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Abstract - The wide varicty of waveform in 
EEG signals and the high non-stationary oature of many 
of them is one of the main difTiculties to develop 
automatic detection system for them. In sleep stage 
classifkation a relevant transient wave is the K-complex. 
This paper comprehend the developing of two 
algorithms in order to achieve an automatic K-complex 
detection from EEG raw data. These algorithms are 
based on a time-frequency analysis and two time-
frequency techniques, the Short Time Fourier 
Transform (STFT) and the Continuous Wavelet 
Transform (CWT), are tested in order to find out which 
one is the best for our purpose, being of two wavelet 
functions to measure the capability of them to detect K-
complex and to choose one to be employed in the 
algorithms. The first algorithm is based on the energy 
distribution of the CWT detecting the spectral 
component of the K-complex. The second algorithm is 
focused on the morphology of the K-complex waveform 
after the CWT. Evaluating the algorithms results reveals 
that a false K-complex detection is as important as real 
K-complex detection. 
Keywords: wavelet, k-complexe, STFT. 

INTRODUCTION 

Since the discovery of the 
Electroencephalogram (EEG) by the German 
psychiatrist Hans Berger in 1924 extensive studies 
about electrica] activity of the human brain have been 
carried out. One of these studies correspond to sleep 
stage classification. In the last rwenty years severa! 
researches and significance advances have been made 
in the field o f automatic sleep stage classification 
since it is one o f the diagnostic tools needed for 
assessment o f a number of sleep disorders. Automatic 
sleep analysis is based on the detection o f various 
waveforms in the EEG and other bioelectric signals, 
and inferring different sleep stages from the detection 
of these waveforms. However, the strong non-
stationarity nature (transient phenomena) o f EEG 
signals has represented one o f the main difTiculties in 
the developing o f reliable systems for sleep 
classification. 

A non-stationary signal is defined as a short 
time event whose frequency content vary in time. A 

traditional analysis technique, for this kind of signals, 
that provide an image o f the frequency contents of a 
signal as a function o f the time is the time-frequency 
analysis. Several methods or time-frequency 
distributions can be used, for example the 
spectrogram (Short Time Fourier Transform) which 
calculate the power spectrum of the investigated 
signal seen through a time windows function that slide 
along the time axis. In this work we will concentrated 
in another time-frequency distribution, the Continuous 
Wavelet Transform (CWT). The CWT can be seen as 
an operator that takes a signal and produces a function 
depending o f two variables: time and scale. In this 
way the CWT is able to provide information o f 
features corresponding to the signal that are 
dependent on the scale used. The scale-dependent 
structure is strongly linked with the frequency content 
o f the signal giving to the CWT a great potential for 
detecting and identifying signals with exotic spectral 
features like transients behavior. 

Detection of transient signals in 
Electroencephalograms has been a subject o f research 
for several years. In sleep EEG one o f the most 
relevant transient signals is the K-compIex. In 
literature we have found a sort of methods and 
algorithms for detection o f K-complexes using Neural 
Networks, feature based approach, independent 
component analysis, adaptive filters, statistics 
methods among others. In order to introduce the 
reader in the K-complex detection field, we will give 
a brief explanation about some studies which have 
been carried out in this field. 

In this report we will try to probe whether or 
no using wavelet transform we can improve detection 
o f K-complexes. At the beginning o f the last century 
the Haar transform gave the first step in the wavelet 
career, but this transform was not very used until early 
eighties, when geophysicians, theorical physicians 
and mathematicians developed a solid theory for 
Wavelet. Since then, Wavelet has been used in several 
applications, like signal processing, data compress, 
time-frequency analysis, muhirresolution analysis, 
statistics, vibrations and many others. 
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In the last fifteen years wavelet has been 
widely used in EEG analysis as much as epilepsy and 
Alzheimer diagnosis as sleep stage classification. 

