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Rezumat,  
This thesis focuses on a subject of major interest for the computer 
vision research community: the human computer interaction. The 
main problem to solve is to allow human subjects to interact with 
computers in a natural way, without requiring important 
computational and storage resources or expensive equipment. The 
thesis presents new solutions related to the tracking of fingers/hands 
in video sequences and the recognition of dynamic hand gestures 
based on trajectory.  
On the tracking related side, new solutions are proposed for the 
tracking initialization and for the tracking process itself. Multiple 
features like color, foreground, shape and size are used within a finite 
state machine to provide a safe tracking initialization with few spatial 
and temporal constraints. The same basic features are integrated to 
generate a sparse representation using line strips, followed by 
multiple cascaded clustering and filtering stages of the new features 
leading to finger/hand identification and localization. The proposed 
tracking solution proved robustness in many challenging situations 
including motion blur, scale changes, fast motion and occlusions. 
The gesture recognition contributions include the thoughtful choice of 
the gesture alphabet – the gestures are successions of line strokes – 
and solutions for the processing of trajectory and gesture recognition. 
The median filter and mean shift clustering are used for trajectory 
segmentation, leading to a symbolic representation of the trajectory, 
which reduces the task of gesture recognition to a comparison of the 
symbolic representations of the trajectory and gesture prototypes. 
The results evaluations indicate that the newly proposed solutions 
achieve the pursued goal – real-time running capability, using 
inexpensive hardware systems – without important sacrifices in terms 
of naturalness, precision and robustness. 
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1. INTRODUCTION 
 

1.1. Preliminary information 

The continuous development of computers and in general of the systems 
using microprocessors/microcontrollers or digital signal processors during the last 
decades conducted to the expansion of these systems in almost all aspects of 
modern life. In this context, human subjects need to interact very often with 
processor-based systems and the need has arisen for developing new interfaces, in 
order to facilitate the Human-Computer Interaction (HCI). Traditional input devices 
like mouses, keyboards, touchpads or touchscreens do not provide natural 
interfaces. Gestures represent an important communication means between people 
and can provide more natural communication solutions between humans and 
computers than traditional interfaces. Gestures are expressive (meaningful) motions 
of the human body, which contain spatial and/or temporal variation. Recently, more 
and more research in the field of Human Computer Interaction (HCI) focuses on 
developing gesture-based interfaces.  

A very popular approach for gesture-based HCI relies on devices that 
visually track the movements of the user. Gesture recognition systems based on 
tracking the user’s movements usually involve 3 main processing stages: image 
preprocessing, tracking of the human body parts of interest (e.g. hands, face) from 
frame to frame and recognition of meaningful gestures. Each of the 3 stages may 
involve complex operations, whose implementations for running in real time 
represent real challenges – especially on systems with limited computational 
resources.  

Image preprocessing is required for removing noise from the images 
acquired with a camera and extracting meaningful data from the images for the 
tracking algorithm. Besides filtering, color space conversions and low-level feature 
extraction are common operations implemented at this processing stage. Color 
space conversions may be necessary, in order to facilitate the extraction of some 
features, while feature extraction itself scans the image for meaningful features that 
may help in identifying the target (the human body part to track) and represents 
them in a symbolic format. 

The goal of vision based tracking is to identify the position of the target in 
each frame – based on the features provided by the image preprocessing stage – 
and to extract information about the movement of the object of interest from frame 
to frame. 

The gesture recognition stage processes the data provided by the tracking 
stage, decides whether the user is performing a meaningful gesture and – if this is 
the case – it identifies the gesture. 

The present thesis presents contributions in each of the above described 
processing stages. The contribution in the field of image preprocessing is 
represented by the thoughtful choice of the features which provide the basis for a 
robust tracking algorithm. In the field of vision based tracking, the contributions 
include a secure semi-automatic target initialization method and a multilayer 

BUPT



1.2 – Motivation     11 

tracking algorithm with reduced computational complexity. For the topmost 
processing stage – the gesture recognition – the contributions are represented by 
the method to define the gesture set and the trajectory processing algorithm which, 
together, ease very much the gesture classification process. 

1.2. Motivation 

The goal of this thesis is to offer new solutions for use in the implementation 
of gesture based human-computer interfaces. The target gesture based interfaces 
need to be designed in such a way as to allow implementations on computers with 
medium or low computational and storage resources available and without the need 
for expensive auxiliary devices (e.g. data gloves, Kinect, time of flight, stereo vision 
cameras).  

The wide spreading of webcams during the last years, based on their 
decreasing prices, concurrently with the constant improvement of the quality of 
images they can provide, has led to the ubiquitous availability of these devices with 
modern processor based systems (e.g. laptops, desktop computers, tablets, 
smartphones etc.). To date, the most popular application of webcams is to provide 
video communications over the Internet, but their wide availability, together with 
the significant improvement of image quality in the last years, make them an 
appealing choice for usage as input devices in HCI.  

The subject of gesture recognition based on images acquired using a single 
camera has attracted researchers since the 90’s. However, most available solutions 
are either not robust enough, or require important computational and/or storage 
resources, which are not available on common processor-based systems, or require 
high quality images. Despite the fact that the quality of images provided by 
webcams increased significantly in the last years, the images and video sequences 
acquired with such devices are still relatively noisy and the frame rate is low (12 – 
15 fps). Motion blur often occurs in video sequences acquired with insufficient 
lighting and/or when fast motion is present. These drawbacks of webcam acquired 
images and video sequences increase the difficulty of detecting and tracking targets, 
making the implementation of tracking (which is essential for gesture-based 
interfaces) a challenging task.  

There are a few key factors, like the choice of the set of features used for 
detection of the target human body parts and the design of the gesture set, which 
have a severe impact on the performance of a HCI and its ability to run in real time 
on largely available computer-based systems. A good choice of the features can 
allow the implementation of robust tracking algorithms with reduced computational 
complexity. The definition of gesture sets can contribute to the simplification of the 
gesture recognition process, allowing efficient implementations with reduced 
complexity. 

The first processing step in a gesture recognition system is represented by 
the image preprocessing. In this step, the images provided by the webcam are 
processed and relevant features are extracted, in order to be used for the detection 
of the target (i.e. finger/hand) in the next processing step. An important objective 
at this level is to identify the appropriate features that can offer reliable information 
to allow the tracking algorithm to identify the target. My choice for the feature set 
includes color (requires human skin color segmentation), foreground (requires 
background subtraction) and geometrical shape and proportionality (assessed 
through features derived from the results of color segmentation and background 
subtraction). 
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The tracking of the hand/finger requires to identify the target’s position in 
each frame, based both on the data (features) obtained after the image 
preprocessing step and on the positions of the target in the previous frames 
(including data obtained from their processing). The main goal at this level is to 
develop a robust tracking algorithm, which should be able to run in real-time. A 
secondary objective is to define a tracking initialization method that can provide 
safe and accurate initial target detection, in order to prevent accidental triggering of 
the tracking and to allow building an accurate initial model of the target. 

In the last processing step (i.e. gesture recognition), the trajectory provided 
by the tracker is processed and a decision is made whether the user has performed 
a meaningful gesture (including the identification of the gesture) or not. A first 
objective at this level is the definition of a gesture set that facilitates the recognition 
process and at the same time allows the natural execution of gestures. Other goals 
are the development of a trajectory filtering method, followed by a gesture 
recognition algorithm. The trajectory filtering is necessary because, generally, the 
trajectories provided by the tracker tend to be noisy due to a multitude of factors 
(e.g. camera noise, lighting changes, occlusions etc.), that influence the accuracy of 
target position identification. 

1.3. Thesis overview 

1.3.1. Introduction 

After presenting short preliminary information on the subject of the thesis, 
the motivation that led to the writing of the present thesis is presented. Then a 
short overview of each chapter of the thesis is provided in the current section. Next, 
the list of publications containing personal contributions is presented. 

1.3.2. Non Parametric Density Estimation 

This chapter presents basic information about non parametric density 
estimation techniques. First, some fundamentals of statistical analysis are presented 
for univariate and multivariate data. Then, the basic non parametric density 
estimators (like histograms, frequency polygons and ASH) are described. Next, the 
Kernel density estimators are discussed, together with the parameters that affect 
the quality of the estimation and bandwidth selection methods. Finally, a review of 
the most important ideas resulting from this chapter is presented. 

1.3.3. Video Tracking 

After a short introduction to video tracking, the main approaches used in 
video tracking are detailed. The target representation and localization process is 
explained, together with the most representative tracking algorithms relying on it – 
mean-shift based algorithms. The filtering and data association process is then 
presented, together with tracking algorithms relying on it – algorithms using Kalman 
filters and algorithms using particle filters. Next, the most popular approaches used 
for tracking hands and fingers are shortly presented. Finally, a short review outlining 
the advantages and disadvantages of the tracking algorithms presented in this 
chapter is given. 
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1.3.4. Robust Integration of Multiple Features for Hand/Finger Tracking 

This chapter presents the original contributions with respect to feature 
extraction and tracking processing stages. The chapter is mainly based on research 
results previously published in [1], [2], [3] and [4]. In the beginning of the chapter, 
the place of tracking within a gesture recognition system is outlined. Next, the low-
level features used for tracking and tracking initialization are discussed, together 
with the methods for extracting them from image sequences. The tracking 
initialization method proposed in [1] is then presented, followed by descriptions of 
the finger detection, target identification and tracker guiding/trajectory recording 
processing layers used for tracking, proposed in [3] and [4]. The last section of the 
chapter presents the results of the performance evaluations, for both the tracking 
initialization solution and the tracking algorithm. 

1.3.5. Real-time Dynamic Hand Gesture Recognition 

This chapter presents the contributions corresponding to the gesture 
recognition processing stage and relies mostly on the results of research previously 
published in [5] and [6]. A short introduction to gesture recognition is given in the 
beginning of the chapter, outlining the main types of gesture recognition systems. 
Then, special attention is given to the known solutions for trajectory based dynamic 
gesture recognition and especially for dynamic hand gesture recognition. The next 
two sections focus on the description of the solutions proposed in [5] and [6] for 
processing the hand trajectory (aiming at the extraction of relevant features to allow 
gesture recognition) and for gesture recognition, respectively. The last section of the 
chapter presents the experimental results, outlining the performances of the 
proposed trajectory processing method and of the gesture recognition system, 
which can easily operate in real-time on systems with low computational resources. 

1.3.6. Conclusions and Future Developments 

The introductory part of this chapter presents some conclusions regarding 
the new tracking and gesture recognition solutions proposed in the thesis. Then, a 
summary of the original contributions is presented, outlining the two major 
categories of own contributions: tracking related (safe and precise tracking 
initialization; robust finger tracking algorithm) and gesture recognition related 
(gesture definition method; solutions for the segmentation and symbolic 
representation of hand trajectories; fast gesture recognition method). The last 
section of this chapter is dedicated to the proposals for future research and 
development directions. 

1.4. List of published papers related to the present thesis 

1. D. Popa, G. Simion, V. Gui, and M. Otesteanu, "Trajectory based hand gesture 
recognition," presented at the Proceedings of the 6th WSEAS international 
conference on Computational intelligence, man-machine systems and 
cybernetics, Tenerife, Canary Islands, Spain, 2007. 

2. D. Popa, G. Simion, V. Gui, and M. Otesteanu, "Real time trajectory based hand 
gesture recognition," WSEAS Transactions on Information Science and 
Applications, vol. 5, pp. 532-546, 2008. 

3. G. Simion, V. Gui, M. Otesteanu, D. Popa, and C. David, "Hand Edge Detection 
for Gesture Analysis in a Sparse Framework," Scientific Bulletin of the 
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“Politehnica” University of Timişoara, Romania, Transactions on Electronics and 
Communications, vol. 53(67), pp. 155-160, 2008. 

4. V. Gui, G. Popa, P. Nisula, and V. Korhonen, "Finger Detection in Video 
Sequences Using a New Sparse Representation," Acta Techn. Napoc., vol. 52, 
pp. 1-6, 2011. 

5. D. Popa, V. Gui, and M. Otesteanu, "Semi-Automatic Hand/Finger Tracker 
Initialization for Gesture-Based Human Computer Interaction," in Digital 
Information and Communication Technology and Its Applications. vol. 166, H. 
Cherifi, J. Zain, and E. El-Qawasmeh, Eds., ed: Springer Berlin Heidelberg, 
2011, pp. 417-430. 

6. D. Popa, V. Gui, and M. Otesteanu, "Real-Time Finger Tracking with Improved 
Performance in Video Sequences with Motion Blur," in International Conference 
on Telecommunications and Signal Processing - TSP 2014, Berlin, 2014, pp. 
715-720. 

7. D. Popa, V. Gui, and M. Otesteanu, "Real-Time Multi-Cue Finger Tracking for 
Human Computer Interaction," in International Conference on 
Telecommunications and Signal Processing - TSP 2014, Berlin, 2014, pp. 721-
727. 
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2. NON PARAMETRIC DENSITY ESTIMATION 
Univariate data sets are collections of measurements that evaluate the 

objects in a sample based on a single parameter. The analysis of such data sets is 
performed in a single dimension and is well developed in literature. Multivariate data 
sets are collections of measurements performed on multiple parameters of each 
object within a sample set. The measurements performed on the parameters of the 
object can be treated as random variables. Data sets of this type are used in many 
fields even if they are not always treated as multivariate data sets. The early 
approaches on processing multivariate data sets relied exclusively on univariate 
analysis techniques, each variable being analyzed apart from the others. Later, 
plenty of multivariate analysis methods were developed. The important advances in 
the development of computers in the last decades significantly reduced the costs of 
the computational resources and facilitated the practical implementation of the 
multivariate analysis techniques in more and more application fields. 

While some of the multivariate analysis techniques require the use of the 
same measuring scale for all the variables, most of them do not set such a 
restriction. Usually all parameters are measured simultaneously for each object, 
resulting in a correlation between the variables. In most situations each variable 
depends on the other variables in the set, therefore separate processing of variables 
may not provide enough information about the analyzed objects or systems. 
Multivariate analysis extracts the main characteristics of the process that generates 
the variables through simultaneous analysis of all measured variables. Many of the 
multivariate analysis methods aim at “untangling” the information provided by the 
variables in the analyzed set by reducing the number of dimensions necessary for 
expressing the characteristics of the analyzed objects [7]. 

A complete analysis of a multivariate data set involves applying various 
types of statistical methods: parametric, non-parametric and graphic [8]. The 
parametric methods are considered to be the most powerful, but they are very 
sensitive to the correctness of the initial model definition. A parametric estimation 
starts from a known model, which depends on a parameter set, attempting to find 
the best estimations for the parameters. Small deviations of the analyzed data from 
the initial model may cause important errors in the interpretation of results in this 
case. 

Non-parametric methods have the advantage of flexibility, as they do not 
rely on the assumption that the analyzed data fit a known model, trying instead to 
build the model using the structure of the data. The term “non-parametric” only 
means that the number and type of parameters are not established a priori, not that 
these methods do not have parameters. Though initially the statisticians were rather 
reluctant to the non-parametric methods, later the conclusion was reached that it is 
better to sacrifice a small part of the optimality of the parametric methods, in order 
to achieve the robustness of the non-parametric methods with respect to the errors 
in the model’s specifications. The slight disadvantage of the non-parametric 
methods with respect to the effectiveness is outweighed by the risk reduction with 
respect to the misinterpreting of the data, caused by inaccurate initial model 
specification. 
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The advantages of parametric and non-parametric methods can be 
combined by using together a parametric and a non-parametric term, resulting in a 
so-called semi-parametric method. 

Graphic methods allow for the visual discovery of some structures in the 
analyzed data (in some situations other methods of analysis are not able to identify 
these structures). 

The next paragraph of this section presents some basics of statistical 
analysis of uni- and multivariate data. Then non-parametric estimation techniques 
are introduced, with the early estimators belonging to this category (histograms, 
frequency polygons and average shifted histograms, which at limit can also be 
regarded as kernel estimators). Later, kernel estimators are presented, with the 
most widely used kernels, criteria for assessing the quality of estimation, the 
bandwidth selection problem and considerations on the use of kernel estimation in 
multidimensional analysis. 

 

2.1. Fundamentals of statistical analysis 

2.1.1. Characterization of univariate and multivariate data 

A random variable is defined as a mathematical function that associates real 
numbers to the outputs of a random process. The probability density function (pdf) 
indicates the relative likelihood of the random variable to take a given value. Such a 

function may not have negative values and ( )f x dx 1
+∞

−∞
=∫ . The probability for the 

random variable to take a value in the limited interval of values [a, b] can be 
calculated by integrating the probability density function over the interval [a, b]. 

The mean of a random variable is defined as the average of all the values 
taken by the random variable and is noted with µ. The mean is also known as the 
expected value of the random variable, noted as E(x). The mean of a sample of n 
observations over the values of the random variable is calculated as the arithmetical 
mean of the n values. 

 
n

i
i 1

1x x
n

=

= ∑   (2.1) 

If the sample contains a large number of observations, it is very likely for its 
mean to be very close to the mean of the random variable, µ, but not identical to it. 
Though, the mean of a sample is considered a good estimator of the mean of the 
random variable. ( )E x μ= , therefore x  is an unbiased estimator and moreover the 
variance of the mean of samples is smaller than in the case of using a single 
observation [7]. The estimator p̂  of a parameter p  is assumed to be unbiased if 

( )ˆE p p= . The bias of the estimator of a parameter/function is defined as the 

difference between the expected value of the estimator and the real value of the 
parameter/function, or the expected value of the difference between the estimator 
and the real value: 

 ( ) ( )ˆ ˆbias E p p E p p .= − = −   (2.2) 
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The spreading of the possible values of the random variable around the 
mean value can be evaluated using the variance. The variance, 2σ , is defined as 
the mean of the squares of the deviations of the random variable’s values from its 
mean, µ: 

 ( ) ( )22 2 2σ E x μ E x μ .= − = −   (2.3) 

As opposite to the variance, the standard deviation, defined in equation 
(2.4) is not a quadratic value and measures the mean value of the deviations of the 
values of the random variable from the mean: 

 ( ) ( )2 2 2σ E x μ E x μ .= − = −   (2.4) 

For a sample consisting of n observations the variance is: 

 

( )
n n

2 2 2
i i

2 i 1 i 1
x x x nx

s
n 1 n 1

= =

− −

= =
− −

∑ ∑
  (2.5) 

The intuitive value of the denominator of the fractions in equation (2.5) 
should be n, but with this value the variance of the sample would no longer be an 

unbiased estimator of the variance 2σ . It can be proven that ( )2 2E s σ= , which 

means that the variance of the sample, as defined by equation (2.5), is an unbiased 
estimator of the variance of the random variable. 

Two random variables, which reflect the results of the measurement of two 
parameters which characterize the studied objects, produce an array of bivariate 
data. The two random variables, measuring parameters of the same objects, will 
tend to vary simultaneously (or co-vary), either in the same manner or in opposite 
manners. The covariance is defined by equation (2.6) as the mean of the product of 
the differences between the current values and the mean values of the two variables 
[7]: 

 ( ) ( ) ( )xy x ycov x,y σ E x μ y μ . = = − −    (2.6) 

Considering the definition of covariance in equation (2.6), it can be noticed 
that a positive value of the covariance indicates a tendency of the two variables to 
co-vary in the same manner (both variables are on the same side of their means), 
while a negative value of the covariance indicates a tendency of co-varying in 
opposite manners (when one variable is on one side of its mean the other variable is 
on the opposite side of its mean). 

Two random variables, x and y, are considered independent of each other if 
the behavior of one variable is not affected in any way by the behavior of the other 
variable. The covariance is an indicator of linear dependency between two variables, 
but it does not provide any information about non-linear dependencies. Therefore, 
any two independent random variables will have the covariance 0, but the opposite 
is not always true. If two variables have the covariance 0, they are not necessarily 
also independent, because non-linear dependencies may exist between the two 
variables without being revealed by the covariance. 

Equation (2.7) defines the covariance for a sample of n measurements over 
the two parameters. For the same reason as in the case of the variance in the 
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univariate domain, the covariance of the sample defined in the following manner is 
an unbiased estimator of the covariance of the two random variables: 

 

( ) ( )
n n

i i i i
i 1 i 1

xy

x x y y x y nxy

s
n 1 n 1

= =

− − −

= =
− −

∑ ∑
  (2.7) 

The covariance is a quantity which depends a lot both on the measurement 
units used for the parameters and the range of the parameters’ values. Therefore, a 
comparison between the covariances of two different sets of bivariate data is 
actually useless. In order to enable the usefulness of such a comparison, a 
normalization of the covariance is necessary. The normalization is achieved by 
division with the standard deviations of the two variables [7]. The quantity obtained 
after the normalization of the covariance is also known as the correlation coefficient 
between the two variables and this quantity always takes values in the range 
-1,+1   , indicating the strength of the linear dependency between the two 

variables. The correlation coefficient between two random variables, x and y, is 
defined by equation (2.8), while the correlation coefficient for a sample of n values 
of the bivariate data set is defined by equation (2.9): 

 ( ) xy
xy

x y

σ
corr x,y ρ

σ σ
= =   (2.8) 

 xy
xy

x y

s
r

s s
=   (2.9) 

2.1.2. Multivariate data 

The analysis of data sets consisting of more than two random variables is far 
more complex than in the uni- or bi-dimensional case. For multivariate data the 
term of mean value is replaced by the mean vector. The mean vector of a sample of 
n vectors of a p-dimensional variable x is defined in equation (2.10) as the mean of 
the n observed vectors, or the vector containing the mean values of the p one-
dimensional variables that make up the multidimensional variable: 

 

1 1

2 2
n

i i
i 1

p p

x x
x x
. .1x x ,   x
. .n
. .
x x

=

   
   
   
   
   = = =
   
   
   
   
   

∑   (2.10) 

The n vectors in the multidimensional variable sample can be written as a 
data matrix, as in equation (2.11). The matrix contains in each column the n 
samples of one of the p random variables (the lines of the matrix contain the 
transposed vectors). This arrangement of the matrix is preferred, as generally the 
vectors of the sample outnumber the variables.  
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T 11 12 1j 1p1
T 21 22 2 j 2p2

i1 i2 ij ip

T n1 n2 nj npn

x x x xx
x x x xx

.X
x x x x.

.
x x x xx

   
   
   
   
   = =   
   
   
   

     

 

 

 

 

     

     

  (2.11) 

The mean vector of the sample can be calculated based on the data matrix 
using the equation: 

 ( )TT

n 

1x X j,  j 1 1 1
n

= = 

((((

elements

  (2.12) 

Similar to the one-dimensional case, the mean vector of the sample, x , is 
an unbiased estimator of µ – the mean vector of the variable x [7]. 

The equivalents in the multidimensional domain of the covariance and 
correlation coefficient are the covariance matrix and the matrix of the correlation 
coefficients. Equation (2.13) defines the covariance matrix of a multidimensional 
variable, x. Considering that the expected value of a matrix is equal to the matrix of 
the expected values of elements, the covariance matrix contains on the main 
diagonal the variances of the p one-dimensional variables and in the remaining 
positions the covariances between all possible pairs of one-dimensional variables. 
The covariance between two real random variables is the same, regardless of which 
of the variables is considered to be the first one and which one is considered to be 
the second. Therefore, the covariance matrix is symmetric with respect to the main 
diagonal.  

 ( ) ( ) ( )

11 12 1p

T 21 22 2p
ij ji

p1 p2 pp

σ σ σ

σ σ σ
cov x E x μ x μ ,  σ σ

σ σ σ

Σ

 
 
  = = − − = =     
 
 







   

  (2.13) 

The covariance matrix of a sample of vectors of the multidimensional 
variable x has the same structure as the covariance matrix of the variable, but all 
the values of the variances and covariances in the matrix correspond to the n values 
sample [7]. Equations (2.14) and (2.15) present two alternative methods for 
calculating the covariance matrix of the sample using the n observation vectors and 
the data matrix respectively: 

 ( ) ( )
n n

T T T
i i i i

i 1 i 1

1 1S x x x x x x nxx
n 1 n 1

= =

 
 = − − = −
 − −
 

∑ ∑   (2.14) 

 T T T T1 1 1 1S X X X J X X I J X ,  J jj
n 1 n n 1 n

    = − = − =    − −    
  (2.15) 

The matrix of the correlation coefficients is defined in equation (2.16) 
similar to the covariance matrix, but in this case the main diagonal contains all 1s, 
as the correlation coefficient of a one-dimensional variable with itself is always 1: 
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11 12 1p 12 1p

21 22 2p 21 2p
ρ

p1 p2 pp p1 p2

ρ ρ ρ 1 ρ ρ

ρ ρ ρ ρ 1 ρ
P

ρ ρ ρ ρ ρ 1

   
   
   

= =   
   
   
   

 

 

 

       

  (2.16) 

The matrix of the correlation coefficients for a sample has a similar 
structure, the correlation coefficients between variables being replaced with 
correlation coefficients between their samples. The correlation coefficients’ matrix 
can be obtained from the covariance matrix and vice versa using equations (2.17) 
and (2.18). The matrix sD  used in these equations is a diagonal matrix containing 
the standard deviations of the samples of the p variables [7]. 

 ( )1 1
s s s 1 2 pR D SD ,  D diag s ,s ,...,s− −= =   (2.17) 

 s sS D RD=   (2.18) 

Though the covariance and correlation coefficients’ matrices provide a 
complete view over the manner of variation of the data, there are situations where 
it is useful to have a unique numeral indicator of the data spreading. Such numeric 
indicators are the generalized variance of the sample and total variance of the 
sample.  

The generalized variance is the determinant of the covariance matrix and is 
useful for revealing possible linear dependencies between variables. If the 
generalized variance is 0, the covariance matrix has a null eigenvalue, indicating a 
linear dependency between variables. The eigenvector associated to the null 
eigenvalue may reveal the form of the linear dependency. Such an analysis may 
simplify the processing of the data, reducing the variable set to a set of linear 
independent variables after removal of redundant variables. A small value of the 
generalized variance (or – for normalized evaluation – of the determinant of the 
correlation coefficients’ matrix) may indicate either a reduced dispersion or a so-
called multi-collinearity. The term multi-collinearity indicates the existence of a 
quasi-linear relation within the variables set and is caused either by high values of 
the correlation coefficients of multiple variable pairs, or by high correlation 
coefficients between one variable and multiple other variables in the set. 

The total variance of the sample is the sum of all the variances of the p 
variables. Though the total variance does not take into account the covariances 
between variables, it is still useful for comparisons in certain analysis techniques. 

2.2. Non-parametric estimation and basic non-parametric 
estimators 

The parametric estimation starts with a family of probability density 
functions, depending on a parameter set. The main goal in this case is to find the 
best estimator of the parameter set. One of the most widely used families of 
probability density functions is the family of normal densities, which are defined 
using the two parameters set (µ, σ2). The parametric estimation consists of two 
main steps: model specification and parameters’ estimation. The parametric 
estimation methods focus on the second step, the first one relying mainly on the 
statistician’s experience for choosing the most appropriate model (i.e. family of 
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probability density functions). Parametric methods are very effective when the 
family of probability density functions is well chosen, but are very sensitive to model 
specification errors. Minor deviations from the initially assumed conditions may turn 
the optimal parametric estimator into an inefficient one.  

