
CONTRIBUTIONS
TO THE MODELLING AND THE USE

OF SOFTWARE PRODUCT LINES

Teză destinată obţinerii
titlului ştiinţific de doctor inginer

la
Universitatea "Politehnica'' din Timişoara, România

Şi

L'Universite de Nice Sophia-Antipolis, France
în domeniul ŞTIINŢA CALCULATOARELOR

de către

Ing. Emanuel Ţundrea

Conducători ştiinţifici:

Referenţi ştiinţifici:

prof.univ.dr.ing. loan Jurca
prof.univ.dr. Philippe Lahire
prof.univ.dr.ing. Vladimir-Ioan Creţu
prof.univ.dr.ing. loan Salomie
conf.univ.dr.ing. Alexandru Cicortaş

Ziua susţinerii tezei: 09.01.2009

UNIV. ^POLITEHNICA"
TIMIŞC^AJRA

i l S L I O T E C A C E N T R A L Ă

Dulap Lit

BUPT

Seriile Teze de doctorat ale UPT sunt:

1. Automatică 7. Inginerie Electronică şi Teleconnunicaţii
2. Chinnie 8. Inginerie Industrială
3. Energetică 9. Inginerie Mecanică
4. Ingineria Chimică 10. Ştiinţa Calculatoarelor
5. Inginerie Civilă 11. Ştiinţa şi Ingineria Materialelor
6. Inginerie Electrică

Universitatea „Politehnica" din Timişoara a iniţiat seriile de mai sus în scopul
diseminării expertizei, cunoştinţelor şi rezultatelor cercetărilor întreprinse în cadrul
şcolii doctorale a universităţii. Seriile conţin, potrivit H.B.Ex.S Nr. 14 / 14.07.2006,
tezele de doctorat susţinute în universitate începând cu 1 octombrie 2006.

Copyright © Editura Politehnica - Timişoara, 2009

Această publicaţie este supusă prevederilor legii dreptului de autor. Multiplicarea
acestei publicaţii, în mod integral sau în parte, traducerea, tipărirea, reutilizarea
ilustraţiilor, expunerea, radiodifuzarea, reproducerea pe microfilme sau în orice altă
formă este permisă numai cu respectarea prevederilor Legii române a dreptului de
autor în vigoare şi permisiunea pentru utilizare obţinută în scris din partea autorului
sau a Universităţii „Politehnica" din Timişoara. Toate încălcările acestor drepturi vor
fi penalizate potrivit Legii române a drepturilor de autor.

România, 300159 Timişoara, Bd. Republicii 9,
tel. 0256 403823, fax. 0256 403221

e-mail: editura@edipol.upt.ro

BUPT

mailto:editura@edipol.upt.ro

Acknowledgments

Every time I think of the foilowing friends my heart is filled wlth gratitude.
Here are some well deserved pats on the back:

PhUippe Lahire, you desen/e heart-felt appiause and an early retirement.
Thank you for those one miilion and one acts of kindness.

loan Jurca, you reached the highest standards of teaching quality and
integrity! You also write so skilfully in English: thank you for your help which made
others think that I write well :)

Pierre Crescenzo, knowing that you had to assist such a slow-witted author,
it is obvious that you shouid get the credit for writing this thesis. I am so thankful.

Dan Pescaru, Ciprian Chirila and Emanuel Sasu, Amigos queridos! It is a
privilege for me to be part of your team!

John Lenton, your encouragement and support have been priceless. This
wouid not have been possible without your help. Your class on 'time management'
changed my life!

Mark and Gill Mumford, how gifted you are and what a gift to me you have
been! If there is another more hospitable home, I can witness that I did not find it.

My Father and my Mother, one of the best men on earth and probably one
of the best women in heaven. Your devotion to me was surpassed oniy by your
devotion to Christ.

My Wife, Nadia, if a star fell every time I thought of you during these years,
the sky wouId be empty. Our marriage proved to me that heaven is real and it is not
necessary to die to arrive there.

My kids, Natanael and Titus, the boys who lift my heart. There is nothing I
am more proud about.

And more than anybody, to You, my GOD\ the onIy reason I can put down a
burden is because you are there to carry it for me. Because of Calvary I am free to
choose and so I choose to honour you the most.

Timişoara,
January 2009 Eng. Emanuel Ţundrea

BUPT

Ţundrea, Emanuel

Contributions to the Modelling and the Use of the Software Product
Lines

Teze de doctorat ale UPT, Seria 10, Nr. 11, Editura Politehnica, 2009, 152
pagini, 48 figuri, 6 tabele.

ISSN: 1842-7707

ISBN: 978-973-625-793-3

Cuvinte cheie: nnodel, software product lines, aspect oriented programnning,
generative programming, prototype, software factory

Rezumat,
In software engineering everything evolves very fast: user requirements, technologies,
methodologies and appiications. Can we foresight and strengthen our approaches to
build software to confront these more and more complex challenges? While there are
key issues to solve, it is also noteworthy to know that we are very close to exciting
innovations. Software Product Lines (SPL) - modeling technology together with
source-code generative tools seem to make it easier to manage diverse environments
with complex, constantly changing relationships.

In the context of SPL, this thesis promotes the idea that the most promising way to
address software engineering is to provide an approach centred on models which
captures the know-how of a domain, independently from both the software platform
and the possible appiications.

In this context, this thesis concentrates on providing a solution to respond to two main
questions:

• How to develop model-onented software? In other words, it presents SmartModels
approach which offers a flexible and easy way to describe the know-how of a
business domain into models independent from the technology. Technology
evolves continuousiy in all aspects - platforms, programming languages, etc., and
as a result it is important for companies to find a solution to avoid investing in
placing their know-how directiy at the level of a software platform, and to invest to
a meta-level instead (using parameterized genericity).

• How to build software product lines? In other words, SmartModels provides a
solution for describing concepts - a new method of abstracting the domain entities
into the model level, methods to handie the commonalities, but also the
differences between products, which in addition call for the need to impose
constraints. As a result a company gains in terms of productivity and adaptability.
It also fosters new opportunities for easier evolution of the semantics of the
domain entities and for better reusability which again results in increasing
companies' productivity.

Therefore, the thesis aims to take part in the modelling and the use of software
product lines.

BUPT

Table of Contents

1. INTRODUCTION 13

1.1. MOTIVATION: PARADIGM SHIFT IN SOFTWARE ENGINEERING 14
1.2. APPROACH PROPOSAL 15
1.3. PLAN OF THE THESIS 16

2. THE STATE OF THE SOFTWARE MODELLING ART 19

2.1. OBJECT-ORIENTED PROGRAMMING (OOP) 20
2.2. CLASSICAL MODELLING METHODOLOGIES 21
2.3. OMG'S STANDARD ON MODELLING SYSTEMS 25

2.3.1. UNIFIED MODELLING LANGUAGE 2 6
2.3.2. THE OCL CONSTRAINTS 2 9
2.3.3. THE DIAGRAMS 2 9
2.3.4. EXTENSIBILITY 31

2.4. LINES OF SOFTWARE SYSTEMS 33
2.4.1. ESRS WORK ON SYSTEM FAMILY ENGINEERING 36
2.4.2. AN APPROACH ADOPTED IN THE INDUSTRY: DOMAIN AND APPLICATION
ENGINEERING 38

2.5. SOFTWARE VARIABILITY 40
2.5.1. DIMENSIONS OF SOFTWARE VARIABILITY 40
2.5.2. THE VARIATION POINT 41
2.5.3. VARIABILITY AT THE LEVEL OF THE IMPLEMENTATION 41

2.6. CONSTRAINTS 42
2.7. CONCLUSION 43

3. SMARTMODELS - A META-MODEL HANDLING GENERIC ENTITIES 45

3.1. OFL: HYPER-GENERICITY FOR META-PROGRAMMING 46
3.1.1. HYPER-GENERICITY 47
3.1.2. OFL OBJECTIVES 48
3.1.3. OFL MODEL 48
3.1.4. GENERAL ARCHITECTURE 49

3.2. THE MODEL-ORIENTED PROGRAMMING APPROACH 54
3.2.1. MOP VERSUS COMPONENTS 5 6

3.3. INTRODUCTION TO SMARTMODELS META-MODEL 57
3.3.1. CRITERIA FOR EVALUATION AND OBJECTIVES OF THE APPROACH 5 9

3.4. KEY-ASPECTS OF MODELLING IN SMARTMODELS 61
3.4.1. CASUISTRY 61
3.4.2. THE META-LEVEL 64
3.4.3. THE REIFICATION-LEVEL 69
3.4.4. THE INSTANCE-LEVEL 72
3.4.5. METHODOLOGY TO DESCRIBE A MODEL 7 5

3.5. A SET OF EMPIRIC RULES FOR MODEL ORIENTED PROGRAMMING 75
3.5.1. RULES FOR THE DESIGN APPROACH 76
3.5.2. RULES FOR THE IMPLEMENTATION APPROACH 77

3.6. CONCLUSION 78

BUPT

Table of Contents

4. APPLICATION TO SOFTWARE PRODUCT LINES 81

4.1. MODELUNG A FRAMEWORK FOR GENERATING ON-LINE ASSESSMENT SOFTWARE
SOLUTIONS 82

4.1.1. HANDIING META-INFORMATION FOR COMPLEX FAMILY OF ENTITIES 83
4.1.2. VARIATION THROUGH POLYMORPHISM AND ABSTRACTION 84
4.1.3. VARIATION THROUGH PARAMETERIZED GENERICITY 84
4.1.4. VARIATION THROUGH ACTIONS TO MANAGE DYNAMIC ASPECTS AND CONSTRAINTS 86
4.1.5. VARIATION THROUGH ATOMS DERIVATION 86

4.2. CONCLUSION 88

5. THE SMARTFACTORY PROTOTYPE 91

5.1. FIRST ATTEMPTTO BUILD THE PROTOTYPE 91
5.2. ECLIPSE PLATFORM AND ECLIPSE TOOLS PROJECT 93

5.2.1. ECLIPSE PLATFORM 93
5.2.2. ECLIPSE TOOLS PROJECT 96

5.3. A NEW DESIGN FOR SMARTFACTORY BASED ON ECLIPSE 99
5.3.1. THE BUILT'IN PLUG-IN 100
5.3.2. THE META-DATA EDITOR PLUG-INS 110
5.3.3. THE TRANSFORMER PLUG-IN 114
5.3.4. THE CODE-GENERATOR PLUG-IN 119

5.4. CONCLUSION AND FUTURE WORK 121

6. MODEL IMPLEMENTATION EXAMPLE 123

6.1. WRITINGTHE MODEL 125
6.2. TRANSFORMING THE MODEL 130
6.3. GENERATING THE CODE 131
6.4. CONCLUSION 133

7. CONCLUSIONS AND PERSPECTIVES 135

7.1. CONTRIBUNONS 136
7.1.1. DEFINING AN APPROACH - SMARTMODELS 136
7.1.2. DEVELOPING A SOLUTION BASED ON MODELS FOR PRODUCT DERIVATION IN SPL 137
7.1.3. PROVIDING TOOL SUPPORT - SMARTFACTORY 137

7.2. LIMITATIONS 138
7.3. PERSPECTIVES 138

7.3.1. SMARTMODELS APPROACH 139
7.3.2. SMARTMODELS'SUPPORT FOR SPL 139
7.3.3. SMARTFACTORY PROTOTYPE 140

8. REFERENCES 143

BUPT

Table of Figures

FIGURE 1. THE CASGADE MODEL 22
FIGURE 2. THE V MODEL 23
FIGURE 3. THE SPIRAL MODEL 24
FIGURE 4. THE THREE-DIMENSIONAL MODEL 25
FIGURE 5. O M G FOUR LAYER META-MODEL HIERARCHY 28
FIGURE 6. EXAMPLE OF THE USE CASES AND ACTOR FOR A DIGITAL CAMERA 29
FIGURE 7. EXAMPLE OF THE CLASS DIAGRAM FOR A PHOTO CAMERA MODEL 30
FIGURE 8. U M L 2.0 PRORLE EXAMPLE 32
FIGURE 9. THE DOMAIN AND APPLICATION ENGINEERING 38
FIGURE 10. F O D A FEATURE DIAGRAM EXAMPLE 39
FIGURE 11. SPACE AND TIME DIMENSIONS IN VARIABILTTY 41
FIGURE 12. GENERAL GRAPHIC CONVENTIONS 4 8
FIGURE 13. THE OFL ARCHITECTURE 50
FIGURE 14. THE OFL CONCEPTS OF JAVA LANGUAGE 51
FIGURE 15. OFL-ATOMS OF A MODELLED LANGUAGE 55
FIGURE 16. SMARTMODELS JAVA MODEL 60
FIGURE 17. SMARTMODELS PHOTO CAMERA MODEL 62
FIGURE 18. KEY-ASPECTS OF A MODEL IN SMARTMODELS 63
FIGURE 19. THE BASIC ARCHITECTURE OF SMARTMODELS AS AN EXTENSION OF ECLIPSE EMF 65
FIGURE 20. ON-LINE ASSESSMENT SMARTMODEL CLASS DIAGRAM 82
FIGURE 21. ON-LINE ASSESSMENT TOOL ATOMS 85
FIGURE 22. EDIT-TEXT DERIVED ATOMS 87
FIGURE 23. LABELLING DERIVED ATOMS 88
FIGURE 24. IMPLEMENTATION OF SMARTFACTORY WITH SMARTTOOLS 92
FIGURE 25. THE ECLIPSE ARCHITECTURE 94
FIGURE 26. ECLIPSE WORKBENCH - RESOURCE PERSPECTIVE 95
FIGURE 27. USING EMF FRAMEWORK GENERATIVE TOOLS 96
FIGURE 28. THE CORRESPONDENCE BETWEEN ECORE MODELÂND GENMODELENTITIES 96
FIGURE 29. FOUR WAYS TO CREATE AN EMF ECORE MODEL 97
FIGURE 30. FROM EMF ECORE MODEL TO CODE-GENERATION 98
FIGURE 31. SMARTFACTORY PLUG-INS 99
FIGURE 32. SMARTMODELS TYPE SYSTEM 106
FIGURE 33. SMARTMODELS VALUE SYSTEM 107
FIGURE 34. PERSISTENCE HIERARCHY IN THE TRANSFORMER 115
FIGURE 35. PHOTO CAMERA U M L MODEL 124
FIGURE 36. ECLIPSE RUN MENU 125
FIGURE 37. ECLIPSE: CREATE, MANAGE AND RUN CONFIGURATIONS - MAIN 126
FIGURE 38. ECLIPSE: CREATE, MANAGE AND RUN CONFIGURATIONS - PLUG-INS 126
FIGURE 39. THE SMARTFACTORY META-DATA EDITOR 127
FIGURE 40. THE SMARTFACTORY META-DATA EDITOR WIZARD 127
FIGURE 41. CREATING GENERIC CONCEPTS IN META-DATA EDITOR 128
FIGURE 42. ADDING ACTIONS TO A CONCEPT IN META-DATA EDITOR 128
FIGURE 43. CUSTOMIZING A GENERIC ATOM IN META-DATA EDITOR 129
FIGURE 44. CONCEPT INSTANTIATION IN META-DATA EDITOR 129
FIGURE 45. DERIVED ATOM REDERNITION IN META-DATA EDITOR 129

BUPT

Table of Figures

FIGURE 46. SMARTFACTORY TRANSFORMER PLUG-IN 130
FIGURE 47 . SMARTFACTORY TRANSFORMER WIZARD 131
FIGURE 48. SMARTFACTORY CODE GENERATOR 132

BUPT

List of Tables

TABLE 1. OFLCONCEPT-RELATIONSHIP PARAMETERS 52
TABLE 2. O F L CONCEPT DESCRIPTION PARAMETERS 54
TABLE 3. CRTTERIA TO EVALUATE META-MODELLING APPROACHES 59
TABLE 4. DESCRIPTION OF SMARTFACTORY PLUG-INS 100
TABLE 5. THE TRANSFORMER COMPONENTS 118
TABLE 6. EMF JAVA J E T EMITTERS ADAPTED BY SMARTFACTORY 120

BUPT

List of Abbreviations

ACM Association for Computing Machinery
AN5I/SPARC American National Standards Institute /

Standards Planning And Requirements Connmittee
AOP Aspect Oriented Programming
AST Abstract Syntax Tree
BNF Backus Naur Form
CAFE from Concepts to Application in system-Family Engineering
CCM CORBA Connponent Model
CLOS Connmon LISP Object System
COBOL COmmon Business-Oriented Language
CORBA Common Object Request Broker Architecture
CVS Concurrent Versions System
DDD Domain Driven Development
DSLs Domain-Specific Languages
DTD Document Type Definition
EDOC Enterprise Distributed Object Computing
e.g. exempli gratia
EJB Enterprise Java Beans
EMF Eclipse Modelling Framework
ESAPS Engineering Software Architectures Processes and Platforms

for System-Families
ESI European Software Institute
FAMILIES FAct-based Maturity through Institutionalisation. Lessons-

learned and Involved Exploration of System-family engineering
GEF Graphical Editing Framework
GMT Generic Mapping Tools
GUI Graphical User Interface
IBM International Business Machines
i.d. id est
IDE Integrated Development Environment
IDL Interface Definition Language
J2EE Java 2 Platform, Enterprise Edition
J2SE Java 2 Platform, Standard Edition
JDT Java Development Tools
JET Java Emitter Templates
JSP JavaServer Pages
IP Intentional Programming
LAN Local Area Network
LOOPS LISP Object-Oriented Programming System
MDA Model Driven Architecture
MDE Model Driven Engineering
MOF Meta Object Facility
MOP Model Oriented Programming ^
mop Meta-Object Protocol
OA&D Object Analysis and Design

BUPT

List of Abbrevlations 11

OFL Open Flexible Language
OMG Object Management Group
OMT Object Modelling Technique
OOA Object Oriented Analysis
OOM Object-Oriented Modelling
OOD Object-Oriented Design
OOPL Object-Oriented Programming Language
OOSE Object-Oriented Software Engineering
PDE Plug-in Development Environment
PFE Product Family Engineering
RCP Rich Client Platform
SDK Software Development Kit
SDO Service Data Objects
SEI Software Engineering Institute
SOA Service-Oriented Architecture
SOP Subject-Oriented Programming
SPL Software Product Lines
SPLC Software Product Line Conference
UML Unified Modelling Language
W3C World Wide Web Consortium
XML eXtensible Markup Language

BUPT

BUPT

1. Introduction

The impact of technology on all aspects of contemporary life is an
unchallenged fact. We alternately suffer with and revel in the side effects of
technology: from toxic waste, the social effects of too much television, and carpal
tunnel syndrome, to the wonders of spreadsheets or tiny video cameras. Yet
technology effects, both good and bad, seem always to take us by surprise because
it is so fast evolving that we hardly can anticipate its course.

The computer software industry is a large and rapidiy growing industry
throughout the industrial worid. It produces an enabling technology that affects
manufacturing firms' commercialization of new products in a growing array of
industries. The availability of software with greater flexibility and ease of use also
influences the pace of adoption of information technologies and thereby affects the
realization of the productivity gains associated with this technology.

In considering productivity issues vs. staying on track with the new
technologies there is also another theme which clearly emerges: the joys and pains
of managing evolution and, in particular, the changes in computer-science entities.
The Internet, broadband, multimedia, switched LANs, electronic commerce,
groupware, wireless and a host of other innovations are coming at us with
frightening swiftness and all our software must support them in order to put on
competitive advantages on the market. The Internet Is also speeding the adoption of
a diverse set of industrial-strength, encryption-based security technologies, which
will present their own management challenges.

Can we foresee and strengthen our approaches to build software to confront
these challenging situations? While there are major challenges in management
systems, it is also important to note that we are on the verge of exciting
innovations. For example, modelling technology plus source-code generative tools
make it easier to manage diverse environments with complex, constantly changing
relationships.

The more and more rapid technology development and assessment of new
platforms both hardware and software, corroborated with the fast increase of the
complexity of the user appiications requirements lead to new paradigms in software
engineering which meet two important conditions: shorter time for deploying a
solution to the market and better modelling its architecture so it can evolve, be
adapted and extended easier.

It is also important to discuss how the architects can reduce the crucial gap
between modelling methodologies and programming languages, like object-oriented
ones, which do not offer native support for high level abstractions and notations.
Modelling methodologies are an important step forward and this thesis concentrates
and tries to benefit from and contribute to the current research in this domain.

BUPT

14 Introduction - 1

1.1. Motivation: Paradigm Shift in Software
Engineering

'^Objects everywhere!" Starting in the late 1960s [37] with programming
languages such as Simula, then Smalltalk, objects have pervaded every domain of
software technology. It is true that objects have proliferated like a contagious virus.

We all thought that because of the wonderful unifying properties of the
object paradigm, the transition from procedural technology to object technology will
bring huge conceptual simplification to the software engineering field. And it surely
did at that time!

Since ever/thing will be considered as an object, we shall observe a
dramatic reduction in the number of necessary concepts. But as we can see today,
the more and more complex software we need to develop and more and more
complex technologies we need to deal with, object technology has failed to really
achieve its promises of simplification. There is still considerable confusion and
controversy over such key concepts as encapsulation, inheritance and
polymorphism. There is also a lack of a complete theory of object orientation, based
on simple and well-defined concepts [74], Some theories to aid understanding of
objects have been proposed, but they are incomplete, concentrating on a few
aspects such as polymorphism [28] [40] [100].

The reality is that the object-oriented approach does not provide all the
solutions for software engineering even if (and this is important to bear in mind
from now on) it represents a valuable basis for the description of further
approaches. This remark can also be appiied to component-based software
engineering [100] and to the newer web services paradigm [46]. In particular, they
do not provide a correct answer to the continuous evolution of the technologies:
keeping appiications up-to-date according to the evolution of technologies is too
much time-consuming.

In the past two decades, there were many changes in computer science that
had an influence upon the way an appiication can be developed. To cope with these
changes, appiications need to be more open, adaptable and ready for fast evolution.
Before going any further, here are some arguments why these new constraints in
software development have emerged [102].

The first reason is the emergence of Internet which implied appiications are
no longer stand-alone, but rather distributed. Therefore, from now on data
communication between appiications and users must be taken into account during
the whole appiication life-cycle. One important point is to choose a well adapted
data exchange format.

The second reason of these changes is the proliferation of new component
technologies. It is difficult to choose the right and more capable among them. For
instance, for a component based appiication, a developer must choose between, at
least, three component technologies: CCM (CORBA Component Model), EJB
(Enterprise Java Bean), or Web Sen/ices.

The third reason is the democratization of computer science. Users may
have now different knowledge levels, different needs, a wide range of visualization
devices, and specific activity domains. This aspect shouid be considered when
designing and developing appiications.

The last reason is business related. Indeed, to be efficient and competitive a
company must quickly and cheaply adapt its software to new user needs and

BUPT

1.1 - Motivation: Paradigm Shift in Software Engineering 15

technologies. Time to market of a software product is smaller and companies face a
huge pressure on this aspect, but this factor shouid not shortcircuit the absolute
need for quality.

The above paragraphs have aiready justified that object-oriented
programming is not always sufficlent to handie clear designs and reusable
developments of software. For example, concerns can be cross-cut between classes
and there can be a mix between funcţional and non-functional code in a single class
making the code difficult to maintain and debug. This situation explains the
emergence of a whole set of new progrannming paradigms such as Aspect Oriented
Programming (AOP) [66], Subject Oriented Programming (SOP) [48], Intentional
Programming (IP) [94], or Component Programming [100] [49].

At the specification level, a strong and continuous work is undergoing
toward standards of the World Wide Web Consortium (W3C) [46] for documents or
of the Object Management Group (OMG) for design methodologies such as Unified
Modelling Language (UML) [80] or Model Driven Architecture (MDA) approach [86].

This is the motivation for which today, the worid of software engineering
arrived to a paradigm shift from object technology to model technology, from object
composition to model transformation. From objects and components, we can see
other evolving trends like: processes, rules, services. Model technology is able to
subsume most of these paradigms and others [59].

Therefore, ""model once, generate everywhere" is the assertion that put a
mark on the paradigm shift generated by the MDA, but the road to model
engineering takes time.

I close this section with the quote which I found to be very keen to our
problem: ""the good thing about bubbles and arrows, as opposed to programs, is
that they never crash" [73]. Under these circumstances, section 1.2 will introduce
the approach proposed by this thesis.

1.2. Approach Proposal

Based on the motivation developed in section 1.1, this thesis promotes the
idea that the most promising way to address software engineering is to provide an
approach centred on models which captures the know-how of a domain,
independently from both the software platform and the possible appiications.

The effort will be spent on researching two tracks (both for theorizing an
approach to answer these questions and for building a prototype to validate it):

How to develop model-oriented software? (see section 2.3) In other words,
it is important to offer an easy way to describe the know-how of a business domain
into models independent from the technology. This foilows the paths opened by
Model Driven Engineering (MDE) approaches, from which the best known initiative is
Model Driven Architecture (MDA) [86] from Object Management Group (OMG) [45].
Technology evolves continuousiy in all aspects - platforms, programming languages.
Therefore, it is important for companies to find a solution (see chapter 3) to avoid
investing in placing their know-how directiy at the level of a software platform, and
to invest to a meta-level instead. This is the goal of MDE approach: to insure that
the know-how is encapsulated in models, and, as a result, it is technology
independent.

How to build software product lines? (see section 2.4) In other words, it is
important to provide a solution for describing concepts - a new method of

BUPT

16 Introduction - 1

abstracting the domain entities into the model level. Most of the models require the
description of more than just oniy one root concept and they have commonalities
(share same characteristics), but also differences which in addition call for the need
to impose constraints. Software Product Lines (SPL) [76] approaches aim to answer
and offer support for building lines of products by providing techniques to write their
semantics. As a result a company gains in terms of productivity and adaptability. In
this context, besides the classic but important inheritance mechanism taken over
from object oriented approach, the variability of products is also modelled through
the notion of genericity. This is nurturing new opportunities for easier evolution of
the semantics of the domain entities and for better reusability which again results in
increasing companies' productivity (see chapter 4).

Therefore, this thesis proposes an approach which aims to enhance
productivity by:
• handiing the know-how of a domain in a platform independent manner;
• improving the expressiveness of models by introducing the notion of family of

entities as a parameterized concept (integrating customizable genericity);
• increasing the reusability by making the contents of models more adaptable.

I expect that this approach will inspire a solution which fills the gaps
between the modelling solutions used by architects, software quality that engineers
hope for, quantity of source-code that programmers have to write, and productivity
targets that companies have to reach. Here are the design goals in order to realize
such a solution:
• an easily understandable and (friendiy) usable approach for creating a coherent

group of software artifacts for a domain (easy to encapsulate the know-how of a
domain);

• flexible adaptation as a response to technological changes: a clear separation
between the model and the technologies, but also a solid foundation to map on
any software platform;

• a straightforward methodology to model and then to automate code generation
for implementing and deploying a family of software products;

• simple ways for prototyping as an extension of standard tools (like Eclipse [35])
accepted on a large scale by the current research communities;

• an architecture designed for reuse integrating ideas from Domain Driven
Development (DDD) [27], Aspect Oriented Programming (AOP) [66], Unified
Modelling Language (UML) [80], Model Driven Architecture (MDA) [86], design
patterns [38] [87], and generative programming [26].

1.3. Plan of the thesis

This chapter placed this work In the current research trends, defined the
challenging problems that will be dealt with and our motivation, and then it
introduced the proposition for a better approach.

Chapter O looks from the perspective of the paradigm shift that software
engineering is experiencing today and introduces the state of the software modelling
art. It shows the shortcomings of existing approaches and according to them it
identifies and justifies features that a new approach shouid provide.

Chapter 3 presents SmartModels - an approach which relies on MDA and
which is intended to contribute to strategies to increase software quality and
productivity. Thanks to its meta-level, it clearly identifies the semantics of concepts

BUPT

1.3 - Plan of the thesis 17

used for the modelling of a given domain and, on the other hand, thanks to
approaches of separation of concerns and of generative programming, It creates the
basis for building the applications related to the target domain in a modular way.
The presentation of the key aspects when modelling in SmartModels is accompanied
by the methodology to describe the structure and behaviour of a model and by
different casuistry which further explore and illustrate the flexibility and richness of
the approach.

The meta-model of SmartModels is a core which acts like a foundation for
various applications. Chapter 4 takes the discussion one step further and shows that
this approach, which is based on customizable genericity, provides the needed
expressivity for modelling product lines. Therefore, one of the most important
applications, and also one of the main purposes of the approach, is to address the
description of a line of products and this chapter gives full details on how to use
SmartModels features in order to contribute for a better modelling of SPL.

For a better understanding of the interest of SmartModels, chapter 5 gives
an overview of the implementation of a prototype, called SmartFactory, and of the
platform and tools used to build it. SmartFactory represents the first practicai
validation of the approach.

Chapter 6 illustrates the approach and prototype through an example on
how to use the complete solution. It presents a relevant case-study to evaluate the
methodology to create business models and techniques to generate applications
afterwards.

Finally, Chapter 7 concludes this work, comparing its original contribution to
the state of the art and then wraps everything up by giving future perspectives to
continue work.

,1'NIV. " P O L I T E H N I C A

T I M I Ş O A R A

WBLKTTECA CENTRMLA

BUPT

BUPT

2. The State of the Software Modelling Art

This extent of modelling engineering in the software domain has become an
important concern for software developers, consultants and programmers. Meta-
modelling may be defined as a method to design a stencil for producing something.
Extending this to the specific case of software, we can say that the meta-modelling
of software is a method of designing templates and patterns (in other words:
models) for producing software.

In the past, the modelling process in software development, no matter how
well implemented, has been very dependent on the skilis of an individual developer.
In [109], Tyrrell points out in the context of the importance of the software process
that this approach can lead to three key problems.

Firstly, such a software project is very difficult to maintain. Imagine our
software developer has suddenly resigned from the company and somebody else
must take over the partially completed work. In a first scenario let us assume that
there is some documentation describing the state of the work in progress. Maybe
there is more than textual documentation, there is even a plan, with individual tasks
mapped out and those that have been completed marked with different colours. In
the other scenario, if the plan exists oniy in the developer's head and if there is no
documentation then it is very probably the whole project may be compromised and
even if the previous design was very good the new developer has probably to start
from scratch.

Secondiy, it is very difficult to evaluate correctiy the quality of the finished
product according to any independent assessment. If there are two developers,
each working according to their own methods, and defining their own tests along
the way, then there is no objective method for comparing their work either with
each other or with a customer's quality criteria.

Thirdiy, there is a huge overhead involved as each individual works out their
own way of doing things in isolation. To avoid this, some way must be found of
learning from the experiences of others who have aiready gone the same road.

Therefore, it is important both at the level of each organization, but more
important, at the level of global standard, to define the modelling approach for a
software project. At its most basic, this means to define an approach to model
software, then to train the developers and offer support for the approach with
efficient tools.

This chapter aims to present the state of the software modelling art:
• It briefly lays the cornerstone on software modelling as the first attempts to deal

with increasing complexity, which are still adopted today in the industry, started
with object-oriented programming;

• It summarizes the four classical modelling methodologies for appiication
development;

• It introduces the Unified Modelling Language (UML) - Object Management
Group's (OMG's) standard on modelling systems. It points out in more detail the
elements which are extensively used in software modelling today, like: the
diagrams, constraints and the extensibility of the notation ;

BUPT

20 The State of the Software Modelling Art - 2

• It presents the Software Product Line (SPL) approach which is based on
methodologies for strategic reuse of source code, requirement specifications,
design models, etc., for building families of systems and modelling their
artefacts;

• It addresses the focal concept of SPL: the software variability and mechanisnns
for its management.

2.1. Object-Oriented Programming (OOP)

The constant evolution of hardware and software systems is making it
possible to develop Information systems of steadily increasing complexity. The
reason for the complexity of a system Nes mainly in the number and variety of its
constituent elements, the relationships and interactions between them and the
differing, and often conflicting, needs of the user. The object approach provides
some solutions to the problems of constructing complex systems and appiications by
picking out the stable elements so that they can be modelled by objects in a uniform
manner [73], [13], [28]. This approach anticipates the need for an appiication to
evolve with time and favours solutions that will ease this evolution and encourage
the re-use of the software [93], [40].

Conceptually, an object is an abstraction from a real-worid entity, for
example an employee of a company (a rather simple object), or the site of a
scientific laboratory or of a hotel (a rather complex object). It can have associated
Items of Information (simple values or real objects), such as the last name and first
name of the employee and the name and address of the laboratory at which he/she
Is located. Also, it can be manipulated by a set of operations specifically appiicable
to it, for example, the operation that assigns an employee to a site. Several
principles underlie the process of mastering the complexity of a system. The first
such principie is abstraction, which enables the behaviour of an object to be studied
Independently of its physical representation; the second is the decomposition of
complex objects Into simpler ones; and the third is grouping objects according to
thelr mutual relations and interactions.

The object approach originated in object-oriented programming, of which
the best-known languages are Smalltalk [61], C++ [98] [115], Java [4] and more
recently C# [50]. It gained its first great success in the programming of graphical
interfaces, now ubiquitous in computing. Since then it has been generalized for
many fieids, for example software engineering, distributed systems and databases,
and then extended to handie system design and analysis. It brings important
advantages, such as modelling of objects and modularity, re-usability and
extendibility of code, which leads to higher productivity of the developers and better
quallty of the software produced.

The first true object-oriented language was Simula (1967) [37], which
introduced the concepts of object and class from Algol; like Algol, Simula is a
strongly typed compiled language. However, the first language to popularize the
object approach was Smalltalk (1970). This can be regarded as combining the
concepts of Lisp, from which it inherits its funcţional principles of an interpreted
language, and of Simula, to which it adds the concept of meta-class, Smalltalk has
proved able to satisfy the needs for flexibility raised by the development of graphic^l
programming environments requiring rapid prototyping of cooperative user

BUPT

2.1 - Object-Oriented Programming (OOP) 21

interfaces. It was used with success at Xerox PARC (the ancestor of the Macintosh)
in the first graphical workstation.

With the arrival of workstations in the 1980s many object languages inspired
by Simula or Smalltalk began to appear. Annong compiled languages the best known
are C++ [98], Objective C [52] and Eiffel [51], for all of which the language or the
code generated is compatible with C. Most of the interpreted languages are
extensions of Lisp, for example Loops and CLOS (Common Lisp Object System)
[62]. It is interesting to observe that most of the popular existing languages are
being extended in the direction of object orientation, for example Cobol and Ada -
more precisely for the latter, Ada 94, which provides inheritance [39]. In the last
decade the interpreted languages became of great interest. Java for example,
because they give portability over several platforms due to the support of their
virtual machine [37].

Having this in mind it is also important to see that there is a consensus of
researchers on object-oriented methodologies for analysis and design of programs.
They assert that although there is an important increase in complexity of today's
requirements for software, we still do not take all the advantages of greater
extendibility and easier maintenance that object technology can bring. Therefore,
the object-oriented methods for modelling and design of the complex appiications
are now important challenges for many researchers.

2.2. Classical Modelling Methodologies

The more complex Information systems become, the more the process of
design and development must be rationalized. Some projects involve hundreds of
people and can take several years to complete, and, although the costs of
development are high, those of maintenance can be three or four times higher [22].
The financial stakes and risks are thus considerable. To reduce these costs and
risks, computer scientists must use adequate tools and techniques. These will make
the development of information systems an engineering activity at the same level as
mechanical or civil engineering or industrial electronics. The design methods
contribute mainly by providing a general approach to the problem or an action plan
for solving the problem, models to synthesize solutions and quality-control tools.

Many design methods have been proposed since the 1970s ([53], [13],
[55], [93]) and have contributed to the better definition of the steps of the design
process, especially to the standardizing of the terms and representations used by
designers and developers. The development of these methods has been influenced,
inspired even, by the evolving technologies of programming languages, databases,
computer networks and real-time systems. The new generation of object-oriented
methods has itself been developed under the influence of object-oriented languages
(OOLs) and databases.

The classical methods for the design of information systems suffer from
many inherent shortcomings, in the models they support, the stages in the life
cycles of the systems and the tools and techniques they use [75]. The data models
were often designed to support classical business appiications, handiing oniy flat
structures and providing few integrity constraints. The development cycle of these
methods has seldom been carried so far as to cover all the phases of analysis and
design, project management or programming tests, and so on. The software-
engineering tools available on the market tend to be oriented more for

BUPT

22 The State of the Software Modelling Art - 2

documentation than for production: there is littie added value between what
designers put In and what they get as output, so that whatever productivity gain
these tools provide is difficult to measure.

The four classical models for appiicatlon developnnent cycle are summarized
below. AH of them are entirely or partially adapted to the current object-oriented
methods. Also, it is important to note that the order of thelr enumeration has a
meaning: each one of the subsequent presented models tries to mitigate the
shortcomings of the previous one [74]:

The cascade model. It consists of a succession of stages, going from the
analysis of the requirements to the production of the final information system, with
no real modelling on the way. The information system is not considered as a whole,
but as a set of separate appiications without global coherence between them. The
analysis approach of each appiication consists in identifying the inputs and the
outputs, and the transformations to be made from one to the other. In the design
stage, a detailed technical specification is drawn up, in terms of files, algorithms and
output forms. The implementation stage is the coding phase and the test stage is
that of verification and validation.

Figure 1. The Cascade Model

The main drawback of this model is its inability to deal with complex
systems in which large numbers of appiications are interacting with one another, not
necessarily hierarchically. This model goes directiy from the analysis of informally
stated requirements to the highiy technical phase of constructing a detailed
specification. The test phase is of an overall nature and often aims oniy to establish
that the funcţional operation of the system is correct, rather than that the original
needs are satisfied.

Questions of several kinds can be raised concerning iterating the steps in
the development cycle. Although there may be an argument for returning to a
particular step so as to better adapt the technique to the requirements (or
sometimes, the needs to the technique), it does not seem sensible to allow retums
from any step to any other: it is not obvious that there is any sense in going back
from the coding or testing stages to the requirements stage. And, although there
may be value in some iterations, it seems essential to limit the amount of time that
can be allocated for these, so as to avoid spending an excessive time in a particular
stage.

BUPT

2.2 - Classical Modelling Methodologies 23

Particular known methods that use this model are object-oriented design
(OOD) [13], covering the second and third stages (see Figure 1), and object-
oriented software engineering (OOSE) [55], covering the full set of stages.

The V model. This is a variant of the cascade model, introducing the
concepts of system and component (subsystem) and employing a hierarchy of
explicitly specified tests to give better control of the sequencing of the stages (see
Figure 2).

The system component concepts improve the consistency of the design by
making it hierarchical and modular, which in turn eases the development of complex
systems. There is a final stage in which the complete system is validated with
respect to the requirements. This illustrates very well the distinction between
checking that the system has been constructed correctiy, in the sense that it is
logically consistent {verification), and demonstrating that it does what is required of
it {validation). [97]

Requirements
Specrfication Validation Requirements
Specrfication Validation

7
System System
Design Testing

Component Component
Design Testing

Component
Coding

Figure 2. The V Model

Nevertheless, there are structural problems with this model, too. Although
the logical verification by a bottom-up process from components to system is sound
practice, the validation against requirements is left too late: it is expensive to find
that a system is inadequate oniy after it has been built.

