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SPEAKER VERIFICATION EMPLOYING TESPAR 
CODING AND DTW 
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Abstract - TESPAR (Tîrac Encoding Signal Proccssing 
and Recognitioo) is a processing and recognition mcthod 
in the time domain, proposed by |1]. The key problem in 
TESPAR is to define the alphabet used for the coding 
process, alphabet ussualy generated by a quantization 
process. To avoid this complicated process, this papcr 
preseots an approach in wbich we used DTW (Dynamic 
Time VVarping) to align sequences of epochs in order to 
generate a verification decision. 
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l INTRODIJCTION 

The speaker verification consists of automatically 
authenticating the identity claimed by a speaker, given 
only some samples of his voice. There are three 
categories of approaches in speaker verification. In 
the first one. the verification system is trained on a 
particular utterance and the same utterance is latter 
spoken by the speaker who claims that identity, 
making up text-dependent speaker verification. 
Within the second approach, verification decisions are 
based on utterances selected by the speaker and not 
previously known by the verification system, making 
up the text-independent speaker verification. In text-
prompted approach, the verification system generate 
the text that each speaker has to utter in both training 
and testing stage. 
A t>pical approach to the te.xt dependent speaker 
verification is DTW (Dynamic Time Warping) in which 
the unknown speaker's utterances are time aligned to the 
reference stored for the speaker whose identity is 
claimed, and the decision to accept or reject is based on 
a measure of similarity between two time series of 
parameters corresponding to the utterances. 
TESPAR is a method based on the approximations to 
the locations of real and complex zeros, derived from an 
analysis of a band-limited signal. The key features of the 
TESPAR coding in the speech processing field are the 
following: 

the capability to separate and classify many signals 
that are indistinguishable in the frequency domain; 
an ability to code the time varying speech 
waveforms into optimum configurations for 
processing u'ith Neural Networks. 

IL TESPAR 

A. BASICS 

TESPAR method is based on the approximations to the 
locations of the real and complex zeros, derived frcm 
the analysis of a band limited signal. The real zeros 
correspond to the zero crossings of the signal while the 
complex zeros are associated with local maxima. 
Numerical descriptors of the signal w^aveform may be 
obtained via the classical Shanon numbers resulted from 
the analysis [2]. 
The Shanon model involves detecting the ordinates of 
a waveform at a series of points equally spaced at 
1/2W. A variety of mainly linear transforms (e.g. 
Fourier, LPC, Wavelet or Walsh) has been developed 
for describing and classifying key features of the 
sampled data set. This coding strategies involve the 
following requirements: 

the use of amplitude descnptors; 
the use of regular sampling; 
an approximation domain dependent upon the 
numbers of bits per sample. 

TESPAR coding is based on the zero-crossings of the 
signal analysed. 

B. TESPAR CODI>JG 

The key in the interpretation of the TESPAR coding 
possibilities consists in the complex zeros concept. 
The band-limited signals generated by natural 
information sources include complex zeros that are 
not physically detectable. The real zeros of a ftinction 
(represented the zero crossing) and some complex 
zeros can be detected by visual inspection (Fig. 1), but 
the detection of all zeros (real and complex) is a 
complex task. 
Locating all complex zeros involves the numerical 
factorization of a 2TV\r-order polynomial [3]. A 
signal waveform of bandwidth W and duration T, 
contains 2TW zeros, a number which usually exceeds 
several thousand [2]. The numerical factorization of a 
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2TV\/^-order polynomial is compulationally infeasible 
for real time. 
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classified in terms of its duration (D) - nuirber of 
sannples and the nunnber of rrinima (Ş), that it 
contains. 
The TESPAR coding process is presented in Fig.2, 
using an alphabet (symbol table) to map the 
duration/shape (D/Ş) attributes of each epoch to a 
single descriptor or symbol. 

Fig. 1 TESPAR waveform analysis 

The key to overcome this dravvback is to introduce an 
approximation in the complex zeros location. 
Instead of detecting all zeros of the function the 
foilowing procedure may be used: 

the waveform is segmented between successive 
real zeros; 
this duration information is combined with 
simple approximations of the wave shape 
between these two locations. 

