CONTRIBUTIONS TO THE
DEVELOPMENT OF REAL-TIME
PROGRAMMING TECHNIQUES

AND TECHNOLOGIES

A thesis submitted for the degree of

Doctor of Philosophy (PhD) Engineer

University “Politehnica” of Timisoara
COMPUTER SCIENCE domain

by

Ing. Daniel Iercan

Scientific advisor: prof.univ.dr.ing. Nicolae Robu

Scientific referents: prof.univ.dr.ing. Ioan Dumitrache
prof.univ.dr.ing. Tiberiu Letia
prof.univ.dr.ing. Toma-Leonida Dragomir

s hl T ~ 99
UNIV. “POLT ”*HN’-‘(.A
-‘F,’!HI \ PN

Day of dissertation: 27.09.2008

BUPT

Series PhD Theses of UPT are:

1. Automatica 7. Inginerie Electronica si Telecomunicatii
2. Chimie 8. Inginerie Industriald

3. Energetica 9. Inginerie Mecanica

4. Ingineria Chimica 10. Stiinta Calculatoarelor

5. Inginerie Civila 11. Stiinta si Ingineria Materialelor

6. Inginerie Electrica

"Politehnica" University of Timisoara initiated the series above with the purpose of
sharing expertise, knowledge and research results taken within the School of
Doctoral University. Series contain, according H.B.Ex.S. 14 / 14.07.2006, doctoral
theses held in the university since 1 October 2006.

Copyright © Politehnica Publishing - Timisoara, 2008

This publication is subject to the provisions of copyright law. Multiplication of this
publication, in full or in part, translation, printing, re-use of illustrations, exposure,
broadcast, reproduction microfiims or any other form is permitted only in
compliance with the provisions of Romanian Law of copyright in force and with
obtained written permission for use from the University ,Politehnica” of Timisoara.
All violations of these rights will be penalized according to Romanian law of
copyright.

Romania, 300159 Timisoara, Bd. Repubilicii 9,
tel. 0256 403823, fax. 0256 403221
e-mail: editura@edipol.upt.ro

BUPT

mailto:editura@edipol.upt.ro

Word before

This PhD thesis is the result of my scientific work in the Department of
Automation and Applied Informatics, Faculty of Automation and Computers at
»Politehnica” University of Timisoara

In this thesis there have been analyzed new programming techniques and
technologies for developing real-time applications and there have been presented
examples of real-time control applications.

I would like to express my gratitude for all those that have offered their
moral and scientific support and helped me finalize this thesis.

For the support and good advice I would like to thank to may scientific
supervisor prof. dr. ing. Nicolae Robu. I would like to thank to prof. dr. ing.
Christoph Kirsch for offering me the chance to work in an international research
group.

I express my consideration for the members of the PhD committee: prof. dr.
ing. Octavian ProOtean, chair of the committee and dean of the Faculty of
Automation and Computers at ,Politehnica” University of Timisoara, prof. dr. ing.
Ioan Dumitrache from University Politehnica of Bucharest, prof. dr. ing. Tiberiu
LeOlia from Technical University of Cluj-Napoca, and prof. dr. ing. Toma-Leonida
Dragomir from ,Politehnica” University of Timisoara, for accepting to be in the
committee and for the time they have spent in analyzing my thesis.

I would also like to thank to dr. ing. Arkadeb Ghosal for all the support he
had offered me. I thank also to my colleges from B624, to Elza and Fedo for all their
help.

Timisoara, September 2008 Daniel Iercan

BUPT

To my wife and to my parents!

Iercan, Daniel

Contributions to the Development of Real-Time Programming
Techniques and Technologies

UPT doctoral theses, Series. 10 Nr. 8, Politehnica Publishing, 2008, 156
pages, 114 figures, 2 tables.

ISSN: 1842-7707
ISBN: 978-973-625-719-3

Keywords:
real-time, programming language, compiler, application, control, Java,
efficacy

Summary,

In the last two decades there has been an accelerated growth in the
complexity of real-time applications. This growth leads to the evolution
of the real-time programming. Thus, if in early age of real-time
programming both functionality and timing were expressed in the same
programming language, nowadays real-time programming requires
separation of timing from the functionality. Thus in the last few years
there has been a great interest in developing new programming
constructs for specifying temporal behavior of an application. The work in
this thesis is based on Hierarchical Timing Language, which is a language
for specifying timing and interactions between sets of periodic tasks.
After HTL language is presented (Chapter 2), there are described two
possible implementations of this language (Chapter 3 and Chapter 4). An
experimental as well as an analytical comparison of the two
implementations is presented in the last part of Chapter 4. In Chapter 5
it is described a real-time control application for the Three Tanks System
implemented in HTL. Chapter 6 presents an implementation of HTL for
Exotask; Exotask is a new programming construct that uses Java. The
HTL implementation for Exotask has been tested by developing a real-
time application for a quad-rotor helicopter, named JAviator. In Chapter
7 it is presented an implementation of HTL that targets a microcontroller,
implementation has been tested through a control application for
JAviator, a detailed analysis of the performance is also presented. In
Chapter B it is discussed a solution for modeling an HTL description in
Simulink. Thesis ends with a short summary of the obtained results.

