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Rezumat:

Cercetdrile din prezenta teza se axeazd pe doud directii de mare
interes din domeniul interdisciplinar al analizei de retele sociale: pe de o
parte propun analiza structurald a mai multor tipuri de retele complexe, de
colaborare, sintetizata prin modelarea topologicd mai realista a retelelor
sociale, si pe de altd parte propun un nou model de interactiune sociald bazat
pe un concept nou introdus denumit tolerantd. Prin aceste modele se
reuseste imbundtdtirea reproducerii dinamicii opiniei prin simulari.
Elementele de originalitate constau in utilizarea algoritmilor genetici, a
atasamentului preferential folosind metrica de betweenness, si a tiparelor de
interactiune cu limite dinamice a agentilor sociali.

Lucrarea se evidentiaza prin aplicarea conceptelor noi din domeniul
stiintei retelelor pe date empirice, pentru a intelege si a modela mai bine
procesele sociale din lumea reala.
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Abstract

The recently introduced term, coined as New Network Science, facilitates the understanding of many
emergent phenomena in nature and society, and is a major trend on the modern scientific scale. One
branch of Network Science that has attracted much attention in the last decade is Social Networks
Analysis. The benefit of understanding the complex processes behind how people adopt and form
their own opinions about surrounding problems is an important concern for research fields like Psy-
chology, Philosophy, Politics, Marketing, Finances, and even Warfare, and it can be alleviated using
network analysis.

Social media is constantly modifying the way we create, share and consume information, and has
become a powerful tool for understanding social trends, and society as a whole. The goal of this
thesis is to help in the understanding and better prediction of diffusion phenomena, by using the
computer as a tool for social networks analysis. Relying on computer science as a means for mod-
eling and analysis of the underlying social topologies and individual interaction models, I focus on
understanding systems of people and when they become stable, as well as the connections that cause
events in social networks As such, I make use of the emerging interdisciplinary field of Social Net-
works Analysis, which sheds new light into the modeling of social opinion dynamics and personal
opinion fluctuations, of how people influence each other and how they can be influenced.

The presented work begins with the analysis at the topological level of human relationship estab-
lishment, then explains and models network growth and interaction based on original and validated
socio-psychological assumptions, and reaches the meta-level of human interaction models. These
models are a current scientific (and also socio-political) barrier in predicting social emergence and
being able to design more stable and safe social systems in the future.

I achieve the goals to model social interaction, network structure and network growth more accu-
rately, and ultimately discuss how decision factors can be influenced at the macroscopic level of the
society we live in. Like most of the sciences studying opinion and influence, this work models the
decision process by combining elements from Psychology, Sociology, Anthropology, and Computer

Science.
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Preface

“The world is governed by opinion.”

Thomas Hobbes (philosopher, 1588 - 1679)

To my dear family and closest friends who give me the ambition to surprise myself every day.
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centrality distribution a representative Facebook network which follows a particu
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5.6.

Unweighted scale-free networks synthetically generated using four different central{

Ity measures as node fitness for preferential attachment: degree, betweenness, eigen-

centrality, and closeness, along with the corresponding fidelity values towards Face-

book empirical reference. The nodes are colored and sized proportionally to their|

[itness in each respectivenetwork] . . . . . . . .. ... ... oo L 0oL,
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the Facebook empirical reference. 'The nodes are colored and sized proportional to
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One of the two envisioned ways for a social agent to increase its status. lhe firs{

choice (depicted 1n red) relies on forcing tie strengths to increase first, then followed
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ones influence, which will in turn trigger an increase 1in tie strengths. [ consider thq

second choice as the plausible social process| . . . . . . . .. . ... ... ... ..
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An intuitive explanation of the social evolution cycle. All nodes are colored and sized

proportional to their betweenness centrality (influence). a. A non-intluential actor|

(gray) initiates social contact with other actors equal or more influential than himself]

b. This action leads to a natural increase in influence (betweenness). c. Other nodeg

with less influence start connecting to the initial node. At this point, the initial node

has become a predominant receiverofties| . . . . . . . . ... ... ... ... ..
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Opinion dynamics for six popular hashtags on: a. Memelracker. lags I, 5, and §
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pll exhibit the fusion phase (/') (opinion spike), then they slowly converge towardg

Intolerance. lags 2 and 4 have an 1nitial spike before the /' phase and more oscilla

tions after . lhe tolerance phase is depicted in tag 2 as the oscillation exists, but it iy

balanced. lag 3 exhibits a second spike atter the F phase, then enters the intolerance

bhase; as such, social balancing does not occur in tag 3. b. ITwitter. lags 1, 2, 3 and
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2.

Representative example for the evolution of reviews count and reviews votes for q

popular businesses on Yelp. The ratio of review votes with respect to the review count)

represented with the green line, 1s interpreted as stubborn agent SA (or opinion

source) concentration. lhe average user defined popularity of the respective busi-

ness over the same period of time represents the state of the social network. Also}

the variation of the stars (blue) i1s represented with orange in the lower panel and it 1§

Interpreted as the participants opinion change w. Point A depicts the 5 A concentra

tion which triggers the delayed convergence in opinion (point b), and spike in opin-
lon change (point C). In this example we have A(OX=28), B(OX=33), C(OX=32))

N L i 3

B.3.

‘The four opinion formation phases represented in terms of: normalized amplitudg

(number of tweets / maximum number of tweets or opinion change in Yelp / max

imum opinion change in stars), with each bar-plot depicting the minimum, maxi-

Imum and average variation of opinion change; and time duration (on OX time-axis))

with each horizontal bar depicting the minimum, maximum durations of the phaseq

(gray), and the time at which 1t occurs on average (orange). All datasets indicate the

kame shape of opinion dynamics and the same succession of phases: [-initiation)

|l'-fusion, 1 -tolerance and T—lntolerance.l .......................

B4

Evolution of reviews count and reviews votes for three popular businesses on Yelp

bver the period of 2010-2012. Accompanying each review trend, 1s the the averagq

user defined popularity of the respective business over the same period of time. 1hg

critical opinion source concentration at OX=35 correlates with a stabilization of theq

ktate of the society given as the evolution of average stars awarded| . . . . . ... ..

B.5.

Evolution of reviews count and reviews votes for three popular businesses on Yelp

bver the period of 2010-2012. Accompanying each review trend, 1s the the averagq

luser defined popularity of the respective business over the same period of time. The

critical opinion source concentration at OX=32 correlates with a stabilization of theg

ktate of the society given as the evolution of average starsawarded] . . . . . . .. ..

6.6.

Evolution of reviews count and reviews votes for three popular businesses on Yelp

bver the period of 2010-2012. Accompanying each review trend, 1s the the averageg

user defined popularity of the respective business over the same period of time. lh¢

critical opinion source concentration at OX=28 correlates with a stabilization of theg

ktate of the society given as the evolution of average starsawarded] . . . . . . .. ..
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B.7.

a. Interaction models taxonomy. b. Opinion representation types, where the larger

nodes (labeled with S) represent stubborn agents. Discrete opinion (left): nodes have

ppinion 0 (red) or 1 (green) atany time (SD). Continuous opinion (right): nodes have

any opinion between O and 1, highlighted by the color gradient transitioning from|

Ired to green (SC). c¢. Two opinion diffusion models for discrete representation: singlq

diftusion (SD), respectivelty complex diffusion (CD)} . . . . .. .. ... ... ...

B.8.

‘lhe tolerance function as defined by the progressive tolerance model. a. lolerance

kcaling: shows how tolerance ¢ increases with the a;€1 scaling, as a result of contin

uous opinion change for an agent 2. b. Intolerance scaling: shows how tolerance ¢

drops with the ageg scaling, from an initial tolerance #;(0) = 1 to complete intoler-

pnce (0; (1) =0) . . . . . . o e

6.9.

Green (1) vs. red (0) opinion evolution with homogeneous stubborn agent distribu-

tion 1n a 100,000 node social network. The network 1s initialized with 32 red and 32

ereen stubborn agents. Initially, the regular agents have no opinion and are colored

with grey. | distinguish between the following phases of opinion formation: a. lhe

initiation phase / where the society has no opinion, i.e. the stubborn agents exer-

ise their influence to the surrounding neighborhood without being affected by any|

bther opinion. b. 'The fusion phase £ where the society 1s now mostly polarized

(green or red) and difterent opinion clusters expand and collapse throughout the so-

ciety. c. lolerance phase /', where the cluster interaction stabilizes and new, larger]

Imore stable clusters emerge. d. Intolerance phase T, where the overall tolerance of|

pgents has decreased to a point where opinion tluctuation ceases and the red opinion|

becomes dominant (6(¢) < 0.1)] . . ... .. ... .. ... ... .. .. ...

B.10.

Simulation of a 100,000 mesh network with SocialSim [253], displaying a representa

ltive example for the evolution of s(%), #(%), and w(?), as well as the opinion evolution|

Is(t) with various stubborn agents distributions. a. Mesh topology, where the low-

st panel displays the opinion change (w) evolution over three simulation phases. b

Opinion evolution s(t) with few and evenly distributed SA (1:1 ratio: 1 green, 1 red).

. Opinion evolution with many and evenly distributed stubborn agents (1:1 ratiof

B2 green, 32 red), d. Opinion evolution with few and unevenly distributed stubborn|

pgents (1:4 ratio: 1 green,4red)!. . . . . . . . . . . ..o
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B.IT.

Opinion evolution with homogeneous stubborn agent distribution (32:32) in small{

world and scale-free networks. a. lolerance phase where no visible clusters emerge

for small-world networks. b. For small-world networks, social balancing is attained

because tolerance remains extremely high (6(¢) > 90%), opinion change (w) exhibitg

the three opinion evolution phases (initiation /, fusion F', and tolerance /'), and

never reaches intolerance. The state of the society s(?) is stable. ¢. Social balancing

Is not achieved for scale-free networks: tolerance drops constantly and the society

Feaches the intolerance phase (7). The state of the society s(Z) is unstable during

the first three phases of opinion change, then stabilizes as tolerance () and opinion

B.12.

a. Representative simulation depicting opinion evolution in an uncorrelated ran-{

dom scale-free network with 32 red stubborn agents and 32 green stubborn agents]

plthough opinion constantly oscillates, society becomes balanced and stabilizes 1n|

the tolerance phase. b. Representative simulation depicting opinion evolution in a

random Erdos-Reny1 network with 32 red stubborn agents and 32 green stubborn

pgents. Opinion change 1s maintained high and opinion presents high oscillations)

put the overall state of the society becomes stable and predictable around 50% green

p.13.

‘Tolerance (¢) and opinion change (w) evolution with the increasing concentration

bt evenly distributed SA and increasing network sizes. a, b. ¢ and w over the five

topologies when the size of the network 1s fixed at /N = 2500, and the concentration

ot stubborn agents ranges from 4% to 36%. ¢, d, e, f. lolerance ¢ stabilization valueg

pt which social balancing occurs over increasing network sizes (/V=400 to 2500 nodes)|123

B.14.

Simulation results of the tolerance model tested using the complex contagion 1n-

teraction principle. I use a 10,000 small-world network with a balanced number of

stubborn agents (32 green : 32 red). Lhe state s stabilizes quickly, and opinion changg

v and tolerance ¢ converge towards zero. Consistently throughout simulations, the

bpinion formation phases are short in duration (generating a distinctive spike, ag

Indicated with the orange oval in the figure) and the society always tends towardsg

ntolerance] . . . . . . L L L L e e e e e e e e e e e e

Xxxi

BUPT



B.15.

a. Representative simulation depicting opinion evolution in an uncorrelated ran-

dom scale-free network with 32 red stubborn agents and 32 green stubborn agents]

plthough opinion constantly oscillates, society becomes balanced and stabilizes 1n|

the tolerance phase. b. Representative simulation depicting opinion evolution in a

random Erdos-Renyi network with 32 red stubborn agents and 32 green stubborn|

pgents. Opinion change 1s maintained high and opinion presents high oscillations

but the overall state of the society becomes stable and predictable around 50% green|

B.16.

Simulation results for the tolerance-based opinion interaction on a small-world net-

work with 10,000 nodes with 32:32 green-red SAs. a. There are no NullAgents in thq

population. b. 'The population consists of 20% randomly placed NullAgents|

B.I7.

Simulation results for the tolerance-based opinion interaction on a small-world net-

work with 10,000 nodes with 32:32 green-red SAs. a. The population consists of 30%

randomly placed NullAgents. b. lhe population consists of 40% randomly placed

N Ao

B.18.

Simulation results for the tolerance-based opinion interaction on a small-world net-

work with 10,000 nodes with 32:32 green-red SAs. a. L[he population consists of 50%

randomly placed NullAgents. b. The population consists of 80% randomly placed

N Ao

AT

State of the art social networks. All topologies are synthetically generated using

Gephl. a. A small-world network with 500 nodes. b. A scale-free network with

P00 nodes. c. A cellular network with 500 nodes. d. A static-geographic network
with 500 nodes. e. A WSDD network with 437 nodes. 1. A real Facebook network

with 590 nodes. By running a community detection algorithm, all nodes are colored

pccording to their belonging community] . . . . . . .. ... 0 0000,

A2

‘The asymmetric r function results in difterent values for two equally distant values)

with regard totheaveragex = 3] . . . . . . . . .. .. Lo,

A3.

‘The symmetric r function renders the same values for two equally distant values)

xXxxii

with regard totheaveragex = o] . . . . . . . . . ... .. . o oo
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|A.4. Graphical representation of the network fidelity ¢ 4 measured for each of the five state

bt the art networks: small-world (SW), scale-free (Sk), cellular, static-geographic and

IWSDD. ¢ 1s measured against the four empirical reference networks: friendships on
[Facebook (FB1) and Twitter (1 W1), respectively collaborations on Wikipedia (Wiki)
pnd Gnutella (Gnu). The threshold 0, at 60% similarity, divides the networks intg

realistically accurate ones (green upper-half) and realistically inaccurate ones (red

lower-half). The value for ¢ chosen here is purely illustrative for this example] . . . .

B.I.

‘The two classifications of complex networks: the conceptual perspective versus the

topological perspective] . . . . . . . . ...

B2.

‘The process of classitying the three online social networks (Facebook, Twitter, Google

[Plus) using the four topological classes. Each motif distribution of the social net{

works (Drp, Drw, Dap) 1s expressed as a combination of the four theoretical dis-
tributions (Dyeq, Drnd, Dsw, Dst)| o o v o o v o o i oo e

B3.

Motits representation. a. All existing motifs of size 3 in a directed graph. b. lhe twqg

types of motifs of size 3 in an undirected graph. c. All existing motifs of size 4 in

pn undirected graph. l1he code of each motif corresponds to the decimal value of itg

serialized adjacency matrix) . . . . . . . . . L L L L e

B4

‘The resulting motit distributions on the regular (1),..,), random (1),.,4), small-world

(Dsqy) and scale-free (g r) topologies. 1The occurrence of each motif 1s expressed in

percentage in the central histogram for each network class in part. As can be seen|

bnly distinct motifs (not all) characterize each network class. All 6 motifs of size 4

pre depicted at the bottomof thefigure| . . . . . . . .. ... ... ... ...,

B.5.

‘The resulting motit distributions on the online social networks: Facebook (Drp)]

Google Plus (D p), and Twitter (D). The occurrence of each motit 1s expressed

In percentage. As can be seen, distinct motif patterns characterize each network class

|Ihe codes of each motif are the same as the ones used 1n Figure 5.4 . ... ... ..

B.6.

Radar chart showing the 2-dimensional distribution of motifs of size 4 for the topol{

bgy classes (a) and the online social networks (b)) . . . . . . .. .. ... ... ...
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B.7.

a. Radar chart showing the 2-dimensional mapping of the online social networkg

bver the four topology classes. 'The mapping is done using the fidelity metric ¢ tg

pssess the similarities based on the distribution of size 4 motits. b. lhe cumulative

occurrence of each topology class obtained by adding the normalized fidelities (n )

on each row (from lable B.5). It shows how much each topology contributes overall

fo the three empirical networks| . . . . . . . . . . .. o oo oL

CT.

Graphical representation of the patient population with clinical apnea signs: nod¢q

colors are assigned 1n order to depict, as indicated: AHI groups, hypertension, obe-

kity and neck circumference) . . . . . . . .. .. L oo

2.

‘Lhe visualization of the patient graph with a threshold of: a. 4 out of 7 (4 commu-{

lnities, too dense), b. 6 out of 7 (162 communities, too sparse). lhe node color 19

pccording to the assigned community] . . . . . . . .. ... L0000 ...

3.

Graphical representation of clustering in the patient population with clinical apnea

kigns. Lower-right corner: the population distribution over the 7 clusters. Red de-
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1. Introduction

A major trend of modern science is the study and understanding of social opinion dynamics and
individual opinion fluctuations, of how people influence each other and how they can be influenced.
The benefit of understanding the complex processes behind how people adopt and form their own
opinions about surrounding problems is a major concern for sciences like Psychology, Philosophy,
Politics, Marketing, Finances and even Warfare [23, 146, 154, 82].

Financial sciences, for example, study the markets and consumers to improve profits. Market-
ing uses many techniques to understand the needs, the strengths and weaknesses of different social
layers or groups. One of the key roles is to understand how any current marketing mix (product,
price, place, and promotion) impacts consumer behavior [182]. This research focuses on under-
standing when, how, where and why a product may be bought by people and how these factors can
be influenced. It models the buying process by combining elements from psychology, sociology,
anthropology and economics [82].

Politics use social studies to study the political influence of parties and the means to create a con-
sensus among voters. Whether an agreement, a cooperative or collaborative consensus is sought
after, political parties are interested in an overall public opinion rather than the opinion of individ-
uals [119]. Thus, a similarity to networks of computers can be seen, in which the overall throughput
and correct packet delivery is important, rather than the performance and specifications of an in-
dividual node. Politics use diverse agents to ensure propaganda, especially before elections. These
agents may include political representatives of parties giving speeches to groups or individuals, radio
and television programs, written posters and leaflets and internet based propaganda. Propaganda
is an appeal to emotion, it does imply intellect or any level of knowledge, and this is what makes it
hard to quantify but also very effective in human opinion formation. There are numerous types of
propaganda, based on persuasion, intimidation, ideological and national beliefs. One example of
successful propaganda was the encouragement of women to take up men’s jobs in factories to aid
the war effort for the United States. This eventually contributed to the emancipation of women at
the beginning of the 20th century by allowing more and more women to obtain better ranked jobs
(115, 80].

Warfare has always used counter-intelligence to stop enemy propaganda and spies to influence the
enemy’s morale. Psychological warfare, even though older, was successfully reintroduced during the
Second World War with the help of leaflet bombs. This type of propaganda had the purpose of turning
civilians against their own forces through intimidation, promise of rewards or assistance [46]. One
successful example of leaflet usage was during the First Gulf War when eighty thousand troops of the
Iraqi forces surrendered to the Americans.

Social Science is a term used to encapsulate a large number of sciences branching from the study of
society and human behavior. Its foundations are considered to have been laid down by E. Durkheim,
K. Marx and M. Weber during the 19th century. There are three approaches in applying this science:
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1. Introduction

« Positivism, using studies based on natural science to explain social behavior [114]. This prin-
ciple is based on empiricism and scientific methods are considered to provide a valid founda-
tion for sociological research based on the fact that the only authentic knowledge is scientific
knowledge. Quoting E. Durkheim: “Our main goal is to extend scientific rationalism to hu-
man conduct.... What has been called our positivism is but a consequence of this rationalism”
(8T1].

« Interpretive sociology (or antipositivism), based on understanding how social actions affect
the people, rather than explaining the feedback based on investigations of the natural world
(T00].

« Modern eclectic approach, combining multiple techniques.

Social research is conducted on understanding social phenomena, designing models or patterns and
proving them with social evidences. Based on what type of evidence is used, there are two types of
social research approaches [[104, 77]:

+ Quantitative design that rely on statistical data and offer reliable conclusions.

« Qualitative designs that rely on direct observations and tend to study subjective accuracy over
statistical generality

The results obtained through social research are used to implement various crowd control techniques.
Crowd manipulation is one such technique which is based on the research of crowd psychology.
Scientists can prove that the psychology of an individual within the crowd is different from the overall
crowd psychology, yet groups of people can act together for a common goal. It is this aspect that
makes crowd manipulation a tool to influence groups of people to behave in a specific manner, to be
directed towards a desired action [282, 283].

