
 

 
SYSTEMS ANALYSIS  

OF CARDIOVASCULAR REGULATION 

 

 
 

 

 
Teză destinată obţinerii 

titlului ştiinţific de doctor inginer 
la 

Universitatea Politehnica Timişoara 
în domeniul INGINERIA SISTEMELOR 

de către 
 

 
Ing. Alexandru Codrean 

 
 

 
 

 
Conducător ştiinţific: prof.univ.dr.ing. Toma-Leonida Dragomir 

Referenţi ştiinţifici: prof.univ.dr.ing. Ioan Dumitrache 

    conf.univ.dr.ing. Levente Kovács 

    prof.univ.dr.ing. Adina Aştilean 

 

 
Ziua susţinerii tezei: 13.05.2015 

BUPT



 

Seriile Teze de doctorat ale  UPT sunt: 

1. Automatică             9. Inginerie Mecanică 

2. Chimie           10. Ştiinţa Calculatoarelor 
3. Energetică           11. Ştiinţa şi Ingineria Materialelor 
4. Ingineria Chimică          12. Ingineria sistemelor 
5. Inginerie Civilă                     13. Inginerie energetică 
6. Inginerie Electrică          14. Calculatoare şi tehnologia informaţiei 
7. Inginerie Electronică şi Telecomunicaţii        15. Ingineria materialelor 
8. Inginerie Industrială          16. Inginerie şi Management 

 
 
 

Universitatea Politehnica Timişoara a iniţiat seriile de mai sus în scopul diseminării 
expertizei, cunoştinţelor şi rezultatelor cercetărilor întreprinse în cadrul Şcolii 
doctorale a universităţii. Seriile conţin, potrivit H.B.Ex.S Nr. 14 / 14.07.2006, tezele 
de doctorat susţinute în universitate începând cu 1 octombrie 2006. 

 
 
 
 

Copyright © Editura Politehnica – Timişoara, 2015 
 

 
 
 
Această publicaţie este supusă prevederilor legii dreptului de autor. Multiplicarea 
acestei publicaţii, în mod integral sau în parte, traducerea, tipărirea, reutilizarea 
ilustraţiilor, expunerea, radiodifuzarea, reproducerea pe microfilme sau în orice altă 
formă este permisă numai cu respectarea prevederilor Legii române a dreptului de 

autor în vigoare şi permisiunea pentru utilizare obţinută în scris din partea 
Universităţii Politehnica Timişoara. Toate încălcările acestor drepturi vor fi penalizate 
potrivit Legii române a drepturilor de autor. 
 
 
 
 

 
 

România, 300159 Timişoara, Bd. Republicii 9, 
Tel./fax 0256 403823 

e-mail: editura@edipol.upt.ro 

 

 

 

 

 

 

BUPT



ACKNOWLEDGMENTS 
 
 

As a chapter of my life closes, I would like to thank all the people who have 
helped and supported me over the years, and therefore made this work possible.  

First and foremost I would like to thank my thesis supervisor Professor 
Toma-Leonida Dragomir, who has inspired me both scientifically and pedagogically. 
Professor Dragomir has supported me all the way throughout my work, through 
constructive ideas and feedback, as well as solutions to the problems where I got 
stuck. Through his meticulous and rigorous approach, he has pushed me 
continuously to improve my work. Overall, Professor Dragomir has showed me by 

example what thoroughly means to be a member of an academic community. 

Next, I would like to express my appreciation to Professor Ioan Silea, Head 
of the Department of Automation and Applied Informatics, who always helped me to 
overcome each problem that I faced during my stay at the University. 

Through Professor Dragomir, I had the fortunate chance to meet Octavian 
Stefan - a teaching assistant. Over the years, he became my colleague and close 
friend. During all this time (before and during my PhD studies), we worked together 

on some problems concerning Networked Control Systems. For this very fruitful 
scientific collaboration, for his support during my own research studies, and 
especially for his sincere friendship, I am very grateful to him. 

I am grateful to several colleagues from the Department of Automation and 
Applied Informatics, with whom I had the opportunity to engage in many technical 
and beyond technical discussions over the years: Bogdan Radac, Cosmin Koch-
Ciobotaru, Adrian Korodi, Ana Maria Dan, Alexandra Stinean, Flavius Petcut. 

I would like to thank the members of my Ph.D. Committee for accepting to 

review my thesis and for their help and suggestions concerning my research. 

A special thank you goes to my high school mathematics Professor Mihai Big 
(classus dominus), who guided my professional and personal development during 
that important period of my life. Professor Big inspired me with a certain work style 
(even beyond mathematics), and stands out as a role model - both as a professional 

and as a human being. 

Last but not least, I would like to thank my parents Ioan Codrean and 
Adriana Codrean for their unconditional love and support, my cousin Marius Todoran 
and his wife Cristina Todoran, and to one of my best friends Vlad Ghise. 

This work was partially supported by the strategic grant 
POSDRU/159/1.5/S/137070 (2014) of the Ministry of National Education, Romania, 
co-financed by the European Social Fund – Investing in People, within the Sectorial 

Operational Programme Human Resources Development 2007-2013. 
 
 

Timisoara, May 2015      Alexandru Codrean 

 

 

 

BUPT



 

 

This thesis is dedicated to my parents. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Codrean, Alexandru 

Systems analysis of cardiovascular regulation 

Teze de doctorat ale UPT, Seria 12, Nr. 15, Editura Politehnica, 2015, 100 
pagini, 27 figuri, 4 tabele. 

ISSN: 2068-7990 

ISBN: 978-606-554-951-7 
 

Cuvinte cheie:  

cardiovascular system, cardiovascular regulation, averaged system, 
nonlinear system, time delays, stability, robustness. 
 
 
Rezumat,  

The PhD thesis is focused on systems analysis of cardiovascular regulation. 
In the first part of the thesis, an averaged model of cardiovascular 
regulation on short term (i.e. for the cardiovascular system along with its 

nervous control loop) is derived. A weighted averaging approach is 
proposed for the cardiovascular system, and the obtained averaged model 
is coupled with a simplified model for the baroreflex control mechanism. In 
the second part of the thesis, the averaging approach is generalized for a 

class of nonlinear systems - pulse-frequency modulated systems with 
constant duty ratios- whose trajectories exhibit a moving average 
dependent on the modulation period. The proposed averaging method 
leads to a period-dependent averaged model, simpler than the original one. 
The cardiovascular system, regarded as a pulse-frequency modulated 
system, is considered as a case study. The third part of the thesis 
addresses the stability analysis problem for the qualitative averaged model 

of cardiovascular regulation, focusing on deriving new insights on the role 
of time delays in generating stability or instability, along with assuring 
some global properties, like trajectory convergence and boundedness. 
Finally, all results are tested through simulations. 
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1. INTRODUCTION 
 
 

Medicine has historically evolved from art to science, and from data or 
knowledge accumulation to decrypting and understanding the complexity of living 
organisms. In this quest, interdisciplinary and multidisciplinary is no longer just an 

option, but a requirement - different other scientific branches interfere (besides the 
classical ones - chemistry, physics, biology), like engineering and mathematics. 
Concomitantly, the problem of arriving at a holistic view becomes more and more 
pressing, thus leading to the use of notions and tools from systems theory for 
understanding how an organism functions as a whole1.  

 Thus clinical medicine, chemical and physical experiments, mathematical 

modeling, biomedical instrumentation (done by engineers), are no longer enough – 
the need of an integrative approach has started to be felt more and more – from 
diagnosis to treatments, from epidemics to genetics. Systems theory makes use of 
experimental data, pure theories, instrumentation, and wraps them together in 
functional interpretations of how a living organism acts as a system, with inputs and 
outputs, controls and disturbances, a given role, and finally tries to give predictions 
of how the systems will behave (dynamically) in time and how it will react in certain 

scenarios. 

 It is in human nature that once something is analyzed and understood (to a 
certain degree) to further try to control it. Thus, as a natural continuation to 
systems theory, control theory provides a theoretical framework with tools for 
controlling different types of systems. Of course that the problem of controlling 
biomedical systems is more delicate (e.g. sometimes it is not ethical or simply not 
possible), but it still an important chapter, for example in treatment options - from 

drugs to surgery. An alternative approach is to do some kind of reverse engineering, 

that is to study the existing (biological/physiological) control mechanisms 
(homeostasis), and to understand how they function (work), which eventually not 
only helps in deriving better diagnosis and treatments, but it also permits engineers 
to develop so called ‘biologically inspired’ algorithms for technical systems (man 
made systems). 

 The present research study takes a few first steps in this direction, more 
exactly in the systems analysis of biomedical systems. 

1.1. Motivation and Aims 

 Contemporary medicine is dealing with more and more problems which have 
reach a level of complexity that imposes an interdisciplinary approach. Such an 

approach should integrate - for example - aspects from natural science and 
biological sciences with exact sciences and engineering. This is how the birth of 
biomedical engineering2 occurred. Because of the high potential it has in improving 

                                                 
1 It should be mentioned that we assume that a systems approach to living organism is 
possible in the simplifying circumstances where one ignores free will and any type of 
consciousness intervention. 
2 A comprehensive book on the main areas of biomedical engineering is [23]. 
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the quality of human life, the field has been regarded as one with high priority in the 
framework of different international research strategies – in Europe through the 
program Virtual Physiological Human (VPH) ([9]), at a global level through IUPS 

Physiome Project ([10]), or other programs in Biotechnologies etc. 

Because for understanding the dynamics of (patho-) physiological or 
biological phenomena, on one hand, different mathematical models have been 
developed and used over the years, and on the other hand, for understanding 
homeostasis mechanisms of living organisms elements from systems theory and 
control theory have been addressed, in the field of (automatic) control a new 
applicative area has emerged: modeling and control of biomedical systems. An 

increasing interest in this research direction has been pointed out in reports of 
important scientific communities (societies) like the Society of Industrial and Applied 

Mathematics (SIAM) - [6] - and the Control Systems Society of the Institute of 
Electrical and Electronics Engineers (IEEE CSS) - [7]. Additionally, at the 
International Federation of Automatic Control (IFAC), there exists a technical 
committee exactly on this domain of research - IFAC Technical Committee 8.2 
Biological and Medical Systems – which organizes international conferences 

exclusively on this topic. Finally, different highly regarded control conferences (like 
the IFAC World Congress, IEEE Control and Decision Conference), or high impact 
control journals (like Control Engineering Practice, IEEE Transactions on Control 
Systems Technology, IEEE Transactions on Automatic Control, Automatica) have 
scientific sessions, respectively special issues or articles, dedicates to this research 
area.  

One problem of prime interest in biomedical engineering refers to 
understanding the control mechanisms of the cardiovascular system (especially on 
short term, but also on long term), because cardiovascular diseases still represent 
the main cause of mortality in the world ([22]). Over the last two decades, an 
increasing number of research groups focus on the development of mathematical 
models for the cardiovascular system, along with its associated nervous control 

mechanisms, in order to improve the understanding of physiological and 

pathological phenomena. 

In this context, the present study aims to bring an important contribution to 
the understanding of the control mechanism that act on the cardiovascular system, 
based on the systems analysis of the closed loop dynamics of cardiovascular 
regulation in respect with different disturbance scenarios. Such a study implies the 
use of mathematical models as simple as possible, stability analysis studies in 
connections with different (possible) pathologies, and robustness analysis. 

Furthermore, we will focus especially on the role of (multiple) time delays in 
generating stability or instability (local and global perspective)3.  

Systems analysis of cardiovascular regulation represents a complex task, 
due to the strong nonlinearities, large dimensionality and high variability of the 
models proposed in the literature. So, although there are a large number of models 

                                                 
3 Time delay systems have been studied intensively in the last decades. Although the role of 
time delays in physiological systems has been pointed out relatively early (e.g. [28], [29]), 
such studies – which can also be connected to practice - are still in an incipient phase. For a 
recent review on the analysis and modeling of time delays in physiological systems see [32]. 
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used in the literature, most analysis studies resume only to simulation results4 (and 
comparisons with experimental data), which can not give but a particular image of 
the dynamic behavior. In order to get a more complete picture of the dynamics of 

cardiovascular regulation, (quasi-) analytical analysis studies are imperiously 
needed. Such studies lead not only to better understanding and prediction, but open 
the door to model based synthesis or design studies – like the design of model 
based nonlinear state observers which estimate physiological variables that are not 
measurable non-invasively (thus providing possible new clinical indicator for 
diagnosis)5, or the design of (artificial) controllers for different types of assisting 
devices6. 

1.2. Biomedical systems and cardiovascular regulation 

The connections between systems theory and control theory with biological 
(physiological) systems and biotechnology can be traced back to the early works of 
Claude Bernard (the milieu interieur), Walter Cannon (homeostasis) and Norbert 
Wiener (cybernetics) - ([7], pp. 57-67). The filed that encompasses the modeling, 

analysis and control of biomedical systems has emerged as one of high priority, 
while the (potential) impact on healthcare is only recently noticed and highlighted 
([14] - Part H Automation in Medical and Healthcare System)7. From all the 
particularities of biomedical systems, in respect with the systems usually 
encountered in classical process control, that make the research to evolve on a 
gentle slope, we can mention: high variability between physical (biological) systems 
from the same class (species), complex and high dimensional systems that are only 

partially known and understood (structural uncertainty), difficult process of 
translating theoretical results to clinical practice (time and cost demanding clinical 
trials), communication difficulties between engineers and medical doctors (or control 
scientists and theoretical biologists), ethical issues (e.g. organ donation, artificial life 
support), and so on. Needless to say that, due to the possible (high & wide) impact 

on human life, the filed of biomedical systems is reporter as a grand challenge in 

many scientific communities (e.g. National Academy of Engineering [37]). 

In our present study, we are not such much interest in analyzing the 
artificial (external) control of biomedical systems, but in the intrinsic control that 
biological (physiological) systems already posses. Such control mechanisms, that 
make homeostasis possible, have been put forward by scientists several decades 
ago (e.g. [18], [21])8. It is now generally accepted that the human body has many 
physiological control mechanisms that make sure that the organism is maintained 

under certain physiological limits, which ensure a stable behavior, around a certain 
equilibrium point or on a stable limit cycle. Of course all these control mechanisms 

                                                 
4 As far as we know, the only exceptions are the works of [30] and [31]. However, the analysis 
from [30] uses an oversimplified model, while both studies consider only the single delay case 
(local analysis). In contrast, our study makes uses of a more realistic qualitative model, 
approaches the multiple delays case, along with determining some global properties of 
cardiovascular regulation. Additionally, the methods used in our analysis study are easily 
scalable to more complex (complete) models of cardiovascular regulation. 
5 See for example [24], [25], [26]. 
6 E.g. a controller for a left ventricle assisting device (LVAD) – [27]. 
7 The need for more systems and control theory in medicine has been pointed out also in [33], 
[34] and [35]. 
8 And more recently in [11]. 
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interact with each other, but because the entire human organism is very hard to 
grasp as a single complex model, most mechanisms are studied independently, 
usually being studied only for certain well defined scenarios ([36]). That means an 

implicit separability based approach that is not generally true. 

One of the most studied systems of the human body is the cardiovascular 
system, as it plays a crucial role in complex living organisms, explaining also the 
high mortality rate encountered in cardiovascular diseases. Global control 
mechanisms of the cardiovascular system act on short-term (minutes) or long-term 
(hours, days) on the entire system (human body) to maintain appropriate blood 
flow, while these mechanisms are supplemented by local mechanisms in each 

vascular region9. Finally, hierarchical supervisory control also interferes and adapts 
the function of the lower level control mechanisms, making the entire system even 

more complicated to analyze. 

Long-term control of the cardiovascular system refers primary to hormonal 
control mechanisms, while short-term control refers to nervous control mechanisms 
([38], [5]). Here, we will resume only to nervous control mechanisms, which are 
more deeply understood. The main control strategies encountered in general in 

physiological systems, and in particular in cardiovascular regulation, can be 
synthesized schematically as in Fig. 1.1 ([12]). The controlled system (or process) 
has a control input, a disturbance input10 and a controlled output. Although not 
depicted in the figure, the controlled system can possess local auto-regulation 
mechanisms11. Usually, the principal control mechanism is thorough feedback, but 
there can be multiple feedback mechanisms that act simultaneously with different 

strength of impact on the overall control12. The feedforward controller detects an 
external stimulus or disturbance, and influences the feedback controller accordingly, 
in order to somehow compensate the effect of the disturbance13. Finally, an 
adaptive controller intervenes and changes the way the other controllers operate, as 
dictated by (higher) nervous centers14. The higher nervous centers in turn can 
change the reference input in relation to numerous other factors.  

Despite this hierarchical overview of physiological control (and in particular 

cardiovascular regulation), the entire “design” operates optimally in a certain sense, 
by ensuring a trade off between stability, performance and robustness. For example 
it may be more important to have robust stability than to impose a small control 

                                                 
9 The complexity of cardiovascular regulation is thus given by the presence of multiple control 
mechanisms that act simultaneously on different time scales ([13]). 
10 The disturbance can refer to the action of an external stimulus (ex. work, movement), to a 
pathological agent (e.g. virus, injury), or even the interconnection with other systems within 
the human body (e.g. the interconnection between the respiratory system and the 
cardiovascular system).  
11 In particular, for the cardiovascular system, this refers to the intrinsic or local control of 
peripheral blood flow ([8], pp. 383–386). 
12 For the cardiovascular system, the baroreflex is the most important (short-term) feedback 
control mechanism, but other feedback control mechanisms are present, like the 
cardiopulmonary reflex ([17]).  
13 Sometimes the feedforward action is directly on the controlled system, bypassing the 
feedback controller, as it is in the case of the vestibular sympathetic reflex, which responds to 
orthostatic stress ([17]). 
14 Such adaptive response can be caused, for example, by an emotional response of the 
subject (like extreme fear), and can be depicted systemically only for a priori fixed scenarios. 

BUPT



1.2 - Biomedical systems and cardiovascular regulation 

 

15 

error. Additionally, energy factors are included through multiple limitations on the 
control signals. 

Next, although cardiovascular regulation, as any other physiological control 

system, has multiple control mechanisms (as previously discussed), throughout our 
study we will restrict our analysis to the main feedback control mechanism acting on 
short term: the baroreflex mechanism. Consequently, our control loop reduces to 
the one from Fig. 1.2.  

The baroreflex mechanism acts as an output feedback controller, by 
measuring the systemic arterial pressure (the output or controlled variable), and 
commanding the heart rate, heart contractility, systemic peripheral resistance and 

venous unstressed volume ([39]). Thus, we are dealing with a single input – 

multiple output feedback controller. 

 

 
Fig.1.1. Control strategies in physiological systems (in particular cardiovascular regulation) – 

adapted from [12]. 

The measurements are done by the baroreceptors (stretch receptors placed 
on the arteries), which transmit nervous impulses (signal modulation) to the 

nervous system (more exactly to the medulla oblongata). The generated control 
signals are then sent (again as nervous impulses) thorough the peripheral nervous 
system15 (divided into a sympathetic and parasympathetic subsystem) to the 
cardiovascular system. Through the expression – baroreflex feedback mechanism – 
we will further refer to all this components. 

The controlled system (process) for the baroreflex feedback mechanism is 
the cardiovascular system. The cardiovascular system is composed out of the heart 

system and the circulatory system (schematically depicted in Fig. 1.3). 

 

                                                 
15 Here is where time delays (transport delays) appear on each control path. Different 
pathologies at the level of the peripheral nervous system can alter these time delays: 
Autonomic peripheral neuropathy ([41]), Guillain-Barré syndrome ([40]), Diabetic neuropathy 
([42]). 
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Fig.1.2. Simplified view of cardiovascular regulation (baroreflex feedback control mechanism). 

