
Buletinul Ştiinţific al Universităţii "Politehnica" din Tinnişoara 

Seria ELECTRONICĂ şi TELECOMUNICAŢII 
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS 

Tom 49(63), Fascicola 1, 2004 

Adaptive Interfaces Based on FPGA Implemented 
Artificial Neural Network 

Ştefan Oniga\ Virgil Tiponur, Atilla Buchman', Daniel Mic ^ 

Abstract - The goal of this work is to build smart 
iDterfaces witb learning and adaptive capabilit>. The 
kcy clement of the learning and adaptive behavior are 
artificial neural network (ANN) blocks, implenaented in 
FPGA using the System Generator tool Ă)r Simulink 
developed by Xilinx Inc. Tbis tool allow the easy 
generation of hardware Description Language (HDL) 
code from a system representation in Simulink. This 
VHDL design can then be synthesized for 
implementation in the Xilinx family of FPGA devices. 
The off-chip learning task is performed using Matlab 
and the ANN's weights are transferred automatically 
from Matlab workspace to weights memorv. 
Keywords: smart, neural network, adaptive, learning, 
FPGA, prosthetic 

L INTRODUCTION 

The efforts made world wide by the large numbers 
of universities and research organizations that are 
involved in designing and building natural user 
interfaces it seems to be not enough because of the 
lack of adaptation and learning capabilities. The use 
of neural networks to add learning and adaptive 
behavior to smart sensors is essential and the FPGA 
implementation is an easy an attractive way for 
hardware implementation. 

Among possible applications are intelligent 
computer peripherals enabling people vviih any kind 
of handicap to use computer and communicate, as any 
kind of industrial or domestic device vvith learning 
and adaptive capabilities. 

The goal of this work was to develop hardware-
software codesign platform enabling the fast 
development of smart interfaces with the addition of 
sensors hardware modules that can be easily 
connected and VHDL modules that can manage 
sensors, basic behaviours (ex: features extraction. 
pattem recognition, etc.). Using this framework 
development of ncw smart devices needs only design 
and synthesis of new VFTDL drivers for the new 
sensors and new application-specific ANNs. This 
platform is based on low cost general purpose FPGA 
boards without need for hardware design. 

This paper presents a new method for hardware 
implementation of artificial neural networks (AKN) in 
field programmable logic devices (FPGA) that can be 
used in smart sensors development. It also permits the 
development of the ANN's specific modules and 
libraries for System Generator tool. 

Main applications for such smart devices with 
embedded and hidden intelligence at user are in the 
prosthetic. automotive, *'domotic" and automation 
fieid where the trend is to produce easy-to-use devices 

11. THE HARDWARE-SOFTWARE CODESIGN 
PLATFORM 

Smart devices must use multisensorial interfaces 
with natural, adaptive behavior and learning 
capability. The key for the adaptive and learning 
behavior are VHDL described neural networks. Any 
application of a new smart device should use these 
ANN modules to add adaptive and learning capability. 

The platform developed in order to provide a fast 
prototyping environment for adaptive interfaces is 
shown in Fig. 1. and it was developed to facilitate the 
use of codesign techniques. 
Other requirements for the development platform are: 

• Exchangeability of sensors, thanks to common 
interfaces for any class of VHDL drivers 

• Reusability of developed VHDL components 
• Reduced time to market 

The Aduc8l2 microcontroler is used to implement 
the Data Acquisition System and to adapt signal 
sensors to neural network input requirements. The 
reconfigurable device {XC2S50 Xilinx) is used to 
implement the neural networks and other logic blocks 
of the same application. The System Generator tool 
for Simulink developed by Xilinx Inc. allow the easy 
generation of hardware Description Language (HDL) 
code from a system representation in Simulink. This 
VHDL design can then be synthesized for 
implementation in the Xilinx family of FPGA devices. 

