with zero initial velocities. The CP is characterized
by an associated magnitude of charge ¢, and as a result it creates an electrical field

around its space. The magnitude of the charge at iteration k is defined considering
the quality of its solution as:
g () =8P =8en® iy (3.35)
’ gbest(k) ~ 8worst (k)
where g, (k) and g, () are the so far best and the worst fitness of all CPs
at iteration k, g,k is the objective function value or the fitness function value of ;"
CP at iteration k, and N is the total number of CPs. The separation distance v be-
tween two CPs at iteration k is defined as:
(k) = 1 X; (k) =X ; (k) ||
Y (X; (k) + X (k)
I
where x,x) and x,x are the positions of ;* and ;® CP at iteration k, re-

(3.36)

, X,(k)eR%, oeli, j,best} !
= Xpes: () || +X; (k)

spectively, x,,,(x) is the position of the best current CP at iteration k, and the rela-
tive small parameter ¢>0 is introduced to avoid singularities.

For the optimization problems described by (2.13) - (2.16), rY will be de-
fined in accordance to (2.29) resulting in a 4=3-dimensional search space.

The exploitation ability of CSS algorithms is increased by the electric forces
between CPs. When a search space is a noisy domain, having a complete search
before converging to a result is necessary. In such a condition, the addition of the
ability of repelling forces to the algorithm may improve its performance. Good CPs
can attract the other agents and bad CPs repel the others, proportional to their rank

G+

%:{1Wﬁ<ﬁ= (3.37)

1 otherwise.

The rank (, sets the type and the degree of influence of each CP on the oth-

er CPs considering their fitness function values apart from their charges. This means
that good agents are awarded the capability of attraction and bad ones are given
the repelling feature, resulting in the improvement of the exploration and exploita-
tion abilities of the algorithm. When a good agent attracts a bad one, the exploita-
tion ability is provided for the algorithm; on the other hand, when a bad agent re-
pels a good CP, the exploration is provided.

The value of the resultant electrical force r, acting on ;* CP at iteration k is:

(0.1), if r;(k)>a, (3.38)

(1,0), otherwise,

(k) ()i (k)i
F[(k):q,-(k)Z(q‘/( i;’ Wi, q:_z((:; ey (X, (k) = X ; (k). (ilaiz)z{
ij

ii#]
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Equation (3.25) shows that each CP is considered as a charged sphere with
radius a having a uniform volume charge density.

The new position of ;™ CP, x,k+1), and the new velocity of /" CP, v,(k+1),
are obtained in terms of [Kav10a], [Kav10b], [Prel2a], [Kav12e]:
F; (k) 2
—y(Ak ke, (K)V,; (k)Ak + X (k),
ml_(k))( )" + 1k, (K)V;(D)Ak + X, (k) (3.39)
X;(k+1)=X; (k)

Ak ’

where k is the current iteration index, &, (k) is the acceleration parameter, &,

is the velocity parameter, », and 5, are two random numbers uniformly distributed

X (ke + 1) = ryy (K)k g (k)

Vi(k+1)=

in the range of (0, 1), m, is the mass of /" CP, i=1..N, m, =¢, in the sequel, and A«

is the time step set to 1.
The effect of previous velocity and the resultant force acting on a CP can be
decreased or increased on the basis of the values of k) and &, ), respectively.

Excessive search in the early iterations may improve the exploration ability; howev-
er, a gradual decrease is advised in [Kav10a], [Kav10b], [Kav10c]. Since &, () is

the parameter related to the attracting forces, selecting a large value for this pa-
rameter may cause a fast convergence and choosing a small value can increase the
computational time. In fact, «, ) is a control parameter of the exploitation; there-

fore, choosing an incremental function can improve the performance of the algo-
rithm. In addition, the direction of the pervious velocity of a CP is not necessarily
the same as the resultant force. Thus, it can be concluded that the velocity parame-
ter r, controls the exploration process, so an increasing function can be selected.

Therefore, based on extended experimental practice, we suggest the following modi-
fications of «,) and &, ) with respect to the iteration index k:

ko (k) =30 -— ), & (k) =0.50+——) , (3.40)

max max
where . is the maximum number of iterations.

The adaptive CSS algorithm is expressed in terms of the following five stag-
es, I, II, III, IV and V, illustrated in Fig. 3.7.1 and described as follows.

1. Engagement. This stage is dedicated to the initialization of adaptive CSS
algorithm’s population and parameters.

II. Exploration. The adaptive CSS algorithm is run with no modifications of
k, (k) and k, k), S0 no constraints are applied to charged particles” movements. This

stage accounts for the first 20% out of __ iterations.

III. Explanation. The adaptive CSS algorithm is run using the linear modifi-
cations of k¢, and i, according to (3.40).

The next 40% out of k__ iterations are assigned to this stage. The adapta-

tion is obtained on the basis of experience in adaptive GSA algorithm [Pre12d].
IV. Elaboration. This stage uses the last 40% out of ; _ iterations in adap-

tive CSS algorithm’s search process runs. In addition, at each run the agent’s posi-
tion with the worst fitness is reset to the position of the agent with the best fitness.

V. Evaluation. Charged particles’ positions are mapped onto the variables of
the optimization problem, and the objective functions are evaluated using the real-
world model of the optimization problem to evaluate the obtained solution.
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Some aspects concerning the stages of this algorithm are presented as fol-
lows. The search process in CSS algorithms depends generally on the number of
agents N, on the maximum number of iterations &, , and on the parameters ()

and k,) and .. Stage I concerns the generation of the initial population of CPs,

i.e., the initialization of the g-dimensional search space, of N, the initialization of the
iteration index k¢ to x=0 and will be incremented at the end of the iteration accord-

ing to step 7 in Fig. 3.7.1., the random initialization of charged particles’ position
vector x,, and the initialization of ¢ . Since N and &, are constant, the adaptive

CSS algorithm presented in this sub-chapter carries out the adaptation of , () and
k,(k) to k.

max

i Step 1. Generate initial i
i population | Stage I: Engagement

4
Step 3. Use default
search parameter
values

Step 3. Reset worst
position to global best

|
|
I
i
' 7 v
I
I
I
I
i
I

Y

%
3
]
=
8
P
>
B
o

Stage Illy Explanation
_______________________ Step 4. Calculate total force
Stage II: Exploration v Stage IV: Elaboration
Step 5. Calculate CPs’
accelerations

v
Step 6. Update CPs’
positions and velocities

Step 7. Increment k
until A=kyx?

i Step 8. Stop and save final i Stage V: Evaluation
solution :

Fig. 3.7.1. Flowchart of adaptive Charged System Search algorithm.

Stage II allows the algorithm to discover the extent of the search space.
This stage is characterized by conserving the initial parameters values during the
first 20% out of ___ runs of the search process.

max
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This adaptive CSS algorithm restricts charged particles” movements in stage
III by the introduction of the modification laws for k () and «, &) in terms of (3.40)

in order to reduce inter-CP distances.

Stage 1V is characterized by setting the general position for the optimal val-
ue of fitness function and leaving the remaining time to refine the obtained results.
The values of all parameters are frozen, and only the worst charged particles’ posi-
tions are reset to the best values obtained so far after each run.

Stage V focuses on the evaluation of real-world optimization problem’s per-
formance for the location of the best position vector obtained during the search pro-
cess. The obtained solution is mapped onto the real-world optimization problem and
tested at this stage.

The adaptive CSS was employed as a nature-inspired algorithm in the step 4
of the design method dedicated to the simple T-S PI-FCs presented in Sub-chapter
2.1. The introduction of the solution based adaptive CSS required the priori setting
of the algorithm’s parameters given as follows. The number of CPs was set to v =20 .
The maximum number of iterations of the search process was set to «__ -100. As in

the case of the standard version of CSS, each CP has a uniform volume charge den-
sity and is considered as a charged sphere with radius «=1. In order to avoid a pos-

sible division be zero . parameter in (3.36) was set to ¢=10"*.

Table 3.7.1. Results for the adaptive CSS-based minimization of Jy, .

7k, )? BZe B: 77>}< ﬂ* k: T;'* Jl’kp min

0 0.1385 40 0.75 3.1435 0.0044 2.892 390459
0.0021357 0.1337 40 0.75 3.2567 0.0043 2.996 394347
0.021357 0.1409 40 0.75 3.092 0.0044 2.8446 421167
0.21357 0.1427 40 0.7402 3.053 0.0044 2.8087 698092

Table 3.7.2. Results for the adaptive CSS-based minimization of J;r, .

() B, B, n" 5 k. T J 175 min
0 0.1385 40 0.75  3.1441  0.0044 2.8926 390460
0.17187 0.1452 40 0.74804 3 0.0045 2.76 638752
1.7187 0.1435 39.5422  0.75 3 0.0045 2.76 2857120
17.187 0.0128 20 0.25 17 0.0019 15.64 22809200

Table 3.7.3. Results for the adaptive CSS-based minimization of J,; .

7, B, B, n B k. T Jkp min

0 0.0859 40 0.75 5.0849 0.0034 4.678 22975.7
0.006858 0.0858 40 0.75 5.0914 0.0034 4.68 32684.9
0.06858 0.0855 40 0.75 5.0899 0.0034 4.6827 118951
0.6858 0.0128 20 0.25 17 0.0019 15.64 874183
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Table 3.7.4. Results for the adaptive CSS-based minimization of J;, 7 .

On) B, B, n A k. 7 J2,7; min

0 0.0856 40 0.75 5.0849 0.0034 4.6781 22976
0.0066695 0.0853 40 0.7480 5.1049 0.0034 4.6965 32647.4
0.066695 0.1414 38.9685 0.3229 3 0.0045 2.76 117239
0.66695 0.0128 20 0.25 16.9989 0.0019 15.6389 864126

Table 3.7.5. Results for the adaptive CSS-based minimization of Jj3; .

7k, )? BZe B: 77* ﬂ* k: T;-* J3,kp min

0 0.0850 39.7528 0.75 5.0866 0.0034 4.6797 2991580

3.9187 0.0853 40 0.75 5.1002 0.00344 4.6922 8488570
39.187 0.0843 40 0.7249 5.1617 0.0034 4.7487 57651100
391.87 0.0176 20 0.75 12.3501 0.0022 11.3621 528696000

Table 3.7.6. Results for the adaptive CSS-based minimization of J3, .

() B, B, n" 5" k. T’ I3 kp min
0 0.0856 40 0.7496  5.0848 0.0034  4.6781 2985290
3.8693 0.0781 36.9602 0.4503  5.1486 0.0034  4.7367 8452010
38.693 0.0845 39.9978 0.7498  5.1492 0.0034  4.7373 50884400
386.93  0.0332 40 0.75  13.1011  0.0021  12.053 527661000

Table 3.7.7. Results for the adaptive CSS-based minimization of Jy, .

" B B, n Vi k. T Jakp min
0 0.0845 40 0.75 5.1529 0.0034 4.7407 155249
0.142 0.0845 40 0.75 5.1515 0.0034 4.7394 353981
1.42 0.0797 37.5427 0.75 5.1246 0.0034 4.7146 2132650
14.2 0.0379 20 0.5719 5.7422 0.0032 5.2828 19046800

Table 3.7.8. Results for the adaptive CSS-based minimization of Jy, .

() By, B, n B k. T J 4 kp min

0 0.0856 40 0.75 5.0861 0.0034 4.6792 154343

0.15885 0.0856 40 0.7498 5.0853 0.0034 4.6785 379823
1.5885 0.0844 40 0.4389 5.1568 0.0034 4.7443 2406310
15.885 0.0209 20 0.25 10.3913 0.0024 9.56 21595900

Results pertaining to the simulations required for the objective functions
Jiak, and Jy 4z (i€, Ji 4p,min @Nd Ji 47 min ) @re presented in Tables 3.7.1 -

3.7.8. The results from the mentioned tables were obtained after several restarts of
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the adaptive CSS algorithm for every objective function, that were imposed as a
consequence for the degrees of freedom of the arbitrary variables contained by the
search process, with the aim of ensuring the optimal controller tuning parameters
and the minimized values of the objective functions. An in-depth analysis of this
aspect is presented in Sub-chapter 3.8 with the focus on the average values of the

objective functions along with three performance indices.

eter ,, =0 was considered.
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In Fig. 3.7.2, the progress of the search process is tracked for the best CP
results. Each graph corresponds to the parameters given by the algorithm together
with the values corresponding to the objective function J,, . The weighting param-
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Fig. 3.7.2. T-S PI-FC tuning parameters and objective function evolution vs. itera-

tion index: B, versus k (a), B versus k (b), n versus k (c), and Jz,k,, versus k (d).

Fig. 3.7.3 displays the movement of all CPs employed by the adaptive CSS
at the end of the first four stages of the algorithm.
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Fig. 3.7.3. Vector solution p to the optimization problem (2.14) in the search do-
main D, for four values of iteration index k: k=1 (a), k=15 (b), k=60 (c), and

k=100 (d).
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Fig. 3.7.4. Real-time experimental results of control systems with initial PI controller

(dotted), initial T-S PI-FC (dashed), standard CSS-based tuned T-S PI-FC (dash-
dotted) and adaptive CSS-based tuned T-S PI-FC (solid).