Only some of the complex zeros that can be identified 
directiv from the waveform by these approximations 
detect. In this transformation of signals, from time-
domain in the zero-domain, the real zeros, in the time-
domain, are identical to the locations of the real zeros 
in the zero-domain, and the complex zeros occur in 
conjugate pairs associated with features (minima, 
maxima, points of inflexion etc.) in the wave shape 
that appear between the real zeros. In this way an 
important subset of complex zeros may be identified 
by examining the features of the wave shape between 
its successive real zeros. 
In the simplest implementation of the TESPAR 
method [1], two descriptors are associated with every 
segment or epoch of the waveform, in order to 
generate the TESPAR symbol alphabet: 

the duration between successive real zeros (in 
number of samples); 
the shape between two successive real zeros. 

in this simple TESPAR model implementation, not all 
complex zeros can be identified from the wave shape, 
so the approximation is limited to those zeros that can 
be so identified. 
The band-limitation of the signal imposes significant 
restrictions upon the maximum and minimum 
duration of any epoch, and also upon the maximum 
number of significant waveform extreme points that 
each epoch may contain. The longest epoch may have 
a duration approximately equal to half the period of 
the lowest frequency component allowed by band-
limiting; the shortest epoch may have a duration 
approximately equaJ to half the period of the highest 
frequency component allowed within the band of 
signal. Also. short epochs have no or few features. 
whilst long epochs may contain few or many features. 
For the simplest implementation, each epoch may be 
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Fig 2. TESPAR coding process 

The TESPAR symbols string may be converted into a 
variety of fixed-dimension matrices [3]. For example, 
the S-matrix is a single dimension 1xlSl (N - number of 
symbols of the alphabet) vector, which contains the 
histogram of symbols that appear in the data stream. 
Another option is the A-matrix, which is a two 
dimensional NxN matrix that contains the number of 
times each pair of symbols appears with a possible lag 
of n symbols. The matrices obtained in the training 
phase are compared to that obtained in the testing 
phase allowing tasks like verification or recognition. 
The TESPAR alphabet may be generated in vector 
quantization process or using neural networks [7]. 

III. DYNAMIC TIME WARPING 

DTW is a recursive recognition algorithm, which is 
usually used to evaluate a distance between a 
previously stored reference set, and a test set of 
speech parameters. The main advantage of this 
method consists of temporal alignment of the two 
compared sets of data. In fact, DTW seeks a way 
between reference and test data so that the cumulated 
distance to be minimal (Fig. 3). 
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Fig 3 The optimal paih in DTW algorithm 
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The cumulaied distance between the Iwo utterances A in [5] and implies the clustering of the reference and 
and B is given by [6]: 

D(F)= D(A.B): 
(I-^J) 

where: 

g ( i j ) = min 

and: 

g ( i - l j - l ) + 2d(i, j) 

g(l . l ) = 2 d ( l 1) 

(1) 

(2) 

(3) 

In previous equations, d(i,j) is the Euclidean distance 
beuveen two parameters vectors of the reference and 
test utterances. 

test utterances in the parameters space (Fig. 5). 

FigA T^H•esholdconrputingbasedonmaandistatjonsand 
standard de/iations 

IV THE THRESHOLD COMPUTING 

A major problem in speaker verification consists in 
fonmulating a criterion for accepting/rejecting the 
speaker. To decide vvhether to reject a speaker or not, 
for a particular utterance, a threshold is associated to 
each speaker. An unknown speaker is rejected if its 
distortion exceeds the threshold. 
One wav to compute the threshold for a given speaker is 
to estimate the parameters for two Gaussians 
distributions: the in-dass distribution of the distortion 
obtained by encoding utterances from that speaker in his 
codebook and an GUt-of-dass distribution of the 
distortion obtained by encoding utterances spoken by 
other speakers. Equalising the overlapping areas of the 
two distributions, thus equalising the expected numbers 
of false acceptances and false rejections, chooses the 
threshold. The threshold computation involves the 
following steps: 

compute the mean distortion resulted from 

encoding the training set of the speaker "i" in his 
codebook and the corresponding standard 
deviation cr|"; 

compute , the mean distortion obtained by 

encoding utterances not spoken by the speaker 
"i", using the "i" speaker's codebook and the 

corresponding standard deviation qP"^ . 

