
Buletinul Ştiinţific ai Universităţii "Politehnica" din Timişoara 
Şeria ELgCTRQNICĂ şi TELECOMUNICAŢII 

TRANSACTIONS on ELECTRONICS and COMMUNICATIONS 

Tom 49(63), Fascicola 1, 2004 

ISOLATED ROMANIAN WORDS RECOGNITION 
USING NEURAL NETWORKS 

Marian P. Briciu^ 

This paper describes an experiment of isolated 
word recognition in Romanian using the 
backpropagation algorithm as the main training tool. 
The paper is organized as follow: in the first section 
some theoretical aspects of neural net^orks are 
reviewed; in the second section is presented the 
recognition algorithm; the third section presents 
experimental results based on a small size vocabular> 
application for isolated Romanian words recognition. 

I. INTRODUCTION 

One of the most important aspects of machine 
leaming models is how well the model generalizes to 
the phonemes of speech, or to letters, in that they do 
not themselves convey meaning but indicate different 
intensities that are interpreted as meaningful units by 
the language unseen data. Multi-layer perceptron 
(MLP) neural networks have been very successfiil in 
many problems, often providing improved 
generalization over competing machine leaming 
methods. Neural networks are particularly interesting 
for speech recognition, which requires massive 
constraint satisfaction, i.e., the parallel evaluation of 
many clues and facts and their interpretation in the 
light of numerous interrelated constraints. The 
computaţional flexibility of the human brain comes 
from its large number of neurons in a mesh of axons 
and dendrites. The communication between neurons is 
via the synapse and afferent fibers. There are many 
billions of neural connections in the human brain. At a 
simple level it can be considered that nerve impulses 
are comparable of the brain. Neural networks attempt 
to achieve real-time response and human like 
performance using many simple processing elements 
operating in parallel as in biological nervous systems. 
Models of neural networks use a particular topology 
for the interactions and interrelations of the 
connections of the neural units. 

One of the technical developments sparking the 
recent resurgence of interest in neural networks has 
been the popularization of multi-layer perceptrons 
(MLP). A multi-layer perceptron. In contrast to a 

single-layer perceptron, it has a hidden layer. The 
hidden layers can be viewed as feature extractors. 
Each layer has the same computation models as the 
single-layer perceptron; i.e., the value of each node is 
computed as a linear weighted sum of the input nodes 
and passed to a sigmoid type of threshold function. 

The back propagation algorithm is a 
generalization of the minimum mean squared error 
(iMMSE) algorithm. It uses a gradient search to 
minimize the difference between the desired outputs 
and the actual net outputs, where the optimized 
criterion is directly related to pattem classification. 
With iniţial parameters for the weights, the training 
procedure is then repeated to update the weights until 
the cost function is reduced to an acceptable value or 
remains unchanged. 

In real-worid application, these weights are 
estimated from a large number of training 
observations in a manner similar to hidden Markov 
modeling. The weight updates in the Step 3 are 
accumulated over all the training data. The actual 
gradient is then estimated for the complete set of 
training data before the starting of the next iteration. 
Note that the estimation criterion for neural networks 
is directly related to classification rather than the 
maximum likelihood. 

II. THEORETICAL ELEMENTS AND 
RECOGNITION ALGORITHM 

During the recognition of isolated words, the 
neural network transforms input feature vectors into 
those that correspond to speech, and passes them to 
speech recognizers. A mulţi layer perceptron is used 
to establish the on linear mapping function of speech 
feature vectors between the testing and the training 
environments. 

Neural network is trained to minimize the 
accumulated mean squared error, which is the sum of 
the squared difference between network output and 
corresponding target. 

The main idea of automatic speech recognition is 
that the recognition system must be '^ained" with 

' Military Technical Academy, Bucharest, 
81-83 Av. George Cosbuc. tei 0040 72 21 31 016. e-mail: briciumarian@vahoo.com 

272 BUPT

mailto:briciumarian@vahoo.com


parameters (spectral features) of the words thal will be 
recognized. 

There are four basic stcps to performing 
recognition, shown in fig. l. Each step will be 
explained briefly here and in more detail later in this 
document. 