The GMT method [93] makes parţial use of this model, using onIy the first
branch of the V (descending phases).

The spiral model. The design proceeds by the analysis and prototyping of
a series of projections of the future system, with the aim of validating them with
respect to the funcţional needs.

This model [12] can be regarded as solving the shortcomings of the
validation stage of the V model. It gives special importance to validation by
performing this as early as possible in the cycle, and as often as necessary, by
constructing a series of prototypes (see Figure 3).

The procedure is that, before the system that will be finally required is built,
a number of relevant subsystem prototypes are built and each is validated with
respect to the funcţional needs, the constraints imposed by the hardware and the
software, and by the economic and strategic considerations that are relevant to the
organization.

BUPT

24 The State of the Software Modelling Art - 2

Figure 3. The Spiral Model

The design thus proceeds by the analysis and prototyping of a series of the
future system projections, with the aim of checking that the designer has
understood the real-world problem correctiy and that the techniques used are
sound. After this sequence of prototyping has been completed, and the appropriate
conclusions drawn, the development of the final system proceeds along similar lines
to the cascade model.

The main problem with this model is its use in practice, which will always
seem expensive to the managers and the decision makers. Furthermore, there is no
general agreement on either the size of the prototypes or the number that shouid
be buiit, nor on what shouid be done with them subsequently - shouid they be
simply discarded, or shouid they be used as kernels around which other functions
are developed?

The three-dimensionai modei. This model was introduced by the Merise
method, used very extensively in France [101]. It is the oniy model that takes
explicit account of the database aspect, by cleariy incorporating the ANSI/SPARC
levels [1].

This model positions the development of the Information system with
reference to three axes (see Figure 4): the system life cycle, the project life cycle
and the abstractions life cycle.

The Information system life cycle concerns the lifetime of the system and
the main periods after which major changes are made, such as increases in the
workioad (volumes of data or transactions handied), changes in technology
(hardware or software) or structural changes (for example from centralized to
distributed architecture). These changes determine actions to be taken during
development or maintenance of the system. The abstraction cycle concerns the
successive levels of the specification, going from the purely conceptual, independent
of technology, to one that depends on one particular technical environment. The
project life cycle - which couid equally be called the decision cycle - is equivalent to
the cascade model: it defines the sequence of phases through which the project is
achieved. Thus, the design of the system is guided simultaneousiy and continuousiy
by these three axes.

The originality of this model lies in the system life cycle and the abstraction
cycle axes. The first enables the evolution of the system to be planned and any
changes to be organized, whereas the second ailows the conceptual solution to the
problem to be formulated independently of the technical solution implemented and

BUPT

2.2 - Classical Modelling Methodologies 25

in so doing makes for improved portability of the system and greater scope for its
evolution.

The problems raised by this model are the consequences on the one hand of
the absence of any formalization of the system life cycle - more predsely, of any
criterla by which this can be characterized - and on the other of the difficulty of
giving any semantic interpretation of any of the planes defined by a pair of axes.

Abstraction Cycle

1,

L

System Generation

System Generation

System Generation

-> System CycU

T2 T3

Project Cycle
Figure 4. The Three-Dîmensional Model

Many object-based methods take account of the abstraction cycle, for
example OMT [93], COSE [54], object-oriented analysis (OCA) and object-oriented
methodology (GOM) [14]. However, none of them were related to Merise method.

2.3. OMG ŝ Standard on Modelling Systems

Object methods, perhaps even more than languages and databases, have
given birth to a proliferation of terminologies and graphical representations, which
do not help the potential users to understand the methodologies or to compare
them. Oniy standardization seems to overcome this difficulty and exactiy at this
point is OMG's most important contribution: Model-Driven Architecture (MDA) [86]
and Domain-Driven Development (DDD) [27].

MDA proposes to separate platform-independent business-models (PIM)
from the perspective of platform-specific design and implementation models (PSM).
This is an approach that seems to keep its promise towards a better and more
practicai framework for software development. Therefore, OMG proposes a
reference model [86] that can be extended and specialized; the model is abstract in
the sense that it defines concepts but not their implementation. It defines a
common semantics for the objects so as to specify their visible externai features in a
way that is independent of their implementation.

BUPT

26 The State of the Software Modelling Art - 2

Speaking about the new OMG vislon, Richard Soley and the OMG staff stated
that: "OMG is in the ideal position to provide the model-based standards that are
necessary to extend integration beyond the middleware approach. Now is the time
to put this plan into effect. Now is the time for the Model Driven Architecture" [96].
This is the first step towards an extendible standard, bringing at least a common
vocabulary for object systems.

Model technology is in the position to meet some of the challenges of the
object-oriented methods, because it integrates aspect separation, homogeneous
handiing of funcţional and non-functional attributes, incorporation of different points
of view (rules, sen/ices, processes, architecture, etc.) [96].

The next quote from MDA whitepaper is also challenging this direction: ''It's
difficult - in fact, next to impossible - for a large enterprise to standardize on a
single middleware platform. Some enterprises found themselves with more than one
because their different departments have different requirements, others because
mergers or acquisitions created a mix. Even the lucky enterprise with a single
middleware choice still has to use other technologies to interoperate with other
enterprises and B2B markets. The middleware environments that are most visible
today are CORBA, Enterprise JavaBeans, message oriented middleware, XML/SOAP,
COMH- and .NET. However, over the past decade or so, the middleware landscape
has continually shifted. For years we've assumed that a clear winner will emerge
and stabilize this state of flux, but it's time to admit what we've all suspected: The
sequence has no end! And, in spiţe of the advantages (sometimes real, sometimes
imagined) of the latest middleware platform, migration is expensive and disruptive.
We know an industry standards group that, having migrated their standard
infrastructure twice aiready, is now moving from their latest platform to XML." [86]

Technology neutral models of systems can be mapped to implementations
that use a variety of middleware technologies. It seems that it is time for models
everywhere, but the road to model engineering takes time. MDA is not a new
technology, but a way to deal with new emerging technologies. MDA is about
integration and evolution management. Decoupling the business part from the
technical part of information systems is a long-term trend.

2.3.1. Unified Modelling Language

Now, UML (Unified Modelling Language) is the standard of the OMG
(Object Group Management) for modelling software systems. It proposes a sum of
notations, in the form of diagrams, for the systems design and the documentation.
The UML diagrams model the software according to different standpoints: funcţional
view, static view, dynamic view and implementation and operation view. UML is
primarily intended to model oniy one software product at a time. However, as this
chapter develops, we will see that several research domains were interested in the
use of UML for modelling of the SPLs (Software Product Lines - see section 2.4).
This is explained by two major reasons:
• UML is a largely adopted standard in the industry and now there is much tool

support for this approach;
• UML defines standard mechanisms of extensions making it possible to extend

and adapt its notations and semantics to a particular domain. The stereotypes
and the tagged values are examples of these mechanisms.

BUPT

2.3 - QMG's Standard on Modelling Systems 27

The main objective of this section is to present the state of the art based on
books and research papers around the handiing of the product lines in UML. It
begins with a short reminder of UML and then it introduces SPL concepts.

UML notation [80] [81] [83] constitutes an important stage in the area of
notations used for analysis and object oriented domain modelling since it represents
a synthesis of the most used methods: OMT (Object Modelling Technique) [93],
OOD (Object-Oriented Design) [13] and OOSE (Object-Oriented Software
Engineering) [54]. Since the first version of UML, this standard proposed under the
OMG (Object Management Group) umbrella has not ceased developing. However,
the major release of UML is the UML 2.0 standard, [80] [81], adopted in August
2003. UML 2.0 represents an important step in sustaining the growth of the current
software complexity, on the one hand through the support of the new vision of the
OMG of acknowledging MDA (Model Driven Architecture) [96], and on the other
hand through the support of new technologies, especially the software components
approach.

In this version of UML, semantics are based on meta-modelling. Since its
first versions, UML standard was characterized by a meta-modelling approach
defined through its semantics. In this context it is important to assert that a meta-
model is a precise definition of the constructs and rules needed for creating
semantic modeis [118]. Therefore, the UML meta-models define the strict structure
which any UML model has to take on. The meta-model specification of UMLl.x is
defined in oniy one document, while the UML2.0 standard is now divided into two
documents: UML2.0 Infrastructure [81] and UML2.0 Superstructure [83]. UML
Infrastructure describes the fundamental entities used for the definition of its
infrastructure library {InfrastructureLibrary). Its scope meets the foilowing
requirements:
• formal definition of a common object analysis and design (OA&D) meta-model to

represent the semantics of OA&D modeis, which includes static modeis,
behavioural modeis, usage modeis, and architectural modeis;

• IDL specifications for mechanisms for model interchange between OA&D tools.
This document includes a set of IDL interfaces that support dynamic
construction and traversai of a user model;

• a human-readable notation for representing OA&D modeis. This document
defines the UML notation.

UML Superstructure re-uses and refines the infrastructure library and
defines the meta-model itself, as seen by the users to bring agreement on
semantics and notation:
• a formal definition of a common MOF (Meta Object Facility) based meta-model

that specifies the abstract syntax of the UML. The abstract syntax defines the
set of UML modelling concepts, their attributes and their relationships, as well as
the rules for combining these concepts to construct parţial or complete UML
modeis;

• a detailed explanation of the semantics of each UML modelling concept. The
semantics define, in a technology-independent manner, how the UML concepts
are to be realized by computers;

• a specification of the human-readable notation elements for representing the
individual UML modelling concepts as well as rules for combining them into a
variety of different diagram types corresponding to different aspects of modelled
systems;

• a detailed definition of ways in which UML tools can be made compliant with this
specification. This is supported (as a separate specification) with an XML-based

BUPT

28 The State of the Software Modelling Art - 2

specification of corresponding model Interchange formats (XMI) that must be
realized by compliant tools.

[ciassl

DigitalCamera

•̂ name; Şlring

|Relationshî

M2 (UML)

-[CommunicationPor^

5
M1 (User Model)

USB USB MO (Run-Time Instances)

Fîgure 5. OMG four layer meta-model hierarchy

The approach of meta-modelling adopted by the OMG is known as a
hierarchy on four levels [81]:

Meta-meta-model level (M3). M3 is the meta-meta-model level; it
defines the meta-model language specification. The MOF [84] is an example of a
meta-meta-model.

Meta-model level (M2). M2 is the meta-model level. The UML meta-model
is at this level and it is defined using MOF, which means that the concepts of the
UML meta-model are instances of MOF concepts. Figure 5 shows two meta-classes
of the UML meta-model: Class and Relationship.

Model level (Ml), M l corresponds to the UML user models level. The
concepts of a UML model are instances of the UML meta-model concepts. Figure 5
shows an example of a class diagram of an appiication for a digital camera factor/
containing two classes: DigitalCamera and CommunicationPort linked by an UML
association. The two classes are instances of the Class meta-class and the link is an
instance of the Relationship meta-class of the UML meta-model.

Objects Level (MO). MO corresponds to the run-time level of objects. This
presents two objects: CyberShot and USB, instances of the two model-level classes:
DigitalCamera and the corresponding CommunicationPort.

The UML meta-model [83] is described using a part of the notation of the
UML itself. It uses the foilowing concepts:
• UML Classes - to describe the meta-classes;
• Attributes - to describe the properties attached to a meta-class;
• Associations - to describe bonds between the meta-classes;
• Packages - to group the meta-classes by domain.

BUPT

2.3 - QMG's Standard on Modelling Systems 29

2.3.2. The OCL constraints

The UML meta-model specifies the structure which any UML model has to
adopt. In other words, it specifies structural constraints on these models. UML
Includes OCL (Object Constraints Language) [82] as an additional option to
strengthen the structural constraints of the UML models by adding invariants on the
classes of the UML meta-model. Therefore, OCL constraints on the meta-model level
represent rules of conformance on the UML models. They are expressed at the
meta-model level and they are evaluated on all the entities of the UML models,
actually Instances of the entities of the UML meta-model.

The OCL constraints are also used to express properties of an UML model
(Ml level). They are used to describe invariants, pre-conditions and post-conditions
for methods and guards for state machine transitions (Abstract State Machines).
The constraints expressed on the Ml level are evaluated and checked on the models
of objects (MO level).

2.3.3. The diagrams

The UML notation is described in the form of a set of diagrams. The first
generation of UML (UMLl.x) defines nine diagrams for software documentation and
specification. UML2.0 Superstructure [83] added four new diagrams: composite
structure, package, interaction overview and timing diagrams. They are organized in
two main categories:
• Structure diagrams: organizes the hierarchy of class diagrams, component

diagrams, composite structure diagrams, deployment diagrams, object
diagrams, and the package diagrams.

• Behaviour diagrams: activity diagrams, state machines diagrams, use case
diagrams, communication diagrams (the new name of the UMLl.x collaboration
diagrams), interaction diagrams, sequence diagrams, timing diagrams, and
protocol state machines diagrams.

This thesis heavily uses the UML class diagrams and this is why next
paragraphs will briefly introduce them together with the use-case diagrams. The fact
that there are severa! works in the current research communities around modelling
product lines with use-case diagrams [111], motivated the choice to also briefly
introduce them, too. All the UML diagrams are documented in [83].

/ \
Photographer

Digital Camera

Take Pictur^

{Record Vide^

Edit imag^
«inc lude»

•̂ Resizelmâ

Figure 6. Example of the use cases and actor for a digital camera

BUPT

30 The State of the Software Modelling Art - 2

The use case dîagrams represent the principal contribution to UML of Ivar
Jaccobson and his nnethod OOSE [55]. The scope of the use cases is to capture the
requirements in terms of services which a system must ensure. The use case
diagranns defme two main concepts: actors, and use cases. An actor is an externai
entity of the system which can initiate one of these use cases. A use case is a
functionality provided by the system.

Figure 6 shows an example of use cases and actor for a digital camera. The
main actor, Photographer, can initiate three use cases of the system TakePicture,
Record Video and Editimage. The use case diagrams make it possible to define two
types of relationships between the use cases:
• extend: a reiationship from an extending use case to an extended use case that

specifies how and when the behaviour defined in the extending use case can be
inserted into the behaviour defined in the extended use case.

• include: an include reiationship defines that a use case contains the behaviour
defined in another use case - this means that the service specified by the
second is included in the service of the first {Editimage may include the
Resizelmage use case).

A use case can extend a case of its parent use - this means that the service
of the first is a specialization of the service of the second. The relationships between
the use cases are noted like arrows of dependences with the key words
<<include>> for inclusion and <<extend>> for extension.

The class diagrams define the classifiers structure of a system. Besides its
name, a Class is described by its attributes and methods. The class diagram in
Figure 7 shows two classes: DigitalCamera and Memory. The Memory class has two
attributes: capacity and speec/. The DigitalCamera class has two attributes: name
and an enumeration of communicationPorts, and a couple of methods. Besides the
structure of the classes, the class diagram ailows to represent also the relationships
between these classes (for example, UML associations). An association may contain
additional information: the name of the reiationship, the role of each class in the
association and cardinalities.

Figure 7 illustrates the composition reiationship between the two classes. An
instance of the DigitalCamera class can contain a set of Memory class instances
(cardinality *). However, an instance of the Memory class may reference to one and
only one instance of the DigitalCamera class (cardinality 1).

HhdoUaf^

DigitalCamera
-1 -name: String -1 Memory

+takeRcture()
+editlmage(innageName:String,menrxxyMern̂

-capacny: Kea
-soeed: int

Figure 7. Example of the class diagram for a photo camera model

UML also provides mechanisms for abstraction in the class diagrams through
the notions of inheritance, abstract classes and interfaces. The Inheritance
(specialization/ generalization) is a mechanism which enables a sub-class to inherit
the attributes and methods of another class, called super-class. A sub-class can

BUPT

2.3 - QMG's Standard on Modelling Systems 31

redefine the implementation of one or several methods of the super-class. An
abstract dass can contain methods whose bodies are defined by its heirs (sub-
classes). The name of an abstract dass in a dass diagram is marked in italic. An
interface dedares oniy the signatures of the methods without any implementation
(without a body). The notation of an interface includes the <<lnterface>>
stereotype.

Packages is a mechanism for organizing classes. A UML package is a
namespace. Figure 7 presents an UML package called PhotoCamera which contains
the two classes: DigitalCamera and Memory.

2.3.4. Extensibility

At the beginning, the UML notation was intended for the modelling of any
type of systems. However, certain systems in specific domains are characterized by
properties which require the addition of auxiliar/ Information. For example, the real
time systems domain needs also to specify services quality properties. The UML
standard notation does not enable to add such Information. This need determined
the designers to create extensions of this notation. Besides the spedfic domains,
there is also the need to adapt UML to a particular technical platform. For example,
in order to model a system which will be implemented on a EJB (Enterprise Java
Beans) platform, the meta-programmer needs to say that a particular dass plays
the part of an EJB component (Bean).

To meet these particular needs, the OMG has introduced new mechanisms,
called extension mechanisms, which enabled the UML to specialize and adapt for
different purposes to various specific domains, platforms or methods. The extension
mechanisms introduced since version UML 1.3 are the Tagged Values, the
Stereotypes, and the Constraints. The Profite was introduced as a concept which
groups the three preceding mechanisms. The OMG also created standard profiles for
some particular domains. For example: UML profile for the real time systems [79],
UML profile for the company distributed appiications (EDOC) [78] and also UML
profiles for the EJB and CORBA platforms.

In addition to these standard profiles, the users can define their own
profiles. Certain works, such as the Objecteering Softeam approach, have enabled
their implementation and integration into the modelling environment (in order to
express and manage requirements, build complete and accurate UML models,
produce reports and documentation and automate appiication code production for
Java, C++, C#, SQL, CORBA and Fortran) [95]. The profiles in the UML 2.0 standard
are part of the infrastructure document [81]. The Extension Mechanisms chapter in
UML 1.x [80] is replaced by a chapter called Profiles in UML 2.0 Infrastructure
document.

Next paragraphs will briefly describe two important concepts of this
document: the stereotypes and the profiles. They are described in mode detail the
UML Infrastructure document [81].

The stereotype is the basic mechanism for extension in UML. It defines how
a particular existing meta-class of the UML meta-model can be extended to enable
the use of a terminology or a notation specific to a particular domain or platform in
place of, or in addition to, the ones aiready used for the extended meta-class. A
stereotype is a kind of a particular meta-class of the meta-model and extends it
through extension [81].

BUPT

32 The State of the Software Modelling Art - 2

The tagged values introduced in UMLl.x are considered in UML2.0 as
properties of the stereotypes. When a stereotype is appiied to an entity of the model
(an instance of the meta-class on which the stereotype is defined), this entity will be
noted with <<label-stereotype>> and the values of Its properties, if they exist,
wlll be noted down as tagged values associated with this entity. A tagged value has
a name and a type.

Figure 8 shows an example of the definition of two stereotypes [81]:
Camera and Turist. The Camera stereotype extends two meta-classes: Class and
Component, and it defines a hasAutoFocus property as a tagged value whose type
is boolean. The notation of extension is an arrow pointing from a Stereotype to the
extended Class (see Figure 8).

««sterootyp®»»
Camera « «m«t»-dass»»

Compon«nt

««sterootyp®»»
Camera « «m«t»-dass»»

Compon«nt

«apţrfjr»
««stereotype»»

Turist « «meta-dasi»»
Class

««stereotype»»
Turist « «meta-dasi»»

Class ttuvne Sthng
MatB Daia
ttuvne Sthng
MatB Daia

ra.tufist»»
TakePicture

« c a m e r a »
hasAutoFocus = true

«turist»
name = 'EmanueT
date = -2008^7-02-

Figure 8. UML 2.0 profîle example

By definition, a profila extends an existing meta-model or another profile
[81]. The existing meta-model can be the meta-model of the UML or another meta-
model based on the infrastructure document. The name UML profile is used to
indicate a profile whose reference model is a UML meta-model. The UML profiles can
be considerred as dialects of the UML language [81]. An UML profile contains a set
of stereotypes and tagged values.

Figure 8 shows an example of the UML profile called Photo which contains
the two stereotypes Camera and Turist. The UML 2.0 profiles are using the same
notation as for UML packages but adding the <<prof i le>> stereotype. The Holiday
package is an example of an user model based on the Photo profile. The TakePicture
class is defined with the two profile stereotypes. The associated tagged values of the
stereotypes are represented as UML notes (see Figure 8).

In addition to the stereotypes and tagged values, an UML profile can also
contain constraints and rules.

The constraints define and control the semantics of the meta-model entities
of the reference profile. They can be attached to the meta-classes or to the
stereotypes from the profile.

The rules in an UML profile describe its usage. For example, they can
describe how the code is generated starting from models based on this profile or
how the models are transformed from other models, etc. The rules in a profile are
often defined by using a language of model transfonmation. For example, the
Objecteering Software team proposes in [95] a language called J for the definition of
a profile's rules.

BUPT

2.4 - Lines of Software Systems 33

2.4. Lines of Software Systems

The "Software Engineering" term was popularized at the end of '60s to
answer the growth of software complexity. Its main goal was to define and propose
more flexible and efficient methodologies for the development of software solutions.
Its domain of research evolved towards approaching the new problems which deal
with the penetration of software into the wide diversity of industries which require
software appiications.

Therefore, now it is no longer important to develop oniy one software
solution appiied to a particular problem, but rather to design and develop a line (or
a family) of software which takes into account features that may vary and makes it
possible to minimize the costs and time of realization. The features which may vary
can be technical (use of a variety of resources associated with the software),
commercial (creation of several versions, starting from a limited version to a
complete one), or cultural (software intended for several countries). For example,
one may have to adapt an integrated software into the mobile phones which must
support several standards of communication and a variety of languages (for
example, [70] explains that the Nokia phones must support more than 60
languages).

The concept of Software Product Lines (SPL) is not completely new, as David
Parnas in [88] aiready started to study the families of programs since 1976.
However, this paradigm did not become popular among the software research
communities until the last decade. Then, a community began to gather through
different European projects such as ESAPS [91], CAFE [90] and FAMILIES [92]. In
the United States, the Software Engineering Institute (SEI) created a special
department which is involved in product lines engineering [77]. Also, every year
there are conferences, like SPLC (Software Product Line Conference) and PFE
(Product Family Engineering) which are entirely devoted to this approach (the tenth
edition of SPLC which was organized in 2006 merged these two former events -
http://www.splc.net/).

The good news is that in the literature there is consensus on the definition of
the software product line approach:

A software product line is a group of products that share a common,
managed set of features. The products satisfy the specific needs of a particular
market or mission, and are developed from a common set of core assets in a
prescribed way. [31] [76].

A domain is a business fieid or a technology or the know-how described by a
set ofconcepts and terms understandable by the users of that domain. [76].

In other words, Software Product Line Engineering is the discipline of
engineering a set of software-intensive systems sharing a common, managed set of
features that satisfy the specific needs of a particular market segment or mission
and that are developed from a common set of core assets in a prescribed way. The
organizational characteristics required to successfully carry out software product line
engineering will vary according to an organization's needs. There is a minimum list
of abilities which are most needed in using software product lines: architecture,
programming techniques and development tools [29].

The Software Product Lines (SPL) approach - also called Product Family
Engineering is a transposition of the technological lines of production into the worid

BUPT

http://www.splc.net/

34 The State of the Software Modelling Art - 2

of the software. Frank van der Linden justifies the origin of two different names due
to geographical influences [110]: product line definition is used in the United States
of America whereas product family is used in Europe. This thesis will use both of
them as synonyms.

The SPL goal is to minimize the costs of software implementation for a
particular domain and the idea is simply this: instead of developing each appiication
of the given domain separately, this approach proposes to construct all the related
appiications from reusable components.

The heart of the product line approach is based on a methodology for
strategic reuse of source code, requirement specifications, software architectures,
design models, systematic product line creation and improvement, components, test
cases, and the processes for building families of systems and modelling their
artifacts.

AH these issues will represent the evaluation criteria this thesis will use in
order to get ideas and evaluate the approach that it develops for the modelling in
software engineering [72]. The main contribution of this thesis is to document and
develop an approach to help the meta-programmers automatically generate flexible
and efficient templates for lines of software products.

The first problem related to the SPL approach is the need for a design of the
domain architecture in order to make it possible to define several products. The
members of a product family are characterized by their common elements (also
called commonalities) as well as by their differences (also called variabilities). The
management of variability is one of the key aspects of the product lines modelling
and implementation. In a technological line for vehicle production, cars are
manufactured starting from a set of common elements (wheels, board, windows,
etc), but can include some properties which differentiate them (the number of
horse-power engine, presence or not of air-conditioning, etc).

In the worid of software, the differences can come out in a similar way,
according to technical choices (use of a particular tool or technology), based on the
commercial (creation of a limited version), or regional (products intended for
specific countries) choices. Another important issue when using the product line
approach to build a software product (addressing also the product derivation) is to
set some properties with respect to the variability supported by the product line.
Obviousiy, certain option combinations are incompatible.

Here is an analogy which exemplifies the previous mentioned principie: a car
is normally equipped oniy with one engine, and it is then necessary to choose
between a petrol and diesel engine. In the same way, a particular choice at the time
of the software product derivation can exclude other options. For example the
choice for a two door car will normally exclude the possibility of choosing to have
rear sliding windows. Therefore, a product line must integrate constraints to keep its
coherence and to facilitate the choices at the time of derivation.

The above definition of the product line describes the products, members of
the product line, by a set of common properties (commonalities), and also by their
differences (variabilities).

Variability is the ability of a system, an asset, or a development
environment to support the production of a set of artifacts that differ from each
other in a pre-planned fashion. [8]

Commonality represents the set of property values which appiy and describe
all the products and members of the product line. [117] ^

Therefore, the concept of variability is used to group the properties which
differentiate the products of the same family. The number of supported languages

BUPT

2.4 - Lines of Software Systems 35

on the mobile phones domain can be an example of vahability in SPL. Existing
defined methods and tools supporting product line variability management typically
emphasize either the feature or the architecture level. There have been attempts to
combine these aspects, but no widely accepted method is available so far.

The management of the product variability in a family is the primarily
activity when developing product lines. The second activity relates to the
construction of a particular product (often known as derivation of a product) which
consists in choosing specific values for the properties which are part of the
variability defined in SPL. One characteristic of SPL is that certain choices are
incompatible between them while others are dependent. A specific choice at the
time of the derivation of a product can exclude or require other choices. A product
line must thus also manage constraints making it possible to facilitate the choices
when we derivate products.

The software engineering research communities have been more and more
interested in the last decade to find solutions for the problems of SPL. Several
important projects developed both at the level of the model and on the level of the
code by using various technologies like object-oriented design [3] [57] [63] [99]
and generative programming [2] [26] [9].

Even if this work is based on latest technologies and techniques which
witnessed a remarkable success on the domain of the software engineering, the
control of the code becomes an impossible mission with the exponenţial growth of
the software complexity (today it is not surprising to find systems with more than a
miilion lines of code).

Unda Northrop points out a couple of key obstacles and drawbacks related
to the adoption of software product line approach [77]:
• cost of entry into software product line is non-trivial, both in terms of money

and time;
• inadequate scope definition: large scope means too much feature variation

between products and their family of products, leading to bad economies of
scales (in reuse);

• to achieve successful software product line adoption, you need to consider both
the product and process propositions.

The domain of system-family engineering is a long run challenge which can
oniy be faced by systematic software engineering approaches, structuring systems
into families and appiying code generation for the efficient assembly of the product
line members.

Independent from the code, modelling makes it possible to better control
this complexity. It is no longer a question of handiing the code of the system, but
rather to handie a group of related models describing the system in an abstract
way. Modelling is the base of several important methods of analysis and design such
as OMT [93], OOD [13] and OOSE [55] which gave birth to UML (Unified Modelling
Language) [80] [83] [81], "the current industrial standard on modelling". From then
on, it was born a new fieid of software engineering based on modelling (model
engineering). Model Driven Engineering (MDE) [86]. This thesis is in the context of
the modelling of product lines and proposes new approaches for their handiing.

Today there are many projects focused on handiing of SPL in UML [47]
[112] [58] [41] [42] [5] [6] [30] [33] [34] [21] [20]. In order to allow modelling of
SPL and to take into account the new challenges on how to model variability, how to
derivate products and how to handie the management of constraints, the majority of
projects launched them into the use of standard mechanisms to make UML
extensions. However, I believe that by studying more deeply these approaches.

BUPT

36 The State of the Software Modelling Art - 2

there are still many issues which are not covered and which shows that SPL
handiing in UML is not mature enough:
• the first reason is that the majority of existing efforts use oniy two aspects of

UML to model SPL: use-cases [112] [47] [42] [58] and static models [116] [30]
[21] [20]. In this context I wouid mention that few works refer to the dynamic
aspect of SPL, although, besides use-cases and static diagrams, UML includes
sequence diagrams and state diagrams and other tools which make it possible
to model also the dynamic behaviour of the systems. But as we will see it later
in section 3.1, the existing tools do not offer powerful mechanisms to express
variability;

• the second reason takes into discussion the need for support of the product
derivation which is an important aspect in an approach SPL oriented. Some
projects are onIy dealing with model variability and do not refer to the product
derivation [30] [41]. This means that they limit the utility of their work just to a
descriptive goal and the objectives of the works are limited to a better way to
document the software architectures using UML models, but there is still a gap
between models and source-code. The effort of [5] [6] [33] refers to the
derivation of products, but do not formalize it and do not propose a solution for
Its implementation;

• the third reason draws attention to the management of the constraints in SPL.
As it was pointed out above, SPLs are characterized by a set of constraints
which guide the derivation of products. There are onIy two approaches using
UML ([21] and [34]) which attempt to implement constraints on SPL. However,
none of these use OCL (Object Constraint Language) [46] to describe the
constraints of SPL although OCL is part of UML OMG standard.

2.4.1. ESI's Work on System Family Engineering

ESI (European Software Institute) [110] has a couple of important initiatives
on promoting the developing of software product line approach in building family of
appiications. In this framework, a large community of researchers have noticed
today's paradigm in software engineering: from the engineering of single systems to
the engineering of multiple systems or system-families: the analogy in the
automobile industry is going from a single product for every customer, like the
Model T Ford, to a product-line production strategy to satisfy diverging customer
needs [91].

ESAPS (Engineering Software Architectures, Processes and Platforms for
System-Families) [91] project motivation presents system-families as strategic
business assets. The structuring of systems into system-families ailows sharing of
development effort within the system-family and as such counters the impact of
ever growing system complexity. This makes it possible to sustain the rate of
product innovation, while keeping guaranteed levels of overall system perfomiance
and quality. The fundamental concept of a system-family is a domain specific
product architecture based upon a layered set of platforms. This is supported by a
software engineering process focused on pervasive reuse.

A system-family is defined as a group of systems sharing a common,
managed set of features that satisfy core needs of a scoped domain. The idea
behind a system-family approach is to build a new system or appiication from a
common set of assets (domain model, reference architecture, components) defined
from eariier developed systems belonging to the same line. A software asset is a

BUPT

2.4 - Lines of Software Systems 37

description of a parţial solution. It might be a component, known requirements or
design elements that an engineer uses to build or modify a software product.

The partners participating in ESAPS have researched software technologies
for system-families for several years in two European projects: ARES and PRAISE
[91]. Experiences gained so far are very significant. The system-family
methodology, resulting from the PRAISE project identifies two engineering types:
• the domain engineering in charge of the analysis, design and the management

of the domain assets (comprises the Application Family Engineering, Reference
Architecture, and Component System Engineering);

• the appiication engineering in charge of the development of a new product using
the domain assets (known as Application System Engineering).

Defining the assets from existing systems is not an easy task and requires
the integration and refinement of extensive amounts of domain knowledge.

A step forward is the next project called CAFE (From Concepts to Application
in System-Family Engineering) [90]. Its main drive is to go from ESAPS [91]
concepts to appiication, so that these ideas can be appiied in concrete projects by
developing methods and procedures from these concepts. This approach underlines
the concerns originating from several sources which influence software
development. The sources are grouped into four categories:
• Business concerns - the way that profit is made by the resulting

products,
• Architecture concerns - the technology needed to build the system,
• Organization concerns - the organization in which the software is

developed,
• Process concerns - the responsibilities and dependencies during

software development.
Changes in one type of concern will change the way the other concerns are

dealt with. A well-designed software development has well-designed management
for these concerns.

FAMILIES (is the acronym for FAct-based Maturity through
Institutionalisation. Lessons-learned and Involved Exploration of System-family
engineering) [92] is the final project in a row, foilowing ESAPS [91] and CAFE [90].
It concentrates upon maturity, institutionalization, business relevance,
standardization and dissemination. Its work concentrates on building:
• a framework for reuse which deals with questions like when, why and how a

family approach has to be introduced, adding an integrated approach to
combine existing legacy assets into a family, or even to a system population;

• patterns, styles and rules related to satisfaction of business related quality
requirements in the family, accompanied by quality models, supporting
processes, check lists, questionnaires and approaches towards standardization
of quality of service requirements;

• a methodology in the context of MDA [86] standardization frame (process, tools,
guidelines, and examples) supporting the separation of the domain aspects, the
technical aspects (quality of services) and the technological aspects (platforms)
in consistent models.

BUPT

38 The State of the Software Modelling Art - 2

2.4.2. An approach adopted în the industry: Domain and
Application Engineering

The product line approach was adopted from its very beginning In the
industry stimulated by the diversity of the software varlatlon factors In the business
domains. The SEI (Software Engineering Institute) aiready published severa!
industrial experinnents proving its success [67].

[70] [71] shows how Nokia chose the product line approach to manage the
diversity of the mobile phones software. [71] shows that Nokia must launch
between 30 and 40 new products per year in order to keep its share of the market.
If the production of every phone wouid start from scratch then it wouid be very
difficult and costly to keep up with the market.

Further on, Nokia must also answer several other factors of variation
between its products such as the user language interface. Indeed, the Nokia
products support 60 languages [71] and each language has its own characteristics:
most of European languages are based on the Latin characters and are displayed
from left to the right; the Arabic languages must be displayed from right to the left
and the characters need to be linked so they form different special signs; and then
the Chinese languages which also have their own characteristics. The Nokia
products must also be compatible with different standard of digital transmission
such as GSM 900, GSM 1900, TDMA, etc. [70].

Domain Engineering

Domain

knowledge Domain
Analysis

Domain

Model

System Family
Archltecturef^

Figure 9. The Domain and Application Engineering

According to the definitions in the research communities [26] [91] [90], the
software product llnes engineering distinguishes two levels (shown in Figure 9 -
[91]): Domain and Application Engineering.

BUPT

2.4 - Lines of Software Systems 39

The Domain Engineerîng (which includes the Application Family
Engineering, Reference Architecture, and Component System Engineering) is in
charge of the analysis, design and the management of the domain assets (an asset
is an element which makes it possible to develop an appiication, for example a
requirements document, a model, code, etc.) which will be reused for building
products; it develops tools which are used for creating products. At this first level,
three activities can be distinguished [26] [91] [90]: analysis, design, and
implementation of the domain.

The goal of the domain analysis phase is to study the product line domain
and to identify the commonalities and variabilities between the products. There are
several methods for the domain analysis, among which one of the best known is
FODA (Featured-Oriented Domain Analysis) [60]. FODA is a method based upon
identifying the prominent or distinctive features (or properties) of a class of
systems, specified in the form of a tree whose nodes represent the domain features
and the arcs describe ways of composition between them. FODA distinguishes three
categories of properties: alternative, opţional, or mandatory. Mandatory features
represent baseline features (they are obligatory properties for every product line
instance) and their relationships. The alternative (define the scope for an exclusive-
or choice of features) and opţional (may be present, or not, in a product line
instance) features (which appiy oniy to some products) represent the specialization
of more general features (i.e., they represent what changes are likeiy to occur in
different circumstances).

Figure 10 shows a feature diagram example for a car product line [26]. Each
property in the diagram corresponds to a concept of the domain. The mandatory
features are represented by lines ended with fllled circles, while the opţional
features are represented by lines with empty circles. The Air-Conditioning feature in
Figure 10 FODA model is opţional. There are two types of transmission in SPL of
cars: Manual or Automatic and these are specified by the alternative feature called
Transmission. An alternative feature is represented by an angle-arc which unites the
lines of all alternative features.

The goal of the domain design is to establish generic software architecture
for product lines. There is no consensus on the defmition of a domain architecture
and consequently for the product line architecture. Clements & al. [67], defines the
product line architecture as a standard architecture which contains a set of
components, connectors and constraints (it provides a set of techniques, not a
prescriptive method for architectural design).

Car
^ptional

Transmission Horsepower Air conditioning
Alternative

Manual Automatic
Figure 10. FODA Feature Diagram Example

BUPT

40 The State of the Software Modelling Art - 2

Appiying this to product llnes, the architecture shouid be a reference from
which the architecture of each product is derived. The variability identified during
the domain analysis must be specified explicitly in the architecture of the product
line.

The domain implementatlon consists in implementing the generic
architecture defined in the domain design as components which will be reused in the
appiication engineering in order to build particular products.

The Application Engineering. The Application Engineering (also known as
Application System Engineering) is in charge of the development of a new product
using the domain assets. It uses the results of the Domain Engineering for building,
(also called derivate) of a particular product. It reuses tools previousiy developed to
build particular products (see Figure 9). As mentioned above, the results of the
domain engineering (feature models, generic architecture, and components) contain
variability - therefore, the derivation of a particular product involves decisions (or
choices) associated with these variation points. The concept of decision model [5] is
used to capture and record the decisions necessary (adds a set of instructions) to
the derivation of products.

2.5. Software Variability

The commonality and variability are the focal concepts in the software
product lines. This section will mainly detail the concept of variability, but it also
addresses the concept of commonality. This is justified by the fact that the
management of variability requires more effort than that of the commonality. In
reality, the common properties in SPL were identified and used like any other
properties for the construction of the products until now. However, variability
requires not oniy special attention for the process of its Identification and
description, but also specialized mechanisms for its management. Even if the
product line approach is a new paradigm, the management of software variability is
not a new problem.

There are several techniques used today for the design and the
programming phases which make it possible to manage the variability [3] [99] (see
also section 2.5.3). Nevertheless, apart from the context of product lines, variability
also relates to one product, it is part of the product and it is solved after the product
is delivered and installed in its execution environment.

In the context of the product lines, variability must be explicitly specified
and it is part of the product line. Differing from the variability of onIy one product,
variability in the product lines is solved before the product is delivered or installed in
its execution environment. In [5], Atkinson & al. call the variability contained in onIy
one product the run-time variability and that contained in the product line as
development-time variability. This thesis addresses the variability of SPL, therefore
it is the variability dealt with before the delivery of the product installation.

