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Abstract - Connectionist methods in speaker recognition 
give promising results on the condition of selccting a well 
balanced feature vector. Special attention bas to be paid 
to the classifier procedure appiied on the presented 
templates. We are discussing here several difTerent 
speaker recognition methods, focusing on two main 
approaches: a MFCC supervised approach using a 
Hausdorff-based metric and an AR - ART2 structure 
(autoregressive features classified with an Adaptive 
Resonance Theory type 2 Network). Then, we report 
them to our previous results. These methods can 
function in a single or parallel structure, needing a 
weighted inference to accomplish the recognition task. 
Respecting the well known a-priories in signal 
treatment, and carefully selecting the frequency bands to 
be "exarained", our trials gave good results, with a mean 
detection error reduced with about 3% compared to our 
previous essays. Our studies concentrate on tests made 
with discrete-words, in real, noisy en>ironracnt and real-
time / off-line speaker verification. 

Keywords: speaker recognition, speech feature vectors, 
mel-frequency cepstral coeflîcients, autoregressive (AR) 
coefficients, ART 2 (Adaptive Resonance Theory analog 
model). 

l INTRODUCTION 

Speaker recognition [1,2], usually classified into 
identification, respectively verification processes, 
implies to automatically detect the speaking person on 
the basis of individual information intricate in speech 
waves [3], selected and formalized in templates. 
In speaker verification, the task is to use a speech 
sample to test whether a person who claims to have 
produced the utterance has really done it while, in 
speaker identification, the task is to use a speech 
sample to select the identity of the person that 
produced the speech from among a population of 
speakers, or to cluster it in the most resembling group. 
The most significant factor affecting automatic 
speaker recognition performance is variation in the 
signal characteristics from trial to trial (intersession 
variability, variability over time). 

Variations arise from different sources: 

background noise channel distortions; 
differences in recording and transmission 
conditions; 
wide variety of accents; 
people's voices change over time; 
emoţional, stress, fatiguc states; 
speakers cannot repeat an utterance precisely the 
same wav from trial to trial. 

These reasons make difficult both the establishment 
of reference examples and the selection of the good 
pattem matching method. 
It is well known that samples of the same utterance 
recorded in one session are much more highly 
correlatcd than samples recorded in separate sessions. 
Technically, the recognition systems have to treat 
ihese variations. Two types of normaJization 
techniques have been tried; one in the parameter 
domain, and the other in the distance/similarit> 
domain. In our previousiy presented methods [4-10], 
linear prediction coding (LPC), Mel-frequency 
cepstral coefficients (MFCC) and autoregression (AR) 
coefficients classified with MLP (mulţi layer 
perceptron) and RBF (radial basis functions) 
recognition, were compared with those obtained by 
technique of Hausdorff-based distance measure 
(HDM) and vowel detection. The HDM gave good 
results. together with AR in a general computing 
schema we proposed (to be patented). The need of a 
special emphasized research resulted on two stages: 
limits of sub-bands to be explored and a more 
specialized classifier appiied to the feature vector. 

II. A SUPERVISED TEXT-DEPENDENT 
SPEAKER RECOGNITION APPROACH 

Let us propose now an automatic supervised text-
dependent speaker recognition method, which uses a 
special nonlinear metric in the classification stage. 
We consider the foilowing speaker recognition task. 
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Let us assume that we have a sequence of spoken 
utterances, all of them having the same transcript. 
The recognition task consists of identifying the 
speaker for each utterance, assuming that the available 
speakers are known and a training set is also 
available. 
So, let be the audio signals of the input 

utterances and M be the number of speakers. Each of 
these speakers provides several vocal recordings, by 
pronouncing the text of ŝ  a number of times. Thus, 

for each speaker we get a set of prototype vocal 
signals. The training set will contain all the obtained 
same-transcript prototypes, therefore having the form 

where S j represents 

they* vocal signal of speaker. 
As any pattem recognition approach, our speaker 
recognition method consists of tw ô parts: the speech 
feature extraction and the feature vector classification. 
We shall describe each of them in the next 
subsections. 