As a conclusion, social research is proving useful in understanding the mechanisms which trans-
form individual opinion into a wide-spread social opinion; how opinions affect individuals and how
they evolve in time as seen on a macroscopic scale. Modeling social behavior can be both a means
of defending and boosting democratic rights as well as a means to impose and manipulate a society
or a social layer [72]. From the riots organized during the French Revolution (1793) and the Boston
Massacre (1770) to the opinion on global warming, ecology or modern warfare (London, 2009) [B3],
all these events are the result of social interconnection and social opinion building between people.

1.1. Thesis domain

New Network Science is receiving an increased interest from many fields of science since many empiri-
cal observations of our surrounding world show the same properties, regardless of whether they are of
natural or synthetic origin [89]. There are topological models which describe geographical proximity,
friendship distribution, neural networks in the brain, protein interaction mechanisms, natural food
chains, the distribution of means of transportation, citation networks, sexual interaction patterns,
the world wide web, power distribution networks, relationship of words in a language, interaction
between ingredients in a recipe, the world markets, political structures [0, 276, 95, 250, 131, 82, 214].
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1.2. Motivation and impact

As a branch of this network science, the major goal of Social Networks Analysis (SNA) is to analyze,
understand and model real social networks. It can focus on the topological level of a network, i.e. how
the nodes interconnect, or on the behavioral level, i.e. how the nodes interact. Both of these prob-
lems are approached through empirical studies (direct and indirect measurements, surveys, statistical
analysis etc.) which lead to the proposal of a model for the observed real social network [116]. The
interdisciplinarity of the New Network Science brings together many fields of science which process
big data modeled as graphs [95, 89]. Regardless of the representation of nodes, edges, edge direc-
tions, and edge weights, this data often undergoes numerical comparison, sampling, and statistical
analysis to extract relevant patterns from it. To that end, network scientists use diverse state of the art
comparison techniques, but there is no single methodology to express similarity/dissimilarity in an
objective and uniform manner. My proposal uses solely the topological properties of the underlying
graph.

The scientific domains treated in this thesis are: social networks analysis, complex networks, net-
work topologies, social opinion dynamics, graph theory, and statistics.

The presented work focuses on two main directions, equally important for social opinion modeling

(see Figure [L.1)):
« Creating networks which model the basic connection patterns of a real society, and

« A robust social interaction model, namely a set of rules which describe how agents behave in
a society.

Both directions are important as the topology defines the physical interconnection rules, creating
information saturation and hub nodes due to its layout, while the communication model defines the
actual evolution of an agent’s decision process, which forms its opinion. Thus, both directions have
been researched a-priory for this thesis.

Regardless of the science in question, computational social science is still in its infancy. However,
an increased interest is shown in this topic as several conferences in computer sciences are creating
categories destined for research oriented towards social behavior. To better understand the social
processes a better collaboration between natural sciences and applied sciences is needed, as both
possess valuable knowledge [[06]. Using the current computational power, computers can help re-
searchers analyze interleaved mathematical and psychological models at a faster rate. Of course,
validating results with empirical data is the final step in proving that a social process is understood.
Recent mathematical research proposes new ways of modeling societies or clusters of individuals and
present results of great theoretical value [112].

1.2. Motivation and impact

A noteworthy study states that our daily “social transactions” leave digital fingerprints which offer
increasingly comprehensive pictures of both individuals and the groups we pertain to, with the po-
tential of transforming the understanding of our lives, organizations, and societies in a fashion that
was barely conceivable until recently [I54]. The capacity to collect and analyze massive amounts
of data is transforming fields like biology, economy and physics. However, the emergence of data-
driven computational science has been much slower, carefully directed by a few intrepid computer
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Figure 1.1.: The contributions of this thesis: structural and behavioral modeling.

scientists, physicists, and social scientists [[187, 281, 25, 205, 154]. Current emergence of computa-
tional science impacts many research directions, and thus I consider my thesis to come and serve
this movement at its most fundamental levels.

In light of the movement started by Alex Pentland - reinventing society in the wake of big data -
current challenges include analysis, capture, data filtering, search, sharing, storage, transfer, visual-
ization, and information privacy. The term Big Data casually refers simply to the use of predictive
analytics or other certain advanced methods to extract value from data. While the size of the data is
not always considered a decisive factor, of course, accuracy in big data may lead to better decision
making, which lead to greater operational efficiency, cost reduction or reduced risk in social systems
[176]. The envisioned analysis of data can find new correlations, to detect trends in business, prevent
diseases, combat crime [71]. Researchers, marketing analysts, media practitioners, general advertis-
ing and governments regularly meet difficulties with large data sets in areas including Internet search,
finance and business information. Scientists encounter limitations in computational science work,
like predicting earthquakes, weather, genomics [270], connectomics, complex physics simulations
[69], and biological and environmental research [227].

With Big Data we can now begin to actually look at the details of social interaction and how those
play out, and are no longer limited to averages like market indices or election results. It could prove
used for good or for ill, and so Big data brings us to interesting times. We're going to end up rein-
venting what it means to have a human society [[177, I81].

The work presented in this thesis analyzes current social models and their relevance in opinion
dynamics. The contribution is divided in two major sections: graph analysis and modeling using
existing empirical data of social networks, and computational simulation and mathematical modeling
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1.2. Motivation and impact

of the opinion evolution in a society.

A relevant survey made in the direction of improving diffusion models [112] creates a taxonomy
which falls in line with the goals of my thesis, highlighting its scientific impact. Figure [[.7 shows the
challenges and approaches that at of very high interest in current SNA.

The first and foremost challenge is to determine the topics which form the actual “opinion” in the
society. Social media is an undeniable layer of our daily lives in the 21st century, and contains most of
the communication undertaken by people. It is imperative that we are able to filter out those topics of
interest for a certain research context (e.g. solely political, marketing context etc.). The two available
approaches are based on term frequency and social interaction frequency. More specifically, relevant
terms can be extracted through data mining, like analyzing tweets, emails, of Facebook messaging
coming from all active users. Conversely, we can analyze the most intensive links between users and
extract their common topics.

Once the topics which represent opinion are known, research can be oriented towards understand-
ing and modeling the diffusion processes of those topics. The is an exploratory approach, which uses
solely empirical data and try to reproduce similar theoretical models. Static networks can be used,
e.g. a dataset of millions of tweets and re-tweets that has been data-mined in the past, to analyze mes-
saging intensity and try to reproduce a similar dynamics phenomenon in a synthetic graph. Also,
dynamic networks can be used, e.g. real-time mining of Twitter, to model the same synthetic pro-
cesses. The latter approach is useful when no datasets are available, but is constricted by the usual
API limitations of modern social platforms. Another approach is the predictive one. This can be
graph-based, namely is uses mathematical models for agent interaction to try and reproduce em-
pirical observations. Graph based approaches rely on the Independent Cascade (IC) [108] or Linear
Threshold (LT) [[10] diffusion models. The IC model requires a diffusion probability to be associated
to each edge, whereas LT requires an influence degree to be defined on each edge and an influence
threshold for each node. Both model proceed iteratively along a discrete time-axis, starting from a set
of initially opinionated nodes, commonly named early adopters [231]. Non-graph-based approaches
do not depend on the underlying topology, but rather divide nodes into several types. As such, there
are two models pertaining to epidemiology, the SIR and SIS models [120].

Finally, once both opinion and diffusion are defined, it is important to determine which nodes act
as spreaders of the opinion. This helps simulate and predict the outcome of the diffusion phenomena.
There are topological approaches using centralities or motifs, as well as other types of approaches.

In the presented context, my thesis revolves around graph-based predictive models for model-
ing diffusion processes, and uses static empirical networks for validation purposes. Also, is offers
a topological perspective of how social network structure emerges and evolves. This is achieved by
creating an original topological model, introducing a personal growth model and doing empirical
online social networks analysis using motifs.
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2. Theoretical foundations

Complex networks cover an active area of scientific research inspired largely by the empirical study
of real-world networks such as communication networks, economical networks and social networks.
They are classified into four major types, based on the context which they model: biological networks
(e.g., metabolic networks, transcription regulatory networks, protein-protein interaction networks,
protein structure networks, neural networks, ecological networks, natural food chains) [0, 276, 82],
social networks (e.g. friendship networks, citation networks, voter networks, world markets, polit-
ical structures) [246, 276, 214], technological networks (e.g., computer networks, electrical circuits,
road networks) [[10], and semantic networks (e.g. word-net [[188], recipe networks [250]). Without
exception, all these networks can be represented as graphs, which include a wide variety of subgraphs.

This section carefully introduces every notion of complex networks, ranging from graph science
to some of the most advanced features of social network analysis. The purpose of this section is to
offer most readers with basic concepts of mathematics n overview of the topics discussed later in
this thesis. It is written using both consistent mathematical notations, and an approachable scientific
language.

Complex networks deal with a plethora of models, so apart from the common fundamentals of
graphs, the section and thesis focus solely on social-context specific notions. As my thesis is elab-
orated for the degree of doctor in computer science, the first subsection introduces the reader to
the relationship between computer science and SNA. Next, I present the most relevant metrics used
in graph science (ranging from nodes and edges to centrality distributions), followed by social spe-
cific concepts (i.e. used for opinion modeling). The fourth subsection is dedicated to social net-
work topologies, which represents one of the two main points of study for my thesis. I present the
fundamental models which have inspired the advanced topologies that were an inspiration for my
proposals. Next, I refer to the second part of my thesis, by introducing the state of the art social in-
teraction models. Finally, I discuss the standards, trends and limitations in creating and comparing
social models.

2.1. Social networks: An introduction to computer science

Social networks, in computer science, are a branch of complex networks, and their theory is based on
network theory, graph theory and network science. The main purpose of social networks is to model
the structure and relationships between persons in a real society [277]. The structure can be further
generalized to groups of persons, clusters, layers, cities, states etc., each group with a particular set
of defining characteristics. This area of science was proposed in the 1970s [197] and was based on
empirical observations of computer networks and human networks, with many ideas coming from
the distant field of sociology. Even though 40 years old, only recently (2010s) has this field started to
attract great interest from universities and researchers around the world.

Even though the term social network used in conjunction with sites like Facebook or Twitter has
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a different meaning than the term used in computer science, the similarities have offered a good
perspective in science. As researchers C. Alt et al have explained, it is the evolution of companies
like Facebook who have generated the interest of computer science in social networks [12]. Not only
does the existing data offer social researchers valuable feedback on their work, presumptions and
conclusions but the extended usage of social sites attracts more and more students into this area of
science.

A social network is a construction with individuals (actors, agents) and bidirectional connections
(relationships, friendships) between these individuals resembling a real social structure of people.
The role of such a network is to provide information on how relationships evolve and how informa-
tion is passed within the society as determined by the interactions. The two main aspects of a social
network are the network topology and the agent interaction model. An important property of social
networks is that they are self-organizing and emergent. Patterns present at a small scale, inside a
small group of agents, replicate themselves at a greater scale. However, with increased network size,
the information output becomes overwhelming. That is why studying a too general network (e.g.
a country, the world) becomes unfeasible. Consequently, studies are done only on relevant groups
with clearly defined properties so that the output information is unbiased. Usually there are three
levels of social network composition and study: micro-level (studying an individual and its relation-
ships), middle-level, and macro-level (studying effects on large populations, regardless of individual
effects). The presented work manages micro-level social networks at the level of interactions, but
analyzes the results at a macro-level as only the overall opinion distribution is relevant. The levels at
which the research was done are [198]:

o Actor (Agent) level: the smallest unit analyzed in the network. It encapsulates metrics like
tolerance, confidence, credibility, trust.

« Dyadic level: the relationship between two actors. All relationships are bidirectional (i.e. both
actors are friends with each other) and transport one opinion from a source to a destination.

o Triadic level: represents the smallest social molecule in a society. It is formed by any two
actors with a relationship between them. This relationship permits interconnections that alter
the opinion, confidence and tolerance of both actors.

2.2. Metrics of complex networks

Several concepts specific to complex and social networks are presented in this section, as they will also
be used over the course of the whole thesis. These concepts - as found in literature - are introduced
as follows.

2.2.1. Graphs: nodes, edges, degrees and weights

As the building blocks of social networks consist of mathematical graphs, I start by defining this ab-
stract data type which is commonly used in mathematics and computer science to model pairwise
relations between objects. A graph G = (V, E) consists of vertices (nodes) V' which have connec-
tions between each other through the set of edges E. The graph may be undirected, meaning that
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2.2. Metrics of complex networks

edges are symmetrical in terms of the two ends (there is no distinction between the two vertices as-
sociated with each edge), or its edges may be directed from one vertex V; to another V;. In this case,
we can say that there is a path from V; to V}, but not vice-versa.

Nodes represent the abstraction of any natural or synthetic process for which network science may
be used. At the most basic level, each node possesses an identity (name) and a set of edges through
which it connects to other nodes. Often, nodes possess context-specific properties which are used
in research to see how these properties cluster together - using bipartite graphs, and community
detection methods [202, 205, 198].

Edges represent a relationship between two edges, connecting them, being either undirected or
directed. If say, edge e(i, j) connects nodes v; and v; and is undirected, then both nodes can be
reached following e from the other end. If e(7, j) is directed, then only a path from v; to v; exists
in graph G. Moreover, in a directed context, it makes sense to have another edge € (j, i) which
creates a path in the reverse direction. Edges may also be weighted or unweighted. In the context of
undirected graphs, each edge from E may be associated a weight equal to 1 for computing paths or
costs. If the relationship between nodes implies different magnitudes, then weights may be assigned
to edges. A special case of edge is the self-loop, in which a node redirects to itself (e.g. a web page
has a link that redirects to itself).

The degree of a node is the number of nodes with which it is connected through graph edges. In
directed graphs, a node has two degrees: an out-degree for edges exiting the node, and an in-degree
for incoming edges.

A path in a graph is a sequence of edges that connect a starting node to a destination node. If
there is no possibility to reach a certain node, then there is no path between that pair of nodes. A
graph is called connected if any node may be reached from any other node of the graph following any
path. For a connected undirected graph G = (V, E) we have the following relationship between the
minimum/maximum number of edges and the number of nodes:

minimum |E| = |V] —1 (2.1)

Vx|V -1
2

If the number of edges is maximal, then the graph is considered fully connected and there is a path
of length 1 from any node to any other node. However, such graphs don’t usually exists in nature, as
connections are much sparser. To keep the graph connected (often a requirement in graph modeling
meant to study natural processes) at least |V| — 1 edges have to be left in G.

~ VP (2.2)

mazimum |E| =

2.2.2. Density and diameter

Based on the notions introduced in the previous subsection, we call G a dense graph when the num-
ber of edges E is close to the maximal number of edges. The opposite, a graph with only a few edges,
is a sparse graph. The distinction between sparse and dense graphs is rather vague, and depends
on the context. A different definition exists for density whether we refer to undirected or directed
graphs. For undirected graphs, the graph density is defined as:
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Figure 2.1.: An illustration of a sparse graph (a) and a dense graph (b). The sparse graph has 200
nodes, 131 edges, is sparse, disconnected, with a density of D = 0.0065. The dense
graph has 200 nodes, 3500 edges, an average degree of 17.5, may be considered dense,
and is connected, with a density of D = 0.1758. All nodes are sized and colored in red
direct proportional to their degree.

_ 2Bl B
VIx(VI=1)  maz(|E])
Using equation P2 the density D can be considered the number of edges which exist in the graph,

divided by the maximum number of edges which can exist. For directed graphs, the graph density is
slightly modified as:

(2.3)

VIx(VI=1)  maz(|E]) '
The lack of a 2x modifier comes form the fact that directed graphs have a double number of max-
imum edges, that is, each pair of nodes can have two edges connecting them. The minimum density
D is 0, and the maximum D is 1. An example of two graphs with opposing properties have been
generated and depicted in Figure ..

2.2.3. Degree distribution

The degree distribution of a network is a function describing the probable distribution of node de-
grees over that network. The basic characteristic of a single node in a network is its degree. The
degree is the number of connections it has to other nodes and is denoted by deg(v). Depending
on the type of graph, there can be an in-degree (deg — (v)) and an out-degree (deg + (v)), for in-
coming respectively outgoing connections. Undirected graphs, like social networks, only have the
degree characteristic. Nodes with a higher degree than other are called hubs, as they tend to facilitate

10
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communication for distant nodes. Also, in scale-free terms, a more connected node has a higher
chance of becoming even more connected. The degree distribution denoted P (k) is defined as the
ratio between the number of nodes with degree k and the total number of nodes [276]:

_ Nk
N

where NV, is the number of nodes with degree k. The function describes the probability that a ran-
domly selected node has degree k. For example, a regular mesh, with most nodes having degree
eight, will have a distribution P (k) with only a spike at k& = 8. The more randomness is added to
the network connections, the broader the spike becomes. On the other extreme, a fully random net-
work will have a Poisson-like distribution of degrees. Empirical results however, show that many real
networks follow a different distribution than the regular Poisson distribution. The nodes tend to be
connected like in a scale-free network, thus they obey a power-law distribution [25]. The form of
this distribution is:

P(k) (2.5)

P(k) ~ k™7 (2.6)

where +y is empirically observed to be between 2 and 3 for a power-law specific to social networks. As
this form of distribution is not subject to network scale, it is characteristic for scale-free networks.

2.2.4. Power-law distributions

Many physical, biological, and synthetic phenomena tend to follow a power-law, as depicted in Figure
R.14. For example, these include fluctuations of financial markets [97], the sizes of earthquakes,
craters on the moon, and of solar flares [204], the structure of the internet [87]. Also, in nature,
the foraging pattern of various species has a similar distribution [127]. Moreover, the sizes of activity
patterns of neuronal populations [[43], the frequencies of words in most languages [[188], frequencies
of family names, the species richness on the tree of life of organisms [J], the sizes of power outages,
criminal charges per convict, and many other quantities have been proven to follow a power-law [63].

Scientific interest in power-law relations derives from the ease with which certain classes of mech-
anisms generate them; the demonstration of a power-law relation in some data can point to specific
kinds of mechanisms that might underlie the natural phenomenon in question, and can indicate a
deep connection with other, seemingly unrelated systems. In physics, the presence of power-law re-
lations is due to dimensional constraints, while in complex systems, power laws are often thought to
be signatures of hierarchy or of specific stochastic processes.

Research on the origins of power-law relations, and efforts to observe and validate them in the real
world, is an active topic of research in many fields of science, including Physics, Computer Science,
Linguistics, Geophysics, Neuroscience, Sociology, Economics and others [59, 154, 82]. However
much of the recent interest in power laws comes from the study of probability distributions. The
behavior of these large events connects these quantities to the study of theory of large deviations
(also called extreme value theory), which considers the frequency of extremely rare events like stock
market crashes and large natural disasters. It is primarily in the study of statistical distributions that
the name "power law” is used; in other areas, such as physics and engineering, a power-law functional
form with a single term and a positive integer exponent is typically regarded as a polynomial function
(64].

11
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The identification of power-laws in data is often solved through graphical analysis. Although more
sophisticated and robust methods have been proposed, the most frequently used graphical methods
of identifying power-law probability distributions using random samples are Pareto plots, and log-
log plots [64]. Log-log plots offer a way to graphically examine the tail of a distribution. This method
consists of plotting the logarithm of an estimator of the probability that a particular number of the
distribution occurs versus the logarithm of that particular number. Usually, this estimator is the
proportion of times that the number occurs in the data set. If the points in the plot tend to converge
to a straight line for large numbers on the OX axis, then we can conclude that the distribution has a
power-law tail. Examples of the application of these types of plot have been published in scientific
journals of the highest class [134].

2.2.5. Average path length

The average path length is one of the three basic measures of topologies. In a network with undirected
edges, the minimum distance between two nodes, d;;, is the minimum number of hops needed to
reach node j from node i and vice-versa. The diameter of that network is the maximum distance
between any two nodes. The average path L is the sum of all paths, divided by the number of paths
in the network:

2
L= ey Z d(vi, vj) (2.7)
]

where n is the size of the given graph, and v are vertices. For example, in a network of friends, L is
the average number of friends that form up the shortest way connecting any two friends [276]. In a
road network, L is the average number of roads a driver has to change in order to get from one city
to any other city. A particular aspect is that natural networks, even though having lesser edges than
a computer network, still have a very small average path. This is the property known as small world
effect found in small-world networks [281, 244].

2.2.6. Average clustering coefficient

The clustering coeflicient is a measure of the nodes’ tendency to cluster together. This can exempli-
fied that in a friendship network, there is a great possibility that one of your friend’s friend is also a
direct friend. Or reinterpreted: it is very likely that two friends of a person are also friends with one
another. Thus, the clustering coeflicient can be defined as the ratio between the existing number of
links between a node and his friends, and the total number of links that can exist. More precisely, if
anode n; has deg(n;) = d; then it has d; friends. The maximum number of links between all these
noesis d;(d; +1)/2.