2.5.1. Dimensions of Software Variability

Variability can be viewed as consisting of two dimensions: [15] [59]: time
and space (see Figure 11). The time dimension relates to the variation in time of
one particular software product. Figure 11 shows the products evolution in time

BUPT

2.5 - Software Variability 41

from a version to another. The space dimension relates to the variation (differences)
between several products of the same family. Some software elements can be used
in several products and their variation relates mainly to variations of functionalities;
therefore the products may var/ in the functionality that they support. This thesis
considers oniy the space dimension, thus it studies the functionality variation related
to the multiple contexts the products will be used.

Versions

(Time) f

1.0

% ş
13

E l

î i
f S
i u I I

13

I
I m î n] I M

Variants (Functionalities)
Figure 11. Space and Time Dimensions in Variability

2.5.2. The Variation Point

In the product lines approach the variability is identified during domain
engineering and it is introduced by what is called variation points. Jacobson & al.
[54] defîne a variation point as foilows:

A variation point identifies one or more locations at which the variation will
occur. [54]

A variation point can be seen like a decision point [47] with a couple of
variables called possible choices. The Transmission node in the FODA diagram of
Figure 10 is an example of a point of variation with two alternative features: Manual
or Automatic. The opţional feature is a particular case of a variation point where the
onIy possible choice is whether the property is present or not. The Air-Conditioning
node represents another example of a variation point.

Furthermore, at the level of the features model, the variation points must be
marked at all the levels of abstraction (requirements, architecture, implementation,
testing, etc.). At the architecture level, Webber and Gomaa studied in their research
[113] possible language extensions for the description of variability in product line
architecture. Next section presents variability at the level of implementation.

2.5.3. Variability at the Level of the Implementation

There are a couple of techniques used at the implementation level which
allow the management of variability. [99] and [3] are two reports which briefly
present some techniques for the management of variability at the implementation
level. Among them, here are five of the most useful aiready used successfully in the
industry:

The compilation techniques. They allow the product derivation during the
compilation phase. Condiţional compilation and library loading are examples of
these techniques. They are useful if variability is found at the level of code which
needs to be included or excluded from the libraries they use.

BUPT

42 The State of the Software Modelling Art - 2

The programming techniques. These techniques are used at the level of to
the programming languages. The object-oriented languages (OOL) define useful
methods to implement variability: inheritance mechanisms to describe abstraction,
the method overloading and the dynamic linking. The variation points can be
defined as abstract and then be implemented by variables in a given context. Some
OOL make it possible to defme generic classes, also called template classes. Thus,
variability can be implemented by using the template classes when the alternatives
are different oniy by the set of parameter types.

The design patterns. The design patterns [38] provide reusable solutions for
specific type of problems. In [57], the Abstract Factory design pattern is used for
the variable reification. The abstract factory makes it possible to define an interface
for the creation of the concrete products. [63] presents a list of design patterns
used to model variability in product families.

The separation of concerns. There are new approaches on software
programming which can be used to implement and manage variability in the
software systems. The separation of concerns [66] is an approach which heips to
reduce the complexity of the systems or to manage complex tasks. It says that
software shouid be decomposed in such a way that different "concerns" or aspects
(a set of funcţional components) of the problem at hand are solved in well-
separated modules or parts of the software. Many researchers [3] [11] [10] [44]
propose to use this approach for the management of variability in SPL.
Implementing variability in this way means to view the aspects as variation points
and then each product, member of SPL, is differentiated by the set of aspects that it
uses. [69] presents a case study on how to implement a product line using AspectJ.

The generative programming [26]. It is an approach which aims at creating
software components, which, after suitable configuration, generate systems or other
components. This ailows building families of products (or product lines) out of which
several concrete systems can be created. It is based on the concept of generator,
Variability in SPL can be implemented by developing generators like generic artifacts
and then their instantiation makes it possible to generate and re-generate sets of
products. [9] proposes a methodology for generating product-lines (building
variants of a program). [2] presents an approach to manage the variability based on
the parţial evaluation of the C language programs (declaring program
specialization).

Even if these methodologies were successful at the implementation level and
they are based and refined using technologies and techniques which also knew a
relative success in developing software, nowadays the control of the code becomes
more and more difficult to manage due to the exponenţial growth of the software
complexity.

2.6. Constraints

In addition to variability, the software product lines are characterized by
constraints which define the dependence between the variation points. In fact, the
resolution of a variation point can influence the resolution of other ones. FODA, the
domain analysis method previousiy presented, Introduced rules for composition
similar to the way constraints are used to describe dependences in a feature model.
FODA [60] ailows describing two types of composition rules: mutual-dependency
{requires) and mutual-exclusion (mutex-with). The required rule indicates that one

BUPT

2.6 - Constraints 43

feature (opţional or alternative) requires the existence of another feature (also
opţional or alternative) because they are interdependent. The exclusion rule
indicates that one feature is mutually exclusive with another (they cannot coexist in
the same product).

The product line constraints also appear at the architecture level. [67]
considers that the constraints are part of the architecture of SPL. [56] presents a
taxonomy of the variability dependences and constraints in SPL. This thesis also
explored the works using UML for modelling the architectures of product lines to
implement constraints of SPL (see section 2.3). One of the contributions of this
thesis is to propose a way to integrate OCL (Object Constraint Language) [82] for
the specification of these constraints in our approach of designing SPL; this is
presented in chapter 4.

2.7. Conclusion

This chapter exposed the reality that the object-oriented approach does not
provide all the solutions for software engineering today even if it represents a
valuable basis for the description of further approaches. This remark can also be
appiied to connponent-based software engineering [100] and to the newer web
services paradigm [46]. In particular, they do not provide a correct answer to the
continuous evolution of the technologies: keeping appiications up-to-date according
to the evolution of technologies is too much time-consuming. It is also a lack of
sufficient handiing of clear designs and possibilities for reusable development of
complex software using object-oriented programming. This is the context which
explains the emergence of a whole set of new programming paradigms such as:
Aspect Oriented Programming (AOP) [66], Subject Oriented Programming (SOP)
[48], Intentional Programming (IP) [94], or Component Programming [100] [49].

This is the motivation for which today, the worid of software engineering
arrived to a paradigm shift from object technology to model technology, from object
composition to model transformation. From objects and components, we can see
other evolving trends like: processes, rules, services. Model technology is able to
subsume most of these paradigms and others [59]. Therefore, ""model once,
generate everywhere" is the assertion that put a mark on the paradigm shift
generated by the Model Driven Architecture (MDA)[86], but the road to model
engineering takes time.

This chapter looked from the perspective of the paradigm shift that software
engineering is experiencing today and introduces the state of the modelling software
art. It shows the shortcomings of existing approaches and according to them it
identifies and justifies features that a new approach shouid provide.

Based on this motivation, this thesis promotes the idea that the most
promising way to address software engineering is to provide an approach centred on
models which captures the know-how of a domain, independently from both the
software platform and from the possible appiications.

Next chapter presents SmartModels - an approach which relies on MDA and
which is dedicated to contribute to strategies to increase software quality and
productivity. Thanks to its meta-level, it clearly identifies the semantics of concepts
used for the modelling of a given domain and on the other hand, thanks to
approaches of separation of concerns and generative programming, it equips in a
modular way the appiications related to a particular target domain. The presentation

BUPT

44 The State of the Software Modelling Art - 2

of the key aspects when modelling in SmartModels is accompanied by the
methodology to descrlbe the structure and behaviour of a model and different
casuistry which further explore and illustrate the flexibility and richness of the
approach.

BUPT

3. SmartModels - a Meta-Model Handiing
Generic Entities

Nowadays, companies involved in the development of modern software face
several difficulties. One of the most important ones is the continuous evolution of
software platforms (C+-f, Java, .Net, CORBA, EJB, Web Services, XML, etc.). One
interesting solution to this problem is the Model Driven Architecture (MDA) approach
from the OMG. It suggests that domain specific knowledge shouid be encapsulated
in platform independent business models, apart from the appiications. This solution
is an answer to the failure of classical development techniques that rely on object-
oriented design and programming.

The need for rapid evolution of the object oriented languages also involves
the ability to adapt existing legacy software and to easily re-use it: to re-use classes
or libraries of classes, models of the appiications and even the know-how. Today
many paradigms can be found which try to answer these problems. Here are a
couple of examples: the separation of concerns paradigm, genericity, the model-
oriented approaches, and the meta-modelling or programming using components.
This thesis proposes an approach which relies on several of these paradigms in
order to bring out to a solution for the re-use of the models of appiications.

In most cases the description of a model means to forecast the various
alternative values for an entity. In other words, certain entities of a business model
are generic and this genericity must allow a structural as well as a behavioural
variation of its properties in order to define the variation of a product line. This is
the introduction of the genericity concept (the genericity traditionally groups the
problems of variability and those of adaptation to a domain or a specific role) which
will be developed by this thesis.

In addition, while being based on the ideas expressed by the separation of
concerns paradigm, our approach encourages the definition of simple models (with a
few number of entities): each one shouid address a limited set of problems
corresponding to the product line or more generally to the business model. This is
an important advantage because this consideration makes it possible to easily trace
each entity and functionality and to increase the reusability.

One can think that this idea does not really help reusability due to the future
difficulties at the time of the composition of these models: conflicts, renaming,
adaptations and so on. But without a doubt, this approach includes a step that will
describe a protocol of model composition which simplifies and automates cleariy
these tasks. This is not the primary focus of this thesis, but it constitutes an
important aspect of the global solution which will be developed in the future [25]
(see perspectives on section 7.3).

The result of privileging the simple, generic and easily reusable models is
that it simplifies their reuse and makes it more effective.

According to these remarks, this thesis proposes another way to develop
software: Model Oriented Programming (MOP) [106]. It is based on the Domain
Driven Development (DDD) [27] track and introduces a macro level on top of the

BUPT

46 SmartModels - a Meta-Model Handiing Generic Entities - 3

classical programming entities. It intends to be used for the handiing, reuse and
evolution of the business know-how and its associated appiications. This chapter:

It commences by presenting the Open Flexible Languages (OFL) [19], the
starting point of the meta-modelling approach which intended to describe
object-oriented programming languages based on classes;
It introduces the concepts of the new paradigm MOP [106], which relies on MDA
[86], aspect oriented and generative programming [26];
It makes a comparison between MOP approach and component-based software
engineering;
It sets up two business model examples which will be further explored while
developing the approach; and
It presents the key aspects on modelling in our approach, called SmartModels,
with respect to the level they manifest and based on customizable genericity.

3.1. OFL: Hyper-Genericity for Meta-Programming

In the interest of a better understanding of the SmartModels approach, it is
important to get a glimpse of the starting point which is OFL: [16], [17], [18], [19].
SmartModels was born in the midst of OFL research and this can be observed in the
introduction of important elements which SmartModels will deal later at another
level of abstraction: concepts, atoms, parameters and characteristics.

OFL is the acronym for Open Flexible Languages and the name of a meta-
model for object-oriented programming languages based on classes. OFL intends to
describe languages especially by promoting capabilities such as introspection,
modification and extension. OFL relies on three essential concepts of programming
languages: the descriptions which are a generalisation of the notion of class, the
relationships such as inheritance or aggregation and the languages themselves.

OFL provides a customisation of these three concepts in order to adapt their
operaţional semantics to the programmer's needs. This section summarises the
main characteristics of the OFL model, it shows how to create an appiication using
this model and describes, as an example, the Java language according to OFL.

One of a project manager's main goals is to bring down the cost of software
production. This mainly depends on two steps: programming and maintenance
[109]. During these phases, the balance must be found between fastness and high
quality. Several approaches are often used to solve this problem. Examples of some
of these approaches can be given, but keeping in mind that none actually solve
completely this problem at present:
• In a well determined context, such as the design of graphical interfaces or Web

sites, the capacity to generate source code automatically brings valuable help.
• The efforts made to obtain more readable programming languages thanks to an

ameliorated syntax contribute to improving the readability of the source code
written in those languages.

• Reducing the gap between the design phase and the programming phase aims
also to reduce the time spent in programming.

• Libraries of reusable components help not to start from scratch for each new
piece of software.

• Design patterns offer model solutions used for specific programming problems. %

BUPT

3.1 - OFL: Hyper-Genericity for Meta-Programming 47

• Aspect oriented programming addresses separation In terms of orthogonal
services of an appiication's features, such as persistence or distributlon of
objects.

OFL deals with several of those solutions in a common approach starting
with the idea that relationshlps between classes in object-oriented languages, and
especially inheritânce, are low-level mechanisnns which it wouid be interesting to
specify better. This approach is materialised in the definition of the OFL model [16].

OFL was first designed as a meta-object protocol such as than of CLOS [64].
However, more open and complete that CLOS, it has quickly become difficult and
boring first to program and then to use it. So OFL switched to a hyper-generic
approach [28] to solve this problem. Rather than ailowing redefining behaviours by
use of algorithms, it proposes a set of parameters. The algorithms, which are
aiready implemented, take into account the values of these parameters to achieve
the desired behaviour. These algorithms are called actions and they define the
operaţional semantics. OFL promotes the idea that it is much more convenient for
the meta-programmer (faster, more efficient and reliable) to set parameter values
which drive well-tested actions, than to change the source code of several methods
which describe altogether the semantics of the language.

The next sections will present the key-elements of the OFL approach.
Briefly, this approach can be summed up as the search for a set of parameters
whose values determine the operaţional semantics of an object language based on
classes.

3.1.1. Hyper-Genericity

Genericity is the ability to customise the behaviour of a class in an object
oriented language just as in the Eiffel [73] or C++ generic classes (template) [98].
Hyper-genericity is the ability to customise the behaviour of the language itself.
More precisely OFL has chosen to customise the behaviours of three important
notions of object languages based on classes:
• relationships such as generalisation and composition [80],
• descriptions which describe the appiication's objects, such as the classes and

interfaces [4], [32], [43], and
• languages themselves.

Parameters. OFL defines a set of parameters [16] which represent the
main features of the behaviours of these three important notions which are called
concept-relationship, concept-description and concept-language. For instance,
concerning the concept-relationship, the value of the Cardinality parameter ailows
specifying if it is simple or multiple. As for the concept-description we have for
instance the Generator parameter which determines whether the concept-
description can or cannot create its own instances.

Actions. The operaţional semantics of each concept must adapt to the value
of its parameters. This is achieved thanks to a set of actions algorithms whose
execution depends on these values.

For example, the assignment of an object to an attribute, the dynamic
binding of the features, the sending of messages and many other behaviours are
expressed according to parameters of concept-relationship and concept-description.
OFL links two facets to each action: the first illustrates the static part inside an
interpreter or a compiler; the second represents the dynamic aspect integrated

BUPT

48 SmartModels - a Meta-Model Handiing Generic Entities - 3

within the runtime. The distribution of the code into these two facets depends on
implementation choices of the OFL model.

3.1.2. OFL Objectives

The first main objective is to Improve the readabUity of the code written In
an object language based on classes. Indeed OFL ailows specifying the relatlonships
between the descriptions whose semantics are more precise than Inheritance or
aggregation. Since inheritance and aggregation are often used for very different
purposes (for example: generalisation, speciallsation, code reuse ...)/ OFL aims to
offer the possibility to create a relationship which is specific to each of those uses. It
is important to underline that in order to remain pragmatic, this approach does not
aim to force the programmers to get out of their habits and to systematically
interchange the relatlonships they are used to with the ones It proposes.

When a more specific relationship Is used, readablllty of the code Is
improved (simpllfied). Furthermore, it wlll be easler to generate a relevant
automatic documentation and the Interpreter or compiler wlll be able to achieve
more appropriate controls. As a consequence, It wlll be easler to maintain a program
and to ensure further developments of the appilcation.

OFL's second main objective Is to contribute to the reduction of the gap
between the expressiveness of design methods and programming languages.
Indeed, one can be particularly pleased with a very suitable UML representatlon, but
this Is often difficult to implement straightforwardiy using one's favourite
programming language. OFL ailows to defme relationships with semantics closer to
those whIch design methods and thus to program faster.

In order to obtain a reallstic use of OFL, the programmer has to have access
to libraries of concepts-relationships and concepts-descriptions from which he can
select whatever he wishes to use. This method Is similar to that which provides
reusable software components [74].

3.1.3. OFL Model

FIgure 12 presents the graphic conventions used by OFL approach and which

Person
-Name
•Bhthdav
>ge<Name()

P K H f f l l

ISSLR
-Birthday

-Pr obiect and ia (yps (tte type is op«an^

[ihevifaeorăă

D11 D12

D21 D22l

D31 ̂ 032

041 1 Qil| ^

Figure 12. General Graphic Conventions

BUPT

3.1 - OFL: Hyper-Genericity for Meta-Programming 49

3.1.4. General Architecture

Figure 13 illustrates how to use the OFL model to descrlbe an appiication.
This figure highiights three necessary levels for modelling:
• the appiication level which includes the progrann's descriptions and objects

{OFL-instances and OFL-data),
• the language level which describes the connponents of the programming

language {OFL-components), and
• the OFL level which represents the reification of those components {OFL-

concepts and OFL-atoms).
Application Level. The programmer uses the services suppiied by the

language level in order to describe an appiication. He/she creates OFL-instances
which are the descriptions and the relationships of his/her appiication by the
instantiation of the OFL-components. At runtime, the appiication objects, called OFL-
data, are instances of the OFL-instances representing the descriptions.

OFL-Instances. Each description or relationship described by the
programmer is modelled by an OFL-instance. Figure 13 gives two examples of
appiications which each include five OFL-instances:
• three descriptions:

o the Eclipse appiication contains: EclipseProject, EclipseUML and
UML_DiagramStudio, or

o the Photo-Cameras appiication contains: PhotoCamera,
DigitalCamera and Memory

• one generalisation relationship:
o EclipseUML inherits from EclipseProject, or
o DigitalCamera inherits from PhotoCamera

• one aggregation relationship:
o EclipseUML Project has an attribute of UML_DiagramStudio type, or
o DigitalCamera has an attribute of Memory type.

OFL-Data. In an appiication each description instance is modelled at runtime
by one or more OFL-data. Figure 13 shows some of them:
• SmartModelsExtension - an instance of the EclipseUML project description, and

SmartModels_Architecture - an instance of the UML_DiagramStudio description
• Sony - an instance of the DigitalCamera description, and SonyMemoryStick - an

instance of the Memory description.
It is important to point out that the OFL-instances which are descriptions

specialise the OFL-atom object. Indeed, an object is the reification of the data of an
appiication (OFL-data). So it represents the root of the specialisation tree of the
OFL-instances which are descriptions.

Language Level. The language level describes different types of
relationships and descriptions which can be used in the modelled language. The
relationships are instances of concept-relationship and, the descriptions are
instances of concept-description. The language itself is an instance of concept-
language. Its main function is to put together the relationships and descriptions
which are suppiied to the programmer.

OFL-Components. The language level is solely composed of OFL-
components. Figure 13 lists:
• several concepts-descriptions (e.g., a-description),
• several concepts-relationships (e.g., a-generalisation-relationship and an-

aggregation-relationship), and
• a concept-language {a-language).

BUPT

50 SmartModels - a Meta-Model Handiing Generic Entities - 3

îi

f r

.5» o

I

r e :

J: I f

E . a .
U 0
1
Q.

î ? u! o

5
9 â I

E
I
•5

?
c
5

o-
1

î l
^ f « CI

C' M f f

î r

«-

1 c
E
U)
LI

i I

I I o
- s
w o O

& ^
5 ^ f

r s
9

i »
f i

Figure 13. The OFL Architecture BUPT

3.1 - OFL: Hyper-Genericity for Meta-Programming 51

It is possible to represent a concept-description as a meta-class and a
concept-relationship as a meta-relationship and similarly a concept-language as a
meta-language.

OFL Level. The OFL model is a meta-model for the programming language
(language level) and as a result it is a meta-meta-model for the programs
(appiication level). As already presented in section 3.1.1, OFL has chosen to
customise three important notions: relationships, descriptions and languages.
However, many other components need to be reified such as: objects, methods,
assertions, etc., in order to model a language completely. The OFL level includes
two types of entities:
• the OFL-concepts which describe the customisable part of the relationships,

descriptions and languages, and
• the OFL-atoms which describe the non-customisable part of these three

concepts as well as all the other components.
Also assertions are described in each OFL-concept and OFL-atom in order to

keep the model consistent. For example, here is a structural constraint which is
relevant to concept-descriptions and concept-relationships: let us assume that a
description (an instance of a concept-description) has a relationship (an instance of
concept-relationship) whose Cardinality parameter is set to 1 at this end. Therefore,
an assertion has to verify every instance of this concept-description that it does not
have other sources of relationships.

concept-relationship-
between-objects

concept-relationship-
between-descriptions

concept-relationship
between-objects-
and-descriptions

I
concept-
import-

relationship

concept-
use-

relationship

Figure 14. The OFL Concepts of Java language

OFL'Concepts. Figure 14 presents the classification of the OFL-concepts. It
is important to notice that in the OFL approach oniy the OFL-concepts are
customised.

The meta-programmer's task is to create an OFL-component, i.e. an
instance of an OFL-concept, by giving a value to each of its parameters. Thus he
decides on the behaviour of each future instance of the OFL-component.

BUPT

52 SmartModels - a Meta-Model Handiing Generic Entities - 3

Table 1. OFL concept-relationship parameters

Parameter Definition Tvpe Value Example
Name It represents the name of the

component-relationship. It
must be unique within a
language and cannot be
redefined.

string "Specialisation"

Cardinality It expresses the cardinality
of the target relationship
using the syntax 1-n which
means that the relationships
resulting from this
component-relationship can
be created between 1
description-source and 1 with
00 description-targets (n
represents oo or a positive
integer greater than or equal
to 1)

<integer, integer> <1, oo>

Polymorphism
_policy

It is specific to the
relationships of type import
and it indicates if the
polymorphism implied by the
target relationship, appiied
both to methods and to
attributes (this is why it is a
pair of values) must be done
according to a policy of
redefinition (i.e., for Java
attributes: hiding) (i.e., for
Java methods: overriding).

<hiding |
overriding, hiding j
overriding >

<overriding,
hiding>

•

Redefining It indicates if the redefinition
of the primitive types is
mandatory, ailowed or
forbidden for the target
relationship

<mandatory |
ailowed |
forbidden,
mandatory |
ailowed j
forbidden,
mandatory |
ailowed |
forbidden,
mandatory |
ailowed |
forbidden>

<allowed,
forbidden,
ailowed,
forbidden>

Sharingjevel It is specific to the
relationships of type use and
it indicates if the instance of
the description-target can be
shared

global 1 package |
description j
instance j
uniquejnstance

instance

BUPT

3.1 - OFL: Hyper-Genericity for Meta-Programming 53

If the operaţional semantics which the meta-programmer wants to bind to
an OFL-component does not match the planned actions, then he has to modify the
code of those actions. The OFL model is left open by this possibility which shouid not
be often used, except in a very specific context. Indeed, in that case, the meta-
programmer's job is much heavier than just giving values to parameters.

ConceptS'Relationships. A concept-relationship is the entity which
represents a kind of relationship. A concept-relationship is consequently a nneta-
relationship. Among the relationships which are to be found in many object-oriented
languages based on classes and object design methods, OFL appiied to an object-
oriented programming language may mention, for exannple: inheritance,
aggregation, composition, generalisation, etc. However a given design method or
language seldom uses all of these relationships and usually contains sonne of them
in order to simulate others. For example the generalisation in UML describes a
generalisation as well as an inheritance, a strict sub-typing: these three
relationships have different semantics even if they are similar enough to be often
confused.

Around thirty parameters define the semantics of the entire OFL model's
concept-relationships. Table 1 lists some examples.

Figure 16 lists the concepts-relationships representing the relationships of
the Java language (this is one of the main two examples which the next section will
address and develop while presenting the SmartModels approach).

Figure 14 illustrates our classification of the concepts-relationships.
Concerning the inter-description relationships, we distinguish between the import
relationships (generalisation of the inheritance mechanism) and the use
relationships (generalisation of the aggregation mechanism). As for Figure 13, it
illustrates one instance of an import concept-relationship {a-generalisation-
relationship) and one example of an use concept-relationship {an-aggregation-
relationship).

OFL also takes into account the relationship between objects and classes
which is used for example to model the instantiation relationship existing between
an object and its class. It is also possible to model the relationship between objects,
although OFL mainly concerns the inter-description relationships.

Concepts-Deschptions. A concept-description ailows defining the notion of
class and all that looks like a class such as the interfaces in Java. Therefore a
concept-description is a kind of meta-class. For instance, we can notice that, even if
they look the same, the Eiffel, C++ or Java classes, they show some notable
differences. Figure 13 gives one instance of concept-description called a-description
as an example.

Around twenty parameters are necessary to describe the behaviour of a
description in the OFL model and Table 2 lists some examples. Each concept-
description is compatible with a set of concepts-relationships. For instance, in Java,
the concept-description Interface is compatible with the concept-relationship
Implementation, but it is incompatible with between-classes-inheritance. Figure 13
presents also the example of photo-cameras. In this case the concept-description
DigitalCamera is compatible with the concept-relationships CaptureLight and
SaveOnDigitalMemory, but it is incompatible with SaveOnPhotographicFilm.

Concepts-Languages. The concept-language is an important and yet simple
notion. It models a language. In particular, each language includes a set of
concepts-descriptions and a set of concept-relationships which are compatible with
at least one of the concept-descriptions. In Figure 13, there is oniy one concept-
language's instance {a-language) which represents the modelled language.

BUPT

54 SmartModels - a Meta-Model Handiing Generic Entities - 3

Table 2. OFL concept descriptîon parameters

Parameter Definition Tvpe Vaiue Exampie II
Genericity It specifies if the target

description is generic, true,
(it can represent a set of
types) or not, false.

boolean false

Generator It specifies If the target
description is a generator (it
can create instances).

boolean true

Visibility It indicates if the target
description is visible by a set
of given entities.

global 1 package
1 description |
method | object
1 statement |
expression | list

global

Attnbute It specifies if the target
description can define
attributes, ailowed or not,
forbidden.

ailowed |
forbidden

ailowed

The concepts-languages are not much customised. Their main function is to
federate the concepts-relationships and concepts-descriptions which are compatible
with them.

OFL'Atoms. They represent the reification of the non-customised entities of
the nnodel. Figure 15 illustrates a set of those OFL-atoms. The relationships,
descriptions and languages have their own OFL-atoms to describe the part of their
structure and their behaviour which are not customised. For instance, Figure 13
highiights that the OFL-component called an-aggregation-relationship is a
specialisation of the OFL-atom relationship,

Also, in an appiication all the features of a description are instances of an
heir of feature, aii the expressions are instances of expression or of one of its heirs
and all the objects are instances of object, Thus OFL gives a full reification of the
entities found in an appiication at runtime.

3.2. The Model-Oriented Programming Approach

The Object-Oriented approach does not provide all the solutions even if it
represents a valuable basis for the description of further approaches. This remark
can also be appiied to component-based software engineering paradigm. In
particular, they do not provide a correct answer to the continuous evolution of the
technologies: keeping appiications up-to-date according to the evolution of
technologies is too much time-consuming. This thesis promotes the idea that to
provide an approach centred on models which capture the know-how, independently
from both the software platform and the possible appiications, is promising.

This section introduces the Model Oriented Programming (MOP) framework
with a set of essential entities. They are a first attempt for the definition of the main
principles of the approach. A second contribution Is the proposal of SmartModels

BUPT

3.2 - The Model-Oriented Programming Approach 55

which is one interpretation of these prindples. The next section will draw a parallel
between this approach and component technology.

3 :
t>pcO-rDUt>

A
î

n r

local- vari»l.»c
I Z

cnortpt

1
dmrtptkui rcUlkâ hlp Lmeiiatv

5

Figure 15. OFL-Atoms of a Modelled Language

MOP moves the accent from objects and connponents to the nnore dynamic
perspective: the nnodels. Our approach on MOP Is original for software engineering
because:
• It aims to provide a framework for describing nnodels in which to encapsulate

the specific knowledge of a domain according to multi-systenn scope
development defined in domain engineering [26];

• It ensures a clear separation between the model and the technologies which
make the model executable by a software platform;

• It incorporates software factories (SmartFactory) which automate as much as
possible the code generation and also provides easy and clear entry points in
the code for the programmer to change or update the code;

• It integrates new ideas from AOP [66], SOP [48], IP [94], web services [46] and
component-based engineering [100] to build flexible, readable and easy
maintainable software;

• It relies on W3C {World Wide Web Consortium) [46] and OMG {Object
Management Group) [85] standards like XML and DTD for serialization of the
models, OCL [82] for assertions, MOF [84] and AST [7] for the meta-model [24]
description;

• It captures the semantics of a model and proposes a way to handie their
treatment.

In order to provide the facilities presented above MOP deals with a set of
entities. Many of them are familiar concepts from object-oriented programming and
the next sections will present them together with their first validation in the context
or the interpretation of our approach called SmartModels.

BUPT

56 SmartModels - a Meta-Model Handiing Generic Entities - 3

The kemel of SmartModels is represented by a Meta-Object Protocol (mop)
and the abstract reification of the entities of the nneta-model. Right now it consists
in a set of Java classes generated and customized with the Eclipse EMF plug-in (see
section 3.4.2 for the motivation of this choice) which encapsulates the basic rules
and the definition of the entity types of the approach [84]. Its architecture was
dhven by prevlous works on OFL [24] and it is fornned by:
• a class (in fact the so-called mop) which retains the place in the structure of

nodes of each entity of a business-model (its nanne, the name of the super-class
specialized by this entity and the name of the meta-class - the entity that
provides the meta-information) and its extent (the collection of its instances).
This collection is updated automatically when a new instance is created and
through the previous Information it is possible to implement a management on
the list of instances of entities (to access and update also the mop of the parent
of this entity and of its meta-description);

• a set of classes which provides basic tools for managing the entities: the
definition of a collection (with some opţional facilities: to be ordered, to accept
oniy distinct objects, to set a minimal or maximal cardinality), OFL basic types
(Enumeration, Tuple, Integer, Boolean, ...)/ the definition of an OFL value, types
of redefinitions for parameters and characteristics and OFL constants;

• a set of classes which define the abstract core representation of each entity of a
business-model.

As a consequence of the fact that any entity of the kernel of SmartModels
(which is built-in) is a ^"first-class" entity and it may be specialized through
inheritance, therefore the kernel can be bootstrapped and so it can automatically
generate itself. Thus it represents an open and flexible platform to describe
business-models. Any further changes in the kernel will be seen by all entities.

3.2.1. mop versus Components

SmartModels and mop offer practicai solutions to several important
problems found in object-oriented and component-oriented programming. This
section aims to draw a parallel between this approach and component technology.
Later, this thesis will draw the same parallel addressing implementation issues of
the validation prototype - SmartFactory.

In the previous decade most of the articles published on these matters seem
to point to components [100] as the solution to a new maturity level of the software
engineering. Building new appiications by combining ready-made (bought) and
custom-made components improves quality and supports rapid development
because it enables the reuse of software. Component-based software engineering
approaches plead for building reusable components that can be plugged together to
create new systems.

First of all, finding the equilibrium it is again a hard thing: it is a decision
between generality and specialization. General components can be used in many
appiications, but may be much more bloat artefacts than needed. Specific
components, on the other hand, are appropriate for a given situation, but then there
may be many specific components that the clients have to search through to find
the one that exactiy meets their needs. Some of the components may need to be
adapted to the particular situation and this can be another problem. ^

In this context, mop offers the possibility to organize all the entities defined
for a business-model in a hierarchy. In this way a model can have at the same time

BUPT

3.2 - The Model-Oriented Programming Approach 57

components more general and more specific having the possibility to use or not the
advantages of inheritance for meta-infornnation. At any time a connponent can be
specialized to be adapted for a certain situation using the inheritance. Also, a more
specific component can use or not the same semantics as its parents, or it can have
different values for its meta-information.

Other problems in software engineering are linked with the systematic inter-
play of components. It wouid be naive to assume that we can simply select
components from a well organized repertoire and after a click we have the final
appiication. In reality many questions arise on how the abstract interaction of
components can be described, how variety and flexibility can be covered in the
design of a component, how criticai system properties can be guaranteed when
there are many vendors or how can performance be guaranteed.

mop handies variabilities and commonalities through meta-information (see
section 3.4.2). The behaviour of an atom is infiuenced by the values of its
parameters and characteristics and both, the actions defined in its meta-level
(concepts) and the set of assertions attached to each atom, will check the
conformity and support aspects [66]. AII the components provided by different
vendors will have to conform to the meta-information from the business-model.

AII current software component camps are not on a domain-specific
standard. Components-based reuse has proved useful in some appiication domains.
For example, libraries of mathematical functions are commonly used. However, in
other domains, component-based approach poses problems that obstruct effective
reuse. Notably, methods for searching, analysing and customising components and
integration of components into a working system are not well defined, explained and
understood. SmartModels approach based on mop foilows the Domain-Driven
Development [27] principles and therefore offers a framework for developing
domain specific appiications. In this context the concern is to define an approach
which makes possible to specify any model appiied to any domain: object-oriented
languages, digital cameras, nuclear factory which produce electricity, etc.

Proliferation of new component technologies is another issue. To obtain a
component-based appiication, a developer must choose between at least three
component technologies: CCM (CORBA Component Model), EJB (Enterprise Java
Bean) or Web Services. In SmartModels the technologies are defined independently
from the approach. They contain functionalities which allow defining more easily the
appiication. For example, the DOM ARI is welcomed to manipulate XML
representation of the business models. Other Information may be added in order to
generate visit entities (see section 3.4.4) which fit exactiy the expectations of the
programmer. Indeed the source code generation is essential because it ailows him
to focus oniy on the visit entities which are addressed by the facets and to be
assisted for the description of their behaviour.

3.3. Introduction to SmartModels Meta-Model

A very promising approach towards a better and more practicai framework
for software development is the vision of OMG: Model-Driven Architecture (MDA)
[86]. It proposes to separate Platform-Independent Models (PIM) from the
perspective of Platform-Specific design and implementation Models (PSM). Due to
the rapid platform evolution (the arrival rate of new technologies is increasing and
this rate is not likeiy to decrease in the future) and the growth of the software

BUPT

58 SmartModels - a Meta-Model Handiing Generic Entities - 3

systems complexity, the model becomes the most important concept rather than the
code or other implementation issues.

That Is why we are facing today a shift in software engineering between
object technology and model technology. Model engineering tries to solve more than
oniy the platform independence problem, but it also moves the accent from objects
and components to more dynamic and evolving perspectives: models, processes,
activities and services.

Taking into consideration the new MDA paradigm, generative programming
and other trends In current research communities for software engineering, this
thesis proposes a new and challenging view on developing software, SmartModels,
an approach based on Model-Oriented Programming ([105] and [106]).

Historically, my interest for modelling and generic parameterization started
from studying [16] and with the objective of modelling the object-oriented
languages, thanks to a meta-model, using a meta-object protocol (mop) and by
introducing the concept of hyper-generic parameter.

The 'hypef prefix stands for the idea that this type of parameters controls
all the behaviour of the system which is modelled. In section 3.4, as the approach is
developed, the prefix will probably not be used so often in order to simplify the text,
but every time the term 'parameter' will pop-up, it will have the same connotation:
'hyper-generic parameter'.

Open Flexible Language (OFL) is a system formed of a meta-model and a
meta-object protocol (mop). Through entities at the meta-level and generic
parameters, OFL offers a technique for representing, modelling and adapting an
object-oriented language.

For example, it identifies the foilowing meta-entities: meta-class (traditional
concept), meta-relationship (i.e., for modelling the behaviour of inheritance and
aggregation relationships), and meta-language (to join meta-classes and meta-
relationships). These terms have been adapted for this section and it is important to
note that the discussion is at the level of a language and not of an appiication.

As an illustration, this means that the term "dass' represents the notion of a
class and that a 'meta-class' is an entity able to generate various types of classes
(and not just classes). Therefore, related to the appiication level, this notion is a
meta-meta-class for the instances of the generic classes.

Each one of these entities is defined through generic parameters. For
example, a meta-class has a 'Creator' Boolean parameter which indicates if the class
can or cannot create its own instances. Thus, in the context of the Java language
example, 'Class' has value 'true' for this 'Creator' parameter and for the 'Interface'
is 'false'. This parameter controls the behaviour of these entities.

Having the OFL experience it became interesting to add new characteristics
which were not previousiy predicted. Therefore, SmartModels incorporated work on
separation and composition of concems [106]. The new ideas and concepts which
resulted from these approaches brought important contribution on modelling of the
appiications and, in particular, of the business models. It is thus on this level that
the meta-modelling techniques with generic parameters are appiied in our approach
[25] in order to increase the expressivity of the models and in the future to use
adapters to compose these models [68].

SmartModels tries to be part of the new trends in current research
communities for software engineering. It proposes another way of developing
software: Model Oriented Programming (MOP). It is based on the Domain Driven
Development track (DDD) [27], which relies on several paradigms such as object-

BUPT

3.3 - Introduction to SmartModels Meta-Model 59

oriented technology, languages for components, MDE, approaches for the separation
of concerns, and generative programming [26].

This proposal relies on previous works which deal on the one hand with
meta-modelling [24], and on the other hand with the design of a software factory
called SmartTools [7]. It intends to enrich both approaches in order to nnake easier
the development of domain specific appiications.

3.3.1. Criteria for evaluation and objectives of the approach

Based on the conclusions from the state of the art (see section 2.7) and OFL
previous experience, Table 3 addresses the essential criteria used to evaluate the
current approaches on developing lines of software entities which was also used as
the main decisive factor in defining the new approach:

Table 3. Criteria to evaluate meta-modelling approaches

CRITERIA DESCRIPTION
Integration of
MDE principles

To create means for developing reusable models: methodologies
and available nnodelling technologies, tools infrastructures
(frameworks), PIM and PSM modelling, transformation of models

MOF+UML To offer flexible support for features widely used by tools based
on MOF and UML, analyze the capability of the approach to
abstract required aspects of the object systems into models and
to keep them consistent.

Integration of
AOP

To make available cross-cutting features which can be used to
get additional views of the system (handiing complexity of a
system ailowing decompositions according to aspects: trace,
error handiing, new functionalities).

Handiing
commonalities
and variability

To provide methods to identify commonalities among members
of a line of products (specifications, modelling the domain, reuse
of generic product in the family), mechanisms to handie the
variabilities (funcţional and non-functional requirements,
different characteristics, platforms, unexpected variants) - this
means constraint based scheduling and providing more guidance
in context.

Autonnatic Code
Generation

To use platform independent meta-models and to map them on
specific platform models: the goal is to provide quality and as
much as possible quantity code generators (effective and
automatic generation of large portions of appiications) and
execution infrastructures - this means automation through tools,
patterns, framework, templates. It also makes use of the domain
specific languages to solve targeted problems and to enable
efficient use of the model driven design approach - using the
Domain Specific programming Languages (DSLs) tools.

Application
development

To analyze capabilities for rapid building and deploying
appiications related to the model

BUPT

60 SmartModels - a Meta-Model Handiing Generic Entities - 3

To sum up the criteria for evaluation, here are the main objectives of
SmartModels:
• on the one hand, to clearly identify, thanks to a meta-level, the semantics of

concepts used for the modelling of a given domain, and
• on the other hand, thanks to approaches of separation of concems and

generative programming, to equip, in a modular way, the appiications related to
this domain.