BUPT

Contents

List of Figures ix
List of Tables XV
Glossary xvii
1 Introduction 19
1.1 Related Work o i e e e e 21
1.1.1 Timed Languages i v v it vt i 22

1.1.2 Java and Real-Time Programming 23

1.2 Overview e e e e e e e e e e e e e 24

2 Hierarchical Timing Language 25
2.1 0verview e e e e e e e e e e e e e e e e e e 25
2.2 Syntax e e e e e e 28
2.3 Well-Formed and Well-Timed HTL Descriptions 32

3 Embedded Machine 35
3.1 Original Embedded Machine 35
3.1.1 List of E code Instructions 37

3.1.2 Handling ParallelisminEcode 37

3.2 Hierarchical Embedded Machine 39
3.2.1 List of HE code Instructions 41

3.2.2 Handling Hierarchy in HEcode 43

4 HTL Compiler 47
4.1 Flattening HTL Compiler, 48
4.2 Hierarchy-Preserving HTL Compiler 49
4.3 Compilers Analysis e 55

BUPT

CONTENTS vi
4.3.1 Overview on the Complexity of the Two Compiler Algorithms 56

4.3.2 Detailed Complexity Analysis. 57
4.3.2.1 Worst Case Generated Code Size. 57

4.3.2.2 Runtime Overhead 59

4.3.3 Experimental Analysis o oL, 59

5 Case Study: Three Tanks System 61
5.1 Three Tanks System Overview 61
5.2 HTL Implementation of the Three Tanks System Controller 63
5.2.1 Architecture e 64

522 Results e e 64

6 Exotask HTL 69
6.1 Exotask HTL Grammar @ i v it i it e i e e e 73
6.2 Exotask HTL Scheduler 75
6.3 Case Study: JAviator e e e 76
6.3.1 Exotask-HTL Implementation of the JAviator LLC 77
6.3.1.1 Results e 80

7 Micro HTL 83
7.1 Micro Embedded Machine 83
7.1.1 Micro EDF Scheduler 83

7.1.2 Micro Embedded Machine Implementation 85

7.1.3 Micro E Machine Performance 87

7.2 MicroHTLCompiler it i e e 91
7.3 Case Study L e e e e e 92
7.3.1 3TS Controller e 92
7.3.1.1 Timing Analysis v v i i 92
7.3.1.2Results e 94

7.3.2 JAviator Low-Level Controller 94
7.3.2.1 Timing Analysis 97

7.3.2.2 Results 98

BUPT

vii CONTENTS

8 HTL to Simulink
8.1 Increment/Decrement Counter
8.2 Mapping HTL Programming Elements to Simulink Bocks
8.3 Developing Real-Time Control Applications with HTL and Simulink .
8.4 CaseStudy i e e e
8.4.1 Simulink Model for the 3TS Controller.
8.4.2 Implementation

9 Conclusion
9.1 Personal Contributions e e
9.2 Future Work o e e e e e e e e e e

Three Tank System Mathematical Model
JAviator Mathematical Model
Encoding of HE code Instructions for Micro HTL

HTL Grammar

m O O © >

HTL Descriptions

E.1 Increment/Decrement Counter v v v v v ...

E.2 Three Tanks System Controller Distributed HTL Implementation

E.3 Three Tanks System Controller Micro HTL Implementation

E.4 Three Tanks System Controller HTL-Simulink Implementation

E.5 Exotask-HTL Graphs
E.5.1 Exotask Graph for mControllerMode
E.5.2 Exotask Graph for Communication Modules

E.6 Micro JAviator JAviator Low-Level Controf

F Simulink Blocks

References

101
101
103
110
110
112
113

115
117
117

119
123
129
133

137
137
138
140
142
143
143
144
146

149
153

BUPT

CONTENTS viii

BUPT

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6

List of Figures

HTLtask model i 25
Sequential composition Lo oo o 26
Parallel composition o e 26
Refinement i e e 26
Direct task communication. o 00000 27
Inter task communication through communicators 27
Timing analysis of tasksinmodem 30
E machineoverview o e 36
Parallel compositioninEcode 38
HE machine overview 000, 39
Handling hierarchy: HTL descriptionexample 44
Handling hierarchy: implicit tree evolution 44
Structure of compiler and runtime system 47
Number of E code instructions 60
Number of HE code instructions 60
Schematic representationof 3TSplant 61
3TSplant. e e e e e e e e e 62
3TS Controller: Hierarchical Structure 63
3TS Controller: Data-Flow 6‘4
3TS Controller: Timing i v i v i i i i 65
3TS Controller: Architecture 65

BUPT

LIST OF FIGURES X

5.7 P Controller for both T1 and T2 (T1 without perturbation, T2 with

perturbation) e e 66
5.8 PI Controller for both T1 and T2 (T1 without perturbation, T2 with

perturbation) e e 67
5.9 P-PI controller for both T1 and T2 (T1 with perturbation, T2 without

perturbation) e 67
6.1 Overview of Exotask programming model 70
6.2 Example of Exotask graph in graphical editor 71
6.3 Example of Exotask graphin XML 72
6.4 Example of Exotask graphinlJava e e e 72
6.5 Example of global timing annotation for HTL grammar 73
6.6 Example of communicator timing annotation for HTL grammar . . . 74
6.7 Example of task timing annotation for HTLgrammar 74
6.8 Example of predicate timing annotation for HTL grammar 74
6.9 Example of connection timing annotation for HTL grammar 75
6.10JAvVIator L e e e e e e e 76
6.11J)Aviator control overviewo 77
6.12The HTL Program Structure of a JAviator Flight Controller 78
6.13Data-Flow View of the Top-Level HTL Program in Fig. 6.12 79
6.14Timing View of the HTL Program in Fig. 6.12 79

6.15Interarrival times of the ReadFromJAviator task, when no concurrent
allocationisdone e 80
6.16Interarrival times of the ReadFromJAviator task, when concurrently

allocating 2MB persecond i e 81
7.1 MicroHTL runtimettt 84
7.2 Micro EDF schedulingexample 84
7.3 Runtime overhead introduce by the release task operation in the

WOTSECASE v . o s e e e e e e e e e e 85
7.4 MicroEmachine. e 86
7.5 Instructionencoding 87

7.6 Time interval between two consecutive releases of task groundConnect 88

aN

BUPT

Xi

LIST OF FIGURES

7.7 Time interval between two consecutive releases of task groundConnect

foraperiodloadof95% o000,
7.8 MEMONY USAGE+ v v v ot et e e e e e e e e e e
7.9 Micro E machine runtime overhead for JAviator control application, ,

for different modes combinations o000
7.10Micro E machine total runtime overhead over a period for JAviator

control application, for different modes combinations
7.11Micro HTL compiler overview
7.12Micro HTL compiler o i e
7.133TS Controller: Hierarchical Structure
7.143TS Controller: Timing
7.153TS Controller: Timing analysis
7.163TS Controller: Experimental results

