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K - complex Detection using the Continuous Wavelet
Transform

Catalin I. Dumitrescu’

Abstract — The wide variety of waveform in
EEG signals and the high non-stationary nature of many
of them is one of the main difficulties to develop
automatic detection system for them. In sleep stage
classification a relevant transient wave is the K-complex.
This paper comprehend the developing of two
algorithms in order to achieve an automatic K-complex
detection from EEG raw data. These algorithms are
based on a time-frequency analysis and two time-
frequency techmiques, the Short Time Fourier
Transform (STFT) and the Continuous Wavelet
Transform (CWT), are tested in order to find out which
one is the best for our purpose, being of two wavelet
functions to measure the capability of them to detect K-
complex and to choose one to be employed in the
algorithms. The first algorithm is based on the energy
distribution of the CWT detecting the spectral
component of the K-complex. The second algorithm is
focused on the morphology of the K-complex waveform
after the CWT. Evaluating the algorithms results reveals
that a false K-complex detection is as important as real
K-complex detection.
Keywords: wavelet, k-complexe, STFT.

INTRODUCTION

Since the discovery of the
Electroencephalogram (EEG) by the German
psychiatrist Hans Berger in 1924 extensive studies
about electrical activity of the human brain have been
carried out. One of these studies correspond to sleep
stage classification. In the last twenty years several
researches and significance advances have been made
in the field of automatic sleep stage classification
since it is one of the diagnostic tools needed for
assessment of a number of sleep disorders. Automatic
sleep analysis is based on the detection of various
waveforms in the EEG and other bioelectric signals,
and inferring different sleep stages from the detection
of these waveforms. However, the strong non-
stationarity nature (transient phenomena) of EEG
signals has represented one of the main difficuities in
the developing of reliable systems for sleep
classification.

A non-stationary signal is defined as a short
time event whose frequency content vary in time. A

traditional analysis technique, for this kind of signals,
that provide an image of the frequency contents of a
signal as a function of the time is the time-frequency
analysis. Several methods or time-frequency
distributions can be used, for example the
spectrogram (Short Time Fourier Transform) which
calculate the power spectrum of the investigated
signal seen through a time windows function that slide
along the time axis. In this work we will concentrated
in another time-frequency distribution, the Continuous
Wavelet Transform (CWT). The CWT can be seen as
an operator that takes a signal and produces a function
depending of two variables: time and scale. In this
way the CWT is able to provide information of
features corresponding to the signal that are
dependent on the scale used. The scale-dependent
structure is strongly linked with the frequency content
of the signal giving to the CWT a great potential for
detecting and identifying signals with exotic spectral
features like transients behavior.

Detection of  transient  signals in
Electroencephalograms has been a subject of research
for several years. In sleep EEG one of the most
relevant transient signals is the K-complex. In
literature we have found a sort of methods and
algorithms for detection of K-complexes using Neural
Networks. feature based approach, independent
component analysis, adaptive filters, statistics
methods among others. In order to introduce the
reader in the K-complex detection field, we will give
a brief explanation about some studies which have
been carried out in this field.

In this report we will try to probe whether or
no using wavelet transform we can improve detection
of K-complexes. At the beginning of the last century
the Haar transform gave the first step in the wavelet
career, but this transform was not very used until early
cighties, when geophysicians, theorical physicians
and mathematicians developed a solid theory for
Wavelet. Since then, Wavelet has been used in several
applications, like signal processing, data compress,
time-frequency analysis, multirresolution analysis,
statistics. vibrations and many others.
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In the last fifteen years wavelet has been
widely used in EEG analysis as much as epilepsy and
Alzheimer diagnosis as sleep stage classification.

The main of this work is to extract
information from sleep EEG raw data about the
presence of K-complexes. We decided to work in the
time-frequency domain instead of either pure time
domain or pure frequency domain as previous works
in this field. In order to implement a time-frequency
analysis the Continuous Wavelet Transform will be
employed because it has been probe to be an efficient
tool in extraction of transient characteristics from a
collection of raw data. Therefore, the problem
statement of this work is to build and evaluate a K-
complex detection system using the wavelet transform
and, posteriorly, evaluate the algorithm performance
trying to find out possible important faults that may
affect the system.

1. Relevant Theory

This chapter will try to cover all the necessary
theoretical background in order to give the reader a
better approach to the sleep stage classification and
time-frequency analysis using wavelet transform. It
begins with the basic concepts of sleep classification
and a brief description of the bioelectrical signal
involved, particularly the electroencephalogram
(EEG). Then, an explanation of the relevant EEG
waveforms is given. As a first step toward a process
of EEG transient signal detection, the Fourier
Transform and the Short Time Fourier Transform are
explained. Finally, a review of the definition and basic
proprieties of the Continuous Wavelet Transform,
with the corresponding example and reason of why
this Transform will be used for time-frequency
analysis are given.