-9 L

where E; is the existing number of links between the neighbors of n;. The average of the coefficients
of all nodes in the network is the clustering coeflicient C' of the network.

C; (2.8)
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|
link present
L ........ link absent
/
3 =3 fe=85
(a) (b)

Figure 2.2.: a. An example of the average path length L in a graph. b. An example of computing the
average clustering coefficient C' in a graph.

N
C= ZZ:&(Q) (2.9)

or as defined by Luce and Perry in 1949 [171]:

c— 3 X number of triangles ~  number of closedtriplets (2.10)
"~ number of connected triplets  number of connected triplets '

It can be concluded that the maximum clustering coefficient of a network is 1. A network with C' =
1 isa fully connected graph with point-to-point connections, while a completely random network has
C ~ 1/N. This is however very small compared to observable networks which have their clustering
coeflicient satisfy the following relationship:

1
—<C<1 2.11
~ < C< (2.11)

This means that most networks are neither random, nor fully connected, and thus the triadic clo-
sure is a very important aspect of social networks. An illustration of the concepts of L and C is
depicted in Figure 2.2

2.2.7. Modularity and community structure

One of the main drives behind graph modeling of natural or man-made phenomena is to analyze
how the different concepts (represented as nodes) connect and cluster together - both numerically
and visually [205, 206]. Most network-based approaches yield a certain community structure that
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(a) (b)

Figure 2.3.: An illustration of community structure in complex networks. a. A graph with a weak
community structure, thus a modularity Mod = 0.2 b. A graph with a visibly strong
community structure, thus a modularity of M od = 0.55. All nodes are colored according
to the community to which they belong. I have used the community detection algorithm
(B8] implemented in Gephi [30] for this purpose.

has substantial importance in building an understanding regarding the dynamics of the network. For
instance, a closely connected social community will imply a faster rate of transmission of information
or rumor among them than a loosely connected community [198]. Thus, if a network is represented
by a number of individual nodes connected by edges which signify a certain degree of interaction
between the nodes, communities are defined as groups of densely interconnected nodes that are
only sparsely connected with the rest of the network. Hence, it may be imperative to identify the
communities in networks since the communities may have quite different properties such as average
node degree, clustering coefficient, and other centralities [206]. As such, community detection and
analysis have received much attention in the last decade [200, 202, 205, 198, 197].

Modularity (Mod) is a measure of the structure of networks or graphs. It was designed to measure
the strength of division of a network into modules (also called groups, clusters or communities).
Networks with high modularity have dense connections between the nodes within communities but
sparse connections between nodes in different communities. Numerically, it is defined as the frac-
tion of edges that fall within the given communities minus the expected such fraction if edges were
distributed at random. The maximum value for modularity is 1.

There are different methods for calculating modularity [205]; in the most common version of the
concept, the randomization of the edges is done so as to preserve the degree of each vertex. An
example of two graphs with different modularities have been generated and depicted in Figure .3,

2.2.8. Centralities of complex networks

When analyzing graphs, it is often required to extract the most important nodes. The so-called indi-
cators of centrality identify such nodes in a graph. For example, applications may include identifying
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the most influential persons in a social network, key infrastructure nodes in a computer network, ur-
ban intersections in which traffic may congest, or influential genes in transmitting disease. “Central-
ity concepts were first developed in social network analysis, and many of the terms used to measure
centrality reflect their sociological origin” [197].
I have extensively used centrality distributions in my thesis to analyze networks in terms of struc-
tural properties and similarity. The most important centrality measures are defined below:
 Degree centrality. The simplest type of centrality, it refers to the degree of each node. The
degree distribution P < k > is an important aspect when studying empirical networks as
they usually possess a uniform, normal or power-law degree distribution. The latter is relevant
to scale-free networks which are discussed in section 2.4.5.

o Closeness centrality. A connected graph G = (V, E) has a natural distance metric between
all pairs of nodes, defined by the length of their shortest paths L. The farness of a node v; is
defined as the sum of its distances from all other nodes in V, and its closeness is defined as the
reciprocal of the farness [32] as:

1
Cli) = =———— (2.12)
ZJ d(]v Z)

« Betweenness centrality. It quantifies the control of a node over the communication between
other nodes [94], by measuring the number of times a node acts as a bridge along the shortest
path between two other nodes. The betweenness of node ¢, for all pairs of nodes a and b is
defined as:

Btw(i)= Y Tab (i) (2.13)

g
atith b

« Eigenvector centrality. It is another measure of the influence of a node in a network. Similar
to Google’s PageRank, it assigns relative scores to all nodes in the network based on the concept
that connections to high-scoring nodes contribute more to the score of the node in question
than equal connections to low-scoring nodes.

« HITS (hyperlink-induced topic search). It identifies good authorities and hubs for a topic by
assigning two numbers to a page: an authority and a hub weight. These weights are defined
recursively. A higher authority weight occurs if the page is pointed to by pages with high hub
weights. A higher hub weight occurs if the page points to many pages with high authority
weights [144].

Figure 2.4 offers an overview of the most common centralities on a mesh network with 200 nodes
and 450 edges. The data was generated in Gephi [30] using a plugin developed by the author, and the
centralities are computed using existing facilities in Gephi.

2.3. Concepts of social networks

Moving further away from the mathematics and closer to the function of social interactions, there a
some unique features which characterize social networks. While complex networks model any kind
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55 = 0

Betweenness Eigenvector Pagerank

Figure 2.4.: An illustration of graph centralities in a graph with 200 nodes and 450 edges. All nodes
are highlighted in red according to their increasing: a. degree centrality. b. closeness

centrality. c. authority (HITS). d. betweenness centrality. e. eigenvector centrality. f.
PageRank.
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of biological, technological, semantic or social concepts into nodes, the branch of social networks
deals with one recurring concept: nodes are viewed as actors. These are often individuals, online
users, persons. They share knowledge, have an opinion, a public status and a private state, and interact
with other actors. This interaction causes dynamics in opinion, or so-called processes.

2.3.1. Agent

An agent, or node, is the term used to describe the network node (Graph theory) or the social actor
(Sociology). There are multiple types of agents in literature, and this thesis makes reference to five
types of agents defined and/or proposed in the presented social models:

« Normal (regular) agents - this is the bulk of the population which is involved in the opinion dy-
namics process (i.e. has an opinion during simulation scenarios) and follows the rules imposed
by the interaction model that is used. Regular agents interact with any other type of directly
linked agents (neighbors), poll their neighbors for opinion, and update their state (opinion) in
time. The distribution of the overall opinion in a society is that of the regular agents. All other
agent types serve to increase the “realism” of the social mix.

« Unopinionated (null) agents - is a type of agent that does not take part in the interaction pro-
cess. These agents are uniformly distributed across the society, are connected to all types of
agents, but do not have, nor update an opinion. Their state is always set to NONE, and can
be viewed as actual interruptions in the links of the social topology. If two regular agents are
connected, they may influence each other. However, if two regular agents are separated by a
null agent, then they cannot pass information from one to another. The null agents are used
to increase the realism of simulations, as society rarely has all its individuals implied in one
diffusion process.

« Stubborn agents - is an agent type whose opinion is defined before social simulation begins
and who does not get influenced by others, i.e. his opinion cannot change. These agents are
the sources of social opinion, while the rest of agents absorb and transmit these opinions. Such
agents were defined by [2, 291, 4].

o Absurd (contrarians) agents - is an agent type similar to normal agents who builds his opinion
by interconnecting with his neighbors, but reacts exactly the opposite in the process of opinion
forming [[164, 179]. Namely, all opinion influences have the opposite role: if the absurd agent
talks to an agent who sustains opinion A over opinion B, the absurd agent will be more inclined
to sustain opinion B, as if the normal agent would have sustained the other opinion.

« Random agents - are agents which, based on the interaction model context, interact with other
neighbors like regular agents, but always take random opinion. Whether the actual opinion is
updated in a random fashion after social interaction, or the tie strengths (e.g. trust, tolerance,
weight on edges) is recomputed at random, these agents are used instead of regular agents in
null-model simulations to demonstrate that the emergent behavior induced by the interaction
model is not a cause of random events. In other words, random agents are used to show that
an interaction model behaves substantially different if tested on regular agents, and thus the
empirical observations are legit.
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An agent can only be of one type throughout the simulation of a society. A small social networks
consisting of different agent types is depicted in Figure .5,

Features of agent-based simulations

An agent-based social model is built of individual agents, commonly implemented in software as
objects (instances of an Agent class). Agent objects have states and rules of behavior, as defined by a
social interaction model. Running such a model simply amounts to instantiating an agent population,
letting the agents interact, and monitoring what happens, using numerical and graphical (empirical)
analysis. As such, solving the equations behind the interaction model simply means running the
software simulation (forwarding it in time). Furthermore, when a particular instance of an agent-
based simulation, call it S;, produces result R?;, one has established a sufficiency theorem, that is, the
formal statement R; if S; [196].

There are several advantages of agent-based computational modeling over conventional mathe-
matical theorizing:

« It is easy to implement the intelligence of agents (through object-oriented programming and
polymorphism) and limit their rationality in agent-based computational models.

o Itis a simple task to make agents heterogeneous in agent-based models. One can instantiate a
population having some distribution of initial states, e.g., opinion, tolerance. That is, there is
no need to appeal to single, representative agents.

« Since solving means execution, the obtained results are not only the end equilibrium, but also
the whole history of evolution. The dynamics are considered an important part of simulation
analysis [279, 198].

« Social and physical processes are difficult to account for mathematically, except in highly sim-
plified ways. However, in agent-based models it is usually quite easy to have the agent inter-
actions mediated by networks [20].

Nonetheless, “the agent-based modeling methodology has one significant disadvantage regarding
mathematical modeling. Despite the fact that each run of such a model yields is a sufficiency theorem,
a single run does not provide any information on the robustness of such theorems” [20] . The question
that arises is if an agent model S; yields result R;, how much change in S; is necessary in order for
R; to become invalid? The only solutions to treat this problem in agent-based computing is through
multiple runs, systematically varying initial conditions or parameters in order to assess the robustness
of results.

2.3.2. Opinion

Opinion is the basic metric describing an agent’s willingness to make a decision. This thesis focuses
only on binary decisions [292, 4] like:
« Voting candidate A or B.

 Choosing product X or Y.
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Figure 2.5.: An illustration of agent types in a graph with 68 nodes and 302 edges. All nodes are
highlighted according to one of two possible opinions: red or green. Stubborn agents are
depicted using larger nodes (3 green, 2 red), null agents are colored in gray, and regular
agents have the color of their opinion.

19

BUPT



2. Theoretical foundations

« Buying or not buying a product: X-yes, or X-no.
« Approving with a person or not (court, politics, doctor etc.).

« Supporting a popular belief or not (propaganda, revolution).

Each agent has its own opinion. Personal opinion is changed in the process of communicating
with a neighbor (friend), and depends on multiple parameters, as defined by the social interaction
model. The way opinion is formed and changes defines the social interaction model of the society.

Opinion is usually a term coined for the information contained by an agent in simulation scenarios.
It is the currency that is exchanged with other agents and the one which evolves in time. However,
agents may hold other information as well, like a trust parameter in each neighbor, a tolerance (as
porposed in this thesis), a public opinion, a credibility parameter etc. As a notation, an agent v;will
have opinion z;(t) in time. The value of x;(¢) can be discrete (0 or 1) or continuous (between 0 and
1).

It is worth mentioning that while a node has a sinlge instance of an actor in a social network (one
layer), there is recent work which studies multi-layer social networks[173, B9]. These on the other
hand, treat each instance of an actor on every layer in an individual way. That is, an individual may
be an actor in a particular topological setting on Facebook, another on Twitter, a completely different
one at work or with his offline friends, In this case, opinion would become a composite vector of states
of different context. This thesis does not explore the area of multi-layer networks.

2.3.3. Agent state and network state

The status of an agent is a binary descriptor of its opinion. While opinion is modeled as a fluctuating
real number between 0 and 1, status is a measure quantifying what decision an agent would take at
an exact moment in time. There are three possible states for any agent:

« No: 0 < opinion < 0.5. Depending on the modeled decision, the agent is choosing opinion A
or he is simply not choosing to vote, or buy a proposed product.

« None (not decided/involved): opinion = 0.5. An agent will not express any opinion when
polled.

« Yes: 0.5 < opinion < 1. Depending on the modeled decision, the agent is choosing opinion B
or he is simply choosing to vote, or buy a proposed product.

Stubborn agents will always have the same status during simulation. The status of the entire network
is the average status of all nodes:

Nx*
S — Z’LZl(Si)
Nx
where each node, regardless of type, accounts with s; = 0 for state No and s; = 1 for state Yes.
The process of computing the network state is called polling. Undecided nodes are not counted in the
polling process, thus the N symbol.

(2.14)
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2.4. Topologies

As any graph based model, a social network can be described through its layout and connection pat-
terns. A network topology is a term used to describe the interconnection pattern of the elements
composing the network. Linking elements can be done physically or logically. As social networks
describe combined human relationships, knowledge or emotion, the links are purely logical. An-
alyzing topologies is done with the help of graph theory, a mathematical theory used to describe
relationships between objects.

For this thesis, a number of topologies have been reviewed in order to study their effect on social
behavior. The used topologies can be divided in two major groups [276]:

« Regular (basic) topologies — the most wide-spread configurations found in technological net-
works, used mainly in computer science and communication. These networks have simple,
symmetric layouts of nodes with clear patterns of interconnectivity. Moreover, regular net-
works are also called non-complex networks because of the reduced number of nodes (e.g.
tens of nodes).

« Complex network topologies — a more comprehensive set of interconnections that bind a large
number of nodes. Complex networks are characterized by a large to vast number of nodes
(e.g. up to millions) which possess numerous links, both with local neighbors, as well as with
distant nodes. Natural and man-made processes have but recently been modeled and studied as
networks. In the context of my thesis, this category represents innovative topologies proposed
to better model a real society.

The basic topologies, although too simple for social modeling, are used as control (null models) to
highlight the impact of the complex topologies, which offer greater fidelity to reality. For example,
regular topologies are used to implement computer-like networks to highlight the difference between
packet sending and opinion flow; for power grids between cities; for telephone lines and cellular
networks etc. Complex topologies are found, for example, in road and airline networks, world trade
networks, gene interactions, collaboration between actors etc.

This section aims to present the characteristics of basic and complex topologies.

2.4.1. Lattice or regular mesh topology

The most commonly used technological topology, in which each node acts as a relay for neighboring
nodes. This type of network allows routing of information (usually in the form of packets) along a
path, from a destination through a source. The visual layout of this topology is not distinctive as any
node will have a maximum of 4 (vertical and horizontal only) or 8 (diagonals also) neighbors. The
number of edges in a lattice of N by IV nodesis 2 x N x (N — 1). An example lattice, with only
horizontal and vertical connections, of size 3x3, is depicted in Figure . and shows how nodes that
are not on a margin have up to 8 possible neighbors.

The connection pattern depicted in Figure [.§ is the regular mesh, but connections are also possible
along the two diagonals, or just along the vertical (with a bounding box), or any other combination
as shown in Figure .7.
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Figure 2.6.: Regular mesh topology: a 3 by 3 lattice.

Figure 2.7.: Generic mesh topology.

2.4.2. Mesh topology

Meshes are widely spread topologies, in which each node may be connected to one or more neigh-
boring nodes, within a close proximity. This type of network allows advanced routing of information
along a path, from a destination through a source. Any node can have any number of connections
(>0), with a total number of connections of N x (N — 1)/2.

The mesh is also used as a basis for more complex topologies. Another important mesh alterna-
tive is the wrapped mesh in Figure P.§ which permits marginal nodes to communicate with their
symmetrical opposites. This is important because it emulates the globe, so the western most nodes
actually meet the eastern most nodes on the other side of the globe.

Figure 2.8.: Wrapped mesh topology.
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Figure 2.9.: Complex mesh topology highlighting how a node may connect to any number of his
neighbors, but within a proximity threshold.

Another example, at a greater scale, is depicted in Figure 2.9 which shows a complex network based
on a mesh topology.

The mesh topology is known to have a uniform degree distribution, a high average path length
(as there are no ling range links), and a low clustering coefficient (as neighbors connect randomly in
their vicinity).

2.4.3. Random topology

Random networks consist of vertices that are randomly connected with a given probability p, re-
gardless of spatial localization. This phenomenon results in the creation of long range links across
the network. The topology is constructed by placing nodes in a mesh configuration and then ran-
domly adding a total of 8 random links to each node. Eight was chosen because it is the number of
connections of inner nodes in a mesh. On inspection, random networks, as defined by Erdos and
Renyi [86], show a dramatic decrease in the average path length, as long-range links are randomly
inserted in the network. On the other hand, the clustering coeflicient remains low as there is no rule
implying that local nodes tie together. Such a network can be seen in Figure 2.10.
The algorithm to generate a random network is presented as follows:

Given NN nodes and probability p:
for each pair of nodes (n;, n;):

if generateFloat[0,1) < p then
add edge ¢;; between nodes

If p ~ 0 then the graph remains disconnected, if p ~ 1 the graph becomes very dense. In empirical
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Figure 2.10.: Random Erdos-Renyi topology.

data, good values for p are considered between 0.01 and 0.2 [281, 279].

2.4.4. Small-world networks

Small worlds are social network specific topologies which possesses properties found in real societies.
The topology is based on a graph with a generally low amount of interconnectivity, most nodes not
being neighbors, but in which the average path length between any two nodes is small. More specif-
ically, as the size IV of the network grows, the length L only grows at a logarithmic rate relative NV
[279].

L ~logN (2.15)

This characteristic is called a small world property and is found in many empirical networks such
as the internet, natural food-chains, business communities, sexual contacts, gene networks, the inter-
net etc. [276, 202, 197]. The main two properties that define a network as being small-world are the
average path length L and the clustering coefficient C. Some random networks have been identified
as presenting a small-world property but both the average path length and the clustering coefficient
are small. Empiric networks maintain a high clustering as the average path length decreases as shown
in Figure P.T1|. Generating a correct small-world network, as observed in nature, is done by random-
izing a regular network’s (e.g. mesh, ring) links, so that the clustering coefficient is kept high as the
average path length drops. A middle region appears (pink) in which both properties are satisfied.

In order to create such networks Watts and Strogatz have proposed a network generation model
that carries their name [281]. The reasoning behind creating such a network topology was that purely
random networks do not have two important features observed in real networks.

First, real-world networks generate triadic closures. A triadic closure is a social characteristic be-
tween three individuals similar to transitivity in mathematics, in the sense that if A is related to B
and B is related to C, then A and C must be linked by a relationship that is at most as strong as the
previous two [280]. If this property is not present in a topology, the resulting clustering coefficient
is low.

Second, real world networks also contain nodes that act as airport hubs. That is, there is a small
portion of nodes within the network that have a much higher degree than others. Moreover, the
degree distribution of all nodes must follow a power law distribution, as seen in nature. Instead,
random networks, mesh networks or ring networks present an almost linear distribution of node
degrees.

The Watts-Strogatz model generation can be described through the following steps:

24

BUPT



2.4. Topologies
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Figure 2.11.: The small-world effect positioned between the regular and random network properties.

1. The algorithm needs a starting ring topology which is iteratively restructured until a balance
between the average paths and clustering is obtained. Each node along the ring is connected to
the closest /' /2 neighbors on the left side, and to the closest /' /2 neighbors on the right side.
K is an even variable parameter chosen so that N > K, where N is the number of nodes in
the ring. Another parameter /3 is chosen so that 0 < 8 < 1.

2. With the regular ring topology obtained, the reconstruction phase can begin:

for each node n; in N:
for each edge ¢;; of n;:
remove edge e;; and create edge e;;, with probability 3 so that the new edge e;;, is not cyclic and
is not duplicate.

The resulting topology yields a network with a small average path length, a high clustering co-
efficient but the degree distribution shows a simple Poisson distribution. As seen in Figure P.11], a
regular topology (i.e. 5 — 0, e.g. ring) has a very high average path length, denoted L(0). A fully
random network (i.e. # — 1) has a very low average path length, denoted L(1), where:

L(0) = $%, thus L(0) is linear to NV and L(0) > 1.

L(1) = 2 & thus L(1) < N.

The important aspect, however, is that the average path length of a topology between 8 = 0 and
B = 1 shows a fast drop as seen in Figure P.I1. The clustering coefficient for a regular network
is C'(0) = 3/4, and for a random network it is C'(1) = K/N. While the average path length
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Figure 2.12.: A small-world network generated with the Watts Strogatz algorithm. Nodes are colored
based on the detected community.

drops rapidly, the clustering coefficient’s drop is delayed until 3 increases more. This resulting region
presents a small-world property, as pictured in Figure P.T1] by the pink area.