The recognition 
process 

Digitize speech 

Compute spectral 
features 

MI.P Classify time frames MI.P w as phonetic categories 

Viterbi Match category scores 
search 10 target words 

Fig 1. Diagram of the recognition process 

First, we digitize the speech that we want to 
recognize the sampling rate is 16000 samples per 
second. Second, we compute features that represent 
the spectral-domain content of the speech (regions of 
strong energy at particular frequencies). These 
features are computed every 10 msec, with one 10-
msec section called a frame. Third, a neural network 
(also called an ANN, multi-layer perceptron, or MLP) 
is used to classify a set of these features into phonetic-
based categories at each frame. Fourth, a Viterbi 
search is used to match the neural-network output 
scores to the target words (the words that are assumed 
to be in the input speech), in order to determine the 
word that was most likely uttered. 

My database is composed of numbers spoked by 
a number of speakers and stored with a soundboard. 

In order to build the recognition system I used the 
NICO (Neural Inference COmputation) toolkit. The 
network topology is very flexible. Units are organized 
in groups and the group is a hierarchical structure, so 
groups can have sub-groups or other objects as 
members. 

The training tools, feature extraction and target 
generation tools put some constraints on how 1 can 
organize my database. 1) AII files corresponding to 
the same utterance must have the same base name. 2) 
AII files of the same type, e.g., phonetic labei files, or 
feature vector files, must have the same file extension 
and live in the same directory. If my database is not 
organized this way I can create some new directories 
and make symbolic links to the physical locations of 
the files. 

The tool Barkfib implements a standard feature 
extraction, based on a Bark or Mel-scaled filter-bank 
computed from the FTT spectrum. 

The words target for each 10 ms frame of the 
feature files can be extracted from the phonetic 
transcription files of the database. The tool Lab2Targ 

does this by checking the length of the parameter files 
and using the time-marks of the transcription files to 
compute the targets for each phoneme output unit at 
each frame. 

In order to train my network I use the most 
important training tool of the toolkit, 
BackPropagation algorithm. 

Now, let us look back to the digitized waveform 
which is converted into a spectral-domain 
representation; one of two sets of features (Bark or 
Mei given by Barkfib command) may be used, 
depending on the recognizer. For the currcnt 
recognizer, I use twelve mel-frequcncy cepstral 
coefficients (MFCC) and one energy feature (for a 
total of 13 features per frame). 

To provide some information about the acoustic 
content I take a context window of features. This 
means simply taking the frame of interest as well as 
frames that are -60, -30, 30, and 60 msec away from 
the frame of interest. This is done to take into 
consideration the dynamic nature of sf)eech: the 
idcntity of a phoneme will often depend not only on 
the spectral features at one point in time, but it will 
also depend on how the features change over time. 

I send the features in a context window to a 
neural network for classification (13 features per 
frame at 10 frames = 130 features). The output of the 
neural network is a classification of each input frame, 
measured in terms of the probabilities of phoneme-
based categories. By sending context windows for all 
frames of speech to the neural network, 1 can build a 
matrix of the probabilities of phoneme-based 
categories over time. In my cxample of neural-
network output, the words to be recognized are unu, 
doi, trei, patru, cinci, sase, şapte, opt, noua, zero. 

The target-word pronunciations are then 
expanded into strings of phonetic-based categories, 
and a Viterbi search is used to find the best path 
through the matrix of probabilities for each legal 
string. The output of recognition is the word string 
that corresponds to this best path. 

Once we have a matrix of how the phonetic 
probabilities change with time, we want to search for 
the best word. Before doing that, we need to compute 
the set of legal strings of phonetic categories. This set 
is dependent on the words we want to recognize and 
the possible order of words, so we combine 
pronunciation models for each of our words. Here I 
have a simple search path that can recognize only 
isolated spoken words, which have to be preceded and 
followed by silence. In searching, when we look at a 
new frame, we transition to a new state if the 
probability of the new category is greater than the 
probability of the current category. At the end of the 
search, we have a score for the most likely category 
sequence and the path through the categories that was 
used to generate the best score. We can take this path 
and easily determine the corresponding word (or word 
sequence). This word has the best fit to the input data, 
and it is therefore the word that was most likely 
uttered. 

273 
BUPT



III. EXPERIMENTAL RESULTS Zero 5 749e-001 5.296e-001 

In order to exemplify the recognition algorithm 
explained above I made an application of Romanian 
numbers recognition. I built and trained, with 
diflferent parameters, a network for words recognition 
on the acoustic frame level for my database. In all 
cases I kept the same number of MFCC (12). 