The heart is composed out of a left side (which pumps blood into the 
systemic circulation) and a right side (pumps blood into the pulmonary circulation). 
Each side presumes an atrium, a valve, a ventricle and a final output valve. The 

blood accumulates in the atrium, and when the atrioventricular valve opens it fills 
the ventricle (the period of the cardiac cycle called diastole). After the 
atrioventricular valve closes, the ventricle starts contracting, the output valve opens 

and the blood is ejected into the arteries (the period of the cardiac cycle called 
systole)16.  

 The heart pumps the blood through the circulation. The circulation 
transports nutrients to body tissues and gets rid of waste product ([4]), and it is 
divided into the systemic circulation and the pulmonary circulation (Fig. 1.3). Each 
circulation in turn is composed out of arteries (large high pressure vessels), 
capillaries (small low pressure vessels), and veins (large high volume vessels)17. 

The systemic circulation ensures appropriate blood flow to all the tissues except the 
lungs (at the capillary level oxygen is transferred to the tissue). The pulmonary 
circulation transport blood the lungs and back to the heart (at the capillary level 
carbon dioxide is transferred to the tissue).  

Although both the systemic and pulmonary circulations are clearly 
distributed systems, usually a compartmental (lumped) approach is used in 

describing the part of each circulation: arterial compartment (large arteries), 
peripheral compartment (small arteries, capillaries, small veins), and venous 
compartment (large veins).18 

                                                 
16 See [5] for a more detailed physiological description, along with suggestive graphical 
illustrations. 
17 Each side of the heart (left, right) pumps the blood received from the main veins into the 
main arteries through repeated, rhythmic contractions (cardiac cycle). 
18 Similarly with many other studies from the literature which focus on short term control 
mechanisms for the cardiovascular system, in the present study, our main interest is what 
happens at the heart level. 
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Fig.1.3. The cardiovascular system (heart and circulation) – schematic physiological 

representation 

Finally, throughout the thesis, we considered as reference textbooks in 
matters of basic physiology the works of Berne & Levy ([8]), Guyton ([4]), 

respectively Silbernagl & Despopoulos ([5]). 

1.3. Analysis of nonlinear systems 

A system represents an ensemble of interconnected objects with a clear 
given role, and well defined in respect with the exterior environment ([16]). The 
systems dynamics may be reported to time (time driven systems) or events (event 

driven systems)19. Let us focus further on time driven systems, which can be further 

divided into discrete time systems and continuous time systems. If for (control) 
design, a discrete time approach can be adopted, for systems analysis, the 
continuous time domain approach is the most common20. In continuous time, 
dynamics systems are described quantitatively through mathematical models, more 
exactly through systems of differential equations.  

 The principle of superposition tells us if a dynamical system is linear or 

nonlinear. Linear systems respect the superposition principle, and can be 
characterized by a system of linear differential equations, which is usually 
represented under the canonical form21 ([15], [16]) 









)t()t()t(
)t()t()t(

DuCxy
BuAxx

,    (1.1) 

                                                 
19 The presents study deals only with lumped parameters systems, as a simplified approach to 
what in reality are distributed parameters systems (like the cardiovascular system) – i.e. 
systems dynamics dependes on a certain space distribution also. 
20 Most real (physical) systems are continuous in nature. However, when the nature of the real 
systems is discrete (e.g. digital electronics, computer networks), the analysis has to be done 
also in discrete time. 
21 Such a system is called a linear time invariant continuous time system. 
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where u is the input of the system, y is the output, and x are referred to as states22 

of the systems. A, B, C and D are constant matrices with appropriate dimensions. 

However, most real (physical) systems are nonlinear in nature23, and do not respect 

the principle of superposition. Nonlinear systems can only be rigorously depicted as 

systems of nonlinear differential equations of the general form ([1]) 

 
 








)t(),t(,t)t(
)t(),t(,t)t(

uxhy
uxfx

,    (1.2) 

with f and h as vector functions24. A nonlinear system can exhibit different types of 

complex dynamic behaviors, that a linear systems can not – like finite escape time, 

multiple equilibrium points, limit cycles, bifurcations, chaos, and so on ([1]).  

 For linear systems, the main exception of systems which can not be 
embedded to the form (1.1), are linear time delay systems – which may have the 
form ([43]) 









)t()t()t(

)t()t()t()t( d
DuCxy

BuxAAxx -
,    (1.3) 

where  is the time delay. If there are more than one time delays (1,2,…), we have 

more than one matrix Ad (i.e. Ad1, Ad2…). For nonlinear systems, although there are 

several classes of dynamical systems that can not be framed by (1.2), we will 

mention just two exceptions (which are more relevant to our present study): non-

autonomous nonlinear time delay systems of the form 

 
 








)t(),t(,t)t(
)t(),t(),t(,t)t(

uxhy
uxxfx -

,    (1.4) 

and non-autonomous switched systems of the form  

 
 








)t(),t(,t)t(

)t(),t(,t)t( )t(

uxhy

uxfx 


,    (1.5) 

where σ is the (exogenous) switching signal25. Again, if there are more than one 

time delays, we have additional terms in the function f from (1.4) – x(t-1), x(t-2), 

and so on. 

 Let us move on to analysis methods, with a focus on stability26. The analysis 
of linear systems of the form (1.1) is well known (classical). In short, the stability is

                                                 
22 Usually denote accumulation of energy. 
23 Engineers most often use linear systems as approximations of the nonlinear systems near 
nominal operating points. 
24 As a common notation convention, we will in the future drop the time dependency of the 
variables, in order to ease readability. It will result from context if a variable varies in time or 
not. 
25 The switching signal can take positive natural values 1, 2, 3,…,n, corresponding to the 
selection of a particular function f1, f2, f3…,fn. Thus, we are dealing actually with a variable 
structure system. 
26 A system is considered stable in respect with an equilibrium point (or nominal trajectory) if 
when the system starts near this point (or trajectory) it remains nearby (in its vicinity), 
despite possible perturbations. 
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 dictated by the location of the eigenvalues of the matrix A in respect with the 
complex plane: instability occurs if there are eigenvalues in the right half plane.  

 The analysis of linear time delays systems of the form (1.3) already 

introduces significant complications. For the single delay case, several techniques 
have been proposed in the literature, from distribution of characteristic roots27 
(analytical or numerical methods) and Nyquist plots (or other types of frequential 
approaches), to matrix pencils and algebraic transformations, and even to Lyapunov 
(like) approaches (see [44], [46], [45], [43], along with the reference therein). 
Current research directions focus on the case when the time delay is time varying 
(e.g. [47]), or on the multiple delay case (e.g. [43]), but most methods proposed 

are either conservative (only sufficient stability conditions) or computationally 

demanding (even infeasible at the present computational capabilities). In respect 
with multiple delay linear systems, there are relatively few methods that provide 
feasible (practical) necessary and sufficient conditions (like in [48]). 

 If classical systems theory has set forth the tools for analyzing linear 
systems, modern systems theory is mainly concerned with nonlinear systems. 
However, for nonlinear systems analysis there are no general methods, i.e. methods 

that work on all types of nonlinear systems. Instead, the tools from nonlinear 
systems analysis work on certain classes of nonlinear systems. Moreover, in 
contrast to linear systems, these tools usually lead to sufficient only stability 
conditions, and thus the results can be quite conservative28. If one is interested in 
the local behavior of the nonlinear system around an equilibrium point, the 
linearization method (also called Lyapunov’s indirect method) is often used for 

obtaining a linear system that approximates the nonlinear systems near the 
equilibrium point. As an example, for a nonlinear system described by the state 
equations  

 uxfx , ,    (1.6) 

and an equilibrium point xe=0 (i.e. f(0,0)=0), the state equation of the linearized 

system is  

u
u
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0u0x

A
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
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
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













 ,,
∂

∂

∂

∂
.                       (1.7)29 

When linearization is not possible ([1]), or one is interested in the global 
behavior of the nonlinear system, Lyapunov’s direct method is most often 
employed. For an autonomous nonlinear system of the form 

 xfx  ,    (1.8) 

                                                 
27 The characteristics roots of (1.1), respectively (1.3), are the solutions of the equation 
det(sI-A)=0, respectively det(sI-A-Ade

-s)=0, with s as a complex variable and I as the 

unitary matrix. 
28 In most cases, if a certain analysis method fails or can not conclude that the system is 
stable, this does not imply that the system is unstable. Moreover, even when one knows a 
domain in which the system is stable, he can not know how this domain relates to the real 
stability domain – which can be larger than the one found (and thus the conservative results).  
29 First order Taylor series. 
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the method implies the use of a Lyapunov function (scalar energy-like function) 

V(x) 30: if this positive definite function decreases in time (negative semi-definite 

time derivative), then the equilibrium point is stable in the sense of Lyapunov ([2], 

[1]). If V(x) is radially unbounded (i.e. V(x)→∞ as ||x||→∞), then the stability is 

global ([1]). The entire problem is how to find such a function for a given nonlinear 

system. Although some approaches for finding Lyapunov functions have been 

proposed (see [2]-ch. 3, [1]-ch4), these work only on certain classes of nonlinear 

systems31. There are no general ways of finding Lyapunov functions that work for all 

categories of nonlinear systems.32 

 An alternative to the internal (Lyapunov) stability based approaches is to 
focus on the input-output dynamics, and ignore what happens to the states of the 
systems (black box approach). A systems is stable in the input-output sense if small 

inputs lead to correspondingly small outputs ([3]-vol. 3-ch. 44). Passivity theory, 
finite gain stability (L2), bounded-input-bounded-output and the small gain 
theorem: all these provide valuable tools for input-output stability analysis (see [1]-
ch 5, [3]-vol. 3-ch. 44). The possibility of separating the linear part from the 

nonlinear part (usually static or memoryless) leads to particular stability criteria like 
the Circle Criterion and Popov Criterion. Either way, in many cases one eventually 
makes use of Lyapunov-like arguments33.  

 More recently, the input-to-state stability paradigm has been developed, 
which sits at the intersection of internal stability and input-output stability ([3]-vol. 
3-ch. 45). Such an approach is useful when, for a nonlinear system like (1.6), we 

want to determine stability in respect with the input u. Ultimately, such methods 
resume again to Lyapunov functions, but this time the stability conditions are 
dependent on the domain of variation of the input u (see [3]-vol. 3-ch. 45 and [1]-
ch. 4.9).34 

 The stability of nonlinear time delay systems – of the form (1.4) for 
example - is extremely complex. There are very few stability methods in the 

literature which address such systems, capable of global results. Of course, there 

are extensions of Lyapunov theory even here – Lyapunov functionals: Krasovskii or 
Razumikhin type ([45]) - but this makes the task of finding an appropriate 
Lyapunov functional for a specific nonlinear system even more difficult. Most 
analysis studies resume to local stability analysis via linearization35. An exception is 

                                                 
30 For non-autonomous systems, i.e. when ( )xfx ,t= , more complex function have to be 

used - V(x,t), and the stability conditions are more restrictive: uniformity in respect with an 
initial time t0 ([1]), V must be decrescent (i.e. dominated by a time-invariant positive definite 
function: V(x,t)≤V1(x)) - [2]. 
31 As a more recent example, a computational approach has been proposed in [50] to finding 
Lyapunov functions for a class of nonlinear systems called polynomial systems.  
32 Of course that a physical insight of the system can help (guide) in finding a Lyapunov 
function ([2]-ch 9, [51]) 
33 Passivity theory makes use of so called storage functions, which represent generalizations of 
Lyapunov functions. 
34 Although in applied mathematics one can also find other stability approaches, our 
presentation revolves around Lyapunov-like approaches because, according to our knowledge, 
these are the most often encountered in control engineering practice. 
35 Especially in fields like mathematical biology, where models can not easily fit into a standard 
class of nonlinear systems. 
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the recent work from [49], which developed a computational approach to finding 
such Lyapunov functionals for polynomial time delays systems. 

 Switched systems of the from (1.5) are encountered in practice when, along 

the continuous dynamics, discrete events appear (e.g. a valve, a thermostat, a 
power switch) - [53]. This complicates the analysis by introducing discontinuities36. 
However, a particular class of switched systems – switched linear systems – has 
been intensively studied in the last two decades due to its high applicability and 
efficient computational tools for analysis ([52]). As example, for (1.5) one can use 
multiple Lyapunov function Vi (one for each subsystem selected by the switching 
function σ) – [3]-vol. 3-ch.30, and if (1.5) is reduced to a switched linear system of 

the form 

xAx )t( ,    (1.9) 

then the stability can be assed through a piecewise quadratic Lyapunov function 

Vi=xTPix, with i as the index of given subsystem selected by the switching function 

σ ([3]-vol. 3-ch.30, [52]). The stability conditions for (1.9) can be expressed as 

linear matrix inequalities (LMIs), for which efficient computational tools already 

exist.37 

Finally, throughout the thesis, we considered as reference textbooks in 
matters of linear systems theory the works from [15] and [16], for nonlinear 
systems theory the works from [1] and [2], and for control theory in general the 
extensive handbook [3]. The computational part of the theoretical methods used 
and the numerical results obtained, were all done in Matlab ([19]) and/or Maple 

([20]). 

1.4. Thesis organization 

The thesis is structures in five chapters. The current chapter - Chapter 1 – 
has provided a short introduction into the motivation of the study, features of 
biomedical systems and in particular cardiovascular regulation, and presented some 

of the main categories of nonlinear systems along with the tools to study (analyze) 
them.  

In Chapter 2 a model for cardiovascular regulation is built based on 
cardiovascular and baroreflex models from the literature, and a simplified averaged 
model is finally derived. At the end of Chapter 2 the obtained model is validated on 
a pathological scenario in comparison with experimental data from the literature.  

Because the averaging method used in Chapter 2 is new, Chapter 3 provides 

a theoretical framework for the averaging method. The theoretical framework 
extends the applicability of the new averaging method to an entire class of nonlinear 
systems.  

                                                 
36 In some cases, switched systems are used to approximate more complicated nonlinear 
systems: switching behavior can be viewed as an approximation of a more complex dynamics, 
but which occurs on a very small time span in respect with the dynamics of the whole system 
(so small that it can be neglected). 
37 LMIs can be solved thorough convex optimization ([54]). 
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The stability analysis of cardiovascular regulation is the object of Chapter 4. 
The first part of the chapter deals with the local analysis via linearization, with the 
focus on the role of multiple time delays. The second part of the chapter deals with 

global analysis via contraction theory, with a focus on robustness. Each part of 
Chapter 4 ends with some numerical results and a discussion.  

The final chapter – chapter 5 – points out some final conclusions, highlights 
the main contributions of the thesis, and presents some oportunities for future 
work. 
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2. ON MODELING CARDIOVASCULAR 
REGULATION 

 

 

2.1. Introduction 

 The use of mathematical models in medicine has become a very active area 

of research, given its potential applicability in both design problems (e.g. medical 
devices, surgery) and analysis problems (e.g. diagnosis). A particular focus is on 
aspects regarding the functioning of the cardiovascular system, due to its crucial 
physiological role – that of providing supplies for maintaining vital functions of 
different organs and getting rid of waste material, and also because cardiovascular 
diseases are among the leading cause of mortality in the world. Over the past 

decades, a very wide range of models of the cardiovascular system have been 
proposed in the literature, from distributed models which characterize both the 
spatial and temporal proprieties of blood flow through the circulatory system (a 
network of blood vessels), to lumped-parameter models which focus more on the 
functioning of the heart (and its interaction with large vessels), and finally to models 
of cardiovascular regulation (with a focus on certain control loops).  

Despite the fact that detailed models of the cardiovascular system may be 

useful for studying specific physiological or pathophysiological scenarios ([55]), the 
high complexity of such models usually obscures the basic functional principles of 
the system. Moreover, control mechanisms acting on the cardiovascular system 
(which are still poorly understood) are hard to grasp, due to the overall complexity 

of the closed loop system. Thus, if we want to gain insight into the dynamics of 
physiological control ([11]), we have to resort to models which are as simple as 
possible (as it has been done in control engineering). 

On short-term, cardiovascular regulation is done through nervous control 
mechanisms, among which the most important is the baroreflex mechanism ([56]). 
Although the cardiovascular system has a periodic (pulsatile) dynamic behavior (due 
to the dynamics of cardiac contraction), the baroreflex feedback control loop deals 
mainly with time averaged state variables, and thus acting on a slower time scale 
([57], [58], [59], [60]-ch.1). This indicates that the transient behavior of the 

overall control loop could be represented through simpler models. Also, in many 
practical cases, only short-term average values of the corresponding variables are of 
interest (in response to certain perturbations), and not their instantaneous values or 
their specific waveform (during a heart period) – [61], [62]. All these together 
provide a strong motivation for addressing (cycle-) averaged models of the 
cardiovascular system. 

Averaging theory has been widely used in approximating nonlinear systems. 

Over the years, several averaging methods have been proposed, ranging from 
rather heuristic or application oriented methods to theoretical methods for specific 
classes of systems ([63], [64], [65], [66], [67], [1]-ch.10, [60]-ch.1). Recent 
interests are in extending the averaging theory to hybrid systems, and in particular 
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to switched systems ([68]), due to their ability to model (in a simple and 
straightforward manner) a wide variety of complex systems ([52]). Averaging of 
switched systems can be regarded as a process of dehybridization ([69]), which 

aims in further simplifying the analysis and design phases for the considered 
system. Naturally, such an approach plays an important role in periodic (or quasi-
periodic) switched systems, and in particular in pulse-modulated switched systems. 
As in the case of averaging pulse modulated systems ([70]), averaging of pulse-
modulated switched systems is equivalent with the averaging of the pulse 
modulation (switching) signal over the modulation period ([68]). 

The cardiovascular system can also be regarded as a hybrid system, due to 

the heart valves, which open and close very fast, thus approximating a switching 
behavior ([71], [72]). Moreover, we shall show here that simple models of the 

cardiovascular system can be brought to the form of switched linear systems or 
switched affine systems. By taking into account the influence of the nervous control 
on the mechanism of cardiac contraction, as an idealization, the cardiovascular 
system can be further regarded as actually a pulse-modulated switched system. 
However, similar to other cases of pulse modulation in biological systems ([73]), we 

are dealing here with pulse-frequency modulation. For pulse-frequency modulated 
systems with constant duty ratio (e.g. the cardiovascular system), most 
conventional averaging methods (which were mostly used for pulse-width 
modulated systems) fail, resulting in an averaged model invariant to the modulation 
frequency (which would lead to very large errors as the frequency varies). In 
addressing this issue, this study presents an extension to a weighted averaging 

approach, which leads to a frequency dependent averaged model, while maintaining 
the averaged model as simple as possible. 

While the cardiovascular system can be considered to play to the role of a 
controlled process, the baroreflex mechanism plays the role of a nonlinear 
controller, with one measured input – (mean) arterial pressure and multiple control 
outputs - heart rate, contractility, peripheral systemic resistance, and unstressed 

venous volume. The nonlinearity is mainly due to nonlinear static characteristics 

presented on each control pathway. In this study we derive also a simplified version 
of a well known model for the baroreflex mechanism ([39]). 

Finally, the main objective of this study is reached by obtaining the closed 
loop averaged model of cardiovascular regulation, through the coupling of the 
averaged model of the cardiovascular system with the simplified model of the 
baroreflex mechanism. A comparison between the dynamic behavior of the closed 
loop averaged model and the original closed loop pulsatile model is further done 

through simulations. 38 

2.2. Modeling the cardiovascular system 

The cardiovascular system is characterized by a very complex dynamic 
behavior, mainly due to time-varying nonlinearities which are hard to model 
mathematically in a quantitative manner. Numerous models have been proposed in 

the literature. Although the system is with distributed parameters, in most cases it 

is approximated through lumped parameter models, with varying degrees of 
complexity, ranging from detailed high order models (e.g. 21st –order, in [57]), to 

                                                 
38 Some of the results of this chapter have been published in [74]. 
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medium order models (e.g. 14th –order, in [39]), and finally to low order models 
(e.g. 3rd –order, in [61]) which capture just the basic dynamic phenomena of the 
whole system. Although detailed models can capture a wide palette of physiological 

and pathophysiological aspects, it is usually very difficult to use them in practice. In 
this context, for modeling the cardiovascular system, a qualitative approach is 
adopted, focusing on insight, rather than accuracy. 