The adaptive CSS algorithm-based solution for the optimization problems

presented in Chapter 2 is also validated by an experimental case study dealing with
the optimal tuning of a T-S PI-FC for the position control of a nonlinear servo sys-
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tem in [Prel4c]. The experiments were conducted for a », =40 rad step-type modifi-

cation of the angular position reference and for both PI and T-S PI-FC controllers.
The experimental results for four controller architectures corresponding to the ob-

jective function J,; and the value of the weighting parameter (;/kp)2 =0.006858 are

represented in Fig. 3.7.4: (i) a linear control system with PI controller tuned by the
ESO method, (ii) a fuzzy control system with T-S PI-FC obtained from the PI con-
troller by the modal equivalence principle, (iii) a fuzzy control system with T-S-PI-FC
tuned by the standard CSS algorithm, and (iv) the fuzzy control system with T-S-PI-
FC tuned by the adaptive CSS algorithm.

The control system with PI controller, with the responses presented in Fig.
3.7.4, uses a PI controller tuned by the ESO method for f=4. The experimental

results illustrate the performance improvements offered by the adaptive CSS algo-
rithm. The non-adaptive CSS algorithm was tested in the same conditions using the
parameters taken from the parameters of the adaptive CSS algorithm.

3.8. CHAPTER CONCLUSIONS

If the previous sections were dedicated to the introduction of several na-
ture-inspired algorithms and presenting the solutions they provided for the optimi-
zation problems defined in Chapter 2, this section proposes a performance compari-
son of these algorithms with regards to the values of the objective functions in the
optimization problems.

As previously mentioned, the algorithms required several restarts before the
optimal values were obtained in order to overcome the random characteristic com-
mon to all nature-inspired algorithms. Therefore, the averages of the best obtained
values for each combination of objective function and weighting parameter are tak-
en into consideration. The best values are the smallest values in the context of the
optimization problems (2.13) - (2.16) that target the minimization of several objec-
tive functions.

The first comparison criterion is represented by the average value of each
objective function (2.9) - (2.12) obtained by running a certain nature-inspired op-
timization algorithm. The notation for this criterion is Avg(J and it is calculat-

i,a, min ) ’

ed in terms of:

th
__1 Z @) 3.41
Avg(Ji g min) = Ji minl ! ( ) )
G Npest = “
where J;, .., is the value of the objective function obtained by running a

certain nature-inspired optimization algorithm considering one of the four expres-
sions given in (2.9) - (2.12) and one weighting parameter, the subscript i, i=1..4,

describes one of the four objective functions defined in (2.9) - (2.12), the process
parameteris ., r=1..mp, mp =2 for the process considered in this thesis, o, e {kp,7s}
according to (2.21), w,,, represents the number of best values (i.e., the smallest

values) obtained for each of objective function and weighting parameter, and the
superscript j, j=1..N,,,, indicates the value of the objective function ob-

i,0, min
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tained by one of the best N,  runs of a certain nature-inspired optimization algo-
obtained by the run

rithm, so J; , .

n

() is the value of the objective function J.

i,a, min

J» j=1..N,,,, of a certain nature-inspired optimization algorithm.

The results given in Tables 3.8.1.1 - 3.8.1.8 represent the average of the
best w,,, =5 obtained values for each combination of objective function and

weighting parameter. However, different values but the same qualitative conclusions
can be drawn for other values of wn,,,, .

By analyzing the performance of all proposed nature-inspired algorithms it
can be observed that no algorithm has a dominant position compared to the others,
as the values of the proposed comparison criterion are relatively close. In addition,
the best values for each combination of objective function and weighting parameter
may be given by different algorithms in each of these cases. If the comparison is
restricted to the adaptive and regular versions of GSA and CSS algorithms, it can be
observed that the adaptive version of each algorithm outperforms the regular ver-

sion.

Table 3.8.1.1. Average values of objective function after the minimization of Jy; .

) SA PSO GSA  PSOGSA  CSS Adgg;"’e Adggts"’e

0 300491 392076 390478 391608 391275 390459 391151
0.0021357 393530 305143 393695 394638 395143 393514 394878
0.021357 421009 422158 421134 421547 422273 421053 421965
0.21357 696481 698859 696247 697464 698736 695394 697879

Table 3.8.1.2. Average values of objective function after the minimization of Jy .

Y SA PSO GSA PSOGSA  CSS Adgg;“’e Adggts"’e
0 390506 392076 390478 391608 392076 390459 390519
0.17187 639824 641826 631780 638308 640890 638372 639991
1.7187 2869153 1234553 2867530 2116253 2867807 2862040 2860877

17.187 22810300 22809200 22803933 22802567 22809200 22807400 22809200

Table 3.8.1.3. Average values of objective function after the minimization of J,, .

() SA PSO GSA  PSOGSA css Adgg;“’e Adggts"’e
0 23017 23012 23511 23965 23129 23129 22976
0.006858 32647 32579 32817 36335 37931 32749 32847
0.06858 118967 110048 119306 119807 119467 119375 119075
0.6858 874484 874183 874149 873857 874183 874162 874183
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Table 3.8.1.4. Average values of objective function after the minimization of J, 7 .

2 SA PSO GSA  PSOGSA css Adggi"e Adggg"e
0 22992 22976 23238 24518 23129 23144 22978
0.0066695 32522 32481 32951 32773 33555 32642 32660
0.066695 117587 114650 118230 114712 118173 117630 118078
0.66695 865200 864943 864579 864943 864943 864770 864661
Table 3.8.1.5. Average values of objective function after the minimization of J3, .
kpy2 Adaptive Adaptive
7" r) SA PSO GSA PSOGSA CSS GSA CSS
0 2990690 2988143 3091163 31451967 3733680 3088620 3062597
3.9187 8487570 8472373 8574770 8537903 9310780 8514653 8530910
39.187 57650267 57839600 57974500 57972133 57848667 57655800 57765700
391.87 528113333 527919000 528306666 529213333 530061000 527891667 528767000

Table 3.8.1.6. Average values of objective function after the minimization of J3r .

)2 SA PSO GSA PSOGSA css Adgg;"’e Adgggve
0 2990690 2988143 3109277 3145197 37149067 3024803 3054703
3.8693 8402737 8499467 8666530 8659013 9265960 8524953 8584443
38.693 56659057 57975700 58157367 57705200 56420533 57987133 51137567
386.93 528041333 527755000 527868666 529023333 530442000 527702667 527876333

Table 3.8.1.7. Average values of objective function after the minimization of Jak, -

2 SA PSO GSA  PSOGSA  CSS AdggtA"’e Adggg"e
0 153815 152975 160314 161796 178955 157367 155518
0.142 344696 352223 354148 385251 356694 354547 354712
1.42 2105230 1982330 2145623 2147777 2150850 2143730 2140853

14.2 19291467 19274833 19278100 19291867 19396400 19278667 19206067

Table 3.8.1.8. Average values of objective function after the minimization of Jyr,

Adap-

B Adaptive
=)? SA PSO GSA PSOGSA CSS tive p
CSS
GSA
0 153815 152975 160314 161796 167011 157382 154753
0.15885 371836 379400 384154 397527 418335 381176 381516
1.5885 2324983 2161323 2415300 2305900 2428513 2359830 2413023
15.885 21641033 21596000 21623233 21674533 21732867 21610633 21634533
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The second comparison criterion is based on a newly introduced perfor-
mance indices referred to as convergence speed (¢, ). As defined in [Prel3a], the

convergence speed represents the number of evaluations of the objective functions
until their minimum value is found.

This approach is extremely important for the nature-inspired optimization
algorithms applied to the optimal tuning of the parameters of controllers. The algo-
rithm complexity analysis is generally used in the analysis of numerical algorithms
including optimization ones in the general context of computer science, where as-
sessing the amount of required resources to execute these algorithms is discussed.
The algorithm complexity analysis is not carried out in this thesis, since:

e the optimization algorithms treated in this thesis are designed to
work with a fixed number of inputs (i.e., the variables of the objec-
tive functions, namely the tuning parameters of the controllers),
however the algorithms used in computer science are designed to
work with inputs of arbitrary length, the number of inputs set in the
algorithms treated in this thesis is fixed to three in order to have a
reasonable dimension of the search space,

e the optimization algorithms are executed offline and only the evalua-
tion of the objective function, conducted by simulations and/or ex-
periments, requires strong time resources on the control system
side, which are much more costly compared to the resources on the
algorithm execution side.

In this context, the convergence speed ¢, is an indication on the complexity

of these algorithms. However, in the general application of these algorithms to vari-
ous applications involving different objective functions with several numbers of vari-
ables, the algorithm complexity analysis becomes strictly necessary. The data corre-
sponding to this second performance criterion represents the degree of algorithm
iterations coverage before finding the final solution.

The results presented in Tables 3.8.2.1 - 3.8.2.8 contain the average values
of the convergence speed ¢, calculated for the best five runs, used for the previous

comparison criterion as well. Each algorithm was considered, for each combination
of objective function from (2.9) - (2.12) and weighting parameter.

Tables 3.8.2.1 - 3.8.2.8 show that the results obtained when the adaptive
GSA and CSS algorithms were used are consistently superior to those offered by the
non-adaptive algorithm versions. Local minima traps are also avoided when using
the adaptive algorithm versions by the introduction of improved exploration and
exploitation capabilities. On the negative side, finding the solution after a predefined
number of iterations may results in longer time runs for the adaptive GSA and CSS
algorithms.
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Table 3.8.2.1. Average values of convergence speed ¢, for the minimization of J;, .

ey ¢, SA ¢, PSO ¢, GSA s ¢, CSS  Cs Adap- ¢, Adap-
PSOGSA tive GSA tive CSS
0 4143 218 1554 190 757 1298 1306
0.0021357 2595 14l 932 356 118 1421 1406
0.021357 3072 485 477 1072 246 1749 1207
0.21357 975 134 1186 1287 347 1777 455

Table 3.8.2.2. Average values of convergence speed ¢, for the minimization of J;r_.

f*p ¢y SA ¢, PSO ¢, GSA s ¢, CSS  Cs Adap- g Adap-
PSOGSA tive GSA tive CSS
0 2370 218 1554 190 99 1298 1004
0.17187 437 217 1511 696 918 1695 1317
1.7187 470 1451 1142 1802 729 1677 1364
17.187 2291 223 1528 785 76 1421 215

Table 3.8.2.3. Average values of convergence speed ¢, for the minimization of

ok,
f*y ¢y SA ¢, PSO ¢, GSA s ¢, CSs G5 Adap- ¢, Adap-
PSOGSA tive GSA tive CSS
0 3035 1906 1399 1660 1358 1718 1905
0.006858 2894 1704 1172 400 609 1839 1135
0.06858 165 1623 915 1613 973 1142 1935
0.6858 2748 105 1846 678 53 891 78

Table 3.8.2.4. Average values of convergence speed ¢, for the minimization of

oz -
Y2 ¢y SA ¢, PSO ¢, GSA s ¢, css  Cs Adap- c; Adap-
PSOGSA tive GSA tive CSS
0 39019 1766 391 1097 1358 1667 1963
0.0066695 4144 1728 1160 942 1607 1514 1049
0.066695 1890 1496 828 1348 1360 1675 1821
0.66695 2102 118 1421 128 60 1809 765
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Table 3.8.3.5. Average values of convergence speed ¢, for the minimization of

Tk, -
fry ¢, SA ¢, PSO ¢, GSA s ¢, CSs G Adap- ¢, Adap-
PSOGSA tive GSA tive CSS
0 1494 1647 596 723 136 1777 1816
3.9187 1149 1832 1359 1090 1596 1768 828
39.187 865 1270 803 1132 1549 1396 1411
391.87 465 755 1443 1039 834 1722 1449

Table 3.8.2.6. Average values of convergence speed ¢, for the minimization of

s, -
f*p ¢ SA ¢, PSO ¢, GSA s ¢, Css s Adap- ¢, Adap-
PSOGSA tive GSA tive CSS
0 1494 1647 769 723 617 1739 1863
3.8693 3256 1832 690 520 1260 1685 1145
38.693 860 1268 670 1344 1384 1534 1751
386.93 835 1510 1288 935 1091 1335 1403

Table 3.8.2.7. Average values of convergence speed ¢, for the minimization of

ik,
Y ¢y SA ¢, PSO ¢, GSA s ¢, CSs  Cs Adap- ¢, Adap-
PSOGSA tive GSA tive CSS
0 2233 1618 499 1826 1325 1480 1659
0.142 2411 1634 694 1053 1168 1234 1457
142 1012 1804 545 1223 1286 1696 1581
14.2 612 1398 1530 1434 319 1848 199

Table 3.8.2.8. Average values of convergence speed ¢, for the minimization of

Jag, -
Gy ¢ SA ¢, PSO ¢, GSA s ¢, CSS  Cs Adap- ¢, Adap-
PSOGSA tive GSA tive CSS
0 2233 1618 499 1826 1167 1711 1984
0.15885 1344 1366 766 1361 1479 1714 1585
15885 381 1672 725 1644 1267 1727 1649
15885 632 1371 1580 1685 492 1852 1735
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As the performance index ¢, focuses on how fast a solution is found, it can

miss other relevant information on the overall solution’s quality. This limitation can
be mitigated by the introduction of the third performance index, namely the accura-
cy rate q«, defined as follows as the percent standard deviation of the objective

functions obtained by running a certain optimization algorithm divided to the aver-
age value Avg(J; ; min) of each objective function (2.9) - (2.12) obtained by running

a certain nature-inspired optimization algorithm:
StDev(Jl»,aT min)

AVg(Ji,a,min) '
where the average value 4vg(J;, ;) Of each objective function (2.9) -

a, = StDev” (J; g min) =100 i=1.4, (3.42)

(2.12) obtained by running a certain nature-inspired optimization algorithm is de-
fined in (3.41), and the standard deviation Stpev(J ) is calculated in terms of:

i,a, min

th
_ 1 ) 2 3.43
StDev(J; 4 _min) = Vi min] —Avg(Ji g, min)) 7 ( ) )
o \/Nhe.\'t_l jZ:; o o
and the other notations are explained in relation with (3.41).