As a conclusion, the Watts-Strogatz model proposes an advanced topology that encompasses one
important real world property, namely the triadic closure. Such a generated network can be seen in
Figure P.12. Combined with the small average path length, it is an appropriate way to model some
classes of real networks (e.g. road maps). However, as it does not create a heterogeneous degree
distribution it cannot be used as a stand-alone solution for representing social networks.

2.4.5. Scale-free networks

A scale-free network is another social topology which describes many observable real world networks
such as the Internet and relationships within groups. It is a topology based on preferential attachment
. This process implies that nodes with a high degree will consequently increase their degree even
more, while nodes with small degrees will stagnate in the process of creating new connections. The
nodes of a scale-free network follow a power law distribution [25, 295]. A power law distribution
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Figure 2.13.: A scale-free network generated with the preferential attachment algorithm of Barabasi-
Albert. Nodes are colored based on the detected community.

means that a fraction of nodes, denoted P(k), in the network that have degree &, can be described
for large values of k, as P(k) ~ ck™" ,where c is a normalization constant and y is a parameter with
typical values between 2 and 3.

As can be seen in Figure .13, a scale-free network is similar to airplane routes: most nodes have
a very small degree, multiple nodes act as local hubs, and very few nodes are hubs for most clusters
formed in the network. Although the degree distribution is as found in empirical networks and the
average path length is small enough, the clustering coefficient is much smaller than needed. The
distribution of the nodes can be seen in Figure P.14. There a very few nodes with a degree over 10,
several nodes with degrees 8-10, multiple nodes with degrees ranging from 6-8, and so on, as most
nodes have a degree of 1-4. This kind of distribution is seen in nature (biological networks [276, 195],
relationships between students in college, correspondence patterns [209], geographic constraints of
groups [210]) as well as in industry (internet, router networks) [23]. A popular example demonstrat-
ing the occurrence of scale-free networks in real life is the collaboration of movie actors in films. A
study has shown that all actors are linked by a small number of steps (thus a small average path) and
also that some actors have been in contact with much more actor that others. One actor connected
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Figure 2.14.: Power-law distribution of node degrees. [32]

with an overwhelming amount of connections is Kevin Bacon, serving as a hub for connecting any
other two actors with one another. A popular game named Six Degrees of Kevin Bacon has been
released, focusing the fact that no actor is more than 6 steps (hops) away from Kevin Bacon [23].
Another example is the worldwide airline network with major hubs around the world connecting
the continents, capital hubs connecting countries and local hubs for regional air traffic. Any two
cities around the world can be reached by a small number of flights, but regional flights do not form
clusters of interconnected cities.

An algorithm to create such a network was proposed by Albert-Laszlo Barabasi and Reka Albert
at the University Of Notre Dame, and constructs the so called Barabasi-Albert model. The model
centers around two important topics, namely network growth and preferential attachment. Growth
is seen in most natural and synthetic networks, as food-chains evolve or as the Internet grows. The
construction algorithm undergoes the following steps:

1. Begin with a random network of m nodes, with 7m > 1 node, in with each node has a degree
of at least 1.

2. Each new node n; is added by trying to connect it to every node m; in the network with
probability p;;.
kj
Pij S lem (2.16)
where k; is the degree of node j in the network and the sum is composed of the degrees of all m
nodes in the network. It the node is not successfully connected to at least one node in the network,
the process is repeated. It is clear from this algorithm that hub nodes tend to attract more nodes
faster, while nodes with low degrees will likely retain their degree, as their probability to be linked to
new nodes is smaller.
By analyzing the properties of the resulting network it is clear that the degree distribution conforms
itself to the social network requirement. The number of nodes with degree k, for large values of £,
and denoted with P (k) is:

P(k) ~ k3 (2.17)
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The average path length of the Barabasi- Albert model increases logarithmic with the network size

as [274]:
InN
L~ i (2.18)

However, the clustering coeflicient depends on the network size, as it scales with the degree of the
node and with the network size:

C ~N-3*and C(k) ~ k!

Unlike scale-free networks, the clustering in small-world networks does not depend on the network
size [I10].

As a conclusion, the Albert-Barabasi model proposes an advanced topology that encompasses one
important real world property, namely the power law distribution of its nodes. Combined with the
small average path length, it is an appropriate way to model many classes of real networks (e.g. air-
plane networks, the Internet). However, as it creates a homogeneous clustering coeflicient that scales
with the degree and network size, it cannot be used as a stand-alone solution for representing social
networks.

2.4.6. Advanced complex network topologies

Inspired by the small-world and scale-free topologies, a considerable amount of new networks have
been added to literature in the past 10 years, and each of themmay still be classified into one of the
two categories: small-world or scale-free. To recreate natural processes with a higher fidelity, there
are proposals which add the small-world property to scale-free models [[123, 251, 96, 166], or ones
that add power-law degree distribution to the small-worlds [[135, 57, 152, 274, 296].

A. Watts-Strogatz network with degree distribution (WSDD)

The WSDD [57] is designed by creating a small-world topology (short L and high C) but also modify-
ing the degree distribution of nodes, from a normal distribution to a power law one. This is achieved
by first generating a given number of N disconnected communities. Each community is built using
the Watts-Strogatz small-world algorithm [281]], and the sizes of the communities follow a power-
law: there are very few very large communities, and many very small communities. Once each of
the /N communities are generated, they are connected by randomly selecting two nodes from two
different communities, and adding an edge.

The resulting network is one with high C, a relatively low L (due to the inter-community links),
an overall power-law P < k > and a high modularity. Such a network is depicted in Figure 2.153a.
The generated network has 280 nodes, 4527 edges, 10 distinguishable communities, and a modularity
Mod = 0.799.

B. Cellular networks

Cellular networks have been proposed as a response to the need for large-scale multi-agent sim-
ulations [263]. They are based on the observation of covert networks, like the Al-Qaeda terrorist
organization. Cellular networks consist of an arbitrary number of normal-distributed sized cells,
with a high clustering, in which a node is chosen as a cell leader. The algorithm to generate such
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networks begins by creating /N independent mesh-like cells, with one node selected as a leader, per
cell. All nodes connect to their cell leader. After this step, all cells are randomly connected with each
other to create a small-world network of cell leaders only. This results in a super-network of leaders
which are bridges for their respective cell nodes. Thus, any node may connect to another distant
node in roughly 3-4 steps: link to local leader, link(s) between leader(s), link from distant leader to
destination node.

The resulting network is one with high C, a relatively low L (due to the leader network), and a high
modularity. Such a network is depicted in Figure P.I5b. The generated network has 118 nodes, 540
edges, 8 cells (communities) and a modularity Mod = 0.747.

C. Holme-Kim (HK) networks

The network model proposed by Holme and Kim [[123] stems from the scale-free algorithm of Barabasi-
Albert (BA) [25], but adds what the latter lacks: a tunable clstering coefficient. In order to obtain
higher clustering, the following steps are followed: we start with a seed network consisting of mg
nodes without edges; one new node v with m edges is added at every iteration; the edges are added
using preferential attachment (as defined by the BA algorithm). In the BA model, the preferential
attachment step is repeated for each edge m of each new node v. To solve the problem of clustering
(i.e. to obtain a network with high ('), the authors propose another step (triad formation step): if an
edge is added between v and another node w, then v will also connect to a randomly chosen neighbor
of w.

The resulting network is one with higher C' (than scale-free networks), a low L (due to preferen-
tial attachment), and a low modularity. Such a network is depicted in Figure P.15c. The generated
network has 300 nodes, 959 edges, a non-distinguishable community structure (11 detected) with a
modularity Mod = 0.452.

D. Toivonen networks

Similar in motivation and in structure to the HK model, Toivonen et al. propose a complex network
model that encompasses more features found in empirical data[251]. The authors consider essential
characteristics for social networks to include assortative mixing [201, 202], high clustering, short
average path lengths, broad degree distributions [13], and the existence of community structure. The
algorithm starts with a seed network of Nynodes. At each step, to add a new node v, m, > 1 random
nodes are picked as initial contacts, and m, > 0 random nodes are picked as secondary contacts for
each initial contact. The newly added node v is them connected to the initial and secondary contacts.
Identical steps are repeated until a certain network size is reached.

The resulting network is one with high C, a low L (due to random long-range links), and a high
modularity. Such a network is depicted in Figure P.15d. The generated network has 300 nodes, 925
edges, 9 communities, and a modularity Mod = 0.69.

E.LFR model

The network model of Lanchichinetti-Fortunato-Radicchi [152] is based around the idea that com-
munity structure is essential for synthetic networks realism, and can be used as a benchmark for
such algorithms. The proposed algorithm wants to create heterogeneity in the community sizes and
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degrees of nodes. Each node is initialyl given a degree taken from a power-law distribution with
chosen exponent . Each node shares a fraction 1 — p of its edges with other nodes from the same
community and a fraction y of edges with other nodes outside the community. The sizes of the com-
munities are also taken form a power-law distribution. Initially, are nodes are without community.
THen, they are randomly assigned a communitys; if the size exceedes the node degree, the node en-
ters the community; otherwise, a randomly chosen node is kicked from the community and becomes
isolated. The process stops when all nodes have a community.

The resulting network is one with high C, a low L (due to random long-range links), and a low
modularity. Such a network is depicted in Figure f.15e. The generated network has 316 nodes, 2286
edges, and a very low modularity Mod = 0.157.

F. Tunable growing graphs

This network model was proposed by Pasta, Zaidi et al. [216, 296] and is based around the idea of
community creation. The algorithm starts by initializing c triads which represent independent com-
munities. The communities are connected with one edge between randomly selected nodes to form
a connected graph. A new node n; is connected an existign node ny through preferential attach-
ment; this results in n; belonging to the community of ne. With probability p;, node n; connects
preferentially to other neighbors of ny forming triads. The same process is repeated for another pair
of nodes n3 (new node) and n4 (existing node from another community). With probabilty p., an
edge is added between two preferentially chosen nodes from the communities of ny and n.

The resulting network is one with high C, alow L (due to preferential links between communities),
and a hierarchical community structure. Such a network is depicted in Figure P.15e. The generated
network has 400 nodes, 2221 edges, 8 communities, and a modularity Mod = 0.441.

These models have been considered as references for validation in this thesis, but of course, addi-
tional network models exists, and they are mentioned in works like [13, 40, 166].

2.5. Social interaction models

The interaction model of a society encompasses the rules which describe how an agent’s opinion
evolves after each interaction. Whether opinion is changed by factors depending on the communi-
cation initiator or on the receptor there are three classes of models [285]:
« Egocentrism (inner model): in which opinion is changed only by personal beliefs of that per-
son. These parameters include trust, confidence and tolerance. All of these parameters are
internal (hidden) from the outside and they also evolve with the person’s opinion.

+ Exocentrism (outer model): in which the new opinion only depends on the other person’s
parameters. This parameter is credibility. External parameters are public opinions of a person,
shared by all agents initiating communication. These parameters evolve within the receptor
but are publicly visible.

 Hybrid (combination of both models): which best describes how a person takes decisions.
Everyone has personal subjective beliefs about another topic or person (inner), but they are also
objective regarding the public opinion facing one topic (outer). There are situations in which
decisions are taken by putting a greater accent on emotions (inner) rather than the truth, and
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(d) (e) ()

Figure 2.15.: An illustration of complex network topologies. a. A WSDD network with 280 nodes.
b. A cellular network with 118 nodes. c¢. A Holme-Kim network with 300 nodes. d.
A Toivonen network with 300 nodes. e. A LFR network with 316 nodes, f. A tunable
growing graph with 400 nodes. All nodes are colored according to the community to
which they belong, and sized proportional to their degree. I have used the community
detection algorithm [B8] implemented in Gephi [30] for this purpose.
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decisions that take the accepted reality into account (outer) with little or no regard to personal
feelings.

This classification is an original proposal based on different works in social psychology [19, 285].
Further parameters have an impact on personal opinion evolution but are currently only proposed
for future research: age, education level, financial status, religious belief, health status, randomly
appearing problems, risk etc.

While social interaction models mostly stem from studies in (social) psychology, social networks
analysis has borrowed a simplified version of human interaction basics, one that can be mathemati-
cally modeled and parameterized. This thesis does not porpose to leave the field of computer science
and social networks and enter that of psychology, as such, I limit myself to the validated proposals
found in recent literature.

In accordance to a landmark survey by Guille et al. [I12], the interaction model proposed in this
thesis, as well as the state of the art revolves around so-called graph-based predictive models. There
are three types of such models:

 With static thresholds (fixed from the start of the simulation): gq-voter model [133], LCCC
model [B7], hard-interaction model [162], vector-based interaction [237], dual-threshold in-
teraction [p4], extended bounded confidence model [225], voter model with biased nodes [74],
voter model with friends and foes [167]. All of the previoulsy mentioned models use unifor-
maly distributed threshold values, as they have no empirical backup. Additionally, some use
thresholds from real-world data, but they are still static: information cascade using Twitter[99],
asynchronous linear threshold model using social network datasets [234].

« With pseudo-dynamic thresholds (the thresholds adapt during simulation, but simply based
on the evolution of the graph, not that of the interaction): diffusion model with early adopters
[76], and diffusion model with trust [161]].

« With dynamic thresholds (the thresholds adapt during simulation, based on agent interaction):
diffusion model based on opinion evaluation [88] and the tolerance model proposed in this
thesis.

As most of the presented literature is based on simple, static threshold models, this thesis wishes
to bring an important contribution to literature by creating a truly dynamic (adaptive) interaction
model. This original contribution is found in Chapter f§. Additionally, there are some interaction
models which make use of special types of agents:

« Stubborn agents or blocked nodes [B, 2, 4, 292, 233] (used so that society never reaches con-
sensus).

o Extremists [75] (the society may reach consensus).

« Contrarians [164] and non-conformists [I33] (similar to absurd agents, and the society may
reach consensus).

« Media nodes [225] (converge towards the opinion of most followers).

o Advisors [88] (similar to stubborn agents).
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2.5.1. The g-voter model

The authors test the q-voter model [[33] - a popular extension of the classic voter model [122, 292]
- by adding conformist (regular) and non-conformist (exactly opposite behavior as regular) agents.
They study the ratio p of conformists versus non-conformists and highlight the fact that opinion
stabilizes at a time point ¢ and value M that is dependent on that ratio p; this whole convergence
happens as the result of a phase transition. The q-voter model is worth mentioning in line with Ace-
moglu et al [2, 4]. This work discusses a type of phase transition in opinion formation (stabilization)
and opinion stabilization, that coincides with the observations over my proposed model, It shows
that my interaction model also behaves in a way that is persistent in many other models.

2.5.2. The LCCC model

The authors analyze two models in their work [37]: the LCCC-model, based on a closed economy
model where nodes are given an initial wealth w and they interact pairwise using a saving parame-
ter A, and the C-model, where nodes have a conviction probability c, that is, they adopt a random
proportion c of a neighbor’s opinion. This leads to either a symmetric phase or a broken symmetric
phase as A increases. The authors experiment on lattices and propose a modified model in which
agents are only influential over the ones with weaker opinion, but agents who agree, do not influence
each other.

2.5.3. The hard-interaction model

The authors introduce a threshold model [162] based on the degree of agreement d between any
two nodes. That is, there exists an agreement d;; for every pair of nodes. If d;; < 7 (how open
minded a society is), then the two nodes ¢, j can interact and d;; decreases (they converge on an
average opinion). The authors show there is a phase transition triggered by an increasing 7 (open-
mindedness) that leads from a radicalized society to a society with consistent opinion. The value of
7 is around 0.75 (75%).

2.5.4. The vector-based interaction model

The paper introduces a vector-based opinion model [237], in which every agent holds n opinions
about n topics, and updates by coming in interaction with £ other neighbors. The influence of each
neighbor is a stochastic variable inside [0, noise]. The authors show that if noise ~ 0, then the
outcome strongly depends on the initial state of the society and opinion clusters form; if noise is
large, the opinions mix “well’, and no determinable clusters can take shape (i.e. a random mixing in
time occurs).

2.5.5. The extended bounded confidence model

The paper considers the coexistence of media and of social influence as two separated but interde-
pendent processes [225]. People interact with their neighbors or with the media using the Bounded
Confidence Model [[75, 19], if the distance between their opinions is below a given threshold o (tol-
erance). In turn, the media aims to capture the highest number of followers, hence they change their
message by moving toward the value of the media with the highest number of followers. A phase
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transition results when increasing the tolerance for: the maximum distance d between two opinions
in the network, and for the localization L, which denotes the inverse number of diverse opinions.

2.5.6. The voter model with biased nodes

The authors introduce a probabilistic model [74] based on selecting one of the neighbors’ opinion
with a probability that is proportional to the closeness of opinion. The paper builds upon the classic
voter model by adding biased nodes (they pick one random opinion in their neighborhood). This
decision was taken due to a set of real-world experiments that reproduce Ash’s studies on conformity
(15].

2.5.7. Pseudo-dynamic interaction models

These models have an opinion-triggering threshold value which does change during simulation, but
it is simply based on the evolution of the topology, and not on the the interaction itself. There are
two such models in the state of the art:

o The diffusion model with early adopters [76]: a threshold-based opinion diffusion model
where the size of the relevant neighborhood varies over time. Therefore, the threshold here
is represented by the size of neighborhood participating in opinion formation.

« The diffusion model with trust [I61]: assumes that an agent is more likely to be influenced
by opinions which are close to the present opinion of the agent. However, the fundamental
difference from my proposed model is that the influence likelihood is not an internal state of
the agent and does not evolve over time due to previous social interactions.

2.5.8. Dynamic interaction based on opinion evaluation

As a close competitor to my thesis proposal, there is work dealing with dynamic threshold values that
evolves in time, with the simulation, and are based on node to node interaction.

The authors introduce a diffusion model [88] based on modeling the trustworthiness of the so-
called advisors. This model is somewhat similar to those using stubborn agents. Complex factors
are taken into account to model trust, and real-world data is used to validate the findings. The big
difference is that this model aims at predicting trust such that an e-bay transaction is made or not,
not on predicting opinion formation phases (like my work). Nonetheless, this is a model where the
thresholds are dynamical, and serves as reference.

2.6. Caveat of creating realistic societies

Having evolved from basic computer network topologies, like the mesh and ring, complex networks
have emerged by studying empirical networks in our world. Ranging from natural networks, like
food-chains, actor’s relationships, protein chains and correspondence patterns [23], to synthetic net-
works, like the World Wide Web and airplane traffic, these networks have generated interest in en-
gineering around the world [287, 270, 241, 275]. However, better understanding of social networks,
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fostered by social, economic and marketing research, has led to the proposal of newer and more
advanced topologies which better resemble real networks [276, 63, 273].

The two fundamental networks which serve as a model for social topologies are the small-world
network and scale-free network. Also, there are two properties a topology has to encompass in order
to be considered a social network: creation of triadic closures [[[45, B4], in the sense that nodes tend
to cluster locally, and a power law distribution of the nodes degrees in the network. Both of the
topologies, however, only meet one criterion necessary for modeling a good representation of such
networks. The small-world network creates triadic closures, measured by a high clustering coefficient
C, along with a small average path length L, and the scale-free network creates the required power
law distribution P < k >, measured by the degree distribution, along with a small average path
length L.

Empirical studies done over a variety of natural and man-made networks have resulted in the
definition of several metrics used to describe and measure these networks. Focusing on the metrics
explained and measured in Section [.7, I present an overview of the recent related work in regard
to social modeling, as well as highlight why each current social model does not meet the required
accuracy. Also in this section, I present an overview and discuss the state of the art statistical meth-
ods used in networks comparison in general, and particularly, the ones applied in social network
analysis.

2.6.1. Related work

Current research to improve the accuracy of social topologies has been done by combining prop-
erties from the two fundamental models previously described with empirical data gathered from
various contexts. A first notable study shows the impact of adding a power law degree distribution
to small-worlds [57]. The Watts-Strogatz model with degree distribution (WSDD) is designed by cre-
ating a small-world topology (short L and high C) but also modifying the degree distribution of
nodes, from a normal distribution to a power law one. Cellular networks have been proposed as a
response to the need for large-scale multi-agent simulations [263]. They are based on the observation
of covert networks, like the Al Qaeda terrorist organization. Cellular networks consist of an arbitrary
number of normal-distributed sized cells, with a high clustering, in which a node is chosen as a cell
leader. Further models exist that expand on the conclusions of Milgram’s experiment [187]. The
static-geographic model generates a social network in which links are added between nodes taking
the actual distance into consideration: the greater the distance, the lower the wiring probability. The
introduction model is similar to a small-world network, in the sense of recreating realistic triadic clo-
sures. Once a wiring is done between two nodes with probability p;, one node tries to connect to as
many friends of the other node as possible using probability ps. The random encounter model is useful
for modeling population dynamics. Each node receives a random 2D movement and connects with
a probability p to any other node it collides with. Growth models are variations of the Albert-Barabasi
[10] algorithm and model realistic network growth according to the “rich get richer” principle. Such
a model is the WIW online platform started as an experiment in 2002 in Hungary [67]. Analyzing
the edges between over 45,000 users, the study proves the existence of a high clustering in real social
networks and the fundamental role of triadic closures in creating new friendships.