7.17The Structure of the Low-Leve Controller Implemented in Micro JAvi-

7.18Timing and data-flow beforeconnect
7.19Timing and data-flow afterconnect
7.20Timing analysis beforeconnect
7.21Timing analysis afterconnect

7.22Sensors values when using low-level controller implemented in micro

7.23Actuators values when using low-level controller implemented in mi-
CrOHTL e e e e

8.1 Increment/decrement counter: structure
8.2 Increment/decrement counter: timing
8.3 Increment/decrement model firstlevel
8.4 Simulink model increment/decrement root program
8.5 Simulink model for counter communicator.
8.6 Simulink model for M.incdecmodule.
8.7 Simulink model for mode selector in module Miinc

8.8 Simulink model for mode m.dec

88
89

90

90
91
92
93
93
94
95

95
96
97
98
98

99

BUPT

LIST OF FIGURES Xii

8.9 Simulink model formode m.inc 107
8.10Simulink model fortasktdec 108
8.11Simulink model for mode switch mdectom.nc 109
8.12Counterevolution e 109
8.13HTL-Simulink tool chain 110
8.143TS controller: hierarchical structure. 111
8.153TS controller: dataflow 111
8.163TS controller: timing 112
8.177Top level of the 3TS controller Simulink model 112
8.18Model Simulink for the root program of 3TS controller 113
8.19Evolution of the level of the water in T'1 and 72 (h10 = 50, h20 = 40

for the simulated controller 113
8.20Evolution of the level of the water in T'1 and 72 (h10 = 50, k20 = 40

for the controller implemented inC 114
A.1 Three Tanks System i .. 119
A.2 Simulink model of the 3TSplant 122
A.3 Java simulatorofthe 3TSplant 122
B.1 Quadrotor block diagram. 123
B.2 JAviator: detailed Simulink model. 125
B.3 JAviator: roll Simulink model. 125
B.4 JAviator: pitch Simulink model.t 126
B.5 JAviator: yaw Simulink model. e 126
B.6 JAviator: z Simulink model., 126
B.7 JAviator: x Simulink model. 127
B.8 JAviator: y Simulink model. 127
C.1 Instructionencodingt 129
C.2 Callinstructionencoding it 129
C.3 Release instructionencoding0 129
C.4 WriteFuture instructionencoding 129
C.5 SwitchFuture instructionencoding 130

PN

BUPT

xiii LIST OF FIGURES
C.6 ReadFuture instructionencoding 130
C.7 Jumplfinstructionencoding 0oL 130
C.8 JumpAbsolute instructionencoding 130
C.9 JumpSubroutine instruction encoding 130
C.10CopyRegister instruction encoding 131
C.11PushRegister instruction encoding, 131
C.12PopRegister instructionencoding 131
C.13GetParent instructionencoding 131
C.14SetParent instruction encoding 131
C.15CopyChildren instructionencoding 131
C.16UpdateChildren instruction encoding 132
C.17DeleteChildren instruction encoding 132
C.18replaceChild instruction encoding 132
C.19CleanChildren instruction encoding 132
C.20Return instructionencoding 132

BUPT

LIST OF FIGURES Xiv

BUPT

List of Tables

4.1 Comparison of the two compilers 56

5.1 Control quality indicators. 68

BUPT

GLOSSARY XVi

BUPT

Glossary

BET Bounded Execution Time

E machine Embedded machine

EDF Earliest Deadline First
GC Garbage Collector
HLC High-Level Control

HTL
JVM
LET
LLC
PET
RTGC
RTSJ]
SST
WCET
WCTT
WRT
ZET

Hierarchical Timing Language
Java Virtual Machine

Logical Execution Time
Low-Level Control

Physical Execution Time
Real-Time Garbage Collection
The Real Time Specification for Java
Super Simple Tasker
Worst-Case Execution Time
Worst-Case Transmission Time
WebSphere Real Time

Zero Execution Time

BUPT

GLOSSARY Xviii

BUPT

1. Introduction

A real-time application is an application that processes information on-line (i.e., it reads
the inputs directly from the source that produces them and writes the outputs directly to
the destination that uses them), that controls live a plant, and that respects some temporal
constraints to ensure that: input data is read often enough so that no significant change
is lost, input data processing finishes on time, and output data is written fast enough so
that it is well-timed and efficient [1].

Nowadays real-time applications can be found everywhere: from the flight control
of an airplane to the steering control of a car, and from the applications that provide
stock information in real-time to the game consoles. One important category of real-
time applications is represented by the real-time control applications, which can contain
periodic, sporadic, and aperiodic tasks. In this thesis the focus is on real-time control
applications that contain only periodic tasks. This type of applications typically consists
of reading sensor values from a plant, performing some computations with those values
(e.g.: filtering input data, computing control laws, etc.), writing commands to the plant
actuators, and repeating previous steps with a frequency that depends on the controlled
plant. Thus, it is obvious that for such an application to work properly, each task has to
respect strict timing constraints. Many of the control applications that exist today require
multiple modes of operations that may have similar or different timing behavior, thus
expressing timing behavior of such an application using a general purpose programming
language (e.g.: C, Java, etc.) may result in a very complicated source code, which is
very difficult to be maintained and more important very difficult to be checked formally
for temporal behavior correctness. Thus, in this thesis will be presented new high-level
programming constructs for describing timing behavior of real-time control applications;
the focus is on how such programming constructs can be implemented. Examples of
real-time control applications developed using this new programming constructs will be
presented also.