For the one-dimensional case, a multitude of already defined models are 
available, allowing the choice of the most appropriate one, based on the available 
data. In the multivariate domain, in many situations the a priori available data do 
not provide enough information for choosing a proper model. In such situations non-
parametric methods can be taken into account, as they require no initial 
specification of a model, and focus directly on finding an estimator for the 
probability density function. 

The most widely known and used non-parametric estimator is the 
histogram, which estimates the probability density. The histogram is also at the 
origins of two other classes of non-parametric estimators of the probability density: 
frequency polygons and averaged shifted histograms. Kernel estimators represent 
an important class of non-parametric estimators, leading to better estimations of 
the probability density than the histograms or histogram-based estimators. 

2.2.1. Histograms 

The histogram is a representation of the data in an observations sample 
based on splitting the sample into multiple disjoint subsets (bins) and counting the 
observations that fit into each subset. Multiple choices are available for the graphical 
representation of the histograms, depending on the application. Some authors 
distinguish between the histogram as a probability density estimator on one side 
and the histogram as an instrument for data visualization on the other side. 
Nevertheless, regardless of the mode of representation, a histogram provides 
information both on the frequency of the observations and on the relative frequency 
of the observations [7]. Fig. 2.1 presents the histogram of a sample consisting of 50 
values, drawn from a normal distribution with the mean 100 and the standard 
deviation 1, and 40 values, drawn from a normal distribution with the mean 105 and 

 
Fig. 2.1 Graphical representation of a histogram. 
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standard deviation 1. 
Let n be the total number of observations, k – the total number of bins and 

mi the number of observations in the i-th bin. The histogram must fulfill the 
following condition: 

 
k

i
i 1

n m
=

= ∑   (2.19) 

Usually it is considered that the bins which compose the histogram are 
equally spaced non-overlapping intervals. A histogram is completely defined by two 
parameters: the bin width – usually noted with h – and the origin, which can be 
conveniently chosen amongst the bin ends and is usually noted with t0. The way a 
histogram reflects the structure of the data is influenced by both parameters, but a 
greater importance is given to the bin width, h. If the chosen bin width is too small, 
the resulting histogram has plenty of bins containing no observations and bins with 
only a few observations. The visual aspect of such a histogram is noisy, revealing 
false structures in the sample, due to the reduced number of observations. On the 
other hand, the choice of a too large bin width leads to an excessively smoothed 
histogram which hides certain structures in the observations sample (e.g. multi-
modality). Over time, a wide variety of rules were proposed for calculating the 
optimal width of the bins in a histogram. The Sturges rule, proposed in 1926, was 
the first rule of this kind, being in fact a rule for calculating the number of bins: 

 2k 1 log n= +     (2.20) 

The main drawback of the Sturges rule is its ineffectiveness when the data 
are not drawn from a sample with normal distribution. Another rule for normal 
distributions was proposed by Scott in 1979, based on the minimization of the 
AMISE (Asymptotic Mean Integrated Squared Error): 

 * 1 3h 3.5σn .−≈   (2.21) 

The standard deviation, σ, behaves as a scaling factor in equation (2.21). 
Scott also proposed modified versions of the rule in equation (2.21)  for lognormal 
and t distributions. A rule with improved robustness was proposed by Freedman and 
Diaconis, by replacing the standard deviation in Scott’s rule with a multiple of the 
interquartile range: 

 ( ) 1 3ĥ 2 IQ n .−=   (2.22) 

In the multivariate domain, for the histogram of a d-dimensional 
multivariate data set, the Scott rule becomes: 

 ( )1 2 d*
k kh 3.5σ n ;  k 1, ,d.− +≈ =    (2.23) 

Histograms perform a discontinuous estimation of the probability density. 
The estimate obtained using the histogram has a constant value within a given bin, 
Bk, and in order to ensure that the estimate is a probability density function, it is 
necessary that the integral over its support to be 1: 

 ( ) k
k

v
f̂ x ,  x B

nh
= ∈   (2.24) 
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In equation (2.24), kv  represents the number of observations in the bin Bk, 
while the division by nh ensures that the integral of the estimate over its support is 
unitary.  

2.2.2. Frequency polygons 

Frequency polygons constitute a solution for generating a continuous 
estimate of the probability density. The polygons are generated using line segments 
to connect the mid-points of adjacent bins. Fig. 2.2 presents the frequency polygon 
corresponding to the histogram in Fig. 2.1. 

The MISE (Mean integrated Squared Error) analysis reveals negligible effects 
of the choice of bins’ origin for both histograms and frequency polygons. 
Nevertheless, through visual analysis, differences may be observed from the point 
of view of the structures revealed. Using the same bin width for a given set of 
observations with different origin points, it is possible to build histograms or 
frequency polygons that reveal a unimodal, a bi-modal or m-modal structure of the 
data. The optimal bin width for frequency polygons is substantially larger than in the 
case of histograms, resulting in a much larger number of possible choices for the bin 
origin [8]. 

2.2.3. Averaged Shifted Histograms (ASH) 

The ASH (Averaged Shifted Histograms) represent a solution proposed by 
Scott [8] to the problem of choosing the origin point. The solution consists in 
averaging multiple histograms having the same bin width, but different origin 
points. The method can also be applied to frequency polygons. 

According to the method proposed by Scott, m histograms, having each the 
bin width h and the origin points at multiples of h/m (0, h/m, 2h/m, …, (m–1)h/m), 
are averaged, leading to an estimated probability density of: 

 
Fig. 2.2. Generating a frequency polygon. 
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m

ASH i
i 1

1ˆ ˆf f
m

=

= ∑   (2.25) 

Fig. 2.3 presents the process of averaging of the shifted histograms for the 
data set used in Fig. 2.1, for m=2. 

The shape of the estimate obtained by averaging the shifted histograms 
maintains the histogram appearance, having a similar aspect to a histogram with a 
finer bin width of h/m. Any of the initial histograms can be obtained by merging m 
consecutive fine bins from the averaged histogram, ASH. On the other hand, the 
value of ASH in the bin Bk is the average of the m bins in the original histograms 
which contain the fine bin Bk. This leads to the following form of the ASH estimate of 
the probability density: 

 ( ) ( )m 1 m 1
k i

k i k
i 1 m i 1 m

m i v i1 1f̂ x;m 1 v ,  x B .
m nh nh m

− −
+

+
= − = −

−  
= = − ∈  

 
∑ ∑   (2.26) 

The sum in equation (2.26) is a weighted average of the number of 
observations from the bins that fit a window centered on the bin Bk, which extends 
(m – 1) bins on both sides of bin Bk. The weights in equation (2.26) define the 
shape of the window as an isosceles triangle. Equation (2.26) can also be 
generalized in order to allow other window shapes: 

 

 ( ) ( )
m 1

m k i k
i 1 m

1f̂ x;m W i v ,  x B .
nh

−

+
= −

= ∈∑   (2.27) 

 
Fig. 2.3. The averaging of shifted histograms. 
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In order to ensure the unitary integral of the estimate, it is necessary for the 
sum of the weights in the window to be 1, too. The weights can be defined using 
equation (2.28), where K is a continuous function – usually a probability density 
function. 

 ( ) ( )
( )

m m 1
j 1 m

K i m
w i m , i 1 m, ,m 1

K j m
−

= −

= = − −

∑
   (2.28) 

ASH removes the effect of the choice of bins’ origin, at the cost of an 
additional parameter, m. As long as the value of the newly introduced parameter, 
m, is higher than 1, its effect on the estimate of the probability density is negligible 
compared to the choice of the origin point. 

Another important characteristic of the ASH is its asymptotic behavior: as 
the m parameter grows approaching infinity, the ASH estimate can be written as an 
estimator belonging to another important class of non-parametric estimators – 
kernel estimators: 

 ( ) ( ) ( ) ( )
n

j
1,1m j 1

x x1ˆlim f x,m K ,  K t 1 t I t ,
nh h −  →∞

=

− 
= = −  

 
∑   (2.29) 

( )a,b
1,  t a,b

I t .
0,  t a,b  

 ∈    = 
∉    

 

2.3. Kernel density estimation 

Kernel estimators were introduced by Rosenblatt (1956) and Parzen (1962). 
A kernel-based estimator is defined by the following equation: 

 ( ) ( ) ( )
n

h h i h
i 1

1 1 tf̂ x K x x ,  K t K .
n h h

=

 = − =  
 ∑   (2.30) 

In this case, the parameter h represents the kernel bandwidth, having a 
similar effect to that of the bin width for the histogram based estimators. Usually 
the kernel used for estimation is symmetric and integrates to 1 over the entire real 
domain: 

 ( ) ( )K t K t ;= −   (2.31) 

 ( )K t dt 1.
∞

−∞
=∫   (2.32) 

In addition to the condition in equation (2.32), for a p order kernel all 
central moments up to order p 1−  must be 0, while the p order central moment 
must be non-zero: 

 

( )

( )

i

p

t K t dt 0,  i 1,2, ,p 1

t K t dt 0.

= = −

≠

∫

∫






  (2.33) 
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Due to the symmetry condition in equation (2.31), the order, p, must be an 
even number (for a symmetric kernel all odd central moments are 0). In the case of 
a second order kernel it is possible to choose a non-negative kernel, which might 
also be a probability density. 

Kernels of orders higher than 2 also need to take negative values. In this 
case, it is also possible for the estimate to have negative values over some 
intervals. For this reason second order kernels are preferred in applications.  

Table 2.1 presents some of the most widely used second order kernels. All 
the kernels presented in this table have finite support, except for the normal kernel, 
which has an infinite support. 

Actually, two approaches can be used in practice for the kernel-based 
estimation, both leading to the same final result. The first approach for building a 
kernel estimator places a kernel at each observation point xi and generates the 
estimate by summing all the kernels. The second approach places a kernel at each 
estimation point and calculates the value of the estimate at that point as a weighted 
average of the samples covered by the kernel window, using the weights provided 
by the kernel itself. 

Table 2.1. Widely used second order kernels. 
Kernel name K(t) 

Uniform ( )1,1
1 I t
2 −    

 

Triangle ( ) ( )1,11 t I t−  
−

 

 

Epanechnikov ( ) ( )2
1,1

3 1 t I t
4 −  

−
 

 

Normal  
21t

21 e
2π

−

 
 

Biweight 
(quartic) ( ) ( )

22
1,1

15 1 t I t
16 −  

−
 

 

Triweight ( ) ( )
32

1,1
35 1 t I t
32 −  

−
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For both approaches the value of the estimate at a given point results as a 
weighted average over all the observations, the weights depending on the distance 
of the observation with respect to the estimation point. If the kernel has a finite 
support, only the observations contained within the kernel window are taken into 
account for calculating the estimate, the other observation having null weights. 

2.3.1. Parameters that affect the quality of kernel based estimation 

There are 2 main parameters that influence the quality of the kernel-based 
estimation: the kernel bandwidth and the kernel’s shape. In the early years of 
kernel based estimation, the research in the field focused on finding the best kernel 
type, but the conclusion was reached that the estimate is influenced to a much 
greater extent by the kernel bandwidth then by the kernel type [8]. 

As was also the case with the histogram based estimation, the h parameter 
is the one that has a crucial influence on the quality of the estimate. Fig. 2.4 reveals 
this aspect, presenting a comparison between 3 estimates obtained using triangle 
kernels with different bandwidths.  

In all 3 cases the observations sample used for estimation contains 10 
values drawn from a normal distribution with mean 100 and standard deviation 1, 
and 8 values drawn from a normal distribution with mean 105 and standard 
deviation 1. For this data set the value h=0.7 produces a noisy estimate; the value 
h=1.4 produces an estimate which reveals the bimodality of the probability density, 
without other artifacts; the value h=3.5 produces an excessively smoothed 
estimate, hiding the bimodality of the real distribution. Due to its effect on the 
estimate, the kernel bandwidth, h, is also known as the smoothing parameter. A too 
small value for h leads to a high variance of the estimate. A too large value leads to 
an increase of the estimator’s bias. 

The choice of the kernel may also have some influence, from case to case, 
but usually to a much lesser extent than the smoothing parameter. The use of 
different kernels does not lead to identical estimates, when the same bandwidth is 
used for all kernels, but the use of different bandwidths may lead to comparable 
results. Fig. 2.5 presents – for the same observations sample as in the previous 
example – the estimate obtained using a triangle kernel with bandwidth of 1.4 (a) 
alongside two estimates obtained using the normal kernel with bandwidths of h=0.6 
(b) and h=1.4 (c). The estimate obtained using the normal kernel with bandwidth of 
1.4 is excessively smoothed compared to the one obtained with the triangle kernel 

   
Fig. 2.4. The influence of the kernel bandwidth over the quality of the estimate. 
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of the same bandwidth. On the other hand, the estimate obtained using the normal 
kernel with bandwidth of 0.6 is almost identical to the one obtained using the 
triangle kernel with bandwidth of 1.4. 

Obviously, there is no kernel that can be recommended for any possible 
situation. Finite support kernels are not continuously differentiable (i.e. they are 
useless for estimating the derivatives), while infinite support kernels (e.g. normal 
kernel) are relatively inefficient compared to the finite support ones. 

2.3.2. Criteria for assessing the quality of estimation 

In the early years of kernel density estimation, the estimates were 
evaluated subjectively, based on aesthetical criteria. Later, the researchers tried to 
develop objective methods for calculating the optimal bandwidth of the kernel. 
Multiple criteria were proposed for assessing the quality of the estimation. Each 
criterion measures a certain quantity in order to assess the quality of the 
estimation, resulting in different definitions of the optimal bandwidth, depending on 
the measured quantity. 

The quality of the estimation is assessed with respect to the distance 
between the real probability density, f, and the estimated one, ĥf . The main 
problem is how to evaluate this distance. Most evaluation methods rely on distances 
in the L2 space, as they allow for easier analysis compared to the distances in the L1 
space. Two of the most widely used distances are ISE (Integrated Squared Error) – 
defined by equation (2.34) – and MISE – defined by equation (2.35). 

 ( ) ( ) ( )
2

ĥISE h f x f x dx = − ∫   (2.34) 

 ( ) ( )
2

ĥMISE E f x f x dx
   = −    ∫   (2.35) 

The smoothing parameters that minimize these distances are denoted by 0̂h  

for ISE and 0h  for MISE. Both ISE(h) and its minimizer, 0̂h , are random variables, 
depending on the observations sample for which they are calculated. Both 
minimizers also depend on the total number of observations in a sample, n. 

The MISE can be expressed as a sum between the IV (Integrated Variance) 
and the ISB (Integrated Squared Bias): 

a) Triangle kernel, h=1.4 b) Normal kernel, h=0.6 c) Normal kernel, h=1.4 

   
Fig. 2.5. Estimates obtained with triangle (a) and normal kernels (b, c). 
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( ) ( ) ( )

( ) ( ){ } ( ) ( ){ }
( )

( ) ( )

2
hf̂h

2
h

2 2
h h h

ˆσ bias f

ˆMISE h E f x f x dx

ˆ ˆ ˆE f x E f x dx E f x f x dx

IV h ISB h .

 = − 

   = − + −   

= +

∫
∫ ∫
(((((((( ((((((

  (2.36) 

The kernel based estimator, ( )ĥf x , is actually obtained as an average 

between n independent identically distributed random variables, ( )h iK x x− . 
Equations (2.37) and (2.38) calculate the expected value and the variance of the 
kernel based estimator, using the expected value and the variance of the kernel Kh: 

 
( ) ( ) ( ) ( )

( ) ( )

h h h hˆE f E K K x t f t dt K * f

K w f x hw dw,

= = − = =

= −∫
  (2.37) 

 ( ) ( )
hh

22 2 2
hhKf̂

1 1σ σ E K E K .
n n

  = = −   
  (2.38) 

Similarly to equation (2.37), the expected value of 2
hK  can be expressed 

using the substitution x tw
h
−

= : 

 
( ) ( ) ( ) ( )

( ) ( )

2 2 2
h h 2

2

1 x tE K K x t f t dt K f t dt
hh

1 K w f x hw dw.
h

− = − =  
 

= −

∫ ∫
∫

  (2.39) 

The 2 terms which sum to give MISE(h) in equation (2.36) can be further 
expressed, considering the equations (2.37), (2.38) and the notation 

( ) ( )2R g g x dx= ∫ . The functional ( )R g  is also known as the roughness of function 

g. The integrated variance can be obtained by integrating the equation (2.38): 

 
( ) ( ) ( )

( ) ( ) ( ) ( )

22
hh

22
h

1IV h E K E K dx
n
1 1K w f x hw dw dx K * f x dx.
nh n

  = −   

 = − −  

∫
∫ ∫

  (2.40) 

By reversing the integration order in equation (2.40) based on Fubini’s 
theorem [9] and given that f is a probability density (i.e. its integral over the entire 
real domain is 1), the IV(h) becomes: 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

22
h

1

2
h

1 1IV h K w f x hw dx dw K * f x dx
nh n

R K 1 K * f x dx.
nh n

 
 

= − − 
 
  

= −

∫ ∫ ∫

∫

(((((   (2.41) 

Considering K, as a symmetrical k-order kernel, by substituting the 
convolution as in the last expression in equation (2.37) and by using the Taylor 
series representation of ( )f x hw− , ( )ĥE f  can be written as: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
h

k k k

1 0
k k k

1K * f K w f x hw dw K w f x hwf x h w f x dw
2

hf x K w dw hf x wK w dw f x w K w dw
k !

hf x f x w K w dw
k !

 ′ ′′= − = − + + 
 

′= − + + +

= + +

∫ ∫

∫ ∫ ∫

∫



 

((( (((((((((



 

 (2.42)  

The integrated variance becomes: 

 ( ) ( ) ( ) kR K R f hIV h O .
nh n n

 
 = − +
 
 

  (2.43) 

Using the Taylor series decomposition from equation (2.42), the bias of the 
estimator ĥf  can be written as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
k k k 2 k

h h k k
hˆ ˆbias f E f x f x μ K f x O h ,  μ K w K w dw
k !

+ = − = + =  ∫
  (2.44) 

By integrating the square of the bias from equation (2.44), the ISB(h) can 
be written as: 

 ( )
( )

( ) ( ) ( )
2k k2 2k 2

k2
hISB h μ K R f O h .
k !

+ = + 
 

  (2.45) 

 
When n → ∞ , it is necessary and sufficient that 0h 0→  and 0nh → ∞ , in 

order to ensure that ( )0MISE h 0→ . The AMISE is defined by keeping only the 
dominant terms in the formulas of the IV(h) (2.43) and ISB(h) (2.45): 

 ( ) ( )
( )

( ) ( )2k k2
k2

R K hAMISE h μ K R f .
nh k !

 = +  
 

  (2.46) 

When h 0→  and nh → ∞ , the MISE consists of a dominant term (AMISE) 
and a sum of other terms which are negligible compared to the AMISE: 
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 ( ) ( ) ( )( )MISE h AMISE h o AMISE h .= +   (2.47) 

The quality of approximation of the MISE by its asymptotic value AMISE was 
intensively studied by statisticians. Though in many situations the approximation 
proved to be satisfactory with sample sets of reasonable size, situations were 
reported when the approximation became satisfactory only when the size of the 
sample set grew to millions of observations. The conclusion was reached that the 
main reason for the poor performance of the approximation of MISE by AMISE in 
such situations was the poor quality of the approximation of ISB by its dominant 
term. Nevertheless, the inclusion of additional terms in the approximation of ISB 
does not bring significant improvements to the quality of the approximation. On the 
other hand, the approximation of the IV by its dominant term proved to be generally 
effective [10]. 

Equation (2.46) emphasizes the influence of the smoothing parameter, h, on 
the estimator. It can be noticed that the term coming from the integrated variance, 
IV, is inversely proportional to h, while the term coming from the ISB is proportional 
with 2kh . This observation indicates that a too small value of h decreases the bias 
at the cost of increasing the variance, while a too large value of h decreases the 
variance while increasing the bias. The smoothing parameter which minimizes the 
AMISE is denoted h∞  and can be calculated by solving the equation: 

 

( )

( ) ( )

( ) ( )

22 k2k 1 K
2

22 k2k 1 K
2

d AMISE h 0
dh

R K μ
h R f 0

k !nh

R Kμ1 2kh R f 0.
k ! nh

+

+

= ⇔

    − + = ⇔ 
   

      − =  
     

  (2.48) 

The solution of equation (2.48) is: 

 ( ) ( )
( ) ( )

1
2k 1 12

2k 1
k2

k

R K k !
h n

2kμ K R f

+
−

+∞

 
 
 =

  
    

  (2.49) 

It can be noticed that the growth of n in equation (2.49) causes h∞  to 

decrease at a rate of 
1

2k 1n
−

+ . The value h∞  of the smoothing parameter ensures an 
optimal compromise between bias and variance and AMISE becomes in this case: 

BUPT



  Non Parametric Density Estimation – 2 32 

 
( )

( ) ( ) ( )

( )

( ) ( )

1
2k k 2k 12 2k

k
2k 1

2

2k
2k 11 2

2kμ K R K R f
2k 1AMISE h n

2k k !

F K F f n

+
−

+∞

−
+

  
  +    =  

  
  

=

  (2.50) 

 

2.3.3. The optimal kernel 

In equation (2.50), it can be noticed that the AMISE converges at a rate of 
2k

2k 1n
−

+ . ( )AMISE h∞  contains a term that depends on the kernel K and a term that 
depends on the unknown probability density, f. The optimal kernel is the kernel 
which minimizes the term ( )1F K . Epanechnikov started to investigate the problem 
of finding the optimal kernel for second order kernels (the most widely used 
kernels) in 1969 [8]. For second order kernels ( )2 2

2 Kμ K σ=  and the following 

equations describe the ( )AMISE h , h∞  and ( )AMISE h∞ : 

 ( ) ( ) ( )4 4
K

R K 1AMISE h σ h R f ,
nh 4

′′= +   (2.51) 

 
( )
( )

1 5
1 5

4
K

R K
h n ,

σ R f
−

∞

 
 =
 ′′ 

  (2.52) 

 ( ) ( ) ( )4 5 1 5 4 5
K

5AMISE h σ R K R f n .
4

−
∞ ′′ =     (2.53) 

The convergence rates are 1 5n−  for h∞  and 4 5n−  for ( )AMISE h∞ , 
respectively. The optimal kernel is the kernel which minimizes the term 

( ) 4 5
Kσ R K   . The solution found by Epanechnikov is the kernel which received his 

name: 

 ( ) ( ) ( )* 2
2 1,1

3K t 1 t I t .
4 −  

= −   (2.54) 

The efficiency of a kernel is defined as [10]: 

 ( )
( )
( )

2k 1
* 2k

1

1

F K
eff K .

F K

+
 
 =  
  

  (2.55) 

The meaning of the kernel efficiency as defined in equation (2.55) is that 
the MISE obtained with the optimal kernel *K  using n observations can be achieved 

BUPT



2.3 – Kernel density estimation     33 

with kernel K using ( )n eff K⋅ observations. All the second order kernels presented in 
Table 2.1 have efficiencies close to 1, with the uniform and normal kernels as the 
less efficient ones, requiring 1.075 and 1.05 times, respectively, more data than the 
optimal Epanechnikov kernel. It was determined that even the less efficient second 
order kernels have efficiency values below 2. These data indicate that the choice of 
the optimal kernel is far less important for practical applications compared to the 
choice of the kernel’s bandwidth. The kernel choice is only important when the 
derivatives of the probability density function need to be estimated. In this case it is 
necessary for the chosen kernel to be differentiable enough in order to allow 
consistent estimates of the derivatives of the probability density. 

2.3.4. The optimal bandwidth 

Any of 0̂h , 0h  and h∞  can be considered as optimal bandwidth, given that 

it minimizes a 2L  distance between the estimator and the real probability density. 
Although in practice none of the three bandwidths can be used, as they all depend 
on the unknown probability density, f. Therefore, for practical applications an 
estimate of the optimal kernel bandwidth, ĥ , needs to be calculated. The problem is 
which of the three bandwidths should be estimated from an observations sample. 

AMISE reveals the behavior of the estimated probability density at too small 
or too high values and some optimal bandwidth selection methods use this criterion 
considering that AMISE is a good approximation of MISE. Nevertheless, in some 
situations, the aforementioned assumption only holds true when the sizes of the 
sample sets exceed millions of observations.   

Between 0̂h  and 0h  the second one is preferred, given that 0̂h  is a random 
variable and is more difficult to estimate. It was also demonstrated that the optimal 
bandwidth converges much slower towards 0̂h  (convergence rate of order 1 10n− ) 

than towards 0h  (convergence rate of order 1 2n− ). Despite these arguments, 

some researchers suggested that none of the 2L  distances are adequate, as they do 
not reflect the human subjects’ perception about the quality of estimation. However, 
the criteria based on 2L  distances and their minimizers are still used until new 
objective methods, able to provide results closer to the human subjective 
perception, will be developed. 

2.3.5. Bandwidth selection methods 

Bandwidth selection is of crucial importance for kernel-based density 
estimation, and is heavily influenced by the purpose of the estimation (i.e. the 
optimal bandwidth selection method is application dependent). The most important 
classes of bandwidth selection methods are presented next: quick and dirty 
methods, cross-validation methods, plug-in methods and Fourier based methods. 
The paragraph ends with some considerations on the criteria that should be fulfilled 
by the optimal selection method. 

The quick and dirty methods rely on AMISE and its minimizer h∞ . The 
unknown quantity in the expression of h∞  (2.52) is the roughness of the second 

derivative of the unknown probability density, ( )R f ′′ . The empirical method 
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evaluates the unknown quantity by replacing the unknown probability density 
function, f, with a reference probability density function. The reference function is 
rescaled in order to have the same variance as the observations sample. When the 
normal kernel is used for estimation by replacing the unknown probability density 
with the normal reference probability density, the estimated bandwidth is: 

 
1 5

1 5 1 5
emp

4ˆ ˆ ˆh σn 1.06σn .
3

− − = = 
 

  (2.56) 

In equation (2.56) σ̂  denotes the standard deviation of the observations 
sample. Considering the constant in equation (2.56) is close to 1, Scott proposed a 
simplified version of the expression of empĥ  by approximating the constant with 1, 

in order to reduce the complexity of the calculations. Another version of the 
empirical method improves the robustness, by allowing the use of the inter-quartile 
range, IQ, as a measure of the spreading of the data instead of the standard 
deviation: 

 1 5
emp

IQˆ ˆh 1.06 min σ , n .
1.34

− =  
 

  (2.57) 

The oversmoothing method is another method from the “quick and dirty” 
category, which imposes a lower limit on the unknown quantity ( )R f ′′ , leading to an 
upper limitation of the bandwidth: 

 ( )
1 5

1 5
os 4

K

R Kˆ ˆh 3 σn .
35σ

−
 
 =
  

  (2.58) 

The quick and dirty methods have relatively good results for unimodal 
densities, but for multimodal densities they tend to have an oversmoothing effect 
and hide the real nature of the data. 