' Nonh Uni\ersit> of BajaMare, ElecirotechnicaJ Depaament 
Dr V Babeş Str., Nr 62 A, 430083 Baia Mare, e-mail oniga5.:a>ubm.ro 
' Electronics and Telecommunications Facult>. Applied Electronic Departmem 
Bd. V Pârvan Nr 2, 300223 Timişoara, e-mail, tiponutfSfitc.un.ro 

236 BUPT



A 

Tf 
ADUC812 

Micro 
controler 

o 
Q-

15 k-
0) 

CL 

PC 

MATLAB 
Neural Network Toolbox 
System Generator 

FPGA 
Parallel Interface -

ANN 

O) 

y 
o 

2 
c 
o o 

Fig. 1 The codesign platform 

The developed framework ailows de\ice 
communicaiion vviih a PC in order, lo perform off-
chip training task or, lo transfer data tor analysis. 
Software is designed lo manage the communication 
proiocol with Matlab via parallel port. 

The platform couid be used in three ways: 

1. The neural neiwork simulation and leaming 
phase of the weighis, 

2. The network design and hardware 
implementaiion using System Generator tool tor 
Simulink and Xilinx ISE, 

3. Normal use of the network (propagation phase). 

HI. NEURAL NETWORK DESIGN 

As mentioned above, with this method neural 
networks could be realized using the specific modules 
created with blocks from Xilinx Blockset, 

Fig.2. shows the neural network model in 
Simulink. The main element of neuron is the 
muliiply-accumulate (MAC) block. This block could 
be implemented eftlcienily using existing dedicated 
multipliers in Vinex IK Vinex II Pro or Spaiian III 
FPGAs. For example XC2V250 (a Virtex II FPGA) 
has 24 dedicated 18 bits MAC blocks. They can be 
implemented efficiemly even in other FPG.As w ithout 
dedicated MAC blocks. using Xilinx LogiCORE 
Generator. 

Dala R̂AM) 

Control logic 

Data 

W«ghls Outi 

Resel Acc 

fpt dbl • C D 
O ut 

Aclivalion funclion 

MAC 

Fig. 2 Neural Network Model in Simulink 

237 

BUPT



Fig.3 presents a MAC block realized using blocks 
from Xilinx Blockset librar>. The multiply-
accumulate operation is the bottleneck of ANNs 
FPGA implementation, because require a large 
amount of logic blocks. The resources def)end in a 
grate measure on the number of bits used to represent 
dala and weights. 

Fig. 3 Multiply-accumulate block 

Table 1 presents resources used by the 16 bits 
multiply-accumulate block, betvveen parentheses are 
shown resources used by the 16 bits multiply block. 

Table 1 

Used resources 

MAC implemented with 

Used resources VIRTEX-II 
dedicated 

multipliers 

Xilinx 
LogiCORE 
multipliers 

Slices 55 (29) 89 (63) 
Flip Flops 56(39) : 123 (106) 
Block RAMs 0 ! 0 
Look-up tables 66(17) ' 170(121) 
Dedicated multipliers 1(1) 0 
% from a 50.000 
gates Spartan-II 

11,58% ' 

% from a 250.000 
gates Virtex-II 

3.58 % 5,79 

% from a 1.000.000 
gates Virtex-II 

1.07% 1.73% 
i 

Control logic block presented in Fig. 4. determines 
neural netw'ork architecture. For example determines 
number of neurons and the correspondence between 
inputs and weights. For simplicity we have considered 
that all neurons from a layer are connected to all 
outputs of neurons from previous layer. In other cases 
the not necessary connections could be deactivated 
setting corresponding weights to zero. 

Weights address 

a 
a=b z-5 

b Reset ACC 
Relaţionali Delay 

Fig. 4 Control logic block 

ROM memory is used for storage of neurons 
inputs weights. and the RAM memory as a data 
buffer. 

Transfer function is implemented using look-up 
tables. 

The resources consumed by a very simple network 
with one layer of 7 neurons are presented in Table 2. 
Between parenthesis are shown resources used by the 
16 bits multiply-accumulate block. 