Similar work based on friendship formation proposes the creation of a synthetic network to be
used to simulate social interactions in a population for a given geographic space [[4]. It predicts
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social travel focusing on friendship relationships and the results indicate that the model is able to
generate networks that display the same structural properties as in the sample data.

2.6.2. Evaluating the related work

Basic network analysis is done by measuring fundamental graph metrics, and comparison of two or
more networks, by doing an individual comparison of each metric independently. While such an
approach is useful in trying to capture one specific feature of the network, it fails to create a general
overview of the similarity between the analyzed networks [66]. Similar work aimed at comparing the
importance of graph metrics concludes that each metric captures specific attributes of the network
[35]. It states that further study on the effect of each metric is needed in order to be able to choose a
fitting topology according to the requirements of an empirical model.

Comparing real systems is aimed at a deeper understanding of the interaction patterns between
these systems [281, 25, 246], and extracting their common properties helps improve the models even
further [281], 13, 141]. However, the predominant method of graph metric comparison suffers from
limited information [[[65]. Some notable means of comparison are the distance ratio measure [49],
used to compare individual mental models, a comparison from the data analysis perspective [165]
and the study of the self-similarity of complex networks (Song, 2005). From a topological perspective
there are studies done both in the direction of classifying social network models [I41] and of struc-
tural pattern detection [215]. These methods however serve a higher level of meta-analysis rather
than as measures of similarity.

The statistical methods with which network similarity can be measured are the cosine similarity
[249], variance, covariance, Pearson correlation coefficient (PCC) [245], the Mahalanobis distance
[174]. Other methods used in network analysis which are adopted from statistics include the T-test
and the ANOVA test (analysis of variance). A recent study improves upon the T-test methodology by
proposing an alternative geometrical approach called the Characteristic Direction, in order to iden-
tify differently expressed genes [61]. There is no single statistical approach used in current research
because there is no unified metric that provides normalized values which are tailored specifically
to network comparison. Yet, the most intuitive and thus used metrics are the Euclidean distance,
Pearson correlation [244] and cosine similarity [249].
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Network science, with a little bit of imagination, can be used to model vastly complex phenomena into
simple models which can be grasped by the human mind. This thesis revolves around the concepts of real-
ism assessment of social networks, modeling of the underlying structure, and creating a better overview
of agent based interaction and prediction. In order to achieve these goals, I have started with the analysis
of multiple real-world datasets which I have modeled as graphs. Analyzing the emergent metrics, cen-
tralities and community structure that is formed on diverse empirical data, I was able to define reliable
and fundamental models which target social networks. In this chapter, I present the essence of modeling
social networks based on data collected from collaboration networks (from music industry, and fashion
world), and compare it to non-social data from biological and technological networks (from sleep apnea
patients, from patients with heart diseases, and also from road and sensor networks). All this serves so
that I build a clear image of the different features which lie at the basis of social networks in general.

“Somewhere, something incredible is waiting to be known.”

X Carl Sagan
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This chapter represents an introductory set of original contributions which lie at the basis of my
topological and behavioral modeling. In order to be able to define the parameters for realistic topolo-
gies, and understand the principles of social interaction, I have done multiple studies based on em-
pirical datasets, all presented and published in conference proceedings or journals. To discern which
graph properties of social networks are relevant, I have done two studies on social empirical data
which represent a first of their kind, to the best of my knowledge. The first study models the network
of all musicians from the music industry, which I call MuSeNet [258, 29]. In the second study, I
have built a network of the female fashion world, which I call FMNet [254]. The innovative approach
behind this second study has brought me a best-paper award at the prestigious conference at which
it was presented.. Both these topologies have been generated and analyzed using state of the art tech-
niques from SNA. Also, I use a network motif approach to extract topological features of online social
networks [261]]. I have elaborated this study in appendix B, using my original and validated network
comparison approach [257, 256].

Further, to have a clear perspective from a non-social context, I have applied network modeling
in network medicine, where I have obtained a plethora of publications, out of which I mention no-
table results in modeling the risk compatibility network of patients with sleep apnea [186, 265], and
modeling the diagnosis compatibility network of patients with heart disease [247]. Finally, I have
also conducted research in technological networks, namely to analyze and optimize urban traffic
networks [259], and to develop an algorithm for placing relays and a central sink in a wireless sen-
sor network, in order to balance cost versus latency in such networks where communication timing
is essential [[[29]. These cross-discipline studies have brought a substantial overview on how social
networks differentiate from other types of complex networks.

3.1. Collaboration in social networks

Starting with the research of Newman and Barabasi, oriented towards detecting community struc-
tures and collaborations, a wide variety of social interaction types have been bridged together by
scientists in the last decade [200, 199, 26, 205, 207]. One of the incipient contributions which have
set out the incentives for further studies shows the small-world organization of such collaborations,
with an overall short path between any two nodes in the graph . The node degrees tend to follow a
power-law distribution, and the emerging communities create clustering in the network [200]. While
some topological aspects are deemed fundamental and present over all collaboration networks, there
are many apparent differences in the patterns of collaboration depending on the studied fields. Ad-
ditionally, it was shown that (optimal energy) force-directed layouts coincide with the modularity
measure used for community detection [207]. To this end, I mention some of the latest and most
noteworthy literature available in this field.

A fundamental study on large-scale collaborations studies the fast growth of international co-
authorships and finds that such networks are self-organising and scale-free, with notable deviations
from the ideal power-law[272]. Arching over to economics, a paper studies the structure of oligopo-
litical markets[109]. Based on the commitment of pair-wise collaborative firms the authors reach
similar results in terms of topological properties.

One important property of social network clustering is homophily. Research like[83, 41] describes
this phenomenon through the study of racial and ethnic segregation. The results of over 50 years
of measuring the impact of segregation in education, housing, and the labor market are based on
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friendship and collaboration network modeling. In all these models, homophily plays the crucial
role which leads to segregation.

By analyzing the human desire to share information based on their interests, I find in literature the
so-called recipe network [250], and even network of Marvel characters [§]. The results are dynamic
databases that can be used to make recommendations.

Triggered by Milgram’s experiment [[I87], and derived from the famous statement made by Kevin
Bacon himself [90, 28], a whole science was dedicated to this, sparking an interesting concept in
the domain of social networks - the Bacon number; this is defined as being the number of degrees
of separation any given person has from Kevin Bacon (a particular application of the Erdds number
(60, 200] to the Hollywood movie industry). The internet movie database grows yearly with each
new movie release, thus, using all of the data may result in networks that are not transparent, and
hard to analyze. Therefore, studying only a subset of the IMDB network, more specifically the adult
collaboration network [98] has been proved to bring many benefits, for instance by removing any
nodes characterized by long-spanning careers and focusing the resulted network more onto the time
evolution.

In the field of music, a notable study analyzes the collaboration network of jazz musicians [[L05,
48, 102]. Some of the presented results include racial discrimination between musicians, and that
the division into communities presents a strong correlation with the geographical locations where
the bands have recorded - showing that the musicians and the bands network form a collaboration
network of jazz musicians. Another study presents an overview of the professional collaborations
of whole music industry, in the so-called MuSeNet [258]. The authors explain how the underlying
topology of MuSeNet affects the flow of influence and yield for musicians. It is shown that the network
fosters a topocratic environment in which the record houses have a bigger-than-expected impact due
to their tight clustering and advantageous topological position.

3.2. MuSeNet: a social model of the music artists industry

Motivated by the constantly growing interest and real-world applicability shown in social networks,
I model and analyze the network formed by music artists all around the world, which I call MuSeNet.
Inspired by similar approaches, I compare the obtained analytic results with generic online friendship
models and with the collaboration networks of actors. Together with my collaborators, we are the
first to fully create such a network, and by using centrality measures and network motifs, we discover
the most influential nodes in MuSeNet. In light of current advances in social networks, I highlight the
importance of music producers in terms of meritocracy versus topological positioning, and discuss
the differentiation between collaboration networks using a network motif approach. Finally, I show
that MuSeNet has a characteristic sociability - a measure which is introduced in this section - in
comparison with other empirical networks.

The motivation behind this study is to create incentives for studying the professional relationships
of (music) artists around the world, how they form new links based on different attributes (common
bands, music styles, genres etc.) and watching this collaboration network evolve with each new node
(artist). Through intensive data mining from social media sources, through SNA methodologies, and
motif distribution analysis, I have created MuSeNet (Musical Society Network), which represents - to
the best of my knowledge - a state-of-the-art analysis of this kind. This study, along with its results al-
low us to elucidate the mechanisms of driving the emergence of this kind of social phenomenon, and
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whether it shares dynamical and structural features with other natural, social processes. Additionally,
on more generic scientific grounds, social phenomena like collaborations between musicians/bands
or even new/old artists forming a new band (relationship) are an excellent opportunity to understand
network formation processes and musical influence dynamics.

Additionally, this section presents a novel perspective on how different artists networks (movies,
jazz, all music) can be differentiated using a network motif approach. Moreover, I compare these
professional networks to usual online social networks (Facebook, Twitter, Google Plus) and quantify
how much they differ using the network fidelity metric [257] (see appendix [A]). Even though similar
in nature, it is shown in this study that all studied social networks have specific properties which make
them unique in the real world. I coin this measure though the concept of sociability and discuss the
real world effects these topologies have on the dynamics inside the networks.

3.2.1. Data acquisition

The database used in this study is obtained from the All Music Guidell online digital database. To-
gether with my collaborators, I used this particular database, since at the time this case study was
elaborated I considered it to be the most comprehensive [[02]. The lack of an API or means of down-
loading raw data meant that we had to write a script to automatically parse each internal link, in order
to retrieve the required information. After running for ~24 hours, it accessed 781 pages, resulting in
19,881 artists (15,501 after filtering) with the following data-set saved into an SQL database:

o ID - internal reference number

o Name - the name of the artist

o URL - the url of the artist, pointing to his/her profile on the All Music Guide website
 Genre - the conventional category that a particular artist identifies with

« Style - (a list of) style(s) an artist identifies with

o Member_of - a list of bands he/she was part of, if any

o Active_period - the time-period reported as active

After collecting the data, I needed to create a graph of musicians, similar to the state of the art method-
ology [[105, 98]. I consider the artists as nodes in my graph and place the links based on compatibility.
Particularly, compatibility is defined as the number of common bands two musicians have performed
for. The more music bands two nodes have in common, the greater the weight of the link between
them. It is to be noted that how one defines compatibility influences the structure of the resulting
network. A different layout of ties (e.g. based not on common bands, but on overlapping activity
years, gender, music genre, music style etc.) would offer different insights over the same dataset.
This study only focuses on analyzing how common bands affect the clustering of artists in a complex
network, the other mentioned insights are planned as future work.

Finally, I have created the MuSeNet social network of musicians as a .gdf file, a valid input file I
can load up in Gephi [30], the leading tool in visualization and analysis of large networks. For the

!Cam be found online at http://www.allmusic.com/
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purpose of this study I have truncated the weights on the resulting network into an unweighted graph,
where a link denotes one/or more common bands between two musicians, and no link denotes no
artistic interaction. The reason for using an unweighted graph instead of a weighted one comes as
an optimization to balance the interaction phenomena. It is shown to yield more accurate results
for the study in terms of determining whether it is a community based on merit (meritocracy) or
position (topocracy) [202, #4]. To that end, I have left the attributes of genre, style and active year as
parameters for doing the clustering of artists.

3.2.2. Network analysis of MuSeNet

In this section I present the graph metrics and visualizations obtained by applying social network
analysis on MuSeNet. In Figure B.1], I highlight the relevant communities that form over the musi-
cal network. Nodes are placed using ForceAtlas2 [[132], a force-directed layout algorithm available
in Gephi, and are colored according to the community they belong to. The communities are de-
tected using the fast community detection algorithm implemented in Gephi [38]. Such an algorithm
was chosen by the authors in light of the existing methodology to break down a social network into
clusters and extract their representative features [205]. One of the analytical advantages of social net-
works analysis lies in the emergent community structure of the network it is applied to. The artists
are grouped together by partially overlapping musical genres. The relevant communities that emerge,
based on genre, are: pop-rock (24.56%), jazz (16.72%), blues (15.8%), classical (8%), country (5.35),
and others. The proportion of music styles is a known fact, but what network analysis unveils are the
spatial distribution as well as the overlapping of such styles. As such, the most popular genres are
also the ones clustered together, as there are more collaborating artists. The topologically marginal
genres are also the ones less popular, like avant-garde, reggae, vocal, or religious, so I can confirm
there is a correlation between the communities’ center of gravity and their real-world popularity.
The further a genre-community is from the absolute center of MuSeNet, the less popular it is, and
vice-versa.

As the most dominant music style, Pop/Rock (violet, in Figure B.1)) is very central and also tightly
clustered, meaning that artists in this industry prefer to work together with others alike. On the
contrary, the second most important genre highlighted by my analysis is Jazz (yellow) which tends
to dissipate and overlap multiple styles. In my perspective, this is because of the very nature of Jazz
artists to collaborate and create music with other genres. The same conclusion can be drawn for
Classical music (green) which, in today’s world, implies composing contributions for movie scores,
commercials, and melodic lines for other genres. Finally, country music (cyan) shows a similarity to
the Pop/Rock community, namely all artists are linked more with each other rather than with others.
However, the community has a more eccentric position which I correlate with its popularity.

Figure B.7 shows the distributions of centralities in MuSeNet. There is a power-law distribution
of degree, betweenness, Eigenvector centrality and Pagerank, which is specific for social networks,
both empirical and synthetic [10, 276]. Notable is the cluster visible in Figure B.2c (larger red nodes)
which shows that there is a small single dominant community of nodes with very high Eigenvector
centrality. On inspection, this community is formed by mature artists who currently own a record
studio. The fact that most published music goes through their studio makes them, as a whole, the
central community in MuSeNet.

Referring to the idea of “meritocracy versus topocracy” discussed in a recent study by Borondo et
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Figure 3.1.: Graphical overview of MuSeNet (generated in Gephi). Each musician is a node in the
graph, connected with another node if there has been at least one artistic collaboration
with that node. After applying the ForeAtlas2 [[32] layout and community detection,
nodes can be colored by highlighting the distinct musical genre-communities.
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Figure 3.2.: Graphical overview of complex network measurements on MuSeNet. The nodes high-
lighted in red in each figure highlight one of the three measured centralities: a. Power-
law degree distribution, b. Degree centrality, c. Eigenvector centrality, d. Betweenness
centrality .

al. [44] this community (shown in gray in the upper part of Figure B.1] and in red in Figure B.2c) is
the one that thrives mostly in the topocratic environment of the music industry, making the most out
of its influence in the music industry. Moreover, this real-world influence is replicated in the graph.

Tables B.1 and B.7 show the top 5 artists with the highest centralities in the music industry. I
have measured all four centralities since they highlight different aspects of importance in a network.
The highest degree musician is Greg Errico, an artist and producer who's resume spans across the
most important musical genres, until today. He was member of the “Sly and the Family Stone”, and
performed in Rock, Jazz, Fusion, along with David Bowie, Santana, Larry Graham and others.

On the other hand, betweenness depicts importance in terms of interaction control. Dave Grohl,
a member of Foo Fighters and Nirvana, lies the crossroads of most collaboration paths between all
other artists. Eigenvector centrality highlights members of the mentioned producer-cluster, with
Greg Errico, Alphonso Johnson (etc).

In link analysis, where Pagerank is normally used, a web page will have high Pagerank if it has some
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Table 3.1.: Musicians with highest degree and betweenness centralities.

Artist Degree Artist Betweenness
Greg Errico 81 Dave Grohl 0124
Alphonso Johnson 79 Josh Freese .0091
Dave Walker 67 Chris Shiflett .0084
Don Airey 65 Lu Edmonds .0075
John Wetton 62 John Wetton .0073

Table 3.2.: Musicians with highest Eigenvector and Pagerank centralities.

Artist Eigenvector Artist Pagerank
Alphonso Johnson 764 Greg Errico 2.925
Greg Errico 754 John Wetton 2.777
David Brown .689 Lu Edmonds 2.7
Graham Lear .657 Jimmy DeGrasso 2.672
Neal Schon 652 Alphonso Johnson — 2.641

combination of high in-links, low out-links, and specific in-links from other high ranking pages.
In the world of musicians, these artists with high Pagerank like Greg Errico, John Wetton, and Lu
Edmonds have most likely been influenced by either a lot of people, a few very important people, or
some combination of the two.

Finally, similar to the IMDB study which denotes Kevin Bacon as the most influential node in the
Hollywood actor network, I find Dave Grohl as the “Kevin Bacon of the music industry”. This as-
pect is clearly visible in Figure B.2d, where I show the betweenness distribution, a classical method
of computing influence. Dave Grohl is an American rock-musician, multi-instrumentalist, singer,
songwriter, producer and film director. He is best known for being the lead vocalist, guitarist, main
songwriter and founder of the band “Foo Fighters”, drummer and song-writer of “Nirvana’, “Them
Crooked Vultures”, “Queens of the Stone Age” etc. He has also performed session work as a drummer
for a variety of other bands/artists, like “Garbage”, “Nine Inch Nails”, “David Bowie”, “Paul McCart-
ney”, “The Prodigy”, “Slash’, “Iggy Pop”, “Tenacious D”, “Lemmy”, “Stevie Nicks” etc.

MuSeNet can further be analyzed from different perspectives, a process I look forward to as a future
direction.

3.2.3. Defining the sociability of complex networks

The comparison is done using the topological metrics which are specific for complex networks [246,
10,276,[197]. These values are represented in Table B.3: average degree (AD), average path length (L),
average clustering coefficient (C), modularity (Mod), graph edge density (Dns) and graph diameter
(Dmt). These metrics have the power of characterizing a complex network and offer valuable insight
[278].

The numerical results from Table B.3 show what I call the “sociability” difference between the three

46

BUPT



3.2. MuSeNet: a social model of the music artists industry

Table 3.3.: Relevant measurements of average degree (AD), average path length (L), clustering co-
efficient (C), modularity (Mod), density (Dns) and diameter (Dmt) on each empirical
network.

AD L C Mod Dns Dmt
Facebook 2223 2.34 0.256 0.577 0.005 7

Twitter 1239 2.68 0.239 0.28 0.054 7
Google Plus  12.15 3.9 0.404 044 0.035 12
Jazz 27.7 223 0.633 0.441 0.141 6
IMDB 113.,5 1.55 099 0.476 0.062 4

MuSeNet 13.18 7.64 0.884 0.844 0.002 23

types of collaboration networks. Interestingly, the Facebook model is situated at an average level
of sociability (i.e. metrics all centered on empirically representative values [257, [41]), while the
IMDB actor network proves to be more sociable (i.e. significantly greater AD, shorter L, higher C,
higher Dns, and shorter Dmt), and MuSeNet the least sociable. From a social perspective I explain
the differences in the following way. Facebook users (i.e. usual persons) interact and create new
friendships at what I call a normal rate. Actor’s everyday job, however, relies on playing in movies
with many other actors, and there are almost always different ones, as the casts for movies are very
broad. This makes their network very clustered and thus seems more sociable, on my terms. On
the other end, music artists do not usually create art (work) with many others. They rely on their
own band of ~5 members, and not more then on the other artists from their own genre. This makes
links in MuSeNet less dense, clustering very high and the community structure powerful. I consider
this to be a “non-sociable” network. Twitter and Google Plus networks, like Facebook, also situate
themselves around the moderate-sociable area, while Jazz musicians - interestingly - share the greater
sociability of the actors. The explanation for this phenomenon can be seen in MuSeNet itself, as Jazz
musicians work with many artists, and foremost with the majority from their own genre.