Tables 3.8.3.1 - 3.8.3.8 show the average values based on the best v, =5

runs that are in the case of previous comparison indices as well. These values corre-
spond to the values of 4, presented comparatively for all proposed nature-inspired

algorithms discussed up to now and each combination of objective function and
weighting parameter.

The results outline that PSO and adaptive GSA and CSS algorithms have an
improved search process which lead to the convergence to the optimal solution at
the end of the search process. The accuracy rate values clearly show that the adap-
tive version of the algorithms have a higher accuracy rate of finding closer optimal
solutions thus increasing the confidence in the solutions provided. Therefore, all
search iterations are used compared to the non-adaptive GSA and CSS algorithms,
which converge too early, leading to an unnecessary computational cost.

Table 3.8.3.1. Average values of accuracy rate a, for the minimization of Jy; -

a

r Adap- a, Adaptive
kpy2 a, SA 4 PSO ar a, CSS ar v
) GSA PS(XGS tive GSA css
0 0.0069 0 0.0044 0.2071  0.1887 0.000148 0.2131
0.0021357  0.0058 0 0.0731 0.2481 0 0.001761 0.1164
0.021357  0.0114 0.2445 0.0202  0.248 0.1513 0.0049 0.1881
0.21357  0.1306 0 0.0881 0.261  0.03057 0.0748 0.1579

Table 3.8.3.2. Average values of accuracy rate g, for the minimization of Jyr, .

(*r)? a, SA a, PSO fr @r a, CSS a.r Adap- a, Adaptive
GSA PSOGSA tive GSA CSS
0 0.0058 0 0.0044 0.2071 0 0.0001 0.0256
0.1.7187 0.0483 0 1.8307 0.2431 0.1265 0.1592 0.2395
1.7187 0.1208 30.0018 0.1889 46.4322 0.0262 0.2249 0.1836
17.187 0.0072 0 0.0355 0.0466 0 0.005 0
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Table 3.8.3.3. Average values of accuracy rate g, for the minimization of J,, .

(r*r)? a, SA o a, GSA o a, CSS a.r Adap- a, Adaptive
PSO PSOGSA tive GSA CSS
0 0.1379 0.2702 2.1778 5.6485 0.5706 0.6448 0.0012
0.006858 0.1871 0.0007 0.431 13.1324 12.232 0.1393 0.5406
0.06858 0.0859 0.0386 0.0995 0.604 0.217 0.296 0.0947
0.6858 0.0356 0 0.0022 0.0647 0 0.0027 0

Table 3.8.3.4. Average values of accuracy rate a, for the minimization of J, . .

a,

4 Adap- a, Adaptive
kpy2 a. S 4, PSO 4 GSA a, CSS ar v
EA PS(zGS tive GSA css
0 0.0153 0 0.3492 3.5956 0.57057 0.5949 0.0158
0.0066695 0.0166 0.0002 0.4084 1.7745 3.62334 0.1992 0.0391
0.066695 0.1663 5.008 0.2566 4.2211  0.0044 1.1587 0.6747
0.66695  0.0182 0 0.0402 0 0 0.0174 0.0536

Table 3.8.3.5. Average values of accuracy rate a, for the minimization of J3; .

a, .
4 Adap- a. Adaptive
kpy2 a, SA a, PSO a, GSA a, CSS ar v
A Pe0GS tive GSA css
0 0.124 0.1947 0.2775  7.6804  15.7606 2.5354 2.922
3.9187 0.0828  0.0023 0.8176  0.9114  14.3521 0.3981 0.6518
39.187 0.1057  0.3247 0.1682  0.1196  0.2858 0.4541 0.1772
391.87 0.0278  0.0024  0.126024 0.2839  0.1999 0.0968 0.013

Table 3.8.3.6. Average values of accuracy rate g, for the minimization of J; 7 .

o}y a4 SA  q PSO 4 GSA o o Css ¢4 Adap- - q Adap-
PSOGSA tive GSA  tive CSS

0 0.1239 _ 0.1947 __0.9032___ 7.6804 __ 16.6725 __ 1.305 __ 1.9679
3.8693  1.9998 _ 0.0004 _ 2.1453 __ 0.3398 __ 12.3669 _ 0.2309 __ 1.8345
38.693  3.6376 _ 0.4655 _ 0.2552 _ 15364 __ 5.8569 _ 0.1364 __ 0.7596
386.93 _ 0.078 __ 0.0169 _ 0.0449 __ 0.2351 __ 0.0012___ 0.0035 __ 0.0586
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Table 3.8.3.7. Average values of accuracy rate g, for the minimization of Jy, .

(7 r)? a, SA a, PSO a, GSA o a, CSS a.r Adap- a, Adaptive
PSOGSA tive GSA CSS
0 0.4009 0.0036 4.7067 8.6845 22.7708 1.5897 0.2075
0.142 4.1121 0.1977 0.5175 9.3238 1.3021 0.2964 0.1918
1.42 2.0071 6.5054 0.2305 0.8542 0.4006 0.0154 0.3384
14.2 0.0345 0.0035 0.0055 0.1564 0.154 0.0096 0.7184

Table 3.8.3.8. Average values of accuracy rate a, for the minimization of J,r .

G*? 4 SA 4 PSO 4 GSA o o CSs @ Adap- a4 Adaptive
PSOGSA tive GSA css
0 0.4009  0.0036 _ 4.7067 _ 8.6845  12.0122 __ 1.606 0.4585
0.15885  3.9602  0.0171 07031 3.9545  13.0819 _ 0.1772 __ 0.3969
1.5885 47276 2.4878 _ 0.2899 _ 6.8972 _ 0.4505 _ 1.3744 ___ 0.2548
15885  0.1503 00012 0.1241  0.4167 _ 0.1695  0.04186  0.155

The results show the reduced sensitivity of the initial conditions associated
to the sensitivity models of the optimization problems solved by the nature-inspired
algorithms. Therefore, the optimal values of the controller tuning parameters exhibit
reduced sensitivity with respect to the initial conditions of the sensitivity models.

Figs. 3.8.1 - 3.8.8 highlight the controlled output (y) versus time and the
behavior of the control systems optimized by the minimization of the objective func-
tions J,, , i=1.4, a, etkp,Ts}, and the parameters of the optimal T-S PI-FCs ob-

tained by the nature-inspired algorithms. The simulation scenario is characterized by
the application of a ry =40 rad unit step reference input, followed by a 0.1 step dis-

turbance input after 500 s from the total 1000 s simulation time.

The results shown in Figs. 3.8.1 - 3.8.8 were obtained using only one set of
fuzzy controller parameters because the nature-inspired algorithms applied in solv-
ing the same optimization problems lead to very close solutions. The fuzzy controller
parameters were chosen arbitrarily from all proposed nature-inspired algorithms.

The nature-inspired algorithms are treated randomly in Figs. 3.8.1 - 3.8.8.
However, Figs. 3.8.1 — 3.8.8 are presented in the ascending order of the objective
functions. This style of presentation has been chosen in order to highlight the fact
that the empirical control system performance indices (overshoot and settling time)
are very close for the same objective function that is minimized and for the same
process parameter that is considered in the sensitivity models.

As expected, Figs. 3.8.1 - 3.8.8 illustrate that the overshoot and the settling
time depend on the objective function and on the process parameter that is consid-
ered in the sensitivity models. These results are justified by different dynamical re-
gimes of the fuzzy control systems.

Fig. 3.8.1 presents the simulation results corresponding to the objective
function J;, ~and to the following controller parameters obtained by the GSA:

B::40 , 77*:0.75 , ,B*:3.14374 and weighting parameter (J’k,,)2=0 for a);
e

B, =39.9979, " =075 , B* =3.14537 and weighting parameter (y;,)* =0.0021357 for
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b); B, =40, n =075 , B =3.12737 and weighting parameter (y,)* =0.021357 for

c); B, =39.7505, " =075 , B =32222 and weighting parameter (y;,)* =0.21357 for
d) as retrieved from Table 3.3.1.
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Fig. 3.8.1. Simulation results of optimal fuzzy control systems obtained for objective
function Jl,kp and different values of the weighting parameter Vip - Yk,, =0 (a),

(74,)7 =0.0021357 (b), (74,)* =0.021357 (c), and (y;,)” =0.21357 (d).

Fig. 3.8.2 illustrates the simulation results corresponding to the objective
function J,; and to the controller parameters obtained by the adaptive CSS algo-

rithm with the parameters from Table 3.7.2: B, =40 , n =0.75 , B =5.08485 and
weighting parameter vy, =0 for (a); B, =40, n =0.748044, S =5.08485 and
weighting parameter (yz)> =0.17187 for (b); B, =39.5422, 5 =075 , B =5.08485
and weighting parameter (7Tz)2 =1.7187 for (c); szzo, 77*:0.25 , /)’*:17 and
weighting parameter (y7,)* =17.187 for (d).
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Fig. 3.8.2. Simulation results of optimal fuzzy control systems obtained for objective

function JLT2 and different values of the weighting parameter YT VT =0 (a),

(r5,)* =0.17187 (b), (yz,)> =1.7187 (c), and (yz,)> =17.187 (d).

In Fig. 3.8.3 the simulation results corresponding to the objective function
Jyk, and to the following controller parameters obtained by the PSO algorithm:

B, =40, n =075 , B =5.08485 and weighting parameter y, =0 for (a); B, =40,

n" =075 , B~ =508485 and weighting parameter (y; )* =0.006858 for (b); B, =40,

77*:0.75 , /5’* =5.08485 and weighting parameter (;/kp)2 =0.06858 for (c); B: =20,

77* =0.25 , ,B* =17 and weighting parameter (7’kp)2 =0.6858 for (d), as found in Ta-
ble 3.2.3 are given.
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Fig. 3.8.3. Simulation results of optimal fuzzy control systems obtained for objective
function Jok, and different values of the weighting parameter Yip ' Yk =0 (a),

(74,)° =0.006858 (b), (7;,)° =0.06858 (c), and (r4,)” =0.6858 (d).

In Fig. 3.8.4 the simulation results corresponding to the objective function
Jyr, and to the following controller parameters obtained by the adaptive GSA algo-

rithm: B::39.4214, n =075, ,B*:5.08716 and weighting parameter y; =0 for
(a); B: =40, 77* =0.75 , /5’* =5.09279 and weighting parameter (yTz)2:0.0066695 for
(b); B, =39.803, " =075 , B =5.15735 and weighting parameter (yz)* =0.066695

for (c); B: =20.0053, 77* =0.25 , ,B* =17 and weighting parameter (7Tz)2 =0.66695
for (d), matching Table 3.3.4 are shown.
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Fig. 3.8.4. Simulation results of optimal fuzzy control systems obtained for objective
function JZ,TZ and different values of the weighting parameter YTt VT =0 (a),

(r,)* =0.0066695 (b), (r7,)> =0.066695 (c), and (rz,)> =0.66695 (d).

The simulation results corresponding to the objective function J3y, based
on the results retrieved from Table 3.1.5 and on the following controller parameters
obtained by the SA algorithm: B, =39.9908 , 7" =0.749364 , B =5.08527 and

weighting parameter y; =0 for (a); B::39.8962, 77*:0.746735 , ,B*:5.0867 and
weighting parameter (y;,)* =3.9187 for (b); B, =39.5241, 5" =0.746393 , B* =5.10925
and weighting parameter (y;,)> =39.5241 for (c); B, =39.8288 , 75 =0.742363,

/5’* =12.8479 and weighting parameter (;/kp)2 =39.8288 for (d), are highlighted in Fig.
3.8.5.
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Fig. 3.8.5. Simulation results of optimal fuzzy control systems obtained for objective
function J3’kp and different values of the weighting parameter Vip ' Vkp =0 (a),

(74,)> =39187 (b), (74,)* =39.187 (c), and (r;,)*> =391.87 (d).

Fig. 3.8.6 presents the simulation results corresponding to the objective
function J;; and to the controller parameters obtained by the GSA algorithm:

B, =39.5685, 5 =0.693304, A =5.09481 and weighting parameter 7, =0 for (a);
B, =40, n =075 , B =5.10019 and weighting parameter (y; )’ =3.8693 for (b);
B, =369454, " =075 , f* =520265 and weighting parameter (yz,)* =38.693 for (c);

*

B, =385452, n =0.743411, B =13.1971 and weighting parameter (yz)* =386.93 for
(d), as presented in Table 3.3.6.
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Fig. 3.8.6. Simulation results of optimal fuzzy control systems obtained for objective
function J3’T2 and different values of the weighting parameter YTt VT =0 (a),

(r5,)* =3.8693 (b), (y7,)> =38.693 (c), and (yz,)” =386.93 (d).

Fig. 3.8.7 offers the simulation results obtained for the objective function
J4x, » @s found in Table 3.5.7 for the following controller parameters computed by

the CSS algorithm: BZ:40 , 77*:0.75 , ﬂ*:5.14965 and weighting parameter
7k, =0 for (a); B: =40, 77* =0.75 , ,B* =5.15098 and weighting parameter
(;/kp)2 =0.142 for (b); B: =39.8938, 77* =0.75 , ,B* =5.16777 and weighting parameter
(r4,)> =142 for (c); B, =20, 5 =025 , B =9.65464 and weighting parameter
(74,)* =142 for (d).
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Fig. 3.8.7. Simulation results of optimal fuzzy control systems obtained for objective
function Jak, and different values of the weighting parameter Yip ' Yk =0 (a),

(7,)° =0.142 (b), (74,)° =142 (c), and (3;,)* =142 (d).

