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Abstract - The paper deals with (he BER and 
Throughput vs. SNR performances of the LDPC-coded 
QAM signal constellations modulated on OFDM-t}pc 
multicarrier transmissions. It analyzes, by means of 
computer simulation, the influences of the LDPC-code 
parameters (codeword length and rate) and the effects of 
mapping various ratios of coded and non-coded bits on 
QAM symbols, upon the SNR performances of these 
transmissions. Comparisons to the Shannon limits are 
presented as weil. 
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1. INTRODUCTION 

The LDPC codes are powerful block error correcting 
codes that provide high coding gains, comparable to 
the ones provided by the turbocodes for the same 
coding rate, at the expense of a simple encoding and 
moderate decoding complexity. 

A. Parameters and Types of LDPC Codes 

The Low Density Parity Check codes are block codes, 
basicaily defined by three parameters p, j, and k 
(integer numbers) that observe the following 
conditions [1]: 

p is a prime integer; j < k < p; ( 1 ) 

The codeword length N, the number of control bits C, 
the number of information bits J and the code ratio Rc 
are defined, respectively, by [1]: 

N = k p; C = j p; J = (k-j) p; Rc = (k.j)/k; (2) 

The control matrix, H, of a LDPC code is a 4-cycle 
free sparse matrix that might take three forms, vvhich 
defme the three types of LDPC codes: randomly 
generated by computer search [2], [3], by complete 
array-code control matrices [3] and by triangular-
shaped array-code control matrices [4]. 
This paper considers only the codes generated by a 
triangular-shaped array-code control matrix H (jP ^ 
kp). 
The generic form of the triangular-shaped matrix H j 
is generated, see (3), by using an elementary matrix a, 
pxp, and the unity and nuli pxp matrices, I and 0: 

H t = 

l 1 I 
O I a 
O O I 

0 0 0 

,2(j-3) a 

1 
a H 
2 ( j - 2 ) 

,1-1 

l3) 
Tvvo different types of elcmentaiy matrices a ihat ma> 
be employed; they can be generated starting from the 
unity pxp matrix, either by shifting its rows 
downwards or upwards with one position. 
The code parameter j equals the number of control 
equations a codeword bit is involved in, while code 
paiameter k shows the number of bits involved in a 
control equation. 

B. Generat ion of the Control Matrix Hy 

The regular structure of the triangular-shaped matrix 
allows a systematic generation, starting from the code 
parameters j, k, p. Using the property of the matrix a, 
a^ = I (pxp), and the rule thal gives the power of u 
inside the Ht (3), an algorithm to compute the indexes 
(row, column) defming the positions that take the 
logical value in temis of the parameters j, k and 
p, can be determined. So, the binary matrix H j is 
generated by filling with only on the positions 
given by that algorithm. 

C. Shortening the LDPC Codes 

In order to adapt the number of information bits of the 
codeword to the information source or to adapt the 
codeword length, to the transmiried symbol-packet, 
the LDPC codes can be shortened [1]. 
The shortened code rate R' is smaller than the rate of 
the parent code R: 

R' = JV(J'-hC)<R = J/(J+C); (4) 

D. Encoding the LDPC Codes 

If the codeword is v - [c,,—c^p^i, io—»(k-j)p-i], the 
control bits Cn, are computed in terms of the infor-
mation bits i| by solving the C equations system; 
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H V = 0 (5) 

This approach has two major shortcomings; 
- for great values of parameters j and/or p, C 

becomes large implying a significant computaţional 
load that increases the processing time and/or the 
hardware required by the impiementation; 

- it requires all information bits ii, I = 0...., (k-j)p-] 
at the same time; this requirement induces a one-
codeword additional latency in the system. 
These shortcomings may be avoided by a simpler and 
faster encoding method, described in [5]. 