Hierarchical Timing Language (HTL) [2; 3; 4] is a time-triggered language for
specifying temporal behavior and interactions between periodic tasks, HTL can not express
functionality of an application, which has to be implemented in a different programming
language (e.g.: C, Java, etc.). HTL is considered to be the successor of Giotto [5]. HTL can
express temporal behavior for multi-mode applications through the sequential compaosition
of sets of tasks. Some control solutions have to be implemented in applications that
contain periodic tasks that run at different frequencies; HTL support this through parallel
composition of sets of tasks. Many of the plants that need to be control have a variable
mathematical model in which case the control solution consists of using different control
laws for different mathematical models, thus in such a scenario the control application
consists of multiple modes having similar temporal behavior but different functionality.
HTL addresses this issue by allowing the specification of an abstract timing specification,
which is inherit by all the modes that have similar temporal behavior. Thus in HTL a
hierarchical structure of timing specifications can be constructed. An HTL description can

have only one root timing specification. The hierarchical structure of an HTL description 4
CCLITEIINICA®

!
-~ P

V& iy

R SV

, CRA
v ¢

{
RUIEOT CENTRALA 4

BUPT

1. INTRODUCTION 20

is useful especially when properties like schedulability have to be checked, i.e., only the
root timing specification has to be checked, and if the property is true for the root timing
specification it will be true for the rest of the specifications in the HTL descriptions, since
all of them inherit the root timing specifications.

The entire work presented in this thesis is based on HTL. Thus, after an informal
presentation of the syntax of HTL, there are presented two implementations of this lan-
guage. As in the case of its predecessor, HTL descriptions are not compiled directly into
machine code, but into £ code, which is interpreted by a virtual machine, namely, Embed-
ded Machine (E machine) [6]. This approach makes timing behavior that is expressed in
HTL portable, i.e., it will be the same regardless of the platform on which the HTL descrip-
tion is executed, provided that there exists an E machine implementation for that platform.
The first HTL implementation targets the original E machine, nevertheless since the origi-
nal set of E code instructions has not been designed to support hierarchical structure, the
HTL compiler, named, flattening HTL compiler, needs to flatten the hierarchical structure
of an HTL description before compiling it intro E code. Since the flattening algorithm may
cause an exponential blow in the number of modes, a second implementation of HTL is
presented. The second implementation of HTL targets an extended version of the E ma-
chine, named, Hierarchical E machine (HE machine) {7], which can handle hierarchical
structure at runtime. The instructions set that can be interpreted by the HE machine is
a super set of the original E code instructions set, named, HE code instructions set. The
compiler that transforms an HTL description into an HE code program, named, hierarchy-
presetving HTL compiler, is also described in this thesis. The two HTL implementations
are then compared both analytical and experimental. The comparison considers the size
of generated E code program and HE code program for the same HTL description, and the
runtime overhead introduced by interpreting an E code program and an HE code program,
which have been generated for the same HTL description. Both the E machine and the
HE machine are implemented in C for Unix. The compilers that target the two virtual
machines are implemented in Java.

Given that in the last few years there has been a growing interest in using Java as
a programming language for real-time application, in this thesis there is also presented
an HTL implementation for Exotask [8; 9]. Exotask is a new programming construct for
developing real-time applications using Java. One of the advantages of Exotask is the sup-
port for extension, i.e., it is possible to define new timing grammars and new schedulers
that can understand the new grammars. The HTL implementation for Exotask consists
of a timing grammar that can express HTL syntax and a scheduler that implements the
hierarchy-preserving HTL compiler, which converts an Exotask timing specification that
uses HTL grammar into an HE code program represented in Java, and a Java implemen-
tation of the HE machine, which can execute the compiled Exotask timing specification.

All the HTL implementations discussed above can be used to develop real-time
applications that are designed to run on hardware platforms on which a real-time oper-
ating systems is running (e.g., Unix). However, there are many embedded systems that
are based on less powerful hardware, namely, a microcontroller, on which there are not
enough resources to run a real-time operating system. Thus in this thesis a fourth HTL
implementation, which targets a microcontroller, is presented. The implementation con-
sists of an optimized version of the HE machine and a modified version of the hierarchy-
preserving HTL compiler that targets the optimized HE machine. For scheduling tasks
released by HE machine a small real-time executive, which uses EDF as a scheduling
algorithm, has been implemented.

Knowing that it is a common practice for control engineers to use modeling tools
like Simulink [10] to develop and test control algorithms, it is presented a possible mapping
of an HTL description to a Simulink model and the implementation of a tool that can
be used to covert an HTL description into a Simulink model using this mapping. The

BUPT

21 1.1 Related Work

Simulink model of an HTL description can be used to simulate both timing behavior and
functionality of a real-time control application before it is implemented. Another advantage
is represented by the possibility to generate C code from Simulink models, which can be
used as implementation of tasks functionality.

All the ideas discussed in this thesis have been validated and tested by imple-
menting real-time control applications for two plants: JAviator[11; 12], and Three Tanks
System (3TS).

1.1. Related Work

In the last two decades real-time programming model has evolved from the physical-
execution-time (PET), to bounded-execution-time (BET), to zero-execution-time (ZET),
and to logical-execution-time (LET) [13].

PET [13] programming consists of wringing a real-time application in a sequential
(usually low-level) programming language (e.g., assembly, C, etc.); the entire timing of
the application depends on knowing exactly the execution time of each instruction. Thus
real-time applications can be developed using PET programming only for architectures
that have instructions that execute in constant time (i.e., microcontrollers). Timing of
PET application is very accurate; nevertheless any small change in the source code can
change the entire timing of the application, thus PET is not suitable for developing complex
real-time applications.

BET {13] programming unlike PET uses concurrent proagramming. Thus a real-time
application consists of a set of periodic, sporadic, and aperiodic tasks that interact with
each other. For the development of such application there are used programming lan-
guages associated with mechanism of real-time programming, which are usually included
in a real-time executive [1] or a real-time operating system (i.e., Real-Time Linux [14]).
A real-time scheduler (i.e., Earliest Deadline First (EDF) [15]) is used to schedule the set
of tasks. Nevertheless, adding a new task to the existing set of tasks will affect the timing
of the entire program and might cause the program to miss its deadlines.

ZET is the programming model used by synchronous languages [16] (i.e., Lus-
tre [17], Esterel [18], etc.). Synchronous languages assume that the hardware configu-
ration is powerful enough to execute tasks in zero time, e.g., a task reads its input and
writes its output in zero time. Many of the synchronous languages allow using of formal
verification in order to prove certain properties of the program. Thus synchronous lan-
guages have been used to develop safe critical control applications, i.e., Lustre has been
used for implementing flight control for Airbus A380 [19].