Table 2 

Used resources 

MAC implemented with 

Used resources 
VIRTEX-II 

dedicated 
multipliers 

Xilinx 
LogiCORE 
multipliers 

; Slices 80 (55) 114(89) 
Flip Flops 77(56) 144(123) 
Block RAMs 3 (0 ) 3 (0 ) 
Look-up tables j 103(66) 207 (170) 
Dedicated multipliers 1(1) 0 
% from a 50.000 
gates Spartan-II 

— 14.84% 

% from a 250.000 
gates Virtex-II 

5,20% 7,42% 

% trom a 1.000.000 
j gates Virtex-II 

1.56% 

1 

2,22% 

The shown data are for 8 bits representation of 
data and 12 bits used for w^eights. 

Defmition of system elements is made 
automaticaliy using variables that ai*e taken from 
Matlab workspace. In this way dimension of the 
memories, registers, counters, as constants and 
number of bits/word are automaticaliy loaded in 
Simulink representation of the ANN after the 
simulation of the neural network in Matlab. 

IV. RESULTS 

As presented earlier the method was developed for 
easy implementation of neural network used in smart 
sensors. The chosen application for testing the method 
was static hand gesture recognition using a data glove 
equipped with optical fiber flex sensors. Figure 5 
presents the implemented configuration for gestuie 
recognition. 

First block is a parallel port implementation and 
ensure the correct data transfer between data 
acquisition system and gesture recognition neural 
network. 

RNAl is Feed-Forward network that can be 
trained in many different ways but one of the most 
common methods is gradient based leaming using 
back propagation. Other very used training method is 
Hebbian leaming rule. We have tested both of them 
with good results. RNA 1 is used for input data 
preprocessing and is build from one layer of NI 
neurons, where NI represent the number of sensorial 
inputs. 

238 BUPT



System 
Generator 

date 

reset 

f d ^ 
ack Gateway Outi 

data Outl In1 Out1 data Outl In1 Out1 hex led 

ANN 1 ANN 2 

Hexto 7 
segment 

K I D 
Gateway Oul Out1 

Fîg. 5 Gesture recognilion network 

The second network used for classification task is 
a simple competitive neUvork with one layer of N2 
neurons, one for each of N2 gesture to be recognized. 
Last block is a BCD to 7 segment decoder and it 
displays the number of the recognized gesture. 

A complete process from leaming to propagation 
is presented: 

A. Learning phase 

Training of the neural network can be executed 
using a gi\en set of inputs with the corresponding 
outputs. The inputs for training are collected via 
parallei port of a personal computer running Matlab, 
and a data acquisition program developed by authors. 
Input and output sets are stored in a file and will be 
used to determine neural network weights. 

The desired network architecture is simulated 
using Neural Network Toolbox, the neural network 
weights are saved in a file and will be loaded 
automatically fix)m Matlab workspace to weight 
(ROM) memory represented in Simulink. Many 
networks architecture trained with diflferent methods 
could be simulated and the network that is best 
performing for given application is choused for 
hardware implementation. 

B. Implementation phase 

First step for transfer the neural network from 
software simulation to hardware implementation is the 
network modeling with System Generator tool for 
Simulink, using Xilinx blocks or user created, neural 
network specific blocks. One layer could be created 
using only one ANN block from user created libraries 
and the block parameters (number of neurons, 
weights, bias) are loaded automatically from Matlab 
workspace. If the designed system is well performing 
in simulation it could be transformed in VHDL code 
that is made automatically by System Generator Tool 
for Simulink. developed by Xilinx. 

To increase hardware performance, most System 
Generator blocks are implemented in hardware using 
Xilinx Smart-IP (Intellectual Property) LogiCOREs. 

These modules make optimal use of FPGA resources 
to maximize performance. 

During code generation, the System Generator 
creates all project files that are necessar>' for use in 
Xilinx 6.2i ISE. Opening Project Navigator project 
file, it is possible to import System Generator design 
into the Project Navigator, and from there, it can be 
synthesized, simulated, and implemented in the Xilinx 
6.2i software tools environment. 