SmartModels îs a set of domain specific models dedicated to the
development of software. This approach is original and may be distinguished from
other approaches by the foilowing characteristics:
• it introduces on top of the entities which structure the model (reification level),

a semantic layer which enables to define and factorize the basic functionalities
related to the domain,

• it provides a set of facilities (in order to quickly build appiications related to the
model), which strongly rely on the two levels of the model (data and semantic
models),

• it ensures a clear separation between the model and the technologies which
make the model executable by a software platform.

JÎL ^

|iaMtractl

Figure 16. SmartModels Java model

BUPT

3.3 - Introduction to SmartModels Meta-Model 61

The main interest of such an approach is to provide the power to define the
semantics of the entities which are addressed by a model, independently from any
appiication. In general, the semantics are spread out in the appiications which may
directiy handie the model.

SmartModels does not make any difference between the modelling of the
business model and the modelling of its appiications. Thanks to the semantics which
is encapsulated in the entities, related appiications may handie directiy this
knowledge without going through some implementation phases (the generation
process takes care of this).

It is very important to know that contributions of both generative
programming and separation of concems are used in order to achieve a better
flexibility and modularity of the appiications related to the model.

This section explained the various stages which led to the proposal of a
meta-model for the specification of business models and next sections will describe
its main aspects appiied to two possible example models. Next chapter will show
that this approach, which is based on customizable genericity, provides the needed
expressivity for modelling product lines. Then it foilows a chapter which describes
the key elements of an Eclipse plug-in [35] for the implementation of the approach.
Finally, the last chapter evaluates this work comparing to the state of the art and
then wrap up by giving future perspectives.

3.4. Key-aspects of modelling in SmartModels

This section introduces the main elements that can be used to describe a
business-model in SmartModels. For a brief presentation see [106]. A business-
model is defined through the identification of its entities according to the know-how
of a specific domain. This process consists in producing an XML document (i.e. by a
parser of the domain specific language) compliant with the AST (or DTD) which
describes a model in our approach.

This document will drive the generation process of a class (a Java class in
the current version) for each entity. Then this set of generated classes, considered
an implementation of the business-model, is attached to mop as sub-hierarchies of
the built-in kemel (adding also features for handiing access in the specialized and
meta-hierarchies and its extension and for loading/saving instances of entities
from/into XML streams).

Next section introduces the examples through which the presentation of
SmartModels entities will be explained. Then sections 3.4.2 to 3.4.4 present each
entity with respect to the level it manifests. Rgure 18 distinguishes between the
different levels of the architecture of our meta-model: the key aspects proposed by
SmartModels in order to define business models. They will be used by generators in
SmartFactory in order to produce code attached to the mop. Let us follow them from
top to bottom level.

BUPT

62 SmartModels - a Meta-Model Handiing Generic Entities - 3

r • SmalModels.PtxitDCamera
• Ccncepts

• GenerlcCorcepts
= Q PhotDCameraSem -> GenerIcConcept

m GenertcCortoept
« = optiCcrfZoom : EInt

v* batberyTviDe ; BatteryType
i TraditionalCameraSem -> PhotDCameraSem

«i PhotDCameraSem
i t FlImType : EInt

^ l) DIgitalCarrieraSem -> P»-otoCameraSem
w PhotDCameraSem

* - digitalZoom : EInt
» hasAutoFocus: ffioolean
rt- T resolution : EInt
* "ir memcry ; MemorySem
f S comminicat)onPort5 : CommunIcationPorts
a MemorySem -> GenericConcept

rt GenerIcConcept
* -i capacity : EInt
« V gpeed : EInt

^ • BasicConcepts
v 3 BatteryTvpe -> BasicConcept

Commix>icationPor1s -> BasicConcept
r. • Atoms

s • GenericAtoms
ă PhotoCamera -> GerencAtom

iflCptlcalZ0C«m: lO.Ox
«^batteryTyp?: 'Uthum-Ion fsP-6Gl"

GenerKAlDm
^ n TraditionalCamera -> PhotDCamera

nimType- 35mm
Irf cpbcalZoom 24 .Ox
M PhotoCamera

fi DigitalCamera -> PhotoCamera
b commLnicatîonPorts fUSB", 'Bluetoolh", "AV-our7
^.iopticaizoom: 3 0*

P̂ otoCamera
fj CyberShot -> DigitalCamera

•a resoKjtion 8 . î f ^
fcidigitalZoorn: 2.0*
te memcry "MemoryStjck"

DtgJtalCamefa
3 • PhotoSmart -> DigitalCamera

--esotution. 10 CM̂
digitalZoom: lO.Cix

lui memorv: "SDCarcT'
rt DlgitaJCamera

i» â MamoryType -> GenerfiiAtom
GenencAtom

a g MemorvSdd - > MemayType
feicapacltv: 8GB
«•speed:
w MemcryTvpe

^ rj SCCard - > Memor/T^vpe
u capacity 2QB
ŝpeed 6̂ 65

m Memcry Type
- «BdSicAtDfns

• O Battfiry-> BasicAtom
• y Ccmmcr-catwnPort - > BasicAtom

f platfcrm AwJce/5mdr1MDde^s/Smâr^^todE^3Jl^ ecore

Figura 17. SmartModels photo camera model BUPT

3.4 - Key-aspects of modelling in SmartModels 63

|Kfema!i6rv-L6V6i

MeTSTŜ gr

Actions O Actions O contains ^
Ol

Aspects > Concept

is_a

Parameters &
Characteristics

Generic
Concept

is_anJn$tanc8_of

is an instance of

Generic is a K
Atom l Atom

is_ derived is derived

One Derived
Atom ... One Derived

Atom

One
Atom ... One

Atom

instanê Levfei

One Instance
of Business Mode

One Instance
of Business Mode

One Instance
of Business Mode

Figure 18. Key-Aspects of a Model in SmartModels

3.4.1. Casuistry

This section sets up two business model examples which will be further
explored in the next sections while developing the approach. Chapter 6 presents a
complete implementation of one of them.

First example is more abstract and carries on the interest of OFL approach
(see previous section) to create a meta-model for object-oriented programming
languages based on classes with an appiication to Java: how to design their entities
(like notions of class or interface, relationships like generalization or composition),
how to customize and extend them (i.e., the polymorphism), how to architect
assertions to control their behaviour (like visibility issues, method redefinition
rules), how to create applications.

The second example models a part of the domain of photo cameras. The
goal is to develop a more concrete illustration on how to use SmartModels for
modelling the entities which differentiate each product in this context: how to
architect diverse types of photo cameras (traditional or digital), how to describe
their functionalities (basic and opţional features), how to separate concerns (like the
type of suppiy source, the supported memory sticks, the built-in communication
ports, the zoom effect provided by the cameras lenses, the resolution captured, the
installed software firm like the algorithm used for compression).

Next sections will further investigate these examples at the moment of the
introduction of each SmartModels entity.

BUPT

64 SmartModels - a Meta-Model Handiing Generic Entities - 3

3-4.2. The meta-level

First of all, the meta-level is the top level of SmartModels business-model
reification and it handies the meta-information through concepts. A concept
participates to the definition and the managennent of the meta-information of a
business-model. It encapsulates the semantics of entities and their treatments. It
can be related to one or a number of atoms (see section 3.4.3) and drives their
behaviour (in SmartModels approach an atom is the structure which encapsulates
the description of an entity).

Figure 16 illustrates the SmartModels model of the Java programming
language. It Identifies oniy one basic concept - the LanguageSem, because it does
not raise any interest for now to add more semantic information for the language
itself. On the other hand, the diagram distinguishes two hierarchies of generic
concepts:
• DescriptionSem which is the abstract concept for all Java descriptions, like c/ass,

abstract c/ass, interface. They are also represented in the diagram due to the
fact that each one of these entities is motivating to extract more specific
semantics.

• RelationshipSem which is the abstract concept for all Java relationships between
description entities. The hierarchy presents import and use type of relationships
[23].

This is not an exhaustive list of Java language concepts, but the choice was
to have an easily understandable diagram with the most representative entities.

A concept makes the clear distinction between the semantics (meta-level) of
the entities of a business-model and their reification (reification-level). As a result
there are several very positive consequences:
• the maintenance of the semantics (updating and redefining of the semantics)

deals onIy with concepts;
• the support for reuse of the semantics in other (closely related) business

models; and
• the model transformation which is one of the key points of this approach.

At this point it is important to mention that the elements that compose the
concepts address onIy the semantics of the entities and not their instances
(semantics of a business-model are independent from an appiication). Also, the
concepts are organized in a hierarchy so we can take advantage of the
polymorphism to reuse semantics for atoms from the same reification.

Figure 17 presents the example of a SmartModels photo camera model and
the foilowing basic concepts can be observed:
• BatteryType and CommunicationPorts: none of them are represented in detail. If

there is not interest in additional semantic information an entity is considered
basic (non-generic)

The list of generic concepts is developed more and here is an examination of
the example:
• an abstract PhotoCameraSem concept which encapsulates the common

semantics of all photo camera represented in this model;
• TraditionalCameraSem concept which contains the semantics to handie

traditional photo cameras and DigitalCameraSem concept which includes the
common semantics for all the hierarchy of digital cameras supported by this
model.

BUPT

3.4 - Key-aspects of modelling in SmartModels 65

Therefore, the generic concepts hierarchy profit from polymorphism and the
foilowing paragraphs will explain the way they encapsulate the sennantics.

A meta-model makes it possible to define the level of genericity for each
entity when describing a business model. The generic part expresses the variability
and it is possible to derive entities by simple instantiation. The basic elements
needed for the specification of a business model (attributes, associations, methods,
classes, basic types, etc.) are present in the existing meta-models such as MOF,
UML or EMF. They all have the capacity to bootstrap (to describe themselves), too.

The SmartModels meta-model, which is developed in this thesis, is an
extension of EMF and the motivation of this choice is the foilowing:
• EMF is of a big interest its current releases and in the same time it is suffidently

expressive to describe a business model, and
• EMF was developed and it is part of the Eclipse platform which opens excellent

opportunities for the construction of a prototype.

EX?

Figure 19. The Basic Architecture of SmartModels as an Extension of Eclipse
EMF

BUPT

66 SmartModels - a Meta-Model Handiing Generic Entities - 3

The SmartModels entities and the models which it describes are equipped
with assertions implemented with an extension of EMF for the description of
constraints in OCL [82], [114].

Figure 19 presents a sub-set of SmartModels meta-model described using
Eclipse EMF plug-in (some of the entity names were willingly shortened to save
space) with the main entities of the EMF model on which the extension is based. The
entities which constitute Eclipse EMF model are presented in the large
EMF_MetaModel rectangle.

It is important to highiight the ENamedElement root which guarantees that
each entity has a name (this is a must for all first-class SmartModels entities).
EClassifier is the entity which represents an equivalent of the UML classifier or an
OFL description - this means everything that it is similar to the class notion (a
container of objects) or a package (a container of classes or other containers).
EAttribute and EOperation reify the concepts of attribute and method. All the other
entities which do not belong to EMF_MetaModel are part of SmartModels extension
and will be presented in the foilowing section.

The semantics of a business-model stored in a concept are reified through a
set of hyper-generic parameters and characteristics [24] (which form the
meta-information) and a set of actions (which perform treatments on the entities
according to their meta-information). The Identification of the parameters and
characteristics and their possible values is the job of the meta-programmer which
addresses the know-how of the domain.

The hyper-generic parameters customize the behaviour of the entities of a
business-model. They refer to generic atoms (see section 3.4.3) and not their
instances. Their role is to capture and express the properties which compound the
definition of the generic entities. A parameter expresses a basic type property, e.g.
a Boolean or an Integer value, an Enumeration, a Tuple type or a Collection of
values. A characteristic expresses a property whose value is defined by an atom or a
set of atoms {Enumeration, Tuple or Collection), In order to describe the behaviour
of a generic entity the programmer has to set those values. For example, a
business-model buiit to encapsulate the structures and semantics of an object-
oriented programming language may define parameters like:
• Cardinality which expresses if there is simple or multiple inheritance - Java

simple inheritance set the value to 1.
• Generator which specifies if the given entity can create or not its own instances:

o ''Class" notion in Java can generate instances - value is ""true" because it
can provide the possibility to create a constructor or redefine the default
one;

o ''AbstractCIass" and ''Interface" notions cannot create instances,
therefore the value is '"false",

• Genericity - also a boolean parameter which specifies if the given entity is
generic, if it can be a template that represents a set of types. It is one of the
most anticipated and debated enhancements to the Java language in 1.5 version
release. The parameterized types were formally proposed through Java RFP by
the time my doctoral program started;

or characteristics like:
• the collection of valid kinds of classifiers for a given type of inheritance:

o the valid source descriptions for the first end of the association and
o the valid target descriptions for the second end of the association.

BUPT

3.4 - Key-aspects of modelling in SmartModels 67

Besides the example of modelling a programming language which is more
abstract, lets further explore the photo camera model to identify possible semantics.
Here is the list of parameters according to their concepts:
• opticalZoom and digitalZoom which indicate the maximum zooming capability of

a derived product. They are of type integer and the optical zoom can be found in
all types of cameras, whether the digital zoom is just part of the digital camera
semantics;

• ffImType identifies the code of the film categor/ supported by this family of
traditional cameras (i.e., 35mm, 20mm);

• hasAutoFocus specifîes if the camera is equipped with sensors to determine and
adjust the optical system to correct focus (value is true) or not {false). This
parameter is conditioned by a positive value for optical or digital zoom
parameter;

• resolution determines the limit of resolution supported by the lenses of the
family of cameras modelled by this concept (i.e., 8.1MP, lO.OMP);

• capacity and speed are parameters which express the boundary values for the
major features of a digital camera memory stick.

All these parameters illustrate properties of camera entities which are
expressed using basic types (i.e., integer, boolean). Characteristics address the set
of properties whose descriptions deal with one or a set of other entities in the model
(atoms from the model, i.e., BatteryType - see section 3.4.3). The photo camera
model from Figure 17 enumerates the foilowing characteristics:
• batteryType which specifies what kind of batteries each categor/ of cameras

support. The target of this characteristic is instances of BatteryTypeSem basic
concept;

• communicationPorts which is similar but appiied to communication ports
supported by the family of digital cameras. However, the cameras semantics
model assumes that there is oniy one type of battery suitable to a camera, while
it can incorporate a collection of supported ports;

• memory which specifîes the compatible family of memory sticks for a given
family of digital cameras.

From these examples the foilowing question can be raised: how will the
semantics link and control the behaviour of their instances? The relationship
between the semantics and their reifications will be presented in section 3.4.3, but
next paragraph addresses the key entity which is important to control a model
created by a programmer according to the meta-information: actions.

Actions are first-class entities addressed by concepts in order to dynamically
manage the behaviour of atoms according to their meta-information. The body of an
action encapsulates the execution which can be performed by that action. The
execution of an action depends on:
• querying the parameters and characteristics of the generic atom to which the

action is attached;
• a set of invariants, pre-conditions and post-conditions;
• an opţional set of aspects;
• additional information provided by the meta-programmer.

An action must be completely independent from the appiication related to
the business model. Therefore a typical scenario is that the behaviour of a given
appiication relies on the semantic model, that is to say call those actions or query
hyper-generic parameters.

BUPT

68 SmartModels - a Meta-Model Handiing Generic Entities - 3

Further investigation on the above examples help to imagine needed actions
in order to verify constraints on the model entities. Here are some Java language
model actions needed to manage its entities [23]:

match to verify the conformance between a declared method and of call to a
method (name, type - constructor/destructor, attribute/function);
are_valid_parameters to test the compatibility between the actual and formal
parameters at run-time (their number and their type conformance). This is an
action which provides a sub-service for match action;
lookup to find out the right method call taking into account the relationships
between descriptions;
verify_overloading to check that the overloading rules are respected;
verify_cardinality to verify if the cardinality of the target relationship conforms
to the value of parameter Cardinality;
is_same_type to compare in the given context the exact equality between the
two target types;
createjnstance to authorize the creation of an instance of a description.

Photo camera model may need the foilowing actions to ensure the
consistency of its meta-information:

block_film_open to block the opening of film spot in order to avoid light
exposure by mistake. This action is attached to traditional camera semantics;
check_battery__type to match the correct battery type to a camera. The action is
attached to the concept at the top hierarchy of cameras and it queries the
batteryJype characteristic;
other similar actions may be: check_communication_ports or
check_memory_ type;
verify_memory_speed to ensure that the memory stick attached to a digital
camera supports the read/write speed of camera hardware;
verify_resolution to check the capability between the resolution supported by
the optical lenses and digital zoom of the camera and the firmware installed;
check_auto_focus_compatibility to verify if the auto focus system is compatible
with the optical sensors (it can connect and communicate to control and
automatically adjust the focus).

Thanks to AOP (Aspect Oriented Programming) paradigm [66], it is also
possible to insert new concems (they are called aspects), with respect to the
semantics of business-model. This is completely independent from the category of
visit-entities from the potential appiications (see section 3.4.4). Aspects were
implemented in order to easily add new pieces of behaviour which are orthogonal to
the semantics. Therefore, actions integrate aspects within the business model
semantics (which are independent from potential appiications).

The previous paragraphs showed that in SmartModels the description of the
model semantics relies on actions which are described in a concept (at the
meta-level) and on invariants for concepts or atoms and pre/post conditions for
actions.

Aspects may be integrated within both assertions and actions. They are very
similar to those which are dedicated to the visit entities (see section 3.4.4). Why
may we need to equip the semantics of business models with aspects? A first
answer is that the semantics of a business model may be complex enough to feei
the need to separate its different concems; this favours readability, maintenance
and reuse. We do not propose a double cross-cutting of the semantics as for
appiications because it seems more useful to favour the use of assertions which is
more relevant for the description of business model entities and for their

BUPT

3.4 - Key-aspects of modelling in SmartModels 69

interactions. Moreover, the number of statements which are necessary for the
description of the semantics is clearly smaller than the number of statements
dedicated to the description of facets (a complex appiication requires detailed
customization of the facets because they address mainly the behaviour of the
entities).

At a first glance, it seems more interesting to add dynamic aspects to
appiications, whereas aspects associated with business models are more static.
However when a model is obtained by transformation of another one it may be
valuable to have the ability to adapt the semantics encapsulated within one action
(proposed in the original model) in order to make it compatible with the new model
(this is why we provide aspects within assertions). For example, an aspect which
implements an around assertion on an action and which is executed before the
invocation of the action, may decide that according to the context of execution, the
assertion in the new model is still relevant or on the contrary, it is not relevant
anymore (this suggests that an around type of assertion may not be executed).

3.4.3. The reification-level

Here is the line of demarcation between the semantics {the meta-level) and
the data of a business-model {the reification-level). As we anticipated in the
previous section, an atom is the reification of entities of a business-model.
Identifying the atoms of a domain is an essential task of a programmer.

The description of the business model entities relies on well-known concepts
that may be found in most programming languages or meta-models. In
SmartModels meta-model, the definition of an atom, the structure which supports
the description of an entity, it is very close to the MOF ''c/ass" notion (the concept of
class is, from our point of view, too much related to programming languages
whereas business models require a more abstract concept). Then the features
provided by MOF to describe the contents of a class (such as attributes, operations,
generalization relationships) are sufficient to define most of the reification of an
entity.

The designer of a business model may create atoms either for improving the
structuring and factorization of information within the model hierarchy, or for
describing atoms which have instances within appiications. SmartModels provides a
way to address those two issues; MOF does it through the notion of abstract class.
If it means that the class must have at least an abstract method or that all the
methods must be abstract, then we believe that this mechanism is not sufficient. In
particular, some appiications may be interested by some atoms whereas others are
not; it is not the same thing to say that whatever is the context of use, one atom
may not have instances because it is oniy partially defined.

A key principie in SmartModels approach sustains the belief that a more
accurate information according to the atom status (see next paragraphs on
genericity of atoms) will improve the readability of the code produced by
generators, and the facilities that may be provided or not to the programmer of
appiication according to it. The interest to be able to associate different status with
an atom is even greater if the business model may import atoms from another
business model.

Although not all atoms use this facility, each atom has its meta-information
in the corresponding concept. An atom is seen as an instance of its concept (see

BUPT

70 SmartModels - a Meta-Model Handiing Generic Entities - 3

Figure 18). However, there are two axes of co-ordinates that distinguish between
atoms:
• atoms which are generic or not. The support of generic entities (generic atoms)

is an important issue for business models. The genericity is a reflection of the
semantic-level which specifies if the meta-information of a given entity has or
not parameters and characteristics (see section 3.4.2). A business-model
designer may define entities which need semantic information (which becomes
part of an atom definition) and they are called generic atoms. There are atoms
which do not need additional customization besides their reification (their
behaviour does not depend on parameters) and they are called atoms without
parameters; and

• atoms which have instances within appiications or not. The generic atoms may
or may not have instances at the appiication-level. Now MOF [84] makes this
distinction through the notion of abstract class. According to the arguments
from the previous paragraph, that is why SmartModels has the notion of derived
atom (see Figure 18) which is an instance of a generic atom obtained through
relevant combination of values associated with the sets of characteristics and
parameters which participate to the definition of its generic atom.

To exemplify lets turn again to the case of an object-oriented language. Let
us take an example of one business model which is dedicated to record both the
structures and semantics of Java programs. Possible appiications with respect to this
model may implement functionalities of programming environments (metrics,
various wizards or editors, etc.). Possible atoms of this model represent, for
example, attribute, method, method parameters, modifiers, etc... But the most
interesting ones deals with the different kinds of classifiers and relationships
{aggregation-Wke or inheritance-Wke). Most semantics may be encapsulated within
classifiers and relationships and other atoms mentioned above may have a very
minimal semantics mostly represented by their reification. This is possible because
they are driven by the semantics associated with classifiers and relationships. In
fact, there are several kinds of classifiers (e.g. class, abstract class, inner class,
interface, etc.) and relationships (e.g. between interfaces inheritance - extends,
between classes inheritance - extends, between interfaces and one class -
implementation, between an abstract and a concret class - concretization) in this
business model. Then it is meaningful to be able to record their definitions as
generic atoms (one generic entity for modifiers, one for inheritance-like
relationships and one for aggregation-like relationships). AII these properties are
recorded in their meta-level through parameters (see section 3.4.2).

Therefore, the genericity comes from a set of hyper-generic parameters and
a set of characteristics which records the differences and the commonalities
between all the foreseen derived entities (this is the term which is quite often used
in the state of the art to refer instances of generic entities, e.g. all the Java
classifiers). Intuitively, generic atoms are quite similar to the concept of generic
class in the Eiffel language and derived atoms are obtained through the relevant
combination of values associated with the sets of characteristics and parameters
which participate to the definition of the generic atom.

The photo camera example (Figure 17) cleariy illustrates the difference
between SmartModels atom types:
• The basic atoms (non-generic) are instances of basic concepts and therefore

they are not customized in this model (this is the oniy reason why these atonis
are basic here - it is not in the interest of our model and it foilows the goal of
keeping the example simple). However, they may be targeted by certain actions

BUPT

3.4 - Key-aspects of modelling in SmartModels 71

which have to control their implications in other generic atoms: BatteryType and
CommunicationPort;
• The generic atoms are controlled by their semantics stored in the corresponding

generic concepts: PhotoCamera, DigitalCamera or MemoryType, Some of their
hyper-generic parameters have values assigned, but they cannot have instances
in an appiication because they are still abstract - not all their semantics
(parameters and characteristics) are specified. For example:

o All photo camera from the reification model will support opticalZoom
up to 10,Ox value and Lithium-Ion type of batteries;

o All digital cameras will incorporate the foilowing communication
ports: USB, Bluetooth and AV-out;

• The derived atoms conclude the instantiation of their semantics and through
polymorphism they can share common values in a common super-generic atom
or even another super-derived atom:

o CyberShot camera parameter values are: maximum resolution up to
S.lMPixels and digitalZoom up to 2.0x and memory characteristic is
MemoryStick)

o PhotoSmart type of camera is similar to the other digital camera
derived atom;

o SDCard capacity parameter specifies that this class of memories
support up to 2GB and their speed for data transfer is maximum
SMBs,

At this level, the actions become more interesting because their roles are to
check the atoms behaviour based on their semantic customization and their values
at reification-level. For example, the action verify_memory_speed checks if the
installed memory type in the CyberShot not oniy is compatible to this camera, but
also supports the transfer rates of the camera's firmware.

Now, a new and clearer perspective can be obtained if the Eclipse EMF
diagram of SmartModels (Figure 19) is analyzed in this context. The previous two
sections highiighted the two main entities of SmartModels extension: the concepts
and the atoms. The atoms represent the different types of elements which the
approach can handie in the models - instances of SmartModels. The concepts are
the meta-entities of these atoms. In this approach, the concepts are described
through the generic parameters and the atoms are their instances which have a
value for each parameter of the corresponding concepts. The derived atoms are
atoms which are not provided by the meta-model itself by default. Therefore, they
are specified in a model or a set of related models. In accordance with their
definition, the atoms are abstract in general and derived atoms are concrete.

The generic concepts are composed of parameters (GParameterDefmition),
but also of characteristics (GCharacteristicDefinition). A parameter represents a
simple value (an Integer, Boolean or a predefined Enumeration). On the other hand,
a characteristic is a multiple value, often a list of complex objects. The diagram does
not include the hierarchy of the entities' basic types so it is not unnecessary
crowded (i.e., parameter of Integer type or Tuple type of Integers). The same is
true for the corresponding values hierarchy (GParameterValue and
GCharacteristicValue). Therefore, the standard primitive types and values are
replaced by EClassifier which means that the type is considered to be either a class
(including Collections, or Tuples, ...) or a predefined type (Integer, Enumeration, ...)•
The complete hierarchy of types is mostly designed to be compatible with the
hierarchy of the types of OCL. The characteristics make possible the representation
of atoms with a more complex structure. Their value domain is normally bound to

BUPT

72 SmartModels - a Meta-Model Handiing Generic Entities - 3

one or a set of parameters through thelr conditions or constraints. The final
innportant elennents of the concepts are the actions. They represent the executable
part (algorithms) of the reification. They are almost always dependent on
parameters or characteristics.

Figure 19 shows that an atom can specialize one or more other atoms just
as a concept can also inherit from several concepts. A derived atom can be buiit
from another atom or derived-atom. Here the interest is to be able to reuse a part
of the values of parameters and characteristics associated to a derived atom, and
therefore to have to redefine oniy the values which are different. This redefinition is
controlled by the rules for redefinition associated with each parameter or
characteristic.

The previous paragraphs showed that a concept represents the meta part of
an atom: it establishes the common behaviour of a set of instances of the same
atom, based on the value of its parameters and characteristics. The behaviour also
depends on the structure of the atom (other features or methods). A concept has
access to al! the information associated with the structure of an atom (or the same
information can be associated to several atoms). If there is a set of atoms that a
concept generates, it usually limits the access onIy to their common part of the
contents. As a result, it is interesting to use multiple inheritance between atoms to
specify the common part of several atoms and, in specific situations, it is convenient
to mirror the hierarchy of concepts on the atoms hierarchy.

If an atom is not explicitly attached to a concept by the meta-programmer
of the model, it will automatically be attached to the same concept as its parent.
This is also an opportunity to favour the reuse of the semantics and to preserve the
consistency of the model.

3.4.4. The instance-level

In [106] and section 3.4.3, I explained the choice to use generic atoms
instead of inheritance relationships for modelling the atoms and there are other
interesting issues concerning them. Appiying appropriately the SmartModels
principles described in the previous sections shouid lead to a much more effective
appiication building process with SmartFactory. The next paragraphs address the
description of appiications (this is also called appiication-level in SmartModels)
which capitalize the atoms of the business model. As it has been mentioned eariier,
we can distinguish two kinds of appiications:
• Applications which describe model transformations, i.e.:

o appiications which may offer relevant information for refactoring or
extending the model (creating new object-oriented programming
languages or families of digital cameras or memory cards);

o appiications which may appiy redefinitions (creating an extension of
Java language to support multiple-inheritance, SmartModels EMF
extension to support its entities or a new family of digital cameras
which extend the maximum optical zoom to a higher value);

o appiications which may search for compatibilities between entities
(like between cameras and memory types, ports, software ...)

• Applications which query, compute and update the instances of the business
model, i.e.:

o end-user appiications like Eclipse EMF Plug-in or a software product
line to produce photo-cameras or memories.

BUPT

3.4 - Key-aspects of modelling in SmartModels 73

At this point, it is straightforward that the specification of those appiications
will slightiy differ from classical object-oriented appiications, even if both rely on the
object oriented paradigm.

Intuitively, building an appiication is a process which consists of a set of
traversals of the graph of atoms corresponding to a business-model. During this
traversai, the behaviour contained in appiication facets is performed sequentially.
While these facets are processed, it is possible to trigger the execution of aspects
which ailows integrating orthogonal services. The reification of both the business
model and the appiication is handied by the meta-object protocol which contains
also additional functionalities.

A type of traversai is the main entity which influence the way an appiication
must be developed and it is called facet. The organization by facets of an appiication
draws from SOP [48] and AOP [66].

A facet represents one concern of the appiication with respect to the
business-model. This is a vertical cross-cutting of the appiications (it is itself defined
as an independent business model, so that it may also be associated with a DSL)
whereas inheritance relationship wouid provide horizontal cross-cutting which
introduces several levels of abstraction into the business model or the appiication
(the model supports hierarchies of atoms, concepts, visit entities, facets and more
generally of any first-class entity).

Each facet corresponds to a part of the treatment to be processed on one
entity. Typically one facet of a given appiication wouId rather address the same set
of atoms as the other facets (even if there is no constraint).

Therefore, SmartModels provides a new perspective over the appiication
developing process. Because a facet represents a way of traversai through the
model this approach is based on the Visitor pattern [87]. It is a design pattern
which decouples the design of complex linked object structures from the design of
functions that traverse these structures and that is why it fits very well in the
approach (in the aspect oriented language Aspect), a joint point is a particular
location in the program where an aspect may be integrated).

In this way a facet is mainly compound by a set of visit-entities. A visit-
entity implements a treatment on an entity of the business-model. It is described by
an execute method which contains not oniy the behaviour of the visit, but also a
mechanism for the description and the verification of preconditions and post-
conditions. It has a mechanism for binding the business-model and has direct access
to the properties of the entity it handies and to the context of the execution.

Also, a facet specifies:
• the business model that it addresses;
• how the business model is visited (the type of the traversai - see on page 75);
• the entities that are relevant according to the objectives, and possibly
• some additional technologies.

Technologies are defined independently from SmartModels (for example, by
an ARI or a library of classes). They contain functionalities which allow defining
more easily the appiication. For example, the DOM ARI is welcomed to manipulate
XML representation of the business models. Also, the Eclipse EMF code generator
[36] may be delegated to generate appiications on Java platform. Other Information
may be added in order to generate visit entities which fit exactiy to the expectations
of the programmer. Indeed the source code generation is essential to our approach
because it ailows the programmer, to focus onIy on the visit entities that are
addressed by the facet but also to be assisted for the description of their behaviour.

BUPT

74 SmartModels - a Meta-Model Handiing Generic Entities - 3

Organizmg facets by visit-entities offers a couple of very important
advantages:
• It is a very flexible framework which ailows an easy transfornnation of the

behaviour of the appiications;
• It is dependent on the structure of the business-nnodel and it can traverse it at

different levels of granularity;
• It has the possibility to carry infornnation during the traversai either up (toward

the root of the facet - by default the starting atom is the root atom of the
business-model) or down (toward the dispatched visit-entities);

• It has the capability of inserting orthogonal concems and of testing invariants,
preconditions and post-conditions.

The facets are classified according to the type of traversai. Thus, there are
three types of ways to run through the graph of entities, all of them deep-first
traversai, but the approach is very open and flexible for more kinds of traversals to
be proposed depending on the needs of the programmers:
• plain facet: it consist of a set of visit-entities each one of them corresponding to

one and oniy one entity of the model. The possibility to explore the values of all
the visible properties of the entity and to control the navigation policy is an open
capability shown to the programmer. In this way, he can decide what to query
and where to redirect the traversai.

• detailed facet: it is similar to the previous type, but the granularity is enhanced
as a visit-entity corresponds to a property of an entity. In this way the detail
facet will contain as many visit-entities as many properties the target entities
have.

• hide facet: the main difference compared to the other types is that this facet
hides the traversai and thus the programmer cannot control the traversai. On
the other hand there are very important advantages: the use of hide facet is
less complex and it favours the reuse of the appiication semantics of atoms
which evolve. It also can be plain or detailed.

Invariants, pre-conditions and post-conditions are assertions seen as first-
class entities and like in programming languages such as Eiffel, they can be
evaluated at the beginning and at the end of a method; they determine whether the
visit of one atom succeeded or failed. A future project is to investigate how to
describe them using the OCL [82].

Section 3.4.3 foreseen the relevance of aspects at the appiication level. An
aspect can be attached to several visit-entities or to several facets (it will be appiied
to all their visit-entities) of a given appiication. The association between aspects and
the set of visit-entities is absolutely free. They will be performed at some points of
the execution of one or several visit-entities, one or several facets (for example, to
check the validity of a constraint, to load data, to check access rights or to trace a
method call).

The expressiveness related to the specification of this set depends onIy on
the language dedicated to the definition of joint points within the facets. This
language does not require the expressiveness proposed for example in AspedJ [65]
and does not address program structures, but atoms. For example, in a business
model, if onIy one visit entity is associated with a given atom, then there will be
onIy one joint point per atom. But in the same way as it is proposed for AspedJ, it is
possible to customize one visit entity in order to integrate an aspect at different
moments: before the invocation of the visit or when its execution starts or ends. It
is also possible to distinguish (aiready implemented in the prototype) two kinds of
execution ends: the execution fails (one assertion is not satisfied) or the execution

BUPT

3.4 - Key-aspects of modelling in SmartModels 75

succeeds (all assertions are satisfied). The expressiveness of the handiing of aspects
and in particular the description of joint points shouid be handied by an independent
business model which like facets, couid be associated with a DSL; it is another
example of the seif extensible capability of SmartModels.

3.4.5. Methodology to Describe a Model

Section 3.4 explained every entity of the approach with respect to the level
it manifests. Based on this presentation this section resumes the SmartModels
methodology to describe a business model. This is a five-step process:
• To identify and to specify the basic atoms of the model,
• To identify the generic atoms,
• To define the criteria of genericity (the hypergeneric parameters and

characteristics),
• To specify the actions attached to generic and non-generic atoms,
• To specify the instances of the generic atoms (derived atoms).

The three last steps deal with the specification of the meta-level (the
concepts). Typically, these steps must be performed by an expert of the domain,
because it represents a part of the knowledge of the business model.

As a result, these may be reducing to three main entities that a modeller
has to define in order to build a SmartModels model:
• to elaborate the list of Atoms;
• for those who are generic to add their semantic information (the hyper-generic

parameters, characteristics and actions) in the list of Concepts;
• to compose the list of the DerivedAtoms setting their semantic values.

3.5. A Set of Empiric Rules for Modei Oriented
Programming

As it has been mentioned in the previous sections, model oriented
programming introduces a new level of abstraction (the model) which acts as an
autonomous entity that may receive queries from satellite appilcations. The
specification of both the model and the appiications may use, for example, object-
oriented and/or aspect-oriented approaches.

Each appiication is buiit around at least one business model. SmartModels
approach addresses the most frequent case where one business model is
predominant and on which different concerns of an appiication are plugged-in. This
is very similar to approaches by separation of concerns [59] [66].

However, in model-oriented programming, concerns are attached to a
business model instead of being weaved into object-oriented appiications which may
be executed with or without these concerns. The model has its behaviour (its
semantics), but it does not invoke itself any treatment. On the contrary, the
semantics of the model are addressed oniy when appiications query the model
entities in order to match their requirements.

In the context of Domain Driven Development (DDD) [27], a business model
may support two main categories of appiications:
• those dedicated to the computation and/or the update of information recorded

by the instances of models; their methodology is close to information systems,
and

BUPT

76 SmartModels - a Meta-Model Handiing Generic Entities - 3

• those which deals with the transformation of the model and which are
particularly relevant in the context of MDA.

Model-oriented programnning is fundamentally different from other
paradigms such as object-oriented programming (OOP). It breaks the supremacy of
programnning languages: the model is now the key point whereas the formalism
used to describe its instances plays a minor role. This is the consequence of the
collaboration between MDA [86] and generative programming [26]. Altogether,
these two paradigms contribute to link the model and its formalism(s), and this
favours the emergence of Domain Specific Languages (DSL) to make models
executable.

A new approach for the development of software must ensure that software
engineering skilis are covered and improved in comparison with object-oriented and
aspect-oriented approaches. Reuse, evolution capabilities and robustness of both
models and appiications must be addressed very carefully by model-oriented
programming.

In this context, at the end of this chapter which presented SmartModels, a
model-oriented approach, this section uses the opportuni^ to raise for discussion a
set of empiric rules. They are an attempt to put in a concrete form, lessons we
found important in order to build model-oriented software. It is a synthesis of
principles and advices that were born in the midst of this thesis research.

Therefore, this section is a proposition of nine rules classified in two
categories according to their purposes and appiications: conceptual design and
implementation. For each one of them we also point out how they address important
and practicai issues for programming model-oriented.

3.5.1. Rules for the Design Approach

1: Business Model as a first-class entity of the development process,
A business model relies on a data model and on a semantic model. The data

model contains the description of the entities involved in the business model
whereas the semantic model describes the interactions and the constraints between
those entities, but also their behaviour with respect to the business model know-
how.

A model is considered by appiications as a whole and it is queried for its
contents; it constitutes a new level of abstraction which favours global operations
such as transformation or introspection. Both of them query the model entities in
order to reuse its business know-how or to evolve both model and programs.

2; A triple independence between the model, the appUcation and the
technology.

A model is not an appiication. The model encapsulates the description of its
behaviour (its semantics), which must be independent from any further use. This
property will ensure that a business model is reusable independently from the
appiications that may address it.

Moreover, an appiication or a business model must be designed
independently from the software platform on which the appiication will be executed.
It is oniy at the very last moment that the binding with the platform technology
must be made. This property ailows the business logic to be used whatever
technology will appear in the future.

BUPT

3.5 - A Set of Empiric Rules for Model Oriented Programming 77

3: Support of generic entities.
Typically models may address lines of products and more generally a set of

entities that may have commonalities and differences, but which have close
semantics; they must be designed as generic entities which may be easily derived.

A quite common situation is that business models address a few key-entities
which are defined according to a large number of basic entities; very often, the key-
entities correspond to generic entities. Then it is particularly important: that generic
entities provide a clear vision of their semantics because they deal with a significant
part of the model semantics. Object-Oriented languages, like Eiffel, proved that the
support of generic entities (equivalent to the generic model paradigm) is an
interesting approach to ensure reuse and evolution.

