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Abstract - The Guruswami-Sudan (GS) decoding 
algorithm is a list-type decoding algorithm that corrects 
morc crrors than the "declared" capabilitv, for ccrtain 
codipg rates of the Reed-Solomon (RS) codes. Using 
computer simutations, the paper presents a comparison 
bet\%ecn the correction capability and the processing 
time of the GS and Berlekamp-Massey (BM) algorithms. 
The simulations are employed to establish the optimum 
values of the GS parameters that ensure the maximum 
performance/processing time ratio. Some methods of 
changing the GS parameters, in terms of the packet-
error length, which provide shorter decoding times, are 
also presented. 
Key'words: RS codes, Guruswami-Sudan decoding 
algorithm, Berlekamp-Massey decoding algorithm, 
correction capability, decoding time. 

I. INTRODUCTION 

Considering an RS-type code C, defined over the 
Galois field Fq, with the parameters n - codeword 
length. k - Information word length, d - Hamming 
disiance, there are three possible defmitions for such a 
code [1] [2], namely: 
• Cyclic codes: if a code word ceC and i is the 
cyclic shift operator, then T(c)eC. The code word can 
be expressed as: 

l J 

• Evaluation codes: the code word is obtained by 
evaluating a polynomial fţ[x), defmed by (2), 
associated to the infonnation word v (vq, V|, . vt.|), 
over the elements of Fq, as shown in (3): 

, , k-l 
f(x)=IVj.xJ 

J=0 
(2) 

RSG(k) = |f(a^}f(a'}... j(a"-')), deg f < k | ; t e FJX] (3) 

• Codes dual to the evaluation codes. 
Defining the RS codes as evaluation codes, leads 

to the possibility of employing list-type algorithms for 
their decoding, algorithms that provide higher per-
formances than the classical ones, represented in this 
paper by the BM algoritlim. 

The list-type decoding algorithms [3] [5] operate 

with a decoding radius higher than (dm,n-l)/2, 
delivering a list of possible code words. If the 
distances betvveen code words are distributed in such a 
manner that the decoding list contains, in mosl cases. 
a single word, then this algorithm-type ensures a 
higher correction capability than the classical 
algorithms, such as BM. 

II. THE GS ALGORITHM. MAIN ASPECTS 

The operation steps of list-type GS decoding 
algorithm for the RS codes are [3] [4J [5J : 
• let (a \ a',..., a""') be the elements of Fq. f(x) the 
polynomial corresponding to the Information word (2) 
and (P<), pi,...,Pr.-i) the received code word If a code 
word is correctly received, then relations (4) hold true; 

P, = f ( a ' ) ; i € [ 0 , n - l ] (4) 

• a two-variable interpolation polynomial Q(x,y), 
which has an m-order multiplicity zero in every point 
(a',p,), is built. 
• the polynomial Q(x,y) is decomposed in (y-flx))-
type (factorization), whil deg fl;x) < k; the 
polynomials f(x) obtained represent the code words 
from the decoding list. 

A tvvo variable polynomial, Q(x,y), is an ordered 
structure of two-variable monomials, expressed as: 

Q{x,y)= I j x' yJ - l a j 4)j(x,y) : 
IJ^O J=0 (3) 

1 = <t>o y) < (x, y) < y) < • • • < j y l 

J denotes the rank of the Q(x,y) polynomial and 
<t)j(x,y) is the leading monomial. 