1.1 Sleep Analysis

Sleep analysis is a medical tool of vital
importance for the diagnosis and treatment of several
kinds of sleep disturbance and psychiatric or
neurological disorders. Today, a typical study of sleep
includes records of the muscle tone (EMG), of the eye
movements (EOG) and of the cerebral activity (EEG)
although depending on the clinical purpose other
physiological parameters like respiration, heart rate,
blood pressure, body temperature, hormonal
secretions are used. On the basis of such recordings a
certain number of sleep stage are distinguished by
criteria that have been standardized by general by
general agreement [Rechtschaffen and Kales, 1968].

1.2 Electroencephalogram (EEG)

The  electroencephalogram (EEG) is a
bioelectrical signal that reflects electrical activity
emitted by neurons within the brain. This electric
recording from the brain activity show continuous
time-varying voltage oscillations with typical
amplitudes from 10 to 500 pV and a frequency range
of from 0.5 to 40 Hz.
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The study of EEGs has a long and fruitful history,
and I knew that due to my time and equipment
constraints 1 could not tackle the general problem of
EEG interpretation, so I restricted myself to a narrow
scope just to get a feel for the problem. The question I
posed for myself was this: is it possible to devise a
computer program which will analyze an EEG signal
and detect a particular waveform pattern? Sleep in
humans can be divided into two major categories:
Rapid Eye Movement (REM) sleep, and non- REM
(abbreviated NREM) sleep. REM sleep is
characterized by coordinated, darting movements of
the eyes as if scanning a scene, and is most correlated
with dreaming. NREM sleep on the other hand is
distinguished by its lack of eye activity. NREM sleep
is subdivided into four stages (Figure 1) with stage 1
being the lightest stage of sleep, sometimes
experienced by nighttime drivers who suddenly
realize they’ve been driving for a few seconds in the
wrong lane, and stage 4 being the deepest stage of
sleep, characterized by total muscle paralysis and
insensitivity to external stimuli. The different stages
of sleep are distinguished from each other by the
predominant EEG waveforms at a given time in the
recording (Figure 2). Thus stage 1 is characterized by
so-called theta waves (between 4 and 7.75 Hz), stage
2 is composed of sleep spindles (14-15Hz) and K-
complexes, and stages 3 and 4 are composed of
primarily delta activity (mainly 4Hz). In the waking
adult, alpha activity is characterized by waves
between 8 and
13Hz, and beta rhythm is characterized by waves
greater than 15 Hz. I chose to study stage 2 of NREM
sleep, because the K complex can be easily
distinguished from the spindle signals, and because
data for stage 2 was already available.
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Figure 1: Stage of sleep during the course of the night
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Figure 2° EEG waveforms in various stages of sleep,
for young and elderly subjects

K-complexes are relative large wave with a
duration that should exceed 500 milliseconds. In sleep
analysis, the scoring of stage 2 is evidenced by the
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presence of one or more. This EEG waveform have a
well-outlined negative sharp wave, immediately
followed by a positive component. Before and after a
K-complex there is a period of low amplitude which
is useful to distinguish the K-complex from Delta
activity [Bankman 1992], [Didier 1994].

1.3 Time-Frequency Analysis

Short-Time Fourier Transform (STFT)

The STFT is a time-frequency tool that consists
of a Fourier transform with a sliding time window.
The time localization of frequency components is
obtained by suitably pre-windowing the input signal.
The STFT is defined as follows:

M-l

S [nk]= Z x[m]w[m - n}¥ "

m=0

2
iz
where, WN =e N, j=+-1, xis the input
signal, w is the analysis window, & is the frequency
offset, and m is the time delay [Qian 1996].

(h

Continuous Wavelet Transform (CWT)

It is defined as the sum over all the time of the
signal multiplied by scaled, shifted versions of the
wavelet function g.. Given a finite energy signal x(7)
and a normalized sampling period , T, = 1 we can
present a discrete wavelet analysis of the sampled

sequence x[n] = x(t) ne Z, as follows:

t=nT, *

[wwdr=0 yel’R) @)
The discrete synthesis operation can be presented as
follows:

C WI,,(ab):‘Pw(ab):ﬁ If(t)w'([—;édt) (3)

where, ¥, , (a,b) = <f, 173 (t)) [Oppenheim and
Shafer, 1989].