4; Clear separation between semantic and data models.
The domain-specific know-how is encapsulated in business models through

the data model (reification and structuring by the entities) and the semantic model
(behaviour of those entities).

To be able to reuse the semantics when the data model evolves is an
important issue. This is particularly important in the context of model
transformations where semantics must evolve accordingly to the data-model (in the
most automatic way). Model-oriented programming must provide a clear separation
between the description of the data-model and the description of its semantics.

5; Orthogonal handling of concerns.
Rule no. 2 infers the importance of separation of concerns between the

model and the appiications. The model is under the responsibility of an expert which
captures the domain-specific know-how, whereas the appiications are handied by
the programmers. But separation of concerns must exist also within the model and
within the appiications themselves.

According to the business model, the needs are twofold:
• the semantics may be complex enough and require some modularization, and
• the pieces of semantics which are orthogonal to the original semantics must be

straightforwardiy carried out.
At the appiications level the requirements are even more important. An

appiication may contain different subjects which have to be smoothly composed for
building it up. Moreover, an appiication shouid be able to take care about the
evolution of the environment (which cannot be foreseen in advance), without
changing the appiication core.

3.5.2. Rules for the Implementation Approach

6; An adequate balance between declarative and imperative
programming.

Semantics of models shouid be described as much as possible in a
declarative way in order to specify what is expected (the ""what") but not how it is
made (the "'how"). This is one of the most important issues addressed by the MDA
approach [86]. But, it is not acceptable to carry this approach to the breaking point
where the description relies on very complex formalisms, difficult to read and to
understand. A compromise is necessary between the ""all declarative" and the "a//
programming".

7: Support of domain-specific languages.
A clear distinction has to be made between the expressiveness of a business

model and the language (textual, graphical, etc.) used by the designer for the

BUPT

78 SmartModels - a Meta-Model Handiing Generic Entities - 3

specification of the different pieces of this model. Moreover, model-oriented
programming tends to come closer and closer to the general public (ubiquitous
programming), so that the need to provide ''languages" dedicated to one business
model and even to one appiicatlon becomes more and more important. Generative
programming and MDA provide a good support to achieve this issue.

8: Openness of the development process.
To provide a meta-model and a set of related mechanisms that answer to

any need of any kind of business model is utopian from our point of view. We
promote the idea of an unified approach with very few bullt-in mechanisms, but
which can be easily adapted to further needs of modern appiications.

In particular, it is important to be able to customize the way to query
Information according to the context of use. In other words, the generation and
handiing of an executable business model must be customizable. In our approach,
aii the key-concepts which participate to the description of both the appiication and
the business model in order to make it executable are first-class entities.

9; Self-extensible capabiUty of the approach,
Model-oriented programming requires a meta-model which captures the

description of both business models and appiications, as it is mentioned in the
previous rules. This meta-model may be considered as a particular model. As it is
explained in rule no. 7, the specification of the different parts of this meta-model
may rely, for example, on a dedicated language. But many other needs required for
the development of appiications may appear.

In particular, modern appiications shouid be available as components that
may interact with each other. It is important to make the approach self-extensible.
In other words, it must be able to include other appiications and models buiit thanks
to model-oriented programming (that means buiIt with the approach itself). For
example, to handie components, a correct approach wouid be to design a model.

With these nine rules, we attempted to set a framework for model-oriented
programming. We promote the idea that an approach which intends to implement
model-oriented programming shouid try as much as possible to match the
requirements proposed by these rules. This chapter proposes our approach,
SmartModels, and next three chapters demonstrate how it addresses these rules.

3.6. Conclusion

This chapter is the central point of this thesis because it presented the
SmartModels approach which is dedicated to contribute to strategies to increase
software quality and productivity: the key elements and the methodology to
describe a model. It tries to be part of the new trends in current research
communities for software engineering. It proposes another way of developing
software: Model Oriented Programming (MOP). It is based on the Domain Driven
Development track (DDD) [27], which relies on several paradigms such as object-
oriented technology, languages for components, MDE, approaches for the separation
of concems, and generative programming [26]. It intends to enrich these
approaches in order to make easier the development of domain specific appiications.

The main SmartModels objectives are on the one hand, to clearly identify,
thanks to a meta-level, the semantics of concepts used for the modelling of a given
domain, and on the other hand, thanks to approaches of separation of concerns and

BUPT

3.6 - Conclusion 79

generative programmlng, to provide, in a modular way, the appiications related to
this domain.

Figure 18 shows the three levels of SmartModels meta-model architecture
and section 3.4 introduced every entity with respect to the level it manifests. The
presentation is decorated with two examples (a meta-model for object-oriented
languages and one for the domain of photo-cameras) which illustrate the flexibility
and expressiveness of the approach.

The meta-model of SmartModels is a core which acts like a foundation for
various appiications. Chapter 4 takes the discussion one step further and proves
that this approach, which is based on customizable genericity, provides the needed
expressivity for modelling product lines. Therefore, one of the most important
appiications, and also one of the main purposes of the approach, is to address the
description of a line of products and this chapter gives full details on how to use
SmartModels features in order to contribute for a better modelling of SPL.

BUPT

t

BUPT

4. Application to Software Product Lines

The Software Product Lines (SPL) approach is a transposition of the
technological lines of production into the world of the software. The SPL goal is to
minimize the costs of software implementation for a particular domain and the idea
is simply this: instead of developing each appiication of the given domain
separately, this approach proposes to construct all the related appiications from
reusable similar components.

The heart of the product line approach is based on a methodology for
strategic reuse of requirement specifications, software architectures, design models,
source code, systematic product line creation and improvement, components, test
cases, and the processes for building families of systems and modelling their
artifacts (see section 2.4).

The first difficulty related to this approach lies in the need to design an
architecture which shouid make it possible to define several products. The products
of a line are characterized by their similitude (also called common points), but also
by their differences (also called variation points). The management of this variability
is one of the key paradigms of the product lines approach.

For example, in a line of vehicle production, cars are manufactured starting
from a set of common elements (wheels, steering wheei, windows, headiights,
etc...), but each model can have some characteristics which differentiate it (the
horse power of the engine, fuel type, gearbox type, climate control ...). In the world
of software, the differences can appear in the same way, according to technical
requirements (the choice to use a particular encryption algorithm), commercial (the
marketing or client service rules), etc.

Another difficulty lies in the use of a product line. To some extent, the
construction of a software product (this is usually addressed as product dehvation)
consists in making a set of choices (dehvation) vis-â-vis to the variation points
defined in the product line. Evidently, some choices are incompatible between them.
In the above car example, it is clear that a car generally has oniy one engine. Then
it is necessary to choose between a petrol or diesel motorization. In the same way,
a particular choice at the time of the software derivation can exclude some
alternatives. For example, the choice of a convertible car with folding roof will
exclude the possibility of choosing a retracting roof. Therefore, a product line must
also integrate constraints which enforce coherence in the product line and which
make it possible to facilitate the choices at the time of derivation.

This chapter proposes a technique of modelling the product lines based on
SmartModels, presenting the way this approach integrates static and dynamic
concerns on the models and how to insert constraints for coherence (section 4.1).
Section 2.3 aiready introduced how UML responds and what entities it offers to the
modelling of product lines. Section 4.2 brings this work to a close and identifies
some perspectives.

BUPT

82 Appiication to Software Product Lines - 4

4.1. Modelling a Framework for Generating On-Line
Assessment Software Solutions

In order to illustrate SmartModels approach for building software product
lines, this section will introduce the exannple of how to model a framework for
generating on-line assessment software solutions; particularly, it targets the process
of deveioping e-learning deployment tools. This is inspired from the domain of web-
oriented course management systems to help tutors to customize effective oniine
learning communities and their evaluation.

Globalization has considerably affected the way education can be provided.
Ever/ knowledge provider institution has to publish and offer its expertise for a
wider readership in order to stay on top. One of the prime-time opportunities is to
build web-based software solutions in order to support distance learning. There are
so many ways to organize your class and professors can imagine so many ways to
evaluate students that the complexity of such a software system can be hard to
model and to implement. It is also very hard to foresee future education forms.

One of the main problems the companies face today is that even if the
analysis and design stages provide a perfect model, the programmers have to make
a lot of compromises when trying to implement the model using a specific
programming language and mapping to a specific platform. This problem appiies to
the process of deveioping e-learning deployment tools when trying to encapsulate
all type of possible knowledge presentations or questions from an assessment.

1
ienericConcepi GeneiicAtom

AssessmentConcept
it Time

^-CheckTimeUmitQ: Boolean

QuestlonConcept
•KorceExactAnswer Boolean

^uestlonWithlmagesConcep

•ChecklnrageTypesQ: Bootean
<y

ImageConcepI ^

icAtom

Assessment
^uizName: Strino

^uestion

Question
t9xt; String HistOfOi TT estions

_ 3uestionWithlmages

im igeLinks

Figure 20. On-Line Assessment SmartModel Class Diagram

BUPT

4.1 - Modelling a Framework for Generating On-LIne Assessment Software 83
Solutions

SmartModels tries to reduce this gap between the design and
implementation and to ensure the Independence between the model, future family
of appiications and the technology (which evolves so rapidiy). Through its small
kernel and a set of basic entities (see chapter 3), it provides a framework to
describe models and chapter 5 presents SmartFactory, a software factory to
automatically generate code as much as possible.

This means that the appiications may be re-generated at any time if the
model or the technology evolves and also the model instances can drive the
behaviour of the appiication at code generation time or at run-time (the
regeneration of the code even in the situation when there is a need for integration -
code was manually added in the previous version of the appiication - relies on the
code generator; see section 5.3.4). Therefore, SmartModels appiies MDA for SPL
and SmartFactory is reusing the know-how of the most widely used platforms for
building integrated development environments (IDEs) like SmartTools [7] or Eclipse
[35].

Foilowing the SmartModels methodology to describe a model, Figure 20
presents the SmartModels class diagram for building an automatic creator and
generator of an on-line assessment software. The designer may identify the next
main entities: the assessment, the different types of questions and other necessary
basic elements, like: images and answers. Next sections will explore SmartModels
techniques to model a product line for this software through the above example.

4.1.1. Handiing Meta-Information for Complex Family of
Entities

One of the hardest parts of creating a flexible tool for developing on-line
assessment is that there are many ways a professor can Imagine the evaluation of
students. One can decide to create multiple-choice questions and require correct
answers on all choices to mark all points. Another professor can decide to mark just
the good answers. Others may even think of a weight for each answer and subtract
points if a student makes wrong choices.

Let's imagine the requirement to automate the evaluation of a quiz which is
expected to be filled with exact answers. This can mean checking for spelling
mistakes in case of a free-form text question or labelling correctiy a set of images.

Shouid the structural entities of our model which describe the different types
of questions of the quiz be equipped with all the Information about all possible ways
to evaluate them? SmartModels is a framework which makes a clear differentiation
between the semantic Information and reification of the families of entities of a
domain. In this example, this approach can unambiguousiy separate the description
of the structural features of each question type from the concerns that deal with the
process of evaluating them.

This means that the user will define atoms oniy to encapsulate the different
structural features of each question type without having to concentrate on the way
they will be evaluated or mixing each type of question with all its possible evaluation
manners. On a meta-level, the user can concentrate on creating rules to evaluate a
quiz. More than that, he can create rules which appiy at the level of a single
question or a set of question types (i.e., how are multiple-choice questions marked)
or even rules for the whole quiz (i.e., setting a time limit to complete the
assessment or one particular question).

BUPT

84 Application to Software Product Lines - 4

4.1.2. Variation through Polymorphism and Abstraction

Product variation through polymorphism and abstraction (through
inheritance and composition in object oriented languages) are important issues in
the SmartModels approach, but this section will not over-emphasize them because
they are fundamental and in the meantime well-known mechanisms inherited from
OOP approach. However, it is important to mention that modelling through
SmartModels (which is built in the context of object-oriented technology) implies
that a meta-programmer can make use of all the benefits of object-oriented
fundamental concepts for specializing families of products.

The example of a framework to create on-line assessments includes the use
of two relationships in order to organize the model entities:
• specialization: for example, QuestionWithImages is a kind of Question which

contains one or more images on the subject of the problem raised by the
corresponding question;

• composition: for instance, Assessment contains a set of Question entities and
QuestionWithImages may refer to a set of images.

In this way the meta-programmer can continue to enrich the model by
adding other heirs to describe new types of questions. But more than that, this
statute of SmartModels appiies both at the level of concepts and atoms. This is one
of the main reasons for which this approach can be appiied for creation of families of
entities. As a consequence, here are some of the most important advantages:
• at the meta level - to extend or to refactor the model and to enhance the

entities semantic Information, and
• at the reification level - to enhance their structural properties and to reuse

entities and their properties in order to describe more specialized entities in the
same model or even in other closely related models (inheritance at the level of
models).

As it was aiready mentioned, a quiz may contain questions dealing with text
and/or images. This section considers oniy the case of questions with text and
images (imagine a question where a student has to match a set of names or
statements from one column with the corresponding images on the other column).
Figure 20 shows that this model diagram needs just littie change in the hierarchy to
encapsulate meta-information of other different question concepts. QuestionConcept
addresses the semantic Information of a general text type question and its
specialization, QuestionWithImagesConcept, concentrates on more specific
characteristics dealing with image manipulation. In this way, the instances of this
concept (the corresponding questions with images atoms) will use semantic
Information about the text column of the question through inheritance.

4.1.3. Variation through Parameterized Genericity

Section 3.4.2 presented SmartModels flexible management of genericity
through concepts which encapsulate the meta-information of an entity. It also
detailed the role of the hyper-generic parameters to describe the semantics and the
actions which drive them to guarantee the semantics control over the behaviour of
the derived entities.

BUPT

4.1 - Modelling a Framework for Generatlng On-Line Assessment Software 85
Solutions

For example, a model buiit in order to encapsulate the structures (entities)
and semantics of a tool to create on-line assessment solutions (i.e., quizzes) may
present parameters like:
• MultipleAnswerCardinality which tells if a question corresponds to a single (1) or

multiple possible correct answers (*), or
• ForceExactAnswer which expresses the requirement to accept oniy precise

answer {true) in case of expecting a name or checking for spelling mistakes, or
if it is interpreted together with the first parameter it can have the meaning of
accepting an answer onIy if all choices are correctiy set, or

• TimeLimit which adds the aspect of time limitation for the specified assessment
or question,

and characteristics like:
• PossiblelmageTypes which indicates the list of accepted picture file types (it

assumes that images are reified through basic atoms in this model).
In this context it is important to remember the SmartModels distinction

between basic and generic atoms (see section 3.4.3). An atom is generic if its meta-
information presents parameters and/or characteristics. If an atom does not need
additional semantics besides its data-model, it is called basic and it will have direct
instances within appiications.

® Atoms L
G Question

text String

A A A
O TrueFalse"]

GP OiiestionWithImages b
imâgeLinks

3 Image

A A A

«abstract->
G EnterText

3 HotSpot 1 © Drag_Drop

«abstract->
^ Labelling

A t\b V
i

S DerivedAtomŢ^

•A

O PNGImage

Q JPEGIinagr[

Q FreeFormT^^ | Q ForcedFormText | | Q LabellingPerivation |

Figure 21. On-Line Assessment Tool Atoms

Therefore, the assessment tool solution identifies the foilowing atoms (see
Figure 21):
• basic atoms: image types, answers (this choice appiies to this particular model -

these atoms did not raised any interest to add more semantic Information);
• generic atoms: a question with hyper-generic parameters, characteristics and

actions like those presented in the previous paragraph. Thus, its heirs can
imagine modelling all sorts of question types: hot-spot (allow student to answer
by selecting an image from a set), forms to entry text, drag and drop images
(set up an image which can be dragged over a list of other possible

BUPT

86 Application to Software Product Lines - 4

corresponding images), labelling (labei a set of images to match their text
descriptions), text Identification (for example, having the purpose to identify
each spelling mistake in a passage), true/false questions. The list of generic atoms
can be continued to be designed so the model can benefit of the advantages of
polymorphisnn.

4.1.4. Variation through actions to manage dynamic aspects
and constraints

What if after deploying the first version of the tool for developing on-line
assessments, the requirements are updated and the designer needs to add a new
mode of organizing the exam which was not planned at the model design stage, for
example: to enforce a time-limit. Typically a professor shouid be able to stipulate
this option when he creates the quiz, even if it was not included in the original
model, because it shouid be checked at run-time. In a classical object-oriented
approach, it wouid lead to considerable changes in the structure of entities and in
their behaviour in order to implement this enhancement.

Thanks to the aspect-oriented approach integrated in SmartModels, it
provides the opportunity to attach actions (for example: CheckTimeLimit) to each
concept to dynamically control the behaviour of entities. This opportunity joined
with the fact that we can benefit from inheritance, increases the level of flexibility of
the model: a professor may think either to set a time limit on individual questions if
he likes, or a global timer for the whole exam if the time-limit parameter is also
specified at the level of the assessment (see Figure 20).

4.1.5. Variation through Atoms Derivation

A prerequisite of this section is to remember the SmartModels distinction
between generic and derived atoms (see section 3.4.3). A derived atom is an
instance of a generic atom obtained through relevant combination of values
associated with the sets of characteristics and parameters which participate to the
definition of its generic atom (see Figure 18). Derived atoms are another means
provided by SmartModels to enrich the model and capture in the modelling phase as
much as possible the commonalities and variabilities of the domain entities.

Considering again the assessment tool example, Figure 22 and Figure 23
present a couple of possible derived atoms reifying questions with different
properties (text or labelling type questions):
• a free-form text edit derived atom is a text form question atom may have the

foilowing instances of its meta-information (see section 4.1.5 for a detailed
diagram and presentation):

o forced exact answer: false;
o time limit: none.

• or a type of image labelling can be described by:
o multiple-answer cardinality: 4 (the correct choices can be up to

four);
o forced exact answer: true;
o time limit: ^"00:05:00" (no more than five minutes);
o image types accepted: basic atoms like JPEGImage, PNGImage,

BM PI mage.

BUPT

4.1 - Modelling a Framework for Generating On-Line Assessment Software 87
Solutions

In this context, the designer can equip the on-line assessment deploying
tool with more question types in two ways:

• either to create new atoms (creating new hierarchies of atoms in case of new
entities from the target domain or creating heirs of existing atoms to obtain
specialized atoms through inheritance) or

• to derive new atoms from generic atoms in order to create new entities through
a relevant combination of parameter and characteristic values. The number of
combination possibilities is therefore limited oniy by the richness of the semantic
Information described through parameters, their ^pe ranges and relevance in
relation with other parameters from the same conceptual tree.

a Atoms [

«abstract̂ »
© EnterText

® DerivedAtomrj^

O FreeFormText | 0 ForcedFormText
n p

Time Limrt: NONE '
ForceExactAnswer FALSE

TimeLimrt: NONE '
ForceExactAnswer TRLiE

Figure 22. Edit-text derived atoms

Now the effects of setting the ForceExactAnswer parameter value (with true
or false values, or we can even imagine setting down a default value) when creating
a new instance of ForceFormText/FreeFormText derived-atom can be seen at run-
time. Other variation of this edit-text type questions may have a time limitation
which can also be specialized to be an exact period of time or a fixed date and time
value (a professor may not want to set a timer on the exam editing, but to set date
and time limit until the assignment may have to be submitted).

BUPT

88 Application to Software Product Lines - 4

Figure 23. Labelling derived atoms

The other interesting illustration wouid be to consider a labelling type of
question when the student has to associate a set of names or statements to a set of
images. A derived labelling atom can be obtained through a combination of values of
its concept parameters. If MultipleAnswerCardinality is set to then this means
that there will be a question where there will be four choices to be presented to the
student. The use of TimeLimit parameter can set a timer on this question and
PossiblelmageTypes characteristic nnay enumerate the types of images that can be
displayed by this tool {{JPEGImage, BMPImage, PNGImage}).

Enriching the semantics of the model example heips to imagine many other
possible derivations. For example, an easy and flexible way to manage the creation
of labelling questions, is obtained by adding a new parameter to specify the number
of labels and the number of images to match. In this way a professor may create a
question with ten labels from which to choose oniy the four valid names for the right
column images.

Certainly, the choice of the concepts hierarchy as well as the associated
parameters and characteristics, and the atoms hierarchy may be discussed by an
expert of the domain.

4.2. Conclusion

SmartModels approach together with its prototype (see chapter 5) wants to
form a possible and feasible way to appiy MDA principles to build SPLs. This can be
possible in Eclipse Environment [35] and EMF Project [36] and based on the
example described in this chapter, this approach proposes a way to address meta-
modelling issues, extending the know-how of the Eclipse platform. SmartModels is a
MDA approach which provides a framework to create models that capture
Information about a business-domain independent from a technology, platform or
programming language.

The main difficulties when building SPL is to deal with the variation and
derivation of the products. Here are the major opportunities provided by
SmartModels approach in order to handie these complex paradigms:

BUPT

4.2 - Conclusion 89

a clear differentiation between the semantic information and reification of the
families of entities of a domain;
a flexible way to capture meta-information through concepts (parameterized
genericity through parameters and characteristics) to handie the semantics for a
family of a domain entities;
making use of all the benefits of object-oriented fundamental concepts
(polymorphism and abstraction);
adding actions for the management of dynamic aspects and constraints which
guarantee the semantics control over the behaviour of the derived entities;
deriving atoms as another mean provided by SmartModels to enrich the model
and capture in the modelling phase as much as possible the commonalities and
variabilities of the domain entities.

Due to the growing interest in educaţional technologies, the aim of this
chapter is to explore SmartModels' approach for building software product lines and
to illustrate it through the example of modelling a framework for generating on-line
assessment software solutions. This example proved the expressiveness of
SmartModels approach to capture within a model as much meta-information as
possible. Chapter 5 will then show the next step - how to automatically generate
code on a specific platform and map to an up-to-date technology.

BUPT

BUPT

5. The SmartFactory Prototype

The purpose of this chapter is to present the implementation of the
SmartModels approach, called SmartFactory. It is a tool support which was buiit in
order to experiment and validate the approach. It deals with important
implementation issues and represents an interpretation of SmartModels meta-
modelling approach.

Two implementation prototypes are presented and I believe that both help
to better understand the interest of SmartModels. The chapter starts with a short
presentation of the first prototype developed using SmartTools platform (see section
5.1). Then, the second prototype, more elaborate, is implemented on the Eclipse
platform (see sections 5.2 and 5.3).

This work stands between the model approach and the AOP (Aspect
Oriented Programming) [66] dedicated to DSLs (Domain Specific Languages), but in
a broader context, as it uses the concept of software factory. This later includes
other notions for the design of appiications such as software components for
distributed appiications.

5.1. First attempt to build the prototype

I will address all the main aspects, from the description of the meta-model
to the achievement of the first operaţional system. Figure 24 describes the
implementation of this prototype which is based on the SmartTools technology (see
[7] [106] [107]). It represents the first step of the research conducted in the DDD
[27] framework. To notify the flexibility and the rapidity of the development with
SmartTools: the first prototype was achieved in three months. Thanks to it, I couid
prove the feasibility and the importance of SmartFactory, but I also obtained some
very insightful and helpful feedbacks in order to improve it. The second prototype of
SmartFactory is described in section 5.3.

The meta-model, whose key aspects are presented in section 3.4, is
described with the absynt [7] language which is close to the BNF. From an absynt
model instance, SmartTools automatically generates the reification of the business-
model in Java. Both the AST (Abstract Syntax Tree) - of one business-model - and
the instance of the generated AST - an instance of the business-model - are
described in XML. In order to provide an easier way to input related information, it
is possible to use the language cosynt which enables to define a concrete syntax
(textual or graphical) with one or the other AST.

In order to preserve the flexibility of the prototype (maintenance, evolution,
etc.), SmartTools adapted different visitors (fourteen in the first prototype) [107].
In fact, one visitor is created for each task to be performed; each of them couId be
replaced or removed according to the evolution of the prototype. It is not interesting
to list all of them, but they are classified in three main generation tasks: the Java
classes related to the business model,those related to appiications and other to data

BUPT

92 The SmartFactory Prototype - 5

XML ' cosynt

DTD! Absynt

AST
for the

Descirption
of

Business-Model,

Set of Visitors on AST (a total of 14)

uiCL.
Application

Aspect

Business-Model
Class Generation

Business-Model
AST</DTD Generation

Facets Generation
with ASoC facilities

o: u z u o

1

V

Definition of Atoms
Parameters & (reification)

Characteristics of the Business-Model

AST / DTD
of the

Business-Model

Actions of Models Facets of Application
(include (include

ASoC technology) ASoC technology)

Atoms & Concepts
framcwork

Meta-Information
Definition

Facet
Management

Action
Management

Aspect
Management

Assertion
Management

MOP&SetofTools Bootstrap Model
Traversai

Management of the
Extension of Entities

XML Load/Save
for Atom Instances

Figure 24. Implementation of SmartFactory with SmartTools

model representations (AST/DTD). For example, according to the Java classes
related to the business model, there are seven instances of the Visitor design
pattern: definition of hyper-generic parameters and characteristics, specification of
actions, description of assertions, reification of both generic and non generic atoms,
description of concepts.

The output of those generators is classes which rely on built-in sub-
hierarchies and on one mop which includes facilities for:
• handiing the set of instances of an atom (its extension), taking into account the

polymorphism,
• loading/serializing instances of the model from/into XML files,
• browsing through the instances of business models.

Some of the sub-hierarchies encapsulate mechanisms for handlin̂ g
assertions, actions, aspects and facets. Others provide core hierarchies dedicated to

BUPT

5.1 - First attempt to build the prototype 93

the specification of business model meta-information and to the integration of both
reification and meta-levels with the mop (see section 3.2.1).

The next two sections address the implementation of the second prototype.
Section 5.2 describes the Eclipse platform and tools and section 5.3 presents the
prototype. Section 5.2.1 particularly explains the motivation for a new prototype
and lessons learnt while developing on SmartTools platform in contrast to Eclipse
platform.

5.2. Eclipse Platform and Eclipse Tools Project

This section presents the Eclipse platform and projects used to build the new
prototype of SmartFactory. It will draw a parallel between Eclipse and SmartTools
platform, reasoning why I shifted to Eclipse and presenting the roles of its new
tools. It will introduce the Eclipse Modelling Framework (EMF) modelling and
generating tool framework with a short introduction about the generic template
engine Java Emitter Templates (JET), the Graphical Editor Framework (GEF) tool,
the development process of my Rich Client Application (RCP) on Eclipse platform.

5.2.1. Eclipse Platform

The SmartFactory first prototype was build in the framework of SmartTools.
This was the first step of the research conducted in the Domain-Driven Development
framework [27]. It is a development environment generator that provides a
structure editor and semantic tools as main features. It was buiit on Java and XML
technologies as a research project in the INRIA laboratory (http://WVÂ -
sop.inria.fr/smartools/) from Sophia-Antipolis, France. Therefore it offers
support for designing of new software development environments for programming
languages as well as domain specific languages defined with XML.

In order to be able to define a new language, SmartTools uses its own
abstract and independent defined formalism called AST (Abstract Syntax Tree).
Because of this dependency on its own formalism, because SmartTools is not yet a
very well-known project in the International research communities and because it
does not have an oniine support, a manual or technical documentation, I decided to
build the next prototype of SmartFactory on Eclipse platform.

The Eclipse Platform is designed for building integrated development
environments (IDEs) that can be used to create very diverse appiications. This very
important purpose of Eclipse and other reasons presented below determined me to
migrate SmartFactory to it:
• it lets a programmer use several different tools from the same appiication. From

the same front end, someone can combine tools for writing code with "plug-ins"
for modelling databases or testing appiications. IBM is using the Eclipse software
to provide a common foundation for its suite of development tools, giving a
disparate product set a common user interface as well as a mechanism to share
Information. This example was foilowed by all who joined Eclipse;

• it is a very fast growing project: very popular, with a lot of new tools, attracting
many companies each year;

• it offers access to a huge community of researchers, students and companies in
order to share and publish Information.

BUPT

94 The SmartFactory Prototype - 5

Eclipse is a Software Development Kit (SDK) which, in metaphorical terms,
may be compared to a machine lathe, where you cannot oniy make products, but
also make the tools for making the products.

At the most fundamental level, Eclipse is actually the Eclipse platform whose
purpose is to provide the services necessary for integrating software development
tools as Eclipse plug-ins, The beauty of Eclipse's design is that, except of a small
runtime kernel, everything is a plug-in or a set of related plug-ins (see Figure 25).

To be useful, the Platform has to be extended with plug-ins such as JDT
(Java Development Toolkit) for writing, and debugging Java programs. In this form
Eclipse Is just a Java IDE (Integrated Development Environment) and the reality is
that this is what most people use Eclipse for.

In order to build SmartFactory prototype I use Eclipse firstly to create my
own plug-ins (see section 5.3) and then as the development continues to make use
of JDT and other Eclipse tools to write and generate code.

Besides of the standard plug-in JDT, Eclipse contains PDE (Plug-in
Development Environment) which makes Eclipse easily extensible by other plug-ins.
The Eclipse platform consists of:
• a small Platform runtime kernel,
• Workbench (GUI: menus, toolbars, perspectives, views and editors),
• Workspace (to contain and manage projects),
• Help and
• Team support components.

JDT PDE

&
SmartFactory

Workbench Help

Workspace
(projects, files)

Team support

Platform runtime kerne!

Figure 25. The Eclipse Architecture

The Team support plug-in facilitates the use of a version control (or
configuration management) system. The Eclipse platform includes a client for
Concurrent Versions System (CVS) - a source control tool which is very important if
two or more people work together on a single set of files in order to track and
coordinate changes.

Although Eclipse is written in Java, it is language neutral - additional plug-
ins are available for other languages such as C/C-I-+, Cobol, and UML. But it is not
strongly platform neutral due to the decision to use the operating system's native
graphics.

Eclipse framework is using a workbench which is a single appiication window
that at any given time contains a perspective. A perspective is a pre-selected set
panes which also contain one or more tabbed views and each pane serves as an
editor {see Figure 26).

BUPT

5.2 - Eclipse Platform and Eclipse Tools Project 95

The Resource perspective is considered as home perspective, a general
purpose perspective for creating, viewing, and managing aii types of resources. It
contains, in particular, the Navigator view showing a hierarchical representation of
the workspace and all the projects in it. Other perspectives are available via the
main menu ''Window -> Open Perspective" or via shortcut toolbar (perspective
switcher). For developing SmartFactory prototype I preferred to utilize Java
perspective because:
• it contains an useful package explorer view for visualizing the Java package and

classes project structures:
• it understands Java packages
• it displays the packages as a single entry rather than as a nested set of

directories;
• it contains problems (presenting the list of errors and warnings of the project)

and properties (the list of the entities of a model properties and their values)
views for building the prototype and

• it contains console and error log (the list of error messages generated by each
plug-in) views for managing the plug-ins at run-time.

iTifiiiîSfl
Rte Ecft Navigate Search Prowt Run Wndow Hdp

^ tc •
Mavigâtw —

LL SmartModefs.&JtIri

l J 5nv3ftMocl<?i5_JefGenerdtof

Ci Snv»tMocW5_MeîdaataELtec».ecU
Sr-.artMocJe'sJ'tetdÔ aEdtcw.ed̂ c/

'dl S7V3rtMc>deJs_Tr jns/ormef _PVjgIn

Outlna
An outW-ie k r>ot a%âlit4e Consote Prottems P?opert*:s £iiu Lĉ

I hKCurze J \n Fofcter

Figure 26. Eclipse workbench - resource perspective

The platform is very flexible in the way the perspectives can be changed:
temporary super-sizing a view by double-clicking on the titie bar;
moving views around by dragging their titIe bars;
closing a view;
adding a new view: "Window -> Show View"
restoring the perspective to its default appearance: ''Window -> Reset
Perspective";
saving a customized perspective: ''Window -> Save Perspective As".

BUPT

96 The SmartFactory Prototype - 5

_ r Definea
^ Independ

Platform
Independent Model

Defme Generator Model

H Generate Code Evaluate Result

I

Define or Override Code

Fîgure 27. Using EMF framework generative tools

There are three standard types of projects in Eclipse:
• Java - the choice for developing a Java program (this is the type of project used

for developing the Built-In and Meta-Data Editor - see sections 5.3.1 and 5.3.2);
• Simple - provides a generic environment to use for documentation (this type

was not considered while developing SmartFactory);
• Plug-in Development - provides an environment for creating my own plug-ins to

integrate into Eclipse (this is the type of project used for developing the
Transformer - see section 5.3.3).

5.2.2. Eclipse Tools Project

This section introduces briefly the Eclipse main tools that I used to build
(design and implementation) the second SmartFactory prototype. They were also
very helpful to add value such as including a GUI for writing a model, automated
code generation and automated creation of rich client appiications.

The Eclipse Modelling Framework (EMF) [35] is an open source code
generation tool (see Figure 27) distributed under the Eclipse Tools Project umbrella.
It is designed foilowing most of the OMG's Model Driven Architecture (MDA) [86]
principles and it is considered to be a very good proof of concept for it.

EMF is capable of creating complex editors from abstract business models
(OMG's PIM). These editors are implemented as plug-ins for Eclipse, so EMF is not a
general-purpose code-generation tool. EMF creates feature complete
implementations including persis-tence, business model implementation (OMG's
PSM), editing framework and editors.

ecore nrwdel generator mode)

ênFeatur̂ ^̂ w
^ EClass •

k Ttr. ^

Figure 28. The correspondence between Ecore model and Genmodel entities

EMF has excellent support for an iterative development process, ailowing the
developers to change or fix the business-model or simply to change the code-
generation options (in a model called genmodel - see Figure 28) and then

BUPT

5.2 - Eclipse Platform and Eclipse Tools Project 97

regenerate the code. A user can specify which methods have been manually written,
or they were automatically generated and have been updated by the programmer,
and these methods will not be regenerated.

EMF provides the ability to save objects as XML documents for interchange
with other tools and appiications. These XML files have a "\ecore" extension and
they will capture the business model requirements. EMF is also very flexible and lets
the user define his ecore model in four ways (see Figure 29):
• Use a built-in primitive editor or other tools on the market that directiy create

ecore models (e.g., EclipseUML from Omondo - http://www.omondo.com/)
using the UML notation. The EMF sample editor is actually an EMF generated
editor, so EMF proves that it can be bootstrapped (it can be automatically
generated by itself);

• Import from XML Schema;
• Import from Raţional Rose Models;
• Import specially annotated Java Interfaces. This option is used for synchronizing

the Java interfaces aiready coded or generated and manually changed by the
user, with the ecore model and vice versa.

Raţional Rose
Model XML Schema Java

Interfaces I
Ratfbrm

Independent
Ecore Model

Figure 29. Four ways to create an EMF Ecore model

EMF includes an EMF-based implementation of Service Data Objects (SDO).
SDO is a framework that simplifies and unifies data appiication development in a
Service Oriented Architecture (SOA). It supports and integrates XML and
incorporates J2EE patterns and best practices.

Graphical Editor Framework (GEF) is another important tool we can find in
Eclipse Tools Project. It has been designed to allow editing of user data, generally
referred to as the model, using graphical rather than textual format. In this way GEF
is a very efficient assistant in building a visual editor for our entities of the business-
models.

A very important aspect of visual editing with GEF is that it provides a
default mechanism to react to user actions and mouse (mouse pressed or mouse
dragged) or keyboard events. Another significant benefit of using GEF is the fact
that it fully integrates with the Eclipse platform. Objects selected in the editor may
provide properties for the standard Properties view. Eclipse wizards may be used to
create and initialize models edited by GEF editors. In the generated editor menu a
user can add user-defined commands which can modify the model. These
commands will support by default undo/redo model alteration. Undo and Redo items
of the Edit menu may trigger undoing or redoing of GEF editing changes.

BUPT

http://www.omondo.com/

98 The SmartFactory Prototype - 5

A very powerful tool we can find in Eclipse-EMF is the possibility to generate
code. The code generator reads the Ecore model, the generator models, and a set of
code definition templates defined in a template language called Java Emitter
Templates (JET - see Figure 30). JET plays a nnajor role in the code generation
process in EMF and it heips to understand better the EMF framework.

The JET template is not likeiy to be modified by most of the EMF users;
however, in my second SmartFactory prototype I had to modify two of the
templates in order that I couid add in the generation process the semantic
information of a business-model.

JET is based on the JavaServer Pages (JSP) syntax (in fact, the JET
implementation was based on the Tomcat implementation). A JET template contains
a template for files containing Java implementation files. The framework "expands"
the various JET files to generate the Java source files.

Before going into SmartFactory implementation presentation I want to add
one last paragraph about Eclipse Rich Client Platform (RCP) - a new proficient way
to build Java appiications. I used very much this feature in developing and testing
my SmartModels business-model editor for second prototype of SmartFactory.

PIM
ecore

Import Generator
Model

Java Emitter
Templates

(JET)

EMF Models

emf.model «fnf.ecllt

Generated Code

~ 1
emr.edltor

Figure 30. From EMF Ecore model to code-generation

Because of its unique open source license, RCP was designed to gain all the
advantages of using all the technologies that went into Eclipse to create commercial
quality programs. It saves the programmer of the heavy and trivial work to
customize the menus, layouts, and other user interface elements. This is possible
because of the "IDE-ness" of Eclipse was hard-wired into it
(http://www.eclipse.org/articles/Article-EMF-goes-RCP/rcp.html) [35].
RCP, which is basically a refactoring of the fundamental parts of Eclipse's UI, ailows
it also to be used for non-IDE appiications. Version 3.1 of Eclipse updated RCP with
new capabilities, and, most importantly, new tooling support (new editor properties
to support automatic generation of RCP from the EMF generator - model framework,
new wizards) to make it easier to create plug-ins and appiications than before. In
this way an RCP appiication is able to manipulate instances of my EMF model -
exactiy as with ordinary EMF generated editors.

BUPT

http://www.eclipse.org/articles/Article-EMF-goes-RCP/rcp.html

5.3 - A New Design for SmartFactory Based on Eclipse 99

5.3. A New Design for SmartFactory Based on Eclipse

The new prototype of SmartFactory was developed on Eclipse platform.
There are seven plug-in Java projects which work together to implement the
SmartModels mop's principles and rules. In the next sections I will present thenn
with the role they have in the approach, the Eclipse features that they use and the
design choices I have made in order to build them.

Figure 31. SmartFactory Plug-ins

Figure 31 presents the SmartFactory plug-ins architecture which highiights
the links and the dependencies between them and Table 4 describes the role of each
plug-in. From the very beginning it is important to observe that all the plug-ins
make use of org.eclipse.emf.ecore tool plug-in:
• the Built-In and Meta-Data Editor use EMF Ecore both for their design and for

implementation (see sections 5.3.1 and 5.3.2 for more Information on the
manner I customized them);

• the Code-Generator uses EMF.CodeGen for automation of the code-generation
process for the SmartFactory transformed model (see section 5.3.4 for the
manner I updated this tool in order to meet the requirements of my approach);

• the Transformer deals with EMF ecore model transformation. From the design
point of view it did not really need to be described using ecore, but I still used it
for reasons of unified development of the prototype and for conformance with
the way EMF generated code for the other plug-ins.