The monomials (ţ)(x,y) are ordered according to 
their weighted degree, defmed by: 

= u i +v j ; vv = (u,v) (6) 

There are two possible ordering rules, namely direct 
ordering (lex order) and reversed ordering (revlex 
order), defmed by: 

lex order < x'-y-'^ if ui| + vj| < ui2 ^ vj2 or 
ui| vjj = ui2 + vj2 and i| < 12 (7) 
revlex order: the same order but for iţ > 12 
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A signiflcant theorem that, together with oiher 
theorems, secures the existence of an interpolation 
polynomial is [3]: 
Theorem 1: Let {m(a,p):(a,P)€F^} be the 
multiplicity function of ihe zeros of Q(x,y) and 
<t>o<(̂ l< .•. an arbitrar> monomial order. There always 
exists a polynomial Q(x,y): 

^ a x - ; , — m-lnM-l)-
^k-l 

f k-fl V k+1 

Q(x ,y) - Ia i . ( t ) i (x ,y ) 

In (8), C is expressed by: 

r m ( a , p K r | 
n 7 i 

The complete proof of the existence of ihe 
interpolation polynomial is to be found in [4] and [5]. 

The existence of a polynomial that could be 
decomposed in (y-fl^x)) factors is secured by theorem 
2 [3]: 
Defmition 1: For Q(x,y)eF[x,y] and f(x)€F[xJ the Q-
score of f(x) is defmed as: 

S q ( f ) = I ord 2ero(Q : a , f(a)) (10) 
a 

Theorem 2: 
If f(x)eF,lx], Q(x,y)6F[x,y] and Sq(0 > deg,,Q 

(11) 
then y-f(x) is a factor of Q(x,y); v=k-l. 

A thorough analysis of the factorization step is 
presented in [4] and [5]. 

One of the most efficient interpolation algorithms 
is the Koetter algorithm [3], which is defmed by the 
pseudo-code belovv: 
Koetttr interpolation algorithm 
- input data: L - number of code words in the list, (a. 
pj) - interpolation points, (m,)"=i - zero's multi-
plicity order, ( l ,k-l) - monomials weighted degree. 

1. FORj=OtoL 

2. F O R i = l t o n D O 
2. FOR (r,s)=(0,0) to (rnrKO) DO /•lex order 
4. F O R j ^ O t o L D O 
5. Aj=D,,gj(a.,ft) 
6. J=(j:Aj^O} 
7. lFJ;tct) 
8. j'=min_rank {gjjeJ} 
9. f=gj . ; A=Aj. 
10. F O R j e J D O 
11. IFO'^j') 
12. gj=Agj+Af 
13. ELSEIFa= j ) 
14. g3=A(x+a.) f 
15.Q()(x,y)=min_rank{gj(x,y)} /* the interpolation 
polynomial 

One of the best factorization algorithms, the Roth-
Ruckenstein [3], was used in the present analysis. 

The bounded values of two significant parameters 
of the GS algorithm, the number of code words in the 
decoding list, L, and the decoding radius, r^, are given 
by [3): 

(12) 

(8) 

(9) 

L X m - 1 , L Ă m V r k - l 
J k - l) < Td < n - l - J(k - l) — — 
V m V m m 

(13) 

III. ANALYSIS OF THE SIMULATION RESULTS 

The main goal of this paper is to compare, by 
computer simulations. the correction capabiiity and 
processing time of the GS and BM (representative for 
the classical algorithms) RS decoding algorithms. The 
analysis is intended to establish the optimum values of 
the parameters of the GS algorithm, for which a 
maximum ratio correction capability/decoding time is 
accomplished and to elaborate some "thumb rules" for 
adapting these parameters, so that shorter decoding 
times could be auained. 

The software simulator, that can operate in the 
Galois tieids GF(2'), GF(2'), GF(2'), GF(2') and 
GF(2'*), performs the foilowing functions: 
• generation of a symbol-sequence represented on 
the number of bits corresponding to the employed 
Galois field. 
• RS encoding (cyclic code for the BM or evaluation 
code for the GS), depending on the decoding 
algorithm employed. 
• serialization of the coded bits, generation of the 
packet-errors and their insertion in the coded bits. 
• GS or BM decoding and coniputation of the 
parameters of the simulated transmission, namely: bit 
and symbol error rates, the ratio of the correction 
capabiiity of the GS algorithm versus the correction 
capabiiity of the BM algorithm, the numbers of words 
in the decoding list and erasures, both for tlie GS 
algorithm. 