Cross-validation methods are basically extensions of the methods used in 
parametric modelling [11]. They rely on a statistical procedure which involves 
splitting the observations sample into multiple subsets. The initial analysis is 
realized on a single subset, while the other subsets are used for validating the 
results of the initial analysis. The initial subset is referred to as training set, while 
the remaining subsets are referred to as validation sets or test sets.  

The most widely used cross validation methods are the k-fold cross-
validation methods, which split the initial sample into k subsets of which only one 
subset is kept for validation, the other k-1 subsets being used as training data. The 
cross-validation process is repeated k times, each subset being used only once for 
validation. The final estimation is obtained either by averaging the results of the k 
cross-validations, or by another combination of the k results. A particular case of 
this category of methods is the leave-one-out method, where the number of subsets 
is equal to the number of observations (each subset has a single observation). 

The cross-validation of the pseudo-probability is a method which requires 
the bandwidth to be chosen such as to maximize the pseudo-probability function 

( )
n

h i
i 1

f̂ x
=
∏ . In this case the problem has a trivial solution for h 0= . In the 
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expression of the pseudo-probability ĥf  is substituted by the leave-one-out version, 

h,if̂  (the estimate built without the ix  observation): 

 ( )
n

h,i h j
j 1
j i

1f̂ K x x .
n 1

=
≠

= −
− ∑   (2.59) 

This method minimizes the Kullback-Leibler distance between ĥf  and f. It 

also has satisfactory properties in the 1L  space, but fails to offer consistent 
estimates for heavy tail densities [10]. 

UCV (Unbiased Cross-Validation), also known as LSCV (Least Squares Cross-
Validation), aims at estimating the minimizer of ISE, 0̂h . Equation (2.34) can be 
further developed as: 

 ( ) ( ) ( ) ( ) ( )2 2
hh

ˆ ˆISE h f x dx 2 f x f x dx f x dx,= − +∫ ∫ ∫   (2.60) 

where the last term is independent of the bandwidth, h (and therefore does not 
require minimization) and the first term is known. Therefore, the only term in 
equation (2.60) that needs to be estimated is the second one. By substituting in the 
middle term ĥf  with its estimate obtained by the leave-one-out method, the 
quantity to minimize becomes: 

 ( ) ( ) ( )
n

h h,i i
i 1

2ˆ ˆUCV h R f f x .
n

=

= − ∑   (2.61) 

( )UCV h  is an unbiased estimator of the quantity ( ) ( )ISE h R f−  because 

( ) ( ) ( ) ( ) ( )E UCV h E ISE h R f MISE h R f   = − = −    . 

The estimator of 0̂h  is UCVĥ , which minimizes ( )UCV h . The method is 
widely used due to its intuitive motivation. Despite the fact that the convergence 
rate of UCVĥ  towards 0̂h  is very slow (order 1 10n−  ), it is the best convergence 

rate for the estimation of 0̂h . The reduced convergence rate makes the method 
very sensitive to changes in the sample. Another disadvantage is represented by the 
fact that ( )UCV h  often has multiple minima, but this problem can be reasonably 
alleviated by choosing the highest value of h for which a local minimum is obtained. 
An even more problematic situation is when ( )UCV h  has no minimum [10]. 

Similar to the “quick and dirty” methods, BCV (Biased Cross-Validation) 
aims at minimizing the AMISE by replacing the unknown quantity ( )R f ′′  with an 
estimate. In this case the estimate is based not on a reference density, but on the 
roughness of the second derivative of the estimate of the probability density: 
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( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2
n n n

h h i h i h j2
j 1 i 1 j 1

n n n n

h i h j h h i j2 2
i 1 j 1 i 1 j 1

n n

h h h h i j2
i 1 j 1

j i

1 1ˆR f K x x dx K x x K x x dx
n n

1 1K x x K x x dx K * K x x
n n

1 1K * K 0 K * K x x .
n n

= = =

= = = =

= =
≠

 
 ′′ ′′ ′′ ′′= − = − − =  
 

′′ ′′ ′′ ′′= − − = −

′′ ′′ ′′ ′′= + −

∑ ∑∑∫ ∫

∑∑ ∑∑∫

∑∑

 (2.62) 

Given that 

 ( )h 3
1 t 1 tK t K K  
h h hh

′′    ′′ ′′= =    
    

and   (2.63) 

  

 
( ) ( ) ( )h h h h 6

5 5

1 x t xK * K t K x K t x dx K K dx
h hh

1 x t x x 1 tK K d K * K ,
h h h hh h

−   ′′ ′′ ′′ ′′ ′′ ′′= − = =   
   

−     ′′ ′′ ′′ ′′= =     
     

∫ ∫

∫
  (2.64) 

equation (2.62) can be written as: 

 

( ) ( )

( )

n n
i j

h 5 2 5
i 1 j 1

j i
n n

i j
5 2 5

i 1 j 1
j i

x x1 1ˆR f K * K 0 K * K
hnh n h

x x1 1R K K * K .
hnh n h

= =
≠

= =
≠

− 
′′ ′′ ′′ ′′ ′′= + =  

 

− 
′′ ′′ ′′= +   

 

∑∑

∑∑
  (2.65) 

The authors of this method (Scott and Terrell) have proven [12] that ( )ĥR f ′′  

is a biased estimator of ( )R f ′′ , because ( ) ( ) ( ) ( )2
h 5

R KˆE R f R f O h
nh

′′ ′′ ′′= + +  
. For this 

reason, the two authors of the method have proposed to estimate ( )R f ′′  by: 

 ( ) ( ) ( )
h 5

R KˆR̂ f R f .
nh

′′
′′′′ = −   (2.66) 

The score function obtained based on this estimate is: 
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( ) ( ) ( )

( )

n n4 4
K

i j2
i 1 j 1

j i
n n4 i jK
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i 1 j 1

j i

R K h σ
BCV h K * K x x

nh 4n

x xR K σ
K * K

nh h4n h

= =
≠

= =
≠

′′ ′′= + − =

− 
′′ ′′= +   

 

∑∑

∑∑
  (2.67) 

The bandwidth BCVĥ  that minimizes the score function in equation (2.67) 

has the same convergence rate towards 0h  or 0̂h  as UCVĥ , but the constant is 
usually much smaller. The problem of multiple minima may still appear, but less 
often than in the case of UCV. As opposed to the UCV case, for BCV the multiple 
minima problem is solved by choosing the smallest value of h for which a local 
minimum occurs. The problem of no minima also exists for BCV, even with one of 
the most widely used kernels, the normal kernel.  

SCV (Smoothed Cross-Validation) relies on the MISE decomposition in 
equation (2.36) as the sum between the IV and ISB. Since the IV can be 

satisfactorily estimated by its dominant term in the Taylor decomposition, 
( )R K
nh

, 

the problem remains to find a good estimate for ISB, too. The initial method 
estimates the unknown probability density in the expression of the ISB with ĝf , 

which is an estimator built by using a kernel L (possibly different from K) that has 
the bandwidth g (also possibly different from h). Using this estimation, the ISB 
becomes: 

 

( ) ( ) ( ) ( ) ( )
n n

2
h h h h g g i j2

i 1 j 1

1ISB h K * f f x dx K * K 2K δ * L * L x x .
n = =

= − = − + −∑∑∫  (2.68) 

In equation (2.68), δ represents the Dirac function. By removing the 
diagonal terms (for which i=j) from the summation, similar to the case of BCV, and 
considering that ( )n n 1≈ − , the score function can be written as: 

( ) ( )
( ) ( ) ( )

n n

h h h g g i j
i 1 j 1

j i

R K 1SCV h K * K 2K δ * L * L x x .
nh n n 1

= =
≠

= + − + −
− ∑∑   (2.69) 

Given that the minimized quantity for UCV can be written in a similar form, 
( )SCV h  can be considered a smoothed version of ( )UCV h  [10]. The bandwidth 

SCVĥ   which minimizes ( )SCV h  depends on the bandwidth, g, of the second 

kernel. The convergence rate of SCVĥ  towards 0h  is of the order 1 2n−  (optimal 
convergence rate towards 0h ). With the initial version of SCV, the optimal 
convergence rate can be achieved using high order kernels (at least of the order 6). 
It was demonstrated that the optimal convergence rate can also be achieved with 
2nd order kernels if the diagonal terms in equation (2.68) are not removed and the 
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bandwidth of the second kernel depends on the bandwidth of the first one. The 
advantage of this improvement is crucial for practical applications, where high order 
kernels offer poor results. The main disadvantage is the relatively high asymptotic 
integrated variance [10]. 

Plug-in methods aim at minimizing the AMISE, estimating the unknown 

quantity ( )pR f 
 
 

 in a sequence of iterative steps. In the first step ( )pR f 
 
 

 is 

estimated using an initial bandwidth, 1h . The ( )pR̂ f 
 
 

 obtained in the first step is 

then used for calculating a new bandwidth value. The above described process 
repeats iteratively until bandwidth convergence is achieved. Methods in this 
category have convergence rates of order 4 13 5 14n n− −−  with second order 
kernels. The best convergence rate in this category, using second order kernels, is 
achieved when an additional term is taken into account in the expression of the 
asymptotic ISB, leading to the following expression of ( )2AMISE h : 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )364 2 2 42
2

h μ K μ K R fR K h μ K R f
AMISE h .

nh 4 24

 
 ′′  = + −   (2.70) 

Finding the bandwidth which minimizes this expression of the AMISE 
involves complex calculations, including solving 7th degree equations. Therefore, 
the authors of the method using the above expression of AMISE have proposed an 
asymptotically equivalent solution for the bandwidth which minimizes ( )2AMISE h  in 
equation (2.70): 

 ( )
( ) ( )

( ) ( )

( ) ( )

31 5 1 5 4
1 1

2 1 22
22

ˆμ K R fˆ ˆ R KJ Jˆ ˆ ˆ ˆh J ,  J ,  J .
ˆn n ˆ 20μ K R fμ K R f

 
      =   +   = =    ′′′′   

  (2.71) 

Convergence rates of 1 2n−  can only be achieved with this type of methods 
by estimating the roughness of the second and third derivative of the probability 
density function using high order kernels [10]. 

Good simulation results were also reported with Fourier transform based 
methods, which achieve convergence rates of order 1 2n−  towards 0h , at the cost 
of the complex calculation of Fourier transforms, required in order to perform a 
frequency analysis of the characteristic function of the sample [10]. 

Methods based on bootstrap were explored more recently and rely on the 

substitution of the MSE with a bootstrapped version, *
n,sMSE . The resampling can 

be performed either from a subsample of the data set or from a pilot density. The 
bandwidth choice in this case consists in estimating the s parameter in the equation: 

 1 5h n s.−=   (2.72) 

Relying on equation (2.72), the bootstrap method in [13] proposes the 
bandwidth: 

 1 5 *
n n,ss

h n arg minMSE .−=   (2.73) 
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The optimal method should fulfill simultaneously multiple criteria: reduced 
asymptotic variance, convergence rate of order 1 2n−  and good results in practical 
applications with relatively small size samples using only second order kernels. 
Many bandwidth selection methods are able to achieve convergence rates of order 

1 2n− , but the only one which is able to achieve it using only second order kernels is 
the SCV. Though, SCV has the disadvantage of the high asymptotic variance. 
Methods that have both optimal asymptotic variance and convergence rate using 
only second order kernels were also proposed, but with unsatisfactory results in 
practical applications. Therefore, the conclusion is that there is no bandwidth 
selection method that can be recommended as optimal for any application, but the 
choice has to be made taking into account the specificity of the application at hand. 

2.3.6. Kernel density estimation for multivariate data 

The estimation in the case of multivariate (multidimensional) data requires 
the use of multidimensional kernels. A multidimensional kernel can be obtained 
starting from a one-dimensional kernel that is used in each dimension, but with 
different bandwidths. The estimate of the probability density in this case is: 

( )

11 12 1j 1d

21 22 2 j 2d
dn

i ij

1 d j i1 i2 ij idi 1 j 1

n1 n2 nj nd

x x x x

x x x x
x x1f̂ x K ,  x .

nh h h x x x x

x x x x

= =

 
 
 
   −    = =    

     
 
 
 
 

∑ ∏


 

 

     

 

     

 

 (2.74) 

The bias of the estimator in equation (2.74) is: 

 ( ) ( ) ( ) ( )
d 2

2 2 4
K i ii ij

i 1

1 d fˆEf x f x σ h f x O h ,  f ,
2 didj

=

− = + =∑   (2.75) 

while the asymptotic values of the ISB and IV are: 

 

( )

( ) ( )

d

d
4 4 2 2
K i ii i j ii jj

i 1 i j

d

1 d

1AISB σ h R f h h f f dx ,
4

R K R f hAIV O .
nh h n n

= ≠

 
 = + 
  

 = − +  
 

∑ ∑ ∫




  (2.76) 

Finding the optimal bandwidths in d dimensions requires solving a system of 
d non-linear equations with d unknowns. No general formula is available for 
calculating the individual bandwidths. Solutions are available for certain particular 
cases (e.g. d 2≤ , one bandwidth for all dimensions, certain types of kernels). For 
the normal kernel the bandwidth formula is: 

 
( ) ( )1 d 4

1 d 4*
i i

4h σ n .
d 2

+
− + =  + 

  (2.77) 
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A simplified version of the formula in equation (2.77) was proposed by Scott 

[8], who noticed that the quantity 
( )1 d 44

d 2

+ 
 + 

 always has values very close to 1, 

and therefore can be approximated with 1: 

 ( )1 d 4
i iˆ ˆh σ n .− +=   (2.78) 

The generalized expression of the multidimensional kernel estimator is: 

 ( ) ( )
n

1
i

i 1

1f̂ x K H x x .
n H

−

=

 −  ∑   (2.79) 

In equation (2.79), H represents a d d×  transform matrix. The 
multidimensional product kernel is a particular case, for which the transform matrix 
is a diagonal matrix, containing the bandwidths of the d kernels. 

The bandwidth selection methods presented for one-dimensional kernels can 
also be extended for the multidimensional case. Though the convergence rates for 
the multidimensional methods are slower than for their one-dimensional 
counterparts, it is very important to use different bandwidths for each dimension, as 
it is very unlikely for a given bandwidth to be optimal for all dimensions even with 
normalized data. 

2.3.7. Adaptive smoothing 

An adaptive estimator can be obtained using an estimator with the d-
dimensional kernel K, that has the same bandwidth in all dimensions. The 
bandwidth is allowed to vary both with respect to the point of estimation and with 
the particularities of the unknown probability density, f: 

 ( ) ( ) ( )
n n

i
h i id

i 1 i 1

x x1 1f̂ x K K x x ,  h h x,x ,f .
h nnh = =

− 
= = − = 

 ∑ ∑   (2.80) 

The adaptive bandwidth function in equation (2.80) is a smooth function. 
For finite size samples, two main categories of adaptive estimation methods can be 
considered. The first category uses a fixed bandwidth for all the n points of the 
sample, but the bandwidth is allowed to vary at each estimation point x: 

 ( ) ( ) ( )x

n

1 h i x
i 1

1f̂ x K x x ,  h h x,x,f .
n

=

= − =∑   (2.81) 

The second category of adaptive estimation methods uses different 
bandwidths at each point, ix , of the sample, but – once chosen – the bandwidths 
are used for estimating the probability density at all the estimation points x: 

 ( ) ( ) ( )i

n

2 h i i i i
i 1

1f̂ x K x x ,  h h x ,x ,f .
n

=

= − =∑   (2.82) 

The k-nn estimators are amongst the most widely used estimators belonging 
to the first category. For the k-nn estimators, the adaptive bandwidth xh  is the 
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distance from the estimation point to the nearest k-th point of the sample and can 
be written as [8]: 

 { }( ) ( )

1 d

x k i
d

kh d x, x ,
nV f x
 

= ≈  
  

  (2.83) 

where dV  represents the volume of a d-dimensional sphere with unit radius. The k-
nn estimators provide the best asymptotic estimation, but their main disadvantage 
is that they are not actually probability density functions, as they integrate to 
infinity. Another drawback is represented by the infinite dimensionality of the 
bandwidth function. 

For the second category of adaptive estimators, the bandwidth function 
below was proposed [8]: 

 { }( ) ( )

1 d

i k i 1 2 n
d

kh hd x , x ,x , , x h .
nV f x
 

= ≈  
  

   (2.84) 

The estimators from this category are probability density functions if non-
negative kernels are used and are also easier to express in practical applications, 
given the finite dimensionality of the bandwidth function (n dimensions). 

Due to the smoothness of the bandwidth function, h, its values in a given 
neighborhood are very close to each other, and therefore the computational 
complexity can be reduced by using the same bandwidth value within the 
neighborhood. The choice between the estimators in equations (2.81) and (2.82)
depends on the application at hand and on the application-specific difficulties related 
to the specifications of the adaptive function. While for one-dimensional data the 
use of adaptive bandwidth in practical application does not bring outstanding 
performance, for multidimensional data significant improvements of the quality of 
estimation can be obtained based on the adaptive bandwidth. 

2.4. Conclusions 

Parametric methods are completely determined up to the parameter/vector 
of parameters level, being easy to interpret and offering very good estimates under 
the right initial assumptions. On the other hand, when the initial assumptions are 
inaccurate, the results of parametric methods may become inconsistent, providing a 
wrong image of the structure in the data. 

Non-parametric methods have the advantage of flexibility, requiring no 
initial restriction on the model, but may be difficult to interpret and under some 
circumstances they may also provide inaccurate estimation results. A compromise 
between the two main categories of estimation methods is offered by the so-called 
semi-parametric methods, which have two terms – a parametric one and a non-
parametric one – which allows them to combine the advantages of the basic 
categories of estimation methods [14]. 

Kernel based density estimation is one of the most powerful non-parametric 
estimation techniques, in this case the quality of the estimation being influenced 
mainly by the kernel bandwidth and less by the choice of kernel. The problem of 
optimal kernel bandwidth selection has only application-dependent solutions, no 
generally applicable solution being available to date. Second order kernels are the 
most widely used, given that they are always positive, and they can also be 
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probability density functions. The Epanechnikov kernel is the most efficient finite 
support second order kernel, while the normal kernel is the most popular infinite 
support kernel. 

Given that the kernel also acts as a smoothing operator, the non-parametric 
kernel based techniques have a wide range of applications beyond the probability 
density estimation: robust estimation, finding the local maxima of a function, non-
parametric regression [8], mean-shift based analysis methods [15], obtaining of 
robust objective functions for use in random sampling algorithms etc. 

The kernel based estimates provide another wide range of applications: the 
segmentation threshold selection, automatic threshold selection for M estimators in 
robust regression [16], determining the variance of the median in a sample [17] 
etc. 

Despite the fact that most estimation methods were intensively studied with 
the purpose of global optimization of the estimate, the local optimization of the 
estimate also has a great importance, especially for the image processing domain. 
Some methods that focus on the discrete polynomial local optimization are 
presented in [18]. 

Though the non-parametric statistics were initially developed by 
mathematicians more than half a century ago and they have been intensively 
studied since, their practical applications – especially for multidimensional data – 
were severely limited for multiple decades by the reduced amount of computational 
resources available on the processing systems. In the last 15 years the practical 
importance of the non-parametric methods grew due to the significant improvement 
of the available computational power, though multidimensionality poses multiple 
problems that still await solutions. 

 
 

BUPT



2.4 – Conclusions     43 

3. VIDEO TRACKING 
Video tracking is a complex process consisting of locating and tracking one 

or more moving objects in a video sequence. In most applications the tracking has 
to be realized in real time, using a processing system and a video sequence 
acquired by a video camera, as shown in Fig. 3.1. An algorithm is used to analyze 
the video sequence, in order to identify the positions of the moving objects of 
interest (targets) in each frame. The tracking algorithm estimates the motion 
parameters of each target. The data obtained using the tracking algorithm can 
further be used by the processing system for deciding some actions if necessary. 

Real-time objects tracking has multiple applications in various fields like 
video surveillance [19], [20], perceptual user interfaces [21], [22], augmented 
reality [23], [24], object-oriented video compression [25], [26], robotics [27], [28], 
automotive [29], [30], medical applications [31], [32] etc. 

Video tracking algorithms need to handle a large variety of dynamic events 
that may occur simultaneously in the scene [33]. The main problems that have to 
be handled during the tracking coordination are: 

• tracking initialization, 
• update, 
• finalizing the tracking. 

In real life scenes, various uncontrollable factors make the task of finding 
robust solutions for the above mentioned problems very difficult: 

• temporal variations in the 2D shapes of the objects due to perspective 
transformations and/or due to deformable objects tracking 

• occlusion or other types of interactions between the objects present in the 
scene 

• objects appearing in / disappearing from the scene 
• objects splitting and merging 
• motion blur 
• the presence of a large number of objects  
• clutter etc. 

The main problem in video tracking is to find a correspondence between the 
positions of the tracked object in consecutive frames. The difficulty of this problem 
increases significantly if the motion speed of the objects is high, relative to the 
frame rate. A motion model can be used to describe the changes of the object’s 
appearance for the various types of movement possible. For 2D objects the motion 
model is an affine transformation of the initial image of the object. For rigid 3D 

 
Fig. 3.1. Block diagram of a video tracking system. 
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objects, the motion model defines the object’s aspect with respect to its position 
and orientation in the 3D space. In the case of deformable objects, a mesh can be 
used to cover the surface of the objects and the motion of the mesh’s nodes 
describes the motion of the object. In video compression applications, the motion 
model is defined by the motion vectors that describe the translation of video objects 
based on key frames. 

In video tracking literature, it is often considered [34] that a video tracking 
system has two main components: 

• Target representation and localization and 
• Filtering and data association 

Target representation and localization is usually a bottom-up approach, 
which deals with the appearance changes of the tracked object [34]. Usually the 
algorithms in this category are not computationally intensive. Kernel based (mean 
shift) tracking [34], [35], blob tracking [36], and registration [37] are amongst the 
most popular algorithms in this category. 

Filtering and data association is mainly a top-down process which involves 
using a priori data about the tracked object and/or the scene. The process handles 
the objects’ dynamics and the evaluation of different hypothesis [34]. Algorithms 
falling into this category are usually much more computationally intensive than 
those for target representation and localization. The most widely known algorithms 
belonging to this category are the Kalman filter [38], applicable to linear Gaussian 
processes, and the particle filter [39], useful with non-linear and non-Gaussian 
distributions. A special attention to this category of algorithms is given in the book 
[40]. 

The two components can be mixed within a video tracking system, and their 
contributions vary from application to application. The effectiveness and robustness 
of the tracking process are influenced by the proper choice of the weights of the two 
components. In some applications (e.g. face or hands tracking) a good 
representation of the target is crucial, while in other applications (e.g. video 
surveillance) the dynamics of the subject or the camera movement are more 
important than the target representation [34]. 

The methods belonging to the first category are also known in literature as 
deterministic methods, having the Mean-shift algorithm as main exponent. The 
methods belonging to the second category are also known as stochastic methods 
and their main exponent is the particle filter. Recently, algorithms that combine the 
advantages of the two categories were developed under the name of Mean Shift 
(Embedded) Particle Filter [41], [21]. 

 

3.1. Target representation and localization 

Recently, kernel based probability density estimators received more and 
more attention from the researchers and are considered to be amongst the most 
popular estimators of the probability density function (pdf) [42]. The mean shift 
algorithm used in video tracking also relies on kernel based density estimation. 
General aspects of kernel based probability density estimation were presented in 
detail in chapter 2.3. The next two sub-sections present the particularities of kernel 
estimators when the goal is to estimate not the probability density function, but its 
gradient. Then the principle of the mean shift algorithm for finding the maxima of 
the probability density function is presented. The particularities of the mean shift 
algorithm for video tracking are presented in sub-section 3.1.4. 
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3.1.1. Probability density estimation using kernel based operators 

A d-dimensional kernel based estimator is defined as: 
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  (3.1) 

The multivariate kernel can be obtained either as a product of multiple one-
dimensional kernels or by rotating a one-dimensional kernel in the d-dimensional 
space. Theoretically, the transform matrix, H, can be completely parameterized, but 
in practical applications – especially when real-time processing is required – a 
simplified version of the matrix is used. The simplified version of the matrix is a 
diagonal matrix and contains on the main diagonal the squares of the bandwidths of 
the kernels in the d dimensions. The computational complexity can be further 
reduced, at the cost of optimality loss [8], by using the same bandwidth, h, in all 
dimensions. In this case the density estimator becomes: 

  ( )
=

− 
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ih d
i 1

x x1f x K .
hnh

  (3.2) 

The kernels commonly used in video tracking are radially symmetric and can 
be written in the following format: 

 ( )  =  
 

2
k ,dK x c k x .  (3.3) 

In equation (3.3), k ,dc  is a normalization constant, which guarantees that 

the kernel has a unitary integral over its support. The k( ) function defines the 
profile of the kernel and is only defined for positive values, in order to allow a 
radially symmetric construction of the kernel. The pdf estimator becomes: 

  ( )
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The Epanechnikov kernel – which is not continuously differentiable – and the 
normal kernel – which has an infinite support – are the most widely used kernels 
[8], [10]. The Epanechnikov and the normal kernel are symmetrical kernels and can 
be defined using a profile function: 

( ) ( )
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21 1x xd /22 2N Nk x e ,  x 0      K x 2π e   (3.6) 
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In order to analyze the feature space defined by the probability density 
function f, the maxima of this function must be identified. The problem is reduced to 
finding the zeroes of the first derivative (one-dimensional case) or gradient (multi-
dimensional case) of the pdf. The mean shift algorithm is able to identify the zeroes 
of the first derivative/gradient of the pdf, without the need for probability density 
estimation. 

3.1.2. Estimating the gradient of the probability density function 

For multidimensional kernels having the same bandwidth, h, for all 
dimensions, the gradient of the pdf can be expressed as: 
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In equation (3.7) the profile function g(x) is defined as ( ) ( )′= − g x k x . The 

profile g can be used to create the kernel ( )  =  
 

2
g,dG x c g x , if the condition 
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is fulfilled. All the profiles used in practical applications fulfill the condition 
(3.8). The K kernel is often referenced as the shadow of the G kernel [42]. The 
Epanechnikov kernel is the shadow of the uniform kernel, while the normal kernel 
and its shadow have the same shape. 

The F1 term in equation (3.7) is proportional to the probability density at x 
estimated by using the kernel G, while the F2 term represents the mean shift from 
the center of the kernel window (the weighted mean is calculated using the weights 
given by the kernel G). The mean shift can be expressed as [42]: 
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f x1ms x h c .
2 f x

  (3.9) 

3.1.3. The mean shift algorithm 

The local mean obtained using the weights provided by the kernel G is 
shifted towards the area of the feature space which contains most of the points. It 
can be observed in equation (3.9) that the mean shift vector and the estimated 
gradient have the same direction, always pointing towards the location in which the 
probability density increases the most. Therefore, based on the mean shift vectors, 
it is possible to define a trajectory to a local maximum of the estimated probability 
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density. The maxima of the estimated probability density are stationary points and 
the mean shift algorithm allows to find them by iterating the following 2 steps until 
convergence is reached: 

• calculate the mean shift vector at the current point, ( )h,Gms x , 

• translate the kernel with ( )h,Gms x . 