Fig. 3.8.8 presents the simulation results for the objective function J,; us-
ing the following controller parameters obtained from by the PSOGSA algorithm:
B: =40 , 77* =0.75 , ,B* =5.08538 and weighting parameter y, =0 for (a); B: =40,

77*:0.75 , ,B*:5.08486 and weighting parameter (7Tz)2=0.15885 for (b);
B, =37.0232, n =075 , B =3 and weighting parameter (y;)’=15885 for (c);

B: =20, 77* =0.25 , /5’* =11.2378 and weighting parameter (7Tz)2 =15.885 for (d) as
described in Table 3.4.8.
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Fig. 3.8.8. Simulation results of optimal fuzzy control systems obtained for objective
function J4’Tz and different values of the weighting parameter YTt VT =0 (a),

(rr,)* =0.15885 (b), (r7,)> =1.5885 (c), and (yz,)> =15.885 (d).

The parametric sensitivity reduction will be proved as follows by conducting
the digital simulation of the fuzzy control system behaviors for different values of
the process parameters kp and 7y with respect to the nominal values

kpy =kgpg =140 and Ty, =0.92s, respectively. Experiments are not conducted as the

laboratory experimental setup does not allow for modifications of these process pa-
rameters.

The demonstration is based on simulations involving the variation of process
parameters in conjunction with the initial and optimal values of the T-S PI-FCs. Two
aspects regarding the variation of the process parameters will be presented for each
objective function and process parameter: first is the variation of the values of ob-
jective function for different values of the process parameter handled in the current
optimization and the second aspect is the output variation of the fuzzy control sys-
tem.

The results corresponding to the first aspect of this demonstration for each

objective function given in (2.9) - (2.12) and for the process parameter kP are
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presented in Figs. 3.8.9, 3.8.13, 3.8.17 and 3.8.21. Figs. 3.8.11, 3.8.15, 3.8.19 and
3.8.23 give the results for the process parameter 75 . For simplicity, the presented

figures describe only the case of unitary ratio for the weighting parameter.
The output variation of the fuzzy control system that minimizes the objec-
tive functions (2.9) - (2.12) for the process parameterk, is illustrated in Figs.

3.8.10, 3.8.14, 3.8.18 and 3.8.22. The results for the process parameter7s are

presented in Figs. 3.8.12, 3.8.16, 3.8.20 and 3.8.24. As in the case of the previous
aspect, only the case of unitary ratio for the weighting parameter was considered.

0,
920 125 130 135 140 130 135 140 145 150 155 160
kP kP

Fig. 3.8.9. Objective function 1k, values for weighting parameter (;/kp)2 =0.021357

and different values of the process parameter
kp €{126,128.8,131.6,134.4,137.2,140,142.8,145.6,148.4,151.2,,154} .

4507

. . . . . . , 0 I I L I . I L I
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Time (s) Time (s)

Fig. 3.8.10. Simulation results of fuzzy control systems with different values of kp
parameter: kp =126 (solid), kp =140 (dashed) and kp =156 (dotted) for objective

function 1k, and weighting parameter (;/kp)2 =0.021357 .
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Fig. 3.8.11. Objective function Jir, values for weighting parameter (;/Tz)2 =1.7187

and different values of the process parameter
Ts € {0.828,0.8464, 0.8648, 0.8832,0.9016, 0.92,0.9384, 0.9568, 0.9752, 0.9936,1.012} .
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Fig. 3.8.12. Simulation results of fuzzy control systems with different values of T
parameter: Ty =0.828 (solid), 75y =0.92 (dashed) and 75 =1.012 (dotted) for objective

function J;7 and weighting parameter (7Tz)2 =1.7187.
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Fig. 3.8.13. Objective function Jz’k[) values for weighting parameter (7k,,)2 =0.06858

and different values of the process parameter
kp € {126,128.3,131.6,134.4,137.2,140,142.8,145.6,148.4,151.2,154} .
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Fig. 3.8.14. Simulation results of fuzzy control systems with different values of kp
parameter: kp =126 (solid), kp =140 (dashed) and kp =156 (dotted) for objective

function Jok, and weighting parameter (7Tz)2 =0.06858 .
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Fig. 3.8.15. Objective function Jor, values for weighting parameter (;/Tz)2 =0.066695

and different values of the process parameter
Ts € {0.828,0.8464, 0.8648, 0.8832,0.9016, 0.92,0.9384, 0.9568, 0.9752, 0.9936,1.012} .
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Fig. 3.8.16. Simulation results of fuzzy control systems with different values of Tx
parameter: Ty =0.828 (solid), 75y =0.92 (dashed) and 75 =1.012 (dotted) for objective

function J,r and weighting parameter (7Tz)2 =0.066695 .
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. 3.8.17. Objective function J3,k,, values for weighting parameter (;/kP)2 =39.187

and different values of the process parameter
kp €{126,128.8,131.6,134.4,137.2,140,142.8,145.6,148.4,151.2,154} .
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Fig. 3.8.18. Simulation results of fuzzy control systems with different values of kp parameter:
kp =126 (solid), kp =140 (dashed) and kp =156 (dotted) for objective function S3k, and

weighting parameter (;/kp)2 =39.187.
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Fig. 3.8.19. Objective function Jar, values for weighting parameter (;/Tz)2 =38.693
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and different values of the process parameter
Ts €{0.828,0.8464, 0.8648, 0.8832,0.9016, 0.92, 0.9384, 0.9568, 0.9752,0.9936,1.012} .
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Fig. 3.8.20. Simulation results of fuzzy control systems with different values of
Ts parameter: Ty =0.828 (solid), Tx =0.92 (dashed) and Ty =1.012 (dotted) for objec-

tive function J37 and weighting parameter (7Tz)2 =38.693 .
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Fig. 3.8.21. Objective function J4,k,, values for weighting parameter (7kp)2 =142

and different values of the process parameter
kp €{126,128.8,131.6,134.4,137.2,140,142.8,145.6,148.4,151.2,154} .
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Fig. 3.8.22. Simulation results of fuzzy control systems with different values of kp
parameter: kp =126 (solid), kp =140 (dashed) and kp =156 (dotted) for objective

function Jak, and weighting parameter (;/kp)2 =1.42.
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Fig. 3.8.23. Objective function Jar, values for weighting parameter (;/Tz)2 =1.5885

and different values of the process parameter
Ts €{0.828,0.8464, 0.8648, 0.8832,0.9016, 0.92, 0.9384, 0.9568, 0.9752,0.9936,1.012} .
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Fig. 3.8.24. Simulation results of fuzzy control systems with different values of Ty
parameter: Ty =0.828 (solid), 75y =0.92 (dashed) and 75 =1.012 (dotted) for objective

function Jar, and weighting parameter (7Tz)2 =1.5885.

In a similar test setup as for Figs. 3.8.1 - 3.8.8, the results presented here
clearly demonstrate the reduced sensitivity of the fuzzy control systems when the
optimal tuning parameters were applied. The performance improvement is con-
sistent in the case of process parameter variations, as showed by the reduced val-
ues of the objective functions and better responses for the fuzzy control systems in
all scenarios.

In this chapter, five nature-inspired optimization algorithms were presented
in subchapters 3.1 - 3.5 and applied to the optimal tuning of the parameters of
fuzzy controllers, along with two newly developed adaptive versions for two of them
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in subchapters 3.6 and 3.7. Based on these proposed algorithms, optimal solutions
were obtained to each of the optimization problems (2.13) - (2.16) described in the
previous chapter by finding the near minimal values of the objective functions (2.9)
- (2.12). For every algorithm a parameter evolution analysis was presented, fo-
cused on two points of view: the first presented the best solution evolution for each
step of the search process and the later a global view of all agents’ positions in the
search domain at certain stages.

Further on, three indices were defined in order to assess the performance of
these algorithms. Each index corresponds to a performance criterion: the average
value of the objective functions presents the algorithms’ capabilities to overcome
local minima situations, the convergence speed describes how fast the final solu-
tions are found in the search process, and the accuracy rate measures the precision
of the algorithms’ solutions.

Finally, the solutions obtained based on the nature-inspired algorithms were
validated through simulations and experiments that proved the reduced sensitivity
with respect to the process parameters considered in the derivation of the sensitivity
models.

The new contributions of this chapter can be summed up as follows:

1. The original application of Simulated Annealing algorithms to solve four
types of optimization problems such that to carry out the optimal tuning of the pa-
rameters of T-S PI-FCs dedicated to the control of a class of nonlinear servo sys-
tems. The results concerning the application of these algorithms are published in:

R.-E. Precup, R.-C. David, E. M. Petriu, S. Preitl, M.-B. Radac, Fuzzy control

systems with reduced parametric sensitivity based on simulated annealing,

IEEE Transactions on Industrial Electronics, vol. 59, no. 8, pp. 3049-3061,

Aug. 2012, impact factor (IF) = 5.165, IF according to 2013 Journal Citation

Reports (JCR) released by Thomson Reuters in 2014 = 6.500.

2. The original application of Particle Swarm Optimization algorithms to
solve four types of optimization problems such that to carry out the optimal tuning
of the parameters of T-S PI-FCs dedicated to the control of a class of nonlinear ser-
vo systems. The results concerning the application of these algorithms are published
in:

R.-E. Precup, R.-C. David, S. Preitl, E. M. Petriu, Design aspects of optimal

PI controllers with reduced sensitivity for a class of servo systems using PSO

algorithms, Facta Universitatis Series: Automatic Control and Robotics, vol.

8, no. 1, pp. 1-12, 2009.

3. The original application of Gravitational Search Algorithms to solve four
types of optimization problems such that to carry out the optimal tuning of the pa-
rameters of T-S PI-FCs dedicated to the control of a class of nonlinear servo sys-
tems. The results concerning the application of these algorithms are published in:

R.-C. David, R.-E. Precup, E. M. Petriu, M.-B. Radac, S. Preitl, Gravitational

search algorithm-based design of fuzzy control systems with a reduced par-

ametric sensitivity, Information Sciences (Elsevier Science), vol. 247, pp.

154-173, Oct. 2013, impact factor (IF) = 3.893, IF according to 2013 Jour-

nal Citation Reports (JCR) released by Thomson Reuters in 2014 = 3.893.

4. The original application of a version of hybrid Particle Swarm Optimiza-
tion-Gravitational Search Algorithms to solve four types of optimization problems
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such that to carry out the optimal tuning of the parameters of T-S PI-FCs dedicated
to the control of a class of nonlinear servo systems. The results concerning the ap-
plication of these algorithms are published in:
R.-C. David, R.-E. Precup, E. M. Petriu, C. Purcaru, S. Preitl, PSO and GSA
algorithms for fuzzy controller tuning with reduced process small time con-
stant sensitivity, Proceedings of 2012 16 International Conference on Sys-
tem Theory, Control and Computing (ICSTCC 2012), Sinaia, Romania, 6 pp.,
2012, indexed in IEEE Xplore, INSPEC, SCOPUS.

5. The original application of Charged System Search algorithms to solve
four types of optimization problems such that to carry out the optimal tuning of the
parameters of T-S PI-FCs dedicated to the control of a class of nonlinear servo sys-
tems. The results concerning the application of these algorithms are published in:

R.-E. Precup, R.-C. David, E. M. Petriu, S. Preitl, M.-B. Radac, Charged sys-

tem search algorithms for optimal tuning of PI controllers, Proceedings of 15t

IFAC Conference on Embedded Systems, Computational Intelligence and

Telematics in Control (CESCIT 2012), editors: K. Schilling, E. Leutert, Wiirz-

burg, Germany, pp. 115-120, 2012, indexed in SCOPUS.

6. A novel class of adaptive GSAs with improved exploration and exploita-
tions capabilities inspired by the 5E learning model used in education. The adaptive
GSAs are developed around the basic version of GSA, and their three new functions
are:

e the adaptation of two depreciation laws of the gravitational constant to the
iteration index,

e the adaptation of a parameter in the weighted sum of all forces exerted
from the other agents to the iteration index,

e the resetting at each run of adaptive GSA agents’ worst fitnesses and posi-
tions to their best values.

These new adaptive GSAs are published in:

R.-E. Precup, R.-C. David, E.M. Petriu, S. Preitl, M.-B. Radac, Novel adap-

tive gravitational search algorithm for fuzzy controlled servo systems, IEEE

Transactions on Industrial Informatics, vol. 8, no. 4, pp. 791-800, Nov.

2012, impact factor (IF) = 3.381, IF according to 2013 Journal Citation Re-

ports (JCR) released by Thomson Reuters in 2014 = 8.785.

7. The original application of the new adaptive GSAs to solve four types of
optimization problems such that to carry out the optimal tuning of the parameters of
T-S PI-FCs dedicated to the control of a class of nonlinear servo systems. The re-
sults concerning the application of these algorithms are published in:

R.-E. Precup, R.-C. David, E. M. Petriu, S. Preitl, M.-B. Radac, Experiments

in fuzzy controller tuning based on an adaptive gravitational search algo-

rithm, Proceedings of the Romanian Academy, Series A: Mathematics, Phys-

ics, Technical Sciences, Information Science, vol. 14, no. 4, pp. 360-367,

Dec. 2013, impact factor (IF) = 1.115, IF according to 2013 Journal Citation

Reports (JCR) released by Thomson Reuters in 2014 = 1.115.

