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Abstract This paper offers an ovcrview of complex 
equalizers, whicb combine the structure of a linear 
transversal filter (LTE) with a neural netnork. There 
are presented nonlinear channel and nonlinear device 
models. There are exposed different equalizers 
architectures and some of the training algoritbms. 
Simulation results are presented and it is made a 
comparative study of the complex equalizers 
performances, from the point of view of signals space 
partition and processing error, in different conditions of 
noise. Concluding reraarks and further developments 
are discussed. 
Keywords: channel equalization, complex neural 
netrvorks, classification 

L INTRODUCTION 

In modem high-speed communications networks, 
ihe presence of symbol interference (ISI) is a major 
impediment of transmission. Nonlinear active or 
passive devices and the transmission channels 
themselves introduce nonlinear distortions that affect 
the signals. Especially the signals with a variable 
envelope modulation, as for example the quadrature 
amplitude modulation (MAQ) signals, more efficient 
in transmission from the spectral point of view. are 
afîected, in phase and in amplitude. To eliminate the 
distortions of MAQ and phase shift keying (PSK) 
signals, NN equalizers for complex signals are 
necessarv'. Treating the problem of equalization as a 
problem of signal classification, neural networks 
(NN) can produce arbitrarily complex decision 
regions. The complex NN equalizers are straight-
forward extensions from the real counterparts [12], 
obtained by replacing the relevant parameters with 
complex values. Studies performed during the last 
decade have csiablished the superiority of neural 
equalizers comparative to the traditional equalizers, in 
conditions of high nonlinear distortions and rapidly 
varying signals. 

Various neural equalizers have been developed, 
mostly combinations between a convenţional linear 
transversal filter (LTE) and a neural network: a LTE 
and a multilayer perceptron (MLP) [1], [8], a LTE 
and a radia! basis function network (RBF) [2], [3]. 
[4],[12] a LTE and a recurrent neural network (RN'N) 

[10], [16], [18], a funcţional link equalizer [7] [15], 
and cellular neural network equalizer [17]. The LTE 
eliminates the linear distortions, such as ISI, so the 
NTS] has to compensate the nonlinearities. Many 
different nonlinear devices models and channels 
models have been introduced to simulate real 
situations, so a unitary comparison between all known 
equalizers is difficuh to be done. 

In this paper an overview of complex NN 
equalizers is presented. The problem of equalization, 
some nonlinear channels and nonlinear device models 
are exposed. There are treated different structures and 
some of the training algorithms. Considering the 
advantages of RBF NN over the MLP, the problems 
of RBF are detailed and a new training algorithm is 
presented. Performance comparison is discussed and 
some simulation results are given. It is shown that NN 
equalizers efficiently approximate the optimal 
decision boundaries, having a very good symbol error 
rate performance. They outperform the convenţional 
equalizers especially when complicated modulation 
schemes are used. 

II. THE EQUALIZATION PROBLEM 

The equalization problem is traditionally viewed 
as an inverse filter problem. Equalizers are designed 
to track the time-varying channel distortions by 
adjusting their coefficients and maintaining a 
prescribed signal to noise ratio (SNR). Tradeoffs 
between noise enhancement and channel inversion 
generally render these techniques suboptimal. An 
alternative viewpoint is to consider the equalization 
problem as a pattern classification problem. 

The objective of equalization becomes the 
separation of the received symbols in the output signal 
space, whose optimal decision region boundaries are 
generally highly nonlinear. Since neural networks are 
well known for their ability of performing 
classification tasks by forming complex nonlinear 
decision boundaries, neural equalizers have been 
recently receiving considerable attention. Neural 
equalizers have shown the potential for significant 
performance improvements especially in severely 
nonlinear distorted and rapidly varying signals. 
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Fig. 1 reprcsents a model of a communication system. 
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Fig. 1 The scheme of a communication system 

If the transinitted signal x is 4 QAM , the input 
constellation is given by: 

x(n) = xj^ ^ j x j = 

-

(1) 

The input symbols sequence x(n) is passed 
through the nonlinear communication channel model 
and produces the output sequence y(n). The channel 
output signal is afFected by an additive noise, usually 
white Gaussian, and generates a comipted signal. 

The problem of equalization is to determine an 
estimation of the input signal using the received 
signal and the desired delayed signal x(n-d). From the 
NN point of view, the equalizer has to classify the 
received signal in one of the four possible classes 
according to the input signals: 

or: 

(2) 

(3) 

III. THE COMMUNICATION CHANNEL MODEL 

Nonlinear, active or passive devices and the 
communication channels themselves introduce 
distortions that afîect the transmitted signals. Fig.2 
represents a model of the communication channel that 
introduces linear (L) and nonlinear distortions (NL). 

x(n) y{n) y(n) x(n) 

1 NL 
y(n) 

1 NL 

where a, are the filter coefficients and k is the order 
of the filter. 