It has been proven [42] that it suffices to use a kernel with a convex and 
monotonically decreasing profile, in order to guarantee the convergence of the 
algorithm. If the 2 conditions are fulfilled, both the trajectory and the estimated pdf 
are convergent, and the estimated pdf is also a monotonically increasing function.  

For other gradient based algorithms, the shift in the direction of the local 
gradient does not ensure the convergence, unless infinitesimal steps are used and 
therefore the step size choice is a problem. The mean shift algorithm can guarantee 
the convergence under the specified conditions, based on the adaptively calculated 
value of the mean shift vector’s magnitude, which involves using an adaptive step 
size (the step size decreases as the algorithm gets closer to the searched maxima). 

The number of steps required for convergence is related to the specific 
kernel G used within the algorithm. The uniform kernel allows the algorithm to 
converge within a finite number of steps, while the other kernels (which give 
different weights to the points according to the distance from the window center) 
allow the algorithm to converge when the number of steps tends to infinity. This is 
why, when the later kernel types are to be used in practical applications, a lower 
limit on the value of the mean shift has to be imposed, in order to avoid reiterating 
the algorithm infinitely.  

The use of the normal kernel within the algorithm ensures a smooth 
trajectory (the angle between two consecutive mean shift vectors is always smaller 
than 90 degrees) towards the stationary point [42] and the results obtained using 
this kernel are superior to those obtained with a uniform kernel. Nevertheless, the 
large number of steps required for convergence limits the use of the normal kernel 
in practical application, where the uniform kernel is often preferred. 

The algorithm is attracted by the local maxima, given that the local maxima 
are unique stationary points within a small neighborhood (within a small sphere). 
Once the algorithm reaches a point situated close enough to a local maximum, it will 
converge towards it. The reunion of all the points that converge toward the same 
local maximum (mode) is referred to as the basin of attraction of that local 
maximum. 

If the local maxima of the probability density are to be found, after the 
identification of the stationary points using the mean shift algorithm, the stationary 
points have to be filtered in order to keep only the local maxima. In order to test a 
stationary point to establish whether it is or not a local maximum, the stationary 
point is perturbed by a small magnitude noise vector. If the algorithm applied 
starting from the perturbed point converges again (up to a given tolerance) towards 
the same point, that point is a local maximum. 

3.1.4. The mean shift algorithm in video tracking 

3.1.4.1. Target representation 
In order to perform the tracking of an object within a video sequence, a set 

of representative features – that allow for the object to be identified – has to be 
chosen. These features define the so called feature space. The reference model used 
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for the object is represented by the probability density function within the chosen 
feature space. 

The target model with the probability density function q is assumed to be 
centered on the spatial position 0 of the initial frame. In the next frame the tracked 
object slightly changes its spatial position and, in order to identify the new position 
of the object, the tracking algorithm needs to select one of the multiple candidate 
locations. The probability density function evaluated around the candidate position y 
is p(y). The chosen candidate location is the one for which the probability density 
function p(y) is closest to the probability density function q of the model. 

Both probability density functions, q and p(y), need to be estimated based 
on the data available in the 2 frames. The robustness of the tracking algorithm can 
be increased if non-parametric probability density estimation is used. Theoretically, 
any of the known non-parametric probability density estimators can be used: 
histograms, averaged shifted histograms, kernel estimators etc. The best 
estimations are obtained with kernel based estimators [8], but their downside is the 
high computational power required. The histogram is one of the most basic 
estimators of the probability density, but has the advantage of low computational 
power requirements, which recommend it for tracking applications that need to run 
in real-time [34]. 

In order to assess the similarity between the probability density function for 
the candidate location, p(y), and the probability density function of the model, q, a 
similarity function, ρ(y), is used. The local maxima of the similarity function 
correspond to the presence of objects similar to the target in the second frame. 

If only spectral data are used for target representation, completely 
discarding the spatial information, the obtained similarity function may have large 
variations for locations that are relatively close to each other in the analyzed scene. 
Under such circumstances, it is difficult to apply gradient based methods in order to 
identify the local maxima, while the alternate option – the exhaustive search – is 
not appropriate for real-time applications. 

The use of spatial information, in addition to the spectral data, for 
representing the target in the feature space, may lead to a smooth characteristic of 
the similarity function. The spatial information can be taken into account in the 
estimation of the probability density function by weighting the pixels within the 
selected image region, according to their distance from the center of the region 
[34]. By masking the object with a spatially isotropic kernel, the weights of the 
pixels around the center of the analyzed region can be increased, to the detriment 
of the pixels situated near the borders of the region. The pixels situated near the 
borders receive lower weights, as they are more likely to suffer from interferences 
from the background or occlusions from other objects in the scene. Usually, in order 
to increase the robustness of the estimation, a kernel with a convex and 
monotonously decreasing profile is used. 

The region T, chosen as model, is usually an ellipse-shaped region of the 
image, but the effect of different dimensions in different directions can be removed 
by normalizing the ellipse to a unity circle [34]. Considering the chosen region as 
being centered on the spatial position 0, and the normalized positions of the pixels 

within the region, { }∗
=

i i 1 n
x



, a function ( )∗ib x  can be defined, in order to associate 

to each pixel the corresponding bin in a m-bin histogram. Using these notations and 
the variable u for iterating through the bins of the histogram, the estimate of the 
probability density function obtained using the histogram is: 
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  ( )( )∗ ∗

∗=
=

 
= − = =        

 

∑
∑

n 2
i iu 2n

i 1 ii 1

1q C k x δ b x u , u 1 m,C .
k x

   (3.10) 

In a similar manner, the probability density for a candidate region in the 
second frame, centered at the spatial position y and containing the pixels at the 
positions { } = hi i 1 nx



, is: 

 ( ) ( )( )
=

=

 − = − = =
   −   

 
 

∑
∑

h

h

n 2
i

h i hu n 2
i 1 i

i 1

y x 1p y C k δ b x u ,  u 1 m, C .
h y xk

h

  (3.11) 

In equations (3.10) and (3.11), C and Ch represent normalization constants 
leading to a unitary value of the sum of elements in all the bins of the histogram 
(they guarantee that the probability density function integrates to 1). In (3.11), h is 
a scale factor which determines the number of pixels of the candidate region. 
Considering that, for a given candidate region, the center of the region, y, is one of 
its pixels, the constant Ch does not practically depend on y. 

3.1.4.2. The similarity function 
The similarity function, ρ, inherits the characteristics of the kernel profile 

used for spatial weighting. Therefore a kernel with a differentiable profile leads to a 
differentiable similarity function, for which finding the local maxima can be achieved 
through fast kernel-based methods.  

There are many options available for measuring the similarity degree 
between 2 probability densities: Minkovski distances in Lp, weighted mean variance, 
Kolmogorov-Smirnov distance, χ2 statistics, Kullback-Leibler distance [43], 
distances based on the Bhattacharyya coefficient [34] etc. Each of these distances 
proved to offer some degree of efficiency for various computer vision applications 
[34], [43], but for video tracking applications good results were obtained especially 
when using distances based on the Bhattacharyya coefficient [34]. 

 The Bhattacharyya coefficient between the probability densities defined in 
equations (3.10) and (3.11) is defined as: 

  ( )  ( ) ( )  ( )
=

≡ = ∑
m

u u
u 1

ρ y ρ p y ,q p y q .   (3.12) 

From a geometrical point of view, the coefficient in equation (3.12) can be 
considered as the cosine of the angle between the m-dimensional vectors 

 ( )
T

u
u 1 m

p y
=

 
 
 



 and 

T
u

u 1 m
q

=

  
 



, while from a statistical point of view it 

represents the correlation between the two vectors. 
Based on the Bhattacharyya coefficient, a statistical measure can be defined 

for the distance between the 2 estimated probability densities as: 

 ( )  ( )d y 1 ρ y .= −   (3.13) 
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The distance defined in (3.13) inherits the advantages of the Bhattacharyya 
coefficient (i.e. geometrical interpretation and some degree of scale invariance – 
limited by quantization effects), but also comes with an additional advantage by 
imposing a metric structure. 

3.1.4.3. Target localization 
The location of the tracked object in the second frame is assumed to be the 

one for which the distance in (3.13) is minimum. The minimization of the distance is 
equivalent to the maximization of the Bhattacharyya coefficient. As spatial 
information is taken into account, both for the target model and target candidate 
representation, the Bhattacharyya coefficient (and consequently the distance based 
on it) is a smooth function, allowing the use of gradient based methods like the 
mean shift algorithm for finding the maxima. 

For the current frame, the search starts at the position  0y , which is the 
position of the target in the previous frame. The Bhattacharyya coefficient can be 
approximated using the Taylor series decomposition around  ( )0up y : 

 

 ( )  ( )


 ( ) ( )
hnm m

uh i
i i iu 0 u

u 0u 1 i 1 u 1

qC y x1ρ y p y q w k , w δ b x u .
2 2 h p y= = =

 −
 ≈ + = −   

 
∑ ∑ ∑  (3.14) 

The maximization of the Bhattacharyya coefficient reduces to the 
maximization of the second term in equation (3.14), as the first term does not 
depend on y. The second term in equation (3.14) is actually an estimate of the 
probability density around the position y in the current frame, using iw  for 
weighting the data. 

In order to find the maximum of this function around  0y , the mean shift 

algorithm is applied by recursively shifting the kernel from the position  0y  to the 

position  1y , which is calculated using: 

 





( ) ( )

h

h

2
n i0

i ii 1

1 2
n i0

ii 1

y x
x w g

h
y ,    g x k x .

y x
w g

h

=

=

 
− 

 
 
  ′= = −
 

− 
 
 
 

∑

∑
  (3.15) 

The block diagram of the algorithm is presented in Fig. 3.2. Since the 
starting point of the search is the position  0y , first the estimate of the probability 
density and the Bhattacharyya coefficient are calculated around this position. Next, 
the weights { }

hi i 1 nw =   are calculated, then, in the third step, the new location  1y  

is determined. In the fourth step, the probability density estimation is calculated 
and the Bhattacharyya coefficient around the new location is evaluated. Next, the 
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estimated values of the coefficient at the new position  1y  and at the initial position 


0y  are compared.  
While the coefficient at the new position is smaller than the one at the initial 

position, the new position is updated recursively to the position situated at half the 
distance between the previous position and the initial one, followed by re-estimating 
the Bhattacharyya coefficient around the updated location. After exiting the above 
described loop, in the final step a condition for terminating the algorithm is checked, 



0   Target position y    =

 ( ){ }
 ( )

u 0 u 1 m

0

   Calculate p y

    Evaluate ρ y
= 

{ }
hi i 1 n   Calculate the weights: w = …



1   Calculate y    

 ( )  ( )1 0   ρ y <ρ y    

 ( ){ }
 ( )

u 1 u 1 m

1

   Calculate p y    

    Evaluate ρ y
= 



 

 ( )
0 1

1

1

y y
   y    

2
    Evaluate ρ y

+
=

YES

 

1 0   y y <ε   −

STOP

 

0 1   y y    =

NO

YES

NO

 
Fig. 3.2. Target localization using the mean shift algorithm. 
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and, if not fulfilled, the initial position  0y  is replaced with the current new position 


1y  and the algorithm re-iterates starting with step 2. 
The threshold ε used in the final step of the algorithm is introduced in order 

to allow the termination of the algorithm when the two locations (new and old) are 
within the same pixel area. An upper limit can also be imposed on the number of 
iterations, taking into account that the average number of iterations required for 
convergence is 4 [34]. 

Possible target scale changes are dealt with by running the algorithm 
multiple times with different bandwidths of the kernel. The use of 3 bandwidths h, 
h h− ∆  and h h+ ∆ with h 0.1 h∆ = ⋅  is sufficient for most practical applications. The 
kernel bandwidth which produces the highest value for the Bhattacharyya coefficient 
is selected, but, in order to avoid hypersensitivity to scale changes, the new value of 
the bandwidth is determined as a weighted average between the old value and the 
new one, with a higher weight for the older value. 

The fifth step of the algorithm seldom improves the results (in 
approximately 1‰ of the situations) and can be skipped in order to save 
computational time and resources. Additional computational power savings can be 
obtained by using the Epanechnikov kernel for calculating the new position in the 
third step of the algorithm, considering that the derivative of the kernel profile in 
this case is a constant, thus reducing the computation of the new location to a 
weighted average [34]. 

The neighborhood of the initial location in which the algorithm may find the 
new location is known as the operational basin of attraction. The size of the 
operational basin of attraction has to be at least equal to that of the target model. 
In order to have exactly one maximum of the Bhattacharyya coefficient within the 
operational basin of attraction, the target representation needs to accurately 
describe the tracked object.  

 

3.2. Filtering and data association 

The filtering and data association process relies on the discrete-time 
modeling of dynamic systems through the state-space [34], [44]. The dynamic 
analysis and estimation of the states of a moving target rely on 2 basic models: 

• the system model, also known as the dynamic model and 
• the measurement model, also known as the observations model. 

The system model describes the target evolution in time through the state 

sequence { }k kx ∈} . Each state kx  is a (possibly non-linear) function depending on 

the previous state k 1x −   and the noise k 1v −  that affects the previous state, which 

belongs to the i.i.d. sequence 
{ }k kv ∈} : 

 ( )k k k 1 k 1x f x ,v .− −=   (3.16) 

The measurement model connects the sequence of measurement results, 
{ }k kz ∈}   and the states sequence. The model is described by the equation: 

 ( )k k k , kz h x n .=   (3.17) 
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Similar to the system model, ( )kh  is a (possibly non-linear) function, while 

{ }k kn ∈}  is a noise sequence.   

The final goal of the filtering and data association process for tracking is to 
recursively estimate the state kx  using the measurement sequence available at the 
time moment k, 1:kz . This is equivalent to the process of building the pdf 

( )k 1:kp x | z . Theoretically, the optimal solution to this problem is offered by the 
Bayesian filter with two recursive steps: prediction and update. 

In the prediction step, the a priori pdf for the current moment (t = k) is 
determined, using the equation of the dynamic model (3.16) and the pdf of the 
state calculated at the previous time moment (t = k – 1), ( )k 1 1:k 1p x | z− − . The a 
priori probability density is calculated according to the Chapman-Kolmogorov 
equation: 

 ( ) ( ) ( )k 1:k 1 k k 1 k 1 1:k 1 k 1p x | z p x | x p x | z dx .− − − − −= ∫   (3.18) 

In the update step, the a posteriori pdf ( )k 1:kp x | z  is calculated taking into 
account the newly obtained measurement result at time moment k and the 
probability, ( )k kp z | x , to observe the measurement result kz  given the system 

state kx .  The Bayes rule is applied in this step for updating the a posteriori 
probability density using the a priori probability density of the state kx  – obtained 
in the prediction step and the result of the most recent measurement kz : 

 
( ) ( ) ( )

( )
( ) ( ) ( )

k k k 1:k 1
k 1:k

k 1:k 1

k 1:k 1 k k k 1:k 1 k

p z | x p x | z
p x | z ,

p z | z

p z | z p z | x p x | z dx .

−

−

− −

=

= ∫
  (3.19) 

For the particular case when both the kf  and kh  functions are linear and 

the noise sequences { }kv  and { }kn  are Gaussians, the optimal solution is given by 
the Kalman filter and the resulting a posteriori probability density is also Gaussian. 
If the functions kf  and kh  are non-linear, the EKF (Extended Kalman Filter) can be 
used to obtain a normal a posteriori probability density, after linearizing the 2 
functions. Other available options for approximating the optimal solution are the 
UKF (Unscented Kalman Filter) [45], the approximate grid based methods and the 
particle filters [44]. 

3.2.1. Kalman filters 

The use of Kalman filters leads to an optimal solution, at the cost of 
imposing restrictions both on the functions that define the dynamic and the 
observations models and on the 2 noise sequences. The resulting a posteriori pdf is 
Gaussian in this case and is characterized by the mean and the covariance. 

If the functions that describe the 2 models are linear, they can be described 
by the following equations: 

 k k k 1 k 1x F x v− −= +   (3.20) 
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 k k k kz H x n= +    (3.21) 

kF  and kH  are the matrices that define the 2 linear functions. For 

simplification, the noise sequences { }k 1v −  and { }kn  are assumed to be statistically 

independent, having zero mean and covariances k 1Q −  and kR . The recursive 
relations that define the Kalman filter can be written as [44]: 

 ( ) ( )k 1 1:k 1 k 1 k 1|k 1 k 1|k 1p x | z N x ;m ,P− − − − − − −=   (3.22) 

 
( ) ( )k 1:k 1 k k|k 1 k|k 1

T
k|k 1 k k 1|k 1 k|k 1 k 1 k k 1|k 1 k

p x | z N x ;m ,P ,

       m F m ,  P Q F P F

− − −

− − − − − − −

=

= = +
  (3.23) 

 

( ) ( )
( )

( )

k 1:k k k|k k|k

k|k k|k 1 k k k k|k 1
T

k|k k|k 1 k k k|k 1 k
1T T

k k|k 1 k k|k 1 kk k

p x | z N x ;m ,P ,

       m m K z H m ,

       P P K H P F ,

       K P H H P H R

− −

− −

−
− −

=

= + −

= −

= +

  (3.24) 

In equations (3.22), (3.23) and (3.24), ( )N x;m,P  refers to a normal 

distribution with mean m, covariance P and argument x, while the term kK  is 
known as the Kalman gain. 

3.2.2. Particle filters 

The most general class of filters used in the filtering and data association 
process is represented by the particle filters. Particle filters rely on Monte Carlo 
methods. They impose no restrictions on the functions kf  and kh  and on the two 

noise sequences { }kv  and { }kn . In computer vision, the particle filters were 
introduced under the name of ConDensation (Conditional Density Propagation) 
algorithm by Isard and Blake [39]. The basic algorithm is known under the name of 
SIS (Sequential Importance Sampling) and many other versions are derived from it: 
SIR (Sampling Importance Resampling), ASIR (Auxiliary Sample Importance 
Resampling) or the RPF (Regularized Particle Filter). 

The SIS algorithm is a method of implementing the recursive Bayesian filter 
through Monte Carlo simulations. The a posteriori pdf that is to be determined is 
represented through a set of random samples, each sample having an associated 
weight. Estimates are calculated using these samples and their corresponding 
weights. The higher the number of available samples, the better this method tends 
to approximate the optimal Bayesian estimate. Considering the set of samples 

(particles) { }
s

i
0:k i 1:N

x
=

and the corresponding weights { }
s

i
k i 1:N

w
=

at the time 

moment t = k, the a posteriori probability can be expressed as a weighted average 
of the sN  samples: 
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 ( ) ( )i i
0:k 1:k 0:kk 0:kp x | z w δ x x .≈ −∑   (3.25) 

As the samples cannot be taken from the p() density, they are obtained 
from a different density, q(), known as importance density, which can be chosen 
freely. The desired pdf can still be determined as a weighted average of the samples 
obtained this way, if the weights are chosen so as: 

 
( )

( )
i

1:k0:ki
k i

1:k0:k

~ p x | z
w

q x | z
∝   (3.26) 

If q() can be factorized as: 
 ( ) ( ) ( )0:k 1:k 0:k 0:k 1 1:k 0:k 1 1:k 1q x | z q x | x , z q x | z ,− − −= ⋅   (3.27) 

The samples at time moment k can be obtained based on the samples at the 

previous time moment, k – 1, by adding the new state i
kx . The weights at time 

moment k can be calculated recursively, based on the weights at the previous time 
moment. For the simplified case when the state at time moment k depends only on 
the previous state (not on the entire trajectory), the current weights can be 
determined using the equation [44]: 

 
( )i i i

k k k k 1i i
k k 1 i i

kk k 1

p z | x p(x | x )
w w .

q(x | x , z )
−

−
−

=   (3.28) 

The a posteriori pdf can be approximated as: 

 ( ) ( )
sN

i i
k 1:k kk k

i 1
p x | z w δ x x .

=

≈ −∑   (3.29) 

A known problem for this algorithm is the so-called degeneration process: 
after a few iterations most particles, except for one, will have the weights almost 
zero. This means that all calculations performed for the particles with small weights 
will have negligible effects on the final result. The effective size of the sample set 
(which is always lower or equal to the size of the sample set) is a measure of the 
degree of degeneration of the algorithm and can be estimated as: 

 

( )
k s

eff N 2i
k

i 1

1N .

w
=

=

∑
  (3.30) 

Small values of the estimated effective size indicate an advanced degree of 
degeneration. The use of a very large sample set may diminish the effects of 
degeneration, but this solution is not appropriate for practical applications, as it 
would drastically increase the computational power requirements. In practical 
applications, the effects of degeneration are limited through an adequate choice for 
the q() function and through resampling. The optimal importance density function, 
q(), is [44]: 
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 ( ) ( )k k 1 k k k 1 koptq x | x , z p x | x , z .− −=   (3.31) 

The optimal importance density in (3.31) can be used only in isolated 
situations. As an alternative, the a priori pdf, ( )k k 1p x | x −  , can be used, with the 
drawback of ignoring the measurement result. Resampling is based on the idea of 
replacing the sample set and the corresponding weights when a significant 
degeneration degree is detected (i.e.  keffN in equation (3.30) falls below a given 
threshold). The new sample set and weights are more appropriate for the calculation 
of the a posteriori pdf. The resampling removes particles with small weights and 
generates new particles based on those with larger weights, which leads to another 
problem, known as impoverishment of the data set or loss of diversity. If the 
process noise, { }k 1v − , is small, it is possible that (after a reduced number of 
resampling iterations) all the remaining particles will be derived from the same 
initial particle. 

There are multiple types of particle filters, each of them being adapted, from 
the performance point of view, for a specific application domain. When designing a 
particle filter for a given application, the most important aspect is to choose an 
appropriate importance density function, as any refinements in the algorithm rely on 
the chosen importance function [44]. 

3.3. Hand tracking solutions 

The tracking of hands and/or fingers has been extensively studied, 
considering its importance in applications like human computer interfaces [46], 
augmented reality [47], sign language recognition [48], handwriting recognition 
systems [49], etc. 

Hand and finger tracking methods can be classified as model based and view 
based methods. The model based methods [50], [51] use articulated models of the 
hand and analysis by synthesis allowing for a very detailed characterization of the 
hand posture and fingers pose. These methods achieve a good robustness to 
disturbing factors like camouflage and partial occlusions, but their practical usage is 
limited due to the high computational power and expensive equipment 
requirements. View based methods [52], [53] rely on the visual appearance of the 
hand in image sequences and require less computational power than the model 
based ones, allowing for real-time implementation even with cheaper hardware 
equipment. However, the methods in this category are able to provide only a global, 
less detailed characterization of the hand posture and fingers pose which limits the 
possible applications to those which do not need details that are not available. 

Recently, many successful solutions to the hand tracking problem rely on 
active systems like Kinect [54] or time-of-flight cameras [55]. These approaches 
take advantage of the depth information provided by the special devices, but their 
application range is also limited due to the current unavailability of the active 
systems in some scenarios. 

Hand tracking performed using a single camera is still attracting for 
researchers in the field of vision based human computer interaction [46], [56] given 
the current ubiquity of webcams which enable a potential development of 
applications based on this type of tracking to a wide variety of devices, including the 
mobile ones. 
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Human body parts tracking based on a single feature, like in [22], is not 
robust, as in real-life situations the feature may become unreliable. Increased 
robustness can be achieved when multiple features are used. In [53] Flocks of 
Features were used for hand tracking with significant performance improvement 
compared to [22]. Further performance improvements were reported in [57], based 
on velocity-weighted features and color cue. 

Skin color is widely used as a feature for hand tracking. Many skin detection 
algorithms are available in the literature, using various skin classification strategies 
in a wide variety of color spaces. [58] contains a good survey on the performances 
of skin color classification methods in different color spaces.  

Video sequences may suffer of motion blur especially when acquired with 
cheap webcams and under poor lighting conditions with fast moving targets, but few 
authors analyze the hand tracking performance in such conditions. In [59] blurred 
target templates were used together with an SVM classifier to improve the 
performances of a mean-shift tracker in motion blurred sequences, at the cost of 
increased computational complexity. Good results in tracking blurred targets is also 
reported in [60] where a unified sparse framework is used to deal with both, the 
tracking and motion from blur, problems. 

Line strip features extracted by specific processing of low level features were 
used in different formats for finger detection and tracking in [49] and [2]. 

3.4. Conclusions  

There are 2 main categories of tracking methods: deterministic – with mean 
shift as main representative algorithm – and stochastic – best represented by 
particle filters. Each of the 2 categories has advantages and disadvantages. 

Particle filters maintain multiple hypotheses simultaneously and use a 
stochastic motion model for the prediction of the new position of the tracked object. 
Algorithms from this category have better performance in following the target 
through cluttered environments and are able to recover after errors or temporary 
target confusion. The main disadvantage of these algorithms is represented by the 
high computational power requirements [41]. 

The mean shift algorithm and other algorithms related to it are able to track 
the object using a single hypothesis, requiring significantly less computational 
power. The main disadvantage in this case is that the algorithm is not able to 
recover from errors – once the algorithm reaches the basin of attraction of another 
local maximum, it will converge to the new maximum (which does not represent the 
target object). 

The Kalman filter was used together with the mean shift algorithm [34] in 
order to provide a position prediction. Hybrid algorithms – like the Mean Shift 
(Embedded) Particle Filter [21], [41] – were also developed, combining the 
advantages of mean shift and particle filters. The hybrid algorithm achieves good 
tracking performance in cluttered environments and reduces the computational 
effort required for each frame by using a reduced number of particles. Though the 
hybrid algorithm, once implemented, allows only for minor variations of the target 
model, extensions are available in order to allow an adaptive target model, at the 
cost of increased computational power requirements. 
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4. ROBUST INTEGRATION OF MULTIPLE 
FEATURES FOR HAND/FINGER TRACKING 

The tracking of human body parts represents one of the most challenging 
problems in the implementation of a gesture-based human computer interaction 
(HCI) system. Hand and finger tracking represent important parts of gesture-based 
user interfaces. Tracking algorithms which rely on a single feature may have good 
performance in severely constrained environments, but often lose the target when 
the tracked feature becomes unreliable. Increased tracking robustness can be 
achieved when multiple features are used. Features which can help to distinguish 
the target object from other objects are necessary, both during tracker initialization 
and during the actual tracking process. 

Fig. 4.1 presents the process of tracking human body parts as a link 
between the low level image processing layers and the high level gesture 

Image preprocessing &
Feature extraction

Image 
sequence

Finger 
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Tracking 
initialization

Target 
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Tracker guiding & 
Trajectory recording

TRACKING

Low-level 
features

Trajectory 
Data
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Fig. 4.1. The main processing stages of a vision-based gesture recognition  

system. 
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recognition layers, within the block diagram of a dynamic gesture recognition 
system. In a vision-based dynamic gesture recognition system, the tracking part is 
responsible with the processing of the low-level feature data, converting them to 
trajectories of the target. The trajectory data obtained by the tracking algorithm are 
then passed to the gesture recognition layers for further processing. 