A. Feature vector computation approaches 

In this first stage we perform vector feature extraction 
operations for both the vocal signals to be recognized 
and the prototype signals. The Mei Frequency 
Cepstral Coefficients (MFCC) [1-4,11] are the 
dominant features used for speech [3] and speaker 
recognition [1,2,4-10], so we propose a melodic 
cepstral analysis for speech feature extraction. 
The MFCC speech feature vector extraction approach 
uses a short-time analysis of the involved audio 
signals. So, each signal is divided in overlapping 
segments of length 256 samples with overlaps of 128 
samples. Then, each resulted segment is windowed, 
by multiplying it with a Hamming window of length 
256. The spectrum of each windowed sequence is 
then computed, by applying DFT (Discrete Fourier 
Transform) to it. Mei spectrum is obtained by 
converting spectrum on the melodic scale [1], that is 
described as: 

One of them is the truncated MFCC acoustic matrix. 
This is obtained by truncating the acoustic vectors at 
the first 12 MFCC coefficients and positioning them 
as columns. Other possible speech feature vectors 
result from DDMFCC analysis. Delta mei cepstral 
coefficients (DMFCC) are computed as the first order 
derivatives of MFCC, and the delta delta mei 
frequency cepstral coefficients (DDMFCC), as the 
second order derivatives of MFCC. Thus, the 
DDMFCC acoustic vectors, and then the truncated 
DDMFCC acoustic matrix, result as speech feature 
vectors [12]. 
Another important speech vector is the vocal sound 
pitch, which can be computed using MFCC acoustic 
matrix. From each column of this matrix, therefore 
from each MFCC acoustic vector of the iniţial signal, 
the maximum value is extracted. A small enough 
threshold value can also be used, the maximum value 
being further considered only if it is above that 
threshold. The pitch vector is obtained from all these 
extracted values. From our tests it results that the 
pitch is not satisfactory enough as a feature vector. 
The speakers cannot always be discriminated by their 
pitch vectors only, but the range of its variation could 
be taken in consideration. 
So, we propose a more powerful vocal feature vector 
which is based on pitch. From every MFCC acoustic 
vector of the processed sound, we extract not only one 
value, but a sequence of values. Thus, the greatest m 
MFCC coefficients of each acoustic vector are 
determined, where m is a chosen small enough 
integer. Therefore, for each vocal signal s, a feature 
vector V {s) is obtained as a matrix having m rows and 
a column number depending on 5 length. The resulted 
vector features vocal sound, much better than pitch. 
Thus, we get a speech feature set, 

) , . . . , a n d a training feature set, 

{ F ( 5 ; ) , . . . , ) , . . . , ¥ { s ; " ) , . . . , ¥ i s : ^ ) } , which 

contains all training vectors. 
The next step of the recognition process consists of 
classification of the speech feature vectors using the 
training feature vectors. 

= 2 5 9 5 - l o g , o ( l + / / 7 0 0 ) , ( 1 ) ^ Speechfeature vector classification 

where /represents the physical frequencies and mel{J) 
the mei frequencies. Further, the mei cepstral acoustic 
vector is computed by applying first the logarithm, 
then the DCT (Discrete Cosinus Transform) to the 
mei spectrum. 

Therefore» for each vocal signal ŝ  or , a set of 

MFCC speech feature vectors is obtained. Each 
MFCC acoustic vector has 256 samples and the 
number of the acoustic vectors depends on the signal 
length. 
Using these acoustic vectors, new speech feature 
vectors can be obtained. 