8. A novel class of adaptive CSS algorithms with improved exploration and
exploitations capabilities inspired by the 5E learning model used in education. The
adaptive CSS algorithms are developed around the basic version of CSS algorithms,
and their two new functions are:
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e the adaptation of the acceleration, velocity, and separation distance param-
eters to the iteration index,

e the substitution of the worst charged particles’ fitness function values and
positions with the best performing particle data.
These new adaptive CSS algorithms are published in:
R.-E. Precup, R.-C. David, E. M. Petriu, St. Preitl and M.-B. Radac, Novel
adaptive charged system search algorithm for optimal tuning of fuzzy con-
trollers, Expert Systems with Applications, vol. 41, no. 4, part 1, pp. 1168-
1175, March 2014, impact factor (IF) = 1.965, IF according to 2013 Journal
Citation Reports (JCR) released by Thomson Reuters in 2014 = 1.965.

9. The original application of the new adaptive CSS algorithms to solve four
types of optimization problems such that to carry out the optimal tuning of the pa-
rameters of T-S PI-FCs dedicated to the control of a class of nonlinear servo sys-
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4. OPTIMAL TUNING OF INPUT MEMBERSHIP
FUNCTIONS OF TAKAGI-SUGENO FUZZY MODELS
BASED ON SIMULATED ANNEALING ALGORITHMS

4.1. PROBLEM SETTING CONCERNING THE OPTIMAL
TUNING OF INPUT MEMBERSHIP FUNCTIONS OF TAKAGI-
SUGENO FUZzZY MODELS BASED ON NATURE-INSPIRED
ALGORITHMS

As mentioned in Sub-chapter 1.1, several parameters that belong to the
blocks in the structure of Takagi-Sugeno (T-S) fuzzy models can be optimally tuned.
The optimal tuning of a part of the parameters of the input membership functions is
treated in this thesis. This is organized in terms of the modeling approach that con-
sists of the following steps:

Step 1. The structure of the dynamic T-S fuzzy model is set, namely the
number of operating points that is equal to the number of rules, the number of input
linguistic terms (LTs) of the input variables, the shapes of the membership functions
(m.f.s) of the input LTs, the operators in the inference engine, and the method for
defuzzification.

Step 2. The nonlinear continuous-time state-space model of the process is
linearized at a number of important operating points, and this number is equal to
the number of rules of the dynamic T-S fuzzy model. This leads to a set of linearized
continuous-time local process models, which are placed in the rule consequents of
the continuous-time T-S fuzzy model, and they related to the modal values of the
input m.f.s, which are exactly the coordinates of the operating points in terms of the
modal equivalence principle [Gal95]. The sampling period is set, and the models in
the consequents of the T-S fuzzy model are discretized accounting for the zero-
order hold resulting in the rule base of the discrete-time T-S fuzzy model.

Step 3. Considering the parameter vector , that consists of a part of the pa-
rameters of the input membership functions of the dynamic T-S fuzzy model, the

following optimization problem is defined:

p =arg min’/®’ (4-1)
peD

where p* is the optimal parameter vector of the fuzzy model and the solu-
tion to the optimization problem, and D is the feasible domain of p. The objective
function s in (4.1) is defined as:

*
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N N
1 21 2 4.2
J(p)—fN E e (P) = Yie,m(P)) =y kE:] (€em(P)”, ( )

k=1
where , (p)=4(p) is the process output at s sampling interval, ) () is the

fuzzy model output, ¢, () =y.(p -y IS the modeling error, and N is the length of

the time horizon. The optimization problem (4.1), with the objective function (4.2),
aims the minimization of the mean square modeling error.

Step 4. A nature-inspired optimization algorithm is applied to solve the op-
timization problem (4.1), i.e., to obtain the optimal input membership function pa-
rameters, which lead to the optimal dynamic T-S fuzzy model of the process.

The input variables specified in the step 1 of the modeling approach are in
fact the scheduling variables that are involved in the premise part of the dynamic T-
S fuzzy model rules.

The steps 1 and 2 produce the initial dynamic T-S fuzzy model of the pro-
cess, and the step 4 produces the optimized dynamic T-S fuzzy model of the pro-
cess. These two steps of the fuzzy modeling approach can be replaced by an appro-
priate fuzzy model identification technique.

Some recent applications of fuzzy model identification techniques are dis-
cussed as follows. An attractive result is formulated in [Anh12] as an inverse adap-
tive fuzzy model trained by PSO algorithm. An extended allied fuzzy C-means algo-
rithm is introduced in [Moh13] and optimized using PSO. A hyperplane prototype
fuzzy clustering model is proposed in [Li12b] using a GSA-based hyperplane cluster-
ing algorithm to improve the performance of the fuzzy clustering algorithm in the
fuzzy space partition of the fuzzy model identification technique. A fuzzy model
identification technique for a nonlinear model predictive control is optimized in
[Sy08] using the branch and bound method and genetic algorithm. An interval fuzzy
model identification technique is developed in [Khal0b] using the interval fuzzy
model that is based on lower and upper fuzzy models or a fuzzy model with a set of
lower and upper parameters. A method to obtain computationally efficient low-order
process models for large-scale processes based on the combination of orthogonal
decompositions, black-box system identification techniques and non-linear spline-
based blending is described in [Wat10]. A self-extracting rules fuzzy control method
is introduced in [Lul0] for dealing with complex thermal processes.

The approach presented in this sub-chapter is applied in the next sub-
chapters to the fuzzy modeling of two nonlinear processes using the Simulated An-
nealing (SA) algorithm as the nature-inspired optimization algorithm in the step 4.
These processes are an Anti-lock Braking System (ABS) and a magnetic levitation
system, and the proposed dynamic T-S fuzzy models are validated by real-time ex-
perimental results on laboratory equipment.

4.2. STATE-OF-THE-ART ANALYSIS FOR THE OPTIMAL
TUNING OF INPUT MEMBERSHIP FUNCTIONS OF TAKAGI-
SUGENO FUZzY MODELS BASED ON NATURE-INSPIRED
ALGORITHMS

The analysis of the state-of-the-art concerning the optimal tuning of input
membership functions of Takagi-Sugeno fuzzy models based on nature-inspired al-
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gorithms is first considered in a more general framework of the optimal tuning of
parameters of Takagi-Sugeno fuzzy models. This bibliographic analysis presents a
general view of different approaches concerning the optimization of fuzzy control
systems in the first part, from the point of view of the fuzzy model structure, and
later focuses on applications of nature-inspired algorithms with regard to general
optimization of fuzzy systems.

Since the structure of fuzzy models consists of the well-known fuzzification
module, rule base and inference engine and defuzzification module, the analysis will
be organized in three separate categories because the optimal tuning of the param-
eters in the defuzzification module is not carried out in the literature as far as the
author knows:

(i) The optimal tuning of the parameters in the fuzzification module
with focus on the optimal tuning of the parameters of the input
membership functions.

(i) The optimal tuning of the rule base and of the parameters in the in-
ference engine.

(iii) Cross-module optimization, i.e., the optimal tuning of several pa-
rameters that belong to different blocks in the structure of the Tak-
agi-Sugeno fuzzy models.

(i) A first result containing the optimal tuning of the membership functions,
is represented in [Esm02] as a learning algorithm based on PSO for the membership
functions automatic adjustment. The tuning of Gaussian membership functions is
carried out in [Tayll]. An adaptive fuzzy logic controller based on genetic algo-
rithms used for optimizing the internal parameters of fuzzy membership functions is
described in [Far07]. The shape of membership functions is adjusted in [Merl1]
using a clonal selection algorithm. [Kha08] propose a method for optimizing the
membership functions of a fuzzy logic controller using genetic algorithms. A hybrid
procedure based on PSO and gradient descent algorithms is proposed in [Khal0c] to
obtain membership functions with a superior performance.

(ii) One of the results concerning the optimal tuning of the rule base and of
the parameters in the inference engine is given in [Bod05], where evolutionary op-
timization tools are employed in the optimization of normalized root mean square
error of the training data which is minimized for the fine-tuning of the fuzzy rule
base parameters. Hybrid tabu search and PSO algorithms are used in [Talllb] to
dynamically adjust the membership functions and fuzzy rules according to different
environments. A bacterial evolutionary algorithm is applied in [Cab06] to determine
the fuzzy rule base of fuzzy systems. A PSO algorithm is employed in [Zhal2] to
deal with fuzzy rule interpolation with fuzzy measure-based antecedent variables
and fuzzy rule interpolation based on polygonal membership functions. A bacterial
foraging optimization algorithm is used in [Kam12] to determine the rule base of
fuzzy models. The structure and the parameters of a fuzzy rule base are generate
automatically by a PSO algorithm in [Chel2]. A method to build a T-S fuzzy model
with optimal rules using a combination of chaotic PSO and Gustafson-Kessel cluster-
ing algorithm is proposed in [Coe07]. An Ant Colony Optimization algorithm is used
in [Jua08] for rule base optimization in fuzzy controller design. A method for opti-
mizing the rule base of a Mamdani-type fuzzy controller using an integer evolution-
ary algorithm is described [Meg13].

A partitioning of the fuzzy inference system is carried out in [Jua09] on the
basis of ant colony optimization combined with fuzzy-Q learning for finding the best
pheromone trail. A neuro-fuzzy system using a PSO algorithm is proposed in
[Turl2] to optimize fuzzy systems with the use of neuro-fuzzy techniques emerged
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from the fusion of neural networks and fuzzy inference systems. A soft computing
optimizer is introduced in [Fuj07] to obtain a fuzzy inference system with the use of
genetic algorithms.

(iii) An example of cross-module optimization by nature inspired algorithms
is presented in [Abo13], where a self-tuning fuzzy PID controller based on PSO is
proposed; the PSO algorithm optimally tunes the rule base, the scaling factors, the
membership function parameters and the optimal range of the tuning parameters of
the linear PID controller. The rule base and the membership functions of a hierar-
chical fuzzy control system are optimized in [Xial0] with the use of genetic algo-
rithm.

Several applications of fuzzy models optimized by nature-inspired algo-
rithms are discussed as follows. These applications are organized on the algorithms
considered, focusing, as mentioned in Sub-chapter 2.2, the validation of the results
(namely, the fuzzy models) by real-time experiments.

Popular applications of simulated annealing include the optimal tuning of
fuzzy models for robotic systems [Hos14], performance drilling [Hab07], [Hab09],
autonomous robot path planning [Mar98], data mining [Moh08], inventory man-
agement [Mil12], network topology [Kha09], project scheduling [Shu08] or renewa-
ble energy [Garl3]. A variation called orthogonal simulated annealing algorithm is
used in an optimization problem that optimizes a fuzzy neural network model for the
tuning of PID controllers in [Ho06]; various test plants with under-damped respons-
es are considered. Simulated annealing showed a strong performance when com-
bined with other algorithms. For example, in [Tor11] the fuzzy classifier is a cooper-
ation of the simulated annealing and the subtractive clustering method as the simu-
lated annealing is used in order to optimize the subtractive clustering parameters.
Along with the standard version of simulated annealing, different adaptive versions
emerged. A fuzzy adaptive simulated annealing is introduced in [Agul2]. A fuzzy
adaptive simulated annealing-genetic algorithm is proposed in [Pen14].

A PSO-based example of T-S neuro-fuzzy network optimization using is pre-
sented in [Lin08]. A neuro-fuzzy inference system is tuned in [Oli09] by a PSO algo-
rithm and applied to monitoring the relevant sensor in a nuclear power plant. The
paper [Mal0] introduces an algorithm for T-S fuzzy modeling based on PSO, in
which the solution is represented by both a binary value vector and a real value
vector with corresponding equations for parameters update. The rule base of a T-S
fuzzy model is optimized in [Jos12] using a PSO algorithm in order to minimize the
output error surface of a nonlinear water level tank process. A fuzzy adaptive PSO
algorithm is introduced in [Wul1l] in order to identify a subset of features embedded
out of a large dataset that is contaminated with high dimensional noise; the ap-
proach is divided into three stages, namely core feature subset selection, feature
subset selection and spam filtering, leading to an optimal feature subset. An im-
proved PSO algorithm is suggested in [Tan08] using a self-adaptive idea, which in-
troduces the concept of dynamic learning factor.

A hybridization of cooperative PSO and cultural algorithm is suggested in
[Lin09b] with the scope of increasing the global search capacity using the belief
space; experimental results concerning the prediction of the number of sunspots are
presented. A combination of PSO and black stork foraging process used in functional
neural fuzzy networks is proposed in [Ham12], with experimental results related to
solving the Iris and Breast cancer benchmark classification problems. A fuzzy PSO is
introduced in [AIf11], with the PSO algorithm enhanced by a fuzzy inertia weight to
rationally balance the global and local exploitation abilities. A chaos PSO algorithm is
proposed in [Jial2]; this algorithm combines the strengths of chaos optimization
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algorithm and PSO, and it optimizes T-S fuzzy models that are employed in con-
strained predictive control and validated by simulation tests.

A swarm intelligence-based classifier is described in [Ask12] using a fuzzy
system designed for intelligently updating the effective parameters of GSA, which
are used to construct a decision function estimation algorithm from feature space;
the classifier is applied to a pattern recognition problem with nonlinear, overlapping
class boundaries and different feature space dimensions. A T-S fuzzy model identifi-
cation problem is solved in [Xuel4] using an improved GSA based on silhouette
index considered for both the intra-cluster cohesion and the inter-cluster separation,
one cluster representing a fuzzy rule; cluster center is regarded as the Gaussian
membership function center parameter, which is identified by this GSA. The paper
[Jas14] deals with the problem of contact-state recognition for force-controlled ro-
botic tasks by developing the corresponding contact formation classifiers using a
GSA-based search fuzzy clustering algorithm that is validated through experimental
results. A T-S fuzzy model identification method based on chaotic GSA is proposed
in [Li13] and applied to the modeling of hydraulic turbine governing system with
experimental results. A stochastic optimization approach to solve optimal bidding
strategy problem in a pool based electricity market using fuzzy adaptive GSA is pre-
sented in [Vij13] and validated through simulations. A solution to feature selection
using fuzzy grids-based association rules mining whose training parameters are op-
timized by GSA is presented in [Shel3] and validated using experimental results.