The main of this work is to extract 
information from sleep EEG raw data about the 
presence of K-complexes. We decided to work in the 
time-frequency domain instead of eitlier pure time 
domain or pure frequency domain as previous works 
in this fleld. In order to implement a time-frequency 
analysis the Continuous Wavelet Transform will be 
employed because it has been probe to be an efficient 
tool in extraction of transient characteristics from a 
collection of raw data. Therefore, the problem 
statement of this work is to build and evaluate a K-
complex detection system using the wavelet transform 
and, posteriorly, evaluate the algorithm performance 
trying to find out possible important faults that may 
affect the system. 

1. Relevant Theory 
This chapter will try to cover all the necessary 

theoretical background in order to give the reader a 
better approach to the sleep stage classification and 
time-frequency analysis using wavelet transform. It 
begins with the basic concepts of sleep classification 
and a brief description of the bioelectrical signal 
involved, particularly the electroencephalogram 
(EEG). Then, an explanation of the relevant EEG 
waveforms is given. As a first step toward a process 
of EEG transient signal detection, the Fourier 
Transform and the Short Time Fourier Transform are 
explained. Finally, a review of the defmition and basic 
proprieties of the Continuous Wavelet Transform, 
with the corresponding example and reason of why 
this Transform will be used for time-frequency 
analysis are given. 

The study of EEGs has a long and fruitfiil histor>', 
and I knew that due to my time and equipment 
constraints I could not tackle the general problem of 
EEG interpretation, so I restricted myself to a narrow 
scope just to get a feel for the problem. The question I 
posed for myself was this: is it possible to devise a 
computer program which will analyze an EEG signal 
and detect a particular waveform pattem? Sleep in 
humans can be divided into two major categories: 
Rapid Eye Movement (REM) sleep, and non- REM 
(abbreviated NREM) sleep. REM sleep is 
characterized by coordinated, darting movements of 
the eyes as if scanning a scene, and is most correlated 
with dreaming. NREM sleep on the other hand is 
distinguished by its lack of eye activity. NREM sleep 
is subdivided into four stages (Figure 1) with stage 1 
being the lightest stage of sleep, sometimes 
experienced by nighttime drivers who suddenly 
realize they've been driving for a few seconds in the 
wrong lane, and stage 4 being the deepest stage of 
sleep, characterized by total muscle paralysis and 
insensitivity to externai stimuli. The different stages 
of sleep are distinguished from each other by the 
predominant EEG waveforms at a given time in the 
recording (Figure 2). Thus stage 1 is characterized by 
so-called theta waves (betvveen 4 and 7.75 Hz), stage 
2 is composed of sleep spindles (14-15Hz) and K-
complexes, and stages 3 and 4 are composed of 
primarily delta activity (mainly 4Hz). In the waking 
adult, alpha activity is characterized by waves 
between 8 and 
13Hz, and beta rhythm is characterized by waves 
greater than 15 Hz. I chose to study stage 2 of NREM 
sleep, because the K complex can be easily 
distinguished from the spindie signals, and because 
data for stage 2 was already available. 

1.1 Sleep Analysis 
Sleep analysis is a medical tool of vital 

importance for the diagnosis and treatment of several 
kinds of sleep disturbance and psychiatric or 
neurological disorders. Today, a typical study of sleep 
includes records of the muscle tone (EMG), of the eye 
movements (EOG) and of the cerebral activity (EEG) 
although depending on the clinical purpose other 
physiological parameters like respiration, heart rate, 
blood pressure, body temperature, hormonal 
secretions are used. On the basis of such recordings a 
certain number of sleep stage are distinguished by 
criteria that have been standardized by general by 
general agreement [Rechtschaffen and Kales, 1968]. 

1.2 Electroencephalogram (EEG) 
The electroencephalogram (EEG) is a 

bioelectrical signal that reflects electrical activity 
emitted by neurons within the brain. This electric 
recording from the brain activity show continuous 
time-varying voltage oscillations with typical 
amplitudes from 10 to 500 |iV and a frequency range 
of from 0.5 to40 Hz. 

* - s sh t -

Figure I: Stage of sleep during the course of the night 

Figure 2 EEG waveforms in vanous stages of sleep, 
for young and elderly subjects 

K-complexes are relative large wave with a 
duration that should exceed 500 milliseconds. In sleep 
analysis, the scoring of stage 2 is evidenced by the 
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presence of one or more. This EEG waveform have a 
well-outiined negative sharp wave, immediately 
followed by a positive component. Before and at^er a 
K-complex there is a period of low amplitude which 
is useful to distinguish the K-complex from Delta 
activity [Bankman 1992], [Didier 1994]. 