E. Bit-Mapping on the QAM Signal Constellation 

When the LDPC-coded bits are to be modulated on a 
b-bit/symbol QAM constellation, the b-tuple is 
mapped on the I and Q coordinates of the QAM 
vector, by splitting the b-tuple into two groups of b/2 
bits, each group being assigned to one axis. The bits 
that are assigned to an axis are mapped to the 
amplitude levels of that axis according to a Gray 
encoding [1]. Since the transmission bit-loading might 
involve non-coded information bits, they are also 
mapped according to a separate Gray encoding, in 
order to maximize the distance between levels having 
the same non-coded bits. Therefore, the multibit 
assigned to an axis of the QAM constellation, coded 
and non-coded bits, is mapped according to a 2-level 
Gray encoding described in [3]. Fig. l presents an 
example of mapping b/2 = 4 bits on one axis (1 or Q) 
of a QAM constellation. 
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Fig. 1. Bit mapping on a QAM-constellation axis using the 2-level 
Gray encoding 

The amplitude levels employed on each axis belong to 
the set A defined by: 

A = { A , = 21 - (L5- l ) ; l -0 , l , . . .Lb- l ; } ; Lb = 2''''; (6) 

This bit-mapping method, which allows oniy for the 
employment of the square QAM constellations, is 
simpler because the mapping is identical on both 
coordinates. 

F. Decoding the LDPC Codes 

The decoding of the LDPC codes is accomplished by 
using the message-passing algorithm (MP), as 
presented in [2], which will not be described here. 
This algorithm, based on the Bayes criterion, requires 
the previous computation of the a posteriori 
probabilities for every bit of a codeword, Fn"(r/0) and 
Fn'(r/I)^ where r denotes the received vector, n is the 
bit index and 0/1 denote the bit logical value. 
Basically, the algorithm performs the decoding of a 
codeword by using the a posteriori probabilities of a 

group of N bits v' that is checked by means of 
syndrome-computation; if the syndrome equals zero, 
the algorithm considers v ' to be the correct codeword; 
otherwise it performs another iteration adjusting the 
values of the a posteriori probabilities by using some 
internai values computed in the previous iteration. 
The maximum number of iterations allowed, B, is a 
parameter of the algorithm. The values of the a 
posteriori probabilities are previously extracted from 
the OFDM-demodulated coordinates I and Q of each 
QAM-symbol, by means of the soft-demapping 
procedure 

This algorithm does not search for the closest 
codeword compared to the received sequence, but 
tries to correct every' bit. Due to this property, the 
number of error bits after the decoding is always 
smaller than the one of error bits prior the decoding, 
when the aJgorithm is convergent. Extensive 
simulation performed by the authors confirmed this 
property. which might lead to the decrease of error-
packet length that should be corrected by the RS code 
that follows the LDPC or convolutional codes in 
many applications. 

G. Soft'Demapping 

Because the MP algorithm requires the a posteriori 
probabilities of each bit and the received vector 
carries more bits, a soft-demapping [3] is required in 
order to provide the Fn°(0/r) and Fn '(l/r) probabilities 
of each bit mapped the received vector. 
For multibit/symbol modulations, the two probabilities 
of each bit are extracted, from the received level on the 
I or Q branches, by using (7) that gives the probabilit> 
of bit bj to be .,1" when the demodulated level on a 
branch equals r and the channel is AWGN [1]: 

I e x p ( -
I _ l - l F = 

(r-L(l))^ 
) b 

(7) 
; j = 0 , . . . ,b /2-1 ; ^ ^ 

In (7) bij denotes the logical value o f j - t h bit of the l-th 
modulating level of the I or Q branch of the 
demodulated vector. A similar expression is derived 
for Fj" and the two values are normalized to their sum. 
The soft-demapping requires a previous estimation of 
the noise variance a ; computer simulations run by the 
authors showed that estimation errors of less than 2 dB, 
between the actual channel noise variance and the one 
stored in the sof\-demapper, lead to insignificant 
decreases of the decoder performances. 

H. Soft Decision of the Non-Coded Information Bits 

The information non-coded bits mapped on a QAM 
symbol can be decided by two methods, namely: 
- hard decision, applying the Bayes criterion to the 
probabilities provided by the soft-demapping; diis 
method does not employ the information provided by 
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decoding the coded bits placed on the same tone 
during the same symbol period. 
- soft decision, that considers the information 
provided by the decoding of the coded bits mapped on 
the same QAM symbol and tone. 
Basicaliy, the optimal decision memorizes the 
received level r and, using the decoded bits provided 
by the LDPC decoder, selects the closest (in the de 
sense) level that vvas mapped with the same decoded 
bits, see fig. 2. This method provides lovver BER of 
the non-coded bits, as resulted from simulations 
performed by the authors, but may error the non-
coded bits if the corresponding coded bits were 
v^ongly decoded. 
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Fig 2 Optimal decision of non-coded bits for "10" coded bits 

l. Bit-loading on Coded-QAM OFDM Employing 
Non-Coded Bits 

Denoting by T the number of available sub-carriers. 
b y DOFOM t h e O F D M s y m b o i r a t e , b y N p a n d N^, t h e 

numbers of coded and non-coded bits on Ihe i-th 
subcarrier and by Rc the LDPC code rate, the nominal 
payload DN of the OFDM transmission would be (8). 
The number of bits actually carried by each QAM-
symbol equals Nc Np,. 

