
Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara 

Seria ELECTRONICĂ si TELECOMUNICAŢII 
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS 

Tom 49(63), Fascicola 2, 2004 

Evaluation of Parameters Used in Lossless Text 
Compression With the Burrows-Wheeler Transform 

R a d u R ă d e s c u , l o n u ţ B ă l ă ş a n ' 

Abstract - This paper presents a study of parameters 
invoKed in the lossless text compression methods using 
the Burrows-VVhecler Transform (BWT). BWT (also 
known as Block Sorting) is one of the most efficient 
techniques used in data compression. Its purpose is to 
preprocess the text before applying a compression 
algorithm, thus providing a better use of the inner 
redundancy of the t ex t BTW converts the original 
blocks of data into a format that is extremely well suited 
for compression. This paper deals with the choice of the 
range for the block length for different types of text 
files, evaluating the compression ratio and comprcssion 
time. 
Keywords: Block Sorting, Move-to-Front (MFT), Run 
Length Encoding (RLE), Huffman coding, arithmetic 
coding 

1. INTRODUCTION 

With the Burrows-Wheeler Transform [1], the 
compression algorithm is the following. Given a text 
file, the Burrows-Wheeler Transform is applied on it. 
This produces a new text. which is suitable for a 
Move-to-Front encoding [2], [4] (since it has a great 
number of sequences with identical letters). The 
result is another new text, which is more suitable for 
Huffman or arithmetic encoding, usually preceded by 
a Run-Length Encoding (RLE), [3] since this text 
produces many small numerical values. The only step 
that actually performs compression is the third one 
(the statistical algorithm). The two other steps are 
meant to ensure that the Huffman/arithmetic 
encoding [6] is able to compress the data efficiently. 

II. BURROWS-WHEELER TRANSFORM 

The transform divides the original text into blocks of 
the same length, each of them being processed 
separately. The blocks are then rearranged using a 
sorting algorithm. This is why it is also called Block 
Sorting. [1] The resulting block of text contains the 
same symbols as the original, but in a different order. 
Sorting the rows will be the most complex and time 
consuming task in the algorithm, but present 
implementations can perform this step with an 

acceptable complexity. The transformation groups 
similar symbols, so the probability of fmding a 
character close to another instancc of the same 
character increases substantially. The resulting text 
can be easily compressed with fast locally adaptive 
algorithms, such as Move-to-Front coding combined 
with Huffman or arithmetic coding. 

The Block Sorting algorithm transforms the original 
string S of N characters by forming all possible 
rotations of those characters (cyclic shifts), followcd 
by a lexicographical son of all of the resulting strings. 
The output of ihc transform is the iast character of the 
strings, in the same order they appear after sorting. 
All these strings contain the same letters but in a 
different order. One of them is the original string S. 
An index of the string S is nceded. because its 
position among the sorted strings has to be known in 
order to reverse the transform. 

The transform is reversible because the output is a 
string containing the same letters as the input. By 
performing a lexicographical sorting, a string 
identical to the first column of the transform matrix M 
is obtained. Starting only with the last column of the 
matrix (the transform result), the first column of the 
matrix is easily recognizable. The unsorting column 
U requires the use of a transformation vector T [5]. 
The transformation vector gives the correspondence 
between the characters of the first column and the 
following ones, found in the last column. The 
procedure begins with a starting point and thus the 
rows contained in the original string are identified. 

Since BWT groups closely together symbols with a 
similar context, the output can be more than two 
times smaller than the output obtained from a regular 
compression. Compressing a text file with the 
Burrows-Wheeler Transform can reduce its size while 
the compression without the transform gave a weaker 
output. The compression method used in both cases 
consists of the three stages following BWT: Move-to-
Front, Run-Length Encoding and arithmetic coding. 