BUPT

100 The SmartFactory Prototype - 5

Table 4. Descriptîon of SmartFactory Plug-Ins

Plug-in name
(prefix:

SmartModels)

Description

Built-In - it is the kernel of SmartFactory prototype;
- it implements the Meta-Object Protocol approach;
- it reifies the SmartModels entities.

Built-In.edit - it contains EMF content provider classes to describe
entities using the editor.

MetaDataEditor - it represents the SmartFactory Meta-Data Editor;
- it customizes the EMF ecore entities in order to support
the SmartModels entities specific properties;
- it implements the SmartModels methodology to describe a
model.

MetaDataEditor.edit - it contains EMF content provider classes to describe the
Meta-Data Editor specific entities for the editor.

MetaDataEditor.editor - it is the GUI of the Meta-Data Editor;
- it provides a wizard and EMF panes to edit a SmartModels
model;
- it is an Eclipse RCP appiication.

Transformer - it performs a model transformation from the Meta-Data
Editor format to an EMF ecore format so I can reuse the
EMF.CodeGen to leverage the code-generation process;
- it uses annotations containing Java pure code to add the
SmartModels approach value to EMF entities.

JetGenerator - it updates the EMF.CodeGen to take into account, when
generating code, the SmartModels specific annotations
attached b̂ the Transformer to the EMF ecore model.

5.3.1. The Built-In Plug-In

The Built-In plug-in represents the starting point of the implementation of
SmartFactory. It is the reification of all the entities of SmartModels and can be
distributed as a library jar file called "'SmartModels_BuiltIn.jar'', It was developed
using EMF Ecore. In order to add the Meta-Object Protocol {mop) approach to it, a
part of the code of this plug-in is manually written by me. In the next paragraphs I
will explain how I used EMF to implement each entity quoting samples fronn the
ecore file.

The Built-In plug-in has four main packages. The mop package includes the
classes used to implement the mop policy. The root of all the SmartModels objects -
any SmartModels entity which has relevant mop information for the approach - is
SmartModelsObject (see [106] [108]). This information is manually added oniy in
this plug-in and it contains Java class "C/ass" objects of the current entity, its super-
class (because all this entities are first-class elements of SmartModels) and its
concept (its semantic information).

The content of a SmartModels mop object is very similar with the previous
SmartFactory prototype buiit on SmartTools platform. I imported most of the code,

BUPT

5.3 - A New Design for SmartFactory Based on Eclipse 101

except what is automatically generated by Eclipse EMF genmodel tool. Here is an
extract of the model object for mop from the Built-In ecore file:

<eSubpackages name="mop" nsPrefix="org.smartmodels.mop">
- <eClassifiers xsi:type="ecore:EClass" name="SmartModels_MOP"
eSuperTypes="#//smartmodels/mop/SmartModelsObject">
+ <eOperations name="addIntoBxtent">
<eParameters name="javaClass" eType="ecore:EJavaClass"/> ...
+ <eOperations name="addIntoExtentNotRecursive">
<eParameters name="javaClass" eType= "ecore:EJavaClass"/> ...
+ <eOperations name="addIntoExtentRecursive">
<eParameters name = " javaClass" eType= "ecore :EJavaClass"/> ...
+ <eStructuralFeatures xsi:type="ecore:EAttribute"
name="descriptionNaine" eType="ecore : EString" />
+ <eStructuralFeatures xsi:type="ecore:EAttribute"
name="metaDescriptionName" eType="ecore:EString"/>
+ <eStructuralFeatures xsi:type="ecore:EAttribute"
name="specialisedDescriptionName" eType="ecore:EString"/>
+ <eStructuralFeatures xsi:type="ecore:EAttribute"
name="descriptionClass" eType="ecore:EJavaClass"/>
+ <eStructuralFeatures xsi:type="ecore:EAttribute"
name="metaDescriptionClass" eType="ecore:EJavaClass"/>
+ <eStructuralFeatures xsi:type="ecore:EAttribute"
name="specialisedDescriptionClass" eType="ecore:EJavaClass"/>
+ <eStructuralFeatures xsi:type="ecore:EAttribute"
name="extent" upperBound="-1" eType="ecore:EJavaClass">
</eStructuralFeatures>
</eClassifiers>

</eSubpackages>
mop information is implemented as a Java static code and it automatically

and recursively updates the SmartModels database of mops. Because of that I
decided not to let the mop package generated MopFactory to create instances of
SmartModels_MOP objects. By default, EMF generates a factory for each package
from the business-model ecore file. In my approach the creation of mop objects Is
exclusively the job of the database and it provides a full set of methods in order that
it can be queried by the meta-programmer. Another consequence of having a
database of mops is the need to design the mop containing class as a singleton. EMF
Ecore does not provide the possibility to define singleton classes, so I had to forbid
the MopFactory to create SmartModels_Mop DataBase instances.

Therefore, I chose to more cleariy separate the mop policy from the other
entities. That is why I decided to build a database for mop instead of having the
atom Atom, the root of SmartFactory first prototype, to act as a database.

It is also important to remember that in order to use the mop facility the
meta-programmer needs to initialize the SmartModels database by adding the root
of the concepts' singleton instance (for example, the lines of code below are used
when I launch the MetaDataEditor for editing SmartModels business-models. In
order to edit entities which have a mop from the Built-In plug-in or which inherit
from them, I need to initialize the mop database):

public static void initSmartModelsO{
ConceptImpl.getSingleO; }

BUPT

102 The SmartFactory Prototype - 5

If this object is not found in the database, then it will generate a java.lang.
ClassNotFoundException when it tries to load the java.lang.Class object for a
particular entity which has mop information.

The core package is actually the reification of the SmartModels first-class
entities (see section 3.3). Its structure reflects the evolving SnnartModels
architecture and aims to facilitate the reusability. That is why some of the properties
are missing (connpared to the previous SnnartFactory prototype), in order that I can
reuse aii the content of the Built-In plug-in in the Meta-Data Editor and also that I
can better specify these properties in the editor so it can take ful! advantage of the
EMF Java code generation based on the model.

The core package includes aii the SnnartModels basic entities even if some of
them are not yet fully defined, but the prototype offers a platform fiexible for future
development. It is organized as a list of sub-packages identifying the different
element customizations (some of them are imported from OFL [24]):
• atoms package - an implementation of the reification-level in SmartModels. The

organization of this package was determined by the two axes of co-ordinates
which I use to distinguish between atoms: the support for generic entities and
the support for atoms which have instances within appiications;

• concepts package - similar approach for implementation like the atoms
package-,

• behaviors package - identifying actions, aspects and visit-entities;
• customizations package - implementing the SmartModels root for meta-

definitions (hyper-generic parameters and characteristics definitions) and the
root for meta-values (hyper-generic parameters and characteristics values) for
modeling the semantics of a business-model. Customization, behaviors and
concepts packages form the implementation of the meta-level in SmartModels;

• facets package - for modeling the appiication-level in SmartModels (the facets
are not yet fully defined);

• assertions package - for implementing the OCL constraints [82] (this is
currently under investigation on how to describe and use them, therefore it is
not fully implemented in the current version of SmartFactory).

A new interesting improvement I made in this prototype is the direct access
of each entity which has mop information to its corresponding concept. This is
implemented through a method which is redefined in each class in order to return
the correct sub-type of concept thanks to the new feature in J2SE 5.0 that ailows
covariant return types. This means that a method in a sub-class may retum an
object whose type is a sub-class of the type returned by the method with the same
signature in the super-class. In this way, for each entity one can know exactiy what
the corresponding concept is and manipulate the semantic information (query the
parameters/characteristics or execute actions):

public GenericConcept getAccessToConcept(){
return (GenericConcept)getConcept(GenericAtomlmpl.class);

}
This method finds the single instance of the attached concept of an entity

(for a GenericAtom in the code example) by delegating the searching process to the
SmartModels mop database, each object providing its Java Class object as a
parameter. This is automatically generated for all SmartModels entities, also from
the other SmartFactory plug-ins or for plug-ins generated by users who create their
own business-models (see section 5.3.4).

Concepts are designed as singleton and this is an important issue of the
SmartFactory prototype implementation. I want all the entities which share the

BUPT

5.3 - A New Design for SmartFactory Based on Eclipse 103

same semantic information to have access to the same instance which hoids this
information that is their concept. Because genericity in Java does not support the
SmartModels meta-information approach (parameters/characteristics, actions, etc.),
but I want to reuse as much as possible the generative programming from EMF, I
decided not to design concepts as abstract and static classes anymore (as they were
in the first prototype), but as EMF Java generated classes adding the singleton
design pattern.

The design of parameters and characteristics in the customization package
addresses important concerns in SmartFactory. First of all, I distinguish between the
meta-definition of a parameter and its meta-value. The definition will specify the
type of a parameter (see next paragraphs on SmartModels types) and a default
value. The meta-value will have a reference to the definition to which it conforms
and the SmartModels value.

The foilowing lines are the parameter representation from the built-in ecore
model and the design is identical for characteristics:
- <eSiibpackages name="parameters" nsPrefix="org.smartmodels.core.
customizations.parameters">
- <eClassifiers xsi:type="ecore:EClass" name="SmartModels_HyperGeneric

ParameterDefinition" eSuperTypes="#//smartmodels/core/
custornizations/SmartModels_MetaDefinition">

- <eOperations name="getType" eType="#//smartmodels/util/types/
SmartModels_TypeForHyperGenericParameters"> ...
- <eOperations name="getDefaultValue" eType="#//smartmodels/
ut i 1 / values/SmartModels_ValueForHyperGenericParameters " > ...
</eClassifiers>
- <eClassifiers xsi:type="ecore:EClass" name="SmartModels_HyperGeneric
ParameterValue" eSuperTypes="#//smartmodels/core/customizations/
Smartmodels_MetaValue">
<eStructuralFeatures xsi:type="ecore:EReference" name="definition"
lowerBound="l" eType="#//smartmodels/core/customizations/
parameters/SmartModels_HyperGenericParameterDefinition"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="value"
eType="#//smartmodels/util/values/SmartModels_Value"
containment="true"/>
</eClassifiers>
</eSubpackages>

This shows that in the meta-definition I did not define the type and the
default value of the parameter as attributes, but just as accessors to them knowing
that each concrete parameter will define them. This is because Eclipse EMF does not
have covariance for the attribute types and in case of a redefinition of an attribute it
produces errors in the generated Java code.

SmartModels Meta-Value has also a fine detail in the design of the
references it defines. I decided to set the attribute containment to true for the value
reference and not for the definition reference. This is because the meta-value will
create an internai SmartModels value, but the definition is just a reference to a
meta-definition created in the parameter customization description. A value cannot
contain the definition (I do not create the definition whenever I create a value, but I
can create multiple possible values for the same definition). In the design of the
Meta-Data Editor I heavily used the possible settings for containment attribute and
there will be more examples on this issue (see section 5.3.2).

BUPT

104 The SmartFactory Prototype - 5

The util package contains all the SmartModels built-in entities which do not
have a relevant mop information, but contribute to the modelling of the semantic
information. It is structured as four sub-packages which clearly identify:
• exceptions - a set of SmartModels specific exceptions. This is an open list where

I will continue to define throwable exceptions in order to achieve a better
understanding and specification of the detail messages describing the conditions
of executing a SmartModels appiication. I will point out several exceptions in the
contexts that they may be triggered;

• types (see Figure 32) - contains the SmartModels type system which is inspired
from OCL basic types [82], from UML model and from MOF [84] architecture;

• values (see Figure 33) - contains the SmartModels value system which mirrors
the type system;

• redefinitions - contains the SmartModels possible value redefinitions used in the
reification of the derived atoms.

SmartModels provides a set of primitive types (Boolean, Integer, Real,
String) which conform with the OCL standard librar/ [82] where they are all defined
as instances of the Primitive meta-class from the UML core package. There is also a
set of collection-related types from the context of UML. Each one of them has a
correspondent type in OCL expressions. In the SmartModels approach I classified
them as Enumeration, Collection and Tuple (see next paragraphs). Tuple type was
defined from the need of capturing semantic information for entities whose
properties are defined as an Atom or Concept.

Section 3.4.2 mentioned some parameter and characteristic type examples
and in the business-model example from next chapter I will give several other
examples. There is also an important implementation discussion in section 5.3.2 on
the reason why I decided to design the SmartModels Meta-Data Editor in order to be
able to use types package modelling (using UML) and code-generation from Eclipse
EMF and conform to the J2SE 5.0 which provides multiple inheritance for interfaces,
but not for classes.

The root of the SmartModels type system is SmartModels_Type class. Figure
32 shows a clear distinction between the parameter types and characteristic types.
They are both designed to capture the semantics of the SmartModels entities, but
parameters will encapsulate basic type properties, while characteristics will describe
more complex meta-information.

The parameter types include the primitive types and what I called the
predefined types (Enumeration, Collection and Tuple). The characteristic types are
reified also by the predefined types and by what I called a user-defined type
(SmartModels Atom or Concept type). However, Figure 32 is not very clear (it does
not aim this due to the its large size anyway) in making the difference between the
way parameters use the predefined types compared to the characteristics. Indeed,
for a parameter the template of the element types for a SmartModels Collection or
Tuple type can be oniy a primitive type, while for a characteristic will be another
predefined or a user-defined type element.

As I mentioned above both the SmartModels Collection and Tuple are
template types. The Collection type has one parameter and Tuple has two or more.
For both of them this element type is of SmartModels_Type, the root of the type
system. This means I allow to recursively define complex types: i.e. a tuple type
with one or more of the element types being a collection, then a collection having
the template parameter substituted with a tuple type and so on. ^

BUPT

5.3 - A New Design for SmartFactory Based on Eclipse 105

In order to have a flexible description of the Collection type and to conform
with the OCL standard library [82] I added two more boolean attributes {isOrdered
- if the elements are in sequence order; and isUnique - if one object can be an
element oniy one time, duplicates are not ailowed) and two positive integer
attributes {minimalCardinality/ maximalCardinality - the minimum / maximum
number of elements in the collection).

By default minimal cardinality is set to O and maximal cardinality is set to
java.lang.Long.MAX_VALUE and this means there are no constraints on the size of
the collection. If minimal cardinality has a positive value then SmartModels forbids
removing elements if the size of the collection is inferior or equal to that value.
Adding an element may be also forbidden if the size of the collection is aiready
equal or bigger than maximal cardinality.

The Collection type is also equipped with many operations which help the
programmer to manipulate them in an easy and flexible way. It enables the
construction of new collections from other existing ones or from arrays. It provides
operations to add/insert/remove elements while verifying the constraints, to check
the existence of an object in the collection, to iterate over it, to easy access the
elements.

Figure 32 presents the Tuple type with a reference called elementTypes with
cardinality of 2..* to SmartModels_Type (these are the template's parameters) and
with a positive integer attribute called nrOfElements representing the number of
items contained in elementTypes. This attribute has the volatile EMF modifier which
means that at the code-generation time nrOfElements will not be a concrete
attribute, but a method which will compute this number and will return it each time
it is queried. This is an interesting feature from the point of view of the Meta-Data
Editor (see section 5.3.2).

The getDefaultValue method of the SmartModels_Type root is redefined in
each concrete type with the corresponding return type. In fact, in the root interface
I just defined an abstract method, while in the heirs there are references to the
analogous SmartModels_Value type and EMF code-generator automatically
generates accessors for them.

The isValIdRedefJnitionType is different from getDefaultValue because this
method is strictiy redefined in the SmartModels_Type' heirs. This method indicates if
a redefinition (see next paragraphs) of a value of the related type is valid or not.

The isValId method checks if a value conforms with a type. This is not
redefined in the SmartModels_Type' heirs, but it delegates the verification to the
equivalent method IsConsIstentWithType from the SmartModels_-Value (see next
paragraphs).

The association between SmartModels concrete types and Java language is
reified through manually written getJavaName methods which return as a
java.lang.String the name (if there is a direct correspondence with a Java basic
type) or the Java code that reifies it. This method is used in the SmartModels-
Transformer plug-in (see section 5.3.3) to drive the code-generating process (see
section 5.3.4).

The SmartModels values are organized in a hierarchy parallel to the types as
I can see in the diagrams of Figure 32 and Figure 33. In this way I can very easily
check the conformance of the values with the corresponding types. The root of the
values system is SmartModels_Value interface.

BUPT

106 The SmartFactory Prototype - 5

Figura 32. SmartModels Type System

BUPT

5.3 - A New Design for SmartFactory Based on Eclipse 107

5
1
IS
E (0

S
J r

i r

i ^ i

.i

• V > I V . 2 + +

II

Figure 33. SmartModels Value System

BUPT

108 The SmartFactory Prototype - 5

Then there is a clear distinction between the possible parameter and
characterlstic values taking into account the established fact that a parameter will
describe basic properties of an entity's semantic information and a characteristic
expresses a property whose value is defined by an atom/concept or a set of
atoms/concepts (enumeration, tuple or collection). This means that what I called
SmartModels_ValueOfPhmitiveType is exclusively a possible value for parameters
and SmartModels_ValueOf-UserDefinedType is for characteristics.

It is again important to understand something which is not visible from the
diagram. A parameter value can be assigned with a SmartModels_Value-
OfPredefmedType oniy containing values of primitive type, but a characteristic will
be assigned with values of Atom/Concept types. This remark is a reflection from the
same policy I have for types.

The values of the primitive types have a straightforward Java
implementation. They are Boolean (boolean in Java), Integer (int), Real (float) and
String (String). The value of an Enumeration is also a java.lang.String. The template
parameters of a Collection or Tuple can be instantiated with any SmartModels_Value
objects. The difference consists in the fact that in a Tuple value I can compose
several SmartModels values each of which has a name and can have a distinct type.

The getValue method retums the value stored in a SmartModels value. It is
defmed in the root of the hierarchy with a java.lang.Object return type and each
concrete SmartModels value holder will redefine it. The values of the primitive types
are equipped with methods to return the correspondent Java value wrapper. (i.e.
SmartModels_ValueOfType-Boolean defines a method called toBoolean which
returns a java.lang. Boolean object).

The isConsistentWithType method is the equivalent method of the isValid
from the SmartModels_Type. Here it is strictiy redefined in the heirs where the
SmartModels_Type just delegates to this method the verification of the conformance
of a value with a type.

The convertToJavaCode method is a cross-functional operation used onIy by
the SmartModels_Transformer plug-in (see section 5.3.3) and it was defined to help
the code-generation process for SmartModels values (to translate them into pure
Java language value system).

There is an interesting approach in the implementation of the values for
Atom/Concept types. Because not all Atom/Concept entities of a SmartModels
business-model have instances, I couid not integrate them with the other values
(which all have at least a java.lang.Object value). But I also need to take into
account that all I need from this types of values is the semantic Information and this
is stored in the singleton instances of the concepts. That is why I decided to
represent an atom/concept value as a java.lang.Class object. Therefore I can
integrate them in the SmartModels value hierarchy and a programmer can have
easy access to the meta-information (there are also other advantages in the future
design of the Meta-Data Editor - see section 5.3.2).

The values of Collection and Tuple types are equipped with a set of specific
operations. Among them there are methods like getConstraintCIass that returns the
java.lang.Class<T> to which elements of the collection are constrained. This also
triggers a ConsistencyException if the result is false.

In the SmartModels approach a Derived Atom can be obtained in two ways:
• through setting the values of the parameters and characteristics which

compound the semantic information of its Generic Atom; or
• through redefining the values of the parameters and characteristics of another

Derived Atom which relies on exactiy the same Generic Atom.

BUPT

5.3 - A New Design for SmartFactory Based on Eclipse 109

Knowing that, in the next few paragraphs I will introduce the notion of value
redefinition in SmartModels. The last sub-package from the SmartModels util
package is the redefinitions package and it contains all the possible redefinitions.

The list of the possible redefinitions resides on the values architecture and
most of thenn can appiy oniy to one type of value. The redefinition that imposes no
constraint is SmartModels_RedefinitionFree and this means that any value which
conforms with the corresponding type is ailowed; if this condition is fulfilled, then
the redefinition value is always valid.

There is a set of redefinitions that appiies to values of primitive types like:
Lower/Greater (and they depend on the implementation languages operators) or a
set which have sense in the context of values of type collection like:
BiggerCollection/SmallerCollection. SmartModels_RedefinitionBiggerCollection is the
redefinition described by a collection of values which can onIy have the same list of
elements like the original collection and maybe some more (it is not just size that
matters). SmartModels_Redefinitions SmallerCollection is the redefinition described
by a collection which can onIy have a smaller list of elements from the original list.
Like in the case of the bigger-collection constraint, it is not just the size which
matters (now it is smaller), but from the original list some of the elements cannot
occur anymore.

The SmartModels_RedefinitionsPairs is a type of value redefinition which
appiies to all types of values. It contains a list of valid redefinitions of type
SmartModels_RedefinitionPair, This is a part of a redefinition which has a pair of
SmartModels_\/alue: the old and new values. In most of the real worid cases it is
very useful to define for each old value to which new value it can be redefined. This
is not fully implemented in the new SmartFactory prototype mostly because of the
complexity it involves in the design of the Meta-Data Editor, but there are a couple
of examples in the business-model presented in next chapter.

Section 5.2 presented the fact that Eclipse EMF supports three levels of
code-generation. I used the first level for generating the SmartModels_Built-In plug-
in that I described in the paragraphs above. The meta-model (an ".ecore" file) from
the core EMF framework describes business-models and at generation time it
provides Java interfaces and implementation classes for all the classes in the model,
plus a factory and package (meta data) implementation class. I also presented the
adaptations that I manually made in the code in order to implement the
SmartModels principles and rules approach.

The second level of code-generation in EMF generates implementation
classes (called ItemProviders) that adapt the model classes (adapters) for editing
and display. They form a new plug-in with the same name and the ".edit"
{SmartModels^Buiitln.edit) suffix and it depends on the first plug-in. It includes
generic reusable classes for building editors for EMF models [35] which provide:
• content and labei provider classes, property source support, and other

convenience classes that allow EMF models to be displayed using standard
desktop viewers and property sheets;

• a command framework, including a set of generic command implementation
classes for building editors that support fully automatic undo and redo.

The third level of the EMF code generation facility is capable of generating
everything needed to build a complete editor for an EMF model. It includes a GUI
from which generation options can be specified, and generators can be invoked. The
generation facility leverages the JDT (Java Development Tooling) component of
Eclipse. It produces a properly structured editor that conforms to the recommended
style for Eclipse EMF model editors and serves as a starting point from which to

BUPT

110 The SmartFactory Prototype - 5

customize the meta-model. This constitutes the third plug-in with the same name as
the model and the '\editor" suffix and it depends on the previous plug-ins as it is
presented in the Figure 31.

The kemel of the SmartFactory cannot be edited (that is why I chose to call
it "Built-In") and I did not generate the editor plug-in for it. But the edit plug-in of
the SmartModels_Bult-In exists because it is used by the Meta-Data Editor (see
section 5.3.2) which relies on the Smart-Models basic entities.

5.3.2. The Meta-Data Editor Plug-Ins

The SmartModels_Built-In plug-in encapsulates the reification of the
SmartModels entities. It produces a set of Java classes for its core model and
section 5.3.1 presented the changes that were made in the code to adapt it to the
SmartModels principles and rules.

Now the prototype needs to provide also an editor in order to be able to
easily create business-models and then write appiications. To accomplish this
objective I use the powerful and open-source EMF tools.

This section presents the design of the Meta-Data Editor with respect to the
SmartModels requirements and adapted to the EMF limitations. Section 5.3.3
presents the transformations I performed on the editor output to construct a new
customized ecore file representing our model. Then the last step in order to
generate a pure Java code, but which reflects the SmartModels approach, is
described in section 5.3.4 where I customized the EMF.Codegen plug-in.

The heart of the SmartModels_MetaDataEditor plug-in is again an EMF ecore
model file. For the reason that using just the EMF framework (its UML diagram
editor) I do not have all the tools to describe all the SmartModels entities I needed
to create my own editor. In order to realize that, I enriched the sample EMF ecore
editor with support for SmartModels entities.

Before shortly presenting the editor's components it is important to review
the SmartModels methodology to describe a business model presented in section
3.4.5.

Therefore I created the SmartModelsEditor which is the root of the editor
and acts as a database holder of SmartModels entity reifications. It is the container
of these three lists and has oniy one constraint: the list of Atoms cannot be empty.
The root implements the org.eclipse.emf. ecore.ENamedElement interface [36] and
this means it inherits all the properties of an EMF EObject and I also can add
annotations and the name of the model.

For each of the three main entities of my editor I created a correspondent
model object and I named them after the original entities adding the suffix ""Editor",
They all have org.eclipse.emf.ecore.ECIass as a super-type and this choice has
many advantages:
• it benefits from the EMF (UML oriented) framework which is currently under a

rapid development and it is more than likeiy that there will be richer models in
the future;

• it saves a large amount of work to build a representation of the entities of an
object-oriented programming language (OOPL);

• it draws the modelling phase closer to the implementation language (which has
to be an OOPL);

• it heips the programmer to freely add other attributes, references or methods
which may allow him describe better the model entities.

BUPT

5.3 - A New Design for SmartFactory Based on Eclipse 111

The meta_model package is an editor extension where I put together the
SmartModels core entities customizations. It includes adapters for atoms, concepts
and derived atoms, actions, types and values for hyper-generic parameters and
characteristics. In the foilowing paragraphs I will briefly present them.

Java language does not provide the notion of meta-class and for that reason
AtomEditor defines a reference to its meta-informatlon possessor, which is its
concept. The concept of a BasicAtom is BasicConcept or one of its heirs from the
business-model or from another imported model (see section 5.3.1). EMF editors
provide this facility (importation of resources) and one of the future goals is to
investigate how to compose several SmartModels business-models. Analogous, the
concept of a GenericAtom may be one of the concepts from the GenericConcept
hierarchy.

ConceptEditor is the editor customization of the root of concepts from
SmartModels. One of their powerful properties is that through actions they can
dynamically control the behaviour of atoms in an appiication according to their
semantic Information and the set of the associated assertions (see section 5.3.1).

ActionEditor reifies the SmartModels notlon of an action. Besides the
important advantages we have seen for the atoms and concepts editor entities, I
also designed ActionEditor as an EMF model object of type
org.eclipse.emf.ecore.EOperation because it has to encapsulate the execution
(operation) which can be performed by that action. This means that I can add UML
value to an action by having the platform specify its containing class (its concept), a
list of parameters and a return type, and exceptions that may occur.

In addition to that and in order to enhance the expressiveness of an action a
user may build up three more lists in the editor:
• the list of other actions from the same concept which may be called by the

current action. Each one of them can be stand-alone actions, but also can
become parts of the current action if it needs them to execute their particular
semantic behavior. This is a good mechanism to underline the dependencies
between the actions of a concept;

• the lists of hyper-generic parameters and the list of characteristics that are
interesting for the current action. An action may not query all the parameters of
a concept, thus through these lists a user can highiight oniy the pari: from the
meta-information of its concept which makes sense for this action.

As we have seen in section 5.3.1, actions are first-class entities and
consequently the SmartFactory code-generator will create a distinct class for each
one of them and will link them automatically to their concept and vice-versa, the
concepts to the related actions. In this way I set the skeieton for future
development of the actions. Furthermore, a practicai appiication of the three lists
mentioned above is that SmartFactory will generate accessors for each of their
elements.

The next essential feature of the ConceptEditor is the capability to specify
the parameters and characteristics. They are relevant and can be specified onIy at
the level of a GenericConcept. A restriction I set in the meta editor is the lower limit
of the number of parameters. It will accept the definition of a GenericConcept onIy if
it has at least one parameter/characteristic defined. Otherwise, there is no reason to
be generic, but basic concept. There is no upper limit for the number of parameters
a user can define in a concept, but this is given by the object-oriented engineering
principles for encapsulation.

The editor provides two entities in order to define meta-information. The
commonalities between them are described in an org.eclipse.emf.ecore.

BUPT

112 The SmartFactory Prototype - 5

ENamedElement called SmartModels_MetaDefinitionCreator which is the abstract
root of all entities of the editor which handie the creation of the parameters and
characteristics. Thus, it declares accessors for the type, the default value and the
possible value redefinition of a parameter.

This data will be stored in the heirs with the right type for each fieid and as
a consequence they will automatically innplement the accessors defined in the root. I
foilowed here the sanne policy like for types and values in the Built-In plug-in (see
section 5.3.1). SmanModels_HyperGenericParameterDefinitionCreator represents
the root of all the editor parameter creators and in the same way I have the
corresponding SmartModels_CharacteristicDefinitionCreator in order to create
characteristics. More Information about this hierarchy will be given in the next
paragraphs when I will approach the architecture of the util package in the editor.

The Meta-Definition Creator also defines two methods which are not abstract
and which will not be redefined in the heirs. They both test the value conformance
with the type:
• isValidValue checks if a SmartModels_Value conforms with the type of the

related parameter;
• isValidRedefinitionType checks if a SmartModels_Redefinition conforms with the

type of the possible value redefinition of the related parameter.
The Meta-Value Creator is designed very similar to the Meta-Definition

Creator. It represents the root of the SmartModels_Value creators in the Meta-Data
Editor and it also declares two abstract methods: to access the definition of
parameters and characteristics; and to access the appropriate SmartModels.Value
wrapped in this meta-value creator. This methods will be implemented in the
concrete heirs (see more Information about value creators in the foilowing
paragraphs describing the editor util package) with the right return types.

The value creator hierarchy continues again with two abstract classes which
have oniy an architectural role to distinguish between the creators of the
parameters {SmartModels_HyperGenencParameterValueCreator) and the
characteristics {SmartModels_CharacteristicValueCreator) values.

In the meta-model package of the editor we were introduced to the roots of
the types and values creators. The util package of the editor contains the complete
hierarchies of the creators of types, values and redefinitions. They were designed in
order to maximize the use of the EMF generated editor. One of its most important
characteristic is that in order to describe a reference of an object it automatically
browses down the hierarchy of the type of the related reference and fills the context
menu with all the concrete types which it can find through polymorphism.

I made use heavily of this characteristic and defined all the possible
combinations of meta-definition types creators. It is true that I duplicated much
data, but I achieved a much better control of the editor. That is why, for example,
there is a SmanModeis_HyperGenericParameterDefinitionCreatorOfTuple and also a
SmartModels_CharacteristicDefinitionCreatorOfTuple. They both hold the same data,
but from the GenericConceptEditor point of view there is a clear distinction between
parameters and characteristics creators.

Nevertheless, it is also important to mention that I still need to add more
control to the editor apart of what I couid state through polymorphism. For
example, a parameter of type tuple can contain onIy elements of primitive types,
while the elements of a characteristic of type tuple can be of user-defined or
predefined type. In the next paragraphs I will explain why I can impose a complete
control on collections and not on tuple type creators using the polymorphism in the
Meta-Data Editor design.

BUPT

5.3 - A New Design for SmartFactory Based on Eclipse 113

The design of the type creators In the Meta-Data Editor presents two
important decisions I made in order to better express the SnnartModels types
architecture: the first one is about the reification of the collection creators and the
second one is about the reification of the user-defined type creators.

For the same reason of organizing the creators of the SmartModels types in
accordance with to their architecture in the Built-In plug-in and to better control
them in the EMF editor, the util package contains a whole sub-package of possible
collection type creators. Collection in SmartModels is a template type (it conforms to
OCL [82]). Analogous to the tuple type, the template of a parameter of type
collection can be instantiated oniy with primitive types, but for a characteristic it can
be a predefmed or a user-defined type. This means that the number of possible
instantiations of the collection template is a finite number, but for a tuple type which
can have an uniimited number of element types, this number Is Infinite. That is why
the editor can control the creation of collections in contrast with the creation of
tuples.

SmartModels_DefinitionCreatorOfCollectionOfBoolean is an example of a
collection creator which contains Boolean objects (the template is of type
SmartModels_ TypeBoolean). In this context it is obvious that the defaultValue
reference type is of the corresponding wrapper of collection of Boolean values and
the possible redefinition values reference is the editor reification of collection
possible redefinition types for Boolean.

When I designed the user-defined type creators I had to take into account
that the editor has its own dedicated entities for describing the Atoms and Concepts
and thus I couid not reference directiy from the editor the SmartModels
corresponding entities for building these types. That is what determined me to
create in the editor two new entities for describing this types:
SmartModels_TypeAtomEditor an6 SmartModels__Type ConceptEditor.

They are just substitutes in the editor for the original Atom and Concept
types from the Bullt-In plug-in and before the code generatlon phase the
transformer (see section 5.3.3) wlll replace them with the appropriate
SmartModels_UserDefinedTypes. A straightforward use of this new type surrogates
in the editor is that they are referenced from the SmartModels_Characteristic
DefinitionCreatorOfAtom and from SmartModels__DefinitionCreatorOfCollection
Of Atom (also for Concept).

The SmartModels value creators are symmetric to the type creators. The
design choices I have made were derived from the same reasons llke for types and
also to conform with the type architecture. This appiies also for both decisions I
have made for the types architecture: the editor reifies aii the possible instantiations
of the collection template values and It defines SmartModels__Va/ueOfType
AtomEditor (also for Concept) in order to describe a user-defmed value. For tuple
values I wlll need to add more control in the editor.

Each value creator from the editor contains two references:
• value which hoids the adequate SmartModels value (e.g., there Is

SmartModels_HyperGenericParameterBooleanValueCreator which hoIds a
Boolean value);

• definition which points to the editor type definitlon creator (e.g., the definition
creator of type Boolean).

The last sub-package from util contains the creators of SmartModels
redefinitlons. Llke for types and values, their hierarchy was designed to maximize
the automatic control of the creation of redefinitlons In the EMF generated editor. I
used Java multiple Inheritance for interfaces to express the common redefinition

BUPT

114 The SmartFactory Prototype - 5

types between parameters and characteristics and simple polymorphism for the
redefmition types which appiy oniy to parameters or characteristics.

For example, there is SmartModels_RedefinitionsFreeEditor which means
that the corresponding parameter can redefine its value to any value valid for its
type. This redefinition editor can be an option to any type of redefinition and that is
why it inherits from all concrete redefinition types (i.e., primitive types, collection
type, enumeration type, atom type ...)• On the other hand, there is
SmartModels_RedefinitionPairOfAtom which can be used onIy for a characteristic of
a DerivedAtom and that is why it will inherit onIy from
SmanModels_RedennitionForCharacteristicValuesOfDerivedAtom Redefined (and not
from parameter values).

This hierarchy of redefinition creators is parallel to the built-in redefinition
hierarchy and in the next phase of transforming the model (see section 5.3.3) I
needed to map each one of them to the equivalent redefinition types from the Built-
In plug-in. The mapToBuiltlnRedefinitionName method is a cross-cut function for the
editor, but it serves the mapping I need in the transformation phase and it returns
the name of the related redefinition type.

This section presented the Meta-Data Editor entities that help us write
SmartModels business-models. All of them are defined in the EMF model file called
"'smartmodels_editor,ecore". Based on this ecore model of the editor, the three
levels of EMF code-generation explained in section 5.2.2 and the Built-In plug-in
presented in section 5.3.1, EMF generates the '\edit' and the '\editor" plug-ins.

The entities of the Built-In plug-in cannot be edited by the programmer, but
they are described using the Meta-Data Editor. That is why for the editor, the EMF
generated the "\editor" plug-in which is also a Rich-Client Platform (RCP)
appiication.

At this point there are two important issues I need to explain. First of all I
need to remember that in order to be able to use the meta-object protocol {mop -
see section 3.2) I need to initialize the SmartModels kernel. This is done in the
MetaDataEditorEditorAdvisor before running the appiication.

Then I customized the wizard that guides a user through the creation of a
new SmartModels model. In order to achieve this I modified the creation of the
iniţial object in the class org.smartmodels.editor.meta_model.
presentation.Meta_modelModelWizard.

By default, the EMF generated editor provides extension points for all non-
empty packages in the ecore model. In SmartFactory there is no reason to describe
some entities independent from a model. That is why I created an object called
SmartModelsEditor which is the onIy valid container for a SmartModels model and I
suppressed all the other extension points.

Next chapter presents an example of writing a business-model using
SmartModels Meta-Data Editor. There are many references to this section and
screen-shots to better understand and visualize the EMF RCP generated editor.

5.3.3. The Transformer Plug-In

SmartFactory is a software factory that aims to maximize the use of the
tools provided by Eclipse framework. The Meta-Data Editor is generated by the EMF
CodeGen.Editor plug-in and I also want to reuse this code-generator for my
business-model. In this way I can regenerate and reuse all the evolving features
that EMF will provide.

BUPT

5.3 - A New Design for SmartFactory Based on Eclipse 115

Figure 34. Persîstence hierarchy in the Transformer

The problem is that the editor saves the resources in an XML encoding
stream, but not ecore format, because SmartModels' entities add more information
to the standard ecore entities. Therefore, in order to use the EMF CodeGen for
generating code for SmartModels models they need to be transformed according to
the ecore format.

This role is accomplished by the SmartModels_Transformer Plug-In (from
now on I will call it ""the Transformer") which can be found as a runtime library
""SmartModels_Transformer_PlugInJar" in the SmartFactory framework. This plug-in
makes a contribution to the menu bar which has the same name as the plug-in and
adds the action (called Transform) that will do the job.

The foilowing paragraphs will present the transformer architecture and will
address implementation issues. Two practicai examples of how it can be used will be
given in chapter 6.

The meta-model of the Transformer has two parts:
• a set of six components, each one of them dealing with a part of the

transformation;
• a hierarchy of classes which help the transformer to handie the different types

of model serialization.
In order to run the Transformer a user has to specify two sources: the Built-

In ecore model file (the kernel of SmartFactory - see section 5.3.1) and the Meta-
Data Editor model file (the output of the editor - see section 5.3.2), and one target:
the ecore resource where the model is stored after transformation.

BUPT

116 The SmartFactory Prototype - 5

To ease the utilization of the Transformer, if a user needs to run it as a
standalone plug-ln, I designed a wizard similar to the EMF editor where he specifies
this three files before running the Transformer. The wizard is a dialog window which
authorizes the starting of the Transformer if all three files exist. At the end of the
transformation the user will also be notified with a message dialog if the process
succeeded or not.

In the previous paragraphs we have seen the different types of models the
Transformer handies. The classes which encapsulate them constitute the persistence
package and their architecture in my plug-in is presented in Figure 34.

The Model abstract class is the root of the classes that handie the
persistency. It contains oniy the commonalities between all the classes that contract
a type of a model representation:
• fileName - the name of the file that saves the content of a model resource (XML

encodings);
• findEPackage and findECIass - utility methods used for recursive search of a

package or a class when the type (return type, super-type, etc.) of an entity is
linked to another resource (it needs to load another resource in order to make
the right association) or it needs to find the appropriate entity in the updated
model after transformation (for example in the editor I created two entities:
AtomDriverEditor and its super-class AtomPersonEditor. Now the transformer
needs to find the transformed SmartModels AtomPerson in order to set it as
super-class for the new AtomDriver).