The generation of the packet-errors, which 
simulates the transmission channel, is performed 
according to the impulse noise models employed for 
the xDSL transmissions [6]. This model was adopted, 
with severa! simplifications, since it is a representative 
one for transmission systems employing RS codes as 
outer codes. The main features of algorithm that 
generates the packet-errors are: 
• the distance in symbols between two packet-errors 
has a Poisson distribution, with a modifiable average 
value X. In the simulations performed, the value of \ 
equaled the number of symbols of two code words, for 
each GF. 
• the packet-error length, in bits, has a gaussian 
distribution, defined by the average value t and 
variance a . The value of t equaled tb q, tb denoting the 
number of error-symbols that could be corrected by 
the classical decoding algorithms (e.g. BM) and q 
denoting the number of bits/character of the GF 
employed. The value of a was set according to the 
estimated correction capabilit)' of the GS algorithm. 
• the positions of the errors inside the packet are 
random, being distributed according to a uniform law. 
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A. Decoding Capability of the GS Algorithm 

The performances of the GS algorithm were evaluated 
for RS codes with the coding rate Rce[0.3, 0.65]. The 
parameters that indicate the correction capability are 
the minimum and the maximum decoding radius, 
computed using (12), and the correction rate R^ 
(obtained by simulations). The Rd parameter is defmed 
as the ratio of the number of error words after the GS 
decoding and the number of error words that have a 
number of error symbols higher than tb (the decoding 
radius of the classical algorithms), before the 
decoding. The codes with Rc < 0.3 were not 
considered, since they are of low practicai importance. 
As for the codes with Rc > 0.5 - 0.6 (depending of the 
employed GF), the correction capability of the GS 
algorithm is the same with the one of the BM 
algorithm. 
Note: In figs. 1-5 m denotes the multiplicity order of 
the zeros in the GS algorithm; m = O is actually 
equivalent to the BM algorithm; for this algorithm: 

rm.n = W =tb = n( 1 -Rc)/2; R^ = 1; (14) 
The variance o of the packet-errors, depicted in figs. 
l.b, 2.b, 3.b, 4.b, for each Rc and GF, was set in all 
simulations to a value that provides packet lengths 
close to the r̂ ax of the GS algorithm. 

Rc=0.2 Fig. 1.a 

i s . - . . 

Rc=0.33 

Rc=0.46 
t 

Rc=0.43" 

o = 3 5 : R . = 0 . 2 

l . 

Fig. 1.b 

a = 2 . 5 ; Rc=0.33 

o=2 ^c=0.46 

a = 2 ; Rc=0.43* 

1 

1 . 
1 

^ 1 2 1 4 5 <• 

\ \ 
Fig. 1.0 

Rc=0.43 ' 

o ^ 
\ \ R c = 0 . 3 3 

\ R C = 0 . 2 \ 
\ \ \ \ 

\ R C= 0 . 4 6 
\ 

Fig.I Minimum, r„,i„ (I .a), maximum decoding radius r^^ 
(1 b), correction rate R<i (1 c) in terms of m ; RS codes in 
Galois GF(2^) and GF(2''); • denotes codes defmed in GF(2^); 

Fig.l.c shows that for RS codes defmed in GF(2^) 
and GF(2''), m has to be set to 3 or 4, for Rc close to 
0.5, and to 1 or 2 for Rc close (or smaller) than 0.3. 
The increase of m above a certain limit does not bring 
a performance improvement, but it might lead to a 
decrease of performances (see Rc = 0.33). A more 
complete evaluation of the GS decoder requires the 
consideration of the r̂ .n and r^», as well; good 
decoding performances should be accomplished when 
the two parameters take equal or close values. The 
optimum values of m can not be established by 
considering onl> the r̂ m and r̂ ax parameters of the 
code, as shown by Rc = 0.46. 