2.2.1 A simple model of the cardiovascular system 

As a starting point, the simple pulsatile lumped-parameter model 
(Windkessel type) of the cardiovascular system from [61] is considered. The model 

captures only the dynamics of the left ventricle and the systemic circulation, and it 
is considered to be sufficient in order to approximate basic hemodynamic 

waveforms39. Similar low-order models have also been used throughout the 
literature (e.g. [71], [75], [76], [77]). 

The cardiovascular system is predominantly of a hydraulic nature, but for 
modeling, due to basic isomorphisms, conceptual electrical circuits type models are 
used, with the following analogies: voltage represents pressure, current represent 

flow, charge represents volume, electrical resistance represents hydraulic 
resistance, capacitance represents compliance, and diode represent heart valve. The 
circuit diagram corresponding to the model of the cardiovascular system is shown in 
Fig. 2.1. 

The model is composed out of 3 coupled differential equations:  
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with initial values  
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and where the currents are given by 
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The voltages V0, V1 and V2 correspond to left ventricular pressure, systemic arterial 

                                                 
39 From a more rigorous perspective, the venous compartment actually incorporates, besides 
the systemic veins, also the right ventricle and the pulmonary circulation - which are 
considered to have a rather passive role ([75]). With this in mind, the model captures in a 
pertinent manner only the hemodynamic response of the left ventricle and systemic arteries 
(i.e. it focuses on the variations of pressures Plv and Psa). 
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pressure and venous pressure (further on denoted as Plv, Psa, Pv). 

 

 
Fig.2.1. Pulsatile model of the cardiovascular system (adapted from [61]) 

The pulsatile nature of the model is given by the time-varying compliance 
(capacitance) C(t), which is the inverse of an time-varying elastance C(t)=1/E(t). 
The elastance40 has a periodic waveform, with period T (heart period, i.e. duration 
of the cardiac cycle), and its analytical expression, determined from experimental 
data, can be given by a piecewise linear form ([61]) 
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where Es and Ed are the maximum and minimum elastance value, also called end-

systolic elastance and end diastolic elastance. The waveforms of the elastance and 

compliance for a heart period of T= 1 sec is shown in Fig. 2.2. 

As a further simplification, the time-varying compliance is approximated in 
[61] as a piecewise constant function (Fig. 2.3): 

,n,
T)1n(tnT,C

nTtnT,C
)t(C

d

s
a 













     (2.5) 

where the first interval is considered to be the duration of the systole (which can be 

approximated as =T/3 – [61]), the second interval is the duration of the diastole, 

while Cs and Cd are the minimum, respectively maximum, values of the compliance. 

                                                 
40 For a detailed description of the elastance concept see [17]. 
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Fig.2.2. Time-varying compliance and elastance (adapted from [78]) 

 
Fig.2.3. Approximation of the time-varying compliance (adapted from [61]) 

Next, the commutation of the two diodes is modeled in a manner similar as in 
[61], by introducing a periodic switching function q, which takes the value q=1 

when the diode D1 is conducting and D2 is non-conducting, and the value q=0 in the 
opposite situation41. In the case of the square-wave time-varying compliance (Fig. 
2.3), the switching function can be defined as42: 
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


    (2.6) 

The equations of the voltages Vout and Vin (which were additionally introduced) 
can now be written as: 

 
  )t(V)t(q)t(V)t(q1)t(V

)t(V)t(q)t(V)t(q1)t(V

02in

10out




    (2.7) 

Finally, based on equation (2.1)-(2.3) and (2.5)-(2.7), and by defining the 
states as x0(t)=Ca(t)V0(t), x1(t)=C1V1(t), x2(t)=C2V2(t)

43, and the input u(t)=Ea(t) 
(with Ea=1/Ca), the model can be written in the following nonlinear state space 
form: 

                                                 
41 This means that the isovolumic contraction/relaxation phases are ignored. 
42 When using the piecewise linear elastance function instead, q has to be defined in a more 
elaborate manner, because the elastance is defined on 3 subintervals instead of two, and an 
issue of synchronization appears between these subintervals and the intervals in which the 
diodes commute. Moreover, the manner in which the switching signal q appears in the model 
has to be reanalyzed, because (2.7) can no longer be used. 
43 The new states now represent stressed volumes, in their hydraulic interpretation. 
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The compressed form of the model is given by  

  000 )t(,)t(q),t(u),t()t( xxxfx      (2.9) 

with the state vector x(t) =[x0(t) x1(t) x2(t)]
T, and where states and the input 

signals are of periodic nature, i.e. x(t)=x(t+T), u(t)=u(t+T) and q(t)=q(t+T). 

The output equations can be also written as 

  )t(
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,
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1
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1
diag)t()t(

21a
xxhy 













              (2.10) 

where the output vector is y(t)=[y0(t) y1(t) y2(t)]
T, with y0=V0, y1=V1 and y2=V2. 

A final remark: for a future coupling of model (2.9)-(2.10) with a model of 
the nervous control system (composed mainly of the baroreflex control mechanism), 
only the output V1 is needed, corresponding to arterial pressure (Psa). 

2.2.2 The cardiovascular system as a hybrid system 

The cardiovascular system can be regarded as a hybrid system, in which the 
ideal diodes may induce time based or state based switching. The switching denotes 

the transition from one heart regime to the other (e.g. from systole to diastole). 
Because the switching is periodic, and is actually induced by the elastance function 
which acts as an external signal (mechanism of contraction), the cardiovascular 
system falls into the category of pulse modulated switched systems. Moreover, 
because the switching frequency (heart rate) can change under the influence of 
nervous control (as a result to different types of perturbations), we are actually 

dealing with a pulse frequency modulation. 

Although most studies consider the cardiovascular system as a hybrid 
system with state based switching (e.g. [71], [72]), we will show here that under 
certain simplifying assumptions (mainly in respect with the expression the time-
varying elastance/compliance), the cardiovascular system can be regarded also as a 
time-based switched system. Indeed, it has been shown in the general case, that 
under certain conditions, a state based switched system can be equivalent with a 

time based switched system ([53]-ch.1)44. 

                                                 
44 If an exogenous time dependent switching function can be identified which assures a one-to-
one correspondence with the operating regions of the state space, so that the state and time 
dependent switched systems have a common trajectory (solution), the system can be reduced 
to a time dependent switched system. 
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2.2.2.1 Time based switched system 

For model (2.9)-(2.10) of the cardiovascular system, with the input 

u=Ea=1/Ca, consider that the switching of the two diodes D1 and D2 is synchronized 
with the intervals in which the square-wave compliance changes. Based on the 
switching signal q defined in (2.6), the input u can be written as 

   )t(q1E)t(qE)t(q1
C

1
)t(q

C

1
)t(u sd

sd
              (2.11) 

This means that instead of the two inputs q and u, we can consider the single 
input q, in which case the model (2.9) can be recasted to the standard from of a 
switched linear system (with time based switching):  
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where the switching function q:[0,){0,1}, defined as in (2.6), provides the index 

of the active mode, i.e. it selects the appropriate matrices A and C from the sets 

{A0, A1} and {C0, C1}, according to the specific regime in which the system is 

operating (A0,C0 - systole, A1,C1 - diastole). In accordance with (2.9)-(2.12), these 

matrices are given by 
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2.2.2.2 Model order reduction 

Model (2.8) is non-minimal, because of the linear dependence 
x0(t)+x1(t)+x2(t)=xT - conservation of charge, respectively conservation of volume; 
xT represent the total stressed volume (i.e. total volume minus total 
unstressed/zero-pressure volume). This means that the state x2 can be determined 

as x2(t)=xT-x1(t)-x0(t). Consequently, model (2.8) can be reduced from a 3rd order 
model to a 2nd order one: 
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Based on similar arguments with those from chapter 2.2.1, model (2.14) can be 
recasted as a switched affine system: 
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As a remark, it is important to point out that now xT appears explicitly in the 
model, which would facilitate a future integration with the nervous (baroreflex) 
feedback loop which controls the unstressed volume ([79]). 

2.3. Modeling the nervous control system 

The nervous control system is composed out of several nervous reflex 
mechanisms which act on the cardiovascular system, among which the most 
important is the baroreflex mechanism ([56]). In this section we focus on modeling 

aspects of the baroreflex feedback control loop, which will be further coupled with 
the model of the cardiovascular system in the next section. 

2.3.1. Initial baroreflex model 

The baroreflex model from [39] is considered as a starting point, which is 
regarded as one of the most well established models, derived from experimental 
data and thoroughly validated. The model is divided into three parts: afferent part 
(corresponding to the baroreceptors), central part (central nervous system) and 
efferent part (peripheral autonomous nervous system). Due to the large number of 
nonlinearities and parameters/variables, and for a more intuitive and simple 

presentation, the model will be further described only in a graphical manner 
(through block diagrams) and with brief comments; the detailed equations, along 
with the parameter values, can be found in [39]. 

The afferent part is modeled as a series connection between a linear first-
order filter and a sigmoid-type static nonlinearity – Fig. 2.4. The input represents 
the arterial pressure (Psa), and corresponds to the signal V1 from model (2.9)-

(2.10), while the output represents the firing rate of the baroreceptors - nbr.  
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Fig.2.4. Afferent part of the baroreflex model 

The central part captures two parallel nervous pathways, a sympathetic 
(excitatory) and a parasympathetic (inhibitory) pathway, modeled by an 

exponential-type static nonlinearity, respectively a sigmoid-type static nonlinearity – 
Fig. 2.5. The two outputs represent the firing rates of the sympathetic and 
parasympathetic pathways – ns and np. 

 

 
Fig.2.5. Central part of the baroreflex model 

The efferent part is composed out several nervous pathways: a sympathetic 
pathway which controls the maximum amplitude of the elastance Es, a sympathetic 

pathway which controls the peripheral (systemic) resistance Rp, a sympathetic 

pathway which controls the (systemic) venous unstressed volume Vuv, a 
sympathetic pathway and a parasympathetic pathway which control the heart period 

(in an antagonistic manner)45. The sympathetic pathways which control Es, Rp and 

Vuv
46, are modeled as series connections between a time delay, a logarithmic type 

static nonlinearity, a first order low pass filter dynamics and a summation with a 
nominal value of the output. The sympathetic and parasympathetic pathways which 

control the heart period T are modeled as a summation between: a series 
connection of a time delay, logarithmic type static nonlinearity and a first order low 
pass filter dynamics (sympathetic part); a series connection between a time delay, a 

static gain and a first order low pass filter dynamics (parasympathetic part); along 
with a nominal value of the corresponding output. Fig. 2.6 shows the block diagram 
of this part of the model (TE, TR, TV, TTs, TTp are the time constants; E, R, V, Ts, Tp 

are the time delays; Es,0, Rp,0, Vuv,0, T0 represents the nominal values). 

 

                                                 
45 For simplicity, we will not distinguish between the efferent variables of the left and right part 
of the heart, nor between the splanchnic and extrasplanchnic circulation. It is considered that 
the main features of the models are still conserved, while condensing the presentation as 
much as possible. 
46 It will be shown in the subsequent chapter how these variables relate to those of the 
cardiovascular model presented in chapter 2.2.  
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Fig.2.6. Efferent part of the baroreflex model 

2.3.2. Simplified baroreflex model 

The baroreflex model presented so far appears relatively complex. From a 
practical point of view, it is of interest to simplify the model as much as possible in 
order to permit a deeper understanding of its dynamic behavior. In this direction, 
we have managed to arrive at a simpler model - Fig. 2.7 (equivalent from an input-

output perspective), by making the following operations: 

- the time delay elements where moved after the logarithmic-type static 

nonlinearities. Such an operation is allowed due to the static nature of the 
nonlinearities; 

- equivalent nonlinearities for the central and efferent sympathetic pathway is 
determined: the series connection of the exponential-type static nonlinearity 

and the logarithmic-type static nonlinearities lead to a affine-type static 
nonlinearities;  

- equivalent nonlinearity for the entire sympathetic pathway are determined: 
the series connection of the afferent sigmoid-type static nonlinearity and the 
affine-type static nonlinearities (previously determined) lead to a sigmoid-
type static nonlinearities (monotonically decreasing); 

- an equivalent nonlinearity for the entire parasympathetic pathway is 

determined: the series connection of the afferent sigmoid-type static 
nonlinearity and the central sigmoid-type static nonlinearity leads to a 
sigmoid-type static nonlinearity (monotonically increasing); 

- the summations with the nominal values of the outputs of the efferent part 

are incorporated in the sigmoid-type static nonlinearities determined for the 
sympathetic and parasympathetic pathways. 
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Fig.2.7. Simplified baroreflex model 

Based on the above considerations, we can now give the full set of 
equations of the simplified baroreflex model: 
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where the functions fsig have the sigmoid form 
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Furthermore, the functions fsig can be written under the simpler form: 
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2.4. Closed loop model of cardiovascular regulation 

This section presents the closed loop model obtained by coupling the 

cardiovascular model and the baroreflex model presented in the previous two 
sections. The coupling involves an analysis of the interactions which appear between 
the two models, and ways of modeling them in an intuitive and simple manner. 

Before proceeding any further, it is important to explain how the variables of 
the baroreflex control loop and the cardiovascular model are related, in the context 
in which each part has been adapted from different studies. The problem is twofold: 

first the input and output variables should be uniquely clarified, second the 
parameters should be calibrated in order to reproduce normal hemodynamic 
behavior of the overall closed loop model (the control loop should have the effect on 

the controlled systems as in [39]).  

In addressing the first aspect, it’s important to note that the cardiovascular 
model presented so far uses electrical variables (based on the analogy between 
electrical and hydraulic circuits), while the baroreflex model deals with hydraulic 

variables. From this point further we will consider all the variables in their hydraulic 
interpretation. This means that, for models (2.9)-(2.10) and (2.15), the outputs 
{y0, y1, y2} will now represent the pressures {Plv, Psa, Pv}  and the states {x0, x1, 

x2} will now become stressed volumes { s
lv

V , s
saV , s

vV }47. The inputs variables 

remain the same- {T, Es, R1, xT}, but will now represent heart period, hydraulic 
elastance, hydraulic resistance, and total stressed volume. Finally, the outputs of 

the baroreflex model (2.17) will change from {T, Es, Rp, Vuv} to {T, Es, R1, xT}.  

In order to obtain a homogenous closed loop model capable of reproducing 

normal hemodynamic results, the second step involves a parameter calibration 
phase. Moreover, because for the baroreflex model, the old control output Vuv 
(unstressed venous volume) was replaced by the new control output xT (total 

stressed volume), an additional output constraint needs to be added (which will be 
integrated in the sigmoid function of the corresponding output path).  

Further on, we will adopt this change of variables, while the parameter 
calibration of the baroreflex loop will be pursued in chapter 2.6.2. 

2.4.1. Interactions between the baroreflex model and the 

cardiovascular model 

The interactions between the cardiovascular model and the baroreflex model 
appear at the afferent and efferent levels of the baroreflex control loop. Let the 
cardiovascular system be considered as a controlled process, and the baroreflex 

mechanism as the control structure. In such a case, the afferent path corresponds 
to a feedback path in which the sensors (baroreceptors) transmit information to the 
controller (central nervous system), and the efferent path corresponds to a direct 
path in which the controller transmits the control signals to the process, via an 
actuator. So we are actually dealing with a physiological control system ([11]).

                                                 
47 As consequence, Psa will be the input to the baroreflex model instead of V1. 
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2.4.1.1 Feedback Path 

On the feedback path, we have a filter (Fig. 2.4), which extracts the 

information needed for the baroreflex control loop. However, the precise information 
which is actually extracted by the baroreceptors is still not well understood – 
whether it is the average pressure, the instantaneous pressure, or a combination of 
both ([58]). Depending on the modeling objective, several variations can be found 
in the literature. 

For example, in ([58]), the rate of change of an average arterial pressure 
(Psa1) defined as  
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t
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is considered as input to the baroreflex control loop ( is a weighting factor). The 

model can be written in transfer function form as 
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with the block diagram from Fig. 2.8 (
p

1sa
P  stands for the rate of change of the 

average pressure). Based on comparisons of the frequency response, it can be 

shown that the model approximates the first-order filter given in ([39]) – see Fig. 

2.4 – for a sufficiently high frequency band. 

 

 
Fig.2.8. Block diagram of the linear part of the baroreceptor model from [58] 

Alternatively, if we consider that the average pressure is obtained through a 
low pass filter (this is possible when the time constant is large enough in respect 

with the signal period), then the parallel connection from Fig. 2.9a, with K=1/Tp and 

α=1/Tp, may correspond to the filter (2.21), while the parallel connection from Fig. 

2.9b, with K=1/(1-K1) and Td=K·Tp, may correspond to the filter from Fig. 2.4.  

 

           
        a)                                                     b)  

Fig.2.9. Alternative block diagrams for the linear part of the baroreceptor model 
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Other approaches, like the ones from [57], [59], [60]-ch.1 or [30], consider 
as input for the baroreflex control loop simply the average arterial pressure. 

An interesting interpretation is proposed in [80], where the pulsatility effect 

on the baroreflex observed in experiments ([39]) is regarded as a dither effect, 
lowering the gains of the baroreflex control loop48. This however sustains the view 
that whether or not one takes the instantaneous pressure into account, the average 
pressure is the predominant component.  

Finally, for our purpose of coupling the cardiovascular model with the 
baroreflex control loop, it seems that the baroreceptor model from [39] is a suitable 
choice, by capturing the response of the baroreceptors to both an average pressure 

and an instantaneous pressure. On the other hand, when coupling the baroreflex 

control loop with an averaged cardiovascular model (chapter 2.5.4), we will we will 
consider only the averaged pressure as input to the baroreflex control loop – but 
with lower central point slopes for the sigmoids (see the calibration from chapter 
2.6.2). 

2.4.1.2 Direct Path 

For the direct path, we need to model how to generate the elastance 
function from the “prescribed” heart period (by the baroreflex model). From a 
mathematical point of view, we need a nonlinear operator M which maps an input 

function fT(t)=1/T(t) to an output function E(t): Ef:M T  . A model of this type 

can be regarded as a Pulse Modulator ([70]).The input of the Pulse Modulator is the 
continuous signal fT(t), while the output consists of a series of pulses, which have 
the shape given by E(t). Because in our particular case, the input of the Pulse 

Modulator is actually the frequency of the output E(t), and by considering also that 
we want to preserve the shape of each pulse as the period changes, we are dealing 
with a combination of pulse-frequency and pulse-width modulation. Such a Pulse 
Modulator is referred to as a Pulse-frequency-width Modulator (PFWM) or as a 

Combined Pulse Modulator (CPM)49. 