1.3 Time-Frequency Analysis 
Short-Time Fouricr Transform (STFT) 
The STFT is a time-frequency tool that consists 

of a Fourier transform with a sliding time window. 
The time localization of frequency components is 
obtained by suitably pre-windowing the input signal. 
The STFT is defmed as foilows: 

SAn,k] = f,x[m]M>[m-f,]W,'r ( D 
m=0 

vvhere, ÎV^ = e ^ ^ f^ - ^ , j = V ^ , X is the input 
signal, w is the analysis window, k is the frequency 
offset, and m is the time delay [Qian 1996]. 

Continuous Wavelet Transform (CWT) 
It is defined as the sum over alt the time of the 

signal multiplied by scaled, shifted versions of the 
wavelet function g.. Given a fmite energy signal x(t) 
and a normalized sampling period , T̂  = 1 we can 
present a discrete wavelet analysis of the sampled 

sequence x[n] = x(t) l-nT. € Z as foilows: 
00 

(2) 

The discrete synthesis operation can be presented as 
foilows: 

( t - b 
dt 

a 
(3) CWŢ,{a,b)=%,ia,b)=jr 

V ^-00 

where, = [Oppenheim and 

Shafer, 1989]. 

2. Methods and Implementation 
2.1 Wavelet Selection 
In order to choose the wavelet that will be 

employed in the K-complex detection algorithm, 
criteria based on how the wavelet spreads the signal 
energy in time was developed. Thus, the chosen 
criteria were based on two main points: 

1. The K-complex frequency range is from 0.5 
Hzto3.5 Hz. 

2. A K-complex has to have a notorious 
amplitude difference between the K-complex 
energy and the energy registered and second 
before the K-complex and one second after 
it. This criterion tries to make the distinction 
between a K-complex and the burst of delta 
activity. 

Based on these criteria, the best wavelet for the 
detection algorithm will be that which give the biggest 
difference the energy of the K-complex and the 

energy calculated and second before and after the K-
complex. The first criterion, about the frcqucncy 
range, was settled using the LabView Based on 
literature [Mallat, 1998], [Kaiser, 1994], [Polikar, 
1996] the most used wavelets for time-frequency 
analysis have been Mexican Hat and Morlet wavelet. 
Consequently, these two wavelet were chosen for 
further analysis. The Mexican hat function is the 

second derivative of the Gaussian function e 
is: 

1 

and 

(4) 

The Morlet function is a complex wavelet. The 
wavelet transform of a real signal with this complex 
wavelet is plotted in modulus-phase form, however, in 
this work just the real part will be used. Morlet 
wavelet is: 

being its real part as: 

Re[(//] = e ^ cos (5 / ) 

(5) 

(6) 

\Vxvcictfî ScaJc 41 Pie€m<lo-iiroqunnr3' [Hz] 
Mcxicioi Hat 14 - 100 3.57 - 0.5 

Mariot 43-325 - 0.5 

Table 1. Scale range and its corresponding pseudo-frequency range 
for both Mexican hat and Morket wavelet. 

After determine which wavelet use, the next step 
was to settie the location in time of the K-complex 
within its respective 10 seconds epoch signal and its 
respective time duration T. The K-complex interval T 
is the value which must be equal or greater that 0.5 
seconds and equal or lower than 1.5 seconds (see fig. 
3). 

Posteriorly, the CWT was computed and from the 
absolute values of the obtained coefficients matrix, 
the highest value in amplitude and its respective 
frequency value were looked assuming that this 
frequency is the corresponding spectral component of 
the K-complex. The wavelet coefficients 
corresponding oniy to this spectral component will be 
called 'line of frequency". Consequently, using the 
signal extracted from this "line of frequency", as it is 
depicted in the right illustration on figure 4. 