Various models with difFerent linearities and 
noniinerities are mentioned in literature. Most of the 
studies refer to the ones mentioned in that follows. 
The model suggested in [2] generates the output 
signal y(n) according to relation: 

y=(0M-0.27j)x(n)'^(0,87^0.43j)x(n-l)^ 
-\-(0M-0.2Ij)x(n-2) 

The nonlinear part of the channel is a very strong 
one and produces at the output: 

y(n)^y(n) + 0.1[y(n)]' •¥0.05[yfn)J^ (6) 

Another model [3] uses the following equations: 

y=(0.7409-0.7406jjx(n)~ (0.8890-0.296lj)x(n-1) + 
+ (01556^0.0223j)x(n-2j 

y(n)^y(n)-0.055[y(n)]' ^0.14[y(nj]' (7) 

A nonlinear active device may be modeled [8] 
by a complex amplification: 

= (8) 

where r is the instant power of the input signal and 
the analytique model of Saleh is used: 

= (9) 

(t>(r) = 4.0033r' 
(10) 

Fig.2 Nonlinear channel model 
Usually the linear complex part of the channel is 
modeled with a transversal filter whose output is 
given by: 

y(n) = Y,a,x(n-i) (4) 
1=0 

IV. NEUREL NETWORKS COMPLEX 
EQUALIZERS STRUCTURES 

The complex equalizers and their training 
algorithms are extensions of the real ones, obtained 
by replacing input and output signals, weights, biases, 
and sometimes activation functions with complex 
values. 

IV. 1 Multilayer Neural Networks 
The most used architecture is the multilayer NN 

equalizer, presentcd in Fig.3. The output of the 
communication channel is passed through a LTE 
follo^yed by a multilayer NN Usually the 
backpropagation algorithm is used to determine the 
LTE and NN coefficients. This algorithm is iterative 
and minimizes any differentiable cost function. 
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Fig.3 The structure of a multilayer equalizer 

such as the mean square error (MSE). In case of 
complex signals a complex varianl of BKP algorithm 
(CBKP) is needed [9], which has all the drawbacks of 
the real one. Due to the complexity of the error 
surface the CBKP algorithm may not converge into 
the global minimum, but into a local one, that may 
be an unacepptable solution. MLP networks trained 
with BKP need a lot of iterrations to convergence, so 
a long training time. Another problem that arises in a 
complex MLP is the selection of the activation 
flinction. In case of real signals most activation 
functions are limited and continuous. In case of 
complex signals all the normal activation functions 
may not be limited, except constants. 

To satisfy the conflicting relationship between the 
boundedness and the differentiability of a complex 
fiinction, there have been developed two CBKP 
algorithms, one that uses a flilly complex activation 
flinction (FCBKP) [11] and the other a split complex 
activation flinction (SCBKP) [9]. To solve the 
problem of slow convergence another training 
algorithm was developed, the complex resilient 
propagation CRPROP detailed in [9]. CRPROP can 
provide much faster convergence than CBKP and thus 
also a smaller computaţional load. Performance 
comparisons made in terms of bit error rates (BERs) 
and computaţional complexity show that the MLP 
network trained with complex RPROP algorithm 
achieves approximately as good bit error rates as the 
MLP network trained with complex backpropagation, 
but with clearly smaller computaţional cost [9]. 

IV. 2 Radial Basis Function Networks 
Comparative to MLP, complex RBF networks 

have a real activation function. They have a simple 
structure and oflen provide a faster and more robust 
solution to the equalization problem. In addition, the 
RBF neural network has a structure similar to the 
optimal Bayesian symbol decision equalizer. Note 
that the Bayesian equalizer does not necessarily yield 
a good MSE performance but provideS the minimum 
average BER achievable for symbol decision and 
indirect-modeling equalizer structures. Therefore, the 
RBF is an ideal processing structure to implcment the 
optimal Bayesian equalizer. That's why the RBF 

network is an attractive alternative to the MLP neural 
networks and it will be detailed in the following. 