We propose an extended minimum-distance classifier 
for performing the feature vector classification. The 
classical variant of this classifier consists of a set of 
prototypes and an appropriated metric [12]. The 
pattem to be recognized is inserted in the class 
corresponding to the closest prototype. The extended 
variant uses a sequence of prototypes for each class 
and the mean distance value instead of the distance 
value [4,13]. 
We know that each speech signal , k < n, is 
produced by one of the N speakers but we do not 
know which one of them. 
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Each speaker is related to a class and to a training 

subset. For example {5, ,...,5,', } corresponds to the 

speaker. 
To identify the right speaker for each utterance, 
must be inserted in the class corresponding to the 
smallest mean distance between speech feature 
vectors. This means that distances between different 
sized'vectors, like V(Sf^) and must be 

computed. Linear metrics, like Euclidean distance, 
cannot be used in this case, so we create a new metric. 
We propose a special nonlinear metric which is able 
to compare matrices having a single common 
dimension, like the matrices representing our speech 
feature vectors. It derives from the Hausdorff metric 
for sets [13, 14], described as: 

h{A, B) = max{m\n{dist{a, b)}}. (2) 
aeA beB 

where dist is any metric between the points of sets A 
and B. We obtain the following Hausdorff-based 
distance: 

= maxlsup inf sup b,̂  - a,/, sup inf suplĂ; - t (3) 

Fig.l. Training set 
Each column from the figure above corresponds to a 
speaker. For each / < 3 and 7 ^ 2 , the training 

feature vector ) is computed as a 3 row matrix 

with a column number depending on S j length. The 

six signals of the vocal utterances are displayed in the 
figure. Their speech feature vectors, next 

),..., )} ' ^ ^ computed. 

where A = {a,^ , B = (b^X^p ^ and n represents 

here the row number. The metric given by (3) 
constitutes a satisfactory discriminator between sound 
feature vectors in the classification process [13]. 
Thus, each speech signal must be inserted in a 
class indicated by: 

"^diVis.lViS/)) 
id = arg min — (4) 

' n. 

where d represents the newly created distance. This 
means that the vocal utterance corresponding to ^^ 
was generated by the icf" speaker. 

III. NUMERICAL EXPERIMENTS 

In this section we present some numerical results of 
our experiments. So, let us consider the following data 
as an example: the speaker number N = 3, the vocal 
utterances number n = 6, m = 3 and the transcript of 
the utterances is the word start. We create also a 
training set containing two vocal prototype signals for 
each speaker. The six signals of the training set, 
{Sl, s i , S^ .S^ .S^^S l} , are represented in Fig. 1. 

6000 ItZDO 0 

Fig.2 Iniţial speech signals 

The distances, given by relation (3), between the 
training vectors and the feature vectors 

V{Si^) are then computed. The computing results are 
displayed in the next table. In the column 
corresponding to each there are registered the 

ţ;<i(V(s,ms/)) 

mean distance values — to each 

class (speaker), referred by 1, 2 or 3. The minimum 
distance value must be located on the row 
corresponding to speaker which produced Sj,,. 

Table 1 

1 0.85 1.05 1.92 1.93 0.84 1.33 
2 1.89 1.55 1.34 1.31 1.65 2.33 
3 1.85 2.27 3.15 3.39 0.92 1.09 

Knovving that ŝ  and 52 are produced by the first 

speaker. and s^ by the second, and and Sţ̂  by 
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the th i r i from Table 1 it results that a single 
classification error is produced. In the column of 

the lowest value is vvrong placed on the first row 
instead of the third. 
We may perform the same experiment for other 
transcripts. 
If we use the spoken word stop instead of start, we get 
the numerical results registered in Table 2. From this 
table it results that each registered value is placed in 
the right place. 

Table 2 

1 1.26 1.31 1.84 2.91 1.67 1.61 
2 1.56 2.51 0.81 0.93 2.10 1.70 
3 1.93 2.03 2.59 3.19 1.43 1.03 

By applying this procedure on a number of 300 
utterances, 3 speakers, we obtained satisfactory 
speaker recognition results. Using the proposed 
automatic text-dependent method, the recognition rate 
of our approach is about 80-90%. 