In recent publications adaptive versions of the GSA have appeared along
with the standard version of the algorithm. One such adaptive version is character-
ized in [Vij13] by fuzzy rule-based systems applied to design the gravitational con-
stant. Another adaptive quantum-inspired GSA is proposed in [Ibr14]. The combina-
tion with fuzzy logic leads to further performance improvement for this algorithm as
shown in [Dum15], where simulations for several benchmark test functions are pre-
sented.

Along with the standard versions presented in Sub-chapter 2.4, improved
versions for the standard form of the CSS algorithm have been developed with the
scope of performance improvement. A combination of the CSS algorithm and the
force method is applied to the simultaneous analysis and design of structures in
[Kav14b]. A CSS-based approach that applies a construction factor to prevent con-
verging to a local optimum is proposed in [Lin13]. A CSS algorithm is utilized in
[Kav1l4c] as a search engine in combination with clustering and particle regenera-
tion procedures. All these applications are validated by simulation results.

4.3. SIMULATED ANNEALING-BASED OPTIMAL TUNING
OF INPUT MEMBERSHIP FUNCTIONS OF TAKAGI-SUGENO
FUZZY MODELS FOR A LABORATORY ANTI-LOCK BRAKING
SYSTEM

The development of Takagi-Sugeno fuzzy models for Anti-lock Braking Sys-
tems (ABSs) is a challenging task because of their process nonlinearities and the
importance they impose to the automotive safety systems as they are used to pre-
vent wheel locking. The INTECO ABS setup used in the experimental tests, consists
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of two wheels as described in Fig. 4.3.1, which makes it different compared to the
regular ABS setups based on electro-hydraulic actuators.

Fig. 4.3.1 INTECO ABS experimental setup and block diagram.

A simple approach to fuzzy modeling of ABSs will be presented in this sub-
chapter following the methodology introduced in Sub-chapter 4.1. This approach
starts with the T-S fuzzy model of the nonlinear state-space model of the ABS la-
boratory equipment [Int07a], which is derived by linear modal equivalence principle
starting with the first-principle equations [Int07a], [Dav14b]:

Ji% = Fyrip(A) —dixy = Myg = My, (4.3)
Joxy = =Fyru(A) = dyxy — My,

where J; and J, are the moments of inertia of the wheels, x; and x; are the
angular velocities, di; and d> are the friction coefficients in the wheels’ axes, M1o and
My are the static friction torques that oppose the normal rotation, M; is the brake
torque, r1 and r; are the radii of the wheels, F, is the normal force that the upper
wheel pushes upon the lower wheel, 1) is the friction coefficient depending on the
slip, and X and x, are the angular accelerations of the wheels.

The identification by measurements and experiments leads to the following
parameter values [Prel2c]:
ii=r=099m,F, =58214N,J, =7.53-10° kgm?, J, =25.6-10° kgm?,
dy =1.1874-10* kg m%/s, d, = 2.1468-107* kgm*/s, M,y =0.0032N m,
Moy =0.0925Nm.
The definitions of the longitudinal slip 2 which plays the role of controlled
output in the slip control system and of the nonlinear factor s are:
_nX—ny Jxy % 0,S() = ' (i) , (45)
75X, L[sinp — p(A)cos @]
where r=037m is arm’s length, which fixes the upper wheel, and p=¢561° is
the angle between the normal direction in wheels’ contact point and L’s direction.
The nonlinear state-space equations of the process are:

(4.4)

A
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X1 = S(A)(ep X +¢pp) +epaxy + g +(c15S(A) + )8 M, (4.6)
Xy = S(A)(ea1xy +€22) + €235 + €4 + 025 (A)siM, )
M, = 3y (b(u) - M),

where u is the control signal applied to the DC motor, which drives the up-

per wheel and the nonlinear model of the actuator, and the nonlinearity of the actu-

ator is highlighted in the third equation. The expressions of the parameters in (4.6)
are [Dav14b]:

< 2%&'12 =My +Mg)%’cl3 :—%,CM T

4.7)

n 1 ryd; )
Cls =—,Clg =——,Cp| =— oy =—~(Myg +M,)—
15 7y 16 7 21 7, 22 10 S
d My, )
€23 =T T T 05 T T
2 2 2

The introduction of ) as controlled output in the model (4.6) is done by the
substitution of x, from (4.5). The state-space equations of ABS process are:
A = Z{(2x2) A + Z3(A, )My + Zog (A, X3),
Xy = Zgo(A)xy + Zs(p)M + Zg(A),
M, = c31(b(u) - M),
they point out the state vector x, which is also the scheduling vector of the
dynamic T-S fuzzy model:

(4.8)

x=[1 x M1, (4.9)

where T indicates the matrix transposition, and the first group of dynamic T-
S fuzzy models of the process is characterized in [Prel2c], [Dav14b] by the four
input variables z,, z,, z, and z,. These variables belong to the input (scheduling)
vector:

2=[Zy 7y Zi Zss (4.10)

The derivation of these dynamic T-S fuzzy models starts with the graphical
calculation of the following sectors of the input variables:

0.6148 < 7, < 5.6851,0.6167 < z; < 5.7135, (4.11)
—0.009 < z49 < —0.0084, - 5.6139 < z5 < —5.4132.

Furthermore, in order to derive the T-S fuzzy model, the membership func-
tions of input variables 2, x, and u, have to be defined. First, the domains of varia-
tion of the three state variables have to be set for all ABS operating regimes
[Dav14b]:

0.1<A<1,20<x, <178,0< M, <10 - (4.12)

In accordance with the first step of the T-S fuzzy modeling approach de-
scribed in Sub-chapter 4.1, the first phase is represented by the fuzzification pro-
cess, which is done with the aid of LTs assigned to the input variables, i.e., the
scheduling variables. They are defined as: for the first input variable, 2, the follow-
ing five linguistic terms with triangular membership functions are introduced:
LT, ;,j=1.5"

AsJ
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tyr,, 110.0.21 - [0 1y 2[0.1.0.4] > [0.1], g7, | :[0.2,0.8] - [0.1],
tgy, (041 (01, g, 2 [0.811] > [01],

0, x<ay
by, (4.13)
1+ —>0) xeal’/éx<b/w,
brj=as; ’
wyr, ()= b
: x¥—bsj
1- s xebl)i£x<c,w,
Ca,j = P2,j
0, x2zey
az,j <bpj<ecaj J=1.5

where the variable vector , of the objective function contains the variable
parameters apjj=1.51 and Cpi=1.51 the parameters by j=1.51 which represent

modal values of membership functions, are fixed: 5, , =01, 5,,=02/, ;,,=04, b ,=08

and bis=1-

The second input variable, .,, uses two linguistic terms LT, ;. j=1.2 with tri-
angular shapes for the membership functions of the same type as the ones in
(413) #rr, 10,1501 > [0,1] and #rr,, 150,180 > [0,1] « As in the case of the first input varia-

ble, the variable parameters ay, joj=1.24 and Coppri=1u2 belong to the variable vector
p, and the parameters , . j-1.2, are fixed: 5 ,-s0 and »_,=150.

For the remaining input variable j,, one linguistic term, LTy, with a trian-
gular membership function type puz,, 10111 [01] of same type as in (4.13), is used.

Variable parameters ,,, , and ., , are included in vector ,, and the fixed parameter
1> 1>
by , has the value: 5,  -10.
1> 1>

For the second step of the modeling approach, the complete rule base of
this set of dynamic T-S fuzzy models is defined as the rules rii=1.10, with each

resulting rule being assigned to a continuous-time state-space model (4.8) obtained
for the modal values of the input membership functions and linearized at one of the
ten operating points. The complete rule base of the continuous-time dynamic T-S
fuzzy model is:

1=Ag1 X +Bguy,

X
R':IFAISLT,, ANDx, ISLT . ANDM, ISLT, A THEN{ **
Al X1 M1 YViem :Cd Xk
’ ’ (4.14)

1. X1 = Ag 10Xk + By otk
R .IF);ISLT/L5 ANDXx, ISLT@2 ANDM; ISLTM“1 THEN{ Vim :CdeXk.
The following matrices are next exemplified for the consequents of the rules

R and Rr°:

0.9441 —0.0025 0.0194 0.0021
Ay =|-1.0335 10012 —0.0601|B,, =|—0.0059,C,q=[1 0 0],
Y 0 o o0sis7|  |oasas| (4.15)
1.0041  —0.0003 0.0069 0.0007
Agio=|-03192 1 —00519| By =|-00054|,Cypo=[1 0 0].
0 0 08157 0.1843

The initial T-S fuzzy model in (4.14) is obtained by discretization of the con-
tinuous-time state-space models given in (4.8) accepting the zero-order hold and
the sampling period set to 7, -0.01s and by the application of the modal equivalence
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principle to the rule consequent parameters from (4.15) as the coordinates of the
operating points represent the modal values of the membership functions. For the
inference engine the SUM and PROD operators are used and the weighted average
method is employed for defuzzification.
In the third step of the modeling approach, the parameter vector of the
fuzzy model is defined as:
p=lay; i1 @y Ccia i3 i3 @4 Cia dys Chs (4.16)
Ay, 1 Cx,1 Gy,2 €2 Ap CM1,1]T~
The SA algorithm is applied in the last step of the modeling approach as a
nature-inspired optimization algorithm employed to solve the optimization problem
defined in (4.1). This algorithm, detailed in Sub-chapter 3.1, is implemented follow-
ing the given description, using the following relations between the fitness function
and the objective function defined in (4.2), and between the parameter vectors (the
vector variables of the functions):
JO) =1, JP)= (), p=w, p=0 - (4.17)
The original solution used in the initial stage of the SA algorithm [Dav14b]
was:
p=[0 02 0.1 04 02 08 04 1 08 1.1 0 150 50 180 0 11] (4.18)
at the starting temperature g, =1. The SA specific implementation parame-

-100 and g

ters ., and of g Sy

The final solution vector:

p  =[0.008615 0.1614 0.09901 0.4067 02295 0.8471 0.4019 0.9578 (4.19)
0.847 1.12 0.02202 169 59.85 180.5 —03227 11.04]

was found after 84 iterations of the algorithm at the temperature
By = 0.090235 -

The evolution of the control signal u versus time is taken from [Dav14b],
and presented in Fig. 4.3.2. This control signal was generated in order to cover dif-
ferent ranges of magnitudes and shows 35000 input-output data points which are
separated in the training data and the validation data set for cross-validation and to
assess the performance of the T-S fuzzy models. The training set consists of the
first ~=10000 data points and corresponds to 0 s to 100 s interval, with the remain-
ing ~=2s000 data points starting with 100 s to 350 s interval representing the valida-

tion data set.

were set to

7 max

=50 .

7 max
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Fig. 4.3.2. Control signal u versus time, applied to real-world process and to T-S
fuzzy model: training data from 0 s to 100 s, validation data starting with 100 s to
350 s.
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Fig. 4.3.3. Real-time experimental results: wheel slip 1 versus time for initial T-S

fuzzy model and for real-world process.
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Fig. 4.3.4. Real-time experimental results: wheel slip 1 versus time for T-S fuzzy
model after optimization by SA algorithm and for real-world process.
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The experimental results conducted in order to validate the obtained dy-
namic T-S fuzzy model are presented in Figs. 4.3.3 and 4.3.4 and represent the
outputs of the ABS laboratory setup equipment. The graphs display the performance
of the T-S fuzzy model before the application of the SA algorithm and of the T-S
fuzzy model after the application of the SA algorithm. The performance improve-
ment from the point of view the modeling errors is highlighted in Figs. 4.3.3 and
4.3.4, as it is significantly improved in training and validation data sets.

The objective function values evolution during the SA-based optimization is
presented in Fig. 4.3.5. The data presented in this graphic relates to the training

data set.
0.091 T T T

0.0909 - B!

0.0908 - B!

0.0907 - B!

— 0.0906- B!

0.0905- B!

0.0904 - B!
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[
Fig. 4.3.5. Objective function J versus iteration number x for validation data set.
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4.4. SIMULATED ANNEALING-BASED OPTIMAL TUNING
OF INPUT MEMBERSHIP FUNCTIONS OF TAKAGI-SUGENO
LABORATORY

FUZzZY

MODELS

FOR A

LEVITATION SYSTEM

The application of T-S fuzzy models to the magnetic levitation problem for a
metallic sphere maintained in an electromagnetic field resembling the block diagram
presented in Fig. 4.4.1 is considered in this sub-chapter. The importance of precise
model development for the magnetic levitation system consists in their extensibility
to other systems with high performance [Drallb], [Dral3]. For these types of mag-
netic levitation systems, the use of fuzzy models is justified by their process specific

nonlinearity.

Additionally, the use of SA algorithm is introduced in the step 4 of the fuzzy
modeling approach given in Sub-chapter 4.1. The application of the four steps of the

fuzzy modeling approach is described as follows.

U4, X4

EM2

MAGNETIC

Fig. 4.4.1 INTECO magnetic levitation system with two electromagnets setup and

The fuzzy modeling approach for the magnetic levitation problem starts with
the first-principle state-space model of a magnetic levitation system with two elec-

tromagnets [Int08]:

X =Xy,
_h
PSR Y. Y R S -1
m FemPZ m FemPZ

. 1
Xy = (kjuy +¢; — x3),

fir .,

Jir2
. 1
Xy = o (kg + ¢ =),

firr ., fim

Jip2
y=x,

block diagram.