As depicted in Fig.4, the RBF network has two 
layers, the hidden layer and the output layer, The 
hidden layer is composed of an array of computing 
neurons, each having a parameter Cj, vector called 
center. Each neuron computes a distance between its 
center and the network input vector. This distance 
may be of difFerent types and it is subsequently 
divided by a parameter pi, called width, which is the 
spread of the corresî>onding center. The result is 
passed through a real, nonlinear activation flinction. 

l ^ i ^ n ^ ( 1 1 ) 

where x is the complex input vector of nh dimension, 
c, is the centers vector of the radial basis functions , 
which is also a complex vector of nh dimension, p, is 
the center spread parameter, n», is the number of 
computing nodes. The operator where 

is the transposition operator and (•)* is the 
complex conjugation operator. The nonlinear output 
function is usually the Gaussian function: 

= ^ p (12) 

Similarity with the Bayesian equalizer impose that 
the spread parameter p=2.cr where a^ is the noise 
dispersion given by relation: 

<t' = E \ K ( n ) - c \ ' (13) 
where E is the mean, the second order moment 
The output layer of the network consists of eight 
neurons in case of 4 MAQ (two neurons for each 
class, one for the real part and the other for the 
imaginary part of each class) with a linear function : 

1 = / 

where Wi are the complex weights. According to the 
relation (12), fRBp becomes: 
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Fig.4 The architecture of a radial basis function equalizer 

W ( x ) 

( x - c , r ( x - c , ) 

Pi (15) 
1=1 

Several leaming algorithms have been proposed 
to update the RBF parameters. However, the most 
popular algorithm consists of an unsuper\'ised 
leaming rule for the centers of hidden neurons and a 
supervised leaming mie for the weights of the output 
neurons. The centers are generally updated using the 
K-Mean clustering algorithm [8] which calculates the 
distance between the input vector and the RBF 
centers vector. The distance may be of different 
t>'pes, but usually the Euclidian norm is used: 
The neuron j with a minimum distance is declared 
winner: 

j = argmir^(n) - c, (n) ||. / = (16) 

The winning neuron center is than moved with 
a fraction r\ towards the input. The K mean algorithm 
has some potential problems: classifîcation depend on 
the initials values of the centers of RBF, on the type 
of chosen distance, on the number of classes. If a 
center is inappropriate chosen it may never be 
updated, so it may never represent a class. 

The competitive algorithm penalizing the rival 
(CAPR) [14] determines not only the winning neuron 
but also the second winning neuron r. The second 
winning neuron will move away from the input its 
center with a ratio y. AII the others neurons will not 
change their centers vector. So the leaming law can be 
synthesized in the following relation: 

'c/n)-\-T],[o(n)-'C,(n)/ i f i ^ j 

Ci(n)+r.[o(n)-c/n)] i f i = r 

c / n j i f i ^ j and i^r 

where r| and y are the leaming constants with real 
values between O and 1. 

If the leaming speed x] is chosen much greater than 
Y, the RBF network will find automatically the 
number of signal output classes. The algorithm is 
quite simple and the performances are comparative to 
2ill the others reported equalizers [14]. 

In reference [15] is developed a funcţional link 
artificial NN for equalization of QAM signals. 
FLANTM has a single layer structure whose inputs are 
expanded by using trigonometric polynomials. 

In [2] it is proposed a CRBF that uses a stochastic 
gradient algorithm to adapt all the free parameters of 
the network simultaneously by using stochastic 
gradient descent for error criterion. The SG algorithm 
takes the instantaneous gradient of the squared error 
and moves the parameters in the opposite direction of 
their respective gradients. 

Reference [12] proposes a sequential leaming 
algorithm referred as complex minimal resource 
allocation network (CMRAN). Studies using 
different channels models proved that the equalizer 
performance is superior to FLNN and SGRBF in 
terms of BER and computaţional complexity [12]. 

High channel orders require correspondingly 
large equalizer orders which, in tum, lead to a large 
number of required centers. CRBF network stmctures 
become exceedingly complex and impractical as 
channel orders increase. The center computation 
techniques proposed in [5] and [13] seek to greatly 
reduce the number of centers even as equalizer orders 
are increased, so that good performance is achieved 
by using higher order equalizers with a small numbers 
of centers. The reduced network complexity allows its 
operation to be much faster. 

(17) 
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IV. 3 Recurrent Neural Networks 
Recurrent Neural Networks are the most general 

case of neural networks since every neuron is 
connected to every other neuron. In general, RN>Js 
have m externai inputs and n ftilly interconnected 
neurons. They are highly nonlinear, exhibit a rich and 
complex dynamical behavior so they are 
recommended for real time applications. The output 
of a neuron at the moment n depends not only on the 
externai inputs but also on the previous outputs of the 
neuron. It is important to note that RNNs with the 
same structures exhibit different dynamlc behavior as 
a result of using different training algorithms. 
Consequently, a RNN network is defined only by 
specifying both its architecture and training algorithm. 
The most known algorithm for a complex RNN is the 
complex extension of Real Time Recurrent Leaming 
(CRTRL ) algorithm [10]. Because CRTRL is based 
on the minimization of the MSE by a gradient descent 
procedure, it is characterized by relatively slow speed 
of convergence and may suffer from numerical ill 
conditioning. The computaţional complexity of RTRL 

4 
trained RNN equalizers is on the order of n where n 
is the number of neurons in the network. The small 
size of RNN equalizers makes them attractive for high 
speed channel equalization when compared to the 
complexity associated with other neural equalizer 
structures. 