IV. OTHER RECOGNITION METHODS 

vowel sounds, for speech recognition. LDA can yield 
either spectral basis functions (if feature vectors are 
spectral vectors) or FIR RASTA filters [20], if the 
feature vectors are cut out of time trajectories of 
spectral energies. But this technique considers the 
impulse response of FIR filters, implied by delta and 
double-delta features, too short and their frequency 
response, too selective. The lengths of impulse 
responses of discriminant RASTA [21] filters, derived 
by LDA are of the order 200ms and the frequency 
response is a BP with pass-band of about l-lSHz. 
What we propose is a method, that partially neglect 
the first lower bands, very high in amplitude and 
therefore in energy, taking only 2 or 3 bands up to 
1500Hz, to select features on them, and concentrating 
more in exploring higher bands, around the high 
formantic frequencies of the vowels, where seems that 
refmed characteristics came to make a difference 
between speakers. In [22] and [4] we stated that it is 
possible to disregard spectral correlations altogether 
and to have a very good indication on recognizing the 
speaker even from rather vowel spectral structure 
selected from temporal pattems of spectral energies. 

IV. AUTOREGRESSIVE PARAMETERS IN 
SPEAKER RECOGNITION METHODS 

Generally, temporal processing and filtering in speech 
feature extraction are used with the purpose to 
increase the performance and robustness of the 
automatic speech recognition process. Convenţional 
speech analysis techniques for automatic recognition 
(such as Mei Cepstrum or Perceptual Linear 
Prediction - PLP - values) in combination with 
dynamic features (estimates of derivatives of cepstral 
trajectories - .^speed" and ,,acceleration'" coefificients) 
proved to be sub-optimal [15], [16]. In [17], H. 
Hermansky argued against '^blind implementing of 
scattered accidental knowledge" when neurological 
studies come to teach that human auditory perception 
has the "ability to suppress some parts of information 
in the speech message" to understand. Thus, selective 
use of auditory knowledge, optimized on real speech 
data should be used. (Side comment, a child 
recognizes mother's voice by only some sounds, no 
need of words!). "Providing speech evolved to be 
heard, properties of hearing should be reflected in the 
speech signal"[18]. From music we know that cochlea 
does a kind o foc t ave" spectral analysis of the sounds 
it receives. If the iniţial speech representation could 
be the speech waveform, the short term power 
spectrum could constitute criteria in the iniţial speech 
representation to derive features for speech 
recognition. In [18], [19] the optimization is done 
using LDA (linear discriminant analysis). LDA of the 
short-time Fourier spectrum in speech yields spectral 
basis functions which provide comparatively lower 
resolution to the high-Frequency region of spectrum. 
This is consistent with critical-band resolution and is 
shown to be caused by the spectral properties of 

In scientific research, autoregression (AR), time 
series, prediction, are important tools in estimating 
insight features [23], [24]. 
Using the AR coefficients with and an ART classifier 
the speaker recognition coefTicient rose up 92%. 
The main steps of an autoregressive schema we 
designed as automatic speaker recognition tool [5], 
presented in Appendix 1, are as foilows: compute the 
signal spectrum, by a classical Fourier Transform 
(FFT), then plot the temporal evolution of spectral 
energ;>', detect the maxima and the inflection points by 
inverse descent procedure; select a number of 4-7 
frequency bands, having the limits bounded by the 
inflexion points. On each band is practiced a zero 
phase filtering [5], [25]. In fact the selected bands 
correspond this way to the formantic areas of main 
vowels most often presented in a certain language, 
and the segments that interest us more are situated in 
high frequencies, that proved to be more selective in 
speaker recognition. 
The AR coefficients are computed on each band, their 
values constituting the training set for a clustering 
structure. To them, we added, in more trials dififerent 
complementary information on the respective band, as 
we previously discussed, with various results. 
When the classification results from all available 
bands are combined, the performance is comparable 
to convenţional recognizers. We obtained results 
ranging from 80 up to 90%, depending on the 
recognition structure and on the number of 
coefficients used as features on each channel. MLP 
and RBF, compared gave slightly different results 
(some percents) in favor of the second one, having as 
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disadvantage a complicate computing structure. 
Actual results obtained vvith ART-2 structure raised 
up to 92%, with essays made on differcnt resolution 
on sub-band selection, centered more in higher 
frequency range, the centralization made -
coordinated to the high formantic principal vowels 
structure. A comment, here, has to be done: the 
published fîgures were obtained on carefully selected 
training sets, with a preparing stage that excepted 
from the training group all the individuals that could 
give aberrant scores. 
The C5 structure is a very useful tool in this sense 
clustering and in the main time selecting data that 
have characteristics out of the normal range of the 
classification [26]. 
Special studies dedicated to variances obtained in 
recognition values, due to the classifier structure, in 
order to fmd the optimal-result, are further conducted. 