The next section discusses the feature selection process in the context of 
hand/finger tracking. 

The problem of tracking initialization is presented in section 4.2, as well as a 
solution I have proposed in paper [1]. 

Sections 4.3, 4.4 and 4.5 present a method of integrating information from 
multiple features for robust tracking of the finger in challenging situations. The 
tracking method, presented initially in papers [3] and [4], includes multiple 
processing layers which are applied successively to the data. Section 4.3 focuses on 
the processing stages that lead to finger detection, then section 4.4 describes the 
processing steps required for target identification and validation. Section 4.5 
presents the high-level processing layers, responsible for the tracker guiding and 
trajectory recording. 

The last sections of this chapter analyze the performance of the tracking 
algorithm described in sections 4.3 – 4.5. 

4.1. Features used in hand/finger tracking 

The success of a tracking algorithm is strongly influenced by the features 
used for identifying and tracking the target. 

Most early tracking algorithms rely on a single feature for tracking the 
target. In hand/finger tracking, the most commonly used low-level features are 
color, contours, foreground and motion. 

In many situations the object to track is a foreground object; therefore, an 
accurate background subtraction algorithm can significantly reduce the amount of 
data to process for a tracking algorithm. 

Trackers that rely on a single feature are likely to lose the target when that 
feature becomes unreliable. The use of multiple features leads to an increase in 
robustness. Both the tracking algorithm proposed in [3] and [4] and the tracking 
initialization method proposed in [1] rely on multiple characteristics (features) of the 
finger: foreground object, color, shape, proportionality.  

Color segmentation and background subtraction are used as preprocessing 
steps, providing the low level input data for the detection and tracking algorithms. 
As the finger to track is a foreground object, background subtraction is used first to 
separate foreground objects from the background. Although this step can 
significantly reduce the search area and the data to process, it is not sufficient to 
uniquely identify the finger, as in most situations the finger is not the only 
foreground object in the image. The next feature that is used to identify the finger is 
the color (skin color). Background subtraction and the removal of non-skin colored 
foreground objects significantly reduce the data for further processing. Using the 
finger size information available from the previous frame, finger features are 
extracted, leading to a sparse representation of data through line strips. Shape and 
proportionality criteria are then applied on the remaining data, in order to identify 
the line strips that belong to the finger. The shape and proportionality are assessed 
within the tracking algorithm. 
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4.1.1. Color 

In image and video processing applications, color is an essential 
characteristic of objects. The frames obtained from the camera are represented 
based on the Red, Green, Blue (RGB) color space. 

RGB is a device specific color space, as it was designed for CRT displays. 
RGB uses additive color mixing, which describes what kind of light must be emitted 
in order to produce a given color, starting from complete darkness. CMY (Cyan, 
Magenta, Yellow) is another device specific color space, designed for printers and 
uses subtractive color mixing (i.e. it describes what kind of inks must be applied on 
the paper in order to obtain a given color starting from white). 

In real situations, lighting is not constant and a multitude of factors can 
cause variations in lighting (e.g. shadows from other objects, self-shadowing, 
switching between sunlight and overcast, artificial light etc.). The same object, 
exposed to different lighting conditions, appears to have different colors. Since the 
color of the object is used for tracking, the separation of brightness from 
chrominance is essential in order to have at least one component of the color model 
invariant to lighting changes. The RGB color space is not well suited for tracking, as 
it does not isolate the brightness and chrominance information (all the three 
components vary with illumination changes). A lot of research has been conducted 
in order to define lighting invariant color functions. The most widely used functions 
are the chromatic color models: normalized RGB, YUV, YCrCb, HSV and CIELAB 
[61]. 

CIE (fr. Commission Internationale de l'Eclairage) defined in 1931 the first 
color space based on measurements of human color perception, CIEXYZ. CIEXYZ is 
the basis for almost all other color spaces. The same CIE defined the CIELUV color 
space as a modification of CIEXYZ, in order to display color differences more 
conveniently. The necessity of a more perceptual linear color space led in 1976 to 
the definition of the CIELAB color space. In CIELAB, the three coordinates represent 
the lightness of the color (L*), its position between magenta and green (a*) and its 
position between yellow and blue (b*). 

YUV and YCrCb are other color spaces, which use one lightness and two 
chrominance coordinates. YUV is used in PAL TV systems, while YCrCb is used in the 
very popular image and video compression standards JPEG and MPEG.  

The HSV (Hue, Saturation, Value) color space attempts to describe the 
perceptual color relationships more accurately than the RGB, while preserving a low 
computational complexity. The three coordinates represent the color (hue), color’s 
concentration (saturation) and brightness (value). A conic representation of the HSV 
space is shown in Fig. 4.2. Hue is defined as an angle between 0° and 360°, while 
saturation and value range each from 0 to 1. 

The relations (4.1), (4.2) and (4.3) define the transformation from RGB to 
HSV. 

 

 

0,  if MAX MIN
G B0 60 ,  if R MAX MIN

MAX MIN
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The HSV color space is usually preferred in human skin tracking applications 
[22], because hue is less sensitive to different skin colors and because it is more 
robust to illumination changes. It was observed [22] that the hue of human skin is 
the same for all races, except the albinos. Different races’ skins differ only in color 
saturation (i.e. dark-skinned people have greater saturation, while light-skinned 
people have lower saturation).  

It must be noted that for all the lighting invariant color functions mentioned 
above, the lighting invariance is guaranteed only under some particular 
assumptions. Violating these assumptions can severely influence the results of color 
analysis methods which use these color spaces. 

As shown in Fig. 4.2, HSV assumes that black is represented as R = G = B = 
0, and all colors meet each other at this point at reduced brightness. Another 
assumption of HSV is correct white balance (i.e. all unsaturated colors – grays – 
have R = G = B). Violation of these assumptions may be caused by incorrect white 
balance, non-ideal camera sensitivity and heterogeneous lighting [61]. 

Theoretically, hue is invariant with illumination changes, but in the case of 
pixels with low brightness, the R, G and B values obtained from real cameras are 
low and severely affected by the camera noise. Transforming these values to HSV 
leads to low values of V and S, and noisy H, as shown in Fig. 4.2. The hue may also 
become noisy when the saturation is low, regardless of V. Depending on the lighting 
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Fig. 4.2. Conic representation of the HSV color space. 
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source, brightly illuminated objects of light colors (i.e. high V) can get a hue close to 
that of the human skin. In order to use hue for tracking, all the pixels which may 
produce a confusing hue for the tracker must be removed from analysis. 

Many skin detection algorithms are available in literature, using various skin 
classification strategies in a wide variety of color spaces. Most skin color 
segmentation methods are influenced by the choice of color space. A good survey 
on skin color segmentation methods is presented in [58]. The most widely used skin 
color classification methods are: classification based on direct color space 
thresholding, classification based on histogram models, Gaussian classification, 
Elliptical boundary model, MLP (Multi-Layer Perceptron), SOM (Self Organizing Map), 
Maximum entropy based classification and classification using Bayesian networks. 

Direct color space thresholding methods can achieve good skin detection 
rates, at the expense of high false positive rates. The methods relying on histogram 
models require very large training data sets in order to achieve good results and 
also have high storage space requirements. The classification methods based on 
Gaussian models can lead to good results using less training data than the 
histogram based methods, but their initialization and iterative training are still 
computationally intensive. The “elliptical boundary model” has similar performance 
to Gaussian based models, but can only be used for binary classification. Neural 
network based methods and Bayesian network based methods have similar results 
and both outperform other skin classifiers, but they require extensive training and 
are computationally intensive. 

In the tracking and tracking initialization algorithms proposed in [1], [3] and 
[4], I used explicit threshold based methods for skin color segmentation in the RGB 
and HSV color spaces, considering the need for real-time execution, not only for 
skin segmentation, but also for additional complex tasks, like tracking algorithm and 
gesture recognition. In the RGB color space, an enhanced version of the filtering 
approach proposed by Tomaz et al. in [62] is used, in order to exclude non skin-
colored pixels from further processing. Given the range 0,255    used for 
representing the R, G and B components, pixels which fulfill any of the following 
conditions are excluded from further processing:  

• (B>160) and (R<180) and (G<180) – too blue,  
• (G>160) and (R<180) and (B<180) – too green,  
• (G<30) and (R>150) and (B<30) – too red,  
• (R<100) and (G>100) and (B<100) – too dark,  
• (|R-B|<20) and (|R-G|<20) – near grey),  
• (G>200) – too green,  
• (R+G>400) – too yellow,  
• (G>150) and (B<90)} – yellow like (non-skin),  
• B/(R+G+B)>0.4 – too blue,  
• G/(R+G+B)>0.4 – too green,  
• R<100 and G∈(100,140) and B∈(110,160) – ocean 

Details on the thresholding applied in the HSV color space are provided in 
section 4.2.2. 

Direct threshold based methods have low computational requirements 
compared to other skin color segmentation methods. Despite the fact that they 
provide good true positive rates at the cost of high false positives, the threshold 
based methods are a good option when color is not the only feature taken into 
account in order to detect the target (i.e. hand/finger). The additional features can 
help in significantly reducing the false positive rate and lead to good results in 
target identification. 
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4.1.2. Background subtraction 

Background subtraction represents a widely used approach in computer 
vision applications for discriminating moving objects from the rest of the scene. 
Some of the most popular applications of background subtraction are: video 
surveillance, content based video coding, HCI, motion capture etc. Tracking 
algorithms can also take advantage of background subtraction’s results, given that 
the target is always a foreground object. Because of its wide range of applications, 
background subtraction attracted many researchers in the field of computer vision 
and – as a result – many background subtraction solutions emerged. Nevertheless, 
none of the available solutions is able to outperform the others from all points of 
view and for any application field. A short review of the main background 
subtraction algorithms can be found in [63], while a more recent and 
comprehensive survey on background subtraction is presented in [64]. Some of the 
most widely used background subtraction algorithms are: frame differencing, 
running Gaussian average, temporal median filter, Mixture of Gaussians, kernel 
density estimation, codebook, spatial co-occurrence of image variations etc. 

Frame differencing is the simplest method, where the background model is 
represented by a frame captured when no foreground objects are assumed to be 
present in the scene. The method is not computationally intensive, but neither is it 
robust, being able to provide good results only when all background pixels do not 
change over time (assumption which generally does not hold for real life scenarios). 

The running Gaussian average [65] models the background at each pixel 
position using a Gaussian pdf, with the mean and variance updated based on the 
last n values of the pixel. The computational complexity as well as the memory 
requirements remain low for this method, too. The running average used in 
updating the parameter of the background model increases the robustness of the 
algorithm compared to frame differencing, but the accuracy is relatively limited 
compared to other algorithms. 

The temporal median filter [66], [67] and [68] algorithms rely on using the 
median of the n temporal samples (or of a subset of them) instead of the mean. The 
median filter increases the robustness of background detection, compared to the 
algorithms relying on the temporal averaging of pixels, but requires large buffers to 
store the previous n values for all pixels. 

A very popular approach for modelling complex non-static backgrounds is 
the use of probabilistic parametric methods [69], [70] and [71]. GMMs (Gaussian 
Mixture Models) represent the background model for each pixel, using a weighted 
sum of Gaussian distributions in a color space. GMMs suffer trade-off problems. 
When few Gaussians are used, fast changing backgrounds cannot be modelled 
accurately, while a large number of Gaussians significantly increases the 
computational complexity of the background subtraction algorithm. Another trade-
off concerns the learning rate: quick rates are necessary to adapt to sudden 
changes in the background, but a too fast learning rate may lead to the inclusion of 
foreground pixels into the background model. 

Non-parametric models of background, using kernel based density 
estimation, were proposed in [72], [73] and [74], in order to try to overcome the 
drawbacks of the parametric models. The algorithms based on non-parametric 
models are able to adapt to sudden changes in the background and to detect 
foreground objects accurately. The memory and computational power requirements 
in this case are significant, especially for methods using the mean shift algorithm 
and for scenarios where long time periods are needed for sampling the background. 
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The codebook model [75] also makes no parametric assumptions on the 
background model and is able to model mixed backgrounds through the use of 
multiple codewords. The algorithm builds a background model from long term 
observations of the scene. The background model for each pixel is represented as a 
codebook containing one or more codewords. The number of codewords/codebook 
may vary from pixel to pixel. The detection consists in testing the input image 
against the background model with respect to color and brightness. Pixels are 
classified using a nearest neighbor method. If the pixel is within a chosen color 
range of a codeword and its brightness also lays within a given range around the 
brightness value corresponding to the same codeword, the pixel is classified as 
background, otherwise as foreground. The memory requirements are moderate 
while the computational complexity of the algorithm itself is low and the accuracy 
competes with GMM and kernel density estimation methods. A drawback of the 
algorithm is that it gives best results with a custom color space representation, thus 
requiring time consuming color space conversions. 

Some authors [76], [77] and [78] explored the idea of using the spatial co-
occurrence of pixels in addition to the temporal averaging. The methods in this 
category offer relatively good accuracy, having moderate computational complexity 
and memory requirements. 

Considering the level where the background model is created, background 
subtraction algorithms can also be classified as pixel-based or region-based 
background subtraction algorithms. Recently, hybrid solutions using hierarchical 
background models [79], [78] were also proposed, in order to combine the 
advantages of the two representations. 

For the background subtraction preprocessing steps of the algorithms 
proposed in papers [1], [3] and [4] I chose the codebook method [75], considering 
the availability of an implementation of this method in the OpenCV library and the 
satisfactory results it provides under normal conditions of illumination and 
illumination variations. 

4.2. Tracking initialization 

An important aspect concerning the practical applicability of vision-based 
gesture recognition systems and of video trackers, in general, is the initialization of 
the tracker. The initialization of the tracker is the process in which the tracker 
identifies for the first time the object to be tracked. The initialization can be 
implemented in various ways, depending on the nature of the target and the 
tracking principle. Considering the degree of involvement of a human operator, the 
tracker initialization can be classified as manual or automatic. 

In the field of video tracking, the researchers usually focus on the tracking 
algorithm and seldom pay attention to the initialization of the tracker. Many authors 
either choose to leave open the problem of tracker initialization, or use manual 
initialization. Nevertheless, for gesture recognition and HCI applications, the 
availability of a tracking initialization procedure, which produces repeatable results 
requiring no external operation, is important. 

In the case of manual initialization, a human supervisor needs to indicate 
the target object to the tracker (e.g. indicate using a pointing device). This type of 
initialization may be suitable in order to prove the functional principle of a tracker or 
gesture recognition system [6], [80], [81], but is generally not adequate for 
practical applications like gesture-based interfaces. 
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The automatic initialization does not require any intervention from a human 
supervisor. In this case, the system must be able to automatically identify the target 
and focus on it [82], [83] and [84]. This type of initialization is used especially in 
tracking algorithms that rely on the “tracking by detection” principle, where the 
automatic detection of target candidates in every frame represents the core of the 
tracking algorithm. 

In paper [1], I proposed a semi-automatic finger tracking initialization 
method for use in monocular vision environments, with protection against unwanted 
triggering of the tracking process. The initialization method was developed for the 
initialization of a finger (index) tracker used in dynamic gesture recognition. The 
proposed method automatically initializes the tracker only when the target 
hand/finger appears in a specific area of the image. The semi-automatic initialization 
solution was later used for the initialization of the hand/finger tracking method 
proposed in paper [3] and extended in paper [4]. 

I classified the method proposed in [1] as semi-automatic not because it 
would need some degree of intervention from a third party, but because it requires 
some degree of attention from the user who intends to use the gesture based 
interface (which relies on the finger tracking results). The user’s attention is 
necessary in order to avoid tracking the finger (and subsequently gesture 
recognition) when the user does not announce his interest in communicating 
through the gesture based interface. In a gesture based interface application, the 
goal is not to track any finger which appears in the scene and try to identify valid 
gestures from its movements, but to track the finger of a user who consciously tries 
to communicate through the gesture based interface. 

Apparently, a semi-automatic initialization is inferior to a completely 
automatic one – in many applications, a completely automatic initialization of the 
tracker is preferable to a semi-automatic one. However, automatic initialization 
requires more flexibility in hand detection (any hand should be detected anywhere 
within the visible scene), leaving more room for unintended gesture detection. The 
proposed method imposes constraints on the initialization in order to avoid 
accidental recognition of unintended gestures, by requiring the user to announce his 
intention to communicate through the gesture based interface. Since in the 
proposed approach initialization occurs only in the specified area and only if the 
hand is maintained in that area for a given (short) time interval, the probability of 
unintended tracker initialization is reduced (i.e. the tracker cannot be initialized 
when a user hand moves around the interest area if the user did not confirm his 
intention to access the interface). 

Another advantage of the constraints imposed for the semi-automatic 
initialization is that they allow a more reliable identification of the target, which 
makes it an attractive option not only for the particular case of dynamic gesture-
based interfaces, but also for the more general category of the semi-supervised 
trackers. Semi-supervised trackers learn the target model in the first frame, then, 
during the tracking process perform no (or insignificant) updates; therefore, it is 
important to have a reliable model of the target from the initialization phase. 

The following subsections provide a description of the hand/finger tracking 
initialization solution proposed in [1]. 

4.2.1. Conditions for hand/finger detection 

According to the constraints imposed, the tracker can only be initialized by 
the presence of a hand, in a specific position and in a specific area of the image. To 
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guide the user on the required hand pose and location, while waiting for the 
initialization of the tracker, a hand contour is displayed on a monitor, over the 
image captured by the camera used by the HCI, as shown in Fig. 4.3. 

The tracker for which the proposed method was developed is part of a 
dynamic gesture recognition system. Therefore, tracking should only start when a 
user wants to use the gesture based interface. When the tracker’s target is a hand 
or a finger, an object in a frame must simultaneously fulfill the following criteria, in 
order to trigger the initialization of the tracker: 

• foreground object 
• color (skin) 
• shape/pose 
• location within the image 

First of all, the target object (i.e. hand/finger) must be a foreground object. 
In fact, this is a general condition that can be applied for trackers of any type, as 
normally the target of a tracker is a foreground object. 

Another characteristic of the target is the uniform color (skin color).  
The first two criteria significantly reduce the data for processing, but a third 

criterion of shape/pose is required, in order to distinguish a hand/finger from other 
skin colored foreground objects. Also, the constraints on shape/pose together with 
those on location within the image help to avoid false triggering of the tracker 
initialization. The hand may have various appearances in a monocular vision frame. 
Accidental triggering of the tracker initialization must be avoided, because the user 
must consciously start to use the gesture based interface. 

4.2.2. The hand detection algorithm 

A preliminary processing of the video stream for the detection of the 
hand/finger is background subtraction. Background subtraction is an important step 
towards hand segmentation, resulting in considerable reduction of the processing 
data. In applications which use the assumption that the only foreground object in 
the scene is the hand to track, this step can directly locate the position of the hand. 
Such an assumption is generally not acceptable for practical situations and therefore 
additional steps are required in order to distinguish the hand/finger to track from 
other foreground objects. 

 
Fig. 4.3. Screen capture – user tries to initialize the tracking process. 
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The next step of processing implements the color criterion, which is applied 
to the foreground objects detected in the previous step. HSV color space is useful 
for identifying skin colored objects. Skin appears to have the same hue for all 
humans (except for albinos) [22]. Different races’ skin differs only in color 
saturation (i.e. dark-skinned people have greater saturation, while light-skinned 
people have lower saturation). Considering this property, a simple threshold based 
skin detector can be implemented, in order to distinguish between skin and non-skin 
foreground objects. Two auxiliary binary images are generated using thresholds in 
the 3 dimensions of the HSV color space: 

• an image of valid skin color pixels – in which the pixel positions, for which 
all the skin color criteria are fulfilled, are set to white and the remaining 
pixels are set to black and 

• an image of pixels which cannot be directly classified as skin or non-skin – 
in which the pixel positions for which the hue is not reliable are set to white 
and the remaining pixels are set to black. 
The values of S and V range between 0,255   , while H is circularly defined 

in the range 0,180   . A confidence interval in the H domain is defined 170,50   so 
that it covers the hue range for normal human skin color. Thresholds are also 
required in the S and V domains, in order to identify the pixels for which the hue is 
not reliable: 

• pixels with too low saturation, 
• pixels with too low brightness (value), 
• pixels with too high brightness. 

In the saturation domain, a single threshold (set to 30) is required, in order 
to identify the pixels with a too low saturation. A minimal (40) and a maximal (245) 
threshold are imposed in the value (brightness) domain.  

Pixels with a reliable hue, within the skin confidence interval, are considered 
skin colored pixels and marked correspondingly in the image of valid skin pixels. 
Pixels which do not fit the limitations in the saturation and value domains do not 
present a reliable hue. These pixels cannot be directly classified as skin or non-skin 
colored, based on their hue and therefore they are marked in a separate auxiliary 
image. A decision whether these pixels are to be considered skin or not is made 
later, based on the shape and location constraints. 

The shape/pose and location criteria are implemented together using a hand 
shaped binary mask of 100×200 pixels (for image resolution of 640×480 pixels). 
This mask is used together with the auxiliary binary images obtained after the 
previous step for detection of the hand presence. Thresholds are applied on the 
percentages of pixel matches in order to decide whether a hand is detected or not. 
First, the region of interest of the image of valid hue skin colored pixels is compared 
with the hand shaped mask. Both images are binary, and a pixel-wise comparison is 
made in order to determine the percentage of matching pixels. The percentage of 
matching pixels in the two images is compared with a threshold to decide whether 
further investigation of non-reliable hue pixels is necessary. If the percentage of 
matching pixels is below this threshold, no reliable decision can be made on the 
hand presence, and in this case the hand is considered not detected. If the 
percentage is above this threshold, the second auxiliary image is taken into account. 
If any non-reliable hue pixels were marked in the second auxiliary image, they will 
be used to increase the matching percentage. White pixels from the second auxiliary 
image, which correspond to positions within the hand mask, are classified as skin 
colored and those which correspond to positions outside the mask are classified as 
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non-skin colored. The matching percentage is recalculated and compared with a new 
threshold (higher than the one used at the previous step). The hand is considered 
detected only if the percentage is above this threshold. The values of the thresholds 
were determined experimentally, in order to allow a comfortable initialization, while 
avoiding false hand detection. 

4.2.3. Tracker initialization 

The hand detection procedure described above is the basic part of the 
proposed tracker initialization method. In order to avoid false triggering, the tracker 
is not initialized after the first detection of the hand. A state machine controls the 
tracker initialization and the basic tracking functions. Three states are defined: 

• SEARCH, 
• CONFIRM and 
• FOUND. 

Fig. 4.4 presents the three states and the possible transitions between 
them. Fig. 4.5 presents the outline of the tracker initialization process. The first two 
processing steps – background subtraction and color space analysis – are applied to 
all frames, regardless of the current state. Then the processing is state dependent 
and different tasks are performed in each state. 

The system starts in the SEARCH state. In this state, at each frame, hand 
detection is attempted. When the hand is successfully detected, the system 
advances to the next state: CONFIRM. The purpose of the CONFIRM state is to 
ensure that the user wants to communicate through the gesture-based interface 
(i.e. to avoid accidental triggering of the tracking). The CONFIRM state is 
maintained for a minimum time interval, Tmin. There is also an upper limitation, 
Tmax, of the time spent in the CONFIRM state, in order to allow the system to 
return to the SEARCH state if the initial detection of the target is not confirmed. The 
user is aware that he must keep the hand in the required position for a short time 
interval (Tmin) in order to trigger the tracker, and therefore I found reasonable to 
impose a value of Tmax of approximately 2×Tmin. 

While the system is in the CONFIRM state, the user should maintain the 
hand in the required position. In this state, for each frame, a decision about the 
hand presence is made. Two counters are updated in every frame and help to 
decide when to leave the CONFIRM state: 

SEARCH

CONFIRM FOUND

detected
lost

yes

no

 
Fig. 4.4. State machine diagram. 
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• a time/frame counter – counts the time (or the number of frames) elapsed 
since the beginning of the current CONFIRM state – and 

• a hand detection success counter – a measure of hand detection rate. 
The hand detection counter starts at 1 and is incremented with every frame 

in which the hand is detected. For every frame in which the hand is not detected the 
counter is decremented, but the decrement operation is limited to 0 (i.e. no 
decrementing takes place when the counter value is 0).  

While the time counter is between Tmin and Tmax, the system may try to 
advance to the third state. At any moment within this time interval, if the hand 
detection success counter exceeds a specific threshold (approximately 70% of the 
number of frames processed during Tmin), the tracker is initialized at the current 
location of the hand and the system advances to the 3rd state, FOUND. If the hand 
detection success counter does not reach the required threshold before Tmax 
elapses, the tracker is not initialized and the system returns to the SEARCH state. 

The FOUND state corresponds to the basic tracking operations, which are 
dealt with in the next sections. The system remains in this state as long as the 
target is not declared lost by the tracking algorithm. The target is assumed lost only 
if it is not detected for a relatively long time interval. When the target is considered 
lost, the system returns to the SEARCH state and the initialization procedure 
restarts. 

4.2.4. Implementation details 

The proposed method was implemented as part of a dynamic hand gesture 
recognition system. The algorithm was used for the initialization of a CAMSHIFT 
based hand tracker [6] and of a finger tracker, respectively. The application was 
developed using Microsoft Visual C++. In the implementation of the application, 
OpenCV library functions were used for various tasks like video capture (from 

State checkSEARCH

CONFIRM

FOUND

Background 
subtraction

Color space 
analysis

Check for 
continuity of 

hand presence

Tracking and 
trajectory 
recording

Try hand 
detection

 
Fig. 4.5. Flowchart of frame processing for hand detection. 
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camera or from previously recorded *.avi files), background subtraction, color space 
conversions, pixel-wise operations etc. The video sequences were acquired using a 
common webcam at 640×480 resolution and approximately 15 fps. 

The background subtraction was implemented using the codebook based 
method available in OpenCV. 

The thresholds in the HSV color space, used to identify the reliable hue skin 
pixels and the non-reliable hue pixels, were set based on experiments. OpenCV uses 
8 bits to represent each of the H, S and V components of a pixel. S and V each 
cover the full range available on 8 bits, [0 – 255]. H (hue), which is defined as an 
angle, should range from 0 to 360. In order to fit the 8 bit representation, in 
OpenCV, all hue values are divided by 2 and therefore the range is reduced to [0 – 
180], as shown in Fig. 4.6. 

Reliable hue pixels have saturation above 30, and value between 40 and 
245. I determined empirically, by calculating hue histograms for manually selected 
skin colored areas, that the appropriate range for hue was [170 – 180] and [0 – 
50]. It can be noticed in Fig. 4.6 that the two intervals are actually contiguous, due 
to the circular definition of the hue (180 and 0 represent the same color). 