(8) 

The rate of the coded QAM-modulation is computed 
by: 

R CM -
N c . + N n i 

( 9 ) 

II. BER PERFORMANCES 
OF THE LDPC-CODED QAM COKSTELLATIONS 

Due to the complexity of the theoretical evaluation of 
the BER provided by the LDPC coded QAM 
constellations that are also loaded with non-coded 
bits, the authors developed a computer simulation 
environment that was employed to derive the results 
shown below. 

A Simulation Environment and Parameters 

The simulation program that implements the LDPC-
coded multi-carrier transmissions, ailows the follow-
ing parameters to be set: LDPC code parameters (k, j , 
p), number of sub-carrier groups G, number of sub-
carriers within a group T„ bit-loading for each group 
(number of coded bits - N^, number of non-coded bits 
- Nn,), maximum number B of iterations/codeword of 
the LDPC decoder, range and step of SNR, Rayleigh 
channel model, test length. 

It displays the BER values and the BER vs. SNR 
characteristic for the selected SNR range, the number 
of coded bits error after the decoding of each 
codeword, and the number of non-coded bits decided 
by soft-demapping. It also displays the throughput of 
the transmission for a defined packet dimension. 
The simulations were performed on a test of 10 '̂ 
information bits and the maximum number of B = 15 
iterations/codeword for the decoding algorithm. 

B. Effects of the Coding Rate upon the BER 
Performances of LDPC-Coded QAM Constellations 

As shown in (2) the coding rate might be changed, 
without changing the codeword length, by changing 
the parameter j. Considering k=14 and p ^ 31, so that 
a short codeword N = 434 bits (see (2)) is used, a 
family F. of LDPC codes with Rc ranging from 0.78 
to 0.21 is displayed in table 1. The family includes the 
non-coded conflguration for comparison. 

Table 1. Parameters of F, LDPC codes; k = 14, p = 31 

F, j N C R 

Cn Non-coded 1 

C,2 3 434 93 0.78 

C,3 7 434 217 0.50 

C,4 9 434 279 0.35 

C,5 11 434 341 0.21 

In order to evaluate the correction capabilit) of these 
codes, the BER vs. SNR performances were evaluated 
employing a 2-PSK constellation. And are shown in 
fig. 3. 

SNfl(dBj 

Fig. 3. BER vs SNR of 2-PSK coded w.ih the LDPC codes of 
fainily FI 

The coding gains provided by the Fi codes, at BER = 
I IO" ,̂ and their rates are displayed in table 2. 

Code Cn C u C,3 C , 4 C m 

CG (dB) 0 6 8.5 9 9.5 

Rc 1 0.78 0.5 0.35 0.21 

As expected, the coding gains provided increases with 
the decrease of the coding rate. 
The coding gain provided by the 'Aparent code (Rc = 
0.78) is" about 6.5 dB, comparable to the ones of 
convolutional codes of R = V7 and K = 5 - 7, 
The R = Vi LDPC code provides a coding gain of 8.5 
dB, larger than the one the convolutional codes. 
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Taking into account the fact thai the MP decoder has 
about the same implementation complexity as the 64-
state Viterbi decoder vve may say ihat the LDPC 
codes provide about the same coding gain as the 
convolutional code, at a higher coding rate. 
Comparing the coding gains with the ones of the turbo 
codes, the Rc = '/2 LDPC code ensures BER =10-6 at 
a SNR = 2 dB, about 1 dB higher than the turbo-codes 
[6]. but it requires only one MAP decoder instead of 
two decoders (MAP MLD) and a de-interleaver. 
By decreasing the code rate by changing the code 
parameter j additional coding gains of up to 3.5 dB 
can be obtained. The code C15 (Rc = 0.21) requires a 
SNR = IdB to provide a BER = lO ' . 
In order to evaluate how ciose these codes are to the 
Shannon limit, we recall that the maximum spectral 
efficiency P.vMm which could be provided by a code of 
i-ate R ,̂ in an error-free transmission across an f j 
bandwidth, is: 