Facultatea de Electronică şi Telecomunicaţii, Catedra de 
Electronică Aplicată şi Ingineria Infonnaţiei, Bd. luliu Manm 
nr 1-3, sector 6. Bucureşti, e-mail: rradescu@atm.iieuro.pub.ro 

65 

BUPT

mailto:rradescu@atm.iieuro.pub.ro


III. MOVE- rO-FRONT 

Move-to-FronI encoding technique inputs a string 
and outputs a series of numbers, one for each 
character in the input string. AII the 256 characters in 
the ASCII code will have correspondents in a Jist 
with 256 numbers. It can be made an optimizaiion by 
putting the most ot^en characters on the first pJaces in 
the list SG that they will be coded with small numbers. 
If the input string has an important number of 
sequences containing the same letler in a row, then 
the output series will have many small values. This 
means that if an input string has numerous sequences 
containing the same letter in a row, then the Move-to-
Front encoding could be performed first. Huffman or 
arithmetic encoding could be applied afterwards. For 
the Huffman coding table an adequate choice is to 
use less space for small numbers than for greater 
numbers. The result should be a shorter sequence 
than the original one. 

IV. COMPRESSION PARAMETERS 

In order to evaluate the performances of BWT (the 
compression ratio and the time needed to perform the 
compression), it is suitable to perform the tests on 
different types of text files and to vary the block 
length of the currently processed input. The test files 
are text files (.txt, .ppt, and .doc) but also a .bmp file, 
containing a screen shot. 

The main goal of the test is to evaluate the 
contribution of BWT in the overall resuh of the 
compression process. The steps of the compression 
method are the following: 

• Run-Length Encoding; 
• Burrows-Wheeler Transfoirn; 
• Move-To-Front; 
• Run-Length Encoding; 
• Arithmetic compression. 

Initially, the complete 5-step algorithm was 
performed for the test file set and then the algoritlim 
was performed again, omitting the 2"^ step (BWT). 
Table 1 presents the original dimensions of the test 
files. 

Table 1 
File name Dimension (kB) 

fisl.doc 85 
fis2.doc 694 
fis3.doc 858 
fis4.ppt 90 
fis5.ppt 152 

img.bmp 2305 

The compression results for both cases are shown in 
Figure 1 (on the left - with BWT, on the right -
without BWT). 

Fig 1 Compression rarios with and without BWT 

For both cases (with and without BTW), the 
compression time was estimated using the same set of 
test files (in the same order, from left to right). The 
resuhs are shown in Figure 2. 

60 

40 

20 

Fig 2 Compression lime with and without BWT 

The obvious conclusion is that BWT improves 
essentially the compression ratio (two times, in 
average) with the price of increasing the compression 
time, but only for certain files from the test set. 

In order to estimate the performances of the transform 
as function of block length (in the compression 
process), a test file (.doc) of 858 kB was used. The 
block length represents the information transformed 
by BWT and compressed at a time (on a processing 
stage). The number of stages performed to obtain the 
compressed file is calculated as the overall dimension 
of the file divided by the block dimension. Taking 
into account that the file is read binary and the output 
is stored on bytes (characters of 8 bits) it results a 
number of 858,000 symbols for the test file. It is 
recommended to choose the block length sufficiently 
large in order to exploit the redundancy within. The 
compression results for different values of block 
length are presented in Table 2. 

The dimension of the compressed file is constantly 
decreasing until the block length exceeds 320,000 
symbols. Beyond this value, it appears a limitation 
and then a slight increasing of the resulting archive. 

To represent the corresponding graphic a logarithmic 
scale was used in order to largely emphasize the 
range of the values for the block length. The 
dimension of the compressed file as function of block 
length is shown in Figure 3. 

66 

BUPT



Table 2 
Block length (xlO^) Compressed file (kB) 

0.1 671 
1 256 
2 213 
3 196 
5 180 
10 165 
50 145 
100 142 
250 139 
286 134 
300 132 
325 131 
350 132 
400 134 
600 138 
800 138 

lOOt» lOOCw IIXCOO lOOOOOij 

Fig 3. Compressed file dimension as function of block length 

The dimension of the compressed file is constantly 
decreasing with block length. For high values of the 
block length, the compression ratio (calculated as 
original file dimension divided by compressed file 
dimension) is stabilized to the value of 6.35. 
Generally, the block length could be about 200,000 
bytes. In this case, both compression ratio and 
compression t ime reach their optimal values. 

In order to evaluate the algorithm complexity once 
the B W T was introduced, the compression time for 
both cases is compared. The B W T implies the 
permutation of the symbols within the file, as well as 
the sorting of the permutations. 

Thcrefore, it is obvious that the requircd time will 
increase, depending on the dimension of the block of 
processed data. 