2. Methods and Implementation
2.1 Wavelet Selection
In order to choose the wavelet that will be
employed in the K-complex detection algorithm,
criteria based on how the wavelet spreads the signal
energy in time was developed. Thus, the chosen
criteria were based on two main points:
1. The K-complex frequency range is from 0.5
2. A K-complex has to have a notorious
amplitude difference between the K-complex
energy an ' “he energy regis ere " an * second
before the K-complex and one second after
it. This criterion tries to make the distinction
between a K-complex and the burst of delta
activity.
Based on these criteria, the best wavelet for the
detection algorithm will be that which give the biggest
difference the energy of the K-complex and the
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energy calculated and second before and after the K-
complex. The first criterion, about the frequency
range, was settled using the LabView Based on
literature [Mallat, 1998], {Kaiser, 1994], [Polikar,
1996] the most used wavelets for time-frequency
analysis have been Mexican Hat and Morlet wavelet.
Consequently, these two wavelet were chosen for

further analysis. The Mexican hat function is the
t}

second derivative of the Gaussian function € % and

18!

1 ?

7 i(1-t})e ? (4)

e

The Morlet tunction is a complex wavelet. The
wavelet transtorm of a real signal with this complex
wavelet is plotted in modulus-phase form, however, in
this work just the real part will be used. Morlet

wavelet is:

lZ

v=e kP
being its real part as:

~j51

(5)

’Z

Re[y] = e  cos(5r) (6)

Wavdlets Scale a | Pscudo-froquency [Hz]
Moxican Hat | 14 - 100 3.57 - 0.5
Meoealot 43 - 325 _ 353 - 0.5

Table 1. Scale range and its corresponding pseudo-frequency range
for both Mexican hat and Morket wavelet.

After determine which wavelet use, the next step
was to settle the location in time of the K-complex
within its respective 10 seconds epoch signal and its
respective time duration T. The K-complex interval T
is the value which must be equal or greater that 0.5
seconds and equal or lower than 1.5 seconds (see fig.
3).

Posteriorly, the CWT was computed and from the
absolute values of the obtained coefficients matrix,
the highest value in amplitude and its respective
frequency value were looked assuming that this
frequency is the corresponding spectral component of
the  K-complex. The  wavelet coefficients
corresponding only to this spectral component will be
called “line of frequency”. Consequently, using the
signal extracted from this “line of frequency”, as it is
depicted in the right illustration on figure 4.
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Figure 4. Continuous wavelet transform (absolute value) of the K-
complex shown where the maximum amphtude comespond to the
pseudo frequency content of the K-complex

2.2 Algorithm Design

As K-complex are transient phenomena from
EEG an algorithm will be developed in order to
achieve an automatic detection of these transient
signals. The algorithm will be based on time-
frequency analysis searching the manner of how
quantifies the energ, distribution of K- om, lex in the
time-frequency plane. To develop this algorithm the
CWT will be employed because this tool has
demonstrated a good performance in transient
detection and feature extraction in several previous
works [Bailey, 1998], [Schiff, 1994]. Employing
some of the same parameters used in the wavelet
selection process, the design of this K-complex
detection algorithm will be based on the Energy
D'str” uton 0"t e -compex n t e t'me- requency
plane using the CWT. The wavelet employed in this
algorithm will be the Mexican Hat wavelet function.

As in the wavelet selection procedure, the
frequency criterion was based on theory assuming that
a K-complex has a frequency range between 0.5 and
3.5 Hz. The pseudo-frequency range obtained was
splitted into 17 pseudo-frequency values which were
used to calculate the CWT. The scale and pseudo-
frequency range are in table 2. The number selected to
split the pseudo-frequency range was established
basically in order to obtain an acceptable resolution in
the time-frequency representation, without
compromises the time performance of the algorithm.
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Table 2. Scale to frequency transformation using the Mexican
Hat wavelet.

The energy distribution criteria were carried out
taking a 10 seconds epoch signal with a single clear
K-complex and computing the energy value the
frequency line belonging to the highest value found in
the CWT matrix of that signal. As we defined in the
wavelet selection criteria, the pseudo-frequency line
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corresponding to the highest absolute value in the
CWT matrix, —ill be th~ K-compl-x sp~~tral
component. This was probed by comparing the
Fourier transform of the original signal with the
Fourier transform of the frequency line corresponding
to the maximum value found in the CWT matrix. As
is illustrated in figure 5 we can see that the CWT
----d--freq-enc li-~ obtai-~+, th~ =--rgy p-r ~=
second was computed having a result of ten energy
value per epoch. To calculate the energy per one
second E, intervals of 200 samples were taken
(because the original signal is sampled at 200 Hz, 1
second con ain 200 samples) compu'ing ‘he energy
as:

w00 2
E = Z's,| , s, =ilocation sample  (7)
1=1

Using the K-complex database an attempt to find
a common behavior of the energy in the presence of a
K-complex was tried.
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Figure 5. Left - top: K-complex in a ten seconds epoch from
EEG; Right — top: CWT for scale 57.00 that correspond to the
pseudo-frequency of 0.88 Hz, it can be seen how the wavelet try to
assimilate the shape of the K-complex. From this signal the energy
value was computed, Left — bottom" Fourier transform of the K-

complex. the highest, amplitude correspond to 0.88 Hz, Right —
bottom Fourier transform of the CWT pseudo-frequency line.
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Figure 6. Energy distribution