J ^ = 0 . 3 5 

a = 3 . 5 . R c = a 4 2 

a=2 : Re=0.48 

a = 2 : Rc=0.55 

Fig.2 Minimum, r„„ (2.3), maximum decoding radius 
(2.b), correction rate Rj (2.c) in terms of m ; RS codes in Galois 
GF(2^); 

The values of Rd, see fig.2.c, indicate that for RS 
codes defmed over GF(2^) the optimum values of m 
are m = 3 - 4 for R^ close to 0.5, m = 2 - 3 for R̂  
around 0.3 and m = 4 - 5 for Rc around 0.4. There 
should be noticed that for m=6, the performances of 
the GS decoder exhibit a significant decrease, 
especially for high values of the coding rate R^ 

For RS codes defmed in GF(2^) having the 
mentioned Rc and for the optimum values of m, the 
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decoding radius of the GS lies between ^ ib» and 
W = Tmin"̂ ! or rm,n+2. The values of a parameter of 
the crror-packet for the considered rates are given in 
fig.2.b. 

Fig.3 Mjniinum, u , . (3.a), maximum decoding radius w 
(3.b), correction rate R j (3 c) in terms of m ; RS codes in Galois 

Considering the RS codes defined in GF(2"), see 
flgs. 3, they exhibit a clear separation of the optimum 
values of m, in terms of the coding rate R .̂ For 
Rc > 0.5, optimum m equals 3 or 4, but for Rc < 0.45, 
optimum m equals 2 or 3. Sometimes, see R^ = 0.4, 
m = 4 provides better performances at the expense of a 
longer decoding time. 

The codes defined in GF(2^') exhibit the same 
decrease of performance for higher values of m (e.g. 
m = 6), as the ones defined in GF(2-): for the 
considered values of Rc, the performances secured by 
the GS become equal to the ones of the BM. The 
values of a parameter of the error-packet for the 
considered rates are given in fig.3.b. 

The performance loss exhibited by the GS 
algorithm for high values of m, regardless the coding 
rate, could be explained by the incomplete 
factorization, see (11), the requirements for the 
interpolation being ensured by a proper choice of the 
number of words within the decoding list. 

A primary analysis of the interpolation algorithm 
presented in Section II and of the properties of the 
rwo-variable polynomials [3] leads to the following: 
• the number of iterations, n,„ performed by the 
interpolation algorithm for n-symbol code words and 
multiplicity order of zeros equaling m, is : 

n .r = n 
m (m + l) (15) 

• the iniţial polynomials of Koetter interpolation 
algorithm, for maximum L words in the final decoding 
list, are: 

p^(x,y) = l,p|(x,y)=y,p2(x,y) = r , . . .p2(x ,y) = y^(16) 

• supposing that the values of A, computed within 
the Koener algorithm, never equal zero (supposition 
that does not always hold true), then after 
L (L-i-l)/2 (k-l) iterations aii polynomials will have 
the same degree L (k-l). The leading monomials of 
these polynomials are: 

(17) 

• taking into account that each iteration increases the 
degree of the polynomial with the minimum rank and 
that a polynomial with a higher degree also has a 
higher rank, then we may assert that the increase of 
the degree of each polynomial will require L+1 
iterations. By the end of the algorithm the degree, 
degmin, of the minimum-degree polynomial would be: 

deg m m L + 1 1 

• the minimum value of the Sq parameter (10) of an 
interpolation polynomial associated to a n-symbol 
code word and to a multiplicity order of zeros 
equaling m and to a decoding radius r, is: 

S o m m = ( n - r ) m (19) 

from the factorization requirements we have: 

^Qmin 
i - i V i k i l ) 

2 ny 

m 

> 1 (20) 

The values of the ratio defined in (20), for the 
codes of figs. 2 and 3 and for various values of m, are 
smaller than 1 (approximately equal, but smaller), 
There should be noted that the considerations above 
are not complete, since it did not considered that the 
evolution of polynomials degrees within the 
interpolation algorithm would be different, mostly 
because of the fact that A might equal zero quite often, 
changing the evolution of the polynomials degrees 