LET [5] is the newest programming model for developing real-time application.
LET has been introduced by Giotto [5], a language that can specify timing behavior and
interactions between periodic sets of tasks. LET model assumes that a task reads its
inputs, does some computation, and the result will be available after a period of time,
called the LET of the task, even if the tasks finishes execution earlier. LET model allows
sequential composition, parallel composition, and refinement of sets of tasks [2; 5].

Temporal behavior of a real-time application is either specified implicitly in written
source code or explicitly using special high-level programming constructs [20]. Implicit
specification of temporal behavior is often used for developing relatively simple real-time
application, e.g., applications that run on a microcontroller, where there is an infinite loop
that does all the computation and that can be interrupted by interrupt event handlers,
which are used to communicate with the environment, the temporal behavior of the ap-
plication is implemented using timers. One very important disadvantage of using implicit
specification of temporal behavior is that formal analysis can not be used in order to test
certain properties of the application. Thus high-level programming languages have been

BUPT

1. INTRODUCTION 22

developed to allow specification of temporal constraints, i.e., Lustre [17] and Esterel [18]
have mathematically formalized semantics in order to allow verification of temporal be-
havior, they can specify both timing and functionality, Giotto [5} and Hierarchical Timing
Language (HTL) [2] are two programming languages for specifying temporal behavior of
real-time applications.

The work presented in this thesis focuses on the implementation of high-level
programming constructs that are based on the LET programming model and that allow
specification of temporal behavior explicitly.

1.1.1. Timed Languages

Giotto [5] is the pioneer of timed languages, it has introduced the concept of LET. Af-
ter Giotto, other languages have been developed based on the concept of LET: Timing
Definition Language (TDL) [21], Timed Multitasking (TM) [22], xGiotto [23], Timing Spec-
ification Language (TSL) [24], and Hierarchical Timing Language (HTL) [2]. TDL extends
the structure of Giotto with the notion of parallel composition. TM and xGiotto are based
on the notion of LET, nevertheless, unlike Giotto, they are not timed-triggered languages,
but event-triggered languages. TSL relaxes the notation of LET of a task, namely, the LET
of a task is not implicitly defined by the period of the task, but by the period, the offset, and
duration of the task; TSL also supports direct communication between tasks in the same
mode. HTL is the newest timed-triggered language, which is based on the concept of LET.
HTL supports parallel composition as TDL, relaxes the LET of a task and supports direct
communication between tasks in the same mode as TSL, supports hierarchical structure,
and introduces the notion of communicator. In HTL the LET of a task is defined by the
period of the task, the latest read input port and the earliest written output port.

The focus in this thesis is on the implementation of HTL. Semantics of HTL has
been discussed in details in {3]. The implementation of HTL consists of designing and
implementing a compiler and of designing and implementing a virtual machine, on which
compiled HTL descriptions can be executed. As in the case of Giotto and all the languages
based on it, the target platform for HTL is the Embedded Machine (E machine) [6], which
is a virtual machine that interprets the so-called E code. In this thesis are presented two
HTL implementations. One implementation is based on the original E machine [6], which
has been introduced for Giotto. Since the E machine has not been designed to support
hierarchical structure at runtime, the compiler that converts an HTL description into an
E code program has to flatten the hierarchical structure of an HTL description, which leads
to an exponential blow in the number of modes, and in the end to an exponential blow
in the number of generated € code instructions and in the runtime overhead introduce by
interpreting such an E code program. Thus, a second HTL implementation, which targets
an extended version of the E machine that supports hierarchical structure at runtime, is
also presented. The extended E machine is called the Hierarchical Embedded Machine
(HE machine), and the code interpreted by it is called the Hierarchical E code (HE code).
In this thesis it is presented a complexity analysis of the compilers designed for the two
HTL implementations and an analysis of the runtime overhead introduced by interpret-
ing E code and HE code. Such an analysis has not been conducted before for any of the
other LET based languages. The HTL implementation that is based on the HE machine
has been done for two different types of platforms, e.g., for Unix based platforms and
for a microcontroller based platform on which there is no operating system running. The
HTL implementation for microcontroller (micro HTL) is new to LET based languages; all
the existing implementations target either Unix, OSEK, or Windows based platforms. Two
control applications have been implemented using micro HTL, for both applications a de-
tailed timing analysis, which considers both the worst case execution time of tasks and the
runtime overhead introduced by the HE code interpretation, has been conducted. Timing

BUPT

23 1.1 Related Work

analysis that considers E machine runtime overhead has not been done before for any of
the LET based languages.

1.1.2. Java and Real-Time Programming

Java is one of the most used programming languages for regular (non-real-time) ap-
plications. Nevertheless, when it comes to real-time application low-level programming
languages (e.g.: assembly) and medium-level programming languages (e.g.: C) are still
intensively used. The reason for not using high-level programming languages for develop-
ing real-time application is represented by the need for high speed of computation (many
real-time application requires latencies below one millisecond), and more important, the
need for deterministic temporal behavior. Although the need for height speed of computa-
tion is mainly solved by the powerful hardware that exists today, the second requirement
still remains.

Attempts to make Java suitable for developing real-time applications have been
recorded since 1997, e.g., creating an operating system that has Java support built in [25],
or creating an microprocessor that is able to interpret Java bytecode [26]. Nevertheless
before 2000 when The Real Time Specification for Java (RTSJ) [27] has been introduced,
the work in this field lacked clear direction. RTSJ] defines some guide lines for making Java
a programming language for real-time applications, e.g.: backward compatibility with non
real-time Java programs, support the principle "Write Once, Run Anywhere", reguire no
syntactic extensions to the Java language, allow implementer's flexibility, etc. [28].