The compression time as function of block length is 
shown in Figure 4. For large values of the block 
length, the compression time substantially increases 
in the case of applying the BWT. This result could be 
explained not oniy by the presence of the BWT but 
also by the adaptive arithmetic compression, which 
supposes a two-stage processing of the block and an 
adjustment of the codewords, depending on their 
frequencies and, eventually, on the number of 
symbols. 

V. C O M P A R I S O N WITH S T A N D A R D 
C O M P R E S S O R S 

WinRAR, WinAce and WinZip were chosen among 
the usual compression programs, in order to compare 
the performances of the algorithm presented above, 
appiied on the same 5-file test set. The dimensions of 
the compressed fi Ies (using the 3 standard 
compressors and the B W T algorithm) are shovvn in 
Figure 5, for the considered test fi Ies. 

2500 1 

2000 

1503 

•li 1 JOC fsJfloc lî jţx hs:j3f itnqcirp 

• sw^ac i rcOfvl 

Fig 4. Compression time as function of block length 

Fig. 5 Dimension as function of block length for BWT, WmAce, 
WinZip, WinRAR compressed files and original files 

The advantages of using the BTW algorithm for all 
files (and especially for the image file) are obvious. 
The compression ratio of the B W T algorithm is very 
close to the average of the compression ratios of the 
standard compressors. 

V. C O N C L U S I O N S A N D R E M A R K S 

The compression technique based on B W T provides 
good results in comparison with the general-purpose 
compressors. The algorithm has a high degree of 
generality and could be appiied on the majority of file 
types (text, image or other files). 

B W T uses the sorting of symbols in the original file, 
and the data processing is performed on blocks 
obtained by dividing the source file. An important 
issue in optimizing the performances of the B W T 
algorithm is to choose an adequate value of the block 

67 
BUPT



length. From this point of view, one have to take into 
account both the compression performances and the 
required computing resources. To get a good 
compression ratio and an accepiable compression 
time, the block length could be situaled around 
200,000 bytes. For block length less ihan 100,000 
bytes, the compression ratio is sensibly decreased, as 
well as the compression time. An excessive 
increasing of block length (over 800,000 bytes) 
produces an unacceptable compression time. 

Generally, one can observe a constancy of the 
compression ratio for the recommended value of the 
block length (200 kB), due to the high redundancy 
within the text or the image file. This value could be 
considered an upper bound for the block length, in 
order to assure a satisfactory result. 

The BWT algorithm can be applied on any type of 
data because the inverse transform is performed with 
no losses of information. Hence, BTW modifies the 
symbol positions but it does not change the 
probability distribution. As a result, the complexity of 
an implementation of the overall compression 
method (mcluding the other four steps) does not 
exceed the similar values of the classic lossless 
compression standards, based on LZW-type 
algorithms. 

The BWT represents an efficient data processing 
method that could be successfully integrated in any 
compression technique for general purpose. 

REFERENCES 

[1] M. Burrows and D. J. Wheeler, "A Block-Sorting Lossless 
Data Compression Algoriihm", 1994, repori available at 
http //gaIekeepc^.(lec.com/pub/DEC/SRC/^esearcll-
repons/abstracts/s^c-n•-124.1ltml. 
[2] M. Nelson, "Dala Compression with the Biurows-Wheeler 
Transfonîi". Seplember 1996, available at: 
hiip://dogma.neL'markn/anicles/bwi/bwt.htm. 
[3] M. A. Maniscalco, "A Run Length Encoding Scheme for Block 
Sort Transformed Data", 2000, available at; 
htlp://www.geocities.com/m99dalacompression/papers/rle/rle.html. 
[41 P. M. Fenwick, "Block Sorling Text Compression", 1996, 
available at: ftp.cs.auckland.ac.nz. 
[5] T. C Tell, J. G Cleary and 1 H. Witten, Text Compression, 
Prentice Hali, Englewood Cliffs, NJ, 1990. 
[6] R. Radescii, Compresia jărâ pierderi: metode şi aplicaţii, 
Mairix Rom, Bucharest, 2003. 

68 BUPT

http://www.geocities.com/m99dalacompression/papers/rle/rle.html
ftp://ftp.cs.auckland.ac.nz

