
Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara

Seria ELECTRONICĂ si TELECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 49(63), Fascicola 2, 2004

A Complete Laboratory on Evolutionary Electronics
Rustem Popâ

Abstract - Evolutionar> design might be a promising
option to the conventioDal design of electronic circuits.
Each project is assembled from a number of component
parts and tfaen is tcsted in the frame of an evolutionary
algoritfani. We have presented in this paper some
evolutionar}' experiments of digital and analog electronic
circuits design, both by simulating evoiotion in software
and by true evoludon in hardware. These experiments
are conducted witfa our stndents in the laboratory of
Evolutionary Systems.
Ke>'words: genetic algorithms, evolvable hardware,
electronic circuits, evolutionary computation

I. INTRODUCTION

Evolutionao' systems are designed by the means of
evolutionary computation. These "designs" are
evolved by a process of natural selection, like in the
living maiter. The mechanism of evolution is entirely
blind and has no particular object other than
sun ivability. The survivability of the organism can be
seen as a process of assembling a larger system from a
number of component parts and then testing the
organism in die environment in which it fmds itself
The concept of assemble-and-test together with an
evolutionary algorithm can explore the entire design
space because of the absence of imposed rules of
design. In this way, in electronics, evolutionary design
generates new unexpected and usually usefiil
electronic circuits.

The building of new electronic circuits by
evolutionary computation has been created the
concept of Evolvable Hardware (EHW). The usual
design process is in a top-down way and begins with a
precise specification. EHW is applicable even when
no hardware specification is known before. Its
implementation is determined through a genetic
leaming in a bottom-up way. A Genetic Algorithm
(GA) is intended to mimic Darwinian evolution. A
population of solutions. called chromosomes, is
maintained, and goes through a series of generations.
For each new generation, some of the existing
chromosomes survive, while others are created by a
ty pe of reproduction and mutation from a set of
parents. EHW combine knowledge of both GA and
electronic circuits design to evolve new circuits.

Research in EHW can be divided inio mtnnsic
evolution. which refers to an evolutionary process in
which each circuit is buiit in electronic hardware and
tested, and extrinsic evolution, that uscs a model of
the hardware and evaluates it by simulation in
software.

We are convinced that \er\' soon, as reprogrammable
integrated circuits will become larger and larger and
the design lechniques will be improved, EHW will be
dominant in electronics. and the electronic engineer
must be ready for this future evolution. It is true that
for the time being, the complexity of evolved circuits
is so far small. The main problem is the representation
of the circuit in chromosomcs, because complex
circuits need a great number of architecture bits,
which directly influences the GA search space.

We have prepared some experiments of extrinsic
evolution in digital and analog circuits. and for
solving of some w e l l k n o u T i optimtzation problems,
like the generation of test vectors in digital circuits,
the fmding of the global minima in a multimodal
function. or the solving of the Traveling Salesman
Problem (TSP). We have also prepared two
experiments of intrinsec EHW in digital circuits by
using common digital CMOS circuits. The first one is
a test platform with controlled switches for
experiments with simple building blocks made-up
from few transistors. The second platform consists of
CMOS switches, some simple logic gates, and three
JK flip-flops for experiments with registers and
counters. Finally, a real Xilinx XCR3064 CoolRunner
CPLD mounted on a XCRP board may be used to
implement some extrinsic EHW circuits.

The remaining sections of the paper are organised as
follows: Section II describes in more detail the genetic
leaming component of the EHW. Section III shows
some examples of digital circuits designed by
software with a GA and then implemented in a 64
macrocell Xilinx CPLD. Section IV shows some
examples of simple analog and digital circuits
implemented by evolution on real hardware
configurable boards. Finally, Section V provides the
conclusions and fiiture work.

' Uni verşi taiea „Dunărea de Jos" din Galafi, Dq>ammeDtul
Elcdrooicâ şi Tdecomuiucapi, Su-. Domneasca Nr. 111,
S0020i. Galaţi, e-mail Rustem.Popa^agal ro

335

Fig. 1 A GUI for the search of a lest vector which
poinis a stuck-at O fault in ihe marked node

Fig. 2. A GUI for ihe generation of an optimum
set of test vectors by hibridation of a GA

II. GENETIC LEARNING IN EHW

AII the developed algorithms are based on GAs, an
adaptive searching technique for solving optimisation
problems based on the raechanics of natural genetics
and natural selection. The success of the application
of GAs to an optimisation problem depends on the
representation of chromosomes, fitness function,
method of crossover, mutation operation, and on the
diverse information from the chromosomes. When the
diversity is lost before the global optimum solution is
found, the performance of GAs deteriorates and their
solution processes converge prematurely. Moreover,
the mutation operation is important. While the
mutation operation adds new information to a
chromosome, it can also destroy useful information
held in the chromosome.