Using the mathematical framework from [70], the model for CPM with 
rectangular output pulses can be written as: 

                                                 
48 Consider the output of the structure from Fig. 2.9b as the input of the baroreflex control 
loop, and regard the pressure Psa as composed out of an average component (the same one 
extracted by the low pass filter from the lower pathway) and a zero mean variation 
component. Then it results that the input to the baroreflex control loop actually consists in a 
slow varying signal (the average of Psa) and a superimposed high frequency signal – dither 
(the zero mean variation of Psa multiplied by K). Both signals are then at the input of a static 
nonlinearity (sigmoid). The theory regarding dithering ([67], [80]) states that this scheme is 
equivalent to one where we have as input only the slow varying signal, in series with an 
equivalent static nonlinearity. Additionally, because in our case the dither signal is of triangular 
form (idealized waveform of arterial pressure), the equivalent nonlinearity has a lower central 
point slope than the original one.  
49 Depending on the modeling objectives (e.g. shape of the elastance function), in some 
studies an Integral Pulse-Frequency Modulator is used instead (IPFM) – see the last paragraph 
of Appendix 1 for a discussion on the equivalence between a relay-hysteresis model and an 
IPFM. At last, when using a simple elastance function like the one corresponding to Fig. 2.3, a 
CPM is enough, while when using a more elaborated elastance function like the one from Fig. 
2.2, and IPFM is needed. 
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where the time moments t0=0<t1<t2<…<tn<tn+1<…are considered sampling 

moments, and with T as the sampling period. By further considering an inverse 

operation of the type C(t)=1/E(t), we arrive at the compliance function given in Fig. 

2.3 (Cs=1/Es and Cd=1/Ed). 

2.4.2. Relay-hysteresis model of a combined pulse modulator 

The CPM model given by (2.22) describes a nonlinear sample-data system. 
However, models of Pulse Modulators may be analyzed also in the continuous-time 
domain ([70], [81]). In fact, several studies can be found in the literature, which 

propose relay type models for different types of Pulse Modulators ([70]-ch.1.7, [82], 
[83], [84], [85]). 

Such an approach is also followed in [81], where it is stated that many Pulse 
Modulators can be regarded as relay systems which operate in a sliding mode with 
finite switching frequency (see [81]-ch.3, ch.12). In particular, for PFMs, a relay-
hysteresis model is proposed in [81]-ch.13. The model consists in a feedback loop, 
with an integrator, a gain, and a relay component on the direct path, respectively a 

gain of the feedback path – Fig. 2.1050. The output of the model consists in a train 
of rectangular pulses with unity amplitude and frequency given by the input signal. 

 

 
Fig.2.10. Relay-hysteresis model for a PFM 

In the case of CPMs, the model from Fig. 2.10 does no longer hold. This is 
mainly due variations of duration of the modulated pulses - n from (2.22). Because 

in the initial model the feedback gain kf is directly correlated to this duration, a 

natural extension is to consider this parameter variable, as opposed to being 
constant. Moreover, because the duration n actually changes as the modulation 

frequency changes, kf can be continuously adapted according to the variations of 
the input frequency signal. The block diagram of the new model is shown in Fig. 
2.11. In order to generate an elastance function like the one corresponding to Fig. 
2.3, as model (2.22) does, we would simply have to add an output component 

which adapts the output through the mapping ddsff E)EE(uu  . Finally, for 

                                                 
50 In [81]-ch.3, the relay component presents also a dead zone (useful in changing the basal 
sliding frequency of the relay system) and symmetry in respect with the origin (needed for the 
case of double-sign modulation). 
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a detailed analysis on how these relay systems behave as Pulse Modulators see 
Appendix 1. 

 

 
Fig.2.11. Relay-hysteresis model for a CPM 

2.4.3. The closed loop model 

By coupling the cardiovascular model (2.15), with the simplified baroreflex 
model (2.17), and with the relay-hysteresis model of the CPM from Fig. 2.11, we 

arrive at the closed loop model of cardiovascular regulation illustrated through the 
block diagram from Fig. 2.12. Notice that an additional inversion element is 
introduced at the input of the CPM so we obtain the heart frequency (f) instead of 
the heart period (T). Also, as a change of notation, the output uf of the CPM is now 
changed with q, the input switching signal for the cardiovascular system. 

As an overall interpretation of the model, it can be said that we are dealing 
with a physiological control system, with the following components: 

- a nonlinear “plant” - the cardiovascular system - controlled through multiple input 

signals, 

- sensors – (part of) the baroreceptors – witch act as linear filters, 

- a nonlinear static controller - the central nervous system - with multiple outputs 

(antagonistic outputs for the heart period T), 

- and a direct pathway which consists in time delays (due to transmission through 

the autonomic peripheral nervous system), first-order lag elements (probably due to 

chemical reactions that take place near the cardiovascular system), and a Pulse 

Modulator which acts as an actuator (mechanism of cardiac contraction). 

 

 

BUPT



2.5 – Averaged closed loop model of cardiovascular regulation 

 

39 

 
Fig.2.12. Closed loop model of cardiovascular regulation 

2.5. Averaged closed loop model of cardiovascular 
regulation 

Averaging theory provides important approximation methods, which are 
used in the analysis of nonlinear systems. Especially for the class of periodic (quasi-
periodic) systems, averaging methods permit one to obtain a simpler non-periodic 
system, which approximates to a certain degree the original system.  

In power electronics, the circuit averaging and state space averaging 

methods were among the first to be used in applications. The circuit averaging 
method involves averaging the waveforms of the signals and manipulations of the 
circuit diagram (different circuit parts are replaced with equivalent ones), which 
requires a physical insight of the system ([65]). The state space averaging method 
provides a more general framework, with a simpler a more straightforward 
methodology, by averaging directly the equations of the state space model 

associated to the system ([65]). The results obtained with the state space averaging 
method are identical with those obtained by averaging based on perturbation theory 
([1]-ch.10) or through the KBM averaging method of 1st order ([63]). Moreover, 
the approach was recently adapted to the framework of switched systems ([68]). In 
order to increase the accuracy of the approximation (with the price of increased 
complexity), a multifrequency averaging method was proposed in [64], which 
implies the use of a generalized average defined based on Fourier series. Other 

approaches were that of the dithering technique (the switching signal is associated 
to some high-frequency dither signal) – [66], or the incremental-input describing 
function (an extension of the describing function method) – [67], which both finally 

lead to replacing the original nonlinearity by an equivalent (averaged) nonlinearity. 

Due to the pulsatile (periodic) nature of the cardiovascular system, some 
attempts were to derive a non-pulsatile (averaged) and simpler model. In [60]-ch.1, 
a somehow heuristic averaging was done implicitly during the model building step, 
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which eventually affects the physical interpretability of the model. The circuit 
averaging method was used in [61], while the multifrequency approach was used in 
[62], but the resulted models are not simpler than the original ones (when 

considering the overall closed loop system with cardiovascular regulation). Finally, 
the dithering technique was used in [80], but the study is still in an incipient stage – 
the results refer only to a specific part of cardiovascular regulation. 

This section presents besides the conventional averaging method, an 
extension that can provide a simpler (averaged) model for the cardiovascular 
system, which is further coupled with the nervous (baroreflex) feedback loop. 

2.5.1. Conventional Averaging Method 

The conventional averaging method for pulsed-modulated switched systems, 
as it derives from [68], consists in applying an averaging operator M to each 
equation of the state space model. The operator M associates to each periodic 
function (t) an averaged function a(t), defined as 

   


t

Tt
a ds)s(

T

1
)t(M)t(  ,             (2.23) 

where T is the period of (t). Practically, a(t) is the moving average of (t). Also, an 

important propriety of M, which can be easily proved using Leibniz’s integral rule, is 

that 
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Next, by applying the averaging operator M to the switched affine system 
(2.15), we obtain 

    

    



a
~

ds)s(
~

T

1~

T

T

a
~

ds)s(
~1~

T
)t(

~

ds
T

1~
ds

T

1~

a
~

ds)s(
~

T

1~

T

T

a
~

ds)s(
~1~

T
)t(

~

t

Tt
1

Tt

Tt
0a

t

Tt
1

Tt

Tt
0

t

Tt
1

Tt

Tt
0a

x

xC

x

xCy

bb

x

xA

x

xAx















































































           (2.25) 

The above marked expressions refer to the approximation of the average 
over a certain subinterval of the whole period ( or T-), with the average over the 

entire period (T); this is specific to the state space averaging approach. By further 
calculating the remaining integral terms, it results that 
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with 
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and where d0=/T and d1=(T-)/T are duty ratios (d0+d1=1). In particular, by 

considering that =T/3, we arrive at the constant duty ratios d0=1/3 and d1=2/3. 

The main problem with this result is that for the case of pulse-frequency 
modulation with constant duty ratios (which, as mention in chapter 2.2, is also the 

case of the cardiovascular system), the averaged model is invariant in respect with 
the modulation period T. Because the dynamics of the original (pulsatile) model is 
implicitly dependent on the period T, this means that such an averaged model can 
not be used in practice (for this class of pulse modulated systems).  

2.5.2. Weighted averaging method 

In order to address the above mentioned issue, a weighted averaging 

operator Mw is further defined as 
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where the weighting function m(s,t) is adopted as the exponential function  

 Ttsae)t,s(m  ,             (2.29) 

with a as a tuning parameter (for a=0, the operator Mw reduces to the operator M). 

Notice that the function m(s,t) moves as the moving average moves, on a given 

interval [t-T, t), providing an monotonic increasing or decreasing weight (from value 

1 to eaT) which depends on the parameter T. Moreover, because the function is 

exponential, the operator Mw also has the propriety that 
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By now applying the averaging operator Mw to the switched affine system 
(2.15), we obtain 
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The above marked approximations are similar with those for the 
conventional averaging approach – (2.25). After calculating the remaining integral 
terms, it results that 

)t(
~~

)t(
~

~
)t(

~~
)t(

~

waawa

wawaawa

xCy

bxAx






,             (2.32) 
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The weighted averaged model (2.32) differs from the averaged model 
(2.26) through the terms 0 and 1, which are functions of T (recall that also =T/3). 

Thus, the dynamics of the averaged model is now dependent on T.  

In some situations it could prove useful to further approximate 0 and 1 

through linear interpolation as - 00+0T, 11+1T - which are now affine 

functions in T. The approximation holds if T varies in a sufficiently small range. 

2.5.3. Preliminary analysis and corrections 

Until now, all the parameters of the pulse modulated switched system (2.15) 

were considered constant. In reality, some of them can vary, acting more like slow 
varying control inputs. From the point of view of the interaction between the 
cardiovascular system and the baroreflex feedback control loop, {T, Es, R1, xT} play 
the role of control inputs for the cardiovascular system. The manner of obtaining the 
averaged models is still valid, under the hypothesis that these variations are slow 
enough such that these inputs can be considered constant during a modulation 
period T.  

A generic issue reported in the literature for most averaging methods, refers 
to an offset error between the state trajectories of the averaged system and the 
evolution of the moving averages (real averages) of the state trajectories of the 
original (periodic) system. This offset error, which usually can not be expressed in 
an analytical manner, is dependent of the mentioned slow varying inputs, and has 
been pointed out and analyzed mostly in applications specific to the power 
electronics domain (e.g. [63], [64]). However, theoretical studies usually ignore this 

problem, due to the fact that they address only the issue of how close the state 
trajectory of the averaged systems is to the state trajectory of the original system 
(and not their moving average) - [1]-ch.10, [68]. We have found no general 
systematic solution for dealing with this offset error, without substantially increasing 
the complexity of the averaged model (as would results by applying the KBM 
method – additional 2nd order nonlinear terms - [63], or the multyfrequency method 

– additional states - [64]). 

In this context, for addressing the offset error issue, we consider a 
multiplicative type correction of the system matrix for the weighted averaged model 
(2.32): 
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where the correction matrix is diagonal: Mc= diag (0, 1), with 0 and 1 as tuning 

parameters. By applying this correction to the weighted averaging method, we 

arrive at the following tuning parameters: a, 0 and 1. Considering that the slow 

varying inputs have some constant nominal values (except T), the tuning 

parameters could be determined by minimizing the following two errors: 
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The first error (y) refers to a scenario involving a step variation of the 

input T from a value T1 to another value T2. The upper indexes s1 and s2 denote 

steady state (permanent periodic) regimes corresponding to T1 and T2, the lower 
index wa refers to values calculated analytically based on the an averaged model, 
while the index na refers to values determined numerically, as moving averages for 
the original periodic system (2.15). The second error (y) refers to a steady state 

scenario with nominal values of the inputs (including T), where again, the lower 
index wa refers to the analytical value of the average, while na refers to the 
numerical value. 

These two criteria can be used in different manners. For example, by 

following two steps: 

Step 1. Determine the parameter a which minimizes the error y, in the situation 

where the averaged model (2.32) is used. 

Step 2. Determine the parameters 0 and 1 which minimize the error y, in the 

situation where the averaged model (2.34) is used. 

2.5.4. Averaged closed loop model 

An averaged closed loop model of cardiovascular regulation, associated to 
the original (periodic) closed loop model given through Fig. 2.12, can be obtained by 
coupling the averaged model of the cardiovascular system (2.34) with the simplified 

model of the baroreflex system (2.17).  

First we define the states xTp(t) 
Δ
= TΔp(t), xTs(t) 

Δ
= TΔs(t), xE(t) 

Δ
= Es(t), xR(t) 

Δ
= 

R1(t) and xV(t) 
Δ
= xT(t)

51. This settles the situation on the direct path. For the 
feedback path, we will consider - as mentioned in section 2.4.1.1 - that the input to 
the baroreflex control loop is simply the averaged arterial pressure (average of Psa), 
given by ywa1 from model (2.34).  

Next, the averaged closed loop model is obtained as  

                                                 
51 The considerations from the beginning of chapter 2.4- where Rp was replaced by R1 and Vuv 
was replaced by xT - apply here also. Moreover, for avoiding confusions with the states xTp and 
xTs, the state xT is redefined as xV. 
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Since often we are interested in the outputs ywa0 and ywa1
52, we can add the 

following output equations  

)t(xC)t(y

)t(xEd)t(x)t(xd)t(y

1wa
1

11wa

0wad10waE00wa




            (2.38) 

Finally, by defining the state vector xac(t)=[xwa0(t) xwa1(t) xwa1(t-τTp) xwa1(t-

τTs) xwa1(t-τE) xwa1(t-τR) xwa1(t-τV) xTp(t) xTs(t) xE(t) xR(t) xV(t)]
T, and the output 

                                                 
52 I.e. pressures Plv and Psa instead of the stressed volumes 

s
lv

V and 
s
saV . 

BUPT



2.6 – Simulations 45 

vector yac(t)=[ywa0(t) ywa1(t)]
T, the closed loop model can be written in condensed 

form as a nonlinear autonomous system 

)(

)(

acac

acac

xgy

xfx




             (2.39) 

Notice that although the model is still strongly nonlinear and complex, it is 
considerably simpler than the one derived based on Fig. 2.12. 

2.6. Simulations 

This section will present simulation results with the original periodic models 

and the averaged models of the cardiovascular system – both in open loop and 

closed loop. In open loop, the control inputs for the cardiovascular system will 
change sequentially, in a certain predefined range. In closed loop, all the control 
inputs will change simultaneously, according to a predefined pathological scenario 
(induced by a disturbance signal acting on the control loop). This will give a 
comparative perspective of cardiovascular regulation, described through the 
averaged and non-averaged models, in both open loop and closed loop conditions. 

2.6.1. Open loop simulations 

For open loop evaluation of the obtained weighted averaged model (2.34), 
all the parameter values for the original pulsatile model (2.15) were taken from [61] 
- see Table 2.1, the duty ratios are d0=1/3 and d1=2/3, while the tuning parameters 
were determined as: a=-0.7, 0=0.6 and 1=1.0. Through linear interpolation, we 

obtain reasonable good approximations for 0 and 1 - 00.33-0.03T and 10.61-

0.18T, on a physiological domain for T between 0.33 s and 2 s. The results are 

illustrated in Fig. 2.13 and Fig 2.14.  

Fig. 2.13 refers to a scenario when only T varies – between 0.5 s and 1.5 s 
(i.e. the corresponding heart rate varies between 40 beats/min and 120 beats/min) 
– which from a physiological point of view is a large range. Notice that the 
trajectories of the averaged system follow relatively close the real moving averages 

of the original system as the modulation period changes. Without a weighted 
averaged approach as the one presented here, i.e. through a standard averaging 
approach, the averaged system would have been invariant in respect with the 
modulation period, and thus the trajectories would remain constant during the 
entire scenario. 

Fig. 2.14 refers to a scenario where the transient responses are due to 

consecutive step changes of the slow varying inputs Es, R1 and xT. It can be 
observed that although there is a certain offset error dependent on the inputs, the 
error remains in certain acceptable limits even for relatively large variations of the 
inputs (from a physiological point of view).  

As a last remark, the spikes of Plv are due to numerical errors ([61]), and 
have no physiological significance - thus not being of any importance in appreciating 

the averaging process. 
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Table 2.1 Parameter values of the cardiovascular model – open loop 

   Parameter    Value 

   R0 
   R1 
   R2 
   Cd 
   Cs  
   C1  
   C2  
   C0init 
   Plv,init  
   Psa,init 
   Pv,init 
   xT 

   0.01 mmHg ml-1 s 
   1.0 mmHg ml-1 s 
   0.03 mmHg ml-1 s 
   10 ml mmHg-1 
   0.4 ml mmHg-1 
   2.0 ml mmHg-1 
   100.0 ml mmHg-1 
   0.4 ml mmHg-1 
   56 ml 
   56 ml 
   16 ml 
   1734 ml 

 

 
Fig.2.13. Transient response to changes in T (1 s0.5 s at t=30s, 0.5 s 1.5 s at t=50s). 

 

 

 
Fig.2.14. Transient response to changes in Es (2.55, at t=60s),  

R1 (12, at t=90s), and xT (17342081, at t=120s).
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2.6.2. Closed loop simulations 

For the evaluation of the closed loop pulsatile model given by Fig. 2.12, we 

have calibrated the parameters of the simplified baroreflex model, based on the 
information from [39], [86], [87], [88], [89] and [90]. The obtained parameters are 
given in Table 2.2. For the closed loop averaged model (2.37), all the parameters 
remain the same, except those that set the slope of the sigmoids at central point 
(i.e. kiTp, kiTs, kiE, kiR, kiV), which are adjusted in order to take into account the 
pulsatility effect on the baroreflex – because both experiments ([39]) and dither 
analysis ([80]) show a reduction of the baroreflex gains, we have considered a 

reduction by about one third of the central point slope for each sigmoid (i.e. the new 
parameters used for the averaged closed loop model are kiTp=0.7·0.14 mmHg-1, 
kiTs=-0.7·0.088 mmHg-1, kiE=-0.7·0.088 mmHg-1, kiR=-0.7·0.088 mmHg-1, kiV=-

0.7·0.088 mmHg-1).  

Consider a pathological scenario involving an acute venous hemorrhage 
(10% total blood volume loss, i.e. about 500 ml). This can be regarded as a 
scenario where an additive disturbance acts on the control signal xv, which in turn 

will influence the cardiovascular system. Fig. 2.15 illustrates the transient responses 
of the closed loop averaged model (2.37) and the original periodic closed loop model 
from Fig. 2.12, to a step variation of the disturbance at moment t=200 s. It can be 
noticed that the disturbance triggers a sudden drop in blood pressure (Psa). The 
counteraction of the baroreflex control loop (through an increase in HR=1/T, Es, R1 
and xv) limits the drop in blood pressure, and further tries to bring it back as close 

as possible to its nominal value – a steady state control error does however remain 
(due to the lack of an integrator component).  

Regarding the comparison between the response of the averaged model and 
the pulsatile model, it can be observed that the trajectory of the averaged model 
follows relatively close the average trajectory of the pulsatile model. Finally, it 
should be mentioned that the results are qualitatively in agreement with the data 

from [39] and [87], in respect with the same scenario – e.g. about 10% decrease in 

the average of Psa, 15% increase in HR. 