With the motivation of improving the performance 
of RNN equalizers, [16] introduced another approach 
to RNN training. The training algorithm exploits the 
principie of discriminative leaming which minimizes 
an error funcţional that is a direct measure of the 
classification error. The proposed algorithm is a 
supervised symbol clustering procedure coupled with 
a statistically robust least square fitting that is 
generally faster and more stable than the traditional 
gradient based algorithms. The method was shown to 
outperform the RTRL algorithm for the equalization 
of linear and nonlinear channels. 

Another alternative to the MSE criterion-based 
algorithms uses the minimization of the accumulated 
relative entropy [11]. In this approach, the condiţional 
probdbility distribution fimction (PDF) of the 
transmitted signal is parametrized by a NN. The PDF 
parameters are estimated by minimization of the 
accumulated relative entropy cost function. This least 
relative entropy equalizer has been shown to perform 
high complex decision boundaries, and to track abrupt 
changes in a nonlinear channel response whereas the 
MSE-based multi-layer perceptron equalizer cannot. 

In [1] an RBF was used to improve the decision of 
an decision feedback equalizer DFE. for 16-MAQ 
signals. passed through a nonlinear device, simulated 
by relations (8)-(10). The structure of the RNN is 
prescnted in Fig.5a. The centers of the RBF network 
were calculated using the K-Mean algorithm. The 
LMS algorithm was used in the output layer to labei 
the neurons. 

The self-organizing map (SOM) has been 
combincd with a LTE and DFE, The SOM is either in 

cascade, as in Fig. 5b or in parallel with an 
convenţional equalizer [8]. The Kohonen leaming law 
was used to determine the winning neuron. Each 
neuron of the SOM was associated with a transmitted 
symbol through a reference table. 

LTE L RBF 
Centers • Weights 

LMS 
i i K-mean 

1 

1 

Decision 

. ( ! > r 

a) 

Reference 
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> L T E SOM 

Winning | 
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Labeling 
aleonthm 

-1+j 

±L 

Decision 

b^ 

Fig. 5 Stmctures of recurrent NN 
a) LTE-RBF b) LTE-SOM 

V SIMULATIONS AND RESULTS 

We have tested an RBF equalizer,with 64 hidden 
neurons, trained with the competitive algorithm 
penalizing the rival with channel models given by 
relation (5)-(7), in different conditions of noise. Fig. 7 
presents the space state partition of output signals. 

Fig.6 The space partition of the 4 MAQ output signals 
using a RBF equalizer 

Fig.8 depicts the MSE evolution during 3000 
iterations for diflFerent signal to noise ratios and order 
m of the LTE filter and a delay of d=l. This 
performance is comparative to other NN equalizers, 
with a lower computaţional cost. 

SM̂ iOCB 
it>»2. 5»*̂ 10CB 
inr}.SM*=dOe 

SOC 100C 

Fig.7 The evolution of MSE 
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Fig.9 The output spoce for 16 MAQ signals 

In Fig.lO is presented the equalization of 16 QAM 
signals in case of a satellite mobile channeL simulated 
with relations (8H10), for 150 km/h speed [1]. The 
LTE- RBF equalizer had the best performance , 
hundred times better comparative to the LTE error. 

VI. CONCLUSIONS 

The ^bundant literature that has grown 
exponentially in the recent years shows that the 
communications community gives great interest to 
NN-based communication systems. This paper gives 
an overview of NN complex equalizers. It aims at 
covering the most representative architectures, 
training algorithms and nonlinear channel models. 

The simulations showed that small size RJsTN 
based equalizers performed comparably with 
traditional equalizers for linear channels, but 
outperformed all other LTE and NN based equalizers, 
when the channels had severe nonlinear distortions. 

In conclusion, RNN are ideal for real time 
equalization. The best performance was obtained by 
the LTE-RBF in a feedback structure. It would be 
interesting to apply in this structure the CAPR 
training algorithm, which has the advantage of a 
reduced computaţional cost and fast convergence. 
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