To quantify the discussed aspect concerning sociability I model the S-metric which expresses the
so called sociability of any given complex network. It is imagined to take into consideration the basic
graph metrics (also used in this study, e.g. Table B.3) and compare them to a reference model. In this
study I use the online social networks models distribution of metrics as the reference, and compare
the metrics of each other collaboration network to them. First, I normalize the offset from the refer-
ence value of each metric, then I either add (direct proportional) or subtract (indirect proportional)
the resulting normalized values. Thus, I define sociability as:

6

ST =" [k x (m; —my) /mj] (3.1)

=1

where 57, the sociability of network i towards reference model 7, is the sum of the six normalized
metrics: average degree (k1 = +1), average path length (k2 = —1), average clustering coefficient
(k3 = +1), modularity (k4 = —1), density (k5 = +1) and network diameter (k¢ = —1). The signs
(+/-) of the metrics reflect if the particular metric is direct (AD, C, Dns) of indirect (L, Mod, Dmt)
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Table 3.4.: Sociability of the collaboration networks compared to Facebook, Twitter and Google Plus.

Reference models

S Facebook Twitter Google Plus
Jazz 29.34 4.23 5.80
IMDB 19.33 11.62 11.76
MuSeNet -3.56 -4.34 -2.46

Table 3.5.: Network fidelities ¢ of the three collaboration networks (rows) towards the six used ref-
erences (columns). A higher value 0 < ¢ < 1 denotes a higher similarity.

Reference models

¥ FB TW GP Jazz IMDB MuSeNet
Jazz 647 595 615 - 672 517
IMDB 472 535 .537 66 ; 472

MuSeNet .486 .451 .574 491 479 -

proportional to a more sociable network. As I have three elements in the sum contributing with +,
and three with -, I can simplify equation B.1] to:

6
Z (ki x mi/myj) (3.2)

]{31:—|—1,k‘2:—1,k3:—|—1,k‘4:—1,k‘5:+1,k‘6:—

Thus, the sociability of the collaboration networks using the Facebook model as a reference is given
in Table B.4. The Facebook model compared to itself will have a sociability S = 0. Any model that
is considered as less sociable will have S < 0, and all models that are more sociable in terms of their
graph metrics will have S > 0. In Table B.4 I can see that MuSeNet is indeed on the “unsociable”
side, while Jazz and IMDB are more sociable. Even though the S-values change once I change the
reference model (Facebook, Twitter, Google Plus) the scale and signum of the values remain the same.

Table .5 presents the fidelity values of each collaboration network when compared to the online
social networks (FB = Facebook, TW = Twitter, GP = Google Plus) and to themselves.

The results show a low similarity between all collaboration networks and each online network
(45-65%). This can be explained because of the sociability difference - low and high, compared to
the moderate one of the reference models. On the other hand, the metric comparison supports my
sociability evaluation as it shows the IMDB and Jazz networks - both described a highly sociable -
much more similar (67%) than compared to MuSeNet (<50%).
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3.2.4. Discussion

This particular study has presented a state of the art analysis of the the whole music artists network.
Similar to the study of IMDB actors, and Jazz musicians, I can conclude that certain artists have higher
centrality indices. Like other complex networks, MuSeNet has the same properties: it is scale-free
(meaning that artists’ connectivity distributions are in a power-law form), and has a high degree of
centrality [276]. T have highlighted the sociability of three networks through graph metrics. MuSeNet
is a more closed network than IMDB and other usual friendships because music artists do not usually
work with many others, since they rely on their on band and associated acts; links are also formed at
a much slower rate, compared to the Facebook model.

In light of the study which finds Kevin Bacon as the most influential node in the Hollywood actor
network, I find Dave Grohl as the “Kevin Bacon of the music industry”. Moreover, I analyze MuSeNet
from the perspective of other centralities as well, finding artists like Greg Errico to have the highest
degree and Pagerank, and Alphonso Johnson to have the highest Eigenvector centrality. A second
important empirical observation is the existence of a small single dominant community of nodes with
very high Eigenvector centrality. This is the community formed by mature artists who currently own
a record studio and through who’ studios most music goes. This ecosystem mostly thrives because
of the topocratic environment of the music industry.

With the broader perspective of social networks analysis - to better understand and model complex
networks - in mind [56, 276, 82, [[41]], the obtained results pave the way for better understanding the
particular concepts of social collaboration. Motif-based analysis has but recently been adopted from
Systems Biology into social analysis and, in this study, I have shown how it can be used to numerically
express the characteristic aspects of collaboration networks.

3.3. FMNet: modeling physical trait patterns in the fashion world

Driven by the ever-growing interest and real-world applicability shown in social collaboration net-
works, I have gathered data from Fashion Model Directory, the largest fashion model database. As
such, I model and analyze the network formed by female fashion models all around the world, which
I call FMNet. Inspired by similar approaches in the actors and music industry, I compare the empiri-
cal results with Facebook, Twitter, and Google Plus online friendship networks. As a first study of its
kind in the fashion world, I create a network based on physical similarities, and by using centrality
measures and network motifs, I prove that FMNet has all the properties of a social collaboration net-
work. I discover and explain role of the most influential nodes (in terms of betweenness centrality)
and communities (in terms of eigenvector centrality) in FMNet. The physical patterns found in this
study offer a better understanding over the evolving trends in the fashion world.

3.3.1. Motivation and impact

The motivation behind this study is to create incentives for studying the professional relationships of
(female) fashion models around the world, how they form new professional links, and how they cor-
relate from the perspective of common physical traits using a set of common attributes (hair color,
eye color, height, age). Through intensive data mining from social media sources, through SNA
methodologies, and motif distribution analysis, I have created FMNet (Fashion Model Network),

49

BUPT



3. Network-based modeling of real-world data

which represents - to the best of my knowledge - a state-of-the-art analysis of this kind. This study,
along with its results allow us to elucidate the mechanisms of driving the emergence of this kind of
social phenomenon, and whether it shares dynamical and structural features with other natural, so-
cial processes. Additionally, on more generic scientific grounds, phenomena like similarity between
fashion models forming particular physical trait clusters are an excellent opportunity to understand
network formation processes and the influences pertaining to the fashion world. The results obtained
through visualization of force-directed layouts [207] may pave the way for creating a recommender
system which fashion creators and agencies may use to assign models into collaboratng with each
ther for specific brands.

I start by presenting an analytical breakdown and interpretation of relevant graph metrics, central-
ity distributions, and community structure. Through this analysis I show that the proposed similarity
network showcases typical properties of social collaboration networks. I then use the graph model
the to highlight emerging trends in fashion.

Additionally, this paper presents a novel topological assessment on how different collaboration
networks (movies, music, citations) can be differentiated using a network motif approach. Also, I
compare these networks to reference online social networks (Facebook, Twitter, Google Plus) and
quantify how much they differ using the network fidelity metric [257] (see appendix [A]).

3.3.2. Data acquisition

The database introduced in this paper is obtained from the Fashion Model Directory (FMD) online
databaseB. FMD consists of information about fashion models, modeling agencies, fashion labels,
fashion magazines, fashion designers, and editorials. It was first published online in the year 2000
and is currently considered the IMDD of the fashion industry, being the largest database of its kind.
It includes over 10000 female fashion models, 1400 designers, 2000 fashion brands, 1700 magazines
and many other fashion related information.

I used this particular database, since at the time this case study was elaborated I considered it to be
the most comprehensive. The lack of an API or means of downloading raw data meant that I had to
write a script to automatically parse each internal link, in order to retrieve the required information.
Because of the delay introduced by the server response for each page access, I designed a multi-
threaded Java script that was able to complete the crawling in less than one hour, instead of >24h.
My script accessed the profile pages of each fashion model and retained those entries with complete
information, resulting in 9477 female models with the following dataset saved into a local database:
Name - the name of the fashion model, Nationality - the model’s current nationality, usually based on
country of residence, Birth_Year - the year of birth, Hair - the model’s natural hair color, Eyes - the
model’s natural eye color, Height - the model’s height in centimetres, Agency - a list of agencies for
which the model has worked, Advertisement - a list of fashion brands which the model has worked
with, Cover - a list of magazine covers which the model has posed for.

3.3.3. Network analysis of FMNet

In this section I present the graph metrics,centrality distributions, community structure interpreta-
tion, and visualizations obtained by applying SNA on FMNet. In Figure B.3, I highlight the relevant

? Available online at http://www.fashionmodeldirectory.com/
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Table 3.6.: Relevant correlations (%) between eye color, hair color, fashion agencies, and fashion
model origin. The acronyms for agency headquarters are: Milan (Mi), Barcelona (Ba),
Sydney (Sy), Paris (Pa), New York (NY).

Eye color Hair color corr%  Agency Origin
Blue Blonde 56 Mi, Ba N-Europe
Green Brown 59 Ba, Mi, Sy N-, E-Europe
Brown Brown 76 Mi, NY E-Europe
Black Black 53 Mi, Pa, NY Asia

communities that form over the fashion model network. Nodes are placed using ForceAtlas2 [[132], a
force-directed layout algorithm available in Gephi, and are colored according to the community they
belong to. The communities are detected using the fast community detection algorithm implemented
in Gephi [38]. Such an algorithm was chosen by the authors in light of the existing methodology to
break down a social network into clusters and extract their representative features [205, 207]. One
of the analytical advantages of SNA lies in the emergent community structure of the network it is
applied to. The fashion models are grouped together by partially overlapping physical traits: similar
gradient of eye color, hair color, or similar height etc. I obtain a total of 9 communities. The rele-
vant communities that emerge are mainly based on the clustering of similar eye color and hair color
gradients. The proportion of models with particular physical features is a known statistic, but what
network analysis reveals, is the spatial distribution as well as the overlapping of such features. As
such, the most popular female model features are also the ones clustered together, as there are more
collaborating nodes. The topologically marginal features are also the ones less sought after, like red
hair, gray eyes, so I can confirm there is a correlation between the communities’ center of gravity and
their popularity in the fashion world.

By analyzing the layout of the 9 resulting communities, I can support the claims through the visual
observation presented in Figures B.4a and b. Namely, homophily plays such a role that each node
is placed in the vicinity of other nodes with the same five chosen traits. The most obvious visual
classifications are the ones of eye color: from black and brown, through green and dark blue, to light
blue (see Figure B.4a); and for hair color: from black and dark brown, through dark blonde and
blonde, to light blonde (see Figure B.4b). Through overlapping of the node properties I notice there
are a few notable correlations between some physical features. These results are given in Table 3.6

From the point of view of graph centralities I have measured the following: degree, betweenness,
pagerank, and eigenvector centralities [276]. These offer different insights over the most influential
nodes in a graph. However, in the context of a physical similarity graph, I interpret the influence
of a node as to how impactful a certain combination of physical features is. Particularly on FMNet,
a node with high centrality is a fashion model which holds a certain combination of physical traits
which stand out as a reference for the fashion world.

I consider FMNet to be a representative collaboration network, as the metric distributions show.
Figure .5 displays the power-law degree distribution which is representative for collaborations, and
social networks in general [25, 246, 26, 24]. The scale-free property of FMNet is valid at community
level as well, as can be seen in communities 1 and 5 in the same figure. This observation supports the
argument that hub formation is present even in a non-social collaborating context, namely physical
similarities between humans. Also, it shows that similarty networks, like FMNet, have emergent
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Figure 3.3.: Graphical overview of FMNet (generated in Gephi). Each fashion model is a node in
the graph, connected with another node if there are at least three common physical traits

with that node. After applying the ForeAtlas2 [[132] layout and community detection,
nodes can be colored by highlighting the distinct physical pattern communities.
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Light

(a) (b)

Figure 3.4.: The physical similarity network highlighting the two main physical traits: a. Dark brown
to light blue eye color gradient . b. Black to light blonde hair color gradient. All node
colors correspond to the eye and hair colors.

structures like social netwoks. I consider this to be valid because similarity networks over completely
random feature vectors show complex network properties [242, 212].

Further, I highlight the distribution of nodes with high centrality in terms of degree (Figure B.6a),
betweenness (Figure B.gb), pagerank (Figure B.6c), and eigenvector (Figure B.§d). From each mea-
surement, the same highlighted regions appear to have a higher centrality: the lower region (commu-
nities 3, 5), the upper region (community 2), and a middle region (community 4). These three regions
have the following trait patterns: blonde and blue eyes, brown hair and brown eyes, respectively blue
eyes and brown hair. However, out of the 4 mentioned centralities, I focus on betweenness centrality
to offer us insight regarding the most influential physical patterns in the fashion world. This metric is
often used in SNA to measure influence of nodes in communication [276], and collaboration [258].

Betweenness centrality highlights a few fashion models which stand out as nodes with a much
higher centrality than all others (see central region of Figure B.6b). These are what I consider to be
the most impactful fashion models in terms of setting a standard for the fashion world. The models
are given in Table B.7. Kelsey Gerry, the node with the highest betweenness centrality, is a typical
fashion model in the sense that she has blue eyes (the most common eye color), brown hair (the
most common), is born in 1989, and is 175cm tall. An interesting observation for most nodes with
top centrality, is that they do not work at the most renowned or largest modeling agencies (i.e. Paris,
Milan, New York).

In light of the studies done over the IMDb network, which show Kevin Bacon as the most influential
node in the actors collaboration network, and over the music industry network, which consider Dave
Grohl to be the most influential node in MuSeNet, I conclude that the female model Kelsey Gerry is
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Figure 3.5.: Power-law distribution of node degrees. FMNet showcases the scale-free property spe-
cific to collaboration networks. This property is also present in each community.
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Table 3.7.: Fashion models with the highest betweenness (Btw) centrality.

Model name Hair color Eye color Agency Btw
Kelsey Gerry brown blue Berlin  39.8K
Kelley Havey blonde brown  Chicago 38.4K
Michelle Lombardo ~ brown blue LA 37.1K
Sherita Dehon brown brown  London 35.2K
Emily DiDonato brown blue Sydney  35.2K
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(c) (d)

Figure 3.6.: The physical similarity network with each relevant graph metric highlighted through
node color (red intensity) and node size. a. Degree distribution. b. Betweenness cen-
trality. c. Pagerank. d. Eigenvector centrality.
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the central node which sets a physical trait standard for FMNet.

Nonetheless, if I study the eigenvector centrality distribution over FMNet, I notice a string clus-
tering of influence in the lower part of the graph. Community 5 holds an overwhelmingly high pro-
portion of nodes with high eigenvector centrality, so I put this observation into the perspective of a
landmark study which discusses the impact of topology versus merit. Referring to the idea of “meri-
tocracy versus topocracy” discussed in a recent study by Borondo et al. [44] this community (shown
in red in the lower part of Figure B.6d) is the one that thrives mostly in the topocratic environment of
the fashion model industry, making the most out of its influence in the fashion world. This commu-
nity consists only of models with blue eyes and blonde hair; the fist model with a different physical
feature is outside the top 100 in terms of eigenvector centrality. I consider this analytical observa-
tion to be well correlated with the real-world popularity of female models with these two mentioned
physical features, and moreover, they also seem to attract other young models with the same features
more than any other combination of traits.

FMNet can further be analyzed from different perspectives, a process I look forward to as a future
direction.

3.3.4. Discussion

In this paper I have introduced a new empirical dataset that may be used by the SNA community -
the female fashion model dataset obtained by online crawling from Fashion Model Directory. I use
the dataset to presented a state-of-the-art analysis of the the whole fashion model industry. Because
physical features are relevant in the fashion context, I construct FMNet, which is a network of physical
similarities in terms of hair color, eye color, height etc. Similar to studies on actor [98§] and musician
[258] networks, I can conclude that certain fashion models have higher centrality indices. Like other
collaboration networks, FMNet has the same properties: it is scale-free (meaning that fashion models’
connectivity distributions are in a power-law form), and has a high degree of centrality [276].

In light of the study which finds Kevin Bacon as the most influential node in the Hollywood ac-
tor network, and Dave Grohl in the music industry, I find Kelsey Gerry as the “Kevin Bacon of the
fashion model world”. Her high betweenness centrality represents the reference in terms of physical
trait patterns for other fashion models. A second important empirical observation is the existence of
a single dominant community of nodes with very high eigenvector centrality. This is the community
formed by another reference in the fashion world: models with blonde hair and blue eyes, a trade-
mark for many modeling agencies and magazines. The presented work is aimed at improving the
understanding of how fashion models collaborate and, the the best of my knowledge, create a first
recommender system for fashion agencies.

3.4. Graph metric analysis in collaboration networks

The comparison is done using the topological metrics which are specific for complex networks [246,
10,276, 197]. These values are represented in Table B.8: average degree (AD), average path length (L),
average clustering coefficient (C), modularity (Mod), graph edge density (Dns) and graph diameter
(Dmt). These metrics have the power of characterizing a complex network and offer valuable insight
[278).

56

BUPT



3.5. Motif distribution analysis in collaboration networks

Table 3.8.: Basic graph metrics for FMNet, MuSeNet, and three online social networks: Facebook,
Twitter and Google Plus. The measured metrics are: average degree (AD), average path
length (L), average clustering coefficient (C'), modularity (M od), density (Dns), and di-
ameter (Dmt).

AD L C  Mod Dns Dmt
FMNet 58.06 3.14 0.497 0.579 0.017 9
MuSeNet 13.18 7.64 0.884 0.844 0.002 23
IMDB 1135 1.55 0.99 0.476 0.062 4
Facebook 2223 234 0.256 0.577 0.005 7
Twitter 1239 2.68 0.239 0.28 0.054 7
Google Plus  12.15 39 0.404 044 0.035 12

Table 3.9.: Fidelity measured against the three online social networks: Facebook (¢rp), Twitter
(¢rw), and Google Plus (pgp). A higher ¢ value means a higher similarity between
the collaboration network and the online network.

YFB PTW PGP

FMNet 0.619 0.567 0.68
MuSeNet 0.486 0.451 0.574
IMDB 0.472 0.535 0.537

The numerical results from Table B.§ show that FMNet has a good resemblance towards online
collaboration networks. This is supported by the scale-free property which results in a small average
path length L. The clustering is higher than for internet users but lower than that of the IMDB and
MuSeNet networks. This can be explained through the fact that musicians and actors work in much
tighter collaboration than average internet users who interact with many other diverse users. The
physical similarities of FMNet however, tend to be in the middle, showing that the average similarity
between fashion models is somewhat higher than expected in a normal population. In other words,
there are few physical feature combinations present in the fashion world, and this high redundancy
context yields a high clustering coefficient. The community structure is thus also relatively high, as
each physical pattern is clearly delimited from the other.

Finally, I compare the three collaboration networks with the three online social networks, as pre-
sented in Table B.9. As FMNet has the highest resemblance to any of the three online networks.

3.5. Motif distribution analysis in collaboration networks

I propose a two step approach for motif-based comparison on MuSeNet and FMNet. First, I measure
the distributions of motifs of size 3 (subgraphs with 3 nodes) on each empirical network using FAN-
MOD [284]. FANMOD is a light-weight tool for fast motif detection designed using one of the fastest
detection algorithms available, RAND-ESU [283]. To that end, I obtain the distribution depicted in
Figure B.7.

The results of the motif analysis offer a different perspective over the already reached conclusions.
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Figure 3.7.: The resulting motif distributions for the chosen empirical network topologies. The oc-
currence of each motif is expressed in percentage in the central histogram. As can be
seen, only distinct motifs (not all) characterize each network. All 13 motifs of size 3 are
depicted at the bottom of the figure.

The Jazz network behaves more like an online social network - with a uniform distribution of motifs
- while the IMDB and MuSeNet networks have a predominant motif characterizing them.

The motif size used in this study is fixed to 3, that is subgraphs with 3 nodes are quantified, not
larger ones. While there are approaches in literature studying network functionality using motifs of
sizes 4-6, I rely only on the size 3 motifs since there are few such distinct patterns, they are much
more numerous to be found in graphs, and thus substantially more relevant [L1]. There are a total
of 13 combinations of motifs with three nodes using directed edges. The motifs can be seen in the
lower part of Fig. B.7.

Finally, I also apply the fidelity metric to compare the motif distribution vectors with one another.
The obtained values are given in Table B.I0. A value of 1 means complete similarity, while a value
of 0 means complete dissimilarity. The data is interpreted as, for example: the Jazz network has a
similarity of 81.8% towards the Facebook model etc.

The results presented here show a different perspective: both MuSeNet and IMDB are relatively
distant to a normal online social networks (FB), while the Jazz musicians network is more similar.
This supports the idea o a high sociability for the Jazz network. Also, the results support the fact that
FMNet is the closest resemblance to a real-world online social network (i.e. 92% similarity to FB). All
the obtained results support the fact that FMNet, even though a physical similarity based network,
has all the properties of a social collaboration network.
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3.6. A perspective from non-social complex networks

Table 3.10.: Network fidelities ¢ of the three collaboration networks (rows) towards the four used
references (columns) in terms of motif distributions.
Reference models

14 FB FMNet Jazz MuSeNet IMDB
FMNet .92 - N/A 525 163
Jazz .818 N/A - .662 .36
MuSeNet .572 .595 .595 - 231
IMDB .34l 346 171 433 -

3.6. A perspective from non-social complex networks

In order to better understand the role that each graph metric, and centrality have in the context
of social networks, I have done research also in the adjacent fields of technological and biological
networks.