_Xa=X

£,

mP2

2

- X},

(4.20)
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where: , -y, is the control signal (voltage applied to the upper electromag-
net), the disturbance input is 4=, (voltage applied to the lower electromagnet),
0.0049<u.u, <1, x, are state variables: y - sphere position, o<x <00i6m; x,

- sphere
speed, » and x, are currents in the upper and

lower electromagnetic coil
0.0384 < x;,x, <2.384, and  is the controlled output. The numerical values correspond-

ing to these parameters are taken from [Int08] and given in Table 4.4.1.

Table 4.4.1. Numerical values of the parameters of the magnetic levitation system

with two electromagnets [Int08].

Parameter Numerical Value Unit
m 0.0571 (for the big sphere) [kg]
g 9.81 [m/s?]
Fem1, Fem2 Functions of x1 and x3 [N]
Femps 1.7521-1072 [H]
Femp2 5.8231:10°73 [m]
fi(x1) Function of x1 [1/s]
fip1 1.4142-10* [m-s]
fir2 4.5626-103 [m]
Ci 0.0243 [A]
ki 2.5165 [A]
Xd The distance between electromagnets without [m]
the sphere diameter (depends on the sphere)
iMIN 0.03884 [A]
UMIN 0.00498 [V]

Two input variables, i.e., scheduling variables are considered for the T-S

fuzzy model. The input variables are the first two state variables in (4.20), namely
x and y,.

The fourth-order model (4.20) is next reduced to a third-order state-space
model, for 4, =0

{XzAx+BAu i’;l
T P X=1 A2
e A (4.21)
0 1 0 0
A=|ay 0 ay|.B=|0 [, ¢ =]l 0 0]
a3 0 a3 by

where the elements of the matrices A and B are [Dav12c]:
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a1 =0,a;,=1,a3=0,a4=0,

2 F __ Yo > F _Ya=X%o
X X, o) Y
ay :ﬁ%”e Fempa +ﬁ%l’le Fempa ,ayy =0,
m FymPZ m FymPZ
— o _Xa"ho
s = _ 2530 Fewpt |, o s = 2540 Fempt |, Fors
m FemPZ m FemPZ (4.22)
f o 1 10
JiP2 i — — il -
ayy =22 e (g +¢; = x3), azy = 0, azy = ———-e/" azy = 0,
iP1 JiP1
1 Xd ~*10
F,
ayp =———-e """ - (kjuy +c; — x40),
iP1
I’ Xa ~*10
JiP2 | , Fon
az =0,a43 =0, azy =—=-e "en?
Jir1
I’ *10 I’ Xa—*10
by =0, by =0, by = k; - L2 e fir2 by =k HEL e Fanp2 |
fiPl fiPl

In order to stabilize the sphere from the magnetic levitation system, a state
feedback control structure is designed by the pole placement method to stabilize the
unstable linearized state-space model in (4.21) with the state feedback gain matrix:

KT =[36 5 0.0075]- (4.23)

This leads to the following closed-loop third order continuous-time state-

space linearized model:
x=Ax+Br,
{ ; Cx=[Ay A, Anll. (4.24)
y=C'x

The input of the stabilized process represents the input of the stabilized pro-
cess u from (4.20) extended with the state feedback matrix gain in (4.30), which is
the same as the reference input of the control system.

The first step of the methodology presented in Sub-chapter 4.1 starts with
the fuzzification phase, by setting the largest domains of variation for the two state
variables in all operating regimes:

—02<x 0.2,-8.757 <x3 <18.765 . (4.25)

Also, for fuzzification, linguistic terms assigned to the input variables are
employed and defined as: the input variable x; has three linguistic terms,
LT, ;,j=1..3, with triangular m.f.s. They are defined and referred to as LT, ;, with
the universe of discourse [-02 0], LT, ,, with the universe of discourse [-0.1 0.1],
and LT, 3, with the universe of discourse [0 0.2]. These triangular m.f.s can be ex-

pressed as:

0, < a—"l .
x=by ;
1./
1+b _a. xle[a—’fls./’b—’fys./)’ 4 26
VAN .
Hir, ()= b ( )
M Xi,J
1- . b > M€ [bxl 226 s.f)’
Cx.j ")
0, x2 Caj
ayj < b_,d’j <Cyj J= 1..3,
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where the initial modal values of the m.f.s are the parameters a, ;, b

j=1.3. The parameters 4, ;=1.3, and ¢, j=1.3, which indicate the

x1,j 1

and ¢y ;,

modal values of the m.f.s, are fixed, with the values given in Table 4.4.2 [Dav12c].
The parameters », ., j=1..3 are variable.

Table 4.4.2. Modal values of the linguistic terms.

Linguistic terms Triangular membership functions

LT, ;,j=1.3

X.)° ay by, Cxl,j
TL, -0.2 -0.1 0
L, » -0.1 0 0.1
TL, 3 0 0.1 0.2

For the second input variable x;, are defined three linguistic terms,

LT, :,j=1.3, with the first and third being modeled by trapezoidal membership

X3,/
functions, and the second one modeled by a Gaussian membership function. The
universes of discourse of the membership functions of these linguistic terms are:
[-8.757 4.3785] for LT, ;, [3.753 4.3785] for LT, ,, and [4.3785 18.765] for LT, ;. The

expressions of the trapezoidal membership functions are:

0, x<a,;,

x—b3-
1+ 22

5 ., XE€ [“x3,j=bx3,jl

x3,j ax3,j

Hir, ()= Loxelpagicay)

(4.27)
X —Cx3,j

l—d , xe[cx3,jadx3,jl

x3,j T Cx3,j
0, x>d

x3,j>
ax3,j < bx3,j < Cx3,j < dx3,j» JE€ {153}7

and the second linguistic term is modeled by the Gaussian membership
function:

_ 2
#LTQ_Z("%):CXP[_i(x} aﬂ’zz) i (4.28)

b3
are variable. The parameters o, , je 13},

The parameters ,,,, b,, and .

x3,3 x3,1

bm’ JEe{L3Yr byar e je L3y and dyjjeil3y, are fixed. The initial m.f.s of the fuzzy
sets that correspond to the linguistic terms of the input variables » and i, are given
in Table 4.4.3 [Dav12c].
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Table 4.4.3. Parameters of trapezoidal linguistic terms.

Trapezoidal membership functions

Linguistic terms, - -
LTy 7= L3 ax3,j2J = 1.3} bx3 J? J =13} €x3.j> 1= .3} dx3 J? J=1{3}

TL -8.757 -8.757 -1.251 4.3785

TL,, 3 4.3785 11.259 18.765 18.765

Table 4.4.4. Operating points coordinates.

Co- Operating points
ordi-
nates A 4, A3 Ay As Ag A; Ag Ay

X10 0.007 0.007 0.008 0.008 0.009 0.009 0.007 0.008 0.009

X20 0 0 0 0 0 0 0 0 0

X30 0.285 0.6 0.3 0.6 0.3 0.285 0.3 0.285 0.6

X40 0 0 0 0 0 0 0 0 0

The nine operating points 4, (xg,xy9,x3.x4) s Jj=1..9, have the coordinates con-

tained by Table 4.4.4.

The linearization of the nonlinear models (4.21) at these operating points is
carried out in the step 2 of the fuzzy modeling approach. This results in nine contin-
uous-time state-space models as described by Table 4.4.5.

Table 4.4.5. Numerical values of continuous-time state-space models.

Operating Continuous-time state-space models corresponding to oper-
p0|nt atlng pOInt Aj(xlo,xZo,X30,X40) ’ ] =1.9
0 1 0 0
4 A;=[22092 0 -9.03 [B;=| 0 ¢/ =[1 0 0]
15548 0 -149.62 376.53
0 1 0 0
A, Ay=[979.15 0 -1901(B,=| 0 [ef=[1 0 0]
52181 0 -149.62 376.53
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4.4.6.

0 1 0 0
As A;=|20616 0 -8 [By=| 0 fef=[1 0 0
18746 0 -186.29 468.80
[0 1 0 o ]
Ay A =[82464 0 -1600 [;By=| 0 |ich=[1 0]
164967 0 -186.29 | 468.80 |
0 1 0 0
As As=|173.63 0 -674 |Bs=| 0 |cf=[ 0]
|23339 0 -231.94 | 583.67 |
0 1 0 ] 0
A Ag=[15670 0  -6.40 [Bg=| 0 [l =[1 0]
24102 0 -231.94) | 583.67 |
0 1 0 0
A7 A, =[24479 0  -950 [;B;=| 0 |l =[1 0]
15056 0 -149.62] |376.53]
[0 1 (. 0
Ag Ag=[186.06 0  -7.60 | ;Bg=| 0 |ck=[I 0]
| 19358 0 -186.29] 468.80
[0 1 0 ] 0
Aqg Ag=|69452 0  -1348 [Bo=| 0 [cl=[1 0]
|8088.7 0 -231.94] 583.67

These continuous-time state-space models are discretized using the sam-
pling period 7, =0005s. The discrete-time state-space models are comprised in Table

Table 4.4.6. Numerical values of discrete-time state-space models.

Operating point

Discrete-time state-space models corresponding to oper-

ating point 4 (xg,x59,x30,%40) s j =19
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1 0.005  -0.00009 ~0.00006

4, Agy=|-02833 1 -0.03179 |;By, =| 003362 }Cyy =[1 0 0]
5475 01538 04712 1325
1011 0.005  -0.00019 ~0.00013

Ay Agp=[3931 1011 -0.0672 |;By,=|-007091Cyy=[1 0 0]
1845 00517 04718 1325

1 0.005  -0.00008 ~0.00006

4 Ags=|-03761 1 -0.02604 B, 5 =[-0.03519 ;Cy5 =[1 0 0]

3 60.99 01758 0392 1.524
1.009  0.005 -0.00015 ~0.00012

Ay Ags=|3159 1009  -0.05226|;B, 4 =|-007049 [Cys=[1 0 0]
2121 0061 03926 1.524
09997  0.005  -0.00006 ~0.00006

As Ags=|-0.5159 09997 -0.01995;B, s =| 0.03462 ;C 45 =[1 0 0]
69.07 2053 03117 1.726
0.9995  0.005 -0.00006 ~0.00006

Ag Agg=|-0.5743 09995 -0.01895|;B ¢ =|—-0.03288:Cys=[1 0 0]
7133 02121 03117 1.726
1001 0.005  -0.00009 ~0.00006

Ay Ag7=|-01908 1.001  -0.03347 B, =|-0.03539;C;,=[1 0 0]
5303 0.1489 04712 1325
0.9999  0.005  -0.00007 ~0.00006

Ag Agg=|-0.4499 09999 -0.02474 B, =|—0.03343Cys=[1 0 0]
6298  0.1816  0.392 1.524
1.007  0.005 -0.00012 ~0.00013

Ay Ago=| 252 1.007 -0.04002 By, =|-0.06932;Cyo=[1 0 0]
2401 0071 03123 1726
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The rule base of the discrete-time dynamic T-S fuzzy model is expressed on
the basis of the modal equivalence principle [Gal95] that guarantees the equiva-
lence between the fuzzy models and the set of discrete-time nonlinear state-space
ones for the modal values of the inputs. Consequently, the complete rule base of the
discrete-time dynamic T-S fuzzy model with the input m.f.s previously described,
consists of the rules ri,i=1.9:

Xiel = Ag1Xp +Bg g

R':1Fx; ISLT, | ANDuxs; ISLT, | THEN{ era
»m B

(4.29)
R®:1Fx; ISLT, y ANDxy; ISLT, ; THEN {x"”; A"j’(‘:" +f" Ak
k,m d9*k
where k is the index of the current sampling interval, i is the index of the
current rule, and j is the index of the current linguistic term.
For example, the matrices of the state-space models in the rule consequents
of ' and r° are:
0.9982  0.0047 -0.00009 -0.00006
Ay =|-1482 08350 -0.02977 | B, =|-0.03263
99.96  6.488 0.3488 1.24

1002 0.0044 -0.00011 ~0.00012
Ago=|-0.1642 0.679 -0.03415|Byo=|—0.06461 | Cyo=[1 0 0].

90.37  7.633 0.09682 1.472

.Cq=[1 0 0],

(4.30)

The SUM and PROD operators are used in the inference engine, and the
weighted average method is employed for defuzzification.

The SA algorithm is employed in the step 4 of the fuzzy modeling approach
given in Sub-chapter 4.1 to solve the optimization problem defined in (4.1). For
this, the SA algorithm presented in detail in Sub-chapter 3.1 is implemented follow-
ing the steps presented there and by following relations between the fitness and
objective functions and parameter vector as they are contained in the third step of
our T-S fuzzy modeling approach:

J@) =S 0. J®)=[@). p=w. p=0- (4.31)

The SA algorithm starts with a parameter vector , of the fuzzy model
[Davi2c]:

p=[-0.1 0 0.1 —1251 43785 11.26] (4.32)

at the initial temperature 9, =1 and using maximum rejection and success
rates of .

r max

=1000 and 5, =50, it finds the final solution vector p* after 176 itera-

tions at a temperature of 6,5 =9.82741-107:

p  =[-0.0751 0.0001 0.0104 —1.1094 5.9424 14.3821] . (4.33)

Several experiments were conducted in order to validate this T-S fuzzy

model and the fuzzy modeling approach. First the T-S fuzzy model was trained, as

described in [Drallb], [Dral3] using the control signal , that was generated such

that to cover different ranges of magnitudes as high amplitude and high frequency
(HAHF) signal presented in Fig. 4.4.1.
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Fig. 4.4.1. Control signal v as HAHF signal versus time, applied to real-world pro-

cess and to T-S fuzzy model in the training experiment.