 

Table 2.2 Parameter values of simplified baroreflex model  
after calibration – closed loop pulsatile model 

Psan= 100 mmHg 

Td=6.37 s   ,   Tp=2.08 s 

TTp=0.5 s TTs=1.5 s TE=1.5 s TR=1.5 s TV=10 s 

Tp=0.2 s Ts=2 s E=2 s R=2 s V=5 s 

0.88xmin
Tp

 s 0xmin
Ts

 s .911xmin
E

  

mmHg/ml 

6.0xmin
R



mmHg s/ml 

1385xmin
V



ml 

44.1xmax
Tp

 s 0.33xmax
Ts

 s 3.10xmax
E

  

mmHg/ml 

4.1xmax
R



mmHg s/ml 

2085xmax
V



ml 

kiTp=0.14 
mmHg-1 

kiTs=-0.088 
mmHg-1 

kiE=-0.088 
mmHg-1 

kiR=-0.088 
mmHg-1 

kiV=-0.088 
mmHg-1 
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Fig.2.15. Transient response of the averaged and pulsatile closed loop models of 

cardiovascular regulation during an acute hemorrhage scenario. 

 

2.7. Conclusions 

In this chapter a closed-loop averaged model for the cardiovascular system, 

along with its corresponding nervous control, has been developed.  

First, a classical model of the cardiovascular system is brought to the form 
of a switched system. An averaging methodology for the cardiovascular system is 
proposed, with a general applicability to pulse-frequency modulated switched 
systems. Through averaging, a simpler model is obtained, which approximates the 

original periodic model. Although an upper bound for the approximation error is not 
guaranteed, like in the case of other approximation methods for nonlinear systems 

(e.g. the describing function method), practice shows that the approximation is 
usually good enough, providing answers (solutions) where none existed before 
([91]-pp. 13). 

Second, a simplified model for the nervous control (baroreflex mechanism) 
is derived, starting from a well known model from the literature. 

Finally, a closed loop simplified model of cardiovascular regulation is 
obtained, along with its corresponding averaged model. Simulation results show 

how the averaged cardiovascular model approximates the original pulsatile model, 
both in open loop and closed loop scenarios. The simplicity of the closed loop 
averaged model makes it suitable for further stability analyses of cardiovascular 
regulation. 
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3. THEORETICAL FRAMEWORK FOR AVERAGING 
A CLASS OF PULSE MODULATED SYSTEMS  

 

 

3.1. Introduction 

Averaging theory has been widely used for approximating nonlinear 

systems, and thus facilitating future analysis and control design approaches. 

Especially for the class of periodic (quasi-periodic) systems, averaging methods 
permit one to obtain a simpler non-periodic system, which approximates to a certain 
degree the original system. Applications of averaging can be found in power 
electronics ([91]), pneumatic systems ([92]), robotic manipulators ([93]), adaptive 
control ([94]), vibrational control ([3]-vol.3-ch.52), switched controllers ([69]), 
extremum seeking control ([96]), synchronization of oscillators ([97]), multi-agent 

systems ([98]) and congestion control ([99]). 

Over the years, several averaging methods have been proposed, ranging 
from rather heuristic or application oriented methods to theoretical methods for 
specific classes of systems. In power electronics, the circuit averaging and state 
space averaging methods were among the first to be used in applications. The 
circuit averaging method involves averaging the waveforms of the signals and 
manipulations of the circuit diagram (different circuit parts are replaced with 

equivalent ones), which requires a physical insight of the system ([65]). The state 
space averaging method provides a more general framework, with a simpler a more 
straightforward methodology, by averaging directly the equations of the state space 

model associated to the system ([65]). The results obtained with the state space 
averaging method are equivalent with those obtained by averaging based on 
perturbation theory ([1]-ch. 10) or through the Krylov-Bogoliubov-Mitropolsky 

(KBM) averaging method of 1st order ([63]); however both of these methods 
provide additional theoretical guarantees on the approximation error involved in the 
averaging process. An increase in the accuracy of the approximation (with the price 
of increased complexity of the averaged model) is obtained either by using a KBM 
averaging method of 2nd order ([95]), or through a multifrequency averaging 
approach ([64]) and ([100]), which implies the use of a generalized average defined 
based on Fourier series. When the periodic behavior is induced by a relatively high-

frequency signal at the input of a static nonlinearity, other approaches are that of 
the dithering technique  – ([66]) and ([101]), or the incremental-input describing 
function (an extension of the describing function method) – ([67]), which both 
finally lead to replacing the original nonlinearity by an equivalent (averaged) 
nonlinearity. Finally, recent studies focus on developing averaging methods for 
hybrid systems ([68]) and ([102]), and systems with disturbances ([103]).  

Pulse modulated systems are widely encountered in both technical control 

applications ([104]) and biological control mechanisms ([73]). Although many 
averaging methods have been proposed in conjunction with pulse modulated 
systems, most of them actually deal with pulse-width modulation (used especially in 
power electronics). However, some control applications use pulse-frequency 
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modulation (e.g. [85]), while many biological systems also exhibit pulse-frequency 
modulation (neural structures) – ([73]). As it will be shown through the case study 
presented in this chapter (referring to the cardiovascular system – regarded as a 

pulse-frequency modulated system53 controlled by the nervous system), there are 
even some situations when the pulse-frequency modulation is with constant duty 
ratios and the moving-averages of the system’s trajectories are dependent on the 
modulation frequency (or period). In such a context, conventional averaging 
approaches usually lead to frequency independent averaged models, which can not 
properly approximate the original periodic system.  

In addressing this issue, the current chapter54 proposes a new period-

weighted averaging approach, which leads to a period-dependent averaged model, 
while also maintaining the averaged model as simple as possible. In the first part of 

the chapter a theoretical framework is developed for the period-weighted averaging 
method using perturbation theory, in order to ensure an error bound for the 
approximation between the original systems and the averaged system, and also to 
relate the stability of the averaged system with that of the original system. In the 
second part of the chapter, a step-by-step description is provided, on how the 

proposed averaging method can be used in a case study referring to the 
cardiovascular system from chapter 2, while pointing out ways of copping with the 
practical issues that emerge. 

3.2. Problem formulation 

Consider the class of nonlinear systems 

),t( xfx      (3.1) 

characterized by a periodic regime of period T, such that f(t,x)=f(t+T,x). 

Assumption 3.1: f is piecewise continuous in t and locally Lipschitz in x. 

Assumption 3.2: The system (3.1) can be approximated by a piecewise 
continuous system, with a finite number of points of discontinuity, and with the left 

hand side expressed as  

,n,1d

,

T)1n(tT)d...ddn(),(

T)ddn(tT)dn(),(
T)dn(tnT),(
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m
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2112
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




















xf

xf
xf

xf


   (3.2) 

where the duty ratios di are considered to be constant. 

In order to state the main problem addressed in this paper, the system 
(3.1) is rewritten- with the right hand side (3.2) - as 

 xfx ,t
~
     (3.3) 

                                                 
53 See chapter 2. 
54 The results of this chapter have been published in [105]. 
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with the angular frequency =2/T, and where 

  .
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xf

xf
xf

xf
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   (3.4) 

Moreover, in accordance with Assumption 3.2, the system can be recasted 
as a pulse-modulated switched system, with a switching function 
q:[0,){1,2,...m}: 

    .

)1n(2t)d...ddn(2,m

)ddn(2t)dn(2,2
)dn(2tn2,1

tq),(
~
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 
 xfx    (3.5) 

Next, through a time scaling of the form =t, system (3.3) becomes 

),(
~1

xfx 


     (3.6) 

where d/dxx   and ),2(
~

),(
~

xfxf   . Finally, by adopting the small 

positive parameter =1/, (3.6) can be brought to the “standard” form 

),(
~

xfx  ,   0)0( xx  .    (3.7) 

The trajectories of (3.7) describe a periodic orbit, which is dependent on 

the modulation period T. It will be further considered, as a working hypothesis, that 
the (geometric) center  of the periodic orbit  is also dependent on the modulation 

period T (i.e. Δ
=(T)); the center corresponds to an average operation point  of the 

periodic system.  

In the above presented context, the problem addressed in the current study 
is as follows: 

Problem statement: Determine an averaged system which approximates the 
original periodic system (3.7) within a certain error bound and which is dependent 
on the modulation period T. 

The novelty of the current problem formulation consists in the fact that the 

averaged system has to be dependent on the modulation period T. Standard 
averaging approaches (like the one from [1]-ch. 10.4) fail in addressing this 
problem. In particular, for the periodic system (3.7), the standard averaging 
method associates the following averaged system 

)(
~

avavav xfx      (3.8) 

with 











2

av ds),s(
~

2

1
)(

~
xfxf     (3.9) 

Returning to the absolute time (t=/), yields  
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)(
~

avavav xfx               (3.10) 

By taking into account that f
~

was defined also through (3.4), one further obtains  


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

m

1i

iiav )(
~
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~

xfxf              (3.11) 

Therefore, the averaged system (3.10) is independent of the modulation period T, 
and can not properly approximate the original periodic system (3.3) when the 
average operation point  changes as function of the period T. 

Remark 3.1 Even though the study deals with pulse-frequency modulated 

systems, in which the period T actually varies in time, it is considered that these 
variations are relatively slow in respect with the duration of a period T, and as a 
consequence the averaging approach considers T to be constant (T=Tmax). However, 

the emphasis is that the resulting averaged model should be T dependent, such that 
T becomes a new slow-varying input of the averaged system. 

3.3. Theoretical framework 

In addressing the problem stated in the previous section, a period-weighting 
averaging approach for system (3.7) will be considered. First, an additional 

simplifying assumption is imposed. 

Assumption 3.3: Suppose f
~

 can be decomposed as 

)(
~
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~

),(
~

0  gxfxf  , where the piecewise continuous functions 0
~
f and g

~
 are 

also periodic, and defined in a similar manner as f . 

Next, the following time averaged functions are defined: 
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            (3.12) 

where m(s,T) is a weighting function with the (fixed) parameter T, on the interval 

s(-2,); e.g. m(s,T)=eaT(s-+2)/(2), with a as a tuning parameter. One can note 

that for a=0, the standard averaging approach can be recovered. 

Remark 3.2: Although a weighted average directly for the function f
~

 could 

have been defined, i.e. without the decomposition given by Assumption 3.3, the 
mixed averaging approach given by (3.12) has been chosen instead because it leads 

to a simpler averaged model. Moreover, it is expected that the g
~

 component is the 

main cause for why the average operation point  changes as function of the period 

T.  

Let us associate to (3.7) the following averaged system: 
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)T,(
~

avavav xfx  ,    0avav )0( xx  ,            (3.13) 

where the left hand side is obtained through (3.12) as 

)T(
~
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avavav,0avav gxfxf  . 

Finally, by returning to the absolute time, one obtains the averaged system 
associated to (3.1): 

)T,( avavav xfx              (3.14) 

Assumption 3.4: fav is locally Lipschitz in respect with xav. 

Remark 3.3 Considering the particular choice of the weighting function 

m(s,T)=eaT(s-+2)/(2), and that the function g
~

 is defined in a similar piecewise 

manner as f , it is sometimes useful to approximate de averaged function av
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(3.12) as: 
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where the coefficients of i can be determined either through a first order Taylor 

series expansion or linear interpolation. Such an approximation further simplifies the 

resulting averaged model, and holds for a sufficiently small range of T. Moreover, 

the theoretical results further presented hold even when this approximation is used, 

instead of the original function av
~
g  from (3.12). 

Next, the following theorem provides a bound on the closeness between the 
trajectories of the averaged system and original system. The proof is inspired from 
[1]-ch. 10.4, and adapted for the weighted averaged case defined through (3.12). 

Theorem 3.1: If the initial conditions for (3.7) and (3.13) are such that 

)(O)0()0( av  xx , then for a sufficiently small , there exists a positive 

constant b, such that (3.13) represents an O() approximation of (3.7) on the time 

interval ]/b,0[  , i.e.: 

)(O)/()/( av   xx ,   ]/b,0[   .             (3.16) 

         □ 

Proof: The following functions are defined: 

)T()(
~

),(
~

),( av   xfxfxh             (3.17) 
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with the function   adopted such that h has zero mean 















 


0T,0

0T,ds)T,s(m)s(
~

2

1
ds)s(

~

2

1
)T(

22










gg            (3.18) 
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




0

ds),s(),( xhxu .            (3.19) 

Assumption 3.5 The function   is locally Lipschitz in respect with T. 

Remark 3.4 It can be shown that for the class of weighting functions 
m(s,T)=eaT(s-+2)/(2), the function   is of class C1, and as a result it is also locally 

Lipschitz.  

By taking into account how  was defined, it can be noticed that   is 

actually a function of : )2()T(   . Thus,   is also Lipschitz in respect with .  

The functions u and h are periodic in , and u is bounded. It can be shown 

that the partial derivatives of u 
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,             (3.20) 

are also periodic in  and bounded. 

Next, consider the system (3.7), with the following change of variables: 

),( yuyx  .             (3.21) 

Differentiating both the left hand side and the right hand side in respects with  

leads to 
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Further using (3.7), (3.17) and (3.20), expression (3.22) becomes 
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             (3.23) 

Because f
~

 is Lipschitz in y and   is Lipschitz in  , the differences of the right 

hand side can be expressed as )(O),(
~

),(
~

  yfuyf  and 

)(O)0()2(   . Also, because yu  / is bounded, the matrix yuI  /  
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is nonsingular for sufficiently small , and its inverse can be written as 

)(O

1

 
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






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

I
y

u
I              (3.24) 

As a result, (3.23) becomes 

),,()(
~ 2
av  yqyfy  ,             (3.25) 

where q is a periodic function in  , bounded, with first partial derivatives with 

respect to y and   continuous and bounded.  

Further on, (3.25) is compared with the averaged system (3.13). By 
integrating both sides and subtracting the resulting equations yields 
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Taking the norm of the above expression and applying the triangle inequality leads 

to 
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The following notation can be introduced )/()/()/( av  ξxy  . Using the 

fact that av
~
f  is Lipschitz (with Lipschitz constant L) and that q is bounded (i.e. the 

norm is bounded by a positive constant ), (3.27) becomes 




2

0

ds)s(L)0()/(  ξξξ .            (3.28) 

The further use of Gronwall-Belman’s inequality with respect to ξ yields  


 Le

L
)0()/( 








 ξξ            (3.29) 

Therefore, when )(O)0()0( av  xy  one has )(O)/()/( av   xy  for 

)L/(1   . Through the change of variables (3.21) it result that 

)(O)/()/(   yx . By further using the triangle inequality one obtains 

)/()/()/()/()/()/( avav  xyyxxx           (3.30) 

thus finally reaching the result (3.16), with L/1b  . 
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                  ■ 

In order to extend this result to the infinite time interval, one must add a 
stability condition.  

Theorem 3.2: If the system (3.13) is exponentially stable and 

)(O)0()0( av  xx , then for sufficiently small , (3.13) represents an O() 

approximation of (3.7): 

)(O)/()/( av   xx ,   ],0[               (3.31) 

                   □ 

Proof: Through the change of variables v , (3.25) is brought the form of 

a perturbed system 

),,/v()(
~

dv

d
av  yqyf

y
             (3.32) 

associated to the nominal system 

)(
~

dv

d
av yf

y
 .            (3.33) 

This is now a standard perturbation problem. Therefore, Theorem 9.1 from 
[1]-ch. 9 can be used for proving the O() closeness between the solutions of (3.32) 

and (3.33), when the term q denotes a persistent perturbation, but bounded. The 

basic idea is to build a system given by the difference between (3.32) and (3.33), 
with the error between the two corresponding trajectories as state variable. 
Assuming that the corresponding unperturbed system is exponentially stable, and 
that the perturbation is bounded in a certain sense, the comparison method 

provides an upper bound for the solution of the perturbed system. Finally, this 
means that also the solutions in the  time scale are O() close. 

                    ■ 

Finally, from the stability of the averaged system, the stability of the 
original (periodic) system can be inferred. 

Theorem 3.3: If the system (3.13) is exponentially stable, then for 
sufficiently small , the system (3.7) is orbitally exponentially stable. 

                     □ 

Proof: Again, one can make use of the system in perturbed form, given 
through (3.32), and its nominal version (3.33). This is now regarded as a periodic 
perturbation problem. In this case, Theorem 10.3 from [1]-ch. 10 provides the 
desired stability result. The basic idea is to regard the term q as a periodic 

perturbation. A change of variables of the form z=y-yp (yp is the periodic solution of 
(3.32)), and then a linearization at the origin, brings the system to a perturbed form 
(still linearized) with a vanishing perturbation. The stability is inferred from the 

stability of the unperturbed system. Moreover, because one deals with exponential 

stability, the stability of the linearized system finally implies that of the original 
nonlinear system.  

                    ■ 
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3.4. Case study 

Consider the averaging problem for the dynamics of the cardiovascular 

system, modelled as a pulse frequency modulated switched system as in chapter 2 
(the cardiovascular system is regarded as a plant controlled through pulse 
modulation by the nervous system): 

)t(q)t(q  bxAx             (3.34a) 

xCy )t(q             (3.34b) 

with the state and output vectors x=[x0 x1]
T and y=[y0 y1]

T (denoting ventricular 

and arterial stressed blood volume, respectively ventricular and arterial blood 

pressure), the T periodic switching signal q:[0,){0,1} (mechanism of cardiac 

contraction), expressed as 
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The parameters have the following interpretation: T represents the duration of the 
heart period (with the two subintervals denoting duration of systole and diastole); 
R0, R1 and R2 represent hydraulic resistances; C1, C2 represent hydraulic capacitance 
(compliance), while Es and Ed represent systolic and diastolic elastances (inverse of 
compliance); xT represents total stressed blood volume.55 

First, the averaged output equation (3.34b) is defined as  

1100avavav

T

Tt

)t(qav dd,ds
T

1
CCCxCxCy  




.           (3.35) 

Next, the output equations are temporarily dropped, proceeding with the 

averaging method for the state equations, and ensuring an error bound for the 

                                                 
55 Note that the model captures only the systemic circulation (large arteries, peripheral 
circulation, large veins), along with the left heart (left ventricle) 
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approximation in respect with the state variables. The stability inferred for the state 
equations will extend also to the final case when the output equations are 
reattached (i.e. in this particular case, internal stability implies external stability). 

By time scaling the state equation (3.34a), one obtains 

 )(q)(q
1




bxAx  .             (3.36) 

Adopting the small parameter =1/ yields  

 )(q)(q  bxAx  .             (3.37) 

Obviously, (3.37) is a particular case of (3.7), and respects Assumption 3.3, by 

considering xAxf )(q0 ),(
~

   and )(q)(
~

 bg  . The averages of these 

components, according to (3.12) are: 

 xAAxA

xAxAf

1100

d22

1

d22

2

0

2

)(qav,0

ddds
2

1

ds
2

1
ds

2

1
)x(

~

0

0



































   

1100

d22

1

d22

2

0

2

)(qav

)T()T(ds)T,s(m
2

1

ds)T,s(m
2

1
ds)T,s(m

2

1
)T(

~

0

0

bbb

bbg


































     

           (3.38) 

with    Ta/ee,Ta/1e)T( 00 dTaaT
1

dTa
0 







 






   . 

The weighting terms 0 and 1 can be further approximated through linear 

interpolation: 

T,T)T( 111000   ,             (3.39) 

which are now affine functions of the period T. 

The averaged system is  

 )T(avavavav bxAx   ,             (3.40) 

where 1100av1100av )T()T()T(,dd bbbAAA   .  

Finally, by scaling back, one obtains the weighted averaged system 

associated to the original system (3.34a): 

)T(avavavav bxAx  .            (3.41) 
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According to Theorem 3.1, for a constant nominal value of T, the error 
between the original and the averaged systems is O() on a finite time interval. To 

extend this to the infinite time interval, one needs to check the stability of (3.40).  