First, I have trained the network with a single 
hidden level, but with diflferent number of neurons in 
this level, and, in the same time, I have considered the 
number of the iterations made by the back-
propagation algorithm equal to 50. The recognition 
error rate in this case is shown in table 1. The training 
takes 45 minutes on an AMD K7 computer at 850 
MHz. 

Table 1. Recognition error rate resulted after training with one 
hidden level 

Word 
Recognition error rate 

Word 100 neurons in hidden 
level 

150 neurons in hidden 
level 

Unu 7.372e'001 7.142e-001 

Doi 6.324e-001 6.113e-001 

Trei 7.476e-001 7.282e-001 

Patru 8.658e-001 8.398e-001 

Cinci 7.476e-001 7.282e-001 

Sase 14.567e-00l 14.2l6e-001 

Şapte 11.543e-00l ll.284e-001 

Opt 7.658e-00l 7.398e-001 

Nouă 8.747e-001 8.284e-001 

Zero 7.878e-001 7.264e-001 

Word 

Recognition error rate 

Word 100 neurons in first 
and second hidden 

levels 

150 neurons in first 
and second hidden 

levels 

Unu 5 359e-001 5.l48e-001 

Doi 4.560e-00l 4 395e-001 

Trei 5.589e-001 5.256e-001 

Patru 6.688e-001 6.406e-001 

Cinci 5476e-001 5.302e-00l 

Sase 10 597e-001 10.2406e-00l 

Şapte 8.683e-001 8.364e-001 

Opt 5. 748e-00l 5. 288e-001 

Nouă 6.657e-001 6. 394e-001 

Third, I have trained the network with three 
hidden levels, with 100 neurons in all three hidden 
levels, and, in the same time, and I have considered 
the number of the iterations made by the back-
propagation algorithm equal to 30. The recognition 
error rate in this case is shown in table 3. This training 
takes 7 hours and 40 minutes on an AMD K7 
computer at 850 MHz. 

Table 3. Recognition error rate resulted after training with three 
hidden levels 

Word Recognition error rate 

Unu 4. 683e-001 

Doi 3. 750e-001 

Trei 4.589e-001 

Patru 5. 598e-001 

Cinci 4.466e-001 

Sase 9.549e-001 

Şapte 7.674e^01 

Opt 4. 778e-001 

Nouă 5. 659e-001 

Zero 4.783e-001 

IV. CONCLUSIONS 

Second, I have trained the network with two 
hidden level, with the same number of neurons in both 
hidden levels but with different number of neurons in 
first and second training, and I have considered the 
number of the iterations made by the back-
propagation algorithm equal to 50. The recognition 
error rate in this case is shown in table 2. The training 
takes 2 hours and 30 minutes on an AMD K7 
computer at 850 MHz. 

Table 2. Recognition error rate resulted after training with two 
hidden levels 

If we compare the results obtained in all cases we 
can say that the recognition error rate it is improving 
if we increase the number of hidden levels and the 
numbers of the neurons in this levels, but we must 
fmd the optimum topology of the network. It is better 
to begin with a low number of neurons and increase it 
step by step. The same applies to the inclusion of 
parameters. A better recognition error rate can be 
obtained if we increase the number of hidden levels, 
but at a specific point the recognition rate is good 
enough to stop. The training duration is not a 
constriction in the recognition process, because it is 
made just ones with a specific vocabulary and it is not 
repeated each time we do the recognition. 

REFERENCES 

[1] L. R. Rabiner and R. W. Schafer "'Digital processing of speech 
signals:\ Prentice Hali, 1978 

[2] A.T. Waibel, T. Hanazawa, G. Hinton, K. Shikano and K.J 
Lang, Phoneme recognition using time-delay neural networks, 
IEEE Trans. Acoust/cs, Speech & Signal Processing, Voi. 37, 
No. S.March 1989 

[3] D. Dumitrescu and C. Hariton ^'Reţele neuronale. Teorie şi 
aplicaţiiTeora, 1996 
[4] I. Gavat et al, '^Elemenie de sinteză şi recunoaşterea 

vor6/r/r,Printech, 2000 
[5] X.D. Huang, A. Acero and H.-W. Hon, '^Spoken Language 

Processing. A guide to Theory. Algorilhm and System 
Development'\ Prentice Hali, 2001 

[6] The Departmemt for Speech, Music, and Hearing at KTH, 
Stockholm, Sweden: NICO toolkit 

274 BUPT