The validation of the T-S fuzzy model was performed using the control signal
u, that was generated to cover different ranges of magnitudes in two cases corre-
sponding to two validation experiments, the low amplitude and low frequency (LALF)
signal presented in Fig. 4.4.2, and the low amplitude, low frequency, high amplitude

and high frequency (LALFHAHF) signal presented in Fig. 4.4.3.
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Fig. 4.4.2. Control signal u as LALF signal versus time, applied to real-world process

and to T-S fuzzy model in the first validation experiment.
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Fig. 4.4.3. Control signal v as LALFHAHF signal versus time, applied to real-world
process and to T-S fuzzy model in the second validation experiment.

10 15
Time [s]

20 25

0.05 — ; ‘
— The output of real-warld process
0040 The output of FM after optimization | : § _________________ B
i bl The output of FM before optimization :
(k] A N S — NI N — .
£ 002 |
c ! :
0 ! !
= 3 :
g 0.01P : >
o : :
g 1 1
s 0 :
Z 1 1
B R B SRR S8 o .
-0.02 - rreeeeee oo Tt LAt IUCEE [ EURERRES S e .
-0.03 I I I \
0 5 10 15 20 25
Time (s)

Fig. 4.4.4. Real-time experimental results for training data: output versus time for
real-world process (solid), for initial T-S fuzzy model (dotted) and for optimized T-S

fuzzy model (dashed). FM indicates fuzzy model.
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Fig. 4.4.5. Real-time experimental results for first validation data: output versus
time for real-world process (solid), for initial T-S fuzzy model (dotted) and for opti-
mized T-S fuzzy model (dashed). FM indicates fuzzy model.

The experimental results reported in [Drallb] are presented in Fig. 4.4.4,
Fig. 4.4.5 and Fig. 4.4.6 as follows:

= Fig. 4.4.4 illustrates the system response obtained for the training data
set (Fig. 4.4.1).

* Fig. 4.4.5 and Fig. 4.4.6 illustrate the system response obtained for the
two validation data sets (Fig. 2 and Fig. 3).

= The objective function versus the iteration index in SA algorithm is
shown in Fig. 4.4.7.
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Fig. 4.4.6. Real-time experimental results for second validation data: output versus
time for real-world process (solid), for initial T-S fuzzy model (dotted) and for opti-
mized T-S fuzzy model (dashed). FM indicates fuzzy model.

Figs. 4.4.4 - 4.4.6 demonstrate the strong performance improvement of the
T-S fuzzy model by the application of the SA algorithm from the point of view of the
alleviation of the modeling errors. Starting the two validation experiments with the
objective function J=0.00055, the objective function measured after the application of
the SA algorithm for the LALF control signal is s, =0.000203, and the objective func-

tion measured after the application of the SA algorithm for the LALFHAHF control
signal is J, ;e = 0.001197 .

The evolution of the objective function versus the iteration index illustrated
in Fig. 4.4.7 shows that the solution to the optimization problem (4.1) obtained by
the SA algorithm ensures a strong decrease of the objective function. Although the
minimum of the objective function cannot be guaranteed, Fig. 4.4.7 suggests that
the improvement can continue by considering a larger number of iterations.
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Fig. 4.4.7. Evolution of the objective function versus the iteration index in the SA
algorithm.

4.5. CHAPTER CONCLUSIONS

This sub-chapter is dedicated to briefly summarize the information present-
ed up to here during this chapter, together with the new contributions which are
later supported by a list of disseminated publications.

In the course of this chapter an optimization problem concerning the input
membership functions of T-S fuzzy models has been initially described in Sub-
chapter 4.1. In Sub-chapter 4.2 a bibliographic research for optimal tuning of input
membership functions of T-S fuzzy models was presented.

A novel method to obtain discrete-time T-S fuzzy models dedicated to ABSs
has been introduced in Sub-chapter 4.3. The models are based on SA-based optimi-
zation of T-S fuzzy models initially obtained by the modal equivalence principle. One
of the advantages of the proposed solution is the ease of implementation for the
obtained models, which can be further adapted to other categories of industrial ap-
plications. The drawbacks of this method are restricted to the arbitrary behavior
introduced by the SA algorithm.

In Sub-chapter 4.4 an approach to the fuzzy modeling of magnetic levitation
systems is offered. This approach is based on the implementation of SA algorithms
to optimize the parameters of T-S fuzzy models initially obtained in terms of the
modal equivalence principle. A new T-S fuzzy model of a magnetic levitation system
with two electromagnets laboratory equipment is offered. The new modeling ap-
proach is important because it is applicable with adequate but not complicated gen-
eralizations to a wide category of industrial applications. Similar other T-S fuzzy
models can be obtained in order to be further used in the T-S fuzzy controller design
and tuning.
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The new contributions of this chapter are summarized as follows.

1. A modeling approach that ensures the optimal tuning of a part of the pa-
rameters of the input membership functions of T-S fuzzy models is presented in
Sub-chapter 4.1. The approach is based on the definition of an optimization prob-
lem, which is solved using nature-inspired optimization algorithms.

2. An original approach to fuzzy modeling of Anti-lock Braking Systems us-
ing Simulated Annealing optimized variable parameters of input membership func-
tions is proposed in:

R.-C. David, R.-B. Grad, R.-E. Precup, M.-B. Radac, C.-A. Dragos and E. M.
Petriu, An approach to fuzzy modeling of anti-lock braking systems, in: Soft Compu-
ting in Industrial Applications, V. Snasel, P. Kromer, M. Koppen and G. Schaefer,
Eds., Advances in Intelligent Systems and Computing, Springer International Pub-
lishing, Berlin, Heidelberg, vol. 223, pp. 83-93, 2014, indexed in Springer Link.

3. An original approach to fuzzy modeling of magnetic levitation systems us-
ing Simulated Annealing optimized variable parameters of input membership func-
tions is described in:

C.-A. Dragos, R.-E. Precup, R.-C. David, S. Preitl, A.-1. Stinean and E. M.
Petriu, Simulated annealing-based optimization of fuzzy models for magnetic levita-
tion systems, Proceedings of 2013 Joint IFSA World Congress and NAFIPS Annual
Meeting IFSA/NAFIPS 2013, Edmonton, AB, Canada, pp. 286-291, 2013, indexed in
Thomson Reuters Web of Science (formerly ISI Web of Knowledge or ISI Proceed-
ings).

R.-C. David, C.-A. Dragos, R.-G. Bulzan, R.-E. Precup, E. M. Petriu and M.-
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4. New discrete-time T-S fuzzy models for Anti-lock Braking Systems and for
magnetic levitation systems, derived on the basis of the modal equivalence principle
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in:

R.-E. Precup, S. V. Spéataru, M.-B. Radac, E. M. Petriu, S. Preitl, C.-A.
Dragos, R.-C. David, Experimental results of model-based fuzzy control solutions
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Mroczek, Eds., Advances in Intelligent and Soft Computing, vol. 99, Springer-Verlag,
Berlin, Heidelberg, pp. 223-234, 2012, indexed in Thomson Reuters Web of Science
(formerly ISI Web of Knowledge or ISI Proceedings).

These contributions have the following advantages:

1) They give solutions with relatively reduced degree of complexity.

2) They have potential for generalization to a wide category of applications.

3) The performance improvement of the T-S fuzzy models is demonstrated

by experimental results using laboratory equipment.
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5. NEW CONTRIBUTIONS, FUTURE RESEARCH
DIRECTIONS AND DISSEMINATION OF RESULTS

5.1. NEW CONTRIBUTIONS

The research direction of this thesis has been focused on the development of
feasible solutions dedicated to the modeling and optimization of fuzzy control sys-
tems with reduced sensitivity. The rationale of this research is synthesized in the
following concepts:

Optimization of T-S PI-FCs through minimization of various objective
functions;

Computationally efficient control solutions by avoiding high complexity
degree derivative calculations;

Reduced implementations costs for the proposed solutions;
Demonstration of control solutions’ potential in various experimental test
environments;

Extensibility potential to other optimization problems.

The new contributions presented in the course of this thesis, also pointed
out in chapters 2, 3, and 4, can be summarized as:

New discrete-time state-space models of T-S PI-FCs characterized by
the manipulation of the dynamics elements in the structure of these
controllers such that to define two state variables;

New discrete-time state sensitivity models of fuzzy control systems with
respect to two parameters of the controlled process represented by a
class of nonlinear servo systems. The fuzzy control systems include T-S
PI-FCs, and the class of nonlinear servo systems is structured as a series
connection of second-order dynamics with an integral component, and
saturation and dead zone static nonlinearity placed on the process input;
A novel desigh method dedicated to the simple T-S PI-FCs for servo sys-
tems with a reduced parametric sensitivity, namely with a reduced pro-
cess gain sensitivity and with a reduced process small time constant
sensitivity. The design method ensures the parameter tuning of the
fuzzy controllers by solving four types of optimization problems using
nature-inspired optimization algorithms;

The original application of Simulated Annealing algorithms to solve four
types of optimization problems such that to carry out the optimal tuning
of the parameters of T-S PI-FCs dedicated to the control of a class of
nonlinear servo systems;

The original application of Particle Swarm Optimization algorithms to
solve four types of optimization problems such that to carry out the op-
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timal tuning of the parameters of T-S PI-FCs dedicated to the control of
a class of nonlinear servo systems;
The original application of Gravitational Search Algorithms to solve four
types of optimization problems such that to carry out the optimal tuning
of the parameters of T-S PI-FCs dedicated to the control of a class of
nonlinear servo systems;
The original application of a version of hybrid Particle Swarm Optimiza-
tion-Gravitational Search Algorithms to solve four types of optimization
problems such that to carry out the optimal tuning of the parameters of
T-S PI-FCs dedicated to the control of a class of nonlinear servo sys-
tems;
The original application of Charged System Search algorithms to solve
four types of optimization problems such that to carry out the optimal
tuning of the parameters of T-S PI-FCs dedicated to the control of a
class of nonlinear servo systems;
A novel class of adaptive GSAs with improved exploration and exploita-
tions capabilities inspired by the 5E learning model used in education.
The adaptive GSAs are developed around the basic version of GSA, and
their three new functions are:
o the adaptation of two depreciation laws of the gravitational con-
stant to the iteration index,
o the adaptation of a parameter in the weighted sum of all forces
exerted from the other agents to the iteration index,
o the resetting at each run of adaptive GSA agents’ worst fitness’s
and positions to their best values;
The original application of the new adaptive GSAs to solve four types of
optimization problems such that to carry out the optimal tuning of the
parameters of T-S PI-FCs dedicated to the control of a class of nonlinear
servo systems;
A novel class of adaptive CSS algorithms with improved exploration and
exploitations capabilities inspired by the 5E learning model used in edu-
cation. The adaptive CSS algorithms are developed around the basic
version of CSS algorithms, and their two new functions are:
o the adaptation of the acceleration, velocity, and separation dis-
tance parameters to the iteration index,
o the substitution of the worst charged particles’ fitness function
values and positions with the best performing particle data;
The original application of the new adaptive CSS algorithms to solve four
types of optimization problems such that to carry out the optimal tuning
of the parameters of T-S PI-FCs dedicated to the control of a class of
nonlinear servo systems;
The definition of three original performance indices to assess the quality
of nature-inspired optimization algorithms:
o the average value of each objective function,
o the convergence speed,
o the accuracy rate;
The quality assessment of the performance of nature-inspired optimiza-
tion algorithms based on three original performance indices considering
a certain number of runs (five in these thesis) of each nature-inspired
optimization algorithm;
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e The validation of all new results by simulations using the detailed fuzzy
control system models and by experiments conducted on the real-world
laboratory servo system. Simulation results are presented in all publica-
tions;

e A modeling approach that ensures the optimal tuning of a part of the pa-
rameters of the input membership functions of T-S fuzzy models, based
on the definition of an optimization problem, which is solved using na-
ture-inspired optimization algorithms;

e An original approach to fuzzy modeling of Anti-lock Braking Systems us-
ing Simulated Annealing optimized variable parameters of input mem-
bership functions;

e An original approach to fuzzy modeling of magnetic levitation systems
using Simulated Annealing optimized variable parameters of input mem-
bership functions;

e New discrete-time T-S fuzzy models for Anti-lock Braking Systems, de-
rived on the basis of the modal equivalence principle with rule conse-
quents containing the state-space models of the local state feedback
control system structures are proposed as initial fuzzy models, to be
next optimized.

5.2. FUTURE RESEARCH DIRECTIONS

Starting with the new contributions presented in the previous sub-chapter,
the research contained in this thesis, can be extended in the following future re-
search directions:

e Extending the presented solutions to other sensitivity-based optimization

problems in the time domain and frequency domain;

e Fuzzy modeling of nonlinear dynamic processes by the parametric optimi-
zation using new nature-inspired algorithms;

e Extending the fuzzy controller tuning approach by including stability condi-
tions;

e Introducing and extending fuzzy logic in the tuning of nature-inspired algo-
rithms in order to limit the degrees of freedom represented by the free
parameters;

e Developing new solutions based on algorithm hybridization for alleviating
the drawbacks encountered in standard versions;

e Use of the proposed modeling approach in various industrial applications.

e Extension of the modeling approach to the optimal tuning of the parame-
ters of the fuzzy models included in other modules of the fuzzy model
structure (rule base, inference engine and/or defuzzification module).
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5.3. DISSEMINATION OF RESULTS
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