Recently, one important source of no-determinism in a Java application, which was
introduced by Garbage Collector (GC), has been eliminated, since a real-time garbage col-
lection (RTGC) for Java [29; 30; 31] has been proposed. This made possible the use of Java
programming language for developing real-time application. Nevertheless, implementing
in Java periodic task that have a frequency higher then 1Khz is currently impossible due
to the overhead introduced by the RTGC (which is around 1ms). Different solutions have
been proposed to solve this problem, and all of them suggested that a special type of
tasks, which have a private heap and which can not access the global heap, should be
used (e.g., Eventrons [32], Reflexes [33], and StreamFlex [34]). This way a real-time
task could interrupt the GC; thus the GC does not influence the temparal behavior of a
real-time task. However, there are and there will be embedded system that can not afford
to use Java as a development language, this is mainly due to that fact that although JVM
has become predictable it will still require a relatively powerful hardware (in terms of power
of computation and memory), i.e., the interpretation of byte code introduces an overhead
that makes it impossible to run a JVM on a microcontroller, which is a hardware platform
that is often used for embedded systems. Thus the use of Java as a programming lan-
guage is feasible for complex embedded system for which spending money on a powerful
hardware is less important than the benefit of being able to use an object-oriented pro-
gramming language, e.g., next generation battleships [35], whereas for simple embedded
systems using a microcontroller and C as a programming language is less expensive and
thus more feasible, i.e., for embedded system that are produced in huge quantities every
penny matters.

Exotask [8] is a new programming construct for developing real-time applications
using Java. Exotask addresses low latency problem in a less restrictive way as compared
to previous solutions, but still using a similar approach, e.g., tasks that have their own
private heap. Exotask system support pluggable schedulers. An interface for developing
third-party schedulers has been defined, which is different from RTS] where only virtusi
machine vendors can define new schedulers. But, maybe the most important achievement
of Exotask is that Exotask applications are not only portable from the functionality point of
view but also from the temporal behavior point of view, which is not the case for many other

BUPT

1. INTRODUCTION 24

currently existing solutions since they rely on platform dependent information. Timing
portability is achieved in Exotask by using LET programming model [5].

In this thesis it is presented a new timing grammar for Exotask that is based on
the HTL semantics. A new scheduler that understands the new timing grammar is also
presented; unlike the scheduler that comes with the Exotask distribution, which uses a
single physical thread to run all the tasks in an Exotask application, the new scheduler
supports single threading as well as multithreading execution of tasks.

1.2. Overview

The remaining of this thesis is structured in eight chapters. Chapter 2 describes informally
the semantic of HTL and the features of this language: sequential composition, parallel
composition, refinement, and distribution. Target platform for a real-time application de-
veloped with HTL is represented by the E machine, which makes HTL application portable
in terms of timing behavior; in Chapter 3 are presented two version of the E machine:
the original E machine [6] that was initially developed for Giotto [5], and an extended
E machine, which offers support for handling hierarchical structure at runtime, namely,
HE machine. In Chapter 4 are presented two HTL compiler aigorithms, i.e., flattening HTL
compiler, which targets E machine, and hierarchy preserving HTL compiler, which targets
HE machine. The two compilers are then analyzed and compared both formally and exper-
imentally. Next, Chapter 5, depicts Three Tanks Systems (3TS) plant, which is one of the
two plants that are used as case studies in the thesis. An HTL implementation of a control
application for the 3TS plant is also presented; the implementation uses all HTL features.
Chapter 6 presents the Exotask programming constructs, then an implementation of the
HTL grammar for Exotask and a scheduler that understands the new grammar. The chap-
ter ends with a presentation of the JAviator [11], which is the second plant used as a case
study in the thesis. Finally, the new Exotask-HTL grammar is used to develop a controller
for the JAviator. Many embedded systems are based on microcontrollers, thus Chapter 7
describes an implementation of HTL that targets a microcontroller; the implementation is
named micro HTL. The micro HTL is then used to develop two control applications: one
for 3TS plant and the other one for the JAviator plant. The simulations show that the
efficacy [1] of the micro HTL is between 75% and 80% for the JAviator control application
and about 95% for 3TS control application. Chapter 8 presents a way of modeling an
HTL description in Simulink and how such a model can be used to improve development
of real-time application. The chapter ends with a case study for the 3TS plant. Finally,
Chapter 9 concludes the thesis.

BUPT

2. Hierarchical Timing Language

Hierarchical Timing Language (HTL) [2; 3; 4] is a timed triggered programming language
that is based on the concept of Logical Execution Time (LET), which has been first intro-
duced for Giotto [5]. HTL is a high level programming language for specifying timing of a
real-time application. It can only be used to define the timing of a real-time application,
and not the functionality, which has to be specified in regular programming language (e.g.,
C, Java, etc.). Besides of separating the functionality of a real-time application from its
timing, HTL also separates, in the spirit of platform-based design [36], the timing specifi-
cation of a real-time application (i.e., release time and termination time of a task), from the
implementation (i.e., WCET of the task). Furthermore, HTL has been recently extended
to support separation of concerns for the reliability of a real-time application [3; 37].

2.1. Overview

HTL can express interactions between periodic non-blocking tasks. Tasks in HTL are pure
functional and finite blocks of code; they do not use any synchronization mechanisms or
blocking I/0 operations. A task has it's own private memory space, and the only way to
communicate with a task is through its input and output ports.

i1 i2 o1 02

LET A A

< B BRI
. ! {WCET) ‘
t1 2 t3 t4
R S e - .- .
p
release time termination time

Fig. 2.1: HTL task model

A task in HTL consists of a set of input ports and a set of output ports. In Fig. 2.1
it is presented an example of an HTL task. An HTL task has a period (e.qg., p); the entire
timing of a task is relative to the period of the task. The moment in time when the latest
input port is read (i.e., i2), defines the release time of the task, while the moment in
time when the earliest output should be written defines the termination time of the task
(i.e., ol). The time interval between task release time and task termination time specifies
the LET of the task. In between this two moments the task should be executed, but
from HTL point of view it is not important when the task physically executes (i.e., it can be
preempted and resumed several times), the only thing that matters, is that task execution
has to complete before termination time. The release time, termination time, and LET are
considered to be platform independent information, while WCET is platform dependent
information.

