Buletinul $tiintific al Universitatii "Politehnica” din Timigoara

Seria ELECTRONICA si TELECOMUNICATI

TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 49(63), Fascicola 2, 2004

On the Performances of Symbol Ranking Text
Compression Method

Radu Radescu, Razvan Popa’

Abstract — This paper presents an implemeatation of a
method for text compression, first described by
Shannon in 1951 and later, in 1997, by Fenwick Unlike
other compressors, which exploit symbol frequencics in
order to assign shorter codes to more frequent symbols,
this technique prepares a list of probable symbols to
follow the current one, ordered from most likely to least
likely. Tests were conducted on various input sources
and the results are shown here. The implementation
supports further optimizations, as it will be explained.
Keywords: symbol ranking, context, number of tries

I. INTRODUCTION

Symbol ranking compression is a method initially
described by Shannon in 1951 [1] and later, in 1996,
by Fenwick [2]. The algorithm is expecting to
encounter repeating strings in the input, which makes
it more suitable for repetitive text, such as human
language. It consists of two blocks: a seeking
tunction, for both compression and decompression,
which is used to suggest a symbol, and a processing
function, specific to the action being carried out.

Other similar methods do exist, by Bentley et al. [3],
Howard and Vitter [4] or Burrows and Wheeler [5]
(the Burrows-Wheeler Transform), but with little
reference to Shannon's original work. BWT could be
regarded as a symbol ranking compressor, with the
Move-To-Front list acting as a good estimate of
symbol ranking.

1. ALGORITHM DESCRIPTION

The algorithm extends one of Charles Bloom's
methods of offering possible symbols in the
approximate order of probability of their occurring in
the current context. Bloom [6] noted that the longest
earlier context, which matches the current context, is
an excellent predictor of the next symbol. However,
this implementation only uses contexts of a certain
maximal length, as it would be more time-consuming
to leave the context unbound.

|
Facultatea de Electronica g1 Telecomunicatii, Catedra de

Electronica Aplicata §i Ingineria Informaiei, Bd. luliu Maniu

nr. 1-3, sector 6, Bucuresti, e-mail: rradescu@atin .neuro pub.ro

25

The first block of the two mentioned above is
suggesting which the next symbol could be, based on
the current context. It starts by searching for a string
of the maximum permitted length matching the
current context and as soon as it is found, the next
symbol is offered. If the offer is rejected. the search
continues until there are no possible strings of this
length left in the buffer. Then the length is
decremented and the search starts over. The context's
length can go as low as 1, meaning a symbol could be
the context. but no lower. When a string is found to
be equal to the current context, the symbol next to it
is first checked to see if it was not offered before and
rejected, in which case it is not used again.

The second block performs as a validation. It reads a
symbo!l and asks for suggestions, a kind of guess
game. If it receives a good answer. it outputs a "1"
bit, otherwise a "0" bit: this is where the compression
occurs. It does not accept more than a certain number
of guesses, if, until that. the right symbo} has not been
offered the search is aborted, the correct symbol is
output, and the scheme moves on. On decompression
things work quite similar, but now the answers are
read from the compressed file, be it a "1" or a "0" bit,
or the correct symbol.

1t EXPERIMENTAL SOLUTION

A software implementation of this compression
method was performed. The program uses a circular
buffer to keep track of processed text, both on
compression and decompression. This means that
when the first symbol is read it is inserted at the first
address in the buffer, and subsequent symbols follow
it. until the end of the buffer is meet, then symbols are
again inserted from the first position, and so on.

Obviously, this way some possible better contexts in
the past are lost, and an ideal approach would store in
the memory all the previous text, instead of a bound
length buffer. That is why the buffer's length can be
varied to some extent, 10 try to accustom to different
input texts.

BUPT

To find a matching context the search begins in the
buffer at the previously inserted symbol with the
maximum context length. It secks backwards for a
symbol that is equal to the one at the end of the
context.

Having found one, it tries to match the symbol at the
half of the current context to the one at the half of the
possible candidate context and then the first symbols,
in the context and in the candidate. If all these
symbols match, then a complete string comparison is
performed, and. if it succeeds, the symbol is offered
and marked in the exclusion table. This approach is
used to avoid unnecessary comparisons, and many
false contexts fail the half- or start- symbol test.

An example of how the compression sequence could
look like is presented in the following. The text to be
coded is "the symbol is offered”, the context is
"Having found one [..]", from the previous
paragraph, all in the buffer. At most 5 unsuccessful
attempts are allowed. The maximum context size is 4.
In Table 1, the first column is the original text and
the columns to the right are the attempts of guessing
the next symbol. The rightmost cell on every row
contains the sequence of output symbols for the
corresponding input character, underlined characters
representing a binary value (a "1" bit or a "0" bit) and
the numbers between parentheses — the context length
at which the right symbol was found, or (n/a) if no
guess was successful. White spaces were converted
to underscores for reasons of readability.

Table |

Context: Having found one, it tries to match [...]