In GAs the search is conducted using information of a
population of candidate solutions, called
chromosomes, so that the chance of the search being
settled in a local optimum can be significantly
reduced. Four essential components need to be
designed in applying a GA for an optimisation
problem: chromosomes representation, crossover
operator, mutation operator and fitness function.

In a reconfigurable circuit, each bit of a chromosome
represents usually the state of a programmable switch.
The entire chromosome represents the state of all
switches, that is a complete circuit, which may be
good or bad, according with his fitness. The iniţial
population of chromosomes (bit strings) is generated
randomly. All these potential solutions are evaluated
using a fitness function. In our case, for a single
boolean function, fitness is the ratio between the
number of the correct values of the function and the

number of all possible values (which is jf the
boolean function has n input variables). A well-
designed circuit will be obtained only when the value
of fitness is 100%. An approximately value of the
fitness is unacceptable here.

The next step is selection and reproduction. For each
individual, a number of copies are made, proporţional

to its fitness, while keeping the population size
constant. The least fit individuals are deleted. This is
the survival of the fittest part of the GA.

The next step is crossover, where individuals are
chosen two at a time, as parents. They are converted
into two new individuals, called offsprings, by
exchanging parts of their structure. Thus, each
offspring inherits a combination of features from both
parents. We have obtained the best results with one
point crossover, with a probability of 80%. This
operator may be used more times on different selected
pairs of chromosomes in a generation.

The next step is mutation. A small change is made to
each resultant offspring, with a small probability.
After mutation is performed on an individual, it no
longer has just the combination of features inherited
from its two parents, but also incorporates the
additional change caused by mutation. This ensures
that the algorithm can explore new features that may
not yet be in the population. It makes the entire search
space reachable despite the finite population size. The
whole process is repeated for several generations, and,
if the best chromosome in population will have the
fitness of 100%, then this bit string represents a good
solution for our function.

III. EXPERIMENTS WITH EXTRINSIC EHW

The first set of experiments show the generation of
complexity with very simple rules in unidimensional
and bidimensional Cellular Automata (CA), and the
solving of some complex NP-problems (the finding of
the global minima in a multimodal function, or the
solving of the TSP) with GAs. These experiments
have been ample described in [7].

Another set of experiments have been prepared for the
purpose of automated generation of test vectors in
digital circuits. If we want to generate a test to detect
a stuck-at O fault in the marked node of the circuit
represented in the Fig.l., the required vector is
II11111111000000000, a combination of bits nearly
impossible to find using a random approach ([6]). As

336

Fig. 3 The circuit achieved by evoiudon for the
boolean flinciion from the equation (1)

o € » 2a I 36 45
Humm U awwrr

Fig 4 The cvolulion of the fltncss across 50
generations

we can.see in the Graphic User Interface (GUI) from
the Fig.l, the GA used to solve this problem has
found the correct solution in 40 generations. The
algorithm uses a population of 32 chromosomes and a
mutation rate of 3%. Fitness was calculated as the
sum of (1 if fault is excited or O otherwise) + (fraction
of inputs in AND gate set to 1) + (fraction of inputs in
OR gate set to 0). The maximum value of the fitness
defmed in this way is 3.

By using the GUI from the Fig.2., we can solve the
Fault Coverage Code Generation Problem for a more
complex combinational logic. The problem consists in
fmding of a given number of test vectors that
maximizes the fault coverage of the circuit. We have
chosen t\vo ways of hibridation of the standard GA:
by using the inductive search, like in the Fig.2., or by
using the simulated annealing aigorithm. The example
from the Fig.2. shows that only 6 test vectors could
cover more than 75% from the total number of stuck-
at O faults in the circuit. AII these GUIs (and also
those from the first set of experiments) have been
developed in Matlab 5.3.