BUPT

2. HIERARCHICAL TIMING LANGUAGE 26

111 12 otl 012 21 i22 o021 022
Soowmo @ T wn FF
. i tH(WCET1) 1 T . il 2(WCET2) 1T
11 t12 13 t14 LR @1 22 23 24
- » .- - - e B I)
p1 : p2

Fig. 2.2: Sequential composition

HTL supports sequential composition of sets of tasks, i.e., a set of tasks, s,
can be replaced with another set of tasks s*. In Fig. 2.3 are presented two task, ¢! and
t2, that are composed sequentially, i.e., only one of the two tasks will be executed at a
particular moment in time, the task being executed is chosen based on a condition. The
only constraint that HTL requires for a task to switch to another task, is that both tasks
have the same period.

i1t i12 o1t 012 YA i22 021 022 ,
< LEmMo g . : 2 wn- ¥ £ 1
. . t1(WCET1) L g || N | ©2(WCET2) I
t11 t12 t13 t14 21 22 123 24
P .- - P - P e ——
-+ pi - - p2

Fig. 2.3: Parallel composition

Parallel composition of tasks is also supported by HTL. In Fig. 2.3 are pre-
sented two tasks, e.g., t1 and t2, that are executed in parallel. The two tasks can have
different periods. The platform on which the two tasks are executed has to ensure that the
timing requirements of both tasks are met (i.e., the program is schedulable for the given
platform). Currently existing HTL runtime system uses Earliest Deadline First (EDF) [15]
algorithm in order to schedule tasks that are composed in parallel.

i11 i1‘2 ETM 777311 0‘12 :
Y {7 Tuawcety 1]
oot t12 3 t14 i
* - CpfT T T
& |
y
i21 |2‘2 CLET2 7(}21 022
v+ _BRWCET2) o
121 t22 t23 t24 .
. ToTtpz T T

Fig. 2.4: Refinement

Refinement of tasks is one of the strongest features of HTL. In HTL a task can
be either abstract or concrete. An abstract task is a task with no functionality; it is used
as a placeholder for a concrete task. A concrete task is a task that has functionality.
Only abstract tasks can be refined by concrete tasks or by other abstract tasks. In HTL
a hierarchical structure of tasks can be defined. Abstract tasks have no impact on the
functionality of a program; they are used only to specify abstract timings, which can

BUPT

27 2.1 Overview

be refined into concrete timings. The main benefit of the hierarchical structure of an
HTL description is represented by the fact that testing properties like schedulability and
reliability, for an HTL specification is simplified, e.g., if certain constrains (Section 2.3) are
imposed on the refinement, it is enough to test the property only for top most abstract
timing, and if the top most abstract timing has the property, then the entire HTL description
has the property, due to the refinement constraints.

A 2

Fig. 2.5: Direct task communication

HTL supports two models of communication between tasks: (a) direct inter-
tasks communication(Fig. 2.5) and (b) inter-tasks communication through com-
municators (Fig. 2.6). Direct inter-task communication means that a task can read the
output of another task; this kind of communication can only happen between tasks that
have the same period. Direct inter-task communication introduces a dependency relation
between the two tasks, e.g., if a task t reads the output port of another task ¢, then task
t can not execute unless task ¢ has completed execution.

Fig. 2.6: Inter task communication through communicators

Inter-tasks communication through communicators can happen between tasks
that have the same period as well as between tasks that have different periods, the only
constraint being the fact that the period of the communicator that is used for the com-
munication, should be harmonic to the periods of the two tasks that communicate. A
communicator is a typed variable that has a period associated with it. A communicator
can be accessed only at specific moments in time, which are determined by the period
of the communicator. In Fig. 2.6 it is illustrated how task t1, which has a period of ten
time units, communicates with task ¢2, which has a period of five time units, through com-
municator ¢, which has a period of one time unit. Since task t1 has a period of 10 time
units, there are ten instances of communicator ¢ that can be accessed by task t1; in this
case task ¢1 writes to the fifth instance of communicator ¢. On the other hand for task t2
there are only five instances of communicator ¢ that can be accessed; task t2 reads the
first instance of communicator ¢. If two tasks that have different periods communicate
through a communicator, then if the task that writes to the communicator has a higher
period than the task that reads from the communicator, then the task that reads will end
up reading same value multiple times (i.e., in the example presented in Fig. 2.6, task t2

BUPT

2. HIERARCHICAL TIMING LANGUAGE 28

will read twice the same value). On the other hand if the task that reads the communicator
has a higher period than the task that writes the communicator, then the task that writes
the communicator will end up overriding values that have not been read. Thus when this
type of communication is used, one should be aware of the two situations.

Many embedded system require the software to be distributed over a set of hosts.
HTL supports distribution of an HTL description over a set of host by allowing tasks to be
mapped to different hosts. In HTL only for root tasks can be specified a host mapping, while
the refining tasks implicitly will be mapped to the host to which parent task is mapped.

2.2.‘Syntax

The basic elements of an HTL description are the ports, communicators and tasks. A port
is a typed variable; declaration of a port consists of a type, a name, and an initialization
driver. An initialization driver is a function written in a different language than HTL (i.e.,
C) that is called by the E machine when something (i.e., port, communicator, etc.) needs
to be initialized. In Alg. 2.1 it is declared a port p, of type int, and which is initialized by
initialization driver zero.

Alg. 2.1 Example of port declaration (concrete syntax)

port
int p := zero;

A communicator is a typed variable that can be accessed at particular moments in
time; it is defined by a name, a type, a period, which restricts the access (i.e., read or write
operation) to the communicator, and an initialization driver. In Alg. 2.2 it is presented an
example of a communicator declaration, ¢, which has a period of 100 time units, is of type
int, and it is initialize by the initialization driver init.