[bps/Hz]; (10) 
2 N 

Assuming that the error-free transmission is 
accomplished for SNRs > SNRoi, where: 

BER (SNRo.)= MO*': (11) 

we may compute the maximum spectral efficiency, 
P.vMOi: that could be accomplished by a code with rate 
Rc,. by using (10) and SNRo, obtained by simulations 
(see fig.3). This value, compared to the actual spectral 
elTiciency (3,,,, provided by the code (which equals 
Rc,) indicates how far is the code from the theoretical 
limit. 
Another evaluation can be performed by computing 
the minimum signal/noise ratio, SNRnii, for which 
could be obtained. The difference ASNRi = -
SNRoiI shows the "quality" of the code in terms of the 
SNR. 
The values of these parameters for the codes of table 1 
are shown in table 3 

Table 3. Ideal and actual performances for codes of 

Code P>vM, SNRo, SNR,™ ASNR, 
c, [bps/Hz] [bps/Hz] [dB] [dB] [dB] 

0.785 1.59 4.1 -0.35 4.45 
Cn 0.5 0.80 1.7 -0.82 2.52 
C,4 0.357 0.546 1.1 -1.04 2.14 
C,5 0.214 0.29 0.1 -1.26 1.36 

As expected, codes of a certain length come closer to 
the theoretical limits as their rate decreases. Results of 
tables 2 and 3 show that rather short codes, easy to 
implement, are close enough to the theoretical maxi-
mum performances. 
The performances of the LDPC codes might be 
improved by increasing the maximum number of 
iterations/codeword of the MP decoder; simulations 
showed that increasing B = 25, leads to extra coding 
gains of 0.5-1 dB, at the expense of a longer proces-
sing time required. 

C. Effects nf the Codeword Length upon the BER 
Performances ofLOPC-Coded QAM Constellations 

fn order to evaluate the efTects of the codeword length 
upon its performances we consider a family of codes 
F2, see table 4, with Rc = 0.214 (as code C,5 of Fi). 
The code word length N is modified by means of 
parameter p, ranging from 23 to 73. 

Table 4. Codes of rate Rc = 0.214 and various 
codeword length N - family F2 

Code k j P N [bits] 
C,5, 14 11 23 322 
C,5, 14 11 31 434 

14 11 43 602 
C|54 14 11 53 742 

C , 5 5 14 11 73 1022 

The BER vs. SNR performances of these codes are 
displayed in fig.4. 

i<3(B|3L 

Fig. 4 BER vs SNR of LDPC codes from table 4 

The results in fig.3 indicate that by increasing the 
codeword length. extra coding gain, can be provided 
at the same coding rate, but at the expense of a more 
difficult implementation. The extra coding gain may 
be as high as 1.5 dB, see codes C152 and C155 in fig.4 
on one hand and code C15 in rig.3 on the other. The 
code C155 provides a total 11 dB coding gain. 
Increasing the codeword length would also bring the 
code performances closer to the Shannon limit. 
Computing the parameters defmed in table 3 for the 
codes of family F2 we get the values of table 5. 

Table 5. Ideal and actual performances for codes of 
family F2 

Code B», 
[bps/Hz] 

PwMi 
[bps/Hz] 

SNR,, 
[dB] 

SNR„, 
[dB] 

ASNRi 
[dB] 

C,5> 0.214 0.352 0.5 -1.26 1.76 

C,52 0.214 0.291 0.2 -1.26 1.46 

C|53 0.214 0.280 0.0 -1.26 1.26 

C,M 0.214 0.274 -0.1 -1.26 I . I6 

C,55 0.214 0.268 -0.25 -1.26 1.01 

The longest code of family F2, C155, is about 1 dB 
away from the Shannon limit, for BER < 110 \ 
Simulations performed by the authors showed that the 
coding gains provided by the LDPC-coded QAM 
constellations are about the same, compared to the 
same non-coded QAM constellations, regardless the 
constellation employed. 
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III. LDPC-CODED QAM CONFIGURATIONS 
EMPLOYING NON-CODED BITS 

The employment of error-correcting codes leads to a 
decrease of throughput provided by the coded QAM 
constellation. This occurs due to the control bits 
inserted by the code, and the throughput decrease is 
higher for low-rate codes that secure a good 
correction capabiiity. 
in order to reach a reasonable trade-off between the 
correction capabiiity and the coding rate, which 
affects significantly the throughput, each QAM 
symbol is loaded with n^ coded bits and with n^ non-
coded bits. 
Considering a LDPC code with an Rc coding rate the 
coding rate of the configuration employing coded and 
non-coded bits is expressed by (9). 
The coded and non-code bits are mapped on the l and 
Q coordinates (6) of the QAM symbol using the 2-
level Gray mapping, see fig.l, on each axis. 