A. The Implementation of a Boolean Function

We have considered a boolean ftinction represented in
a minimal disjunctive form by using a Kamaugh map:

/ = X, • • X3 + T̂j ' -l- X 2 (1)

This representation has a cost of 7 gates and 13
inputs, mcluding inverters. By applying some
sv^itching-algebra theorems our function may be
written in the next form:

/ = X3 e X, • (2)

Now, the cost of implementation is of only 3 gates
and 5 inputs. Unfortunately, there is no algorithm to
fmd this convenient form of the flinction, only the
heuristics and experience of the human designer.

We have tried to fmd another representation of this
function by evolutionary design. We have used the

idea given in [2]. Each combinational circuit is
represented as a rectangular array of logic gates. Each
of these gates has hvo inputs and onc output, and the
logic operator may be selected from a list. At the
beginning of the search, all the gates from the matrix
are disposable to implement a funcţional circuit. Once
a funcţional solution appears, then the fitness function
is modified such that any valid designs produced are
rewarded for each gate which is replaced by a simple
wire. The algorithm tries to find the circuit with the
maximum number of gates replaced by wires that
performs the fiinction required.

The chromosome defines the connection in the
network between the primary inputs and primar)
outputs. We have used a network of 4 gates, a
population of 32 chromosomes, 10 of them beeing
changed each generation, a single point 100%
crossover and 5% rate mutation. A feasible solution
has been obtained in less than 50 generations, as we
can see in the Fig.3. and in the Fig.4. The cost is given
now by 3 inverting gates and 6 inpuis (one of the
gates in the network is useless), and this solution has
the minimum delay time between any input and the
output of the circuit, in a gate Ie vel implementation.

B. The Implementation of a Finite State Machine

The Finite State Machine (FSM) represented in the
Fig.5. is a sequcnce detector with one-input, one-
output and 6-intemal states. When the input sequence
011 occurs, the output becomes 1 and remains on this
logic value until sequence 011 occur again. In this
case, the output returns to O, and maintain this value,
until a new sequence 011 appears.

Initially a GA has been used to fmd optimal state
assignment. The chromosome represents the FSM as a
list of states. The iniţial population is generated
randomly. The goal of the GA is to extract the
optimum state assignment, which requires the least
number of logic gates. For that reason the number of
2-inputs AND/OR logic gates are used to defme the
fitness function. The optimum state assignment is
given in the Fig.5. A more detailed description of this
problem is presented in [1].

337

SO: 000
SI: 010
S2: 001
S3: 100
S4: 110
S5: 101

Fjg 5. A sequence detector described as siate
transitioi) graph and GA state assignment Fig. 6. Evolved optimal circuit solution of the

sequence detector

Then, the extrinsic EHW has been used to find the
funcţional design of combinational parts of the
sequence detector. We have used the same method
presented in the subsection A and in [2].

The equations of the evolved optimal combinational
circuit are the following:

Do=X'Q,

y = Q2

(3)

(4)

(5)

(6)

The schematic diagram of the circuit is given in the
Fig.6. A bad state assignment may conduct to much
more complex equations for the combinational circuit
of the FSM.

C. Some experiments with Xilinx XCR3064XL CPLD

The circuit XCR3064XL, is a Xilinx CPLD with 64
macrocells and 1500 usable gates, providing low-
power and ver\ high speed, and beeing in-system
programmable through JTAG IEEE 1149.1 Interface.
Unfortunately, this circuit has only 1000 erase/
programming cycles guaranteed, so it can not be used
with intrinsic EHW.

This programmable circuit is mounted on a board,
called Digilab XCRP, delivered by Digilent, Inc. This
low cost plattbrm can be used to implement a wide
variet}- of digital circuits. The programming pins of
the circuit are directiv connected to the parallel port
pins of the computer.

The software we have used is Xilinx Integrated
Software Environment (ISE) 6.1 i, a complete CAD
environment for implementation of complex digital
circuits. We have generated the source file of the new
project (schematic diagram or VHDL) and have
obtained the fitter report and the timing report.

We have implemented the boolean function from the
subsection A on the basis of equations (1) and (2) and
the circuit from the Fig.3. We have obtained the same
results, so we can assume that our software finds an
optimal way in connecting the hardware resources of
the circuit, even if the function is not done in a
minimal form. The circuit has used a single macrocell
from the maximum number of 64 (that is 1/64), only
two product terms from the maximum number of 224
(that is 2/224), and only 3 function block inputs from
the total number of 160 (that is 3/160). The pad to pad
delay is 6 ns, and the total deiay of the circuit is not
more than this value. For more complicated functions,
evolutionary design may offer a better fitting of
circuit resources (a less number of product terms).