By making use of aproximation (3.39), the system (3.40) can be written as 

   T11001100avavav bbbbxAx   ,            (3.42) 

which is now a linear system with two constant input terms. This means that 

exponential stability follows if and only if the matrix avA  is Hurwitz. Additionally, 

the system would be stable even as T varies (slowly), and thus T could be further 

regarded as the new input of the averaged system.  

For the cardiovascular model parameters given in Table 3.1, a=-0.7 
(adopted such that the averaged system’s trajectories follow the variations of the 
moving averages of the original system’s trajectories to step changes in T), d0=1/3, 

d1=2/3, T=1 s (nominal value), and T18.061.0,T03.033.0)T( 10    (on 

the physiological domain ]2,3.0[T  s), it can be easily checked that avA  is 

Hurwitz. Hence, the averaged system is exponentially stable, and as a result of 
Theorem 3.2, the error between the original system and the averaged system is 
O() on an infinite time interval. Moreover, according to Theorem 3.3, also the 

original system is orbitally exponentially stable. Lastly, it should be mentioned that 
the results are conserved even when taking the maximal value of T (i.e. T=2s ), 

instead of the nominal value. 

Remark 3.5 In this particular case, the stability of the original system 
(3.34a) can be alternatively investigated using Floquet Theory ([106]), adapted to 
switched linear systems. Thus, by using the results from [107], it can be proved 
that system (3.34a), rearranged as  
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,           (3.43) 

is in fact orbitally exponentially stable. Here xa is a support state variable. 

In many practical applications an offset steady state error was observed 
between the signals of the averaged system, and the (real) moving averages of the 
signals of the original system (see examples in power electronics – [63], [64], 
[108]. This is a generic issue, specific to most averaging methods (including the one 

presented here), and usually attributed to a large ripple of the signal of interest, for 
a relatively low frequency range. While in some applications this error can be 
neglected, in our particular application this is not the case. Moreover, because this 
error can not be expressed analytically, there are no systematic methods to correct 
it without substantially increasing the complexity of the averaged model.56 
Consequently, in an attempt to minimize the error as much as possible, a 
multiplicative type correction is considered for the system matrix by introducing the 
corrector matrix - Mc= diag (0, 1), with 0>0 and 1>0. Hence, (3.42) becomes 

   T11001100avcavav bbbbxMAx   .            (3.44) 

                                                 
56 See also the discussion on averaging from chapter 2. 
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In the numerical context stated above, these tuning parameters were 
adopted as 0=0.6 and 1=1.0, so as to ensure that the equilibrium point of (3.44) 

is as close as possible to the moving average of (3.37) in a nominal steady state 
scenario. For a more detailed discussion on how to determine the set of tuning 
parameters {a, 0, 1} see chapter 2. 

Remark 3.6 Note that, despite the correction that transforms the system 
(3.42) into (3.44), the stability is preserved: because the main diagonal elements of 

avA  are always negative (from a physiological interpretation) and the elements of 

Mc are positive, the Hurwitz determinants of avA and cavMA  have the same 

signs. In other words, for this particular application (2nd order system), (3.42) is 
stable if and only if (3.44) is stable. This result can be generalized for higher order 

systems by further taking into account the fact that we are actually dealing with a 
positive linear system (most models of the cardiovascular system have as state 
variables either volumes or pressure, which can not take negative values). By 
considering the correction matrix Mc as a known multiplicative perturbation, it can 
be shown through the D-stability theorem57 that the nominal system – given here 

by (3.42) – is stable if and only if the perturbed system – given here by (3.44) – is 
stable. Furthermore, one can intuitively expect that the correction would lower the 
error bound O() between the trajectory of the averaged system and the original 

system. 

Finally, a scenario for the resulting averaged system is considered - with the 
output equation (3.35) reattached 

   

avavav

11001100avcavav T

xCy

bbbbxMAx



 
,            (3.45) 

when the input T varies as in Fig. 3.1.58 The trajectories of the averaged system 

follow relatively close the real moving averages of the original system as the 

modulation period changes59. Without a weighted averaging approach as the one 

presented here, i.e. through a standard averaging approach, the averaged system 

would have been invariant in respect with the modulation period, and thus the 

trajectories would remain constant during the entire scenario60. 

Table 3.1.  Parameter values of the cardiovascular model (adapted from [61]) 

Parameter Value Measure unit 

R0 
R1 
R2 
Ed 
Es  
C1  
C2  
xT  

x0(0) 
x1(0) 

0.01  
1.0  
0.03  
0.1  
2.5  
2.0  

100.0  
1734  
22.4  
112 

mmHg ml-1 s 
mmHg ml-1 s 
mmHg ml-1 s 
mmHg ml-1 
mmHg ml-1 
ml mmHg-1 
ml mmHg-1 

ml 
ml 
ml 

                                                 
57 See Theorem 16 from [109]. 
58 This variations are considered large from a physiological point of view. 
59 The spikes of y0 are due to numerical errors, and do not influence the averaging process – 
see chapter 2. 
60 See also chapter 2. 
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Remark 3.7 As shown in chapter 2, the averaged system (3.45) can be 
obtained more straightforwardly through a state space weighted averaging 

approach, but without any theoretical guarantees for the result. 

 

 
Fig.3.1. Trajectories of the averaged system and the original system as T varies from 1 s to 

0.5 s, and from 0.5 s to 1.5 s. 

3.5. Conclusions 

The current chapter has presented a novel averaging approach for pulse-
frequency modulated systems with constant duty ratios. The approach involves a 
period-weighting component that makes the resultant averaged system dependent 

on the modulation period, which is important for situations when the average 

operating point of the original periodic system is also dependent on the modulation 
period. In such cases the standard averaging approach fails because it leads to a 
period-independent averaged model, which can not provide a suitable 
approximation for the original system. A theoretical framework was developed for 
the period-weighted averaging method, which ensures an error bound for the 

approximation between the original systems and the averaged system, and which 
relates the stability of the averaged system with that of the original system. Finally, 
the new averaging method is used for a case study involving a model of the 
cardiovascular system. Simulation results show that the period-dependent average 
model of the cardiovascular system represents a good approximation of the original 
periodic systems. Because the averaged model is simpler than the original periodic 
one, it could be further used for closed-loop analysis of cardiovascular regulation - 

the cardiovascular model coupled with a model for the nervous control loop (among 
which the most important is the baroreflex feedback mechanism). Such a coupling 
would be straightforward because, as in the case of many technical control systems, 
the (nervous) feedback control loop actually regulates the time-averages of key 
state variables of the plant (cardiovascular system), instead of instantaneous values 

([61]). 
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4. STABILITY ANALYSIS OF CARDIOVASCULAR 
REGULATION 

 

 

4.1. Introduction 

Systems analysis of biomedical systems represents a very active area of 

research, not only due to the link between biomedical systems and healthcare, but 

also because only recently have tools provided by Systems Theory begun to be 
considered in medicine. One topic of high interest is the analysis of the 
cardiovascular system, along with its possible control mechanisms, mainly due to 
the high mortality of cardiovascular diseases. On the other hand, another topic of 
recent interest is that of time delays, which have a yet an undetermined role in 
many control mechanisms of biological systems. The nervous control of the 

cardiovascular system (or shortly referred to as cardiovascular regulation) is of no 
exception – multiple delays act on the feedback loops involved (see Fig. 4.1); the 
delays refer to propagation processes of the control signals from the central nervous 
system to the cardiovascular system. Due to the complexity of most models from 
the literature (large scale, multiple strong nonlinearities, periodic behavior), there 
are very few systematic studies which involve quasi-analytical or numerical systems 
analysis results (like stability for example, or the effect of delays). Most studies 

resort to an empirical analysis only through numerical simulations (e.g. [89], 
[110]).  

 

 
Fig.4.1. Cardiovascular regulation as a nonlinear control system, with the cardiovascular 

system as the controlled process and the nervous system as the controller61. 

The present study analyses the stability of cardiovascular regulation, along 
with the effect of multiple time delays. Our systems analysis approach is focused on 
three steps: simple model, local analysis, global analysis. The first step, undergone 
in chapter 2, was to derive a model a simple as possible (control engineering 

                                                 
61 The measured signal is the systemic arterial pressure, while the control signals are the heart 
period, cardiac contractility, systemic peripheral resistance and systemic venous unstressed 
volume. Time delays appear on each control path. 
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approach) - in this case an averaged model – which still preserves the main 
dynamic features of cardiovascular regulation. In the second step, we will analyze 
the system locally via linearization around the nominal-physiological equilibrium 

point. This is the classical approach in biomathematics because global methods for 
biological systems are rarely employed due to the non-standard features 
(nonlinearities) of such models (which are hard to pin-point into conventional 
classes of nonlinear systems). However, this step is non-trivial if one takes into 
consideration the multiple time delays involved in cardiovascular regulation, as it 
will be shown in chapter 4.2. The third step, global analysis (chapter 4.3), is 
motivated not only by the need to have a global perspective of the systems 

dynamics, at least at the level of certain global properties witch complement the 
local analysis results, but also by the issue of robustness. Robustness is probably 

one of the most important and intriguing aspects of biological systems in general 
(robustness despite noise and uncertainty). So, besides the fact that an equilibrium 
point is stable or not, or that the system exhibits oscillations or not, we are 
interested to see if the systems exhibits some form of ‘globally stable behavior’. For 
example, Fig. 4.2 shows a scenarios involving a acute hemorrhage (1000 ml drop at 

t=200s) when all time delays of cardiovascular regulation are increased by 4s. It is 
interesting to see that when the operating domain or regime (the domain around an 
equilibrium point) is changed – due to an external disturbance for example or 
uncertainty in the systems parameters, the systems’ behavior can change from 
oscillatory to aperiodic (with the same time delays). What we are interested in the 
global analysis is to certify the fact that the trajectories of the systems - with 

oscillations or not – remain somehow bounded and even exhibit stable behavior in 
respect with their imposed functional regime. Finally, is should be noted that our 
entire study based on the approach - simple model, local analysis, global analysis – 
actually undergoes the first steps in the area of robustness, and facilitates further 
robustness studies of cardiovascular regulation for different pathological scenarios; 
which can eventually lead to better diagnostics or treatments. 

 

 
Fig.4.2. Transient response of the averaged and pulsatile closed loop models of cardiovascular 

regulation during an acute hemorrhage scenario when all delays are increased by 4s 
 

For the subsequent subchapters, we define that state vectors as 
xc(t)=[xwa0(t) xwa1(t) xTp(t) xTs(t) xE(t) xR(t) xV(t)]

T, xc(t-i)=[xwa0(t-i) xwa1(t-i) 

xTp(t-i) xTs(t-i) xE(t-i) xR(t-i) xV(t-i)]
T }V,R,E,Ts,Tp{i,  , and the output vector 
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as yc(t)=[ywa0(t) ywa1(t)]
T. The closed loop model of cardiovascular regulation 

(2.37)-(2.38) from chapter 2 can be rewritten in condensed form as  









)(

))t(),t(),t(),t(),t(),t(()t(

ccc

VcRcEcTscTpcccc

xgy

xxxxxxfx 

    (4.1) 

Note that the averaged model of cardiovascular regulation (4.1) can 
qualitatively reproduce (approximate) the basic hemodynamic behavior of the 

original (pulsatile) model both in nominal (physiological) and perturbed 
(pathological) conditions (e.g. like in Fig. 4.2), while both models are in agreement 
with the results (experiments) shown in the literature (e.g. [39])62. 

4.2. Local stability analysis 

In the local stability analysis of cardiovascular regulation we will focus on 

the role of time delays in generating stability or instability63. 

Time delays lead to complex dynamics in nonlinear and linear systems, and 
are subject to intensive research, especially in the last three decades. The research 
interest is motivated also by the large number of applications which involve time 
delays (either constant, time varying or multiple delays). In particular, in biomedical 
systems, time delays emerge frequently, and are crucial for understanding the 
systems dynamics.  

Cardiovascular regulation, as mentioned in chapter 4.1 and illustrated in Fig. 
4.1, implies multiple delays that act on the feedback loops involved. However, due 
to the complexity of most models from the literature there are few systematic 
studies on the effect of these delays which involve quasi-analytical or numerical 
systems analysis results (e.g. stability). The few studies which analyze the effect of 

delays make use of particular results only through numerical simulations ([89], 

[110]).  

In this context, the current section64 analyses the effect of multiple time 
delays on the stability of cardiovascular regulation. With a focus on qualitative 
aspects, an averaged model of cardiovascular regulation is derived (with the aim of 
working with a model as simple as possible- as done in control engineering), and a 
frequency sweeping stability method for multiple delays systems is adopted in 
conjunction with the linearized model (the feasibility – both theoretical and 

computational – of the stability analysis problem in respect with multiple delays was 
taken into consideration). The local stability analysis provides new insights into the 
role of multiple time delays in generating stability or instability (based on delay 
stability maps), and on the interactions between time delays along with their 
possible physiological implications (with the aid of delay stability margins). The 
results show that there is still a lot to learn about the role of time delays in 
physiological systems: whether they play a role of stabilization in the presence of 

multiple feedback loops acting on different time scales in the presence of noise and 

                                                 
62 See chapter 2 for results and discussions. 
63 Throughout chapter 4.2, the term unstable will refer to a system whose equilibrium point is 
not asymptotically stable. 
64 The results of this section have been published in [130]. 
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uncertainty, or they play a role of destabilization for certain large absolute values or 
certain change in the magnitude order between the delays. Implications of such 
nature show how systems analysis can improve the understanding of physiological 

systems and possibly lead to better diagnosis methods. 

4.2.1. Stability analysis for multiple time delays 

Stability of time delay systems is a very active area of research. Time 
varying delays and/or multiple delays can induce complex dynamic behavior ([44]), 
and as a result the analysis of such system is also complex. For nonlinear systems, 
there are no general methods of study, and even for particular cases there are 

relatively few stability methods reported in the literature (most of them based of 

Lyapunov functionals- see [45], [111]). Most methods are very restrictive, 
conservative, and complex (e.g. the sum of squares based method from [49] 
provides a stability framework for polynomial delay systems, but the results may be 
conservative and the method is very complex). Because of this, most studies 
address linearization in deriving local results. Linear time delays systems have been 
intensively studies over the last three decades, and a wide range of methods have 

been proposed ([46]). However, when delaying with time delays that are not 
constant, and/or multiple delays, the problem becomes nontrivial even here, if one 
wants to obtain necessary and sufficient conditions. 

In our present study we are dealing with multiple constant delays. As far as 
we know, the only general method available in the literature, for the case when the 
number of delays is larger than 3, which is computationally tractable, and can 

provide necessary and sufficient conditions, is the method proposed by [48]. Note 
that although many Lyapunov based methods were proposed in the literature (see 
e.g. [111], [43]), where the problem leads to solving an LMI using convex 
optimizations, these methods derive sufficient conditions only, and are usually very 
conservative. In this context, the current section addresses the local stability 

problem for cardiovascular regulation in respect with multiple constant delays by 
making used of this method. 

4.2.1.1 The linearized system 

The nonlinear autonomous system (4.1) has a unique equilibrium point xe. 
Before linearization around this equilibrium point, the following notations are 
introduced for reasons of simplicity:  

1

not

Tp   , 2

not

Ts   , 3

not

E   , 4

not

R   , 5

not

V   , c

not

c )t( xx  ,
1,c

not

1c )t(  xx  , 

2,c

not

2c )t(  xx  ,
3,c

not

3c )t(  xx  ,
4,c

not

4c )t(  xx  ,
5,c

not

5c )t(  xx  . 

Using these notations, the following linearized system can be obtained: 












 


)t()t(

)t()t()t( i

5

1i

i





xCy

xAxAx 
    (4.2) 

where 
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e
c

c

x
x

f
A




 ,

e
i,c

c
i

x
x

f
A




 ,

e
c

c

x
x

g
C




 , 

and with ec )t()t( xxx   and eici )t()t( xxx    (i=1,…,5). The 

matrices A, Ai and C are given explicitly in Appendix 2. 

The system (4.2) is linear time invariant, of order N=7, with multiple 
(constant) delays (number of delays L=5).  

4.2.1.2 Stability analysis method 

For the stability analysis, the ACFS (advanced clustering with frequency 

sweeping) method proposed by [48] will be further used, which provides a general 

methodology for deriving necessary and sufficient stability conditions for linear 
system with multiple delays. The essence of the method is as follows. 

First, the characteristic equation associated to the state equation of (4.2) is 
written under the general form  

0e)s(P),s(f

L

1l
lklvsK

0k

k 










τ     (4.3) 

where T
54321 ][ τ , Pk are polynomials in s with real coefficients,  K  

and Nv . It is known that the system is asymptotically stable when 

sup{Re(s)|f(s,τ)=0} is negative. Assuming that there are no roots on the imaginary 

axis when l=0, the focus is on investigating the stability transitions in the delay 

parameter space, and as consequence the imaginary roots s=jω of (4.3) are of 

prime interest (  0R ).  

Second, the following crossing frequency set (CFS) of (4.3) is defined: 

}Rfor,0),j(f|R{ L
00   ττ     (4.4) 

For all   , the delay solutions from (4.3) form L-dimensional potential stability 

switching hypersurfaces (PSSHs) 

},0),j(f|R{ L
0

 


ττ     (4.5) 

The PSSHs give the boundaries which decompose the delay space into stable and 

unstable regions (see the  – decomposition theorem [112]). If L=2 we have curves 

instead of hypersurfaces (PSSCs). 

Third, in addressing this infinite-dimensional problem, a common approach 

is to use the so called Rekasius transformation ([113]) 

L,1l,RT,js,
sT1

sT1
e l

l

lsl 









    (4.6) 

which leads to a finite dimensional characteristic equation in ω and Tl. Note that the 
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transformation holds exactly for 

  ...2,1,0,)Tarctan(
2

llll  


      (4.7) 

By substituting (4.6) in (4.3), one finally arrives to the transformed characteristic 

function 

  












 

M

0m

m
m

L

1l

c
lL,1l),sT1/()sT1(e

s)(QsT1|),s(f),s(g l

ll
sl TτT   

    (4.8) 

where Qm are multinomials in T
L1 ]T...T[T , cl=rank(Al), and 





L

1l

lcNM . In 

particular for the current study, because of the special form of each matrix Ai from 

(4.2) we have cl=1 (l=1,...,L). It has been shown in [48] that by finding the set 

}Rfor,0),j(g|R{ L
0   TT     (4.9) 

one immediately obtains   because   . 

Fourth, for avoiding exponential computation times needed for extracting an 
L-dimensional PSSH, one seeks to determine 2-D projections of the PSSH directly, 
by considering some of the delays constant a priori. For example, for the 2-D 
projection in the 1-2 delay space, with l (l=3,4,…,L) fixed a priori (given values 

ll
~  ), the characteristic function becomes 

 












 

2

1l

c
l.2,1l),Tj1/()Tj1(e21

l

ll
lj Tj1|),j(f)T,T,j(h 


τ           (4.10) 

which can be decomposed into a real part and an imaginary part 

)T,T,(hj)T,T,(h)T,T,j(h 21im21re21               (4.11) 

with hre=Re(h) and him=Im(h). Note that the crossing set of (4.11), denoted as  is 

a subset of  .  