Text Attempts Output

t t 001 (2)

h 103)

¢ 1@

001 (4)

00000s (n/a)

1(4)

14

1(4)

1(4)

it ke c"a‘(_m

1(4)

014

i 0001 (1)

00i (2)

w

00000 (n/a)

000000 (n/a)

:’U'U"‘mm-—og—3<n:;@:,-_.

00000f (n/a)

000f na,

000e (na)

0001 (D)

— o === =t [n |n

00001 (1)

ale |~ |a|—-~lo
= |glalo o [—|=lc ||~
v |e |~

0001 (1)

For the considered text. the output is:

26

0011100100000s1111101000100100000 000000000
00f00010000001000010001.

which means that for the 168-bit input, the coder
outputs 110 bits. giving a compression ratio of
0.65476. Of course, the result depends a great deal on
the parameters used in the algorithm and on the

context (the previous symbols).
IV. COMPRESSION RESULTS

The following tests were conducted using 5 files of
various content and dimension:

s codulpenal.txt — Romanian text, legal;

e bookl.00] - English text, fiction book
(incomplete. in order to have about the same length as
the first one — a comparison between the two

languages' compressibility was attempted);

e objl - object code for VAX machine, binary file;

s pic - black & white fax picture (it is supposed to
have a big redundancy and to be very compressible);
e progl - source code in LISP.

Every file (except the first one) is part of the Calgary
Corpus collection [7]. The goal was to try different
scenarios for the use of this algorithm, as it is a
known fact that a compression method can yield
better results only for certain file types.

The program can be tuned by three parameters:

the length of the buffer:

the maximum context length:

the number of tries before outputting the
unchanged symbol.

(a)
(b)
(c)

The following graphics represent the compression
ratio of the symbol ranking method when modifying
only one of the parameters, keeping the others to
some fixed best-ratio values.

The columns grouped by five in the histograms below
(see Fig. |, 2, and 3) represent the compression ratio
of the files in the above listed order.

Ratio

Buffer size

Fig. 1. Compression ratio as funcuon of buffer size

BUPT

As the buffer length is increased, the compression
ratio improves, except for the object code file: still,
the buffer should not be too large, as the running time
can reach high values.

Fig. 2 Compression ratio as function of maximum context size

The maximum context size does not appear to make a
lot of difference; it probably helps occasionally to
have a larger context, but overall it seems to be less
important. The default value of this parameter should
be set to 4.

06 @ I
L : B
x .
02 ’
0+ -
3 6 9
Maximum number of tries

Fig 3 Compression ratio as function of maximum number of tries

More tries, more errors; if it does not get right fast,
chances are it will get wrong in the end. The
exception here is represented by the Romanian text,
for which more attempts available is good news.

As a conclusion, a maximum context length of 4-6
characters, with a maximum number of tries between
3 and 6, and a buffer as large as possible should yield
the best ratios.

V. REMARKS

The present implementation of the symbol ranking
text compression method does not completely follow
Fenwick's work. The two omitled steps can increase
compression and speed. Further optimization is
recommended, such as RLE — an implementation by
Fenwick [8] uses RLE and hash tables for a fast
compressor. Although the compressor is intended to
process human languages, it performs good on the
object code file.

27

REFERENCLS

(1) Shannon, C. E., "Prediction and Entropy of Printed English”,
Bell System Technical Journal, Vol. 30, pp 50-64, January 1951
(2] Fenwick, P, "Symbol Ranking Text Compiession with
Shannon Recordings”, Jowurnal of Umiversal Compuier Science,
Vol 3, No. 2, pp. 70-85, February 1997

[3) Bentley, J. L, Steator, D D, Tarjan R E., and Wei, V. K., "A
Locally Adaptive Data Compression Algonthm”, Commumcaiions
of the ACM, Vol 29, No 4, pp 320-330 April 1986

[4) Howard, P G, and Vitter J. S | "Design and Aralysis of Fast
Text Compression Based on Quasi-Arithmetic Coding”, Data
Compression Conference, pp 98-107, IEEE Computer Society, Los
Alamitos, California, 1993

[5] Burrows, M, and Wheeler, D J, "A Block-Sorting Lossless
Data Compression Algonthm®, SRC Rescarch Report 124, Drgual
Systems Research Center, Palo Alto, Cahfornia, May 1994,
available at gatekeeper dec com/pub/DEC/SRC/rescarch-
reports/SRC-124 ps Z

[6] Bloom, C . "LZP A New Data Compiession Algonthm”, Daio
Compression Conference, Vol 3. No. 2, pp. 70-85, IEEE Computer
Society, Los Alamitos, California, 1996.

(7] The Calgary Corpus can be found on the Internet at the address
ftp //ftp cpsc.ucalgary ca/pub/projects/text compression corpus

[8) Fenwick, P M., "Symbol Ranking Text Compiessors Review
and Implementation”, Software Practice and Experience, Vol 28,
No S, pp 547-559. Apri 1998

BUPT

