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Abstract - This paper investigates a new implementation 
of the second order isotropic filter using the Walsh 
Hadamard Transform. The new implementation is used 
in a second order Volterra filter. It's performances are 
evaluated in a typical nonlinear system identification 
appiication. For the second order adaptive Volterra 
filter an LMS adaptive algorithm with variable step size 
for the linear and the quadratic parts is proposed. 
Experimental results show that by using the VVHT, the 
computaţional complexit>' of the adaptive second order 
filter is considerably reduced and the convergence rate 
of this filter is also significantly improved. Adaption is 
working well even for high levels of the input signal. 
The mean-squared error of the proposed filter is 
compared with those of a classic second order LMS 
adaptive filter. 
Keywords: Adaptive nonlinear filter, Walsh Hadamard 
transform, LMS adaptation algorithm with variable step 
size. 

I. INTRODUCTION 

The second order Volterra filter has been increasing 
research interest in nonlinear filtering techniques. It 
has been extensively studied and has been employed 
in system identification, channel equalization, echo 
cancellation and image processing [1]. A second order 
Volterra filter consists mainly of a linear and a 
quadratic part described as follows: 

(1) 

where ho is a constant required to make the output 
signal y[n] an unbiased estimate, Hi and H2 are the 
linear and quadratic kemels respectively, and Xn is 
the input vector of the form: 
^n = -1] , . . . , a-[a7 - ;V +1]], where N 

represents the filter length or filter memory. 
The linear kemel is a IxN vector, and the quadratic, or 
second order, kemel is a NxN matrix: 

/y, =[h, h, h, h,] (2) 

1̂2 
2̂1 2̂3 ^hA 

3̂1 ^hl '̂34 

^41 fUl 4̂3 4̂14 

(3) 

Many researches have been focused on the 
implementation of the quadratic filter, considered a 
prototype for the nonlinear filters. In the above 
representation we consider the same memory for the 
linear and the second order filter. The most general 
case would allow a different memor>' for each 
nonlinearity order. 
A further simplification can be made to (3) by 
considering symmetric Volterra kemels. A second 
order Volterra kemel, having the elements h2(n/ ,n2 
is symmetric if the indices rii and n2 can be exchanged 
withoiit affecting its value. Any asymmetric Volterra 
kernel can be easily symmetrised using the method 
given by [2]. So, most authors considered symmetric 
Volterra kemels which are in facts symmetric 
matrices. If the elements of a second order symmetric 
kernel also have the property 
h, j = 1,2,... A', the kernel is called 

isotropic. This paper investigates a new 
implementation of the second order isotropic 
quadratic filter using the Walsh Hadamard Transform 
(WHT). This new implementation is used to construct 
an adaptive second order Volterra filter whose 
performances are evaluated to a typical nonlinear 
system identification appiication. 

II. NEW IMPLEMENTATION FOR THE 
QUADRATIC KERNEL 

To reduce complexity we consider a second order 
isotropic filter with the memory dimension N=4. The 
implementation of the second order kernel represents 
the major problem for this filter. The new 
implementation is based on the Walsh-Hadamard 
Transform. 
The WHT is considered mainly for two /easons: 
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(i) The use of ortliogonal transform can 
improve the performance of LMS 
adaptive filters. 

(ii) The WHT is a fast orthogonal transform 
which only involves the addition 
operation. 

The WHT matrix is an NxN matrix . 
k= 1,2.3,...) usually defmed recursively using a block-

matrix decomposition as foUows: Ŵ  = 

1 

1 1 1 
1 - I 

and W„ = 

W-W =1 (4) 

For the new implementation we consider the second 
order kemel given in eq.3 and the isotropic property : 

/2,2 ^22 /Î23 < 
r/,3 a/23 r/22 '̂12 
/7,4 /2,3 /7,2 /̂ i, 

(5) 

//2 = 

/?!, /2,2 /?|4 1̂3 

/7,2 h22 /li3 ^23 
/7i4 /7I3 /7,I /2,2 
/7,3 /723 /7I2 ^22 

(7) 

We can easily demonstrate that: 

(8) 

^12 
(9) 

where the size of matrices Hn and Hj2 is half that of 
H2. In that case the transformed kemel is a block 
diagonal matrix: 