In order to benefit from Eclipse EMF tools, equally, the starting point of my
approach, the kernel of SmartModels, and the transformed business-models, are
described using an ecore model. The transformer reifies it through EcoreMode!
abstract class which is the super-type of all ecore models managed by the
transformer. It has:
• the rootPackage reference to an org.eclipse.emf.ecore. EPackage object which is

the container of the ecore model;
• the load method which loads into memory the XML resource specified by the

fileName. It can generate a java.io.IOException if the loading fails, otherwise
the rootPackage fieid will reference the root EPackage of the ecore model. The
corresponding save method is not defined at this level because the transformer
can serialize just the SmartModels transformed model and it cannot change the
Built-In model;

• other methods used by the code-generator to build the Java full name of an
org.ecUpse.emtecore.EOass, The EMF provides for its named elements the
possibility to get the full name onIy using the EMF.CodeGen features, but the
transformer needs to generate a part of the code before (see next paragraphs).

The BuiltlnModel is a bridge between the transformer and the Built-In plug-
in entities providing them while transforming the Meta-Data Editor model (each
entity from the editor needs to be attached to the right entity from the Built-In). It
defines many accessors to entities like Basic and Generic Atoms, Concepts,
HyperGenericParameter and Characteristic Defmitions, Values, Types and so on.
They retum the EClass objects representing these entities from the loaded Built-In
ecore model. Therefore, any resource which store a SmartModels transformed
model will depend on the Built-In model resource (the EMF sample editor
automatically loads all the set of the resources from which it depends when loading
a model). ^

BUPT

5.3 - A New Design for SmartFactory Based on Eclipse 117

The SmartModels_EcoreModel deals wlth the model that results from the
transformation phase. This class brings three new things:
• It provides accessors to all packages that form a SmartModels model and which

contain the different first-class entitles (Atoms, Concepts, DerivedAtoms,
HyperGenericParameters, Characteris-tics and Actions). They are used by the
other recursive functions when searching for a particular entity;

• the create method which creates a new model. This method initializes the
SmartModels model by creating the root package and providing it to the
transformer initializer;

• the store method which saves the model into an XML resource. The Transformer
can modify and write oniy SmartModels models and that is why it provides this
feature onIy at this level;

The Meta-Data Editor model is dynamically loaded by the EditorModel. It is
also a source of data for the Transformer and acts similar to the BuiltlnModel - as
an interface to the business-model written by the editor (identifying and
implementing accessors to the SmartModels entities creators from the editor). It
differs from an ecore file as the container of the model is an
org.smartmodels.editor.SmartModelsEditor object, but beyond that the loading is
the same because it is also an XML resource.

The actual Transformer is composed of a set of six components each one of
them dealing with one of the SmartModels first-class entities. The foilowing
paragraphs will emphasize the main insights on how these components work
together to do the work. The order of launching them is not important, but it does
matter to run all of them on a model in order to have a valid transformation. That is
why in the next version of the SmartFactory prototype I will better customize the
use of the Transformer and I will add on top of it a ''manager" which will organize
the component roles (now this role is taken by the plug-in default action).

Let us first explore the common super-class of all components. It is an
abstract class because it declares an abstract method called transform that has to
be implemented by all the components. The rest of the data and the behaviour are
useful Instruments in the transformation process of every type of entity.

Each component invokes entities from both sources (the BuiltlnModel and
the EditorModel) and affects the target: the SmartModels model that results after
transformation. That is why all those three references to the models are kept in
their super-class. In addition, the Transformer interface provides to all components
a database of constants used during code-generation. For example:
• there is a standard policy of naming the accessors and here I have defined the

prefixes and the names I use;
• the standard attributes names for parameters and characteristics, for types and

values, for redefinitions, etc.;
• package names of the SmartModels entities;
• the list of constants used to name the annotations the transformer adds to the

entities in order to customize the code-generation phase (see next paragraphs
and section 5.3.4).

BUPT

118 The SmartFactory Prototype - 5

Table 5. The Transformer components

Target Operations
Concept - identifies the basic and generic concepts and buiids the

hierarchy of classes;
- adds accessors for actions, parameters and
characteristics.

Hyper Generic
Parameter

- identifies and sets the type and the default value;
- buiids the list of the redefinition values;
- adds an accessor to get the concept container.

Characteristic - idem to HyperGenericParameterTransformer
component, but dealing with the corresponding
characteristic types and values.

Action - creates the ''execute" method according to the editor
defined operation setting the right parameters and
return type;
- adds an accessor to get the concept container;
- adds a set of accessors to the hyper-generic
parameters,
characteristics and other action parts that the target
action uses.

Atom - identifies the basic and generic atoms and buiids the
hierarchy of classes;
- adds an accessor to the corresponding attached
concept.

Derived Atom - identifies the targets' generic atoms and buiids the
hierarchy of classes;
- adds an accessor to the corresponding attached
generic concept (it is the same concept attached to the
target's generic atom);
- set the hyper-generic parameter and characteristic
values;
- build the list of the possible redefinition values.

Besides data, the common behavior of all components is encapsulated in
their super-dass. Here are a parţial list of useful methods implemented at the top
level:
• initOutputModel - it parses the editor model and dynamically buiids the skeieton

of the SmartModels model identifying all the first-class entities. As a result the
model it is initialized and during transformation each component will fill it with
data;

• capName {unCapName) - they are imported from the EMF.CodeGen plug-in in
order to help the code-generators to conform to the Java code naming
conventions;

• addAccessMethodToAction and the equivalent addAccessMethodToCustomization
in order to equip the Concepts with accessors to their semantic information:
actions and parameters. As I aiready mentioned, in SmartModels approach, ̂ 11
of them are first-class entities, so both ends of the relationship between the
containing concept and the semantics (represented by the parameters.

BUPT

5.3 - A New Design for SmartFactory Based on Eclipse 119

characteristics, actions, etc.) will define a reference to the other. Also, each action
provides accessors to its interesting parameters and other action parts that it uses;
• methods to appiy the singleton pattern to the entities that reify the semantic

Information (see section 3.4.2). EMF.CodeGen does not provide the features for
describing a singleton;

• methods to implement the mop (see section 3.2);
• methods to generate code for additional SmartModels information on types and

values, redefinitlons, etc.
Table 5 briefly presents the Transformer components: the entities they build

and the main transforming actions they operate. AII of them automatically add the
mop Information and, as it was mentioned above, they implement the singleton
pattern for the meta-level entities when it is the case.

The last, but very important mention, is the way the Transformer deals with
SmartModels features that the EMF tools do not provide (I aiready assumed that the
ouput transformed model has to be an ecore model). The most significant limitation
SmartFactory has to deal with when using EMF tools and Java programming
language is that there is no support for the meta-level (the semantic information).
SmartFactory makes the compromise to solve this by:
• using the Transformer plug-in to add org.eclipse.emf.ecore.EAnnotation in order

to encapsulate the semantic information. In actual fact these comments
encapsulate Java pure code generated by the Transformer (in this way I am
prepared to change this approach for the day when EMF and Java will provide
support for meta-level);

• using the code-generator plug-in to adapt the EMF.CodeGen in order to take into
account the annotations made by the transformer while generating the code.

5.3.4. The Code-Generator Plug-In

This plug-in has the role of adding value to the EMF ecore code-generator in
order to take into account the SmartModels specific annotations attached by the
Transformer. It does not represent a phase in developing with SmartFactory (like
writing a business-model with the Meta-Data Editor or transforming it), but it reuses
the EMF.CodeGen to support particularities of my approach. As a result, the
SmartModels code-generator (from now on I will call it "'SM.CodeGen") updates the
run-time library org.eclipse.emf.codegen. ecore distributed on Eclipse as
""codegen. ecore Jar".

In the current version of the SmartFactory prototype, SM.CodeGen plug-in
affects two of the JetEmitter templates (see section 5.2.2): Class.javajet and
FactoryClass.javajet. Therefore this plug-in has another special property (Eclipse
project specific property): it is converted to a JET project and besides the common
Java builders it uses the JET builder to compile the templates. The JET builder
generates the Java classes from JET Emitter templates which in turn will generate
the Java code of the business-models for the corresponding EMF ecore entities.

More templates will be updated as SmartFactory is developing: the
util.Switch class will be customized to support different types of visits on the model
instances (in the previous attempt to develop SmartFactory using SmartTools
platform it automatically generated different kinds of Visitors [87]). In order to
clearly separate the entry points where SmartFactory updated the JET templates, I
organized all of them as distinct emitter parts, each one of them in different files
which can be included in the EMF templates when needed and updated separately.

BUPT

120 The SmartFactory Prototype - 5

Table 6. EMF Java JET Emitters adapted by SmartFactory

Name EMF Java JET
Em tter Target

Task Annotations

AddBody
OfMethods

Class EMF does not currently
support encapsulation of
method bodies in the ecore
models. However,
SmartFactory identifies two
situations when I need to
encapsulate them in order to
execute the model: the get
accessor to the single
instance of the SmartModels
entities that are singleton
and the call to the execute
method of the actions from
their concept container.

source: body
typed key:
statement

AddEReference
Information

Class it contains Information
needed to InitlalIze features
of derived atoms (concept
instantiation and possible
redefinition values), hyper-
generic parameters and
characteristics (type
Information, default value
and redefinition values).
More Information will be
added In the future.

source: value,
redefinition,
typeinformation,
conceptinstantlatlon
typed key:
statement

Addimports Class it parses the business-model
packages and adds the
required import statements
in the generated classes
according to the
SmartModels specific code
from the annotations.

source:
organizingimports
typed key:
organizing
ImportStatements

AddMOPIn
SmartModels
Objects

Class it inserts the mop - static
initializer (see section 3.2)
for each SmartModels entity.
It also offers support for
writing comments.

source: staticinit
typed key:
mopComment, mop

AddSingleton Class it inserts the specific code of
the Singleton pattern (it is
also a static initializer) for
the first-class entities that
can have oniy one instance in
a SmartModels appiication
(concepts, hyper-generic
parameters, characteristics
and actions).

source: staticinit
typed key:
singletonComment,
singleton

BUPT

5.3 - A New Design for SmartFactory Based on Eclipse 121

AddSingleton
InFactory

Factory
Class

it identifies the singleton
entities from the model and
changes the code of the
standard ""create" methods
from the EMF Factory: it
replaces the regular call of
the related constructor with a
call to get the single
instance.

none

Constants Class
and
Factory
Class

it hoids the database of all
literals used to identify
between annotations,
standard SmartModels
package names for a model,
names of features (for
example, execute for actions,
getSingle for singletons,
getAttachedConcept for
entities that have a
dependency on a concept,
etc.). This is synchronized
with the same database from
the Transformer.

none

GetSmartModels
Type

Class
and
Factory
Class

it is based on the standard
package names from a model
it identifies the SmartModels
entities. It is useful for
recognizing the singletons,
but more use-cases will be
added in the future.

none

Table 6 enumerates the SmartFactory updated entry points in the JET
generator emitters, the target EMF Java JET Ennitter that it can appiy to, the task
that it takes and the EAnnotation source and keys through which the Transformer
identifies them.

After all these phases, the resulting code-generator will act exactiy the same
as the original EMF.CodeGen with regard to the Eclipse platform. A user may create
the EMF genmodel and generate the code. But it is important to remember that
using the SmartModels.CodeGen means that the obtained implementation has to be
attached to the Built-In plug-in as it will reference the SmartModels entities (mop,
basic and generic concepts/atoms, types and values, redefinitions, etc.).

5.4. Conclusion and Future Work

For a better understanding of the interest of SmartModels approach, it was
important to give an overview of the implementation of the prototype, called
SmartFactory. This work stands between the model approach and the AOP (Aspect
Oriented Programming) [66] dedicated to DSLs (Domain Specific Languages), but in
a broader context as it uses the concept of software factor/.

BUPT

122 The SmartFactory Prototype - 5

Therefore, this chapter Introduced the tool support (SmartFactor/) for the
approach presented in this thesis (SmartModels). SmartFactory prototype deals with
important implementation issues and it represents an interpretation and validation
of the approach.

On the short ternn perspective, SnnartFactory needs some nnore work for
integrating into the editor all the other auxiliary phases: transformation of the
model and generation of the code. On the long term perspective, the prototype
needs to keep being updated to support the future enhancements in the
SmartModels approach.

Due to the purpose of separating the concems when developing each plug-in
of the SmartFactory prototype, they were all kept independent. When they will be
ready for integration, the plan is to design a plug-in called Manager, which will
control all the Transformer components and will automate both the transformation
and code-generation based on the model customized by the editor. In this case the
wizard of the Transformer will not be necessary anymore, because the goal is to
provide a complete solution so the designer can generate code automatically from
inside the Meta-Data Editor.

SmartFactory also aims to improve the techniques to write and implement
models for the description of derived atoms and appiications. Through the definition
of those models which are dedicated to enrich the meta-model itself, it looks for
improving the quality and the percentage of the source code automatically
generated so a software company can gain competitive advantages like:
• preserving company investment (future legacy code);
• foilowing rapid technology evolution;
• reacting faster to technology changes;
• improving productivity.

BUPT

6. Model Implementation Example

This chapter takes the discussion on the SmartFactory prototype a step
forward in order to illustrate, through an example, how to use the complete
solution. It presents a relevant case-study to evaluate the methodology to create
business models and the technique to generate appilcations afterwards. It also
responds to several feed-backs received after the presentation of [10] to
demonstrate the use and feasiblllty of this approach with examples.

Section O aiready introduced the example of photo cameras domain and
explored it while developing the SmartModels approach (see section 3.4). Chapter 5
presents implementation issues of the new prototype. What remains is to see how
SmartFactory prototype works step-by-step from the description of the model to
code generation. The organization of this chapter aims also to continue the
argumentation developed in chapter 4 for one of the most important appiications of
SmartModels principles towards building Software Product Lines (SPL) (see section
2.4).

A Software Product Line is a group of products that share a common,
managed set of features (SmartModels approach calls them Atoms). The products
satisfy the specific needs of a particular market or mission, and are developed from
a common set of core assets in a prescribed way (Concepts). [31] [76].

Companies achieved increased quality and significant reductions in cost and
time to market when they started to produce a set of related products (Atoms) in an
automatic line. SPL calls together the analysis, design and implementation activities
for a whole family of systems. SPL's Architecture, also called reference architecture,
is a generic architecture from which the model of each product can be derived
[119]. The role of software product line architecture is to describe the
commonalities and the variabilities of the products contained in the Product Line
(PL) and, as such, to provide a common overall structure. One of the main
implementation issues that the SPL undertakes is to use parameterization (see
sections 3.4 and 4.1): entities can be defined as generic assets with a set of
parameters (SmartModels Concepts) and each product binds these parameters in a
specific way (SmartModels Derived Atoms).

The designer of a product line that makes photo cameras may identify the
foilowing entities and parts in the process of modelling this domain:
• memory devices to storage the image or video files;
• communicatlon ports for connectivity to transfer data;
• support for different types of batteries;
• photo camera entity itself, etc.

Figure 17 visualises the EMF ecore model of the photo camera example
which this chapter will examine. The UML notatlon format can be visualized in Figure
35.

BUPT

124 Model Implementation Example - 6

Figure 35. Photo Camera UML model

BUPT

6.2 - Transforming the Model 125

The methodology to build and use models in SmartFactory is made up of
four steps:
• writing the business-nnodel using the Meta-Data Editor (see section 5.3.2);
• transforming the model using the Transfomner (see section 5.3.3) to an EMF

ecore compliant model (making use of annotations);
• generating the code using the EMF-CodeGen updated generator (see section

5.3.4) by interpreting the annotation made by the Transformer;
• building appiications implementing the Switch - a visitor on the model

automatically generated by EMF.CodeGen in the previous step.
Next sections address each one of these steps and investigate their

methodology similar to the creation of a tutorial for SmartModels designers. Each
section is decorated with screen-shots from the various plug-ins and tools used to
develop on Eclipse platform and also editor diagrams in order to better understand
and visualize the use of each component of SmartFactory.

6.1. Writing the Modei

This section explains, step-by-step, the procedures to write a business
model using the editor provided by the SmartFactory prototype. It assumes that the
platform has aiready installed the kernel of the SmartModels (the built-in kernel
presented in section 5.3.1).

The SmartModels Meta-Data Editor is a rich-client platform appiication and
therefore it can be used either as an Eclipse plug-in or as a standalone Eclipse
appiication. Using Eclipse to launch an RCP appiication, it is basically the same as
launching an Eclipse Application [36]. However, there are some extra steps required
to specify that the designer wants to use the generated appiication instead of the
default one (org.eclipse.ui.ide.workbench) and to make sure that oniy the
needed plug-ins are loaded at runtime.

Project Run Sample Ecore Editor

' Q ' - @
^ 1 Eclipse Application

2 MetaDataEditor

Run As •

Run... it
3tc j

j ^̂̂ Organize Favorites.

Figure 36. Eclipse Run menu

Before being able to actually write the model entities, there is a set of
phases to go through to create an Eclipse running configuration and to know how to
use the editor's wizard which heips to select the model's root entity. The steps
below will guide through the process of creating the Eclipse Run configuration [35]:

1. In the Java perspective click the Run menu (see Figure 36):
2. Create a new Eclipse Application configuration (Figure 37 shows some of

the tailored settings of an RCP):

BUPT

126 Model Implementation Example - 6

• g 11
Create, manage, and nn conflguratkms
•'•ê .r a tv it^r ai EcvSf

Ojnroirabors

C c ^ Aspkflfor
HetjOAacdroi

' • .lan.e î JcAcycr
; I M
J Xtn* fWr. r«:
^ TAT A«>Î

Name: î tfaĈ aEdror

; -j Man j ît - CorftgurjCon i Trscing | ̂ Efr̂ ormert : ^ Soi#ce ; Compoi i
Worksp<Ke CVMd
i-ocaton; i f) Brô se.

Pioyem to
• H.r. an apcAoarcn: [snv̂ tTtalrtŝ d̂ecktBr «Mw TwioidfdîcfE(il«AdywA«*:<sUri' "

(Un a product:

Can»MndLr»S«tţnjs
3ava E»ec'jtabie

org fdp-ic «it .core antRure»
org edc«-srV.cîxlegen.Code<jen
org «Jpoe.snf.C3dê .>tergef
wq.edţiî e.ŷ .ĉ aitê ecoce.Genefatcy

Pirtr»JR£: i>r.i5 0_03
VWArgjnerts- ' -0>5v.ţ snrtar-;̂ -kî^ /org a(vschiţ.ierc«_4 : 13

ArguT»entî. wr>32 arch -dMn -ccniotetog
6ootît'ap Entnes.

New Ofete

Figure 37. Eclipse: create, manage and run configurations - Main

3. Specify the plug -ins that need to be available when running the
appiication (see Figure 38). If the editor is executed as an Eclipse RCP appiication
than there is no reason at run-time to load all the available plug-ins - it is time and
memory consuming. Therefore, this step is just to ensure this optimization and it is
important due to the fact that, when Eclipse loads the required plug-ins to run
SmartModels_MetaDataEditor.editor.MetaDataEditorEditorAdvisor, it
automatically loads all the opţional dependencies declared by all the used plug-ins).

Create, maruge, and run configuratjans
Osate <J cQî î dUjd to l*n(±. an Et«ps« a«ii.«bDn

Cont̂ irdboos:
- # Ectpţ« Aookabon

Zâţat Acpkaton
MetaOataEdtor

=T ifvaApciK
7' J>i> a Acckati:/!

XJr*
.K Xrtt Pijg-r T?st

SWT

Mar PVjQ-rw i . ior/igiradon
Lauxh ̂ al wisp« and enabted «ît«rt«l pkjQ-ns

Oţooie and frâ nert* to binch froT) r+K fcst

Traorg • % V**armet I

• SmartMooeis.B̂ - ;i O O»
• 4- 5'nartWoOHs_BL*ln e<fc (I O 0)
• 4- Snw»̂ Mo(*b_Vt.>̂ arLW , 1 3 r'
• n- >marrK>3ek.«e<aC«a£dtor(l U 0)
• ^ rf.-ki» fH (1 O Ol

S-iMr:>4odefc MetaOatjCttof «*c» .1 O 0)
• f . - . ^ t M t . j t f e , - . : 3 C"

r i i Ev-.erroiTuc

Add R«gL««(l FVi9-rs

/ Inckjde ţptxnai deperdencei "ther covţaitng iro'vd
' ^ ncw pog ns to Ihs i*rKh ctr̂ igaafBn aLt^^

Figure 38. Eclipse: create, manage and run configurations - Plug-ins

BUPT

6.2 - Transforming the Model 127

4. Click Run and the editor was just launched (see Flgure 39).

Figure 39. The SmartFactory Meta-Data Editor

The Meta-Data Editor provides a user-friendiy wizard to start creating a
model. It requires the user to specify:
• the file system location (interpreted in the Eclipse context as a resource) where

the new nnodel will be serialized. If the file extension is not mentioned, the
appiication will not be able to locate the appropriate editor in order to
nnanipulate the objects and it will display an error message;

• the meta-model object: the root entity of the model which is going to be
described. EMF.Editor ailows by default to create a model having as root any
non-abstract class of any package from the meta-model. Therefore, in general
use case, a designer may choose to work oniy on a part of the model at a
moment, but the Meta-Data Editor deliberately removed all the other extensions
and let onIy org.smartmodels. editor.SmartModelsEditor objectS tO be
created (see section 5.3.2);

• the XML encoding used to serialize the model representation.

- N e w

rittorMoiM

F

: 'c^r. sr-:,:^ : f'c:

f-Vo- ' Jt: -. - '

' i

; j Cr.^; !

Figure 40. The SmartFactory Meta-Data Editor Wizard

BUPT

128 Model Implementation Example - 6

Now the designer arrived at the phase where he can actually start writing
the model. Figure 35 presents the UML Class Diagram of photo cameras product
line. Next pages prinţ five screen-shots of the Meta-Data Editor's main menus which
help modelling in SmartFactory:
• Figure 41 shows how to add generic concepts in a nnodel;
• Figure 42 shows how to enrich a concept with actions;
• Figure 43 illustrates how to custonnize a generic atom by setting its properties

like: the name, the attached concept which stores its meta-information, the
parent from the atom's hierarchy, etc.;

• there are two ways to derive atoms (products): by concept instantiation -
setting values for parameters and characteristics of its the meta-information
(see Figure 44), or by redefinition of a part or all values of another derived atom
parent (see Figure 45).

»MetaDataEditor Application
File EdT Ecitcr Ed tor Window Help

K: Re&xrce Set
!- file. /C /v/cfkspace/mtxjels/l̂ otccarrgr̂ f-tooel editor

Pr.Dperbes
Property value

I tyVnotator
Bdsic CortqDt

3asK Aton-.
&Erier:c Aton
Derived Atom

va :.i3te

_oâd Pesowze
R̂ .fresh

r̂ -ow Prcperries V:evv

SelecUrxi Pierit List Tr^l^^lS^îvîr
Selected Qbject: Busir̂ ss Model
Figure 41. Creating Generic Concepts in Meta-Data Editor

MetaDataEdîto Mt Mtreitcr A'mx
P̂ xrce

J f̂f. : f ri-' a . iL.-r--if

bTjrt McdtJs O-.-riTt̂ i ̂ r»- [iê r-a.x.

• r.n« ̂ •' litcr .sC/r,

P'-v^.P .
^-.V: cor. •

O: A-K-̂
L -.t c- a " 1 Tijn "-Vul̂ "; JCV . '-V;.-,̂
List -y Kvrf G^rtfi: C jjr-^^

iNxrr • i

[» --a-' ••toi-, ' -ir/-.
-/.k̂ -o T.̂ J,. , r.V-r.T,' tt

- • ̂ l-' •rr-.r'. f J JT-̂ J- >1 r. t«.r '-kĵ f Hr" .. .t

• - • rttCt *

•• TrtJ Tj>r"
r^^,: QT.apt „ TX»»:.-

- i-fL'J"

- rT'-i .-t-: :

Figure 42. Adding Actions to a Concept in Meta-Data Editor

BUPT

6.2 - Transforming the Model 129

- • f W ,C >rjrk.'5fOr>i rrr'.f ̂ irVJ -Httr
- • NtO^

B̂ - Ciirc»:̂ ; .r*5-:r-.

-r V C-reri". Ccroic' .r>'.s-e
- • r»>rvfi ' Trr»f-' v"?!"' f.tC.

Ccrtf : Corvar; O^ţj

. • Srr-r! NV.Or.' C)-u -.Ut , <.W->-».
• <• --•-)• rM'rjt.T. "tf-cn?
• • Gerv 'C Xî r̂ -̂nkwr [.VW.COT.

• •» Hvţr̂er F j iT.vSf T'̂t'lli.T .
. V r^^r ^r^^ r .<̂ rr

• &3&«: r, PoTK-.
i B̂ l- .- -.̂ .r-, r. jrcrf-.-

' Ga-erc Atrm
Gerti-.- v^T^r. •

1̂-tO Al.-r. PK-
• Af ^̂ vŢT.-iOC

• [cr-̂ .-l AiDT. ix^o
Ŝ S? om Pd ent L»sJ Tree Tabte TjCxeTret
•n-̂ rSiţX lype? rj =a«f

""Vî^'TT

Figure 43. Customizing a Generic Atom in Meta-Data Editor

• MetaDalaEditor Application • n s
Fite Bit Ed'CrWtcr HsHp

. r-
Ir RescuxiSet 1 'Vakj?

î Arom B î-/ ~"'•^ti
fidE»: "tixr îVT,m.xii.-yx'rpTt o-jjCsr Gerwp. Aton P̂ Î ;oCr•v̂ rd 1 t:̂ t>rT o-jjCsr
GenţfK j
Gere-:; Att/r Mt'r,OT\''.t>? j Iry.'̂ tîr.r:

- < OenvedMtom i '*ST>:
- SBBBBEa 1

- •»• Ca c-cr i

b-TK̂ t M.OeS 'v̂ 'r K '-r-j»̂ .C i.ro: ' M-'A rvr..-=-j i
- ' Srrar* Piarte'tr Vspfcje

. Mcotii •.•Ji-fc Ci 'vti^ : ox BHIhhbi MHM HHIHi » fnji r-Vxt.c r+.tM- Getf- c-j iOjVi • r.'J
• Snkrtŝ jTeis Vjf^C T'-ĉ r-ej:

• r.'J — ^ —1
rm<rt i-̂ ţvT Gertr-: Cj'i-rHt.jr \̂ --fr

'̂njt wjiî O-'T-yp»̂ M
! - • îrruartNVoeh Vjloe v̂ rlafr i c,-. -:f r SVxW , Vije O- T yre -v'-O'. C.3CM y

i irr^ McOils C* Tvct K̂ yn c
j - SmanMcoei-; a-tdra '-̂ îitK v*^
1 > S'nrt VVXJ?^: Vahjr •Or T-ot E-tjrre<-x:r
iŝ uctkj-. laWe ri)»eTree " I

•

SeleaecJ Ofcjecl- D»ived Alan C>t«rS-'7t

Figure 44. Concept Instantiation in Meta-Data Editor

ja

Ô r.-ec ^CtOi^riyjT
* ' J"

- ?nwfl n:^. Vji'.u O» T ̂ <rt>̂ l'.
. ,> . m-Tf

* iVr-j-t Mcctr; VA* ' Oite»-. 6 O:
• ••-.'nxt K̂ y-i Ctkiv̂ '̂ VM J.
- Smi-t Nfca.iS Var̂ ; ^ ^ e i"-»'

Sil̂ lNt'iri- C T^tl.jr'r. < ' IlVO.-
• ••••nTi M-.-H* I f-n •rrw-'M » * » a•vfc-ir-i'txi

. . V-. f t r-̂ , Jnfc. M/W « • JK- ^ i-»
, f-t-jdtfi V»^ .X T.V- o

- . -".T.TTM.VK C'T̂ -t.-'
^r.T' lA-xf^ v.-ittr' I .r-

r ^ J-.'-n

Lfdr. >-•

O&ixt f̂c'Jc»!. Ova:»^. V HJC C-^J

Figure 45. Derived Atom Redefinition in Meta-Data Editor

BUPT

130 Model Implementation Example - 6

The foilowing paragraphs will briefly present some of the EMF editor's like
properties of an entity which have had a decisive influence on the way the editor
customizes the manipulation of SmartModels objects.

An org.eclipse.emf .ecore.EReference is coDtainment if it represents by-
value content, otherwise it can reference an object which belongs to another
container (therefore, it can be even from another model and as a result from
another resource). If containment is set to true then the EMF.Edit plug-in provides
the possibility to create the corresponding object when creating the container
CCreate Child" action in the context nnenu). If containment is set to false then it
will fill up a drop-down list (if the reference has multiplicity of value one [1]) or a list
box (if multiplicity is of value many [*]) with all the instances of that object in the
model to reference them from the container.

For example, a hyper-generic parameter belongs to a GenericConcept and it
cannot be defined independent from its attached concept. In opposition to it, there
is a hyper-generic parameter value which does not contain its type (multiplicity:
[1]), but it just references it. That is why values have containment property set to
false when pointing out there type definition. In the same way the super-type of an
Atom is not created every time a user extends its hierarchy or derives new atoms.

An org.eclipse.emf .ecore.EStructuralFeature iS volatile if it representS
a computed and not a data field. For such a feature the EMF.CodeGen will not
generate an attribute, but accessors (the get method is automatically generated,
while the set method is generated oniy if the changeable property is set to true).
For example, the attribute numberOfElements of the SmartModels_TypeTuple is
automatically computed based on the number of its SmartModels_TupleParts.

6.2. Transforming the Model

The Meta-Data Editor provides the needed functionality to write model
entities compliant to the SmartModels approach. However, this is an extension of
EMF plug-in to support the creation of SmartModels key elements. In order to
benefit from the EMF standard and its tools for generating source-code, this model
needs to be transformed into an EMF Ecore compliant model. The added
functionality will be customized automatically through EAnnotations (see section
5.3.2) which will be later interpreted by the extension of the EMF code-generator
(see section 6.3).

This is the motivation for having to go through a transformation phase and
this plug-in is called the "Transformer". In order to run it, a user has to invoke the
""Transform" action form the SmartModels Transformer menu (see Figure 46).

Figure 46. SmartFactory Transformer Plug-In

To ease to work of the designer, the Transformer comes with a customized
wizard (see Figure 47) which heips to specify the target three models that th'fe
Transformer needs to do its job:

BUPT

6.2 - Transforming the Model 131

• the ecore model of the SmartModels_BuiltIn plug-in which offer support for aii
SmartModels entities (SmartModels_BuiltIn/src/model/built - in . ecore);

• the designer business-model created with the SmartModels Meta-Data Editor In
the prevlous phase (SmartModels_MetaDataEditor/src/models/
PhotoCameraModel.editor);

• the new ecore resource where the Transformer wlll save the EMF Ecore
COmpliant representatlon of the model (SmartModels_JetGenerator/src/
models/PhotoCameraModel.ecore).

These parameters are handied by the smartModeis Transformer .actions.
Transform action.

«SmartModels Transfer.,. §<!
Transformer Wizard

Pte3̂ specif'v t̂ .e foI'ov/T.g

Smartf̂ -bĉ ls Built-In File

Browse . j
SnriartModels Editor 'violei Fiit
I ̂ otcxCa.T̂ er.Br-lo-̂ :̂ !
Brov.'se ..!

SmortModels Irdnsîa med File

Bro//se... j

I Finişh' I Câncpl 1

Figure 47. SmartFactory Transformer Wizard

6.3. Generating the code

Sectlon 5.3.4 aiready mentioned that SmartFactory code-generator reuses
the Eclipse EMF code generator based on Ecore models. The transformation phase
described in the previous section explained how a model, written with in
SmartFactory Meta-Data Editor (which provides all the functionality to benefit from
the richness of the meta-model entities) now it Is converted into an EMF Ecore
compliant model.

Therefore, the SmartFactory code-generator is an extension of the Eclipse
EMF model to code-generator which adds the methods to interpret the specific
meta-information encapsulated prior to this phase In the form of entity annotations.
That is why, an important precondition in order to be able to use the SmartFactory
code-generator in such a way that it takes into account the meta-information, is
mandatory to replace the default Eclipse code-generator plug-in

BUPT

132 Model Implementation Example - 6

(org.eciipse.emf .codegen.ecore) from the run-time library ""codegen.ecorejar",
with the one updated and provided by the SmartFactory prototype.

Afterwards, the code-generation process foilows the same patterns llke for
any standard Eclipse EMF Ecore model resource.

Java - PhotoCamera/.\od€l genmode! - Eclipse Platform
'i^ Srcr.J-. fTojert R̂ r Generator Wrdyr» htelp
- • - C • O ' <4 " •' ̂ V -t ^ ̂ .y ^

-
-

• tx:.!t rî r.-je
>1 tir .perv.'̂.r̂ '̂

< Ec.Xt '̂ r̂.r -oiel
« or p -ere

- ec«CT
pf Cl'jĈ fVffct-XjCk:) OET/T-̂ XM

- t .-xg etiTKfc eri! .oc^ .̂ eccre wr̂ j-'.ates TKXle»
- X C jk;

' rîrtrrvClass -/fa
. ft: JR£ iyst-Hn i trar. [̂ e 1 x. Cjj?j
. fc PilţH" Oîţ^cterci^
. » c.vjtOEî ecore >3- -'piLQrsVorg «viţ»; emf cjdayn.ecof̂ .? 0.2̂ xtTT>e

v temcJjtfcs
rciuctes
. jetrc

AdcBPeterţrcelrJcrrnahcr. ptrc
Addl'T>paţs jebvc

. AiErgWco leonc
Add5ncjtetr. Irf actry. jptlrv.
Coretanfe Jetrr.

- GetSrnarMcĉ '3rype.)e<inL

Cldcs.̂ avatet

bijtj cccpcft>îî
pkjyr. ixrjfi^r^

«t.-DOgj-i.tm'

. -j eotLV

. ^arMc^ţte _Trarsrormef_Fiug!n

- « P+̂ rnCarr̂ rfAxtl
- • AtDT-.̂

• Baltery BccArcm
• _ Cc.TTnLnriaOorPorr -> BasicAton

^ FtotoCamera -> GaTericAton
» getAcwssToC.tnceptO P-otoC5rT!€r3S.îr,

' -j !>9ta»Car*îra - > PhctoCanera
• L MerxyyTyc»: - > Ge-ŵ t&rn

- • GDOCfiDt
L= Batrer/T̂ ţeStn -> BdSia-cncert
•:' Cĉ i.TU'icaoorPa'tSem -•> BasioCcncept

- FtTjroCafT>e<-â6ern > Gtre-tCorcept • 9etA:ce£sTĉ tr̂ ,_ChedcBatter,T>c)e() Ô BînervTyţ*
• Oed'AsPenTvcei).

Generate MccW
Ger>f att Ectt Cois
Generate EdtrCxfe

Ger erate
SetSCOĈ âife
RuiAs
DsbugAs
Team
Corrpare wnr.
Pepiace Wiin

• 9etAcoes5ToCusîDmi2at)cn_CtoOc3<Zcom(j QpocalZoom
• getArctasTaCuBfomcatwo.BatteryTvpeO BattepKTyţ» ^

» TraabcraJCaxeţySem - > p-cteCarT̂ raSem
:_ DtqtaCanvraSenr. -> PhctoCamerat^

• getA:cessToActicojaTecyBdtîery'T>ţ̂ CheckBattEryTvpe ^
• C>ec*BdttEryT>tfe() Bcxatean
• OetAccessTaflcttyi_VeriSMemcrŶ 3ctc»r •y3•.̂ /MetTOrYSpe0d ^^^
• »erifvMerxrySpeecK) ôotedr 9x»»» ft-opcrties
• grtA.:-j®;TcOLSîDfnadt)ort_i>QtalZor>.-n() I>?taiZoc<T.
• .̂ ÂxessToCustDmlzatcrU-bsAutD̂ ^ HasAutoFoiB
• 9?tAcL-e£sTcC<.6tDmizabcn_MefTor>() • Memarv
• •5e<A'xeEsToOjsa>Tic3bcr,jIommuVat)or̂ ^ CcmnrxrwalîcrPcrts

» i MpfncTvSOTTi - > GerKr«:Cortep*
- » Deiivej_atcfns

j TrKtDoaâiC3merâ-> PhotcCam«-a
•J Cvte-SÎTrt -> D?ati*Câmera

• vatje.CcocsiZoom
,dfeje_I>gitaI2<xini Sn\TlMx»ets_ĥ >perGeriercPa-ametErVdlue

' xatjî_Peso»Jt>on Smat̂ toi-feJMwGengr̂ ParafnîtErvaLie
<,alukî_hteA»jtcFx>Js : Smar>tKjete_HypşrGer»'kP:rarieteTVaiuf

- d̂lue.NtefTory SnwrţNVxfete.Charactfir.sbcVdkje
o. vaKje.ComrnLTucaOcrPorts Smarr?-1odete_CharacErisdcv̂ j6

2 PtxtoSmrt - > Dî talCamera
u - > Memor/Type

• r SDCrd - > DlQtflCamera
- «P-rarneter̂

- " OpOcaiZocim - >
^ typB Sma-rtodrt.TypeirtegH' • getArcessTcCcrceptO ' PtTotcCjfr̂ raSen

iî tJ F.tmType ->
- L t>ptaCoom Ŝ âr:̂ toieis_l-̂ ĉ cfC-<̂ e•KParamee2rD̂ î
^ HasAotDfcojE > Smjtf-txlK.HyixrGereicPa-ameCerDefr̂ • ResoUw.-̂ ?m»tMDde»5_hMwGenart.J3»atneteriDef
• " CapacT. >
• _ voeed - > SrrvarlSVxfeî .hKfwrGererk-̂ 'flraiTwtEfOe»̂
• Cha-acterisdcs
> ii BattervType - > 5̂ Mr̂ t<le<s_CraracIsf sftcDefr«ix,
- L' Ntemon- 5 SmĴ 1ot̂ _Châ >:aer̂ st)c£>rfr<̂ crl

tvre T ̂ efttnm
• QetAccsssToCorfert.) DigtaCafneraSwr

« Q Cc-a - ̂ SrriarlMcde<s_ChB̂ act̂
• Acbons
» r. OwrkBdfer, T>ţ» > Voor, - L Vff IfvMenvrvSpeed - > Acbon

mexeoJtei) Sooi^.
• geMcc«sToCanceptî 1 Dii/ţa(Camer.£e(T>
• Sipeed
• ijfetA:c>̂ TcCLBtofnl?at>ĵ _»-\eff».ry-' ̂ Mwnc/»

Figure 48. SmartFactoiY Code Generator

BUPT

6.4 - Conclusion 133

6.4. Conclusion

This chapter presented the use of tool support for the SmartModels
approach. SmartFactory prototype deals with important implementation issues and
this chapter exemplified its utilization. It explores a relevant case-study from the
domain of lines of production of photo cameras, in order to evaluate the
methodology to create models and the technique to generate appiications
afterwards.