In sequential circuits, the optimal state assignment is
crucial. The sequence detector from the subsection B,
implemented with the equations 3,4,5 and 6, has used
only 3/64 macrocells, 3/224 product terms, and 3/160
function block inputs. The same circuit, implemented
with a non optimal state assignment has used 4/64
macrocells, 9/224 product terms, and 4/160 ftinction
block inputs. Even the combinational time delay is
diflerent for these circuits (4.7ns in the first case and
7,2ns in the second case). It's true that the main
differences in the complexity of these circuits are
given by the state assignment, but it seems that
evolutionary design is more efficient even for the
combinational part of a FSM.

338

4 lA I

j ^ - j i ' - j i :

M Jl Jl QUT

-5V GND IN

M
y-Ji:

t X

^SW ^ s w
r — C Z 3 r C Z > -

IN
OUT

'̂ sw

J î^sw

Fig 7 InslaiUiaUon of ilie NOT gale on the
cvolvable icstbcd

D. The Implementation of Analog Circuits

Analog circuit synthesis entails the creation of both
the topology and the sizing (numerical values) of all
of the circuit's components. The difficulty of ihis
problem is well known and the first auspicious
approach, based on genetic programming, was
presented in [3]. Another method of automatically
generating analog circuit designs based on a parallel
GA and a set of circuit constructing primitives is
presented in [5].

Both methods need a huge computation power (fevv
days on a parallel computer with 64 processors in the
first case, or a network of workstations in the second
case). We have only verified through PSpice
simulation some of the circuits presented in [3] and
[5]. Interesting is the fact that not all given circuits
have been successful in our simulations.

IV. EXPERIMENTS WITH INTRINSIC EHW

We have prepared two set of experiments on intrinsic
evolvable hardware of digital circuits by using
common digital CMOS circuits.

A. A Test Platform for Intrinsic Analogic EHW

The first one is a test platform designed specifically
for simple experiments into intrinsic hardware
evolution. Based on an idea from [4], this testbed is in
fact a matrix of analogue switches, connected to some
plug-in boards, which contain the desired building-
blocks for experimentation. In [4] is described a great
motherboard with 12 integrated circuits (IC)
CD22M3494, each of them beeing a matrix of 16x8
analogue switches. These ICs are very expensive, so
we have built a much smaller board with only 20 ICs
4066, each of them having only 4 analogue switches,
that is a total number of 80 programmable switches.

As a starting point for experimentation, bipolar
transistors were used as the evolutionary building-
block, and the task was to evolve a NOT gate. The
digital input to the testbed is provided by a computer
via a digital input/output board, and the output is
connected to an A/D converter on the board.

sw

GND

Fig. 8. The equivalenl circuit diagrajn for the NOT
evolvcd gate

We have used a standard GA. with a population of 50
chromosomes, 18 bit each of them. with a single point
crossover, proporţional selection and elitism. The
mutation rate was 5°o. The evolved circuit with a
single transistor is shown in the Fig.8. The
corresponding chromosome that build up the state of
the analogue switches represented in the Fig.7. is
lOOlOOOlOOOlOOlOIO.

The on-switches resistances might be about 50^2 for
CD22M3494 circuit, or about 300n for 4066 IC. The
circuh from the Fig.8. conforms to the NOT function
in that its output corresponding to O input is of slightly
higher voltage than that corresponding to a 1 input,
however this difference (only IV) is too small to be of
any practicai use. If we repeat evolution, with much
more switches, we can see that these additional
switches are placed in parallel, reducing the combined
resisiance from the emiter. This conflguration will
give a good voltage swing and the circuit will become
an inverter with a NPN transistor, like we knovv.

B. A Test Platform for Intrinsic Digital EHW

The second platform consists of CMOS switches,
some AND gates and three JK flip-flops for
experiments with registers and counters. The most
suitable way to connect each data input of a flip-flop
to a lot of different signals from the circuit, is by
using CMOS analog multiplexers/demultiplexers.