Figure 3. K-compIex time period T 
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C/lfl CWT of j K iiift»» paoui»-(r»qufincr» 

Figure 4 Continuous wavelet transform (absolute value) of the K-
complex shown where the maximum amphtude correspond to the 

pseudo frequency content of the K-complex 

2.2 Algorithm Design 
As K-complex are transient phenomena from 

EEG an algorithm will be developed in order to 
achleve an automatic detection of these transient 
signals. The algorithm will be based on time-
frequency analysis searching the manner of how 
quantifies the energy distribution of K-complex in the 
time-frequency plane. To develop this algorithm the 
CWT will be employed because this tool has 
demonstrated a good performance in transient 
detection and feature extraction in several previous 
works [Bailey, 1998], [Schiff, 1994]. Employing 
some of the same parameters used in the wavelet 
selection process, the design of this K-complex 
detection algorithm will be based on the Energy 
Distribution of the K-complex in the time-frequency 
plane using the CWT. The wavelet employed in this 
algorithm will be the Mexican Hat wavelet fbnction. 

As in the wavelet selection procedure, the 
frequency criterion was based on theor>' assuming that 
a K-complex has a frequency range between 0.5 and 
3.5 Hz. The pseudo-frequency range obtained was 
splitted into 17 pseudo-frequency values which were 
used to calculate the CWT. The scale and pseudo-
frequency range are in table 2, The number selected to 
split the pseudo-frequency range was established 
basically in order to obtain an acceptable resolution in 
the time-frequency representation, without 
compromises the time performance of the algorithm. 

j.'a.-oo 
If*--r-tjs; IB-A.-T-/-̂  3JC », l 

-rs-T-.oc» 

A 
a .«JU» 

Table 2. Scale to frequency transformation using the Mexican 
Hat wavelet. 

The energy distribution criteria were carried out 
taking a 10 seconds epoch signal with a single clear 
K-complex and computing the energy value the 
frequency line belonging to the highest value found in 
the CWT matrix of that signal. As we defmed in the 
wavelet selection criteria, the pseudo-frequency line 

corresponding to the highest absolute value in the 
CWT matrix, will be the K-complex spectral 
component. This was probed by comparing the 
Fourier transform of the original signal with the 
Fourier transform of the frequency line corresponding 
to the maximum value found in the CWT matrix. As 
is illustrated in figure 5 we can see that the CWT 
pseudo-frequency line obtained, the energy per on 
second was computed having a result of ten energy 
value per epoch. To calculate the energy per one 
second E, intervals of 200 samples were taken 
(because the original signal is sampled at 200 Hz, 1 
second contain 200 samples) computing the energy 
as: 

200 2 

^ ^ S K I ' = / l oca t ion s a m p l e (7) 
1=] 

Using the K-complex database an attempt to find 
a common behavior of the energj' in the presence of a 
K-complex was tried. 

Figure 5. Left - top: K-complex in a ten seconds epoch from 
EEG; Right - top: CWT for scale 57 00 that correspond to the 

pseudo-frequency of O 88 Hz, it can be seen how the wavelet try to 
assimilate the shape of the K-complex. From this signal the energy 

value was computed. Left - bottom Fourier transform of the K-
complex. the highest, amplitude correspond to 0 88 Hz; Right -

bottom Founer transform of the CWT pseudo-frequency line. 

Figure 6. Energy distribution 

3. Results and Discussion 
After tlnish the experimental test, the algorithm 

performance was tested using the entire eight hours 
EEG signal (channel 4 signal corresponding to the 
record position Fp2-Ml). Before start the test, a new 
Visual selection of K-complex was made. In this 
classification we scored 235 K-complex along the 
entire night. Before run the algorithm through the 
entire night EEG signal, the obtained results were not 
as satisfactor>' as we expect. A total number of 955 
event were detected as k-complex. From the 235 
previousiy identified K-complexes, a number of 179 
K-complex were detected and 56 were not detected. 
Therefore, based on this results a total number of 776 
false K-complexes were classified as K-complexes by 
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the algorithm. The summarized results can be seen in 
Table 3 and in Figure 7 and 8. 