Configuration *\bit" file is then dowTiloaded in 
FPGA using for example the Parallei cable IV and 
Xilinx dovvnload program iMPACT. 

C. Propagation phase 

The sensorial outputs from ADUC812 
microcontroller represented on 8 bits parallei format 
and sampled at 10 ms are loaded in the neural network 
implemented FPGA. For testing the developed 
method we have used a sensorial system for an 
artificial hand composed of: 

Data glove as signal source related with fingers 
and hand position 

Force sensing resistors (FSR) to detect contact 
with an object and the force being exerted 

Data acquisition system made up with ADUC812 
microconverter 

Analog signals from FSR are converted in digital 
signals by microconverter. Also it receives serial data 
from glove and output both signals time multiplexed 
in 8 bits parallei format. More precisely outputs 7 
bytes of information about 5 fingers position and 2 
about hand position (pitch and roll), followed by 6 
bytes of information supplied by 6 touch-pressure 
sensors located on the flngertips as well as on the 
palm. The FPGA module serves as implementation 
framework for neural networks. It receives data from 
data acquisition system in 8 bits parallei format and 
outputs the recognized posture number. 

The recognized posture can serve as feedback in a 
control system, or can be transmitted via a signal 
generator to the p»eripheral nervous system for the 
persons with loss of senson' nen e function, or can be 
used for teleoperating a robotic hand. 

239 
BUPT



V. C O N C L U S I O N S 

This paper has presented a n e w m e t h o d for the 
implementa t ion o f neural netw orks in F P G A s . 

T h e main contr ibut ion o f this work is the creat ion 
o f the framework that permi t s rapid deve lopmen t o f 
smart sensors wi th l e a m i n g capabilit>' and adap t ive 
behavior . 

Ano the r contr ibut ion is the crea t ion o f neural 
ne twork speci f ic m o d u l e s such as M A C units, 
act ivat ion func t ion . 

T h e p roposed m e t h o d permi t s to easily adapt the 
n u m b e r o f neu rons per layer, t he we igh t o f each input 
and the act ivat ion func t ion . 

A tes tbench w a s deve loped for appl ica t ion that 
permi ts to implemen t d i f fe ren t types o f neural 
ne twork wi th d i f fe ren t k inds o f archi tecture . 

Fu ture w o r k will f ocus on d e v e l o p m e n t o f o ther 
neural ne twork spec i f ic modu le s , op t imiza t ion o f 
implemented modules» and implemen ta t ion o f on-ch ip 
l eaming capabi l i ty . 

R E F E R E N C E S 

[1] Jihan Zhu, Peler Surton, "FPGA Implementations of Neural 
Networks - a Survey of a Decade of Progress", 2003. 

[2] H Ossoinig, E. Reisinger, Ch. Steger, R. Weiss, "Design and 
FPGA-Implementation of a Neural Network", Proceedings of the 
7th International Conference on Signal Processing Applications & 
Technology, pages 939-943, Boston, USA, October 1996. 

[3] Dr. M. Turban Taner, "Kohonen's Seif Organizing Networks 
With Conscience", Rock Solid Images, November 1997. 

[4] K. Boehm, W. Broll, M. Sokolewicz, "Dynamic Gesture 
Recognition Using Neural Networks; A Fundament for Advanced 
Interaciion Construction", SPIE Conference Electronic Imaging 
Science & Technology, San Jose California, USA, Feb. 1994 

[5] Rolf F. Molz, Paulo M. Engel, Femando G. Moraes, Lionel 
Torres, Michel Robert, "Codesign of Fully Parallel Neural Network 
for a Classiflcation Problem'', International Conference on 
Information Systems, Analysis and Synthesis, Orlando, USA, 2000. 

[6] R. Gadea, J. Cerda, F. Ballester, A. Mocholi, "Artificial 
neural network implementation on a single FPGA of a pipehned on-
line backpropagation", Proceedings of the 13th International 
Symposium on System Synthesis (ISSS'OO), pp 225-230, Madrid, 
Spain, 2000. 

240 BUPT