To that end, Appendix [J details the results obtained in modeling patients datasets as graphs using
the network medicine approach. This means that patients form a graph (i.e. nodes) and are connected
based on their anthropometric compatibility, as specific for a certain medical scenario. Specifically,
I present two sets of studies in which I have scientific results, namely improving the diagnosis ac-
curacy for sleep apnea patients through phenotyping [186, 265], and improving patient treatment
schemes taking into the consideration different types of medication administered to patients with
cardiovascular disease [247].

This set of studies showcases the importance of community detection and the algorithms available
to detect communities of nodes (i.e. patients, in this case). Moreover, in the process of building
complex networks from ground-up it is important to determine a correct method for adding edges,
and to limit the number of edges to such a value that community sizes and number are in balance.
Having a too weak condition for adding edges between two nodes leads to a very connected graph in
which communities are overlapped and hard to distinguish from a functional point of view. Having
a too string condition for adding edges between two nodes leads to a disconnected graph in which
there are too many small communities to be able to distinguish patterns, similarity, compatibility of
any nature. In both these directions I have devised step-wise refined methods for adding a correct
number of edges when creating graphs, in such a way that the resulting number of communities is
relevant for analysis.

Finally, Appendix [ details the results obtained in modeling technological communication in-
frastructures using technological networks as a theoretical support..Specifically, I present two sets
of studies in which I have scientific results, namely understanding the formation of traffic hot-spots
(e.g. traffic jams) in urban road networks [259], and creating an algorithm for improving the effec-
tiveness of communication in a wireless sensor network, by taking into consideration the trade-off
between cost and latency [129].

This set of studies showcases the importance of the betweenness centrality, eigenvector central-
ity, and the power of motifs to compare topologies. The detected hot-spots in urban networks are
tully highlighted by betweenness. Analyzing their distribution, I noticed a power-law distribution,
which is specific for social networks. On the other hand, degree is not distributed in a power-law
manner, but rather normal or uniform. Thus, urban road networks tend to have a social component,
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which is intuitive, since they serve our daily social needs. The second study presented in Appendix
D [129] also shows the importance of community formation, this time in the geographical context of
wireless sensors. Furthermore, eigenvector centrality is shown to capture the most important node
in each community, being correlated with position as well. As opposed to a social network, where
links are non-physical, the aspect of aligning centrality with the 2-dimensional center of weight of a
community is essential in optimizing communication.

3.7. Discussion

In light of the results presented in this chapter, I have assembled a wide and valuable perspective
over social networks analysis and modeling. The two studies regarding the collaboration of mu-
sicians (MuSeNet) [258] and fashion models (FMNet) [254] represent very innovative applicative
approaches which bring novelty to literature. In both studies I have used graph metrics and central-
ities analysis to showcase the importance of the emergent communities which develop and explain
real-world particularities of the two artistic fields. Together with a theoretical study of the impact
of the underlying topology [261], all these studies have helped me understand the importance of
graph metrics like average degree, path length, clustering coefficient, diameter, graph density and
modularity, as well as the role of centralities like degree, eigenvector and betweenness.

Additionally, I have presented two studies of complex networks applied in medical science, follow-
ing the so-called path of network medicine. The results obtained in predicting central sleep apnea
(265, 186] bring landmark novelty and improvement in the field of sleep medicine, The study under-
taken of assessing the treatment response of patient with hypertension [247] also showcases a new,
useful, perspective for medical doctors. These experiences outside the field of social networks analy-
sis have helped me greatly to understand the role of different metrics to take into consideration when
modeling empirical data using graph analysis.

The observations obtained in all these studies have helped me pave the way for the next three chap-
ters which deal with the essence of my thesis namely understanding social structures and creating
mathematical models which can reproduce the topology, dynamicity and interactivity within social
networks.
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4. Generating realistic social network
topologies

Social network analysis is receiving an increased interest from multiple fields of science since more and
more natural and synthetic networks are found to share similar features which help us understand their
underlying topological properties. One desire is to create a model of the human society, however, the
complexity of such a model is increased by the nature of human interaction, and present studies fail to
create a fully realistic model of the societies we live in. My approach is inspired from studies of online
social networking and the ability of genetic algorithms (GA) to optimize topological data in a natural
manner. I combine the properties of the small-world and scale-free models to create a community-based
social network, which is then rearranged using empirically obtained data from Facebook friendship
networks, and optimized using GAs. As a result, my synthetically generated social network topologies
are more realistic, with a proposed realism fidelity metric that is with 63% closer to the observed real-
world parameters than the best existing model

“If T have seen further it is by standing on the shoulders of Giants”

X Bernard of Chartres
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4.1. Motivation

The effort to mathematically model an accurate and realistic society has been triggered by the ob-
servation of the three fundamental properties of social networks: average path length, clustering co-
efficient and degree distribution [246]. The well-known models of small-world [281] and scale-free
[25] networks both present these network properties but they fail in creating fully realistic mod-
els of the societies we live in. Over the years, many attempts have been made to merge as many
empirically-observed properties as possible into a single social model. There are topological mod-
els which describe geographical proximity, friendship distribution, neural networks in the brain,
protein interaction mechanisms, natural food chains, the distribution of means of transportation,
citation networks, sexual interaction patterns, the world wide web, power distribution networks, re-
lationship of words in a language, interaction between ingredients in a recipe, the world markets
(276, 121}, 82] etc. However, an abstract and generic, yet flexible and realistic model that describes
how people interconnect in society has not yet been described. The benefit of having such a model is
the capability of simulating custom social scenarios of interest on very large virtual data sets. It can
help medical science predict the spreading of diseases [82]; sociology and politics to understand the
flow of information, opinion etc.; and combined with diffusion models, help predict the outcome of
elections, polls, surveys [82]. As there is not enough real world data to research on, this can only be
simulated if we have dependable, realistic social models [121]. If we only rely on mining after exist-
ing real data found in online databases it becomes hard to find topologies with a certain distribution
of properties. For example, if one needs to simulate the behavior of a realistic social network with
a certain centrality distribution of nodes, my proposed algorithm can create such a desired network
on demand, at the same time assuring that it is as realistic as possible.

This chapter tackles the problem of synthetically generating realistic social network topologies.
Unlike existing social models like the small-world [281], scale-free model [10], cellular model [263],
static geographic model, Watts-Strogatz model with degree distribution [57], introduction model,
random encounter model etc., I propose a methodology based on creating realistic models, inspired
from accurate empirical data, which are then optimized using genetic algorithms. Previous methods
fail in creating models of the human society; therefore I have used empirically obtained data from
Facebook friendship networks and have concluded that, although diverse in shape and size, all share
common metrics. Furthermore, I optimize the metrics on my propsoed model until it reaches a
desired state of realistic accuracy.

The original model - entitled Genosian - proves to be more efficient by replicating all network
metrics measured on the empirical data set. I quantify this efficiency through the proposed fidelity
metric ¢ (see Appendix [A]) which can measure the realism of any network model. The algorithm
is highly parametrized, flexible for multi-purpose social scenarios, and is also being integrated into
Gephi [B0], the leading tool in visualization and analysis of large networks.

4.2. The real-world reference data

My research is based on the empirical study of Facebook friendship graphs which have been extracted
from Facebook using an application named netvizz [228]. The data set consists of 93 different friend-
ship graphs of subjects aged 16 to 35, with sizes ranging from 177 to 1030 nodes. Even though differ-
ent at first glance, under a closer numerical analysis all measured metrics vary only slightly between
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(a) ®)

Figure 4.1.: Two online friendship networks: a Facebook network (a) of 590 nodes and a GooglePlus
(b) network of 344 nodes. The size of each node is proportional to its degree and the
coloring is done according to the community it belongs to (i.e. done by running a com-
munity finding algorithm first). This Facebook network is chosen as an example because
it lies nearest to the overall average metric distribution from the data set.

the multitude of networks. Figure f.Tla shows such a friendship network extracted from Facebook.
I start by measuring the basic network metrics: network size (nodes and edges), average path length
(L), clustering coefficient (C) and average degree (<k>), and also network diameter, density and modu-
larity [276]. Additionally, I analyze the distributions of the degrees (P(k)), betweenness, closeness and
(eigenvector) centrality [276, [150] .

Figure ff.2a highlights the narrowness of the convergence intervals for average path length, clus-
tering coeflicient, density and modularity as measured for all networks extracted with netvizz. This
strengthens the argument that all realistic topologies have metrics which fall inside these thresholds.
Figure {.2b shows the degree and centrality distributions for a representative friendship network.
The chosen network (Figure ff.Tla) lies nearest to all average values for each metric. Despite intuition
and the inherent diversity of humans, it is clear that the measured values pertain to a social pattern
which seems to be found in the underlying nature of the human interaction model. I have evaluated
these parameters because they characterize a realistic social topology. Following similar reasoning,
a study demonstrates that even a completely synthetic network — the Marvel characters universe —
has evolved into a real-like social network [8]. Therefore the proposed synthetic topology generation
process has to meet these demands.

The study presented in this chapter is explicitly tailored for recreating Facebook (online) friendship
networks, as these networks best capture the aspects of social interconnectivity. As for a dataset
repository, I rely on the Stanford Large Network Dataset Collection (SNAP) [[I57], which contains
many medium and large sized networks for this study. Additionally, I rely on a privately collected
dataset of ~100 egonetworks of smaller sizes. As a future step, the study may be extended to extract
the characteristics of Twitter, Google Plus, peer-to-peer networks (technological) and redefine the
algorithm to suit additional specific cases.
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Figure 4.2.: (a) The distribution of measurements over the data set: a. Average path length (L) with
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an aver-age value of 2.48, a minimum of 1.92 and a maximum of 3.0; b. The cluster-
ing coeflicient (C) with an average value of 0.26, a minimum of 0.21 and a maximum of
0.31; c. Network density with an average value of 0.052, a minimum of 0.02 and a max-
imum of 0.11; d. Network modularity with an average of 0.462, a minimum of 0.31 and
a maximum of 0.65. Degree and centrality distributions for one representative network
(represented in Figure f.Ta). (b) The distributions for a representative network: a. Power
law degree distribution; b. Power law eigenvector centrality distribution; c. Power law
betweenness centrality distribution; d. Closeness centrality distribution. It presents a
particular Gaussian distribution with a cutoff value (0.5). This is a specific feature for
friendship networks.
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4.3. Evaluating the related work

4.3. Evaluating the related work

Basic network analysis is done by measuring fundamental graph metrics, and comparison of two or
more networks, by doing an individual comparison of each metric independently. While such an
approach is useful in trying to capture one specific feature of the network, it fails to create a general
overview of the similarity between the analyzed networks [66]. Similar work aimed at comparing the
importance of graph metrics concludes that each metric captures specific attributes of the network
[B5]. It states that further study on the effect of each metric is needed in order to be able to choose a
fitting topology according to the requirements of an empirical model.

Comparing real systems is aimed at a deeper understanding of the interaction patterns between
these systems [281, 25, 246], and extracting their common properties helps improve the models even
further [281}, 13, [41]. However, the predominant method of graph metric comparison suffers from
limited information [[165]. Some notable means of comparison are the distance ratio measure [#9],
used to compare individual mental models, a comparison from the data analysis perspective [165]
and the study of the self-similarity of complex networks (Song, 2005). From a topological perspective
there are studies done both in the direction of classifying social network models [141] and of struc-
tural pattern detection [215]. These methods however serve a higher level of meta-analysis rather
than as measures of similarity.

The statistical methods with which network similarity can be measured are the cosine similarity
[249], variance, covariance, Pearson correlation coefficient (PCC) [245], the Mahalanobis distance
[174]. Other methods used in network analysis which are adopted from statistics include the T-test
and the ANOVA test (analysis of variance) [[70]. A recent study improves upon the T-test method-
ology by proposing an alternative geometrical approach called the Characteristic Direction, in order
to identify differentially expressed genes [61]. There is no single statistical approach used in cur-
rent research because there is no unified metric that provides normalized values which are tailored
specifically to network comparison. Yet, the most intuitive and thus used metrics are the Euclidean
distance, Pearson correlation [244] and cosine similarity [249].

Analyzing the results from Table ff.1 and Figure .3 one can highlight the limitations of the current
related work. No single state of the art model manages to replicate more than two or three empirical
measurements. As there is no suitable metric to compare and quantify the realism of social net-
works, this thesis makes use of the network fidelity metric ¢ (phi) which was previously introduced
in literature by the author [257]. For full motivation and mathemtical validation of this metric, see
Appendix [Al. By measuring the ¢ of any two networks represented with the same metrics, it can be
concluded which model offers the greatest realism compared to my empirical data set. Also, the al-
gorithms for generating all the analyzed networks, as originally described by their respective authors,
are implemented as Gephi plug-ins by the author.

Because none of the presented work manages to fully model a realistic friendship network, as mod-
eled on Facebook, I further propose my own topological model which encompasses all the metrics
and distributions.

4.4, The genetic-optimized social network (GenOSiaN)

The goal of my proposed social network model (called Genosian) is to create an accurate replica of
the friendship models gathered from Facebook. Figure .4 presents the overview of my proposed
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Table 4.1.: Measurements for average degree (AvgD), average path length (L), average clustering co-
efficient (C), modularity (Mod), diameter (Dmt) and density (Dns) are done on synthet-
ically generated networks of 1000 nodes. The presented models are: Facebook, small-
world (SW), scale-free (SF), cellular, static-geographic, WSDD and the proposed model
(Genosian). A lower ¢-value shows the realism of the models, with the geographic model
being the most accurate state-of-the-art model (¢ = 0.27), but with the Genosian (pro-
posed) model being 122% more realistic (¢ = 0.125).

AvgD 7% & Mod Dmt Dns ¢
Facebook 19.822 24815 0.2659 0.4677 8.5 0.0496 0
SW 3.994 5.614 0.321 0.726 11 0.005 0.371
SF 3.12 4.598 0.015 0.622 10 0.003 0.38
Cellular 11.388 3.786 0.599 0.908 7 0.02 0.367
Geographic 6.628 334 0.065 0.52 8 0.013 0.277
‘WSDD 21.583 4.589 0.738 0.897 9 0.041 0.31
Genosian 20.02 2.404 0.308 0.65 5 0.05 0.125

methodology. As there is no direct algorithm of ensuring the creation of a graph with the desired
predefined metrics, I adopt a step wise refinement approach. By combining the two fundamental
models, small-world and scale-free, a community based network is created. This approach is also
validated by similar research, namely the cellular network model [263], the Watts-Strogatz model
with degree distribution [57], and scalable virtual communities [226]. The resulting communities
are connected with initially random friendship links which are then re-wired (optimized) using a
genetic algorithm (GA) approach. Related work shows that reciprocity and sibling bias are shown to
have a considerable effect over the creation of friendship ties [[94], thus our friendships tend to form
around the dominant nodes in each community. Using a custom GA the centrality distributions are
repeatedly measured and optimized until they correspond to the empirical distributions.

To overcome the problem of searching in an infinite solution space I propose the usage of heuristic
methods, namely genetic algorithms (GAs), to solve this computational limitation. GAs are used to
generate a representative mixture of solutions to optimization and search problems [191].

The initial set of random solutions which build up the population is, in this particular case, com-
posed out of edges (candidate solutions) which need repeated rewiring, as in a genetic manner, to
produce better and better solutions. Finally, after a predefined number of repetitions (generations)
the GA stops and the best solution is chosen from the population [191]. Solutions are ordered us-
ing a fitness function, namely the betweenness and/or the eigenvector centrality of each edge target.
Figure f.5 shows the chromosome representation used by the algorithm. Each solution (candidate)
consists of en edge: a pair node source - node target on which the genetic operators are applied.
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4.4. The genetic-optimized social network (GenOSiaN)

A. Initialize Parameters

The algorithm takes as input the following: the number of communities, the average community size,
the two rewiring probabilities p; and p2, and the genetic algorithm parameters. Each community is
individually built using the same principle, so the number of communities is used to model diverse
real situations, like e.g. number of college groups. By default, the average community size determines
a power law distributed size around the given value; alternatively, each communities’ size can be
manually set.

B. Create communities

The creation of each community is an independent task and is inspired by the Watts-Strogatz algo-
rithm. The proposed difference consists in how the value k is individually chosen for each node,
as inspired from the WSDD approach. It is aimed at creating a small world network with a power
law degree distribution. After the regular network ring is created, local edges are rewired to long
range edges, within the community, using probability p;. At this step, I obtain a given number of
communities, each with realistic L, C, density and degree distribution.

Create community:
create size nodes with id = community index | global node index
for each node n;:

connect n; to k neighbors on left and right sides (2%k edges)
for each edge ¢;, with probability p;:

choose a new random/preferential edge target from the community

C. Connect communities

The last initialization step consists of connecting the obtained communities. Using probability po
each node is connected with another random or preferentially chosen node from a different com-
munity. The preferential selection is done by choosing higher degree nodes in favor of lower degree
ones. This step stabilizes the graph density, diameter and modularity, but the centralities remain
normally distributed. After this step, the list of added inter-community edges is kept for the next
iterations of the algorithm.

Connect communities:
for each community c,:
for each node n; from ¢,, with probability pa:
choose another random community ¢
choose a random/preferential node n; from ¢
create edge e, between (n;, n;) and save it to list E

D. Measure fitness of edges

The list of newly created edges is sorted in descending order of the betweenness and/or Eigenvector
centrality of the target of each edge. For this, I run the corresponding centrality measurement al-
gorithms and then order the edges. The idea is to rewire the edges by keeping the source node, but
selecting a better target node. Better targets represent nodes with higher centrality, as my empirical
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observations suggest. The GA can be repeated for either a given number of steps (iterations) or un-
til the measured centralities resemble the empirical ones. Experiments show that running a higher
number of iterations (>5) makes the network organize itself in a perfect manner, which actually de-
creases the realistic accuracy. Consequently, I suggest using the algorithm with a fixed number of
steps (2-5).

Measure fitness:
for each edge ¢; in E:

fitness f; + centrality(target n; of e;)
sort F in descending order of f;

E. Rewire edges between communities

Considering I sort the population in descending order of the fitness after every iteration, I evolve the
solutions from one generation to the next using three methods:

1. Best solutions: the first percentage pBest of the current generation is copied to the next gener-
ation. That is, the edges with the most central target nodes (best fitness) are kept in the graph
(there are s Best = pBest x N individuals chosen).

2. Crossover: a second percentage pC'ross of the next generation is composed out of edges from
the current population on which a custom crossover is applied (there are sCross = pCross x
N individuals chosen for crossover). It is applied on the edge target using a second random
target node chosen from the same community. The local IDs from the chromosome of the
original target and the second random target are combined through binary concatenation us-
ing the first ¢ bits from one node’s ID and the remaining bits from the other node’s ID. The
crossover threshold c is a random number: 0 < ¢ < n, where # is the number of bits used to
represent the IDs. The resulting index is guaranteed to belong to a specific node in the com-
munity, which is then set as the new target for the particular edge on which the crossover is
applied.

3. Mutation: a third percentage pMutation is composed out of the remaining edges from the
current population on which genetic mutation is applied (there are sM utation = pMutation x
N = N — sBest — sCross individuals chosen fro mutation). It is applied by changing the
edge target node with another random or preferential node from the same community as the
target, as given by the fitness function.

The three percentages add up to 100%. Finding the best values for them is an experimental study and
may differ from one need to another. Fig. 6 explains how the algorithm is applied step by step.

Apply genetic operators (one step):

E’ « empty

while i++ < sBest:
E,Z L Ez

while i++ < sBest + sCross:
n; + random node from community of target of (F;)
new;q; + crossover (getNodeIld(n;), getNodeId(n;))
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Npew ¢ getNode (new;q,) from same community
target (E;) ¢ Npew, add to E;

while i++ < size(FE):
n, + target of random/preferential edge from E
target (E;) « n,, add to E;

E « F

Once the algorithm stops, it produces a graph of size N ~ number of communities x average com-
munity size, which significantly resembles the presented Facebook friendship networks. The basic
metrics (average degree, L, C, diameter, density, and modularity) are realistically obtained through
steps A-C of the algorithm, while steps D-E ensure the centralities are distributed as needed. Finally,
in Figure f.g I exemplify the algorithm in a step-by-step manner and explain how the rewiring is
done.