The schematic diagram from the Fig.9. shows the
building block used to design this board. Each data
input of a JK flip-flop has an 8-channel analog
multiplexer 4051. The first two inputs in the
multiplexer are constants l and 0. The next 3 inputs
are the direct or inverse outputs of the flip-flops,
selected by 2-channel 4053 multiplexers. Finally, the
last three inputs in the multiplexer produce AND
functions between any two different flip-flop outputs.

A building-block uses 12 bits, so the length of a
chromosome is 36 bits. We have used a standard GA
with a population of 100 chromosomes, with a single
point crossover, the mutation rate of 1%, proporţional
selection and elitism.

339

Fig. 9. Tlie building-block for intrinsic digital EHW

An example of an evolved counter with 5 states is
presented in the Fig. 10. We have used all the three
building-blocks from the board, including an AND
gate.

V. CONCLUSIONS

Evolutionary design is in fact a creative machine for
new designs and may be useful for electronic
engineers. The experiments presented here display the
generation of complexity with very simple rules, and
the solving of complex NP-problems with simple
GAs, GAs may be useful for automated generation of
test vectors and for synthesis of digital and analog
circuits. Analog circuit synthesis usually needs more
powerful computers, but in the near fiiture this
impediment will be certainly avoided.

Continued research on simple, even though
unimpressive circuits, is a major factor on the
development of EHW. Analysis of such circuits is
„far from impractical, and is likely to contribute to the
understanding of the properties that evolution can and
cannot exploit, and why'' ([4]).

In intrinsic EHW experiments, students have the
entire control over the architecture or type of basic
configurable element, and this may be an advantage
over a board equiped with a FPGA device. Evolution
may be able to exploit a different system of
interconnections or architecture. But is understandable
that more complex circuits might be evolved in a
FPGA board and these new experiments are a goal for
the future.

Future research must be done in this area. Firstly it is
important to fmd a better representation of the circuit
in chromosomes, because complex functions need a
great number of architecture bits, which directly

CLK

J Q J Q

— •^clkQ —

Fig. 10. An example of an evolved counter with 5 slaies

influences the GA search space. EHW successfully
succeeds only when fitness reaches 100% and in huge
search spaces this condition may be not always
possible. This is the main reason that for the time
being the complexity of evolved circuits is so far
small.

ACKNOWLEDGMENT

The author wouid like to thank the Xilinx, Inc. for
their academic donation, which consists in Xilinx
Integrated Software Environment (ISE) 6.li software
and the Digilab XCRP circuit board provided by
Digilent, Inc.

REFERENCES

[1] B. Aii, A. E. A. Almaini, T. Kalganova, "Evolutionary
Algorithms aiid Their Use in the Design of SequentiaJ Logic
Circuits", Gentuc Programming and Evohable Machines, nr. 5,
2004. pp 11-29.
[2] C. C. Coello. A D. Christiansen. A. H. Aguirre. "Use of
Evolutionary Techniques to Automate the Design of Combinational
Circuits", Initrnaiional Journal of Smart Engineering System
Design, nr. 4, 2000, pp. 299-314.
[3] J. R. Koza, F H. Bennett III, D. Andre. M. A. Keane, F.
Dunlap, "Automated Synthesis of Analog Elcctrical Circuits by
Means of Genetic Programming", IEEE Transactions on
Evolutionary Compuiation, voi. 1, nr. 2, 1997, pp. 109-127.
[4] P Layzell, The Evohable Motherhoard - A Test Platfonn for
the Research oj Intrinsic Hardware Evolution, Technical Report
CSRP 479. Januao' 1998, School of Cognitive and Computing
Sciences, University of Sussex, UK
[5] J. D Lohn, S. P. Colombano, "A Circuit Representation
Technique for Automated Circuit Design", IEEE Transactions on
Evolutionary Computation, voi. 3, nr. 3, 1999, pp. 205-219.
[6] P. Mazumder, E. .M. Rudnick, Genetic Algorithms for VLSI
Design, Layout & Test Automation, Prentice Hali PTR, 1999.
[7] R Popa, M Iliev, V. Nicolau, "Evolutionary Systems for
Electronic Engineers", Proc. of the Scientific Conf with Int.
Participaiion INTER-ING 2003, 6-7 Noverabcr 2003, Tg. Mureş.
Romania, voi. II, pp. 187-192.

340