T b u d oT Uc^tiocuxl 9 5 5 
HiCtaI Kl-oosnpicoocs <.kîtccu>d 1T9 
RiGsal i iot <]«C«!CUH1 56 
Falscr sooonxl TTG 

Table 3 Results of the algorithm performance 

Figure 7. Pie chart plot that shows the percentage distribution 
of table 3 (discrimination between K-complexes and other transient 
signal). 

KAi «tMCfi 

K xnjii-i-ĵ  -̂l*. 

Figure 8. Pie chart plot that describe the percentage 
distribution achieved in the detection of real K-complexes only. 

The algorithm performance has a good capacity 
to exclude false K-complexes, but the main idea of 
obtaining a good K-complex detection algorithm, and 
at the same time, trying to minimize the number of 
criteria used for the detection was to much restrictive 
in the criteria number. 

4. Conclusion 
In this report we tried to cover the necessar> 

theoretical and practicai topics in order to develop 
different algorithms based on the Continuous Waveiet 
Transform for K-complex detection on EEG signals. 
A description of the sleep stage classification, Fourier 
Transform, Short Time Fourier Transform and 
Continuous Waveiet Transform was given. The STFT 
and the CWT are two different tools with the same 
aim: time-frequency analysis. Are their performance 
are also different. Therefore, when time-frequency 
analysis is required, we should be very careful about 
the features of the signal to analyze, since for some 
signals the STFT could be more appropriate than the 
CWT and also in the other direction. For example in 
signals with no transient content and a limited band 
width, the STFT has a good performance and the 
computation time is not large, but when there are 
transient signals involved, the CWT becomes 
necessary, and the computation time increase. Two 
wavelets function were tested with the purpose to 
obtain a quantitative description about how these two 
different wavelets, Mexican hat and Morlet, are 
capable to achieve a good K-complex detection taken 

in account the morphology, frequency content, time 
duration and power spectrum of the K-complex. From 
this test, the most important conclusion we could 
extract was that the waveiet capability in the detection 
of K-complex has a strong dependence on the waveiet 
waveform. Since the waveform of the waveiet has 
probed to be an importance parameter for transient 
signal detection we would like to left this field open 
for further analysis based on other different waveiet 
depending on the appiication they will be used. The 
way to use the CWT was a precise bandpass filter -
we could obtain a very narrow frequency band or only 
one pseudo-frequency line without big distortion in 
the signal shape. 

We achieved a ver> good separation of 
frequencies in a range 0.5 - 3.5 Hz (17 frequency 
lines) and very good signal suppression in the exterior 
from this frequency range. This feature of CWT was 
implemented in both algorithms to detect K-compIex 
signals and was achieved a good results to detect 
them. To know the real capacity of the algorithms to 
detect K-complex, they were tested using a single 
channel from eight hours EEG signal. From the 
indices specificity, sensitivity and validity we 
obtained very different results. The performance of 
the algorithm based on the energy disU-ibution was 
relatively poor to make a good discrimination 
between real K-complexes and false K-complexes. 
The lack of enough criteria for K-complex detection 
could be the answer of this poor performance. During 
our experience we realized that the decision regarding 
the detection of a K-complex may need to be 
corroboration by a single consideration that we did 
not take in account. This consideration is concerning 
to the vicinity of sleep spindles and K-complexes. 
Another interesting point to mention was the fact that 
detection of K-complexes was based on the research 
of only real K-complexes since from the results 
obtained we realized that a more difîlcult task to carry 
out would be the develop of accurate criteria in order 
to achieve a better recognition between Delta activity 
and K-complex. When looking in the false K-
complexes detected as K-complexes we realized that 
is possible to fmd real K-complexes in this set of 
signals. Almost all these signals are out of stage ^vo, 
and some of them just in the edge of a particular stage 
two. This makes to use think that we found real K-
complexes in these signals, and a deeper investigation 
should be made on this field. One possible reason for 
this problem is that we only looked for K-complexes 
in stage 2, since we did not fmd one single reference 
about the existence of K-complexes out of stage 2. 
Another reason is a possible not proper stage 
classification. Even when all signals in question were 
real K-complexes, the performance of the algorithm 
will not be good enough. therefore, a criterion for 
make the difference between K-complexes and Delta 
waves is highly necessary in order to improve the 
validity of the algorithms. 
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