4.5. Results and discussion

Conceptually, the Genosian algorithm is designed to recreate realistic online social networks topolo-
gies, but it differs from the state of the art models. I consider the algorithm to be a multi-objective
optimization method, through the fact that it targets a specific set of graph metrics which have to be
optimized. As a consequence, I use the developed fidelity metric [256], which is designed for a suit-
able comparison manner for multi-variable entities, to compare to the chosen state of the art models
and empirical data presented in Table A.1.

In this section I present and compare the similarities between the Genosian network, the real Face-
book data set, and the best two models presented in the related work chapter, both visually (Figure
B.7) and numerically (Table f.2). Comparing the results in Table f.7 with the ones in Table f.1], it
is clear that the Genosian networks manage to accurately replicate the original Facebook network.
No other model reproduces more than 3 basic metrics (0.27 < ¢ < 0.38), while the proposed model
reproduces 5 out of 6 (0.125 < § < 0.2). Thus my model is, on average, 63% more accurate than the
best previous model (Geographic); the best network is however 2.21 times more accurate than the
Geographic model, and 2.47 times more accurate than the WSDD model. It is worth mentioning
that my synthetic networks do not create the random leaf nodes which increase the diameter, as they
are statistically insignificant, thus the real diameter is lower. The six networks highlight the impact
of the wiring probabilities. A low ps creates a very modular community structure which is not de-
sired. Increasing p decreases the clustering and the modularity, and increasing p; increases the
density. Figure .7, along with Figure f.1, highlight the results in a visual manner. One can observe
the similarity between the Facebook friendship networks (Figure @.Ta, Figure f.7ja) and the proposed
Genosian network (Figure .7b). Nevertheless, the numerical comparison is the one that makes us
conclude how realistic a model is, and both Table f.1 and Table f.7 reinforce the fact that my pro-
posal produces the best reproduction of real friendship network topologies. In Figure f.§ I also show
the distributions of centralities for the Genosian model. This further stresses the superior realism
of my proposed model because, in comparison with the other models, it represents a better match
for the actual Facebook distributions from Figure f.7. Throughout this chapter I rely on Facebook
friendship networks as a basis for comparison and validation of realism. This is argumented by the
popularity of Facebook, which offers large, diverse and real-like networks, as explained in Section 2.
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However, other platforms, like GooglePlus (Figure f.1b), Twitter, Wikipedia etc., offer empirical data
for validation. In principle, there is no problem for Genosian in replicating topologies that resemble
GooglePlus or Twitter, provided that similar studies, as those pertaining for Facebook (as provided
in Section 2), are performed.

Table 4.2.: The basic metrics for a representative Facebook friendship network and for six Genosian
networks of sizes 500-1000 nodes. The two columns on the right represent the wiring
probabilities p; and p2 (see steps A, B, C of the algorithm) used to create each of the dis-
tinct synthetic networks. The values used for the genetic percentages are: pBest=50%,
pCross=30%, pMutation=20%.

AvgD L C Mod Dmt Dns | pp p2
FBook | 19.82 2481 0266 047 85 005 | - - 0
Gl 2226 2514 0343 062 003201 01] 02

4
G2 2217 2426 0.212 0.5 4  0029|01 02]0.166
G3 21.18 2185 0.142 036 3 0046 | 0.1 03| 189
G4 2145 2416 0324 0.65 4 0044 |02 0.1]0.167
G5 21.88 2353 0.182 049 4 003302 020172
Go6 20.02 2404 0.308 0.65 5 0.05 |03 0.1]0.125
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Figure 4.8.: The centrality distributions for a representative Genosian network. See Figure f.2b for
comparison. a. Power law degree distribution b. Power law Eigenvector centrality distri-
bution, exactly as in Facebook networks, and unlike many other social network models.
c. Power law betweenness distribution d. Closeness distribution with the same particular
Gaussian distribution as in real Facebook topologies.

Modeling the societies we live in is one of the goals of social network analysis. This endeavor
stretches out in multiple directions: defining a mathematical model of the topology, modeling real-
time growth, adding an opinion diffusion model etc. Many natural and synthetic networks have
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already been analyzed and their underlying models understood, documented and reproduced. How-
ever, the quest remains open to propose an accurate model of the society. While it encompasses the
most fundamental properties — small-world and scale-free - it also brings a lot of complexity due to
the nature of human interaction. My proposal — the Genosian network - is an innovative solution
combining a realistic empirical data set with social network analysis and genetic algorithm optimiza-
tion.

This first contribution to my thesis begins by showing that Facebook friendship networks are ac-
curate at reproducing the real friendship networks between humans. The data set of over 100 such
networks, with sizes ranging from a few hundreds to thousands of nodes, is then analyzed and it
is concluded that, although very diverse in shape and size, all these networks share very strict met-
rics. Further, I present the work related to newer proposals in this direction. It is shown that none
of these manage to replicate the properties of the empirical friendship networks. Thus, I propose
the Genosian network model and explain how it is algorithmically generated. I finalize by offering
both a visual and a numerical comparison and discussion between the proposed, empirical and other
related models.

In conclusion, I believe that my work has achieved its goal and manages to replicate realistic so-
cieties very accurately. The achieved accuracy shows a 63% improvement with respect to the best
previous model (static-geographic model), in terms of the realism fidelity metric . The inspiration
from Facebook is nothing but natural, as more and more virtual data is modeled by human interac-
tion. My future work is aimed at extending the real social network topology study for Google Plus,
Twitter, efc. in order to refine the Genosian algorithm accordingly. I also plan on using this model
as a basis for social network growth.
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Figure 4.3.: The degree and centrality distributions over a selection of five relevant social network
models (the same ones as described in Table 1).
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D. Measure
fitness of Finish
edges

A. Initialize B. Create C. Connect
parameters communities communities

E. Rewire edges Are centralities
between well
communities distributed ?

Figure 4.4.: Flowchart describing the steps of the Genosian algorithm.

Coml1-ID Source-ID Comz2-ID Target-ID
[0 7|8 i B 39]40 63
8 bit community ID 5
24 bit node ID x

Figure 4.5.: The genetic chromosome representation. Each solution is composed out of two 32bit-
represented IDs. The source node is represented by concatenating the community ID of
the node (8bit) with the actual node ID (24bit). The same rule applies for the edge target.
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Source Target F

c=2

E1 0o 12]1 1] 5] mutate 0 0]1 1
E2 0 9[1 3 CROSSOVER E5 | 0 ol @ 1
E3 0 9|1 2 BEST 00 0 1
E4 0 9|1 a|a| mutate c=3
E5 0 10/1 5|3 crossover == [ 0] 1 0 1

Source Target F o 0 1 0
E1 0o 12]1 7 0 0 1 0
£2 o 9|1 1]s
£2 0 91 2
E4 0 sl1 7
= 0 10]1 2

Figure 4.6.: Step by step explanation of the Genosian algorithm. The table shows the evolution of the
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chromosomes, their fitness ranking (green), and exemplifies the crossover. A. Commu-
nities CO (cyan) and C1 (red) are created [steps A, B of the algorithm]. B. Five random
edges are drawn be-tween the two communities: E1 to E5 [step C of the algorithm]. The
fitness F of the edges is computed and the edges are ordered (1-5 in the green column).
F is given by the centrality of each edge’s target, i.e. which is proportional to the size
of the nodes in the figure [step D of the algorithm]. C. Apply the genetic operators and
rewire the five edges. Thus, in order of the fitness, the best solution is copied over (E3),
crossover is applied on the next two solutions (E2, E5), and mutation on the last two so-
lutions (E4, E1). Crossover on E2 is applied by combining the target “3” with a random
target “1”, with c=1, which results in the new target “1”>. Mutation on E1 is applied by
choosing a new random target from the same community, namely node “7” [step E of
the algorithm]. D. Considering the algorithm is finished after one step, the ForceAtlas2
layout algorithm is reapplied on the graph [[132].
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Figure 4.7.: A visual comparison between a Facebook friendship network (a) with 457 nodes, and
a Genosian network (b) with 269 nodes. The synthetic network in the figure is the one
corresponding to G2 in Table .. The coloring of all nodes is done according to the
community they belong to, and their size is proportional to their degree.
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5. Betweenness as the driving force behind
social networks emergence and evolution

Existing models of social network topologies are based on the principle of degree-driven preferential
attachment. However, by using a precise fidelity metric, I argue that a paramount feature of realis-
tic social network topologies is that both node and link betweenness need to be power-law distributed.
As a second theoretical contribution, my analysis reveals that, in real-world social networks, the link
weights are correlated with nodes betweenness. Consequently, I propose a new social network model
and generation algorithm driven by the principle of node-betweenness preferential attachment. The ex-
perimental results show that my betweenness preferential attachment (BPA) algorithm is more accurate
than the state-of-the-art models. Indeed, besides reproducing the power-law distribution of node and
link betweennesses, my generation algorithm makes all other social network parameters and centrali-
ties fall into place naturally within the validated realistic thresholds. Finally, in this chapter I propose a
new socio-psychological interpretation which transcends the mere topological view by offering a deeper
understanding of how the social ties evolve and develop. Taken together, these three contributions rep-
resent a major step towards a deeper understanding of mechanisms behind social network emergence
and evolution.

“Imagination is more important than knowledge.”

X Albert Einstein
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5.1. Motivation

Despite the widespread occurrence of the normal (Gaussian) distribution in nature, many social, bi-
ological, as well as technological networks can be described by a power-law (Zipf) distribution of
nodes degree [27€]. Therefore, the Barabasi-Albert (BA) model, based on the degree-driven prefer-
ential attachment (i.e. the “rich gets richer” principle), has been proposed to model such networks
[25]. Still, it was argued that using the BA model to describe or analyze social networks can be cum-
bersome or even inappropriate [6]. This is because a node degree driven model may not be a good
predictor of how people connect and how their social ties evolve [6, 47, [I]. The most compelling
arguments are:

« People are physically and psychologically limited to a maximum number of real-world friend-
ships, namely there is a maximum degree to be reached [79, 45]. However, in the BA model
there is no upper limit for nodes degree.

« People have weighted relationships, that is, not all friends are equally important. Studies have
actually shown that the average person knows roughly 350 persons, can actively befriend no
more than 150 people (Dunbar’s number) [79], but actually has only a few very strong ties
[148]. Obviously, the distribution of weights in one’s ego-network affects the evolution of social
networks in a significant manner.

Starting from these overarching ideas, this contribution presents a systematic approach that can ex-
plain the formation of realistic social networks, underpinned by the pivotal role of node between-
ness [264]. Indeed, while existing literature provides only some case studies on the importance of
betweenness [[160, 1], my main objective is to define an accurate social network topological model
based on:

1. Introducing a new betweenness preferential attachment (BPA) algorithm that employs the
betweenness-driven preferential attachment mechanism and node betweenness - link weight
type of correlations.

2. Providing a socio-psychological interpretation of betweenness centrality’s role; this offers a
deeper understanding on social networks evolution and development.

As a result, it is found that:

« The synthetic topologies generated with BPA have a much higher fidelity towards reproducing
the real-world social networks compared to previous models reported in the literature.

« Although the newly proposed algorithm uses only node betweenness for ties formation and
links weight allocation, all other social network parameters and centralities fall into place nat-
urally within the validated realistic thresholds [257].

5.2. Background

In my representation, a social network is a graph G = (V, E) with nodes v € V (individuals,
agents) and edges e € E (relationships, friendships), that can be directed and weighted to represent
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relationships among various individuals, according to a real social structure. The role of such a graph
is to help us get insight on how relationships evolve and how information is passed within the society,
as determined by the social interactions among people [276, 82].

This section describes the state-of-the-art models for social networks representation, along with
their defining topological features [[I0, 276]. Therefore, I rely on the most relevant network parame-
ters such as average path length (L), clustering coefficient (C'C'), modularity (M od), density (Dns),
diameter (Dmt), as well as the most important centralities like degree, betweenness, closeness, and
eigenvector centrality [276, 203, 205, [150].

Extensive empirical research has defined three fundamental features of real-world social networks,
namely the small-world effect[246, 281], the scale free property [25, 27€], and the emergence of com-
munity structures [202, 91]. Recent research aimed at improving the accuracy of social network
topologies mainly consists of attempting to combine the properties from the two previously described
fundamental models with empirical data gathered from various contexts. As such, there exist pro-
posals which either add the small-world property to scale-free models [123, 96, 16€] or approaches
that add power-law distribution to small-worlds [135, 57, 274, 296].

In this study, I rely on the Watts-Strogatz model with degree distribution (WSDD) is designed by
creating a small world topology (short average path length L and high clustering coefficient CC),
and then modifying the degree distribution of nodes, from normal into a power law [57]. Cellu-
lar networks have been proposed as a response to the need for large-scale multi-agent simulations
[263], and are based on the observation of covert networks like terrorist organizations. Cellular net-
works consist of an arbitrary number of normally-distributed sized cells, having a high clustering,
in which a node is chosen as the cell leader. The cells are interconnected only through their leaders,
and have a high tolerance to attack and infiltration. Further models exist that extend the conclusions
of Milgram’s experiment [[[87]. For instance, the static-geographic model [[[54] generates a network
in which links are added between nodes by taking the actual spatial distance into consideration: the
greater the distance, the lower the wiring probability.

5.3. Dataset analysis

In this section, I analyze diverse data sets available from online social networks, namely Facebook,
Twitter and Google Plus friendship networks. Prior studies confirm that data mining from sources
such as Facebook is reliable for realistic social network research [[125, 91]. Another reference also
indicates a strong correlation between the real world social capital and virtual friendships of people
[268]. This conclusion is also supported by my own previous studies of Facebook datasets [257].

I argue that considering link weights is paramount for defining realistic social network models.
On the other hand, because the availability of weighted social network datasets is still problematic, I
present real-life social network parameters both in unweighted and weighted contexts. This way, Iam
still able to underline the characteristics which act as a “signature” in differentiating social networks
from other types of complex networks.

5.3.1. Unweighted social network parameters

I use the Facebook data sets to study the distribution of other relevant centralities: eigenvector, pager-
ank, and betweenness (Figure b.1). Node betweenness is therefore defined as:
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b(v) =) UZS}) (5.1)

where i # j # v, 0y; is the total number of shortest paths from node ¢ to node j, and o;;(v) is the
number of those paths that pass through node v 1[94, 203] .

Figures b.Ta-c show specific power-law distributions for degree, eigenvector, and betweenness. On
the other hand, the closeness centrality (Figure 5.]d) has a normal distribution with a clear cut-off
on the right side.

In order to present an illustrative example of how betweenness is distributed in real-world net-
works, I present the Jazz musicians collaboration network, which consists of 198 nodes and 2742
edges [48]. This network (see Figure p.Tle) represents the professional collaboration of many Jazz
musicians throughout their career, linking two musicians (i.e. nodes) if they have collaborated at
least once in the past. Even though the analyzed networks are not weighted, I find that the power-
law distribution of betweenness is a naturally occurring pattern in many real world networks which
involve a social relationship.

5.3.2. Weighted social networks characteristics

When assuming that the social network links are weighted in accordance to the strength of the social
ties among different people, a very important aspect is the distribution of these weights. Most current
research on social topics like opinion dynamics [291, 4], influence mining [[128], political preferences
[214, [07] is based on unweighted data; however, I have gathered a collection of diverse weighted
social networks in order to study the distribution of weights and their correlation to the degree and
betweenness distributions.

For instance, I consider the Les Miserables co-appearance network [[[47] with 77 nodes (nodes
are characters; edge weights are number of co-appearances of two characters in the same scene), an
online social network [211] with 1899 nodes (nodes are users, while edge weights represent number
of online interactions), and a large Twitter network of 37,366 nodes [290] (nodes are users, edge
weights are number of retweets between users).

Edge and node related betweenness distributions

Using the graph visualization tool Gephi [30], I show that the empirical social networks are charac-
terized by a power-law distribution of their weights (see Figure f.%a-c). Furthermore, as also revealed
by the analysis of unweighted social networks, the betweenness centrality seems to share a similar
type of power-law variation, but with a clear cut-off value. This aspect is shown in Figure p.2d-f. Ac-
cording to the organization of nodes, the edge betweenness follows a similar power-law distribution,
as depicted in Figure b.2g-i.

!"The same rationale can be applied for link betweenness.
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Figure 5.1.: a. Degree distribution for one representative Facebook network; the power law distribu-
tion of degrees is representative for such social networks, i.e. most persons have a low
degree (left side), some persons have a moderately high degree (middle section), while
only a few people have a very high degree (right side). b. Eigenvector centrality dis-
tribution for the same Facebook network; this metric shows a power law distribution,
a specific feature of social networks [159]. c. Betweenness centrality in the Facebook
network showing a power law distribution. d. Closeness centrality distribution a rep-
resentative Facebook network which follows a particular Gaussian distribution with a
cutoff value of 0.5; this is an empirically observed feature for friendship networks [260].
e. Illustrative example of a collaborative social network (Jazz musicians network [48])
which is characterized by a power-law distribution of betweenness.
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Figure 5.2.: Power-law distributions in log-log scale of: edge weights (a), node (d) and edge (g) be-
tweenness in the Les Miserables actor network [[147]; edge weights (b), node (e) and edge
(h) betweenness in a Twitter network [157]; and edge weights (c), node (f) and edge (i)
betweenness in an online social network [211].
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Node betweenness - edge weight correlation

In order to investigate if there is a correlation between centralities distributions and the edge weights,
the first step consists of filtering out all edges with small weights from the initial network G. Filter-
ing means obtaining network G* by eliminating all disconnected nodes, and using their initially
measured betweenness to highlight the remaining nodes. Using this methodology, we are being left
with the top 10% of edges because of the power-law distribution of weights. Subsequently, I apply a
second filter by eliminating the nodes with low betweenness. Figure b.3b highlights the strong cor-
relation between nodes with high betweenness which are also linked through strong ties. The same
conclusions are reached for the online network in Figure 5.4b.

Node-edge quantitative correlations

Motivated by the visual interpretation in Figure 5.7, the second step is to quantitatively measure the
edge weight-node centrality and edge weight-edge centrality correlations. To this end, I define a
correlation function as:

o Definition 1 (Node fitness-edge weight correlation). Given a weighted graph G and a filtered
graph G* when only top 10% of the weighted edges are kept, the correlation function c between
the node fitness f and edge weight w is defined as:

ZvieG* f(vz)
ZujeG f(Uj)

Therefore, in Equation .7, the correlation is defined as the ratio between the sum of fitnesses of
each node v; from the filtered network G* and the sum of fitnesses of each node v; from the original
(unfiltered) network G. In my investigation, I consider the fitness f as either node degree or node
betweenness. Therefore, I measure the sum of all degree and all betweenness values for all nodes
in the original unfiltered network G, and then apply the mentioned methodology on the resulting
filtered network G*. The ratio between the remaining fitness and the initial total fitness represents
the resulting correlation.

The full results displayed in Table b.1] show the following correlations: edge weights — betweenness
centrality, and edge weights — degree centrality. All the empirical data sets show a (much) stronger
correlation to betweenness. The correlations are 80%, 65%, 67%, for Les Miserables, Twitter, and
online network, respectively. In contrast, the nodes degree yields a much lower correlation for the
same networks, respectively: 28%, 15%, and 8%.

By doing the same analysis for edge weight — edge betweenness correlation, I find that there is a
weak implication of both properties on the same edge. Namely, as this method of comparison can
be done directly - each edge has a weight and a fitness - I use the classic Pearson correlation and find
that there is a correlation of: 0.02 for Les Miserables, 0.01 for Twitter, and -0.063 for the online social
network.

c(f,w) = (5.2)

5.4. Betweenness preferential attachment (BPA)

Using this betweenness-driven perspective, I define now the preferential attachment model as a node
fitness for bridging with new nodes. Then, I propose a new fitness-based model which exploits the
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Figure 5.3.: Correlation between edge weights and node betweenness in the Les Miserables network
[147]. a. All 77 nodes (actors) from unfiltered network G have their color and size high-
lighting betweenness. b. The filtered network G* after keeping only the top 10% edges
(in terms of weight). All the remaining connected nodes in G* have high betweenness.

Figure 5.4.: Correlation between edge weights and node betweenness in the empirical weighted social
online network [211]. a. All 1899 nodes (online users) in the unfiltered network G,
which have their color and size highlighting betweenness. b. The corresponding filtered
network G* after keeping only the top 10% edges (in terms of weight). All remaining
nodes have high betweenness values.
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Table 5.1.: Correlation of degree centrality with edge weights, as well as correlation of betweenness
centrality with edge weights in 