Fifth, the notions of resultant65 (R) and discriminant (D) from algebraic 
geometry are further used (see [114]). It is shown in [48] that instead of studying 

the zeroes of )T,T,j(h 21 , one can study the zeroes of the resultant RT2 with 

respect with   and T1 (i.e. the resultant of hre and him by eliminating T2). Moreover, 

the minimum and maximum positive real roots of the discriminant D of RT2 (i.e. the 
resultant of RT2 and ∂RT2/∂T1 with respect with  by eliminating T1), that correspond 

to real (T1, T2) solutions give the lower and upper bounds of   - min and max  

([48]). This leads to the following Theorem given in [48]: 

                                                 
65 See the Appendix 2 for an explicit and formal definition of the notion of resultant. 
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Theorem 4.1: The linear system with multiple delays (4.2) is (weak) delay 
independent stable on the 1-2 delay domain if and only if: 

i) System (4.2) is asymptotically stable for 1=2=0. 

ii) The discriminant D( ) has no positive real roots corresponding to real 

(T1,T2) solutions of h. 

Sixth, if the discriminant D has positive real roots corresponding to real 

(T1,T2) solutions of h, i.e. Theorem 4.1 does not hold and we can find min and 

max , the PSSC is constructed based on the following frequency sweeping 

algorithm ([48]) - run iteratively for each ],[ maxmin   , with an appropriate 

step size: 

 

 Algorithm 4.1 

Step 1. Solve RT2=0 for T1 real. 

Step 2. For each real T1 solution found, if there exist real T2 solution such that hre=0 
and him=0, go the next step, otherwise increment   and go to Step 1. 

Step 3. Determine the delay values (1, 2) corresponding to each (T1,T2) solution, 

then increment   and go to Step 1. 

Note that in practice some degenerate cases can emerge, which were 
omitted in this presentation. For more details see [48]. 

Seventh, the regions delimited by the PSSCs are identified as stable or 

unstable either by the method suggested in [115], or by simply using a numerical 
approximation tool which plots the rightmost characteristic roots for a chosen delay 
point from each region. 

4.2.2. Results of stability analysis 

We will focus the analysis on the delays acting on the heart period {1, 2}, 

on how they can influence stability for different fixed values of {3, 4, 5}. Our goal 

is not that of obtaining an exhaustive picture, but that of revealing certain important 
aspects which are counterintuitive, like the fact that the system may become 
unstable if some of the delays actually decrease. 

A particular goal is also to capture the effect of the delays of the vascular 
system {4, 5} – vascular delays - on the robust stability of cardiovascular 

regulation, for uncertain delays acting on the heart {1, 2, 3} – cardiac delays. 

In the results further presented, for the calculation of the resultants and 

discriminants needed by the stability method from section 4.2.1.2., the Maple 
symbolic algebra package was used. For completeness, the parameters of the model 
are given in Table 4.1. 
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Table 4.1. Parameter values for the model of  
cardiovascular regulation (adapted from [61],[39],[89],[74]) 

Param. Value Param. Value 

R0 0.01 mmHg ml-1 s TV 10 s 

R1 1.0 mmHg ml-1 s kiTp
 0.098 mmHg-1 

R2 0.03 mmHg ml-1 s kiTs -0.0616 mmHg-1 

Ed 0.1 mmHg ml-1 kiE -0.0616 mmHg-1 

Es  2.5 mmHg ml -1 kiR -0.0616 mmHg-1 

C1  2.0 ml mmHg-1 kiV -0.0616 mmHg-1 

C2  100.0 ml mmHg-1 
min
Tpx

  0.88 s 

xT  1734 ml 
max
Tpx  1.44 s 

d0 1/3 
min
Tsx  0 s 

d1 2/3 
max
Tsx  0.33 s 

a -0.7 
min
Ex   1.91 mmHg/ml 

0 0.6 
max
Ex   3.10 mmHg/ml 

1 1.0 
min
Rx   0.6 mmHg s/ml 

0 0.33 
max
Rx  1.4 mmHg s/ml 

0 -0.03 
min
Vx

 1385 ml 

1 0.61 
max
Vx

 2085 ml 

1 -0.18 Tp 0.2 s 

Psan 100 mmHg Ts 2 s 

TTp 0.5s E 2 s 

TTs 1.5 s R 2 s 

TE 1.5 s V 5 s 

TR 1.5s   

4.2.2.1 Stability for nominal physiological values of the delays 

According to [89], the nominal (physiological) values of the delays are 
1=0.2 s, 2=2 s, 3=2 s, 4=2 s, 5=5 s. We next construct the discriminant D in 

respect with ω, according to section 4.2.1.2. We find that the discriminant has no 
positive real roots - condition ii) from Theorem 4.1. For 1=2=0 s, by using the 

characteristic root computing tool provided by [116], which calculates the rightmost 
characteristic roots λ of the system, we obtain that there are no right-half plane 

roots (see Fig. 4.3), which means that the system is asymptotically stable – 
condition i) from Theorem 4.1. Consequently, according to Theorem 4.1, for these 
fixed values of {3, 4, 5} the system is asymptotically stable independent of {1, 

2}. 

This result, for nominal delay values, was kind of obvious – we expected the 
system in (nominal) physiological conditions to be stable. However, the fact that the 
system is asymptotically stable independent of {1, 2}, which means that an 
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increase in the delays acting on the heart period alone is not sufficient to induce 
instability for nominal values of the other delays {3, 4, 5}, was not obvious at all. 

 
Fig.4.3. Characteristic roots λ with Re(s)>=-2, for 1=2=0 s, 3=2 s, 4=2 s, 5=5 s. 

4.2.2.2 Stability for pathological values of the delays 

The analysis for pathological delay values is conducted starting from the 
(nominal) physiological delay values from the previous section. 

First, let us consider here an additive increase α for all delays. One can 
easily determine the value of α (starting from an initial value α0=0.5 s) for which 

the system begins to show instability – with approximation α=4 s in our case. Now 
we are interested to see how uncertainties in {1, 2} can influence the stability of 

the system. For this we fix the delays {3, 4, 5} to 3=6 s, 4=6 s, 5=9 s, and 

investigate the stability on the 1-2 domain by means of the method from section 

4.2.1.2. We compute the discriminant D in respect with ω, and obtain ωmin=0.2406 

and ωmax=0.4461. Then, the Algorithm 4.1 produces the stability map from Fig. 4.4. 

The shaded regions are identified to be unstable by means of [116]. 

The result shows that the system has a relatively large stability margin 
(from a physiological perspective) for additive synchronous increase in all delay 
values, i.e. when the magnitude difference between delays is conserved. Also, it 
should be noticed that, for a small enough 1, the system can remain stable even for 

absurdly large values of 2. 

 
Fig.4.4. Stability map for 1-2 [s] with 3=6 s, 4=6 s, 5=9 s. Shaded regions are unstable. 
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Second, let us consider all the delay to take the same value β. Again, it is 
trivial to determine the value of β (starting from an initial value β0=min{1, 2, 3, 4, 

5}=0.2 s) for which the system begins to show instability – with approximation β=3 

s in our case. Because we are again interested to see how uncertainties in {1, 2} 

can influence the stability of the system, we fix the delays {3, 4, 5} to 3=3 s, 

4=3 s, 5=3 s, and investigate the stability on the 1-2 domain by means of the 

method from section 4.2.1.2. We compute the discriminant in respect with ω and 
obtain ωmin=0.4504 and ωmax=0.6938. Algorithm 4.1 produces the stability map 
from Fig. 4.5, with the shaded regions identified as unstable by means of [116]. 

The result shows that the system can have a relative lower stability margin 
(from a physiological perspective) when the magnitude difference between the 
delays is no longer preserved (instability occurs for considerably lower overall delay 

values). Also, it should be noticed that, for a small enough 2 (or 1), the system can 
remain stable even for absurdly large values of 1 (or 2). 

 
Fig.4.5. Stability map for 1-2 [s] with 3=3 s, 4=3 s, 5=3 s. Shaded regions are unstable. 

Finally, we analyze the oscillations of the system in the time domain (see 
Fig. 4.6), when we have increased all delays by α=4 s (1=4.2 s, 2=6 s, 3=6 s, 

4=6 s, 5=9 s), i.e. for a given point in the delay space of the case depicted by Fig. 
4.4; and when all delays have the value β=3 s (1=2=3=4=5=3 s), i.e. for a point 

in the delay space of the case depicted by Fig. 4.5. It is interesting to notice here 
that the amplitude of the oscillations is actually larger for smaller delay values. 
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Fig.4.6. Output (average systemic arterial pressure Psa–i.e. ywa1 from our model) trajectories 

for cardiovascular regulation with delays 1=4.2 s, 2=6 s, 3=6 s, 4=6 s, 5=9 s - a); and with 
delays 1=2=3=4=5=3 s – b). 

4.2.3. Discussion 

For the scenarios from section 4.2.2.2 illustrated by Fig. 4.4 and Fig. 4.5, 
although we have a delay space from 0 s to 20 s for a more complete overall 

perspective, the square windows of 0s-10s (marked with dashed lines) are of 
interest from a physiological and pathophysiological point of view. 

For a comparative discussion, consider the starting point P0 which sets the 
nominal values for {1, 2} to {0.2, 2} in both Fig. 4.4 and Fig. 4.5. If we increase 

both delays {1, 2} by an equal amount, we follow the path set by vector 10PP  

which leads to the most nearest instability region on the 0-10 s delay space window. 
A similar thing happens if we increase only the smallest delay 1 (parasympathetic 

component of T), but now we have the path set by the vector 20PP . The lengths of 

the two vectors can be regarded as T delay stability radii (parasympathetic and 
sympathetic, or only parasympathetic components). In either case, what is 
important to notice is that the system reaches instability faster in Fig. 4.5 than in 
Fig. 4.4, i.e. for a smaller additive increase in the delay(s) {1, 2} (a smaller 

stability radius), when we actually have smaller delay values for the set {3, 4, 5}. 

Moreover, for the case illustrated in Fig. 4.5 the delay 5 (which acts on the venous 

vascular subsystem) was actually decreased below its nominal value; i.e. the 
system is relatively more unstable for smaller values of this delay. 

Two conclusions can be drawn based on the above analysis and discussion: 

i) Instability may be more dependent on the magnitude difference between 
delays, rather than on their absolute values. As consequence stability can be 
theoretically maintained even for an absurdly large independent delay i (i is 

1 or 2 in our case study). 

ii) If the vascular (“large”) delays {4, 5} become smaller, instability may occur 

for smaller values of the cardiac (“small”) delays {1, 2, 3}. As a 

consequence instability can emerge even by decreasing some independent 
delay i (i is 5 in our case study) 
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As an overall conclusion, it may be more important and revealing to study 
the interaction between multiple delays (see also [117]) – in terms of delay 
magnitude differences and delay stability radii, than to analyze absolute values of a 

single overall/partial “lumped” delay (like in [110]). Finally, from a physiological 
point of view, one can conclude that an abnormal fast vascular response can 
actually make cardiovascular regulation more unstable or less robust. 

4.3. Global stability analysis 

In this part of the study the focus will be on deriving some global properties 

for the model of cardiovascular regulation66. As an anticipation, we will show that 

when the system is not asymptotically stable in respect with a specific equilibrium 
point, it can exhibit bounded oscillatory behavior (limit cycles) – due to large time 
delays for example. 

Global analysis results like trajectory convergence and boundedness are 
derived using contraction theory, which appeals to a differential approach. This 
approach – based on contraction theory – is less complex and conservative than 

those based on Lyapunov methods, while it is also more suitable for studies of 
robustness because the results hold even for a certain amount of parameter 
uncertainty which can change the position of the equilibrium point (or limit cycle). 

4.3.1. Problem formulation 

Consider the following state space form of the cardiovascular regulation 
model (2.37)-(2.38) from chapter 2: 
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,xx,xx E4Ts3   V6R5 xx,xx  . The constant coefficients ai can be identified 

                                                 
66 The results of this section have been published in [131]. 
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from (2.37)-(2.38), and are give explicitly in the Appendix 2. 

Due to the bounded functions h (sigmoids) and the diagonal structure of the 
matrix Ab (low pass filters), the states xb are also bounded, with maximum and 
minimum values imposed by the sigmoids. As a consequence, the bounds of 
function gb can also be easily determined. Finally, note that the subsystem 
associated to the states xb is always stable because it can be regarded as a linear 

system with the input vector given by h.67 

 In respect with the subsystem associated with the state vector xa, we 
regard xb as an unknown bounded disturbance vector w (w1=x2,…,w5=x6):  

)(),( baabaaa wgwxgxAx               (4.14) 

Then, subsystem (4.14) can be rewritten as 

)()( baa wgxwAx               (4.15) 

with 
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
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
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4654433

2301
w/aaw/awa

awaa
)(wA . 

More compactly, we have 

),( aa wxfx               (4.16) 

with  

)()(),( baa wgxwAwxf  . 

Next, we want to show that no matter how the bounded disturbance w 
varies in time, the states of system (4.16) - xa - remain bounded. Moreover, we 

want to show that no matter how w varies in its bounded domain, if it reaches 
steady state – imposing an equilibrium point, or if it exhibits sustained oscillations 
(periodic signal) – imposing a limit cycle, the trajectory xa(t) is stable. The 
interpretation behind this is that in closed loop (i.e. when the two subsystems of 

(4.12) are interconnected), the system reaches steady state for certain values of 
the time delays, while for other (relatively large) delay values oscillations may 
emerge. In other words, we want to show that the closed loop systems may 
oscillate due to pathological values of the time delays, but can never exhibit finite 
escape time behavior or other type of unbounded growth. 

4.3.2. Analysis via contraction theory 

A direct approach to stability of (4.16) is infeasible in terms of Lyapunov 
functions and input-to-state stability68 for example, due to the large bounds of w. 
Instead, we turn to the alternative notion of convergence, as part of the theoretical 
framework given by contraction theory – [118], [128]. The idea is to analyze the 
system differentially, in terms of distance between a given state trajectory and 

some nominal trajectory (which can describe a limit cycle or a path converging 

                                                 
67 The matrix Ab is Hurwitz. 
68 See the classical approach from [1] - ch. 4.9, or the recent results from [121]. 
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towards an equilibrium point). The nominal trajectory does not have to be known, 
only the fact that any given trajectory eventually converges to the nominal one is of 
interest69. Obviously, such convergence is a form of stability (incremental stability – 

see [119])70. Additionally, it is shown in [120] that for convergent systems the 
nominal solution (trajectory) exists, is unique and bounded; because all other 
solutions (trajectories) converge asymptotically to it, the boundedness of all 
solutions is imposed by the set encompassing the initial conditions.71 

First, note that for system (4.16), because w is actually time varying - w(t), 
the right hand side can be written as f(xa,t). As working hypothesis, f is continuous 

in t, continuous differentiable in xa, and  c)t,0(f  for all t (this last condition 

is needed for precluding a finite escape time – [120]). The differential relations 

corresponding to (4.16) is  
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where ax  represents an infinitesimal displacement at a fixed time (virtual 

displacement), while a
T
a xx   represents the squared distances between two 

trajectories. It is shown in [118] that this distance converges to zero if the Jacobian 

is uniformly negative definite, i.e. 
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More generally, one can define a length aa
T
a )t,( xxMx  , where the metric 

M(xa,t) is symmetric, uniformly positive definite and continuously differentiable, i.e.  

.t,,0,0)t,( aa xIxM                (4.19) 

In this case, the system is contracting – the distance converges to zero – if  
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The state space region in which (4.20) holds is called a contraction region with 

respect to the metric M. If (4.20) holds globally then the contraction region is the 

whole state space. All of this leads to the following theorems [118]72: 

Theorem 4.2a: If system (4.16) is contracting with a certain contraction 
region, then any trajectory starting in a ball of constant radius and contained in the 

contraction region – both with respect to the metric M, centered at another given 

                                                 
69 This means that initial conditions or vanishing disturbances are eventually “forgotten”. 
70 See also [120] and [122] for a more detailed discussion on convergent systems and [123] 
for a Lyapunov approach to incremental stability. 
71 In our case study we are dealing with physiological systems, so the initial conditions are in a 
bounded set. 
72 Note that the theorems invoke sufficient only conditions. 
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(nominal) trajectory, will remain in that ball and converge exponentially to the 
nominal trajectory. 

Theorem 4.2b: If system (4.16) is globally contracting, i.e. the contraction 

region is the whole state space, then any trajectory will globally converge 
exponentially to the nominal trajectory. 73 

Remark 4.1: Through convergence of a perturbed trajectory )t(px to a 

nominal trajectory )t(nx  we mean that: i. when the nominal trajectory is trivially 

periodic, i.e. it eventually reduces to an equilibrium point, we have )t()t( np xx   

([118]); ii. when the nominal trajectory is periodic, i.e. it eventually reduces to a 

limit cycle , there exists a fixed   such that )t()t( np xx  ([124]). 

4.3.3. Results using contraction theory 

By calculating the Jacobian for system (4.16), and adopting a constant 
metric M=diag(m0,m1) - m0>0 and m1>0, we obtain the following matrix inequality: 
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             (4.21) 

If we define the left hand side of inequality (4.21) as a matrix Λ(w3,w4), then we 

need to prove that there exists a matrix M for which Λ(w3,w4) has eigenvalues only 

in the open left half plane for any values of w3 and w4 (in their corresponding 

domain). The characteristic polynomial of Λ, after some calculations, is determined 

as: 
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Additionally, we know the interval of the two polynomials q1 and q0, according to the 

bounds on w3 and w4: ]q,q[q],q,q[q 000111


 . According to Kharitonov’s 

Theorem (see [3]-vol.3-ch.7), the interval polynomial (4.22) is stable (all 

eigenvalues are in the open left half plane) if and only if the following four fixed 

polynomials are stable: 

                                                 
73 The result of Theorem 4.2b practically states that if the system is globally contracting, then 
the solution is bounded and globally asymptotically stable ([120]). 
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            (4.23) 

Let us further adopt the values m0=1 and m1=0.3 for the metric M, with 

1.0M  74. By calculating the characteristic polynomial p of matrix Λ, and then the 

four fixed polynomials p1-p4 according to the bounds on q1 and q0
75, we obtain that 

all four polynomials of (4.23) are stable. Thus, by Kharitonov’s Theorem the interval 
polynomial p from (4.22) is stable for any values of w3 and w4, which means that 

condition (4.21) holds. Consequently, system (4.16) is globally contracting, and the 
results of Theorem 4.2b hold. 

Finally, we will show how system (4.12)-(4.13) behaves in numerical 
simulations for two scenarios: a) Nominal (physiological) values for the delays (see 

section 4.2.2.1) – when an equilibrium point is attained – with a vanishing 
perturbation acting at a given moment; b) Large (pathological) values for the delays 
(3 s increase in all delays except V) – when a limit cycle is attained – with a 

vanishing perturbation acting at a given moment. The perturbation acts on the heart 
period T– i.e. on the both states x2 and x3 – which means that it acts practically at 
the level of function gb from (4.12). For each of the two scenarios, Fig. 4.7 
illustrates that the perturbed trajectory converges towards the nominal one 
(contraction) - once the perturbation vanishes.76 Note that for scenario b), in 
accordance with Remark 4.1, the duration of the perturbation was chosen 

approximately equal to the period of the oscillations of the nominal trajectory 
( =0), in order to better illustrate the convergence. Moreover, it is important to 

note that generally speaking, the results state that our system is actually 

contracting independent of delays. 

 

                                                 
74 Note that all the parameters which give the coefficients ai are taken from Table 4.1. 
75 For the present case study we have: 28.681q0 

 , 100.338 q0 
 , 89.445q1 

 , 137.382 q1 
 . 

76 Contraction is illustrated in simulations – Fig. 4.7– at the level of the output y (average 
systemic blood pressure Psa), and not the states xa, because this is more important (relevant) 
from a physiological prespective. Moreover, the baroreflex feedback control loop uses only this 
signal (y / average Psa) as input. 
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a) nominal delays 

 
b) large delays 

Fig.4.7. System response (output y represents average systemic arterial pressure) to a 
vanishing perturbation. 