improve the recognition coefficients previously 
obtained, pass by difTerent attempts and n-ials, for 
each gained percent. The recognition rate was around 
90% in both methods we presented (slightly different 
in AR-ART), but in order to obtain a good reliability 
(similar vvith the human cortex process of decision) in 
a speaker recognition system, results, obtained by one 
procedure have to be at least doubled by a resene 
system. Computing a vveightcd aggregation [35], [36], 
by using confidence coefficients, reinforce 
recognition probit>. 
Smart appiiances have to perform an inference on 
more parallel methods, simultaneously run, in order to 
aggregate results, or to be able to organize hierarchic 
structures, in an automatic attempt of clustering (as 
further project). 

VIII. ACKNOWLEDGEMENTS 

V. ADAPTIVE RESONANCE THEORY FOR 
CLASSIFICATION 

ART [27], [28], [29] - neural unsupervised, feedback 
models that realize and develop a theory called 
adaptive resonance theory, introduced by Grossberg 
in 1976. The term "resonance" refers to the so called 
resonant state of the network in which a category 
prototype vector matches the current input vector 
close enough so the orienting subsystem will not 
generate a reset signal to the F2 layer. In this case, the 
activity pattem in the FI- layer causes the same F2 
node to be selected, which in turn sends the same 
prototype vector down to the FI layer, which again 
matches the current input close enough, and so on. 
The network leams oniy in its resonant state, 
associative leaming of many-to-one and one-to-many 
maps, where many-to-one leaming includes both 
categorization and associative prediction. ART is 
capable of developing stable clustering of arbitrary 
sequences of input pattems by self-organization. More 
varieties of ART networks exist: ART-1 (which is 
able to cluster binary input vectors), ART-2 [31] 
(cluster real-valued input vectors), ART-2A (fast 
version of the ART2 leaming algorithm), or more 
sophisticated - MART [32] (multi-channel ART, for 
adaptive classification of pattems through multiple 
input channels) fuzzyART [33], ARTMAP [30] 
(supervised version of ART leaming arbitrary 
mappings of binary pattems). LAPART (an ART-
based neural architecture for pattem sequence 
verification through inferencing) [34], etc. 
We used an ART2 structure [27]. We tried it for 8 and 
respectively for 16 different speakers featured with 
AR features selected on 7 bands, on 20 different 
command words, each presented word repeated 10 
times. We obtained 92% coefficient of recognition. 

VII. CONCLUSIONS 

Speaker recognition has constantly grown, as research 
domain, during the two last decades. The struggle to 
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the suggestions made by Mr. Anthony J. Grichnik 
(Strategy & Technology Manager, Technical Services 
Division, Caterpillar Inc. Peoria, Illinois). 

APPENDIX 1 

GENERAL SCHEMA FOR SPEAKER 
RECOGNITION WITH S-TREE2 CLUSTERING 

TeniDoral records 

LP Filter BP Filters HP Filter 
fi^U fi-l fL=fN 

/.F Filter BP Filter HP Filter 
k^f, fi^fN 

Zero - Phase Algorithm M2 

i 
AR t+Ft AR^F, 

1 i 
ART, ART, ARTh 

Fig.3. A general schema for AR - ART speaker recognition. 

In Fig. 3. we have: low pass (LP) filter, band pass 
(BP) filters - for more central frequency bands, high 
pass filter {HP\ the mirror 1 (Ml) and mirror 2 (A/2) 
- an algorithm in order to preserve the zero-phase 
filtering on each band, autoregressive coefficients 
(AR) and other features F added on option. 
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The classifier selected is an ART-2. 
The inference for the decision is a weighted one, in 
accordance with the differentiated importance of the 
frequency bands, in speaker recognition process [7], 
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