16 BUPT



(see the interpolation algorithm in Section II), and 
decreasing significantly the values of degnu,,. AIso, the 
value of Sq might be higher than the value computed 
by (19). Nevertheless, the considerations above show 
that, for difTerent coding rates and various values of 
m, there is a possibiiity that the GS algorithm would 
not be efTective, even for a high decoding radius. The 
suppression of this limitation of the value of m may be 
accomplished by using difTerent values of m for every 
interpolation point, values chosen depending of the 
channel characteristics [5]. Obviousiy, this approach 
would complicate the implementation of the decoding 
GS algorithm. 

Unlike the previous cases, for optimal values of m, 
the codes defined in GF(2^) have < tb, but the 
difTerence r̂ ax - rn̂ n takes values between 3 and 6. The 
ditTerence r̂ ax - tb takes values between O and 3. So, 
for the codes defined in GF(2^*) the optimum values of 
m cannot be evaluated only be considering the limit 
values of the decoding radius, r̂ m and r̂ ax. 
Note: the relation Tp̂n 
algorithm could not 
^'declared" correction capability of the code), 
practically one should consider that rn„n t̂b. The values 
of r„un and r̂ av provided by (13) evaluate the 
possibilit>' of the GS algorithm to correct more errors 
than the classical algorithms. As for the RS codes 
defined in GF(2''), see figs. 4, the considerations 
regarding r̂ un and rnux, presented above, are stil 1 valid. 
There should be mentioned that, for the optimal values 
of m, r̂ in ̂  tb, and the difference r̂ â  - rm.n takes values 
higher or equal than 20, and the difTerence rma.\-tb lies 
between 2 and 13. 

< tb does not imply that the GS 
correct tb symbol-errors (the 

so 

o=10 ; Rc=0.56 

0 = 5 . 5 ; Rc=0.61 

:=0 65 

o=5 .5 : Rc=0.65 

Fig.4 iMjniinuin, r«„ (4.a), maximum decoding radius 
(4.b). correclion rate Rj (4.c) in terms of m ; RS codes in GaJois 
GF(2"). 

Fig. 4.C shows three optimum values of m, 
depending of the coding rate Rc, for the codes defined 
in GF(2'*). For coding rates higher or equal to 0.6 the 
optimum value of m is 4, for Rc e (0.6, 0.45) the 
optimum value of m is 3, and for coding rates ranging 
between 0.3 and 0.45, the optimal m equals 2. The 
figure also shows that, similar to the codes defined in 
GF(2^), the maximum limit of m falls to 5, for the 
coding rates considered. 

The comparison of the results presented in figs. 1 .c 
- 4.C show that the coding rate for which the GS 
decoding algorithm provides better performances than 
the classical decoding algorithms increases with the 
increase of dimension of the Galois field in which the 
RS codes are defined. 

Regarding the number of words in the decoding 
list, the simulations performed by the authors show 
that for the RS codes defined in GF(2^) and in the 
higher fields, the number of the words in the list 
equals 1, with very few exceptions, when then list 
contains more than one code word. As for the codes 
defined in GF(2^) and GF(2''), there are more cases 
when the decoding list contains more than one code 
word, but their percentage is still small, about 1%. As 
a general conclusion, if the GS decoding algorithm 
can not correct a code word. this fact is owned to an 
unsuccessful interpolation or factorization and, quite 
seldom, to the presence of more than one code words 
in the decoding list. 