4.3.4. Robustness analysis 

In the case of parameter uncertainty, one approach is to use the same 
(nominal) contraction metric M in order to see how much uncertainty can the 
systems face such that it is still contracting. Consider an additive uncertainty of the 
type fu(xa,t) =f(xa,t)+fδ(xa,t), and in particular when the uncertain dynamic 
component is fδ(xa,t)=[δ0x0+δ1x1+Δ  0]T, with δ0 and δ1 as unknown positive 

constants, and Δ an unknown constant77. The new condition for contraction is 
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             (4.24) 

Using the same constant metric M from the nominal case (see section 
4.3.3), we can determine the uncertainty bounds, i.e. bounds on δ0 and δ1, for 

which the system is still contracting. Through a point-wise sweeping of these 
bounds78, and using Kharitonov’s Theorem as in the previous section, we obtain the 

                                                 
77 The adopted class of uncertain dynamics is for exemplification purposes. The robustness 
analysis can be conducted in a similar manner for other types of uncertain dynamics – like for 
example where the second element (row) of fδ is non-null. 
78 The point-wise sweeping was done in the following manner: starting from the maximum 
feasible value of δ0 (for which δ1 is 0), with each decrease of δ0 the maximum feasible value of 
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79 

uncertainty region for which the systems is still contracting given in Fig. 4.8. Note 
that the region can be determined as precise as needed by reducing the step size of 
the sweeping (here Fig. 4.8, for illustrative purposes, gives only a rough 

approximation).  

 

 
Fig.4.8. Uncertainty region for which the system is still contracting  

in respect with the nominal contraction metric. 

The results can be interpreted in the following manner: if there exists an 
uncertainty in the systems parameters, and this parameter uncertainty can be 
characterized in terms of an additional additive component fδ, then the system is 
robustly contracting in respect with the nominal metric M in the presence of such 

uncertainties only if the uncertainty finally expressed through the parameters δ0 and 
δ1 is inside the a priori computed uncertainty region. For example an increase of the 
venous resistance parameter R2 (which modifies the coefficients a1, a2, a7 and a8) by 
100% leads to δ0=0.73 and δ1=0.11, which in our case is inside the uncertainty 
region.79 

Finally, an alternative to this approach is to search directly for a contraction 
metric Mu which provides the largest uncertainty region for which the system is 

contracting ([125])80. 

4.3.5. Discussion 

Global properties for models of cardiovascular regulation are hard to 
determine due to multiple nonlinearities and multiple time delays. In the current 
chapter, we have tried to derive some global properties for a simple model of 

cardiovascular regulation using contraction theory, which appeals to a differential 
approach. The results show that the system is contracting (convergent), which leads 
to state boundedness and stability of the nominal solution xa of the cardiovascular 
subsystem.  

                                                                                                                                  
δ1 was determined, until δ0 equals 0 is reached (for which we have the maximum feasible 
value of δ1). In respect with the maximum feasible (δ0, δ1) points obtained, a geometric region 
can be set (in our case with the aid of a simple line) which roughly delimitates the uncertainty 
region. 
79 Note that the results of the analysis are independent of Δ, which in this case is given by the 
change in a7 and a8. 
80 For certain classes of autonomous nonlinear systems, the contraction metrics can be 
obtained through numerical methods based on convex optimization involving linear matrix 
inequalities ([54]) or sum of squares programming ([126], [127])- see [125] for details. 
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Although one would have expected that cardiovascular regulation to exhibit 
stable dynamic behavior in a nominal-physiological regime, besides the fact that we 
have attested this through systems analysis (and not empirically for particular 

cases), along with an extension to robustness (in respect with possible pathological 
scenarios),of interest is also the fact that according to our studies cardiovascular 
regulation, at least at the level of nervous feedback control, can not exhibit finite 
escape time behavior – i.e. systems trajectory can not escape towards infinity in 
finite time. This can be explained partially by the fact that the nervous feedback 
control loop (baroreflex feedback control loop) presents strong limitations (upper 
and lower saturation) on all control signals acting on the cardiovascular system, 

with no integrator component. This means the control systems presents a non-null 
steady state error (in respect with a certain reference signal imposed by higher 
nervous centers), but it does present the advantage of increasing the stability of the 

system in respect with large disturbances, by precluding possible wind-up scenarios 
(actuator saturation for integral feedback control). 

Another interesting fact worth discussing is that the baroreflex feedback 
control loop is with one input (measured signal) and with multiple outputs (control 

signals). Conventionally, this represents and output feedback control systems. 
However, the presence of different time constants and time delays on each feedback 
control loop, lead to control loops acting on different time scales. As an 
interpretation, different time constants and time delays on each feedback control 
loop can virtually represent additional states variables, thus making the control 
resemble more like a state feedback control one. So the time delays can to a certain 

degree actually help to better control the cardiovascular system. 

Finally, it should be noted that although in our study the cardiovascular 
system is reduced to a minimal model (i.e. as simple as possible), in reality the 
cardiovascular system represents a large-scale system, and with this in mind, the 
feedback control structure would not seem over-actuated any more, and the 
complexity and robustness of the nonlinear control involved become highly justified. 

4.4. Conclusions 

The stability analysis of cardiovascular regulation reveals and generalizes 
certain features of the dynamic behavior which could have only been noticed 
empirically, through simulations. The local analysis shows that the asymptotic 
stability of the equilibrium point is dependent on the delays values. Moreover, it 
may be more important and revealing to study the interaction between multiple 

delays than to analyze absolute values of a single overall/partial “lumped” delay. 
The global analysis shows that the states of the system are always bounded, and 
that the nominal solution xa of the cardiovascular subsystem is stable independent 
of delays (whether the solution is trivially periodic or not). So, although the system 
is not delay independent stable, it proves to be convergent independent of delays. 

Finally, from a physiological and pathophysiological point of view, the results 
state that cardiovascular regulation is not only a stable process in nominal 

conditions, but it also presents boundedness for a wide category of scenarios, stable 

limit cycles in pathological conditions (e.g. large delays), and robustness in respect 
with uncertainty. 
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5. CONCLUSIONS AND FUTURE RESEARCH 

 

 

Before we present the thesis summary with its main contributions, along 
with future research directions, we need to express some final conclusions regarding 

the entire research study which was the object of this PhD thesis. 

The study started from the well known idea in control engineering that one 
needs to work with mathematical models as simple as possible, but not simpler. 
Despite a wide range of mathematical models with capture the cardiovascular 

system and cardiovascular regulation, we adopted and adjusted the models which 
seem to fall best into this category – simple as possible, but which conserve the 
main dynamic behavior of the biomedical systems involved.  

Once the modeling phase was surpassed, we addressed the main goal of the 
thesis: systems analysis of cardiovascular regulation.  

The local stability analysis reveals how the system can become unstable in 
respect with an equilibrium point due to multiple time delays. The problem of how 
time delays interact in order to produce oscillations is a nontrivial problem, into 
which we managed to provide some new and we think useful insights. Because 

there are pathologies which affect these time delays (like the Guillain–Barré 
syndrome or Diabetic Autonomic Peripheral Neuropathy), we think that our results 
will be of use for improving diagnosis practices in the future. 

The global analysis has revealed that although cardiovascular regulation can 
exhibit oscillatory behavior (for example due to time delays), it presents a stable 
behavior in respect with specific regimes imposed by (the lack or presence of) 

disturbances. Robustness in respect with uncertainty is an important characteristic 

revealed also by our analysis. This can be viewed as a paradox: while biomedical 
systems are seen from one point as fragile, with high variability, and predisposed to 
all kinds of pathological disturbances, from another point of view, living organisms 
show complex and hierarchical control mechanisms, with precise function for each 
organ and cell, which actually shows high robustness and reliability in the sense that 
its subsystems maintain their critical functional role on the long term as best as 
possible without consuming to much additional resources from the organism as a 

whole (limits on energy, complexity, and so on). The best example is the heart, 
which may be predisposed to all sort of illnesses, but is one of the best functioning 
hydraulic pumps on long term known to man. It can be said that control 
mechanisms of living organisms are in some way optimal. So, finally, although we 
haven’t tackled cases of global instability, our results provide insight into aspects 
like trajectory convergence and robustness, which can be of use for understanding 

how a pathological agent can influence cardiovascular regulation, and what this 
means from a control point of view.  

As a general conclusion, our study reveals once more that biomedical 

systems represent an important challenge to control theorists, because these kind 
of studies present a unique opportunity to study control structure and control 
mechanisms which were not built by man. Such interdisciplinary research studies 
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not only help scientists and clinicians in the field of medicine, but give new ideas to 
engineers in the design of technical systems. All for the good of mankind.  

5.1. Summary and Contributions 

The main scientific contributions of the current thesis are the following: 

 Development of a simplified averaged model for cardiovascular regulation 
starting from models of the cardiovascular system and the baroreflex 
system from the literature (Chapter 2); 

 Development of a new averaging method - along with its theoretical 

framework, which can be applied not only for the cardiovascular system, but 

for an entire class of nonlinear systems (Chapter 2 and Chapter 3); 

 A local stability analysis of cardiovascular regulation which reveals the role 
of multiple time delays in generating stability or instability, along with 
insights into possible physiological implications (Chapter 4); 

 A global stability analysis of cardiovascular regulation which reveals 
properties like trajectory convergence and boundedness, with a study of 

robustness in respect with disturbances and parameter uncertainty, and an 
interpretation on how physiological systems (in particular cardiovascular 
regulation) behave as control systems (Chapter 4). 

The thesis begins with a short introduction (Chapter 1) which contains the 
motivation of the entire study, preliminary notions on biomedical systems in general 
and on cardiovascular regulation in particular, and preliminary notions on nonlinear 
systems, classes of nonlinear systems and analysis approaches.  

Chapter 2 contains all that is related to mathematical modeling, model 

simplification and averaging, and finally model validation. After a short motivation 
on the need to work with models as simple as possible, the model of the 
cardiovascular systems adopted from the literature is presented and explained. 
Then, the model is brought to the form of a switched linear system. As a second 
step in the modeling phase, a model of the baroreflex control loop is adopted from 

the literature, which is then brought to a simplified form. The closed loop (pulsatile) 
model of cardiovascular regulation is further derived by coupling the cardiovascular 
and the baroreflex models, and by also taking in account the interactions which 
appear on both the direct and feedback paths. Finally, after adapting the 
conventional averaging method so that it can handle pulse frequency modulated 
systems – as it the case for cardiovascular regulation – an averaged closed loop 
model of cardiovascular regulation is obtained. Simulations results, both in open 

loop and closed loop, show that the averaged model captures the basic dynamics of 
the original (periodic) system. Model validations are done also through simulations, 
by comparing the results obtained for a pathological scenario – hemorrhage – with 
experimental results from the literature. 

 Chapter 3 provides a theoretical framework for the averaging method 

developed in the previous chapter. The chapter starts with a short survey on 
averaging methods developed in the literature along the years. Next, the problem 

formulation defines the class of systems taken into consideration – pulse frequency 
modulated systems with constant duty ratios – and defines the goal: to derive an 
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averaging method which approximates the original system within a certain error 
bound and which is dependent on the modulation period. The theoretical framework 
further presented consists in three theorems adapted from the literature (which 

make use of perturbation theory) to this new class of systems. In the last part of 
the study, a step-by-step description is provided, on how the proposed averaging 
method can be used in the case study referring to the cardiovascular system, while 
pointing out ways of copping with the practical issues that emerge. Finally, 
numerical results obtained through simulations illustrate the effectiveness of the 
proposed averaging method. 

 The most elaborate part of the thesis is Chapter 4, which addresses the 

systems analysis of cardiovascular regulation – the actual goal of this study, both 
locally and globally. The local stability analysis works with the linearized model 

around its equilibrium point. The focus is on the role of multiple time delays on 
generating stability or instability. After highlighting the fact that the issue of 
multiple delays is of recent date, with few methods found in the literature, the most 
suitable stability method from the literature is presented – which provides necessary 
and sufficient conditions for stability. The numerical results consist in stability maps 

in terms of specific a priori imposed delay coordinates for two pathological 
scenarios. A discussion is done on the interpretation of these results, concluding 
that it may be more import to focus on the interaction between multiple delays, and 
not on the delay absolute value (taken independently). This means that a decrease 
in a specific delay value does not necessary improve stability, on the contrary - it 
may deteriorate stability. The global analysis makes use of contraction theory – with 

reference to convergent systems – which views the systems in terms of a nominal 
trajectory (solution) to which all other trajectories (solutions) converge to. The 
conditions requires for a system to be contracting are presented, along with a case 
study for cardiovascular regulation. Simulation scenarios confirm the results 
regarding convergence. As an extension, the issue of robustness is raised and 
addressed in the last part, showing that the system is robust to parameter 

uncertainties or certain types of disturbances (numerical results make possible the 

delimitation of a specific uncertainty region in which the systems maintains its 
properties). A short discussion points out the main characteristics of cardiovascular 
regulation as a control system. Finally, the conclusions state that the system is not 
delay independent stable, but it is convergent independent of delays. 

 Chapter 5 draws the final conclusions, highlights the main contributions of 
the present study, and points out possible directions for future research. 

5.2. Future research directions 

The directions for future research, set forth by the current research study – 
which falls into the category of applied theory, can be divided into two types: 
applied and theoretical. 

 A future theoretical development can refer to further robustness studies, in 
respect to a multitude of pathological scenarios (disturbances, parameter 

uncertainties). Thus, one can search for specific types of disturbances for which the 

system starts to show signs of instability, and then connect them to pathological 
scenarios.  
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 Systems analysis studies set the path towards future research concerning 
design, which in the case of biomedical systems can refer to state observers for 
example, or even specific technical devices which assist the human organism (e.g. 

left ventricle assist devices). The design of state observers for the cardiovascular 
system is of high interest because it can inform clinicians about certain physiological 
signals which are non-measureable (at least non-invasive), and the convergence 
issue for observers (between the estimated state and the actual state signals) can 
be formulated as a stability problem – thus the analysis part becomes of real and 
direct help here. Moreover, some physiological signals which act on the 
cardiovascular signal can be regarded as unknown external disturbances, and thus 

can be estimated through unknown input observers. 

 A more applied research direction is the one in which more developed and 

complex models of the cardiovascular system are employed - the analysis 
approaches from the current study permit the extensions to larger systems – and 
the study focuses on specific physiological or/and pathological scenarios. The 
complexity and uncertainty (high variability) of biomedical systems impose that for 
(quasi-)quantitative studies one should focus on specific scenarios. Thus, such an 

approach can make possible thorough experimental validations in respect with a 
specific scenario and a priori imposed category of test subjects, which can 
eventually lead to better diagnosis or treatment methods.  
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APPENDIX 1 
 

In determining how relay-hysteresis models can behave as Pulse 
Modulators, a piecewise analysis approach is conducted. 

First, consider the relay-hysteresis model proposed by Tsypkin (Fig. 2.10) 
for PFMs. On the first modulation interval (t1, t2), the output of the integrator is 

f)tt(kdtfk0)t(ef 12d

t

t

d0

2

1

  ,            (a1.1) 

where the input f was considered constant on the given interval. The interval can be 

thus calculated as t2-t1=f0/(kdx). On the second modulation interval (t2, t1’), the 

output of the integrator is 

0f21d

't

t

fd0 f)kf)(t't(kdt)kf(kf)t(e0

1

2

  ,           (a1.2) 

where again f is constant on the given interval. The interval is now calculated as t1’-

t2=f0/[kd(kf-f)]. The entire modulation period is the sum of these two intervals, 

which would have to be equal to the inverse of the input f, i.e. 

)fk(kf

kf

f

1

fd

f0


 .            (a1.3) 

Condition (a1.3) does not hold in general, because it would imply an equality of the 

form kd(kf-f)=f0kf, with f as an only variable. However, for certain values of the 
parameters and for a certain range of f, condition (a1.3) could approximately be 
met. To illustrate this better, we will exemplify for the case when the input is the 

prescribed heart frequency f=fT, which is defined in the physiological domain [0.3, 
4] Hz. We will adopt kd=1 and f0=1. Fig. A1.1 further shows the graphs of the right-
hand side and left-hand side functions of (a1.3) in respect with the variable f, and 
we can see that the increase in the value of kf means moving the singularity point of 
the right-hand side function out of the considered domain of interest, while the 
overall approximation gets better and better. Consequently, the relays-hysteresis 
model from Fig. 2.10 can approximately capture the dynamic behavior of a PFM in 

certain conditions (like kf sufficiently large for a given domain of the input).  

Second, consider the relay-hysteresis model that we proposed - Fig. 2.11 - 
for CPMs. Suppose that the duration of the modulated pulse varies proportional with 
the modulation period (constant duty ratio case) - i.e. =T/k. Let the feedback gain 

vary with the input modulation frequency f through the law kf= kf. The calculation 

based on (a1.1) and (a1.2) remains the same, but in the final expression of (a1.3) 

we replace the value of kf: 

)1(kf

f

f

1
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
.             (a1.4) 
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Besides this condition, we also want to impose the duration of  to equal the 

previously calculated duration of the interval (t2,t1’): 

)1(kf

f

kd

0





 .             (a1.5) 

After adopting kd=1, both conditions (a1.4) and (a1.5) reduce to the single 
constraint: f0k=k-1. Thus, for a given k (e.g. k=3), we immediately find also the 

last remaining parameter f0 (e.g. f0=2/3). Consequently, the conditions imposed by 
the desired type of pulse modulation (CPM) are satisfied exactly by our model. 

 
Fig. A1.1. Graphs of the right-hand side (continuous line) and left-hand  
side (dashed line) of (a1.3) in respect with f, for different values of kf. 

Last, we will show that a relay-hysteresis model can be equivalent to an 
IPFM (e.g. [57]), which is also referred in the literature as an “integrate and fire” 
(e.g. [39] or [92]) model. An IPFM generates at the output a saw-tooth signal81 with 
the frequency given by the input signal, which is further used as a timer for 

coordinating the contractions of the heart (practically the elastance function is 
generated based on this signal) – [17]. Although several studies use a resetting 

integrator, or a fractional operation, and so on, we will show that a simple relay 
element can achieve the task. By rearranging the diagram from Fig. 2.10 and 
setting kd=1 and f0=1, we obtain the relay-hysteresis model from Fig. A1.2, which 
approximates an IPFM for sufficiently large values of kf (e.g. kf=1000 in our case). 

The advantage of the model is that it is more tractable from an analytical point of 
view. Finally, an additional “shaping” component was added which shows how an 
elastance signal like the one from Fig. 2.2 can be generated. 

 
Fig. A1.2. Relay-hysteresis model for an IPFM.

                                                 
81 In some applications, the actual output of the IPFM used consists in a train of impulses, 
which are generated on the falling edge of the saw tooth signal. This can be accomplished by 
simply adding a bi-positional relay element. 
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Equilibrium point (nominal-physiological conditions): 

xe=[70.67   203.9   1.18   0.15   2.47   0.98   1714].  

 

Matrices A, Ai and C from model (4.2): 
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The non-null term in each matrix Ai (i=1,2,3,4,5) represents the derivative of the 

function fsig,j in respect with the variable xwa1(t-τj); where }V,R,E,T,T{j TsTp . For 

example, for the matrix A1 we have: 

 
.

C/kxexp(1

)C/kxexp(

C

k)xx(
f

dx

d
2

1iTp,1waTp

1iTp,1wa

1

iTpTp
max
Tp

min
Tp

Tp,sig
,1wa

Tp

Tp

Tp 



 








. 

 

Constant coefficients ai from model (4.2) - matrices A, Ai, C - and model (4.12)-
(4.13): 
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As defined in [129], the resultant of two multivariate polynomials with real 
coefficients, 
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