A. BER Performances of the LDPC-Coded QAM 
Configurations Employing Non-Coded Bits 

To evaluate the efTects of employing non-coded bits, a 
family F3 of possible LDPC-coded configurations 
using non-coded bits based on the 256-QAM (Nc, ^ 
Nn, = 8 bits) are presented in table 6 together with 
their coding rates Rcm and coding gains Cq. The 
LDPC code employed is (k = 1 4 J = 3, p = 31; Rc = 
0.78), which provided a 6.5 dB coding gain on a 2-
PSK modulation (code C12 in table 1 and flg. 3). The 
BER vs. SNR performances of this family are 
presented in fig. 5. 

Table 6. Coded QAM Configurations of Family F3 

Cfp. N„, Rcm Cr. 
1 0 8 1 
2 2 6 0.945 5 
3 4 4 0.890 6 
4 6 2 0.835 6.5 
5 8 0 0.780 7 
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Fig. 5. BER vs. SNR for configurations of F.» defined in table 6 

As shown in table 6, the employment of non-coded 
bits leads to a significantly increase of the coding rate, 
at the expense of a coding gain decrease of about 1-2 
dB. The coding rate increases starting from 0.78 up to 
0.945, in terms of the proportion of non-coded bits 
within the 8 bits loaded on a QAM symbol. 

The relatively small decrease of the coding gain 
couid be explained by the '"protection" of the non-
coded provided by the 2-level Gray mapping and by 
their soft decoding. Fig. 6 shows the BER vs. SNR 

curves of the coded and non-coded bits before the MP 
decoding (for the coded bits) and before the soft 
decision (for the non-coded bits), and after these 
decoders. The BER prior to decoding was obtained 
by using a hard Bayes decision that employs the a 
posteriori probabil it ies provided by the soft-
demapping. The curves correspond to configuration 
no.3 from table 6. 

4 3 

Flg.6 BER vs SNR of the coded and non-coded biîs of 
configuration 3 from table 6, line 1 - coded bus Bayes decision. 
line 2 - non-coded bits Bayes decision; line 3 - coded bits MP 
decision; line 4 - non-coded bits soft decision 

As shown in figure 6, the non-coded bits have lower 
BER tlian the coded bits loaded on the same QAM 
symbols, both before their decoding (line 1 vs. line 2) 
and after it (line 3 vs. line 4). This is due to the 2-level 
Gray mapping of the coded and non-coded bits. 
Fig. 6 shows that the number of error bits is always 
smaller after the decoding process, than before it. 
This, combined with additional simulations performed 
by the authors indicate that the two decoders might 
require some smaller outer codes (small RS or even 
BCH) in FEC schemes employing concatenated 
codes. 
The spectral efficiencies of the configurations 
employing non-coded bits are higher than the ones of 
the proximity to the Shannon limit of the 
configurations from family F3 are displayed in table 7. 

Table 7. Ideal and actual performances of 

Cfg Rcmi 
P>v, 

[bps/Hz] 
Pw.Mi 

fbps/Hzl 
SNR,,. 
[dB] 

SNRn,, 
[dB] 

ASNR, 
fdB] 

1 1 8 10.46 31.5 24 7.5 
2 0.945 7.52 9.05 27.5 22.9 4.6 
3 0.890 7.12 8.64 26.5 21.9 4.6 
4 0.835 6.68 8.21 25.5 20.9 4,6 
5 0.780 6.24 8.31 25.0 19.8 5.2 

The spectral efficiencies of the coded configurations 
carrying non-coded bits (lines 2, 3, 4 in table 7) are 
higher than the ones of the coded configuration with 
no non-coded bits (line 5). Also they are closer, in the 
SNR sense, to the Shannon limit. 