3. Results and Discussion

After finish the experimental test, the algorithm
performance was tested using the entire eight hours
EEG signal (channel 4 signal corresponding to the
record position Fp2-M1). Before start the test, a new
visual selection of K-compiex was made. In this
classification we scored 235 K-complex along the
entire night. Before run the algorithm through the
entire night EEG signal, the obtained results were not
as satisfactory as we expect. A total number of 955
event were detected as k-complex. From the 235
previously identified K-complexes, a number of 179
K-complex were detected and 56 were not detected.
Therefore, based on this results a total number of 776
false K-complexes were classified as K-complexes by
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the algorithm. The summarized results can be seen in
Table 3 and in Figure 7 and 8.

Total of GeCcloy events 955
Rical KOO pcoors etec Lo 179 |
Toal R-oamplheore not devectod | 50 |
Talse K-oomplexns saorex] TG

Table 3. Results of the algorithm performance
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Figure 7. Pie chart plot that shows the percentage distribution
of table 3 (discrimination between K-complexes and other transient

signal).
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Figure 8. Pie chart plot that describe the percentage
distribution achieved in the detection of real K-complexes only.

The algorithm performance has a good capacity
to exclude false K-complexes, but the main idea of
obtaining a good K-complex detection algorithm, and
at the same time, trying to minimize the number of
criteria used for the detection was to much restrictive
in the criteria number.

4. Conclusion

In this report we tried to cover the necessary
theoretical and practical topics in order to develop
different algorithms based on the Continuous Wavelet
Transform for K-complex detection on EEG signals.
A description of the sleep stage classification, Fourier
Transform, Short Time Fourier Transform and
Continuous Wavelet Transform was given. The STFT
and the CWT are two different tools with the same
aim: time-frequency analysis. Are their performance
are also different. Therefore, when time-frequency
analysis is required, we should be very careful about
the features of the signal to analyze, since for some
signals the STFT could be more appropriate than the
CWT and also in the other direction. For example in
signals with no transient content and a limited band
width, the STFT has a good performance and the
computation time is not large, but when there are
transient signals involved, the CWT becomes
necessary, and the computation time increase. Two
wavelets function were tested with the purpose to
obtain a quantitative description about how these two
different wavelets, Mexican hat and Morlet, are
capable to achieve a good K-complex detection taken

in account the morphology, frequency content, time
duration and power spectrum of the K-complex. From
this test, the most important conclusion we could
extract was that thc wavelet capability in the detection
of K-complex has a strong dependence on the wavelet
waveform. Since the waveform of the wavelet has
probed to be an importance parameter for transient
signal detection we would like to left this field open
for further analysis based on other different wavelet
depending on the application they will be used. The
way to use the CWT was a precise bandpass filter -
we could obtain a v 1y amr o ff Gue o) ve v ow oy
one pseudo-frequency line without big distortion in
the signal shape.

We achieved a very good separation of
frequencies in a ran_e 0.5 — 3.5 Hz (17 fre uency
lines) and very good signal suppression in the exterior
from this frequency range. This feature of CWT was
implemented in both algorithms to detect K-complex
signals and was achieved a good results to detect
them. To know the real capacity of the algorithms to
cmeople, Ly ee _e. s..o _s.g_
channel from eight hours EEG signal. From the
indices specificity, sensitivity and validity we
obtained very different results. The performance of
the algorithm based on the energy distribution was
relatively poor to make a good discrimination
between real K-complexes and false K-com lexes.
The lack of enough criteria for K-complex detection
could be the answer of this poor performance. During
our experience we realized that the decision regarding
the detection of a K-complex may need to be
corroboration by a single consideration that we did
not take in account. This consideration is concerning
to the vicinity of sleep spindles and K-complexes.
Another interesting point to mention was the fact that
detection of K-complexes was based on the research
of only real K-complexes since from the results
obtained we realized that a more difficult task to carry
out would be the develop of accurate criteria in order
to achieve a better recognition between Delta activity
and K-complex. When looking in the false K-
complexes detected as K-complexes we realized that
is possible to find real K-complexes in this set of
signals. Almost all these signals are out of stage two,
and some of them just in the edge of a particular stage
two. This makes to use think that we found real K-
complexes in these signals, and a deeper investigation
should be made on this field. One possible reason for
this problem is that we only looked for K-complexes
in stage 2, since we did not find one single reference
about the existence of K-complexes out of stage 2.
Another reason is a possible not proper stage
classification. Even when all signals in question were
real K-complexes, the performance of the algorithm
will not be good enough. therefore, a criterion for
make the difference between K-complexes and Delta
waves is highly necessary in order to improve the
validity of the algorithms.
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