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Abstract - The paper presents a new method for knock 
detection based on two neural networks. First a discrete 
Hopfieid network extracts features from the structural 
vibration signal. Then the first and the forth coefficients 
of the autoregressive model and the maximal and 
minimal value of the signal are appiied to a feedfonvard 
neural network in order to detect the knock. Once a 
cycle has been detected as a knock containing one, for 
the next cycle the engine can be protected in order to 
avoid further appearances of knock. For the 
feedforward neural network it was experimentally 
determined that four neurons in the hidden layer is the 
best solution for the knock detection. 
Ke>^ords: Neural network, Feature extraction, 
Hopfieid algorithm, Knock detection 

I. INTRODUCTION 

in essence. engine knock is caused by spontaneous 
ignition of a portion of end gas during the combustion 
cycle. The extremely rapid release of the chemicai 
energy in the end gas that accompanies spontaneous 
ignition resuits in high local pressure and produces a 
shock wave. 
This shock wave excites combustion chamber 
acoustic resonance. producing the familiar knocking 
sound [!]. 
Knock resuits in rapid rise in temperature and 
pressure. The velocity of the flame front may exceed 
2000 m/s and high-frequency pressure fluctuations 
may reach 90 Bar at extreme knock. 
Knock has to be avoided because of its damaging 
effect on the engine, especially when it occurs at high 
speed. At lower speed, knock is unwanted because of 
the annoyance to passengers. 
Knock also reduces efficiency due to heat loss 
resulting from the turbuience in the combustion 
chamber. Corresponding power loss can reach up to 
10% at heavy knock [2]. 
For more than 60 years. knock has been recognized as 
a major problem limiting the development of ftiel 
efficient, high-compression ratio spark ignition 
engines [3]. 
During these years, a considerable amount of work 
has been done in order to understand the complex 
knock phenomenon with the aim of increasing 

efTiciency. reducing noise and pollution, and 
increasing engine life. 
That is why a considerable amount of oscillation 
exists in the pressure signal due to excitation of 
acoustic resonance modes in a knocking combustion. 
Because the measurement of the combustion pressure 
is difficult, usually the structural vibration signal is 
collected. 
The study proposes a new method for knock 
detection, using the structural vibration signal 
processing. 
This signal has a non-stationary spectral content and 
can be described only using methods that characterize 
the signal both in time and in frequency. 
Engine cycles affected by knock can be identified 
based on features extracted from the ^'global" 
structural vibration signal. The identification of 
different features could be used to protect the engine. 

II. FEATURE EXTRACTING USING 
SEOUENTIAL LEAST SQUARES ALGORITHM 

The Hopfieid algorithm is used in this study to extract 
the features from the structural vibration signal. It will 
be fmd that this algorithm is faster than the standard 
least squares algorithm (SLS) and it is able to extract 
the parameter, based on a time series of structural 
vibration signal. 
Let us to consider a moving average time-series 
model: 

n 
(1) 

where x^ is the estimated sample, at k-xh sample 
instant and xi, is the actual signal value at sample time 
Ic, a, is the feature we want to extract. 
The SLS algorithm fmds the parameters a, based on 
the following set of two recursive equations: 

P - P _ P r - I ^ r ^ r ^ r - l 
(2) 
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with iniţial values = and Po = . 
It has been shown that these relations minimized ihe 
cosi function defined as: 

^ /-l 

But we can manipulate (3) into a new form: 

The above relation can be written as: 

2 jimax l̂.y + l) ^ 
a^a, -

n 
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(4) 
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III. FEATURE EXTRACTION USING NEURAL 
SYSTEM 

A discrete Hopfield system enables patterns to be 
stored or remembered by the network, having the 
ability to retrieve the connplete pattem when presented 
with an incomplete or corrupted one. 
The situation is even more difficult in the case of 
spike trains in that the occurrence of spikes must, in 
general be considered as a discrete sampling of some 
goveming probability distribution. The determination 
of even the average properties of the distribution 
requires many more samples than for a continuous 
waveform. Due to the short duration of the spike, 
simple averaging is extremely sensitive to the number 
of samples unless the number of samples is large. The 
time required to obtain a large number of samples 
from a physiological system subject the data to long-
term nonstationarities which may further obscure 
significant features. Hence the major constrains on the 
processing of spike train data are short duration of 
each spike event and long-term nonstationarity may 
require that a limited number of samples be used. 
The used Hopfield network structure consists of a set 
of n units, each having a current output at time /. 

Fig. 1. Hopfield network structure 

It is known a Hopfield network minimized a cost 
function F, defined by the relation above. when the 
connection vveight are symmetric, if we use the 
Hopfield update rule [8]. 

The update equation for the cell outputs is: 

(6) 

(7) 

achieved when A0;> becomes close to zero. In practice, 
this convergence is assumed when Ao,r is less than a 
small-predetermined threshold value e. 
The cost fijnction defined in the case of moving 
average time-series model is likely the cost function 
used for Hopfield network, if we make this notation: 

M (8) 

IV. RESULTS AND DISCUSSIONS 

represent the gain term which establish ihe 
convergence rate of the algorithm. The convergence is 

The used Hopfield network structure used for 
extracting the parameters of the autoregressive model 
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consists of a set of 4 units, each having a current 
output at time t. It is known a Hopfield network 
minimized a cost ftinction F, defined by the relation 
above, when the connection weighl are symmetric, if 
we use the Hopfield update rule [4]. 
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Fig. 1 The error m feature extraction using Hopfield algorilhm 
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Fig. 2. The global error during leaming 

For the knock detection part of the study a two-
layer perceptron (a hidden layer and an output layer) 
is used to flnd out the segments affected by knock. It 
was found experimentally that four units are enough 
for the hidden layer. The output layer has a single unit 
and that's due to the classification problem: two 
classes of signals must be identified - first, the 
"segments without knock " class, and second, the 
"segments with knock" class. In the case of "segments 
vvith knock'' the output unit o] has a positive, closed 
to +1 value, and in the case of "segments without 
knock" it has a value closed to 0. For both the hidden 
layer and the output layer a sigmoid activation 
function was chosen. For the units in the hidden layer 
the sigmoid activation function is unipolar and for the 
output unit the sigmoid activation function is bipolar. 

The neural network needs less than 500 steps to learn 
if the global error threshold is set at the 0.01. The 
success rate of the classification is 95% for the 
learning data and 92% for the testing data. 

The data used in the study are acquired at a 50 
kHz sampling rate, using a CAD vvith 12 bits. Two 
data sets are available: one for a rotation speed of 
2000 rpm, containing 9996 combustion cycles and the 
other for a rotation speed of 4000 rpm. containing 
8423 rotation cycles. The analyzed engine has 4 
cylinders, a power of 16 kW and was full load during 
the study. The combustion pressure was recorded 
using a Kisler sensor. In fig. 3 is depicted an example 
of a combustion cycle with, and without knock. 
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Fig. 3 Combustion cycle - left side: the combustion pressure and 
right side: the structural vibration signal 
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