During the SEARCH and CONFIRM states, a hand contour is displayed on a 
monitor, in order to guide the user on the required hand pose and location as shown 
in Fig. 4.3. A rectangular binary mask is applied at the location of the displayed 

0 (180)

170

50

- skin - non-skin
 

Fig. 4.6. Circular representation of the 8-bit hue. 
 

  
valid hue skin non-reliable hue 

Fig. 4.7. Binary images after color space analysis in the hand mask region. 
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hand contour, in order to verify the shape/pose and location criteria. The two binary 
images obtained after the color space processing in the area of the rectangular hand 
mask, corresponding to the image in Fig. 4.3, are presented in Fig. 4.7. 

A global threshold of 60% is used for matching pixels in the rectangular 
region, where the hand mask is applied. Some areas within the hand mask are 
considered critical and, therefore, tighter matching thresholds, of 70 - 85%, are 
applied separately to each of these areas. Fig. 4.8 presents the matching result 
image (white pixels indicate a match) and the 5 critical rectangular areas where the 
tighter thresholds are applied. White pixels indicate matching and black pixels 
indicate non-matching. In the example in Fig. 4.8, regions 1 and 4 have 100% 
matched pixels, regions 3 and 5 have 99% and region 2 has 93%. The tightest 
thresholds, of 85% are used for regions 1, 4, 3 and 5, while for region 2 a 70% 
threshold is used. 

Region 1 should virtually contain 100% non-skin pixels, while region 4 
should contain 100% skin pixels, regardless of the proportionality between 
hand/finger dimensions. 

Regions 3 and 5 should contain non-skin pixels and they are treated 
together by applying an overall matching percentage threshold of 85%. The two 
regions are treated together in order to allow a more comfortable initialization 
procedure. Sometimes, one of them may have a lower matching percentage while 
the other virtually has 100% matching. Such an imbalance between the two regions 
may appear due to hand tilt and/or left/right position shift.  

In region 2, a 70% threshold is applied. This region should contain skin 
pixels. The lower threshold used for this region is due to the fact that the matching 
percentage in this region is heavily influenced by two factors: 

• the thickness of the index finger (the matching percentage lowers for users 
with thin fingers) and  

• the possible tilt or position shift of the index finger with respect to the ideal 
position indicated by the guiding hand contour.  

  
a) matching result b) critical areas 

Fig. 4.8. Matching pixels in the rectangular hand mask region. 
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The global threshold is more relaxed because, while the hand mask is 
unique, different users have different hand/finger dimensions proportionalities. 

In my experiments, the time limits used for the CONFIRM state were Tmin = 
1s (15 frames) and Tmax = 2s (30 frames). 

4.3. Finger detection 

The problem of tracking the finger/hand is more complex than the one of 
tracking initialization. Some of the features used for initialization can also be used 
as low-level features for the tracking algorithm. The object to track (finger/hand) is 
a foreground object, has a relatively uniform color – human skin color, has a specific 
shape and has geometrical proportionality between width and height. Background 
subtraction and skin color segmentation can be used as preprocessing steps applied 
to the input video sequence, in order to extract low level features: skin color and 
foreground objects.  

Taken alone, neither the skin color nor the foreground segmentation is able 
to offer reliable support for a robust tracking algorithm. For each of them, it is 
possible to obtain good true positive detection rates at the cost of high false positive 
rates. For single feature based trackers, this situation often leads to target loss due 
to confusion with other neighboring objects. Nevertheless, by integrating these low-
level features with other geometrical features and by adding some reasoning in the 
tracking algorithm, a robust tracking solution may emerge. The high true positive 
rates can be exploited in order not to miss the presence of the real target, while the 
geometrical features and the reasoning can be used in the higher processing layers 
of the tracking algorithm, in order to significantly reduce the rate of false positives 
and correctly identify the target. 

In the papers [3] and [4], I proposed a finger tracking solution which uses 
multiple low-level features and a multilayer processing approach, in order to achieve 
tracking robustness and real-time operation. The principle of the proposed algorithm 
is somehow similar to that of “tracking by detection”, which is very popular in 
algorithms for tracking multiple targets simultaneously. Tracking algorithms which 
use the “tracking by detection” principle perform in every frame a detection of all 
objects which have characteristics similar to the target and then try to establish 
correspondences between the objects detected in the current frame and the targets 
detected in previous frame(s). The envisaged range of applications for the proposed 
algorithm – user interfaces based on dynamic gestures or pointing – requires the 
tracking of a single target. A reduced area of the frame where the target is likely to 
be found can be selected, based on a prediction of the target position. This leads to 
a significant reduction in the amount of data to process, since the multiple layers of 
processing in the tracking algorithm are applied only to the limited region of 
interest, not to the entire frame. 

In the proposed finger tracking algorithm, background subtraction and skin 
color segmentation are used as preprocessing steps for extracting the low-level 
features. After the preprocessing steps, the remaining significant data are scanned 
horizontally or vertically and represented as line strips as shown in Fig. 4.9. For 
each line strip, only the length and the midpoint’s coordinates need to be retained, 
leading to a very compact representation of the data used for finger detection. The 
line strips’ positions and lengths are easy to extract. Nevertheless, the line strips are 
thoughtfully chosen features, as they are able to capture the relevant information 
needed to detect the finger. All line strips that belong to the same finger have 
similar lengths and their centers must fit a curve that can be approximated by a line 
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segment. The (ρ, θ) space is used to define the line. A similar approach for 
extracting line strips used further as features for finger tracking was used in paper 
[2]. 

The proposed finger detection algorithm uses a multi-layer approach, as 
shown in Fig. 4.10. The lower layers are responsible with the finger detection, while 
the topmost layer is recording the trajectory and guiding the tracking process. The 
information obtained at the topmost layer is passed to the trajectory processing and 
gesture recognition layers and is also used for guiding the tracker. 

At the basic layer, a search area – selected by using data from the tracker 
guiding layer – is scanned for line strips. The result of this step is an array of line 

(xc1, yc1)

(xci, yci)

θ

l ≈ fthick

 
Fig. 4.9. Line strip features used for finger detection. 
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Fig. 4.10. The layers of the tracking algorithm. 
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strips identifiers (mid-point coordinates and length). Optionally, the coordinates of 
the line strips’ ends may be recorded, too, in order to avoid recalculating them in 
the next steps. As the next steps of processing are similar for horizontal line strips 
and vertical line strips, in the following I will refer only to the processing of 
horizontal line strips in order to simplify the description of the algorithm. 

At the next layer, the line strips are clustered based on spatial information, 
then at the third layer a pair of (ρ,θ) values are determined for each line strip by 
matching the current strip with strips situated at various distances within the same 
cluster. The fourth layer performs a cluster analysis based on the (ρ,θ) parameters 
and merges smaller clusters with similar (ρ,θ) values. The fifth layer identifies the 
cluster that matches the tracked finger and calculates the new position and 
dimensions of the finger. The topmost layer of the tracker records the trajectory and 
parameters of the finger movement.  

At the second layer, the recorded line strips are clustered based on their 
positions. The goal of this step is to identify vertically contiguous groups of line 
strips. The clustering starts with the first element of the array (the topmost left line 
strip), which is assigned to the first cluster. Then, if available, a new line strip is 
added to the cluster from each subsequent line, given that its horizontal position is 
not significantly different from that of the previous line strip in the cluster. The limit 
imposed for the maximum allowed horizontal deviation between 2 consecutive line 
strips can be set between [0.25 ÷ 0.5] of the expected finger thickness. Although 
the line strips that belong to a finger are virtually contiguous, in practical situations 
some small gaps may appear between the recorded strips, due to image 
imperfections like motion blur or non-ideal lighting conditions. Therefore, limited 
small gaps (e.g. up to 5 lines) are allowed within a cluster. If a larger gap is 
encountered, the cluster is closed and if there are still unclassified line strips, a new 
cluster is instantiated starting with the first unclassified line strip in the array. 

After all the line strips in the array are classified, isolated clusters containing 
only a few line strokes are removed from further processing, as they do not contain 
relevant information. 

At the third layer, within each cluster, for each of the line strips, a (ρ,θ) pair 
of parameters is calculated. The centers of the line strips belonging to a finger must 
fit a line segment, which can be identified using the θ (the angle of the line segment 
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Fig. 4.11. The ρ, θ parameters of the line segment 

generated by the centers of the line strips belonging to a finger. 
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with the horizontal axis) and ρ (the distance from the origin of the coordinates 
system to the line strip) parameters. Fig. 4.11 presents an example of line segment 
containing the centers of line strips, and its ρ and θ parameters.  

Within each significant cluster, for each line strip, multiple values of the 
angle parameter θi are determined by searching pair strips at increasing distances, 
first toward one end of the cluster and then toward the other. Fig. 4.12 illustrates 
the process of searching for pair elements for a given line strip, in order to calculate 
the multiple θi values that will be temporarily associated with it.  

Each θi value is determined as the angle between the line that connects the 
mid-points of the two strips (the current line strip and the found pair) and the 
horizontal axis. The search for the first pair line strip starts at a minimum distance d 
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Fig. 4.12. The pair line strips used to determine the θ value  

associated to an analyzed strip. 
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from the analyzed strip, as pair strips that are too close to the analyzed strip may 
produce noisy angles. After a pair strip is found, the next pair will be searched at a 
distance incremented with D (D>d) from the previous searching start point and the 
process repeats, using the D distance increment, until the cluster end is reached. 
The value of d must be chosen so that it will allow finding at least one pair for all the 
line strips in the smallest valid cluster. The other distance increment, D, is greater 
than d and is chosen in order to allow the detection of 5-7 line strip pairs within a 
cluster with the expected size of the finger. Each θi value is stored together with the 
distance between the analyzed strip and the pair. 

A weighted average of the θi values is calculated, in order to determine the 
θ value to be assigned to the analyzed line strip within the current cluster:  
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  (4.4) 

The weights wi are proportional with the distance between the analyzed strip 
and the pair strip, as the influence of the noise caused by slightly misaligned strips 
diminishes with the increase of distance. 

After calculating the θ value associated to a line strip, the corresponding 
value of ρ is calculated for a line which makes the angle θ with the horizontal axis 
and crosses the analyzed strip in the middle, as shown in Fig. 4.11, using the 
formula: 
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After computing the θ and ρ values for each line strip, within each 
significant cluster, global values for θ and ρ respectively are calculated after a 2 
steps removal of outliers. First, the median value of θ is calculated within the 
cluster, then, up to 10% of the line strips with extreme values of θ are removed 
from further analysis, if their θ value differs with more than 15° from the median 
value. A 2D histogram based on θ and ρ is built for the remaining valid line strips 
and the bin with the highest element count is selected. Around this bin, a search for 
other bins with high element counts is conducted and all neighboring bins that 
exceed a threshold value are selected as valid. Then line strips belonging to non-
valid bins are removed from further processing. Using the remaining valid line 
strips, the cluster representative values of θ and ρ are calculated as mean values of 
the individual parameters of the line strips. 

At the fourth layer, the clusters are checked for the presence of a hand at 
one of the ends, as a finger normally appears only as an extension of a hand. The 
clusters that are attached to a hand-like shape are marked as finger candidates. 
Each cluster which is not marked as a finger candidate after this process is checked 
for compatibility with finger candidates with respect to the θ and ρ values. If any 
match is found, the cluster is merged to the respective finger candidate, given that 
the total length of the new cluster does not exceed 150% of the expected finger 
length. The clusters that cannot be merged to finger candidates are removed from 
further processing. 

The search for the presence of a hand starts at the base of the finger 
candidate and tries to find an area delimited by a polygonal contour which contains 
a large majority of skin colored, foreground pixels. Fig. 4.13 presents the procedure 
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for identifying the polygon’s vertices. The polygon is usually a hexagon, but in the 
particular case when P1 and P2 are on the same horizontal line, it is reduced to a 
trapezoid. The ends of the finger-base line strip are the first two vertices, A and B. 
The other vertices are determined using two symmetrical search procedures, 
starting from A and B, respectively. 

Starting from A, the left extremity of the terminal line strip, a diagonal 
search down at –45° for contiguous hand pixels is conducted – step 1 in Fig. 4.13. A 
similar search is conducted starting from B, the right extremity of the terminal line 
strip, also downwards, but at an angle of –135° with the horizontal axis – step 2 in 
Fig. 4.13. During the search, small gaps are allowed in order to deal with possible 
spots caused by imperfections within the acquired images (noise, motion blur, non-
uniform lighting etc.). The search stops either when the contiguousness criterion is 
no longer met (the hand edge is detected) or when a limit value for the total 
horizontal displacement from the initial position equal to 3 times the finger thickness 
is achieved. The end point of the search in step 1 is P1 and the end point of the 
search in step 2 is P2. The 4 remaining vertices are determined as the hand edges 
on the horizontal lines containing P1 and P2, respectively. 

If any of the searches in steps 1 or 2 ends due to hand edge encountering, 
the end point of the respective search is also a vertex of the polygon. This situation 
is illustrated in Fig. 4.13 for step 1, where the search end point P1 and the C vertex 
of the polygon have the same coordinates. If the search in step 1 or 2 ends due to 
exceeding the threshold horizontal displacement, then from the corresponding Pi 
(i=1,2) end point a horizontal search in the same direction (right for i=1 and left for 
i=2) is conducted for a maximum displacement of one finger thickness, in order to 
try to reach the hand edge. The searched vertex is located at the hand edge, if 
encountered, or at the end point of the horizontal search, if the hand edge is not 
encountered before reaching the horizontal displacement limit. This situation is 
illustrated in Fig. 4.13 for step 2, which is followed by step 2L in order to locate the 
E vertex. 
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Fig. 4.13. The search for attached hand procedure. 
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The last two vertices are located by conducting horizontal searches for the 
hand edge starting from Pi, in the opposite direction to the one used at step i. As 
with the previous cases, a maximum horizontal displacement limit is imposed, in 
this case with a value of 4 times the finger thickness. The end points of these 
searches will represent the last two vertices of the polygon. Steps 1L and 2R in Fig. 
4.13 lead to the localization of the last two vertices, D and F respectively. The 
maximum displacement limits during the search for vertices are imposed in order to 
allow reasonably good hand localization, when the hand is in the neighborhood of 
other skin colored areas in the image (e.g. other hands or faces). 

A hand is considered detected if the polygon constructed using the above 
described procedure simultaneously fulfills multiple criteria, referring to the total 
surface within the polygonal contour, the percentage of skin pixels inside the 
polygonal contour and geometrical considerations. 

The first criterion requires that the total surface inside the polygonal contour 
exceeds a given threshold, determined as a function of the size of the finger 
candidate. The part of the hand contained within the polygon has in most situations 
an area larger than the finger. Therefore, the finger area, f l thickS f f= ⋅ , is a good 

choice for the area threshold. Alternatively, an area, ( ) 22 3q thickS f= ÷ ⋅ , proportional 
to the area of a square with the side length equal to the finger thickness, can be 
used as threshold. 

The second criterion also consists in exceeding a given threshold, in this 
case for the percentage of skin colored foreground pixels within the polygonal 
contour. Under ideal conditions, all pixels within the polygonal contour should 
belong to the hand, as shown in Fig. 4.13. Practically, due to limitations of the 
image acquisition systems, a small percentage of the pixels within the polygonal 
contour may be classified as non-skin colored and/or as background pixels. 
Therefore, a value between 75% ÷ 85% for the percentage threshold must be 
chosen, in order to deal with the imperfections in the acquired images. 

The third type of criteria that need to be fulfilled for hand detection, 
concerns the geometrical proportions within the polygon. Two proportionality criteria 
are evaluated: one in the horizontal direction (line segments’ lengths) and the other 
one in vertical direction (distance between line segments). The line segments 
involved in these evaluations are AB, CD and EF, which are all parallel to the 
horizontal axis. Some limits are imposed on the proportions between the length of 
line segments and on the distance between them. As the procedure of localization of 
the polygon’s vertices imposes in both horizontal and vertical dimensions upper 
limits relative to the finger thickness, which is approximately equal to the length of 
AB line segment, only lower limits need to be imposed further. The horizontal 
proportionality criterion imposes a lower limit on the ratio between the maximum 
length of CD and EF line segments and the finger thickness: 

 ( )CD EF

thick

max L ,L
2.

f
>   (4.6) 

The proportionality in the vertical dimension imposes a lower limit on the 
ratio between the distance between the horizontal sides of the polygon and the 
finger thickness: 

 ( )1 2

thick

max d ,d
1.5.

f
>   (4.7) 
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4.4. Target identification 

The fifth layer is responsible with the identification of the tracked finger 
amongst the finger candidates selected at the previous layer. The finger candidates 
are classified based on a total score, st, which is calculated as a sum of the two 
scores, sp and sl: 

 t p ls s s .= +   (4.8) 

The sp score is a measure of the cluster’s quality as a finger candidate, with 
respect to the distance between its position and the predicted position of the finger. 
The sl score evaluates the cluster’s quality as a finger candidate from the size point 
of view. 

As the predicted position is obtained based on the motion information in 
previous frames, more importance is given to the position criterion in order to favor 
a candidate that is close to the predicted position (if present) with respect to other 
candidates that do not fit the predicted motion model. 
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The sp score, calculated using equation (4.9), decreases with a term that is 
proportional to the relative distance between the actual and the estimated position 
(the ratio between the absolute distance, Δp, and the finger’s thickness). This leads 
to a maximum score, Sp, in a limited area around the predicted position and 
gradually smaller scores as the relative distance between the candidate and the 
predicted position increases. 

The sl score, calculated using equation (4.10), has a maximum value, Sl, for 
small finger length variations, and lower values for the candidates with important 
length changes since the last frame. Similar to the sp score, the sl decreases with a 
term that is proportional to the relative length variation, Δlr, which represents the 
absolute difference between the actual length and the predicted length of the finger 
reported to the finger’s thickness. 

The tracked finger is identified as the finger candidate with the highest total 
score, st, given that it exceeds a minimum threshold. Practical experiments have 
shown that a good value for the threshold is about half of the maximum possible 
value of the total score. 

The identified finger is represented as an ellipse defined by a center, a 
minor axis, a major axis and a rotation angle. The ellipse is centered at the midpoint 
of the line segment that connects the centers of the first and the last line strips of 
the cluster. The thickness of the detected finger is calculated as the median of the 
lengths of valid line strips within the cluster, and will represent the ellipse’s minor 
axis. The length of the detected finger is proportional to L, the length of the 
segment connecting the mid-points of the first and last line strips of the cluster: 

 lf α L.= ⋅   (4.11) 

The proportionality factor, α, in equation (4.11) is necessary, as the valid 
line strips do not cover the extremity of the fingertip due to size limitations (line 
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strips at the extremity of the fingertip are shorter than the minimal limit for line 
strip’s length). Practical experiments have shown good results with α values in the 
range [1.1 – 1.2]. The obtained finger length represents the major axis of the finger 
ellipse. The rotation angle of the ellipse is the θ value of the cluster. 

4.5. Tracker guiding and trajectory recording 

The 5 layers described in the previous sections perform the low-level 
tracking tasks, leading to the identification and localization of the finger in the 
current frame. The topmost layer of the tracking algorithm is using the data 
provided by the lower layers in order to perform two tasks: 

- finger trajectory recording, providing the data necessary to the gesture 
recognition layers and 

- tracker guiding. 
The data necessary to the gesture recognition layers consist of the finger 

position, orientation and optionally size, in every frame. The data required for 
tracker guidance consist of a predicted position and size of the finger in the next 
frame, based on which a search window is selected, in order to apply the finger 
detection steps. 

The finger positions transmitted to the gesture processing layers are exactly 
the positions provided by the finger detection layers. The finger size is mainly 
required for tracker guidance, but, depending on the application, it may also be 
transmitted to the gesture recognition layers (e.g. when the finger length is used in 
the gesture recognition process). The value of the finger length or thickness in the 
current frame, vnew, is calculated using an adaptive weighted average between the 
previous value, vold, and the measured value provided by the finger detection layers, 
vm. 

 ( )new old mv 1 α v α v ,  0 α 1.= − ⋅ + ⋅ ≤ ≤   (4.12) 

The adaptive weighting is necessary in order to allow the system to follow 
the measured finger size quicker when the changes in finger size are consistent and 
slower when the changes are not consistent. The changes in finger size are assumed 
to be consistent only when both finger length and thickness have the same sign of 
variation and the trend is maintained during multiple consecutive frames. The trend 
is assumed to be consistent over multiple frames if the sign of the size variation 
with respect to the previous frame is the same for at least 2 of the last 3 frames. 
For this purpose, the variation sign, sv, is calculated each frame for both finger 
thickness and finger length values. 

 ( )m oldsv sign v v .= −   (4.13) 

The variation signs calculated using (4.13) for the current frame and for the 
previous 3 frames are used in the evaluation of the variation trend consistency. 

For slowly following the measured finger size, when no consistent size 
variation is detected, a small value of α is used in equation (4.12), while for quickly 
following the variation, a larger value is necessary. I determined experimentally that 
good results are obtained using α values around 0.3 for slowly following the size 
changes and 0.7 for quickly updating the finger size. 

The prediction of the future position of the finger, together with the 
selection of a reduced size search window around the predicted position, can help in 
reducing the amount of data (line strips) to process. By focusing the search around 
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an expected location in the image, the image areas that are too far from the 
predicted location of the finger are excluded from processing. The search window 
size must exceed the area covered by the finger enough to allow for relatively small 
variations of finger speed and/or movement direction. My experiments revealed that 
10 times the finger thickness (±5×fthick around the expected position) and 4 times 
the finger length (±2×fl around the expected position) are appropriate values for 
the width and height of the search window. 

A first order prediction is used in order to obtain the expected finger position 
in the current frame (frame n). The horizontal and vertical components of the 
motion vector are calculated using the finger positions in the previous 2 frames: 

 n 1 n 1 n 2

n 1 n 1 n 2

x x x ,
y y y .

− − −

− − −

∆ = −

∆ = −
  (4.14) 

Using the motion vector components and the time elapsed between the 2 
frames, the horizontal and vertical components of the finger’s speed are 
determined: 
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The time elapsed between the previous frame and the current frame, Δtn, is 
used together with the finger’s speed vector components to determine the expected 
finger position in the current frame based on the finger position in the previous 
frame: 
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In most situations, the above described prediction method leads to the 
selection of a search area which contains the tracked finger, allowing the finger 
detection layers to precisely locate the finger in the current frame. Nevertheless, 
isolated situations may occur when the finger – although detectable in the current 
frame – is not (entirely) contained within the initially predicted search area and 
therefore it cannot be located within this search window by the finger detection 
layers. Such exceptional situations may be caused by unexpected sudden changes 
in the finger’s movement direction and/or speed, combined with long time intervals 
between consecutive frames (slow frame rate).  

If the target is not detected within the initial search window, new searches 
are attempted in the neighborhoods of the initially predicted position. The search 
window is shifted in up to 8 possible different directions. The centers of the 8 new 
search windows are located at the 4 corners and the 4 midpoints of the sides of the 
initial search window. The order in which the 8 search windows are tested is 
established based on a priority list, which takes into account the main reasons which 
can lead to not finding the target within the initial search window. The first two 
directions to be tested are the direction which is nearest to the finger motion vector 
in the previous two frames and its opposite direction, then their neighboring 
directions follow and, finally, the last tested directions are those orthogonal to the 
first two. The priority between the direction which assumes the maintaining of the 
movement direction and the one which assumes a 180° turn is established based on 
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the records of finger motion speed in the last frames. An increase in movement 
speed indicates a higher likelihood that the finger will maintain the movement 
direction, while a decrease of the speed indicates a possible intention of the user to 
change the movement direction. 

The relatively reduced size of the search window reduces the data to 
process and helps keeping the tracker focused on the real target in situations when 
other similar objects are present in the image. Repeating the search procedure, 
when the detection within the initial window fails, does not significantly increase the 
processing time. In most cases, a search in which no finger is detected is 
abandoned in the early stages of the finger detection algorithm, due to a reduced 
number of valid line strips to process. 

4.6. Performance evaluation 

4.6.1. Tracking initialization 

The proposed tracker initialization method was tested with different 
backgrounds, both with daylight and artificial lighting. A number of 25 tests were 
performed by 3 users. 

The histograms of the global matching percentages for 6 tracker 
initializations (1 with daylight and 1 with artificial lighting for each of the 3 users) 
are presented in Fig. 4.14. In each case, the frames taken into account begin with 
the frame in which the hand is detected for the first time and end with the frame in 
which the tracker is initialized. 

It can be observed that in a single case – artificial light 2 – percentages 
below 60% are obtained. The 6 matching percentages below the 60% threshold 
correspond to frames in which the user’s hand was not aligned correctly with the 
guiding hand-shaped contour. It can also be observed that, in the other 5 cases, all 
the matching percentages are higher than 65%. 

In 5 of the cases presented in Fig. 4.14, the CONFIRM state ends after the 
minimum time interval, while for the other case – artificial light 2 – 2 additional 

   

   

Fig. 4.14. Histograms of global matching percentages  
in the rectangular hand mask region. 
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frames are necessary before advancing to the FOUND state and initializing the 
tracker. 

Tracker initialization experiments were analyzed for the 25 cases (15 with 
daylight and 10 with artificial lighting) and Table 4.1 summarizes the results 
obtained from the point of view of matching percentages and thresholds fitting. 

Considering each of the 5 threshold based detection criteria, detection was 
successful in more than 87% of all frames processed in the CONFIRM state. 
Actually, a success rate below 90% was obtained only for the region 2 criterion. The 
hand is considered detected in a frame only if all 5 criteria are met, and this 
happened for 78% of the frames analyzed. The last three columns of the table 
present the minimum, the maximum and the mean matching percentages 
corresponding to each of the 5 criteria. The mean was calculated by removing 3% of 
the worse and 3% of the best matching percentages. Low matching percentages 
correspond to frames in which the user’s hand did not correctly fit the indicated 
shape. The results obtained indicate that the chosen combination of criteria allows 
the system to correctly identify the frames in which the user’s hand is present at the 
required location. 

The histogram of the number of frames spent by the system in the 
CONFIRM state is presented in Fig. 4.15. In 19 of the 25 tests, the tracker 
initialization occurred after the minimum time interval (15 frames – 1s at 15 fps). 

Only in 2 cases, in which the user slightly moved the hand around the 
guiding contour in order to test the limits of the detection capacity, more than 20 
frames were necessary to accomplish the requirements for tracker initialization. The 
measured time intervals, considered in Fig. 4.15, do not take into account the time 
necessary for the user to fit the hand correctly to the guiding shape. The average 
time needed to fit the hand to the guiding shape was below 3 s. This illustrates that 
the proposed method allows the user to easily initialize the tracker. 

Additionally, the system was tested for resistance to false triggering. For 
this purpose, 3 types of tests were performed: 

• random movements of the hand were performed around the initialization 
area,  

• human subjects moving around the initialization area and 
• global lighting change (most parts of the image appeared as foreground). 

In the first case, when random hand movements were performed in the 
initialization area, the system advanced occasionally from the SEARCH to the 
CONFIRM state, but no false initialization occurred, as the conditions imposed in the 
CONFIRM state to allow the tracker initialization were not met. 