H^iv = 

. The WHT matrix is 
- K - i j ' 

denoted by W in the following discussion. An 
important propert}' of the WHT matrix is given in 
eq.4: 

abOO' 

bcOO 

OOde 

OOef 

(10) 

where the variables a,b,c,d, e and f represent the 
independent elements. The output of the new second 
order filter now becomes: 

>2 - ^niv ^^2W ^Iw - ^nW ^ 2W nW ) ^ (11) 

It can be easily seen that the matrix H2 is symmetric 
according to its both diagonals. The nonlinear filter 
produces the output signal y 2 M : 

y,[n] = X „ H , X l = X„mv'H^WW^Xf, = 

^n^V ^ IW ^Iw 

(6) 

where: X = is the Walsh-Hadamard 

transform of the input vector and //j^f. = W^H2^y is 
the WHT of the second order Volterra kemel. 
If we rearrange the input vector as: 

K , = - - 3], - 2]], then the 

corresponding isotropic kemel H2 is: 

This new implementation raises two problems: 
-Is the reduction of the computaţional complexity 
accomplished? We have calculated the number of 
operations required for a direct implementation and 
those required for the new implementation. The 
results listed in Table 1 show that the new 
implementation requires less multiplication 
operations. 

Tabel I 
Muitiplications Additions 

Direct 
implementation 

.V[(3/4)/V + l] 

New 
implementation 

[N(N/2)+i] N72-^Nlog2N-l 

- Can the TWH of the input vector( X„yy = X„W ) be 
substituted by tlie WHT of the rearranged input vector 
( = < = [x{n) x(n ~ 1) x(n - 3) x{n - 2)] )? 
We easily fmd the relationship by examining 
and X„̂ y . For example. we have the following 
relationships between the two transformed vectors 

= [A-;,^ (1) (2) (3) (4)] and 
„̂PK = [^V.ff (l) (2) (3) A ,̂̂ . (4)]: 

(12) 

This new second order kemel can actually be 
decomposed into four sub matrices of the form: 

Similar relationships can be established for the input 
vectors of size 8, 16, etc. 
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III. EXPERIMENTAL RESULTS 

The new implementation was applied to a typical 
nonlinear system modeling problem, as shown in 
fig. 1. An adaptive second-order Volterra fiiter is used 
to identify the nonlinear system having the input-
output characteristic given in fig.2. 

x(n] 

nonlinear 
system 

y[n] nonlinear 
system 

5 r 

O e[n] 

/ ^ 
y'[n] 

adaptive Volterra 
y'[n] 

filter 

Ims 
adaptive 

algoritlim 

Fig 1.Nonlinear system identification using adaptive 
quadratic filter 

The nonlinear system output is given in Eq.l3. 

where /I = [-0.78 -1 .48 -1 .39 0.04] and 

(13) 

filter vveights so that the system output >''[a7] tracks 
the desired signal y[n]. The error signal e[n\ is 
defmed as the difference between the desired signal 

and the predicted signal as indicated in 

fig. 1. The input process x[n] is assumed to be a zero 
mean independent sequence vvith covariance, a 
positive definite matrix. This simplifying assumption 
is often made in literature [1,3J. 
The LMS type adaptive algorithm is a gradient search 
algorithm which computes a set of filter weights 

1],//2[^•Hl], at the time moment k - I , that 
seeks to minimize the error function, , 
cosidered at the time moment k. 
The update equations for the Volterra adaptive filter 
weights are well known in the literature[3] and are 
given in eq. 15: 

H 2 ^ 1] = + Ui^WX^[k]* X[k] 
(15) 

where and / i j are in both cases two small positive 
constants ^referred to as tlie step size) that determine 
the speed of convergence and also affect the final 
error of the filter output. 
In our simulation we have used the efficient 
implementation for the quadratic kemel. In this case 
the update equation for that kemel is: 

f^iw - (^if W f * [k] (16) 

B = 

0.54 3.72 1.86 - 0 . 7 6 ] 

3.72 -1 .62 0.76 1.86 1 

1.86 0.76 -1 .62 3.72 

-0 .76 1.86 3.72 0.54 

(14) 

This system is a slight modification of that used in 
[1]. 