B. Evaluat ion of the GS algorithm decoding time 

The references [3] [4] [5] present some considerations 
regarding the number of operations perfonned by the 
GS algorithm, which affect significantly the decoding 
time, but these considerations do not include a 
comparison to the decoding time required by the 
classical RS decoding algorithms. The software 
simulator implemented by the authors includes a RS 
decoder based on an optimized version of the 
Berlekamp-Massey (BM), described in [1]. For 
comparison, the simulations using the BM decoding 
algoridim were performed in the same conditions as 
the ones using the GS algorithm. 
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The evaluation of the decoding time implied the 
mefuiurement, for a certain number of code words, of 
the simulation time tj^i. and of the time rcquired for 
encoding and error-pattem insertion t̂ î ^ ; for the 
measurement of tâ x the decoding procedures were 
removed from the simulation program. There should 
be noted that the time required to decode a correct 
code word differs from the time required to decode an 
error code word for both algorithms, especially for the 
GS algorithm. The ratio between the average decoding 
times, tdec, of the two algorithms is expressed b\ : 

^^ ^ ^decGS ^ ^imGŞ-^auxGS ^ ^simGS ^21) 
^decBM ^simBM-UuxBM ^simBM 

Fig. 5 presents the variation of the ratio t̂  
(expressed on a logarithmic scale) between the 
average decoding times of the GS and BM algorithms 
in terms of m, for various coding rates and for codes 
defmed in several Galois fields. 

4 . 5 , 

GF(2̂ ) . Rc=0 32 

Fig 5 Ig(td) ratio between the average decoding time of the GS 
and BM algoritlims, in terms of m. for various coding rates and 
for RS codes defined m severa) Galois fieids 

The results presented in fig. 5 show that the 
decoding time required by the GS algorithm is much 
larger than the one required by the BM algorithm. The 
td ratio increases significantly with the increase of m 
and with the increase of dimension of the Galois field 
employed. The increase of the coding rate for codes 
defmed over GF higher than GF(2'*) also increases the 
value of td. By changing the coding rate from 0.3 to 
0.6 for these codes, invoives an increase of the ratio td 
by a factor ranging from 2 to 3. There should be 
mentioned that the implementations of the two 
algorithms were optimized to the best knowledge of 
the authors. 

The results displayed in fig. 5 underline the 
importance of establishing optimal values for the 
parameter m and the necessity of finding some 
variants of the GS algorithms (decoding strategies), 
which should require a decoding time as small as 
possible. The authors have considered three possible 
variants to accomplish the GS decoding, namely: 
• employing the same value of m for the decoding of 
every code word; this variant would require a very 

large average decoding time, even larger than the ones 
presented in fig. 5, because even the correctly received 
code words would bc decoded in a very long time. 
• the successive increase of the value of m, from 1 to 
a maximum optimal value. The decoding is stopped 
when the decoding list contains at least one code 
word; this approach would require a smaller average 
decoding time for packet-errors with relatively small 
lengths. compared to the maximum packet length for 
which a successful GS decoding is accomplished. 
• the employment of two values for parameter m. 
namely 1 and an optimum value mopt. The correct code 
words and the ones affected by a small number of 
errors (equal or higher than tb) would be decoded 
using m=l, and the code words with more errors 
would be decoded with m = mopi; this last option 
should be employed if the decoding with m=l 
generates no code word in the decoding list. This 
variant of employing the GS algorithm provides a 
smaller average decoding time for long error-packets, 
compared the maximum packet length for which a 
successful GS decoding is accomplished. The results 
displayed in fig. 5 were obtained using this decoding 
variant. 

IV.CONCLUSIONS 

The computer simulations performed by the 
authors showed that the GS decoding of RS codes, 
defmed in the GF(2') GF(2^) GF(2') and GF(2'), 
provides a significantly greater correction capability 
than the BM decoding, for coding rates ranging 
between 0.3 and 0.6. The improvement becomes more 
obvious as the coding rate decreases and the 
dimension of the Galois fieid increases. The optimum 
values of the factor m (zeroes multiplicity order) for 
which a maximum correction capability/decoding time 
ratio is accomplished, are also presented in the paper. 
As for the decoding time, the simulations performed 
showed that the time required by the GS is 
significantly longer than the one required by the BM 
algorithm. The paper presents some decoding 
strategies for the GS that lead to a significant decrease 
of its decoding time for various lengths of the packet-
errors. 
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