C. Throughput Performances of the LDPC-Coded 
QAM Configurations Employing Non-Coded Bits 

The employment of the non-coded bits decreases the 
coding gain leading to a higher BER at a given SNR, 
on one hand, and increases the coding rate leading to 
more'information bits transmitted, on the other. The 
effects of these two factors upon the throughput 
provided by such configurations are shown belovv. 
For throughput evaluation we considered an OFDM 
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transmission that is based on a user-bin of T, tones 
and F OFDM symbol periods, thus containing T ,̂ - T, 
X F QAM symbols (packet leiigth), out of which only 
As, are "active" symbols being used for the payload. 
The cyclic prefix is denoted by G and represents a 
fraction of the symbol period, the number of bits per 
QAM symbol is ni (it deflnes the QAM constellation 
employed), the bin rate is Db and the CRC (required 
for channel estimation-prediction) is t bits long. 
Using (8) the nominal payload for a non-coded 
constellation i (n,), i.e. the maximum value for the 
payload when SNR is very high, is: 

- J_ A 
1 Te As-n, 

(12) 

As for the coded configurations, their nominal pay-
load is computed using (8) and is given by (13). There 
shouid be noted that the number of control bits of a 
codeword jp shouid be divided by a constant that 
indicates the number of bins on which a codeword is 
loaded. 

^ ^ — - . ( , . J _ ) ; ( 1 3 ) Dc. = 1 + G T, 
•Dh T, n. 

k j As -nj 

Considering an adapted version of the values 
proposed in [7], namely Db = 1500 bins/sec, T^ = 120 
symbols, Aj = 108 symbols, G = 0.11, t = 8 bits and n, 
= 8 the nominal payloads (12, 13) of the 
configurations of table 7 are listed in table 8. The 
constants k, are respectively 2, 1, 2/3 and V2. 

Table 8. Nominal payload of configurations from 
table 6 

Cfg 1 2 3 1 4 5 
D„, (kbps) 1156 1104 1041 979 916 

The non-coded throughput 0n, is computed 
considering only the correctly received bins given by 
the error-bin probability BmERn,, and is: 

8,. =D„.(l-B.nER,.) (14) 

The throughput 0ci of the coded configurations is 
computed using (14), but the error-rate of the coded 
bins B.nERc, is employed. 
The tliroughput or vs. SNR curves of the trans-
missions employing the configurations of table 6 were 
obtained by simulations and are displayed in fig. 7. 
Each configuration exhibits a range of SNR where it 
provides the best performance, out the entire family. 
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Fig. 7. Throughput vs SNR of configurations from table 6 

The SNR ranges of optimum for each configuration 
are separated by the thresholds Ui. 
The family F3 together with the thresholds U, may be 
employed into an adaptive modulation scheme that 
provides the best throughput according to the channel 
current SNR. 
This scheme is very simple since it changes only the 
bit-loading and employs the same QAM constellation 
and LDPC code. Despite its simplicity, it provides a 
reasonable throughput over a SNR range of about 10-
12 dB. 

V. CONCLUSIONS 

The array-based LDPC codes employed in the present 
paper allow for a simple encoding and a moderate 
complexity decoding, compared to the turbo codes. 
The LDPC decoder requires the a priori knowledge of 
the chanjiel s noise variance. 
The BER performances of the LDPC-coded QAM 
modulations are close to the ones provided by the 
similar modulations coded with turbo codes at the 
same rate and the same number of iterations per code 
word. A BER = 10"'' at SNR = 2 dB in an AWGN 
channel can be obtained by an R = 0.5 LDPC-coded 
2-PSK, ensuring a coding gain of about 9 dB. 
A very flexible rate changing LDPC-coded scheme 
can be obtained by using a bit-loading that combines 
coded and non-coded bits. This approach allows for 
significant increases of the coding rate at the expense 
of rather small coding gain losses. 
Due to the behavior of the LDPC-decoding algorithm 
and to the soft-decision of the non-coded bits, the 
authors estimate that small and high rate RS outer 
codes shouid be employed in FEC schemes based on 
concatenated codes. 
The LDPC-coded modulation scheme proposed in the 
paper ensures coding gains of about 6 dB, compared 
to the correspondent non-coded scheme. 
It also provides an increased throughput and offers the 
possibility of adaptive employment according to the 
channel SNR. 
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