For a linear input signal x[n], the resulted output 
signal is plotted in Fig.2. 

a Culnj).̂  neiina/ 

where H2W and X^ are the WHT of the quadratic 
kemel respectively the WHT of the rearranged input 
vector. 
Finally the output of the adaptive Volterra filter, 
v ' W , i s : 

H ^ >1 (17) 

Fig 2 Input-output characteristic of the nonlinear system 

The adaptive fiitering or system identification 
problem being considered is to try to adjust the set of 

The linear kemel is a 1x4 vector and the quadratic 
kernel is a 4x4 matrix. The input sequence is a 
random gaussian zero-mean sequence having 1500 
values. 
The majority of papers examine the LMS algorithm 
with a constant step size. The choice of the step size 
reflects a tradeoff between misadjustement and the 
speed of adaptation. The approximate expressions 
derived in [3] showed that a small step size causes 
small misadjustement, but also a longer convergence 
time constant. 
For adaptive Volterra filters the problems seem to be 
much more complicated. In [3,5] the problems of step 
size for different order kernels are well discussed. 
The maximum step size bound is related to the 
maximum eigenvalue of the autocorrelation matrix of 
the input vector. Because we consider a second order 
Volterra filter without DC component included in the 
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estimation algorithm, ihe step size bounds for fû  and 
/ i j are those given in [3]: 

2 . 2 0 < / / , < ; O < /i2 < (18) 

In [6], a variable step size LMS algorithin for linear 
filter is proposed. The step size adjustment is 
controlled by the square of the prediction error. l l ie 
motivation is that a large prediction error wili cause 
the step size to increase to provide faster tracking 
while a small prediction error will resuh in a decrease 
in step size to yield smaller misadjustements. 
In this paper \ve have used this variable step size 
algorithm for both, the linear and the quadratic filter. 
The relation for adjusting the step size //, ^ that 
given in [6]: 

with O < a < 1 and / > O 
and 

(19) 

/̂ Imax + 

^Imin /̂ Imin 
otherwise 

(20) 

v^here O < < . The iniţial step size /i,[0] 
was chosen to be although the algorithm is not 

sensitive to this choice. As can be seen from eq.20, 
the step size /iţ is always positive and is controlled by 
the size of the prediction error and the parameters 
a and / . A large prediction error increases the step 
size to provide faster tracking. If the prediction error 
decreases, the step size will be decreased to reduce the 
misadjustements. The constant /^imax^s chosen to 
ensure that the mean-square error(mse) of the 
algorithm remains bounded . A sutTicient condition 
for to guarantee bounded mse is: 

Alr (21) 

Usually //i^i^will be near the value that would be 
chosen for the fixed step size algorithm. In our 
simulation the value is fî  min = 10"^. 
Parameter a must be chosen in the range (0,1) to 
provide exponenţial forgetting. A typical value of 
a that was found to work well in simulations is 
a - 0.97 . The parameter y is usually small 

(4,8 * 10"^ was used in our simulations.) 

Fig.3 The adaptive filter error with white input signal 

Fig.4 The adaptive variable step size filter error with white 
input signal 

Fig 5 The adaptive variable step size filter error with 
colored input signal 

The colored input signal was generated as specified in 
eq.22. 

= 0.25 * -1 ] + r[n - 2] ^ 0.25 • r[n - 3] (22) 

where r[n] is a random, normal distributed sequence. 
In Fig.6 we have compared the mean-squared error of 
the proposed filter (represented with solid line ) with 
those of a classic second order LMS adaptive 
filter(represented with doted line ) . We also consider 
the case of the colored input signal for the new filter 
(represented with dashed line). 
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Fig.6 The mean-squared errors for the compared filters 

For high level input signal the fîlter with variable step size 
still adapts, as can be seen in fig.7 

oxr I I 

o acc ÔOO '5D0 2000 250C 3ari 35a: 

Fig 7. The adaptive variable step size filter error with high 
level input signal 

IV. CONCLUSIONS 

We have proposed a new implementation of the isotropic 
second order fîlter. This new implementation has two 
advantages it requires less operalions than the direct 
implementation and it has better performances in modellmg 
a noniinear system. We have also proposed a variable step 
size algorithm which improves the capabilities of the 
adaptive Volterra filter. 
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