It is a step-by-step description on how to write a nnodel in the prototype's
meta-editor, how to transform it to an Eclipse EMF Ecore compliant model (making
use of annotations) in order to reuse the EMF code generator and then how all of
this is setting the stage for building the modelled domain appiications.

The purpose of this chapter was to demonstrate, through a real case
modelling scenario, the feasibility of the approach and how easy it can be exploited
once the know-how of the domain is encapsulated in a SmartModels model.

BUPT

BUPT

7. Conclusions and Perspectives

The worid of software engineering arrived to a paradigm shift from object
technology to model technology, from object composition to model transformatlon.
From objects and components, we can see other evolving trends llke: processes,
rules, services. Therefore, ""model once, generate everywhere" Is the assertion that
put a mark on the paradigm shift generated by the MDA, but the road to model
engineering takes time.

In the past two decades, there were many changes in computer science that
had an influence upon the way an appiication must be developed:
• The emergence of Internet which implied appiications no ionger stand-alone, but

rather distributed. Therefore, from now on data communication between
appiications and users must be taken into account during the whole appiication
life-cycle. One important point is to choose a well adapted data exchange
format.

• The proliferation of new component technologies. It is difficult to choose the
right and most promising. For instance, to obtain a component based
appiication, a developer must choose between, at least, three component
technologies: CCM (CORBA Component Model), EJB (Enterprise Java Bean), or
Web Services.

• The widespread of computer science. Users may have now different knowledge
levels, different needs, a wide range of visualization devices, and specific
activity domains.

• The market pressure: in order to be efficient and competitive a company must
quickly and cheaply adapt its software to new user needs and technologies.
Time to market a software product is smaller and companies face a huge
pressure on this aspect, but this factor shouid not shortcircuit the absolute need
for quality.

To cope with these changes, appiications need to be more open, adaptable
and ready for fast evolution. The object-oriented approach does not provide all the
solutions even if it represents a valuable basis for the description of further
approaches. This remark can also be appiied to component-based software
engineering paradigm. In particular, they do not provide a correct answer to the
continuous evolution of the technologies: keeping appiications up-to-date according
to the evolution of technologies is too much time-consuming.

This thesis promotes the idea that the most promising way to address
software engineering is to provide an approach centred on models which captures
the know-how of a domain, independently from both the software platform and the
possible appiications.

BUPT

136 Conclusions and Perspectives - 7

7.1. Contributions

The state of software engineering art (see chapter 0) drew the map of a
whole set of new programming paradigms and ennergent ideas into MDA approach
such as: Domain Driven Development (DDD) [27], Unified Modelling Language
(UML) [80], Aspect Oriented Programming (AOP) [66], Subject Oriented
Programming (SOP) [48], Component Programming [100] [49] and generative
programming [26]. Therefore, now it is no more important to develop oniy one
software appiied to a particular problem, but rather to design and develop a line (or
a family) of software (SPL) [76] which takes into account features that may vary
and makes it possible to minimize the costs and time of realization.

In this context, this thesis concentrates on providing a solution to respond to
two main questions:
• How to develop model-oriented software (see chapter 3)? In other words, it

presents SmartModels approach which offers a flexible and easy way to describe
the know-how of a business domain into models independent from the
technology. Technology evolves continuousiy in all aspects - platforms,
programming languages, etc., and as a result it is important for companies to
find a solution to avoid investing in placing their know-how directiy at the level
of a software platform, and to invest to a meta-level instead (using
parameterized genericity).

• How to build software product lines (see chapter 4)? In other words,
SmartModels provides a solution for describing concepts - a new method of
abstracting the domain entities into the model level, methods to handie the
commonalities, but also the differences between products, which in addition call
for the need to impose constraints. As a result a company gains in terms of
productivity and adaptability. It also fosters new opportunities for easier
evolution of the semantics of the domain entities and for better reusability which
again results in increasing companies' productivity.

Therefore, the thesis aims to take part in the modelling and the use of
software product lines and the foilowing sections identify its main contributions.

7.1.1. Defining an approach - SmartModels

SmartModels is a technology neutral approach which introduces a new
meta-level on top of the classical programming entities. It deals with meta-
modelling issues: besides OOP inheritance concept, the integration of genericity
concept is an important ingredient for reuse and handiing product variability. It
intends to enrich the MDA emerging approaches in order to make easier the
development of domain specific appiications. This approach is original and may be
distinguished from other approaches by the foilowing characteristics:
• it introduces on top of the entities which structure the model (reification level -

see section 3.4.3), a semantic layer which enables to define and factorize the
basic functionalities related to the domain (see section 3.4.2);

• it provides a set of facilities, which relies on the two levels of the model (data
and semantic models), in order to quickly build appiications related to the model
(see section 3.4.4);

BUPT

7.1 - Contributions 137

• it ensures a clear separation between the model and the technologles which
make the model executable by a software platform (see section 4.1).

7.1.2. Developing a soiution based on models for product
derivation in SPL

SmartModels proposes a technique (see chapter 4) for the integration of
static and dynamic concerns In the models and clear entry points to Insert
constralnts for coherence. Product varlabillties are handied through:
• a clear differentlation between the semantic Information and reification of the

familles of entitles of a domain - SmartModels unambiguousiy separates the
descrlption of the structural features of each entity of a model from its
semantics (see section 0);

• fundamental object technology well-known mechanisms like polymorphism and
abstraction (see section 4.1.2);

• flexible management of genericity through concepts which encapsulate the
meta-information of an entity - it is important to survey the role of the hyper-
generic parameters to describe the semantics (see section 4.1.3);

• a good control over the dynamic aspects and constralnts which insures model's
consistency and which also guarantees the control of the semantics over the
behaviour of the derived products - SmartModels actions (see section 4.1.4);

• deriving atoms in order to enrich the model and capture in the modelling phase
as much as possible the commonalities and variabilities of the domain entities
(see section 4.1.5).

7.1.3. Providing tool support - SmartFactory

The purpose of the tool support is to experiment and validate the approach:
SmartFactory prototype deals with important implementation issues and represents
an interpretation of SmartModels approach. It reduces the gap between modelling
methodologies and programming languages, between the system's architects and
the programmers. This work stands between the model approach and the AOP
(Aspect Oriented Programming) [66] dedicated to DSLs (Domain Specific
Languages), but in a broader context as it uses the concept of software factory. It
provides a Meta-Data Editor, a mechanism for model transformation to be compliant
with Eclipse EMF standard [36] and extends the EMF code-generator to support
SmartModels approach features (see chapter 5).

AII of the contributions mentioned above are accompanied by concrete
examples for better assessment of SmartModels approach (see chapter 3 and
chapter 4) and SmartFactory prototype (see chapter 6). They aim to clearly
exemplify the modelling methodologies proposed by the approach which harmonize
with the MDA principles. However, a new approach for the development of software
based on models must ensure that software engineering skilis are covered and
improved in comparison with object-oriented and aspect-oriented approaches.

BUPT

138 Conclusions and Perspectives - 7

7.2. Limitations

Trying to predict the future achievements of modelling approaches in
software engineering, as others have discovered, is risky. It is clear that the
methodologies and technologies are changing so fast that SmartModels must
continue to develop in order to keep up with the new trends and paradigms that
emerge. Therefore, this section presents some limitations of SmartModels from the
viewpoint of the current state both of the modelling art in general and the solution
proposed by this approach:
• The niche, to which this approach appiies, is the object-oriented software

modelling and there is no effort spent or solution explored for the legacy
software where the know-how is not from the worid of object-oriented;

• The code generator relies on the efforts of Eclipse platform and therefore the
adaptation of the implementation according to the execution contexts is bound
to these approaches. They gather an important number of research communities
and record an important progress right now, but still do not have support for all
abstract entities of my approach. For this reason, the SmartModels' entities
need customization in order to express at the implementation level the
SmartModels' semantics and current solutions are not fairly straightforward
(i.e., see section 6.2 on Class JetEmitter);

• There is a slightiy more emphasis on designer effectiveness, productivity and
foilowing the technology evolution than correctness and quality. This is an
important issue as the percent of the code automatically generated is still small
and therefore, an appiication continues to require the input of the programmers.
This means that the potential of programming errors is still high and testing
phase still needs a long time. It also assumes that coding just some
functionality in specific entry points in the code aiready generated automatically,
may be harder to implement in isolation (not building the whole component
means the need to understand well the parţial solution).

• There is no formal method defined for testing and validation other than the
general procedures from software life cycle.

7.3. Perspectives

At the beginning of working on this dissertation, this thesis assumed that
because of the wonderful unifying properties of the MDA, the transition from object
technology to modelling technology will bring huge conceptual simplification to the
software engineering domain. Nevertheless, it surely did partially, but the road to
model engineering takes time to fulfil all the promises. Therefore, I am fully aware
that this is also particularly true for this thesis; although we have to admit that the
today's software complexity and market pressures are bigger challenges to respond
to, than object technology had to face before.

After first presentations of both, the approach and the prototype, [103] and
[107], there were interesting insights and helpful feedbacks for improvement. This
thesis aiready deals with some of them like: genericity integration (section 3.1 and
3.4.2), meta object protocol and component technology (section 3.2.1), a solution
for domain driven development of appiications (section 3.4.4), a methodology for

BUPT

7.3 - Perspectives 139

describing models (section 3.4.5), software product lines support (chapter 4),
migration of the prototype to standard tools (like Eclipse, see section 5.3), simple
exannples for the approach assessment (chapter 6).

This section presents the most important issues to address in the future and
the order foilows the same taxonomy as for contributions (see section 7.1).

7.3.1. SmartModels approach

Firstly, from the perspective of the SmartModels, it is important to continue
the analysis of the meta-modelling approach itself in order to be more expressive
and intuitive for designers and meta-programmers who are used with UML
representations and their tool support ([89]). This approach is not sufTidentlv
explicit or comprehensive to ensure consistent and interoperable implementations
made by architects or programmers who use the meta-models.

Secondiy, this research is mainly theoretical because the focus is on
providing a way to model and use software product lines in a real model-oriented
fashion, and not to implement industrial tools and support for architects. A new
approach which tries from the very beginning to be industry-friendiy will fall in a
position to face many temptations to make compromises to favour the
implementation instead of developing the semantics without this stress. Although I
believe that this work is not far from answering this kind of challenges, more
investigation is needed to offer a solution in this respect.

However, as an effect of the previous statement, SmartModels has to
increase the semantics control over the behaviour of the modelled entities in the
future appiications. Even though I believe that this approach makes important steps
in reducing the gap between the generic entities in the meta-level and their
instances at the appiication level, the control upon the derived entities at execution
time wouid be an interesting topic to study.

Then, as for any new approach, it is essential to keep on envisioning future
trends on meta-modelling techniques for a new and better capture of the semantics.
SmartModels, the approach developed by this thesis, does not advocate a pure top-
down process based on models. It takes into account the practicai methods and
tools used by designers (especially the UML), but their concern is more bottom-up
than handiing generic concepts and writing abstract diagrams. Therefore, the
current industry adopted methods have to be integrated in the approach as much as
possible, but this dependency shouid be reduced to minimum when proposing a new
one.

It is also important to provide more ways for semantics transformation of
both models and appiications when they evolve toward another model or appiication
[105]. Through SmartModels' meta-level, the concepts allow classification and easy
handiing of model fragments which is useful is particular contexts. At this level, I
believe wouId be interesting to envisage support for design patterns semantics-
oriented and maybe support for recognition of pattern relevance.

7.3.2. SmartModels' support for SPL

The main appiication of SmartModels approach is to support SPL I have
decided to concentrate my efforts on appiications which witness nowadays a rapid
evolution and which require a high level of abstractization. In this way my interest is

BUPT

140 Conclusions and Perspectives - 7

on the one hand in nnodelling them and on the other hand in their adaptation and
reuse.

Firstly, I aim to further experiment the approach for the description of
business models from various domains and their appiications for building and
customizing lines of products. In this way, I also hope to get more feedbacks from
possible users in order to eniarge the appiicability of SmartModels support for SPL
and to ease the job of domain experts to describe a model ([42]).

Secondiy, I believe that next important step is to provide a method to
describe constraints on SmartModels entities based on OCL standard ([82] and
[114]). I am thinking of a formal method which is intended to help developers to
write invariants and pre/post conditions to SmartModels actions attached to
concepts (see section 3.4.2 on concept semantics) using OCL standard and then
generating code through mapping third party generators according to the targeted
platform.

Thirdiy, I am in search of new possible opportunities for product derivation
(a possible trail may be using semantics redefinitions - see section 3.4.3).
SmartModels approach is part of DDD trend on modelling which raises the level of
abstraction beyond classical programming by offering the possibility to define
domain specific concepts using visual modelling editors. Then the appiications are
written directiy using these concepts. In this way, final products and their derivates
can be generated automatically from these high-level specifications. If I succeed to
enrich the methods used for product derivation (the SmartModels basic entities, OCL
incorporation and the DSL for actions), I can diversify exponentially the number of
products: the granularity of their modelling and the control over the code
generators.

The last point, but not the least important, is the suggestion to do more
investigation in order to advance the acceptance and viability of model patterns. We
have all acknowledged the added value brought by design patterns in OOP and for
now I make the assumption that I can extract from model patterns appiied to the
management of the meta-information of a specific domain's entities at least the
same benefit.

7.3.3. SmartFactory prototype

SmartModels initiative has introduced a new approach for organizing the
domain specific appiication development into different models so portability and
reusability can be obtained through the independence both between semantics and
data model and then the description of appiications.

Therefore, the next paragraphs present challenges which I believe lie ahead
SmartFactory. Although, the current state of the SmartFactory solves partially some
of the paradigms, there are still important ideas to follow up.

Firstly, I will continue to seek to keep the prototype updated in order to
support SmartModels approach improvements. Among them, I wouid mention as
next important investments the previsioned OCL tool support and the DSL for
customizing generic entities (see section 3.4.2) and for describing features provided
by visitors when generating an appiication based on a model (see section 3.4.4).

Secondiy, I endeavour to simplify the design of SmartFactory as a whole
solution by adding on top a manager for a better automation between its moduleş:
meta-data model editor, model transformer and code-generator (see section 5.4).
The goal is to implement the possibility to generate code directiy from the editor

BUPT

7.3 - Perspectives 141

and let the editor to control also the code. Thus, the transformation phase shouid
become invisible for the programmers, although I still consider to serialize the
Eclipse compliant nnodels for the sake of the openness of the experlments study.

Then, it is my connmitment to improve the quality and the percentage of the
source code automatically generated based on standard tools (like projects from
Eclipse environment [35]). SmartFactory prototype aims to provide a framework
where users can manipulate extensible models to ease the development of their
appiications integrating as much as possible generative programming capabilities.

BUPT

BUPT

References

[1] Interim report: ANSI/X3/SPARC study group on Data Base
Management Systems 75-02-08. FDT - Bulletin of ACM SIGMOD, 7(2): 1-140, 1975.

[2] J.L. Lawall A.F. Le Meur and C. Consel. Speclalization Scenarios : A
Pragmatic Approach to Declaring Program Speciallzation. Higher-Order and Symbolic
Computation, 17(l):47-92, 2004.

[3] M. Anastasopoulos and C. Gacek. Implementing Product Line
Variabilities. Technical report, Report IESE Report No. 089.00/E, Version 1.0, IESE,
November 2000.

[4] Ken Arnold, James Gosling, and David Holmes. The Java
Programming Language, Third Edition. Addison-Wesley, 2000.

[5] Colin Atkinson, Joachim Bayer, Christian Bunse, Eric Kamsties, Oliver
Laitenberger, Roland Laqua, Dirk Muthig, Barbara Paech, Jorgen Wust, and Jorg
Zettel. Component Based Product Line Engineering with UML. Addison-Wesley,
2002.

[6] Colin Atkinson, Joachim Bayer, and Dirk Muthig. Component-Based
Product Line Development: The KobrA Approach. In P. Donohoe, editor, Proceedings
of theFirstSoftware Product Line Conference, pages 289-309, 2000.

[7] I. Attali, C. Courbis, P. Degenne, A. Fau, J. Fillon, D. Parigot,
C. Pasquier, and C. Sacerdoţi Coen. SmartTools: a Development Environment
Generator based on XML Technologies. In Proceedings of the Worl<shop on XML
Technologies and Software Engineering at ICSE'Ol, Toronto, Canada, May 2001.

[8] Felix Bachmann and Paul C. Clements. Variability in Software
Product Lines. Technical report, CMU/SEI-2005-TR-012, 2005.

[9] Don Batory, Roberto E. Lopez-Herrejon, and Jean-Philippe Martin.
Generating Product-Lines Of Product-Families. ase, 00:81, 2002.

[10] Joachim Bayer. Introducing Separation of Concerns to Product Line
Engineering. GCSEVO Young Researchers Workshop, June 2000.

[11] Joachim Bayer. Towards Engineering Product Lines Using Concerns.
Worl<shop on Multi-Dimensiona! Separation of Concerns in Software Engineering
(ICSE 2000), 3une 2000.

[12] B. W. Boehm. A Spiral Model of Software Development and
Enhancement. 21:61-72, 1988.

[13] G. Booch. Object-Oriented Design with Applications,
Benjamin/Cummings, 1991.

[14] G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeiing
Language User Guide. The Object Technology Series. Addison-Wesley Publishing
Co., October 1998.

[15] Jan Bosch, Gert Florijn, Danny Greefhorst, Juha Kuusela, J. Henk
Obbink, and Klaus PohI. Variability Issues in Software Product Lines. In Frank
van der Linden, editor, PFE, volume 2290 of Lecture Notes in Computer Science,
pages 13-21. Springer, 2001.

BUPT

144 References

[16] A. Capouillez, R. Chignoli, P. Crescenzo, and Ph. Lahire. Hyper-
genericite pour Ies langages a objets : le modele OFL. In R. Godin and I. Borne,
editors, Actes de LMO'Ol, Conference Naţionale sur Ies Langages et Modeles a
Objets, Publles dans la revue L'objet : Logiciels, Bases de donnees, Reseaux,
volume 7(1-2/2001), pages 63-78, Le Croisic, France, janvier 2001. editions
Hermes Science Publications.

[17] A. Capouillez, P. Crescenzo, and Ph. Lahire. Le modele OFL au
service du metaprogrammeur - Application a Java. In M. Dao and M. Huchard,
editors, Actes de LMO'2002, Conference Naţionale sur Ies Langages et Modeles a
Objets. Publies dans la revue L'objet : Logiciels, Bases de donnees, Reseaux,
volume 8(1-2/2002), pages 11-24, Montpellier, France, janvier 2002. Editions
Hermes Science Publications. ISSN : 1262-1137 ; ISBN : 2-7462-0403-7.

[18] A. Capouillez, P. Crescenzo, and Ph. Lahire. OFL: Hyper-Genericity
for Meta-Programming - An Application to Java. Research Report I3S/RR-2002-16-
FR, I3S laboratory (UNSA/CNRS), Sophia-Antipolis, France, April 2002.

[19] C.-B Chirila, Ph. Lahire, D. Pescaru, and E. Tundrea. A Better
Representation for Class Relationships in UML Using OFL Meta-information. In AQTR
2004, International Conference on Automation, Quality & Testing, Robotics, Cluj-
Napoca, Romania, May 2004.

[20] Matthias ClauB. Generic Modeling Using UML Extensions For
Variability. In Proceedings ofthe Workshop on Engineering Complex Object-Oriented
Systems for Evolution, October 2001.

[21] Matthias ClauB. Modeling Variability with UML. GCSE 2001 Young
Researchers Workshop Program, 2001.

[22] Crimson Consulting. Total Costof Ownership Case Study: Large-Scale
CRM System. IBM 2001.

[23] P. Crescenzo. OFL : un modele pour parametrer la semantique
operationnelle des langages a objets - Application aux relations inter-dasses. These
de doctorat, Universite de Nice-Sophia Antipolis, France, decembre 2001.

[24] P. Crescenzo and Ph. Lahire. Using both Specialisation and
Generalisation in a Programming Language: Why and How? In J.-M. Bruel and
Z. Bellahsene, editors, Advances in Object-Oriented Information Systems : OOIS
2002 - Workshops proceedings, LNCS(2426), pages 64-73, Montpellier, France,
September 2002. Springer Verlag.

[25] Pierre Crescenzo and Philippe Lahire. Une approche pour ameliorer la
reutilisabilite des modeles metiers. In Actes de la 2eme Journee Francophone sur le
Developpement de Logiciels Par Aspects (JFDLPA 2005), pages 51-73, Lilie,
septembre 2005.

[26] K. Czarnecki and W. Eisenecker. Generative Programming: Methods,
Techniques, and Applications. Addison-Wesley, June 2000.

[27] Krzysztof Czarnecki and John VIissides. Domain Driven Development
papers. Companion of the 18th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and appiications, 2003.

[28] P. Desfray. Object Engineering, the Fourth Dimension. Addison-
Wesley Publishing Co., 1994.

[29] Deepak Dhungana. Integrated variability modeling of features and
architecture in software product line engineering. ase, 0:327-330, 2006.

[30] W. El-Kaim. Managing variability in the LCAT SPLU/Daisy model. In
Product Line Architecture Workshop SPLCl, August 2000.

[31] W. El-Kaim. System Family Architecture Glossary. Technical report,
ESAPS Project, 2001.

BUPT

References 145

[32] D. Flanagan. Java in a Nutshell: a Desktop Quick Reference. O'Reilly,
3rd edition, December 1999.

[33] O. Flege. System Family Architecture Description Using the UML.
Technical report, lESE-Report No. 092.00/E, IESE, December 2000.

[34] Oliver Flege, Joachim Bayer, and Cristina Gacek. Creating Product
Line Architectures. In Frank van der Linden, editor, IW-SAPF, volume 1951 of
Lectura Notes in Computer Science, pages 210-216. Springer, 2000.

[35] Eclipse Foundation. Eclipse Environment, 2004.
[36] Eclipse Foundation. Eclipse Modeling Framework Project (EMF),

2008.
[37] Steven D. Fraser, James Gosling, Anders Hejisberg, Ole Lehrmann

Madsen, Bertrand Meyer, and Guy L. Steele Jr. Celebrating 40 years of language
evolution: Simula 67 to the present and beyond. In Richard P. Gabriel, David F.
Bacon, Cristina Videira Lopes, and Guy L. Steele Jr., editors, OOPSLA Companion,
pages 1021-1023. ACM, 2007.

[38] Erich Gamma, Richard Heim, Ralph Johnson, and John VIissides.
Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA, 1995.

[39] Michel Gauthier, editor. Ada-Europe '93, 12th Ada-Europe
International Conference, Ada Sans Frontieres, Paris, France, June 14-18, 1993,
Proceedings, volume 688 of Lecture Notes in Computer Science, Springer, 1993.

[40] A. Goldberg and K. Rubin. Succeeding with Objects: Decision
Frameworks for Project Management, Addisson-Wesley, 1995.

[41] Hassan Gomaa. Object Oriented Analysis and Modeling for Families
of Systems with UML. In Wiiliam B. Frakes, editor, ICSR, volume 1844 of Lecture
Notes in Computer Science, pages 89-99. Springer, 2000.

[42] Hassan Gomaa. Designing Software Product Lines with the Unified
Modeling Language (UML). In Robert L. Nord, editor, SPLC, volume 3154 of Lecture
Notes in Computer Science, page 317. Springer, 2004.

[43] James Gosling, BilI Joy, Guy Steele, and Gilad Bracha. The Java
Language Specification, Third Edition. Addison-Wesley Longman, 3 edition, June
2005.

[44] Martin L. Griss. Implementing product-line features with component
reuse. In International Conference on Software Reuse, pages 137-152, 2000.

[45] Object Management Group. Model Driven Architectures homepage,
2003. http://www.omg.org/mda.

[46] W3C Working Group. Web Services Architecture. World Wide Web
Consortium, February 2004.

[47] Gunter Halmans and Klaus PohI. Communicating the variability of a
software-product family to customers. Inform., Forsch. Entwickl., 18(3-4): 113-131,
2004.

[48] W. Harrison and H. Ossher. Subject-Oriented Programming - A
Critique of Pure Objects. In proceedings of OOPSLA'93, pages 411-428,
Washington, D.C., United States, September 1993. ACM Press.

[49] GeorgeT. Heineman and Wiiliam T. Councill. Component-based
software engineering: putting the pieces together. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2001.

[50] Anders Hejisberg, Scott Wiltamuth, and Peter Golde. C# Language
Specification. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2003.

BUPT

http://www.omg.org/mda

146 References

[51] Robert Howard. The Eiffel Programming Language. Dr. Dobb's J.,
18(ll):68-73, 1993.

[52] Apple Inc. Objective-C Programming Language. Technical report,
2008.

[53] M. A Jackson. System development (Prentice-Hall International
Series in Computer Science). Prentice-Hall, Inc., Upper Saddie River, NJ, USA, 1983.

[54] I. Jacobson, M.L. Griss, and P. Jonsson. Software Reuse:
Architecture, Process and Organization for Business Success. Addisson-Wesley,
1997.

[55] I. Jacobson, M.Christerson, P. Jonsson, and G. Overgaard. Object-
Oriented Software Engineering — A Use Case Driven Approach. Addisson-Wesley,
1992.

[56] Michel Jaring and Jan Bosch. Variability dependencies in product
family engineering. In Frank van der Linden, editor, PFE, volume 3014 of Lecture
Notes in Computer Science, pages 81-97. Springer, 2003.

[57] Jean-Marc Jezequel. Reifying variants in configuration management.
ACM Transaction on Software Engineering and Methodology, 8(3):284-295, Juiy
1999.

[58] Isabel John, Dirk Muthig, Peter Sody, and Enno Toizmann. Efficient
and systematic software evolution through domain analysis. re, 00:237, 2002.

[59] Jean-Marc Jezequel. Model-Driven Engineering with Contracts,
Patterns and Aspects. Tutorial Program of AOSD 2003: 2nd International Conference
on Aspect'Oriented Software Development, March 2003.

[60] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical
report, Carnegie-Mellon University Software Engineering Institute, November 1990.

[61] Alan C. Kay. The Early History of Smalltalk. In HOPL Preprints, pages
69-95, 1993.

[62] S. E. Keene. A programmer's guide to obJect-oriented programming
in Common LISP. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1988.

[63] Barry Keepence and Mike Mannion. Using patterns to model
variability in product families. IEEE Software, 16(4): 102-108, 1999.

[64] G. Kiczales, J. Des Rivieres, and D.G. Bobrow. The Art of the
MetaObject Protocol. MIT-Press, 1991.

[65] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. Griswold. An Overview of Aspect).

[66] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming.
In Mehmet Aksit and Satoshi Matsuoka, editors, ECOOP '97 Object-Oriented
Programming llth European, volume 1241 of Lecture Notes in Computer Science,
pages 220-242. Springer-Verlag, New York, NY, June 1997.

[67] P. Clements L. Bass and R. Kazman. Software Architecture in
Practice. Addison-Wesley, 1998.

[68] Philippe Lahire and Laurent Quintian. New perspective to improve
reusability in object-oriented languages. Journal Of Object Technology (JOT),
5(1):117-138, 2006.

[69] Roberto E. Lopez-Herrejon and Don Batory. Using AspedJ to
implement product-lines: A case study. Department of Computer Sciences, The
University of Texas, 2003.

[70] A. Maccari and A. Heie. Managing infinite variability. JuIy 2003.

BUPT

References 147

[71] A. Maccari and A-P. Tuvinen. System family architectures : Current
challenges at Nokia. F. van der Linden, IW-SAPF, Springer, LNCS, 2000.

[72] Mike Mannion. Organizing for software product line engineering.
step, 00:55, 2002.

[73] B. Meyer. Object-Oriented Software Construction. Professional
Technical Reference. Prentice-Hall, 2nd edition, 1997.

[74] Georges Gardarin Mokrane Bouzeghoub and Patrick Valduriez. Les
Objets. Eyrolles, 1997.

[75] Mark Nissen, Magdi Kamel, and Kishore Sengupta. Integrated
analysis and design of knowledge systems and processes. Inf. Resour. Manage. J.,
13(l):24-42, 2000.

[76] L. Northrop and P. Clements. Software Product Lines: Practices and
Patterns. Addison-Wesley Professional, 2002.

[77] Unda M. Northrop. A framework for software product line practice.
In Ana M. D. Moreira and Serge Demeyer, editors, ECOOP Workshops, volume 1743
of Lecture Notes in Computer Science, pages 365-366, Springer, 1999.

[78] OMG. UML Profile for Enterprise Distributed Object Computing
Specification. Technical Report OMG Adopted Specification ptc/02'02-05. Object
Management Group (OMG), February 2002.

[79] OMG. UML Profile for Schedulability, Performance, and Time
Specification, Technical Report OMG Adopted Specification ptc/02-03'02. Object
Management Group (OMG), March 2002.

[80] OMG. Unified Modeling Language Specification (UML) - Version 1.5.
Object Management Group (OMG), March 2003. Version 1.5.

[81] OMG. Unified Modeling Language (UML) Infrastructure - Final
Adopted Specifcation. Object Management Group, September 2003. Version 2.0.

[82] OMG. Unified Modeling Language (UML) OCL - Final Adopted
Specification. Object Management Group, October 2003. Version 2.0.

[83] OMG. Unified Modeling Language (UML) Superstructure - Final
Adopted Specification. Object Management Group, August 2003. Version 2.0.

[84] OMG. Meta-Object Facility (MOF) Core - Final Adopted Specification.
Object Management Group, March 2004. Version 2.0.

[85] OMG. XML MetaData Interchange (XMI) - XML Schema. Object
Management Group, May 2004. Version 2.0.

[86] OMG. ModehDriven Architecture - (MDA). Object Management Group
(OMG), Juiy 2006.

[87] J. Paisberg and C.B. Jay. The Essence of the Visitor Pattern. In
COMPSAC98, 22nd Annual International Computer Software and Applications
Conference, pages 9-15, Vienna, Austria, August 1998. IEEE Computer Society.

[88] D.L. Parnas. On the design and development of program families.
IEEE Transactions on Software Engineering, 2(1): 1-9, 1976.

[89] D. Pescaru. Bridging the Gap between Object Oriented Modeling and
Implementation Languages Using a Meta-Language Approach. Ph.D Thesis,
"Politehnica" University of Timişoara, Timişoara, Roumanie, December 2003.

[90] CAFE project. Technical report, http://www.esi.es/en/projects/
cafe/cafe.htmi, 2001.

[91] ESAPS project. Technical report, http://www.esi.es/esaps/, 1999.
[92] FAMILIES project. Technical report, http://www.esi.es/en/projects/

families/, 2003.

BUPT

http://www.esi.es/en/projects/
http://www.esi.es/esaps/
http://www.esi.es/en/projects/

148 References

[93] James Rumbaugh, Michael Blaha, Wiiliam Premerlani, Frederick
Eddy, and Wiiliam Lorensen. Object-Oriented Modeling and Design. Prentice Hali,
Englewood Cliffs, New Jersey, 1991.

[94] C. Simonyi. The Death of Programming Languages, the Birth of
Intentional Programming. Technical report, Microsoft, Inc., September 1995.

[95] Objecteering Software, http://www.objecteering.com/.
[96] R. Soley and OMG. Model driven architecture (2000). OMG Group,

2000.
[97] Ian Sommerville. Software Engineering. Addison-Wesley, Harlow,

8th edition, 2007.
[98] B. Stroustrup. The C++ Programming Language. Addison-Wesley

Publishing Co., 3rd edition, 1997.
[99] Mikael Svahnberg and Jan Bosch. Issues concerning variability in

software product lines. In Frank van der Linden, editor, IW-SAPF, volume 1951 of
Lecture Notes in Computer Science, pages 146-157. Springer, 2000.

[100] C. Szyperski. Component Software: Beyond Object-Oriented
Programming. ACM Press and Addison-Wesley, 2002.

[101] H. Tardieu, A. Rochfeid, and R. Coletti. La Methode Merise. Les
Editions d'Organisation, Paris, 1983.

[102] E. Tundrea, Ph. Lahire, D. Parigot, C. Courbis, , and P. Crescenzo.
An Attempt to Set the Framework of Model-Oriented Programming. In CONŢI 2004,
6th International Conference on Technical Informatics, volume 3 of Transaction on
Automatic Control and Computer Science, pages 71-76, Timişoara, Romania, May
2004. Scientific Bulletin of "Politehnica" University of Timişoara.

[103] Emanuel Tundrea. Smartmodels - an Approach for Developing
Software Based on Models: Rules, Prototypes and Examples. Technical report.
Politehnica University of Timişoara, February 2006.

[104] Emanuel Tundrea, SmartModels - An MDE Platform for the
Management of Software Product Lines. In Proceedings of 2008 IEEE International
Conference on Automation, Quality and Testing, Robotics (AQTR 2008), Volume 3,
22-25 May 2008 Page(s):193 - 199, Cluj-Napoca, Romania.

[105] Emanuel Tundrea, Pierre Crescenzo, and Philippe Lahire. La
genericite parametree au service des modeles metiers. In R. Rousseau and
C. Urtado, editors, Actes de LMO'2006, conference naţionale sur les Langages et
Modeles a Objets., pages 151-166, Nîmes, France, mars 2006. Editions Hermes
Lavoisier.

[106] Emanuel Tundrea, Philippe Lahire, Dan Pescaru, and Ciprian-
Bogdan Chirila. Smartmodels - an Attempt to Set the Framework of Model-Oriented
Programming. In Conţi 2004 - The 6th International Conference on Technical
Informatics, Scientific Bulletin of "Politehnica" University of Timişoara, Romania,
Transactions on Automatic Control and Computer Science, Timişoara, Romania, May
2004. Editura Politehnica, Voi. 49(63) 2004 No. 1,2,3,4 / ISSN 1224-600X.

[107] Emanuel Tundrea, Philippe Lahire, Dan Pescaru, and Ciprian-
Bogdan Chirila. Smartfactory - a Prototype for Model Oriented Software Engineering
Based on Eclipse Platform. In Proceedings of International Conference on Technical
Informatics - CONTI'2006, voi. 2, pp. 71-76, ISBN (10): 973-625-319-8 ISBN (13):
978-973-625-319-5, Timişoara, Romania, June 8-9, 2006.

[108] Emanuel Tundrea, Philippe Lahire, Dan Pescaru, and Ciprian-
Bogdan Chirila. Smartmodels - a Framework for Generating On-Line Learning
Software Solutions. In Proceedings of the 12th International Conference Netties
2006, pp. 69-75, ISBN (10): 973-638-262-1 ISBN (13): 978-973-638-262-8,

BUPT

http://www.objecteering.com/

References 149

Orizonturi Universitare Publishing House, Timişoara, Romania, September 6-9,
2006.

[109] Sebastian Tyrrell. The many dimensions of the software process.
Crossroads - The ACM Student Magazine, Windows Programming Summer 2000 -
6.4, 2000.

[110] Frank van der Linden. Software Product Fannilies in Europe: The
ESAPS & CAFE projects. IEEE Software, 19(4):41-49, 2002.

[111] Frank van der Linden, editor. Software Product-FamUy Engineering,
5th International Worl<shop, PFE 2003, Siena, Italy, November 4-6, 2003, Revised
Papers, volume 3014 of Lecture Notes in Computer Science. Springer, 2004.

[112] T. van der Ma6en and H. Lichter. Modeling Variability by UML Use
Case Diagrams. International Workshop on Requirement Engineering for Product
Line (REPL02), September 2002.

[113] Rob C. van Ommering, Frank van der Linden, Jeff Kramer, and Jeff
Magee. The Koala Component Model for Consumer Electronics Software. IEEE
Computer, 33(3):78-85, 2000.

[114] Gilles Vanwormhoudt. Precision et validation de metamodeles avec
EMF et OCL. In Ph. Collet and Ph. Lahire, editors, Actes des Journee Objects
Composants et Modeles (OCM) du GDR ALP, pages 19-28, Berne, Mars 2005.

[115] Angi Vo6. C+-h, Common LISP/CLOS, Eiffel oder Smalltalk? KI,
9(2):35-44, 1995.

[116] Diana L. Webber and Hassan Gomaa. Modeling Variability in
Software Product Lines with the Variation Point Model. Computer Science Program,
53(3):305-331, 2004.

[117] M.D. Weiss and C.T. Robert Lai. Software Product-Line Engineering :
A Family-Based Software Development Process. Addison-Wisley, 1999.

[118] www.metamodel.com. Meta-Model, 2008.
[119] Tewfik Ziadi, Jean-Marc Jezequel, and Frederic Fondement. Product

Line Derivation with UML. In Proceedings Software Variability Management
Workshop, Univ. of Groningen Departement of Mathematics and Computing Science,
February 2003.

BUPT

http://www.metamodel.com

BUPT

Titluri recent pubUcate în colecţia „TEZE DE DOCTORAT^'
seria 10: Ştiinţa Calculatoarelor

1. R o d i c a Ţir tea - Contribuţii la îmbunătăţirea dependabilităţii şi securităţii
informaţiei, ISBN 978-973-625-422-2, (2007) ;

2. Ionel M u s c a l a g i u - Contribuţii la implementarea, evaluarea şi îmbunătăţirea
performanţelor tehnicilor de căutare asincrone în cadrul programării bazate
pe constrângeri distribuite, ISBN 978-973-625-592-2, (2007);

3. Danie l Cio i - Contribuţii la utilizarea realităţii virtuale în proiectarea
asistată de calculator, ISBN 978-973-625-613-4, (2008);

4. Sor in Babi i - Cercetări privind creşterea performanţelor reţelelor neuronale
într-un mediu de calcul distribuit, ISBN 978-973-625-559-5. (2008);

5. N o r b e r t N e i d e n b a c h - Das Service-Management eines IT-Outsoi4rcing-
Projektes durch ITIL-Best-Practices, IT-Outsourcing kostenoptimiert planen
undsteuem, ISBN 978-973-625-660-8, (2008);

6. E d w i n H a n s W o l f - Das Geschăftsmodell (Business model) MDS (Managed
Desktop Support) im IT-Outsourcing, Leistungserbringung im Rahmen des
MDS-Geschăftsmodells, ISBN 978-973-625-661-5, (2008);

7. A d r i a n Z a f î u - Minimizarea sistemelor decizionale multivalente deterministe
şi nedeterministe, ISBN 978-973-625-678-3, (2008);

8. Danie l I ercan - Contributions to the Development of Real-Time Programming
Techniques and Technologies, ISBN 978-973-625-719-3, (2008);

9. Laurenţ ia T i m a r - Contribuţii referitoare la configurarea optimală prin
prisma performanţă-fiabilitate a unor reţele de dispozitive de achiziţia datelor
cu aplicabilitate la excavatoarele cu cupe, ISBN 978-973-625-775-9, (2008);

10. D a n Cire şan - Recunoaşterea şirurilor numerice scrise de mână, ISBN 978-
973-625-777-3, (2008).

EDITURA POLITEHNICA

BUPT