Table 4.1. Summary of the initialization results. 
 

Criteria passed [%] Min % Max % Mean % 

Global 92 48 82 73 
Region 1 96 76 100 97 
Region 2 87 0 100 88 
Region 4 91 39 100 94 
Regions 3,5 95 80 99 96 
All 78    

 

BUPT



  Robust Integration of Multiple Features for Hand/Finger Tracking – 4 84 

For the second test scenario, when human subjects moved around the 
initialization area, no false hand detection occurred and the system remained in the 
SEARCH state. 

The resistance to false initialization due to global lighting changes was 
tested using 5 different backgrounds, both for increasing and decreasing lighting. 
During the tests performed, no false hand detection occurred and the system 
remained in the SEARCH state. When skin-like background was used, it was 
observed that, due to the lighting change, some areas of the background appeared 
as foreground and therefore 2 criteria (foreground object and color) were met for 
these areas, but during the tests performed no such area happened to take the 
shape of the hand required for initialization. The probability for such an area to take 
the required hand shape and size, at the required location in the image, in order to 
trigger a false tracker initialization, is extremely low. Therefore, we can consider 
that lighting changes in the scene are unlikely to cause false initializations, 
regardless of the background used. 

The tests for resistance to false triggering, combined with the results of the 
25 tests for tracker initialization, indicate the reliability of the proposed method. 

The tracking initialization method presented in section 4.2 proved its 
reliability during the initial tests and was later successfully used for the initialization 
of the hand/finger tracking algorithm proposed in [3] and [4] and presented in 
sections 4.3 – 4.5. The method is easy to use from the user’s point of view. While 
the multiple conditions imposed for initialization need low computational resources, 
they are able to provide a quick initialization and to prevent false triggering. The 
multi-cue approach allows the proposed initialization method to operate correctly 
under very different lighting conditions, with different backgrounds, without the 
need to readjust the settings of the thresholds. The advantage of a safe start is 
obtained at the price of a reduced flexibility regarding the initial position of the 
hand, and restrictions regarding the hand color uniformity (i.e. the user may not 
wear gloves, have extremely dirty hands etc.). 

The 4 detection criteria together with the time constraints imposed provide a 
user friendly initialization procedure. The time interval when the user must keep the 
hand in a given pose at a specific location is short enough in order not to be 
considered a drawback and it is long enough to significantly reduce the chances of 
false triggering. 

 
Fig. 4.15. Histogram of the number of frames in the CONFIRM state  

for the 25 experiments. 
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The proposed method can be used with a large variety of hand/finger 
trackers, as it only identifies the time when the object to be tracked is present at 
the specified location, so that the tracker can start and no restrictions are imposed 
on the tracking algorithm. 

4.6.2. Tracking 

The proposed tracking algorithm was tested on 8 video sequences taken in 
different conditions. The test sequences were acquired both under natural (4 test 
sequences) and artificial lighting (4 test sequences) and include simple and complex 
background, hand movement at various speeds, movement speed variation, partial 
occlusion with other objects, hand pose changes, superposing with other foreground 
objects, including hands with extended index finger. The test sequences were 
acquired using both stand-alone and notebook-integrated webcams, at resolutions 
of 640×480 (6 sequences) and 960×720 (2 sequences), respectively. The proposed 
method provided good results in most of the challenging situations in which it was 
tested. 

Tracking results were very good for all 8 test sequences. In the absence of 
disturbing factors, the tracking results were accurate, both for the fingertip position 
and finger parameters (size and angle), with no target loss and no visible 
localization errors. 

In sequences which contain moderate motion blur, the tracker is able to 
follow the target thoroughly, due to the possibility to choose between using the 
centers or left or right ends within the clustering steps (layers 2-4), which allows to 
choose the feature that produces the smallest angle distortion within the finger 
candidate cluster. In normal situations, when no motion blur is present, the mid 
points of the line strips produce the best clustering results. When motion blur is 
present, the finger becomes blurry, showing a rough surface, especially on its rear 
side (with respect to the movement direction), while on the opposite (front) side it 
has a slightly smoother appearance. For such situations, the line strips’ ends on the 
front side of the finger produce more compact clusters than the very noisy line 

   

   
Fig. 4.16. Tracking under severe motion blur 

 – frames 163 (complete scene and hand detail), 177, 179, 224 and 226 of test sequence 2 
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strips’ ends on the rear side or the mid points – for which the noise is an average 
between the two sides – increasing the probability to detect valid finger candidates. 
In Fig. 4.16, the scene in test sequence 2 is presented, together with details from 
frames with motion blur on skin-like colored background (frames 177 and 179) and 
on non-skin colored background (frames 224 and 226). 

When strong motion blur is present, especially on skin-like colored 
background, the results of the preprocessing steps become unreliable for the line 
strip detection process and therefore the finger detection fails in such frames. 
Strong motion blur occurs at high movement speed of the finger, especially in low 
lighting conditions. Fortunately, the high motion speed usually occurs only for short 
time intervals and during straight movement strokes. Even if the target cannot be 
detected for a few frames, under the assumption of straight movement the use of a 
location prediction mechanism within the proposed algorithm allows to keep a good 
approximation of the finger position until the amount of motion blur reduces to a 
level that allows finger detection. In the test sequences used, 116 frames with 
significant motion blur were present in test sequences 1, 2 and 3. The tracker failed 
to detect the target in 3 of the 116 blurry frames. The frames in which the tracker 
failed to detect the finger contained an extreme level of motion blur on skin-like 
colored background. Although the finger was not detected within the 3 frames, the 
tracker was able to recover immediately after the motion blur returned within 
acceptable limits.  

In another 29 blurry frames, on the non-skin colored background, the finger 
was detected with a smaller size, and/or with an angle deviation (e.g. frame 226 in 
Fig. 4.16). The size and angle errors can be explained by the color blending which 
occurs in the case of motion blur on non-skin colored background, which causes 
some blurred finger pixels to fall outside the color range used for skin segmentation. 

Another challenging situation is to track the finger on skin-like colored 
background. The tests I conducted revealed good results, as long as the finger skin 
color differs from the background color enough (in order to allow the 
foreground/background segmentation algorithm to discriminate the finger from the 
background) and when motion blur was not too strong. The test sequences 1-4 

   

   
Fig. 4.17. Tracking results when the finger is partially occluded 
 – frames 71, 74, 219, 222, 227 and 231 of test sequence 7 
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contained mainly skin-like colored background. In test sequences 1 and 2, artificial 
lighting was used, while in test sequences 3 and 4, only natural lighting was 
present. The tracking algorithm failed to detect the target on skin-like colored 
background only in the 3 frames with extreme motion blur mentioned above. 

Partial occlusions are handled well by the proposed tracking algorithm, as 
long as the occlusion area is not covering a too large area of the finger. Tracking 
results in scenes with partial finger occlusion are presented in Fig. 4.17. When the 
occlusion occurs in the medial part of the finger (frames 222, 227 and 231), the 
clusters merging layer of the algorithm is able to detect the isolated parts of the 
finger and recognize they belong to the same finger, if they exceed the minimum 
cluster length imposed by the algorithm. When the occlusion occurs near the 
fingertip or near the finger base, the size of the detected finger decreases if the 
occlusion persists for more frames (frames 71 and 74). The detected finger size 
does not decrease instantly to the value corresponding to the finger part that is 
outside the occlusion area. The adaptive size updating procedure allows only a small 
size reduction during the initial frames of the occlusion (frame 71), but, if the 
occlusion persists (frame 74), the size will reduce faster after the threshold number 
of frames for fast following the size changes is exceeded.  

The adaptive finger size updating procedure used within the proposed 
algorithm is useful, especially for handling scale changes in the video sequence. In 
the context of the envisaged application range of the proposed method, scale 
changes occur when the user moves the finger closer to or further apart from the 
fixed camera.  

The tests’ results revealed a good ability of the tracker to follow the scale 
changes with both size increase and decrease. Fig. 4.18 presents tracking results 
when the finger moves away from the camera in test sequence 3 (frames 22 – 49). 
Although the finger dimensions are halved within approximately 2 seconds, the 
adaptive size updating procedure allows the tracker to thoroughly follow the scale 
changes and to correctly identify the finger size and position. Similar results were 
also obtained when the finger size grew, even with fast motion in test sequence 4. 

Accurate tracking results were also achieved when the target moved fast 
through the scene in various directions. Fig. 4.19 presents sample frames with 
tracking results under fast motion in test sequence 4, acquired at 960×720 
resolution with natural light. The top row presents a fast movement in the horizontal 
direction between frames 64 – 72. The finger moves across more than half the 
frame width (approximately 15×fthick) within approximately 0.5 s (8 frames). The 
middle row presents a fast vertical movement which takes place between frames 79 
– 82, covering almost half of the frame height (twice the finger length) within less 
than 0.25 s (3 frames). The bottom row illustrates a diagonal movement taking 
place between frames 110 – 113, with approximately the same parameters as for 

   
Fig. 4.18. Finger moving away from the camera 

 – frames 22, 33 and 49 of test sequence 3. 
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the vertical movement. The position prediction mechanism in the tracker guiding 
layer allows accurate tracking at various speeds, keeping the search area to a 
reduced size, which reduces the amount of data to process in the finger detection 
layers. Fast motion was present in another 4 test sequences and the tracking results 
were accurate, except for a few frames with extreme motion blur in test sequence 2. 

My previous experiments with the CAMSHIFT tracker revealed real 
difficulties in dealing with the presence of other skin colored objects in the 
neighborhood of the target, often leading to irreversible target loss. Therefore, I 
tested the performances of the proposed tracking algorithm when the tracked finger 
was close to other fingers or to the face, which have similar color and are also 
foreground objects in the scene. In the neighborhood of the face, the proposed 
tracking algorithm performed well, being able to track the finger as long as it was 
not superposed on the face. The top row of Fig. 4.20 presents hand details in 
sample frames with tracking results in the neighborhood of the face, in test 
sequences 2, 5 and 7. Tracking the finger while crossing the face area, only 
succeeded at slow movement speed, but, due to the tracker guiding mechanism, the 
tracker was able to recover after the finger/face superposition period ended.  

Tracking the finger and the hand when another hand with an extended 
finger is in the neighborhood of the target is a very challenging situation. The 
disturbing object not only has the same color and is a foreground object (as it is the 
case with the face), but also has similar geometrical characteristics. This type of 

 
Fig. 4.19. Tracking the finger at fast motion speed: 

top row – frames 64, 68 and 72; middle row – frames 79, 81 and 82; 
bottom row – frames 110, 111 and 113 of test sequence 4 
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situation occurred in the recorded test video sequences 5 and 7 and the tracker was 
able to stay focused on the real target even when the 2 fingers were close to each 
other as shown in the bottom row of Fig. 4.20. During tests with live video 
sequences, target confusion seldom occurred when the 2 fingers were parallel or 
almost parallel, with the tracked finger moving at relatively high speed toward the 
false target and abruptly stopping the movement when the two fingers got very 
close to each other. 

Tracking also succeeded when total occlusion with another finger (stationary 
or moving in opposite direction) occurred. Fig. 4.21 presents hand details in a frame 
sequence from test video sequence 7, in which the tracked finger passes behind the 
false target, and the tracker is able to stay focused on the real target, mainly due to 
the finger identification tracker guiding layers. 

Total occlusion caused by objects of different shape and/or color causes the 
proposed algorithm not to detect the finger during the occlusion period. Although 
the location prediction mechanism allows the tracker to recover from the occlusion 
state if the finger returns to a visible state either in the neighborhood of the location 
where it disappeared or in a location on the opposite side of the object that causes 
the occlusion, after a time interval that would allow the finger to pass across the 
object. In the context of the desired applications, it is assumed that the finger does 

   

   
Fig. 4.20. Tracking the finger in the neighborhood of other skin colored objects. 

   
Fig. 4.21. Tracking results when the finger is partially occluded: 

frames 71, 74, 219, 222, 227 and 231 of test sequence 7. 
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not disappear behind objects that belong to the background and therefore the 
objects that cause the occlusion can be detected as foreground objects. 

The tracking algorithm runs in real time for video sequences with resolutions 
of 640×480 and 960×720 pixels, respectively, on a notebook with an Intel Core 2 
Duo T7500 processor with 2.2 GHz clock. The most time consuming part is 
represented by the preprocessing steps, which include time consuming operations 
(i.e. color space conversions and foreground/background segmentation), especially 
when applied to the entire frame. Execution times – measured under debug mode, 
without code optimization – for finger detection and tracker guiding vary between 7 
– 45 ms (less than 25 ms in 78% of the frames and an average value of 19 ms). 
The finger detection and tracker guiding layers are computationally efficient due to 
the significant reduction of the data to process through the use of line strip features.  

A comparison of tracking results obtained with the proposed algorithm, the 
CAMSHIFT algorithm and the algorithm in [2], is presented in Table 4.2. In 
sequences with fast motion, the proposed algorithm thoroughly follows the target. 
The CAMSHIFT algorithm also performs well, but only if no other skin colored object 
is present, while the algorithm in [2], using a zero order motion prediction, loses 
track of the target when it moves outside the fixed search window. When other 
similar objects are present near the target, the proposed algorithm and the 
algorithm in [2] are able to keep track of the real target, while the CAMSHIFT 
algorithm often confuses the real target with a similar object or merges multiple 

Table 4.2. Tracking Results Comparison. 

Test Scenario CamShift Algorithm [2] 
Proposed 
Algorithm 

Motion blur Conditionally No Yes 

Scale changes Yes Yes Yes 

Partial occlusion - 
similar No Confusion 

Possible Yes 

Partial occlusion - 
different Conditionally Yes Yes 

Fast motion Conditionally No Yes 

Similar objects 
around No Yes Yes 

Total occlusion 
recovery (similar) 

Confusion 
Possible 

Confusion 
Possible Yes 

Total occlusion 
recovery (different) Conditionally Conditionally Conditionally 

Across face No No Conditionally 
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objects into a larger false target. When total occlusion from a similar object occurs, 
the proposed method is able to correctly recover based on the motion prediction 
mechanism, while the other 2 algorithms often confuse the real target with the 
occluding object. Total occlusion from different larger objects is potentially 
problematic for all 3 algorithms.  

The proposed method, based on the motion prediction mechanism, is able to 
correctly recover from such a situation only if the target re-appears near the 
location of the disappearance or on the opposite side of the occluding object. The 
algorithm in [2], with its zero order motion prediction, can only recover near the 
location of the disappearance, while CAMSHIFT is able to recover in any position, 
given that no other skin colored object is present in the scene. Tracking the finger 
across the face has poor results with the proposed method (only works at slow 
motion speed under good lighting conditions), while the other 2 algorithms fail to 
track the target in this scenario. 

Compared to the CAMSHIFT algorithm, which relies on a single feature, the 
proposed multi-cue algorithm is able to better keep track of the target, especially 
near other skin colored objects or when skin-like colors are present in the 
background. Also, the proposed algorithm is able to effectively track the finger 
under appearance scale changes. In my past experiments, the CAMSHIFT algorithm 
often lost the target during appearance scale changes, when other skin-like colored 
areas were present in the scene. 

Compared to the tracking algorithm in [2], the proposed method showed 
similar results for scale changes, partial occlusions and skin like colored background 
and significantly improved results when the target moved very fast, when crossing 
another similar object and in scenes containing motion. 
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5. REAL-TIME DYNAMIC HAND GESTURE 
RECOGNITION 

Human gestures  are expressive human body motions, which generally 
contain spatial and temporal variation [85]. To handle these variations, an 
appropriate representation must be chosen. As they represent important 
communication means between human subjects, gestures also have an important 
potential for communication between human subjects and computers. The most 
important obstacle to overcome in order to achieve gesture based HCI, is to make 
human gestures understood by the computer (i.e. develop real-time algorithms that 
allow the computer to recognize human gestures). 

A vast amount of work in gesture recognition has been performed in the 
area of computer vision, and is reviewed in [86], [87], [88] and [89]. These works 
can be divided into two categories: trajectory based and dynamics model-based 
analysis. The trajectory based approach matches curves in configuration space to 
recognize gestures [90]. The dynamics model-based approach learns a parametric 
model of gestures.  

Recognition of human gestures is important for HCI, automated visual 
surveillance, video library indexing [85], control of video-games [91], remote control 
of home appliances, such as TV sets and DVD players [92], which in the future could 
be extended to the more general scenario of ubiquitous computing in everyday 
situations. 

Gestures can be static (information is conveyed by specific static positions of 
the user or of specific human body parts) or dynamic (information is transmitted 
through temporal evolution of the shape and/or position of the user or of specific 
parts of the user’s body). Combinations of the two types of gestures are also 
possible (e.g. sign language). Static gesture recognition relies on features like edges 
in order to encode in a symbolic form the shape of the object of interest (e.g. hand) 
and to classify the pose as a valid gesture when appropriate [93]. Dynamic gesture 
recognition relies on the analysis of temporal variations of shape and/or spatial 
position of the object of interest over a relatively short time span. 

Depending on the parts of the human body involved in performing the 
gesture, gestures can be divided in: 

- Finger, hand and arm gestures – recognition of hand poses, trajectories of 
hands and/or fingers, with a wide range of applications including sign 
language recognition, 

- Head and face gestures – head movements (nodding, shaking), eye 
blinking, direction of eye gaze, emotions encoded in facial expressions 
(sadness, happiness, surprise), 

- Body gestures – involve the movement of the entire body, like in 
recognizing the movements of a dancer or the human gait [87]. 
Dynamic hand gesture recognition methods can basically be divided into two 

categories: data-glove based methods and vision based methods. Glove-based 
approaches require the user to wear cumbersome, uncomfortable and expensive 
devices, containing various types of sensors, connected to the computer through 
one or more bunches of wires, which hinder the naturalness of the HCI. The main 
advantages of these methods are the availability of detailed information about all 
movements of the hand and fingers (including precise movements) and the 
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immunity to disturbing factors, like occlusions (including self-occlusions), clutter, 
lighting variations etc. Vision based methods rely on video camera(s) as input 
devices and have the potential to offer natural communication interfaces, without 
hindering the user in any way. On the other hand, vision based methods cannot 
capture fine movements of the hand and fingers and the tracking and gesture 
recognition processes need to overcome difficult obstacles, like occlusions, clutter 
scale changes, lighting changes etc. These obstacles make the vision based gesture 
recognition a challenging interdisciplinary research subject, involving computer 
vision, image processing, machine learning, bio-informatics and psychology [89].  

The most important aspects that influence the success of a gesture 
recognition system are: robustness, computational efficiency, scalability, the user’s 
tolerance and the naturalness of the gesture set used for communication. The 
robustness refers to the ability of the gesture recognition algorithm to overcome 
obstacles like those mentioned above. Computational efficiency is related to the 
requirement to perform all operations in real-time with cost-effective processing 
devices. Scalability refers to the easiness of adapting the gesture recognition system 
to different scales of possible applications (communication with large public 
information panels, with desktop computers, notebooks and small sized mobile 
devices). The user’s tolerance requires the implementation of some protection 
against potentially destructive effects due to false gesture detection. The 
naturalness of gestures requires the gestures used for communication to be selected 
(defined) in such a manner, that they can be easily memorized and executed by the 
user within a reasonable time interval. 

Vision-based gesture recognition systems in general are composed of three 
main [94] components: image preprocessing, tracking and gesture recognition. In 
individual systems, some of these components may be merged or missing, but their 
basic functionality [95] will normally be present. This chapter focuses on the last 
processing step – gesture recognition – given that the image preprocessing and 
tracking tasks were discussed in the previous chapter. Gesture recognition decides if 
the user is performing a meaningful gesture, based on the collected position, motion 
and pose clues. 

The classical algorithms from the field of pattern recognition are Hidden 
Markov Models (HMM), correlation and Neural Networks. Especially the first two 
have been successfully used in gesture recognition, while the Neural Networks often 
have the problem of modeling non-gestural patterns [96]. HMM is a typical 
dynamics model and was proven to be robust in the recognition of gestures [97]. 
The HMM model has been extended to a more general model, named Dynamic 
Bayesian Networks [98]. 

In this thesis, hand gestures and a trajectory based approach are used. In 
the papers [5] and [6], I proposed a solution centered on the mean shift algorithm. 
The mean shift algorithm is used for trajectory filtering and segmentation in the 
gesture recognition process and – on the other hand – the trajectories used for 
testing the performance of the gesture recognition are provided by a mean shift 
based tracking algorithm (CAMSHIFT). The trajectory based approach was chosen, 
as skin detection is quite well developed and robust [10], and relatively robust low 
computational cost tracking algorithms are also available [11], [12].  

The main goal in the design and implementation of the gesture recognition 
system proposed in [5] and [6] was to develop a low computational cost real-time 
algorithm, able to run on low-complexity hardware systems. The system must be 
able to learn from the user a small number of gestures, in order to recognize them 
later. 
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5.1. Trajectory based gesture recognition  

Trajectory based gesture recognition represents a subspace of the more 
general class of dynamic gesture recognition. While the dynamic gestures may 
convey information through temporal evolution of the shape and/or position of the 
user or of specific parts of the user’s body, trajectory based gestures convey the 
information exclusively through the temporal evolution of the position (spatial 
trajectory) of the target (e.g. hand, finger, head). Considering the target’s shape 
variations in time, in addition to the trajectory, allows for encoding more 
information within the same time span of the gesture. On the other hand, the 
additional information comes at the cost of a significant increase in computational 
complexity. Vision based gesture recognition systems using a single camera – which 
cannot capture detailed information about all the subtle movements of the target – 
have to overcome many obstacles, in order to get access to the information encoded 
in the shape variations and rotations of the target. Therefore, using only the 
trajectory information may significantly reduce the complexity of the gesture 
recognition process and at the same time increase its robustness. 

For trajectory based gestures, a tradeoff needs to be done between the 
naturalness of the gestures and the ease (i.e. the reduction of computational 
complexity) of gesture recognition processing. In this context, the definition of the 
gesture set may have a significant influence on both the computational complexity 
and the robustness of a trajectory based recognition system. Gestures which allow 
all kinds of trajectories have an increased naturalness potential, but the process of 
gesture recognition requires more complex processing and the chance of unintended 
gesture detection is increased. On the other hand, gesture sets which impose 
restrictions on the trajectory shapes allow for easier processing of the trajectory and 
reduce the chance of accidental (unintended) gesture detection, but the restrictions 
on the trajectory shapes may hinder the naturalness of the gestures.  

Many solutions have been proposed in literature for dynamic hand gesture 
recognition in various frameworks. Amongst the most popular solutions are those 
based on HMMs. With the theoretical mathematical fundaments developed since the 
‘60s, HMMs were used in the modeling of human motion and in gesture recognition 
applications since the ‘90s [99], after they were proven to be very effective in 
speech recognition applications [100].  

HMMs represent rich mathematical structures, which proved to be very 
adequate for modelling spatial-temporal information in a natural way [87]. This 
property kept the HMMs as one of the most appealing solutions to the researchers in 
the dynamic gesture recognition field to date [101], [102] and [103]. 

HMM relies on a Markov chain with finite number of states and a set of 
random processes, each of them associated to a state. At a given discrete moment 
in time, the process is in one of the states and generates an observation symbol 
based on the random function corresponding to the current state. Therefore, the 
transitions between states are governed by pairs of probabilities: transition 
probabilities (the probabilities to have transitions between states) and output 
probabilities (conditional probabilities of observing the output symbols given the 
current state). The term “hidden” in the name, states that all that is visible is only 
the sequence of observations. Some key issues in the use of HMMs are the 
evaluation (determination of the probability that the given sequence of observations 
was generated by the model), training (adjusting the model to maximize the 
probabilities) and decoding (use Viterbi algorithm to recover the state sequence). 
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Dynamic Bayesian Networks [98], which can be considered a generalization of 
HMMs, have also shown promising results in dynamic hand gesture recognition 
[104] and [105]. 

Finite State Machines (FSM) represent another popular approach with the 
recognition of dynamic hand gestures [106], [107] and [108]. FSM based solutions 
model the gestures using an ordered sequence of states in the space-time domain. 
The trajectories of the target are represented as sets of 2D points and in addition 
temporal information may be associated to each point. The FSM has to identify, 
from the unsegmented input trajectory, the sequences of states that match valid 
gestures. Valid gesture patterns can either be learned by initial training [106] or 
described using symbolic features [109]. 

Another major category of solutions used in the recognition of dynamic hand 
gestures is represented by the neural networks based approaches [110], [111] and 
[112]. Systems in this category can either be implemented as completely trained 
when in use, or with the ability to dynamically adapt to the user. Neural network 
based methods usually also handle spatial shape variations of the target, but they 
may require training and important computational resources. 

Given that straight trajectories are easier to process and the gestures 
composed of successions of relatively straight lines (strokes) are also easy to learn 
and execute by a user, I proposed in [5] and [6] a trajectory based gesture 
recognition method for recognizing gestures of this type. The gesture set chosen 
contains gestures consisting of 2 – 4 straight strokes. Gestures containing a single 
stroke are even easier to detect, but their inclusion in the gesture set may increase 
the chance of detecting accidental hand movements as valid gestures. Though the 
proposed algorithm also allows easy recognition of gestures containing more than 4 
straight strokes, the gestures consisting of a large number of strokes are not easy 
to learn and remember for the user and therefore the inclusion of such gestures 
would hinder the naturalness of the HCI.  

In the gesture recognition solution I proposed in [5] and [6], the hand 
trajectory is first processed for gesture segmentation and symbolic encoding, 
followed by a gesture recognition step which identifies the gesture by matching the 
symbols with the prototypes of valid gestures stored in a table. A FSM approach is 
used for gesture segmentation. 

5.2. Hand trajectory processing 

In the framework used for the research reported in papers [5] and [6], the 
trajectories of the hand are extracted using the CAMSHIFT algorithm [22] available 
in the OpenCV library. The trajectory recording process is governed by a FSM with 4 
states, as shown in Fig. 5.1: 

1) gesture start – static position for a short time interval, 
2) gesture motion – continuous movement of the hand, 
3) gesture end – static position for a short time interval and 
4) non-gesture motion – hand motion between gestures (not subject to further 

analysis). 
The only data which is further processed is the trajectory recorded when the 

state machine is state 2. First, a smoothing filter is used on the trajectory. Then, the 
data (an array of trajectory points’ coordinates) is converted into an array of 
segments’ slopes (angles), which are further filtered for outliers’ removal. Next, the 
trajectory is segmented by clustering the data based on the angles’ values and the 
gesture is encoded with a data structure with the following fields: (number of 
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strokes), (strokes angle sequence – the number of angle values is equal to the 
number of strokes), [(strokes lengths sequence)]. The last field is only useful for 
gestures which also contain proportionality data as relevant information. In the 
proposed gesture set, some 4-stroke gestures encode this type of information (e.g. 
for distinguishing between a square and elongated rectangles). For the 2- and 3-
strokes gestures, the lengths are not used – gesture recognition is performed in this 
cases based only on the number of strokes and the slopes’ sequence.  