To equalize the numbers of false rejection and false 
acceptances, the threshold T„ is chosen to be at an 
equal number of standard deviations away of each 
mean (Fig. 4). 

T. = 
a, + a , 

(4) 

This method for threshold computation assumes 
Gaussians distributions. As distortion metric, the 
Euclidean distance was employed. 
Another way to compute the decision threshold for 
each speaker enrolled in the experiment was proposed 

Fig.5 Threshold estimaiion based on averaged dislances 

First, the maximum distance between the optimal 
reference and the other references for the "i" speaker 
is computed: 

dMAx'= d ( R . U . mFl M. (5) 

where d is Euclidean distance and M is the number of 
references for each speaker. 
Second, the minimum distance between the optimal 
reference of speaker "i" and the other references of the 
speakers difîerent from "i" is also computed: 

(6) 

where K is the number of the enrolled speakers. 
Finally, the threshold for the speaker "i", is 
computed as the average of the two distances 
previously defined [4]: 

T 
2 

V. COMBINING TESPAR AND DTW 

(7) 

The key problem in TESPAR is to define the alphabet 
used for the coding process, alphabet usually 
generated by a quantization process. This process is 
influenced by the maximum number for shape and 
duration that strongly depend on sampling rate. To 
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avoid this complicated process, in our approach vve 
used DTW (Dynamic Time Warping) to align 
sequences of epochs in order to generate a verification 
decision. We used TESPAR to generate speech 
features (sequences of epochs, each with specific 
shape and duration) for each speaker utterance, in 
training and testing stage. DTW is used for successive 
alignments to compute a speaker model in training 
stage and in testing stage in order to evaluate a 
distance between the speaker's models and the test 
utterance model. 

Certain conclusions can be outline from these 
experiments: 

the Th2 decision threshold lead to better results 
than Thi; 
the verification performances are worse than 
other methods (ERR<=2%); 
data reduction is very high, because a set of 
speech sample corresponding two successive 
zero-crossing is replace by two TESPAR values, 
S(shape) and D(duration); 
aii calculations are made in time domain. 

Our speaker verification system works as follows: 
all training utterances are processes with 
TESPAR method and the resulting epochs (D/S) 
are saved; before TESPAR coding an endpoint 
detection process is applied to each utterance; 
DTW is used to build a model for each speaker 
by successive aligmnents between epochs files 
corresponding to each training utterance; each 
model consist of a sequence of epochs; 
speaker's models and training epochs files are 
used to compute a threshold for each speaker 
which will be used in testing stage; 
each test utterance is processed with TESPAR 
method; 
the resulting epochs string and speaker models 
are time-aligned with DTW and a distance is 
computed for each speaker; 
this distance is compared with each speaker 
threshold and a verification decision is emerged; 

We used a weighted Euclidean distance in DTW 
alignment to discriminate between the contribution of 
shape and duration. 

VI. EXPERIMENTS 

Two particular Romanian utterances, ^dmâia ia 
anenia^!(Ul) and ^ o l a i lâna are nnolii^1(U2) were 
used for speaker verification experiments. The 
experiments involved 25 speakers (15 males and 10 
females) and 5 utterances for each test phrase were 
collected from each speaker, 3 utterances were used 
for training and 2 utterances for testing. 
We used Error Recognition Rate (ERR) as 
verification criteria: 

ERR = VFAR FRR (8) 

where F-AR is the False Acceptance Rate and FRR is 
the False Rejection Rate. 
The experiments were carried out for each utterance 
(UI, U2), using both types of decision threshold (Th)-
eq.4, Th2-eq.7). 
The speaker verification results are presented in the 
following table. 

Table 1 

V. CONCLUSIONS 

In this paper, we presented an approach to text 
dependent speaker verification using a combined 
TESPAR -DTW method in which TESPAR coding is 
used to generate speech features and DTW is used to 
generate a model for each speaker from training 
utterances as well as in the test stage to compute a 
distance between the test utterance and speaker's 
models. 
The verification experimental results show medium 
performances. The decision threshold based on 
averaged distances generates better results than 
threshold based on mean distortions and standard 
deviations. 
This approach seems to be promising because all 
calculations are made in time domain and data 
reduction is about 15-20 times. 
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