5.2.1. Trajectory recording and smoothing 

The recording of a new gesture trajectory is triggered by a movement of the 
user’s hand, occurring after a short interval (1-2 seconds) of static position. 
Minimum thresholds are imposed to the amplitude and speed of the movement, in 
order to avoid false triggering due to tracking noise or hand trembling. The gesture 
trajectory recording ends when the movement speed falls below the imposed 
threshold for at least 1.5 seconds. 

The consecutive centers of the tracked region define a relatively rough 
(noisy) trajectory, increasing the difficulty of strokes detection. Therefore, the 
trajectory is smoothed so that each new trajectory point, , is obtained as a 

weighted average of the new measured point, , and the previous trajectory 

point, : 

   (5.1) 

The weighting parameter must be carefully chosen, as a too small value 
would over-smooth the trajectory, while larger values lead to relatively rough 
trajectories. 

5.2.2. Trajectory segmentation 

A set of angles with the horizontal axis is computed over the recorded 
trajectory. Computing the angle for each small segment determined by two 
consecutive points of the trajectory may result in a very noisy angle set, with many 
false angle discontinuities. This noise is caused by angles between trajectory points 
that are relatively close to each other, because the image is sampled on a 

 
Fig. 5.1. Gesture segmentation state machine. 
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rectangular grid. Selecting a reduced number of trajectory points using a fixed step 
(e.g. choosing each second or third point of the trajectory) results in a relatively 
smoothed angle set. To further improve the results, I chose to adaptively select 
trajectory points based on a threshold distance. An adequately chosen threshold 
distance significantly reduces the number of outliers in the resulting angle sequence. 
Even with the fixed step selection, a distance threshold must be imposed, in order 
to avoid computing the angle if the two points have the same position. 

In order to split the trajectory into strokes, the ends of these strokes must 
be detected. The starting point of the trajectory is also the starting point of the first 
segment, and the end point of the trajectory is the end point of the last segment. All 
other strokes’ end points (trajectory turning points) are detected as slope 
discontinuity points, the starting point of each segment being the end of the 
previous segment. A stroke discontinuity is detected as a point where the segment 
angle with the horizontal axis changes significantly. A threshold must be imposed on 
the minimum length of a stroke, in order to avoid detection of false strokes. 

As the raw angle set computed adaptively over the trajectory may still 
contain some outliers – especially around the strokes’ joint points – filtering is 
necessary in order to simplify the feature extraction process. 

In typical situations, median filtering within a 5 angles window reduces the 
roughness of the angle sequence over a stroke, but used alone it is not very helpful 
when either very low or very high frequency noise is present.  

A second filtering approach, which I implemented and tested, uses an 
intelligent classification filter with a 7 angles window. Each of the 7 angles in the 
window is assigned to one of 8 angle classes, and the number of angles in each 
class is counted. Ideally, all the angles over a stroke should belong to the same 
class. Exceptions may occur due to high segment angle noise or due to a 
neighboring stroke’s end/joint point. If at least 4 angles in the window belong to the 
same class, the processed angle is replaced with that class’s typical value. If either 
the resulting class differs from the current stroke’s class or no class has at least 4 
representatives in the window, the filter advances and checks the next angles to 
detect if there is a new stroke, or just a noisy angle group. A new stroke is assumed 
if all the angles for a group of consecutive segments that cover the minimum stroke 
length are filtered to the same class. 

The third approach, which I implemented and tested, uses a mean shift 
based clustering of the angle set and is the most robust and efficient. A 2D 
anisotropic kernel obtained by multiplication of 2 1D symmetric kernels with 
different profiles is used. Considering that the data vector, [ , ]pθ=x , consists of 
the segment angle, θ, and position in the angle sequence, p, the kernels for the two 
dimensions are: 

 
1 2

2 2
1 g 1 2 g 2G (θ) c g θ ,  G (p) c g p .   = ⋅ = ⋅   

   
  (5.2) 

Considering different bandwidths for the 2 kernels, the resulting product 
kernel is: 

 

( ) 1 2

1 2

g g
1 2

θ θ p p

g g
1 2

θ p θ p

c cθ pG x G G
h h h h

c c θ pG G .
h h h h

    
  = ⋅ ⋅ ⋅            

  
 = ⋅ ⋅       

  (5.3) 
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Bandwidth selection is an important problem in nonparametric methods and 
the main categories of available solutions to this problem were presented in chapter 
2.3. Product kernels obtained by multiplication of 1D kernels with identical profiles 
but different bandwidths in different dimensions were used in [72]. Anisotropic 
kernels were also previously used in computer vision for image and video 
segmentation [113] and video tracking [36]. In the related approach, bilateral 
filtering, Tomasi and Manduchi [114] also use separable kernels for the space and 
range domains. The relationship between the bilateral filters and the mean shift 
algorithm is emphasized in [115]. 

In order to guarantee the convergence of the mean shift algorithm, the 
shadows of both 1D kernels must be convex and monotonically decreasing, so that 
their resulting 2D product kernel is also convex and monotonically decreasing. 

In the angle domain, a uniform kernel is used with an initial bandwidth, h, 
which may be later increased to merge clusters that are very close to each other in 
this domain. The shadow of the uniform kernel is the Epanechnikov kernel, which 
has a convex and monotonically decreasing profile, satisfying the convergence 
condition. If the mean shift algorithm is applied based only on the statistical 
information, some outliers may survive the filtering process (if they correspond to 
the cluster of a different stroke present in the trajectory). 

Spatial information is taken into account using a spatial isotropic kernel 
(e.g. triangular, Epanechnikov, normal), that assigns larger weights to the angles of 
the segments in the middle of the window and smaller weights to those in the 
extremities. Each of the above mentioned isotropic kernels have shadows that 
satisfy the convergence condition. 

Similar to the bilateral filtering approach, the mean shift is applied only for 
the angle dimension, while the kernel in the space domain does not change its 
central position between the mean shift iterations. 

Using the uniform kernel for angles and the Epanechnikov kernel for the 
spatial information (the position in the angle sequence), the mean shift vector 
becomes: 

 ( )θ p

n
i i

i 1 2
θ pi 1

h ,h ,G n
i i

1 2
θ pi 1

θ θ p pθ G G
h h

ms θ θ.
θ θ p pG G

h h

=

=

  − −
        = −
  − −
        

∑

∑
  (5.4) 

Clusters with very few angles (not numerous enough to define a stroke) are 
removed from analysis and the corresponding angles are each assigned to the 
spatial neighboring cluster that is nearest in the angle domain. Finally, only clusters 
that correspond to plausible strokes are kept and the stroke ends are detected as 
points where the angle cluster changes in the angle sequence.  

In the mean shift clustering process, special care is taken for the angles in 
the intervals [180° – h, 180°] and (–180°, h – 180°], due to the circular definition 
of the angle as shown in Fig. 5.2. 

Therefore, if the center of the kernel window falls within the [180° – h, 
180°], angles from the (–180°, h – 180°] interval will also be taken into account by 
converting them to the (180°, h + 180°] domain. Similarly, when the angle kernel 
window is centered on a value within the (–180°, h – 180°] interval, values from 
the [180° – h, 180°] interval will be taken into account by converting them to the [–
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180° – h, –180°]. Finally, if the resulting filtered value is outside the interval (–
180°, 180°], it will be converted to fit this interval. 

The results obtained with the second and third filtering approaches are 
further improved if the median filtering is used as a preprocessing step. 

5.2.3. Feature extraction 

After the stroke ends are detected, the parameters of the trajectory are 
extracted. The useful parameters which must be extracted are: the number of 
strokes, the strokes’ angle sequence and the strokes’ lengths.  

A simple analysis of the mean shift filtered angle sequence obtained at the 
previous step allows the extraction of the required parameters: the angle and end 
points for each stroke and the total number of strokes.  The strokes’ lengths can be 
easily obtained using the coordinates of the stroke ends.  

Each gesture known by the system is represented by a codified angle 
sequence. The angles of the 8 directions allowed and the associated codes are 
presented in Table 5.1. Opposite directions have complementary codes. 

The angle of each stroke must be classified and assigned to one of the 8 
classes. In order to assign the angle to a class, its value must fit a ±20° window 
around the standard value. A 5° guard space is left between consecutive windows as 
shown in Fig. 5.3.  

Table 5.1. Codes associated to angle directions. 
θ  0° 45° 90° 135° –45° –90° –135° 180° 
Code 0 1 2 3 4 5 6 7 

 

07

1
2

3

4
5

6

 
Fig. 5.3. Angle classes. 

0°

90°

(-)180°

-90°

(-)180°-h 

(-)180°+h

 
Fig. 5.2. Dealing with the circular definition of the angle 

for correct mean-shift clustering. 
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If a stroke’s angle falls within a guard space it is not possible to classify it 
and the analysis is stopped, invalidating the current gesture. 

The first angle of the sequence is the angle between the first stroke and the 
horizontal axis, while the next angles can be either the angles made by each stroke 
in the sequence with the horizontal axis or with the previous stroke. The second 
solution may increase the robustness to small global trajectory rotations, but 
reduces the possible gestures alphabet’s size.  

A global rotation correction may be applied to the strokes angle sequence if 
a large median deviation from the nearest class is detected. Fig. 5.4 shows an 
example of a 3-stroke gesture that exhibits a global –15° rotation. Direct 
classification of the strokes angle sequence (left side) produces the erroneous 
sequence (0°, –90°, 0°), while the global rotation correction allows a correct 
classification of the sequence to (0°, –135°, 0°). 

At the end of the trajectory segmentation process, the endpoints of all 
strokes are known. As all valid strokes are assumed to be linear, it is 
straightforward to compute the approximate length for each stroke, as the Euclidean 
distance between its endpoints: 

 ( ) ( )2 2
i i i 1 i i 1

i i i 1 i 1

l x x y y ,  

(x ,y ),(x ,y ) (x,y) coordinates of the i-th stroke endpoints.
+ +

+ +

= - + -

-
  (5.5) 

The calculation of stroke lengths can be skipped for 2- and 3-stroke 
gestures, given that in these cases the proportionality between stroke lengths is not 
relevant for the gesture recognition step. 

Median deviation = 15°

-15° angle
correction

Stroke angle sequence 
classification

0°

0°

-135°

0°

0°

-90°

20
°

15
°

-109°

5°

0°

-124°

 
Fig. 5.4. Effect of global rotation correction. 
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5.3. Gesture recognition 

The gesture discrimination process is very simple, and does not require 
complex classification based on curve matching. A gesture consists of a minimum of 
2 strokes and is uniquely identified based on: 

• number of strokes (>1), 
• slope (angle) sequence and 
• strokes proportionality (optional). 

Each gesture prototype is encoded using an array of symbols containing the 
number of straight strokes, the slopes of the strokes and – optionally – 
proportionality information. A huge number of gestures can be defined in this way. 
The maximum number of distinct gestures consisting of 2, 3 and 4 strokes, without 
using proportionality as a discriminant, is: 

 
max

2 stroe 3 stroe 4 stroe
gestures gestures gestures

NumG 8 7 8 7 7 8 7 7 7 3192.
− − −

= × + × × + × × × =
 

  (5.6) 

The first stroke may have any of the 8 defined reference slopes, while for each of 
the subsequent strokes the number of possible slopes is 7 (a new stroke cannot 
have the same slope as the previous one). This number can further be increased by 
adding proportionality information for some of the gestures. Depending on the 
application, a small amount of them should be selected (based on naturalness of 
execution and intuitiveness). The gestures used should be chosen so that the user 
can easily execute them and learn the gesture –action correspondence. Multiple 
gestures having the same intuitive meaning can be associated to a single action. For 
example the ‘Up’ command can be indicated either by a succession of 2 vertical 
strokes (upward followed by downward) or by any 2 consecutive strokes making an 
angle in the range (0° – 90°] pointing upwards.   

Table 5.2 presents some examples of gesture prototypes and their symbolic 
representations (the slope sequences are encoded according to the correspondences 
in Table 5.1). Gestures 1 – 3 consist of 2 strokes, gestures 4 and 5 have 3 strokes, 
while the last 2 examples (gestures 6 and 7) consist of 4 strokes. Gestures 1 and 2 
differ only in the order of the strokes. Examples of actions to which these gestures 
could be naturally associated are ‘Previous’ / ‘Left’ and ‘Next’ / ‘Right’. Gesture 3 can 
be associated with the ‘Up’ command as well as a 90° rotated version of gesture 1. 
Gestures 6 and 7 have the same number of strokes (4) and the same slopes 
sequence and are discriminated based on the proportionality information. 

The discrimination process is done sequentially, based on the 3 parameters, 
as shown in Fig. 5.5. As all gestures that reach this processing step were already 
validated from the number of strokes and angle sequence point of view, these 
parameters are strict, while the stroke proportionality is allowed to vary within an 
error window. The first parameter to take into account when discriminating between 
gestures is the number of strokes. This step removes from further analysis all 
gestures with a different number of strokes. In the next step, the angle sequence is 
decoded. In most cases, this step is enough to uniquely identify the gesture and 
terminate the analysis.  

Some 4-stroke gesture codes (e.g. square/rectangle codes) may require 
further classification based on strokes proportionality. The strokes’ proportions are 
allowed to vary within an error window. The error window must be chosen large 
enough to accommodate the imperfections of the hand drawn trajectory, but small 
enough to allow correct discrimination between different gestures. 
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Table 5.2. Gestures examples with corresponding symbolic representation 

No. Gesture trajectory prototype Symbolic representation  

1 
1

2

 
(2), (0, 7) 

2 
1

2

 
(2), (7, 0) 

3 12

 

(2), (3, 6) 

4 

3

1 2

 

(3), (1, 5, 7) 

5 1

2

3

 

(3), (2, 4, 6) 

6 1

2
3

4
 

(4), (2, 0, 5, 7), [( V 1
H

= )] 

7 1

2
3

4
 

(4), (2, 0, 5, 7), [( V 0.5
H

= )] 

 – Start point
– Turning point
– End point
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A guard space must be allowed between gestures that are distinguished based on 
the proportionality features and if the proportions fall within the guard space, the 
user is asked to repeat the gesture. 

5.4. Results and discussions 

The hardware processing system used to implement and test the proposed 
gesture recognition solution was a PC with a 1.6 GHz AMD Athlon XP processor and 
768 MB of RAM. Video acquisition was realized using a commercial USB webcam 
with 352×288 video resolution. The software application was implemented in Visual 
C++ and some functions from the OpenCV library were used.  

N=

START

Read angle 
sequence (2)

Read angle 
sequence (3)

Read angle 
sequence (4)

3

2 4

Class decision
(max. 8x7 
gestures)

Class decision
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gestures)

Class decision
(max. 8x7x7x7 

gestures)

Decide 
subclass 
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proportionality

Scale 
properties

STOP

YESNO

 
Fig. 5.5. Sequential gesture discrimination. 
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The application uses a tracker based on the CAMSHIFT function of the 
OpenCV library. This algorithm is able to track a hand based on the hue, assuming 
saturation and value thresholds are relatively well calibrated and no occlusions occur 
and no other objects of similar color are present in the neighborhood of the hand. 
Fig. 5.6 presents the tracker focused on a hand. 

The practical tests revealed that a value of 0.4 for the weighting parameter, 
α , in equation (5.1) produces a relatively smooth trajectory. A threshold distance of 
3 pixels was used in the computation of the segments angle sequence, for the 
352×288 frame size. A threshold was also imposed on the minimum length of a 
stroke, in order to avoid detection of false strokes. A reasonable value for this 
threshold is 1/10 of the image height. The initial bandwidth of the uniform kernel 
used in the angle domain is 20°, but may be later increased in order to merge 
clusters that are very close to each other in this domain. The bandwidth used for the 
Epanechnikov kernel in the position domain is 20.  

The use of Epanechnikov kernel in the position domain, even with such a 
large bandwidth, avoids taking into account angle values from a far stroke, which 
could be similar to some noisy angles around the current processed position. Even if 
such angles would fall within the kernel window, their influence would be diminished 
by the small weights near the kernel window’s ends. Without using the kernel in the 
spatial domain, noisy angles may survive in the filtered angle sequence, if their 
values are similar to those of another stroke. 

The recorded trajectory for a 3-stroke gesture is presented in Fig. 5.7. The 
displayed trajectory is drawn based on pre-smoothed recorded positions of the 
hand. The resulting stroke angle sequence for the gesture in Fig. 5.7 is: 45°, -90°, 
180° and the resulting coded sequence for this example is “1, 5, 7”. 

 
Fig. 5.6. The CamShift tracker. 
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Histograms of the slopes sequences for examples of 2, 3 and 4-strokes 
gestures are presented in Fig. 5.8, Fig. 5.9 and Fig. 5.10. The 3 histograms of 
subsection angles indicate that the subsection angles are clustered, allowing easy 
separation of the strokes. 

  

 
Fig. 5.7. Trajectory of a 3-strokes gesture. 

 
Fig. 5.8. Angle histogram for 2-stroke gesture. 
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Tests were performed on a total number of 60 gestures, executed by 3 
subjects in both daylight and artificial light. The tested gesture sequences were 
composed of 2, 3 and 4 variable length strokes, with sharp and/or right angles 
between consecutive strokes. 

Fig. 5.11 presents a histogram of standard deviations in raw angle 
sequences, realized using 70 strokes from 25 randomly chosen gestures. The 
standard deviation of the angle over a stroke varied between less than 5° for near 
linear strokes and over 30° for rough ones. After combining median filtering and 
mean shift filtering, the standard angle deviation over a stroke is reduced to 0° – 
3°. 

The mean shift based algorithm was able to correctly identify all gestures, 
even under challenging conditions, like hand trembling or short term target losses in 
a cluttered environment.  

 
Fig. 5.9. Angle histogram for 3-stroke gesture. 

 

 
Fig. 5.10. Angle histogram for 4-stroke gesture. 

BUPT



5.4 – Results and discussions     107 

 
 

 
Fig. 5.11. Histogram of the standard deviations over a set of 70 strokes. 

 

 
Fig. 5.12. Original and filtered angle sequences plot. 
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Using the classification based trajectory segmentation, 56 gestures were 

correctly recognized, 1 gesture was misclassified (4 strokes detected instead of 3) 
and 3 gestures were not recognized (the number of detected strokes exceeded 4). 

The proposed algorithm runs in real-time on the specified hardware system, 
being able to successfully recognize the tested gestures. 

Fig. 5.12.a) presents a high noise angle sequence obtained from a 3 stroke 
gesture, affected by hand trembling. The median filtered sequence is represented in 
Fig. 5.12.b).  

The classify-and-filter method leads in this case to an erroneous 5 strokes 
detected gesture (Fig. 5.13.a)). The mean shift based algorithm (Fig. 5.13.b)) is still 
able to correctly interpret the gesture as the 3 strokes 180°, 45°, -90°. 

Other gesture recognition solutions, [116], [117], rely on processing 

 
Fig. 5.13. Segmented trajectory and extracted features. 
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different successions of shape and positions of the hand and achieve relatively good 
recognition rates, at the price of significantly higher computational complexity.  

The proposed solution has a reduced computational complexity, using a 
mean-shift based tracker, trajectory segmentation and trivial syntactic, trajectory 
based gesture recognition. The low computational cost allows the use of the 
algorithm in order to implement HMIs on relatively cheap systems. The user can use 
the system with minimal training. He is able to decide the gesture-action 
correspondences. 
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6. CONCLUSIONS AND FUTURE DEVELOPMENTS 
In this thesis, new solutions related to the tracking of fingers in video 

sequences and the recognition of dynamic hand gestures based on trajectory are 
proposed. On the tracking related side, new solutions are proposed for tracking 
initialization and for the tracking process itself. The gesture recognition contributions 
include the thoughtful choice of the gesture alphabet and solutions for processing 
the trajectory, as well as for low computational complexity gesture recognition. 
Given the envisaged application range – HCI – all the newly proposed solutions aim 
at the real-time running capability, using inexpensive, largely available on the 
market, hardware systems. The results’ evaluations indicate that the proposed 
solutions successfully achieve the goal assumed, without important sacrifices in 
terms of naturalness, precision and robustness. 

The tracking initialization method presented in section 4.2 proved its 
reliability during the initial tests and was later successfully used for the initialization 
of the hand/finger tracking algorithm proposed in [3] and [4] and presented in 
sections 4.3 – 4.5. The method is easy to use from the user’s point of view. While 
the multiple conditions imposed for initialization need low computational resources, 
they are able to provide a quick initialization and to prevent false triggering. The 
multi-cue approach allows the proposed initialization method to operate correctly 
under very different lighting conditions, with different backgrounds, without the 
need to readjust the settings of the thresholds. The advantage of a safe start is 
obtained at the price of a reduced flexibility regarding the initial position of the hand 
and of restrictions regarding the hand color uniformity (i.e. the user may not wear 
gloves, have extremely dirty hands etc.). The four detection criteria together with 
the time constraints imposed provide a user friendly initialization procedure. The 
time interval when the user must keep the hand in a given pose at a specific 
location is short enough in order not to be considered a drawback and it is long 
enough to significantly reduce the chances of false triggering. 

The finger detection and tracking algorithm proposed in [3] and [4] is 
robust, computationally efficient and offers good results in challenging situations like 
frames affected by motion blur, fast movement, rapid scale changes, occlusions or 
the presence of other similar objects in the neighborhood of the target. The 
robustness is granted by the combination of multiple low level features to generate 
a sparse representation using line strips, followed by clustering and filtering of the 
new features. The use of line strip features also ensures computational efficiency, by 
significantly reducing the data to process. The proposed tracking algorithm is 
suitable for use both in pointing based HCIs (relying only on the fingertip positions) 
and dynamic gesture based HCIs (the finger angle and length can be used together 
with the location information). The low computational requirements make the 
proposed method also suitable for implementation with simpler processors. 

The method for gesture definition and symbolic representation, together 
with the trajectory processing and segmentation algorithms presented in chapter 5, 
allow for a trivial, yet effective, gesture recognition implementation, based on 
matching the symbolic representation of the trajectory to the symbolic 
representation of the gesture prototypes. The low computational cost allows the use 
of the algorithm in order to implement HMIs on relatively cheap systems. Minimal 
training is required for the user in order to accommodate with the proposed HCI 
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framework. The associations between gestures and actions can either be predefined, 
requiring the user to learn the given correspondences, or the user can be allowed to 
choose its preferred gesture-action correspondences. 

The next section of this chapter presents a summary of my original 
contributions presented in this thesis, while the last section indicates possible future 
developments based on the reported results. 

6.1. Review of the original contributions 

The main original contributions presented in this thesis can be classified, 
based on the target processing phase within a HCI system, into tracking related 
contributions and gesture recognition related contributions. Fig. 6.1 presents a 
hierarchical overview of the original contributions reported in the thesis. The 
tracking related contributions were presented in Chapter 4.  
The main tracking-related personal contributions are: 

• The design and implementation of a new semi-automatic finger tracking 
initialization method. The proposed method is presented in section 4.2 of 
the thesis and was previously published in [1]. Multiple features are used for 
finger detection. The initialization algorithm is implemented as a state 
machine. A special state is introduced for ensuring that the finger is 
detected as a consequence of the user’s intention to perform dynamic 
gestures in front of the camera. Temporal and spatial conditions are tested 
to avoid triggering the tracker when it is not necessary. 

• The design and implementation of a new robust finger tracking algorithm, 

 
Fig. 6.1. Hierarchical overview of the main original contributions. 
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using multiple low, medium and high level features. The proposed solution is 
presented in sections 4.3 – 4.5 and was previously published in [3] and [4]. 
A multi-layer approach is used for processing the low level features, each 
processing layer reducing the amount of data to process for the next 
layer(s). Multiple aspects contribute to ensure the robustness: the use of 
multiple features, the ability to choose the medium level feature set which 
maximizes the probability of correct detection, successive filtering steps 
including weighted averaging and median filter, data clustering using 2D 
histogram-based analysis, motion prediction and the use of adaptive 
coefficients for updating the target parameters. 

Other tracking-related personal contributions are: 
• The experimental testing of performances of the tracking initialization 

method, with multiple prerecorded and live captured video sequences, under 
different lighting conditions with various backgrounds. The experimental 
results are discussed in section 4.6.1. 

• The experimental testing of performances of the proposed tracking 
algorithm, with multiple video sequences acquired in different conditions, 
including multiple challenges for the tracker: motion blur, rapid scale 
changes, fast motion, presence of similar objects in the neighborhood, 
occlusions. The experimental results are presented in section 4.6.2. 

The main contributions concerning the gesture recognition are: 
• I proposed a gesture set containing gestures which are composed of quasi-

linear consecutive strokes. The syntax used for the gesture representation 
allows for more than 3000 distinct gestures, using low numbers of 
consecutive strokes/gesture (2 – 4 strokes). From the huge amount of 
available gestures, a smaller group (containing the most easy to learn and 
to execute ones) can be selected, and different commands can be assigned 
to each of the selected gestures, for use in HCI. The proposed gesture 
definition method is presented in section 5.3. 

• I proposed 2 new methods for hand trajectory processing and segmentation, 
which lead to symbolic representations of the trajectories and facilitate the 
gesture recognition: one method uses a statistical approach for filtering 
classified angle values, while the second method uses median filter and 
mean-shift clustering for trajectory segmentation. The proposed methods 
are presented in section 5.2 and were previously published in [5] and [6]. 

• Relying on the above claimed gesture definition method and the symbolic 
representation of gestures and trajectories, I proposed a very simple 
gesture recognition method implemented within a state machine. The 
gestures are recognized based on symbolic information matching between 
the trajectory and the gesture prototype. The proposed method is presented 
in section 5.3 and was previously published in [5] and [6]. 

Other gesture recognition related contribution: 
• The evaluation of performances of the new methods proposed for trajectory 

segmentation and gesture recognition. The experimental results are 
presented in section 5.4. 

6.2. Future research and development directions 

• Integration of the proposed gesture recognition and tracking algorithms into 
a gesture based interface with a defined gesture alphabet. This also includes 
the evaluation of performances of gesture recognition using the trajectories 
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provided by the new tracking algorithm (which outperformed CAMSHIFT in 
many of the tested challenging situations).  

• Further developments include definition of some recommended optimized 
gesture alphabets. An optimized alphabet involves the selection of gestures 
such that the general user can easily memorize and execute them. It is 
therefore desirable to select gestures composed of a reduced number of 
strokes, representing some significant geometric shapes and minimizing the 
possibility for the user to exceed the visual area of the camera while 
executing the gesture. 

• An audio feedback to the user would also be useful, in order to allow it to 
focus its sight on its main activity (e.g. reading, viewing pictures, driving 
etc.). The audio feedback is straightforward to implement (i.e. play a pre-
recorded audio track for each recognized gesture) and allows the user to 
know whether its gesture was correctly executed and correctly recognized 
by the system.  

• Definition of a procedure for canceling the previous command is also 
necessary, to allow the user to cancel a command generated by a wrong 
execution of a gesture. 

• The use of additional features (e.g. contours) for tracking, in order to extend 
the algorithm’s robustness to non-fixed background environments. 

• The extraction of additional semantical information for use in the tracking 
algorithm in order to handle long term occlusions. 
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