Alg. 2.2 Example of communicator declaration (concrete syntax)

communicator
int ¢ period 100 init zero;

A task declaration consists of a name, a set of input ports, a set of output ports, a
set of state ports, and a function. An input/output/state port declaration consists of a type
and a name. Declaration of a state port specifies an initialization driver also. The input
and output ports are formal ports, i.e., they are replaced at invocation time with actual
ports, while state ports are actual ports. Task input ports represent the input for the task
function, and task output ports represent the output of the task function. The state ports
are used to store internal state of the task function. If a task declaration has no function
associated with it, then the task is considered to be abstract, otherwise it is concrete. In
Alg. 2.3 it is declared a task that has one input port, i, of type int, one state port, s, of
type int, which is initialized by initialization driver zero, one output port, o, of type int, and
the function that implements the functionality of the task is f.

Alg. 2.3 Example of task declaration (concrete syntax)
task t input (int i) state (int s:=zero) output (int o) function f;

One or more tasks form a mode. A mode consists of a name, a period, a program
name, a set of task invocations, and a set of mode switches. The period of a mode specifies

BUPT

29 2.2 Syntax

how often the tasks that are invoked in the mode are executed and how often the mode
switches are tested. The program name specifies the program that refines the mode; it
can be empty if there is no such program. A task invocation consists of a task name, which
identifies the task that has to be executed, and a mapping of actual input ports to formal
input ports and actual output ports to formal output ports. The type of the actual port
has to match the type of formal port to which it is mapped. As an actual port it can be
used either a port, in which case it has to be specified the name of the port being used, or
a communicator instance, which consists of a communicator name and a number, which
identifies the communicator instance number, relative to the period of the mode, that will
be used. A communicator can be used as an actual port in a mode only if the period of
the communicator is harmonic to the period of the mode, i.e., the period of the mode is a
multiple of the period of the communicator. The number of communicator instances that
are available for a communicator c that has a period of n. time unit, in a mode m that has
a period of m,, time units it is equal to 2= ., A task invocation can also specify the name
of the parent task, if any. ‘

In Alg. 2.4 it is declared a mode, m, which has a period of 1000 time units, invokes
three tasks, i.e., t1, t2, and t3, and contains one mode switch, which changes execution
to mode m", when condition cond evaluates to true. The mode is the structure through
which HTL supports sequential composition, i.e., in HTL it is possible to specify a set of
modes, out of which a single mode can execute at a particular moment in time, which is
called the active mode, and that can switch between each other.

Alg. 2.4 Example of mode declaration (concrete syntax)

mode m period 1000{
invoke tl input ((c1,1)) output((c2,1));
invoke t2 input ((c2,1)) output(p);
invoke t3 input (p) output((cl,4));
switch(cond(c)) m";

}

Tasks in @ mode can communicate to each other either through ports or through
communicators. In Alg. 2.4 task t1 and t2, and tasks t3 and t1 communicate through
communicators, i.e., task t1 writes to the second instance of communicator c1, and task ¢2
reads the same instance of the same communicator, while task t3 writes to the fifth instance
of communicator c1 and task ¢1 reads the second instance of communicator c1. In Alg. 2.4
there is also an example of communication through ports, e.g., task t2 writes to port p,
which is read by task t3, this communication imposes a dependency relation between tasks
t2 and t3, i.e., task t3 can not execute before task t2 has finished its execution.

The LET of a task that is invoked in a mode is determine by both the period
of the mode and the communicators that are read or written by the task, and it is not
influenced by the ports that are read or written by the task. Thus, the LET of the task is
the time interval between the latest read communicator or the beginning of the period if
no communicator is read, and the earliest written communicator or the end of the period
if there is no written communicator.

Assuming that communicator c1 has a period of 100 time units and that communi-
cator ¢2 has a period of 200 time units, Fig. 2.7 depicts timing analysis for tasks invoked in
mode m. Task t1 has an LET of 100 time units, i.e., it reads second instance of communi-
cator c1 and updates second instance of communicator ¢2. Tasks t2 and ¢t3 have an LET of
200 time units, i.e., task t2 reads the second instance of communicator ¢2, and although it
does not write to any communicator, it communicates through port p with task t3, which
writes to the fifth instance of communicator c1, thus the LET of t2 can not be higher than
200 time units, similar for ¢3 it can be shown that it can not have an LET higher then 200

BUPT

2. HIERARCHICAL TIMING LANGUAGE 30

1o a: 2 3 e 5 6. T 8 9 -0
<2 0 -~ 2 4 3 5 @
s
fe
« » 4al
LET of tt —
LETot2.3 *
; . } : A iy
100 200 300 400 500 600 700 800 900 1000 1

Fig. 2.7: Timing analysis of tasks in mode m

time units.

A set of modes that are composed sequentially form a module. A module dec-
laration consists of a name, a start mode name, a set of port declarations, a set of task
declarations, and a set of mode declarations. The start mode name represents the name
of the mode that is active first time the module is executed. The set of port declarations
specifies the ports that can be used to communicate between tasks that are invoked in
modes from the module. The set of task declarations specifies the set of tasks that can
be invoked in the modes from the module. The set of mode declarations specifies the
modes that are composed sequentially in the module, i.e., only one of these modes can be
executed at a particular moment in time. Modules in HTL represent the structures that are
used to support parallel composition, e.g., in HTL there can be defined a set of modules,
which are executed in parallel.

In Alg. 2.5 it is declared a module, which contains one port declaration, i.e., p,
three task declarations, t1, t2, and t3, and two mode declarations m1 and m2, with m1
being the start mode.

Alg. 2.5 Example of module declaration (concrete syntax)
module M start m1{

port
int p:=zero;

task t1 input(int i1) state() output(int 01) function f1;

task t2 input(int i1) state() output(int o1) function 2;

task t3 input(int i1) state() output(int ol1) function f3;

mode m1 period 1000{
invoke t1 input ((c1,1)) output({c2,1));
switch(cond(c)) m2;

}

mode m2 period 1000{
invoke t2 input ((c1,1)) output(p);
invoke t3 input (p) output((c2,1));
switch(cond(c)) mi;
}
}

A set of modules that are composed in parallel form a program. A program dec-
laration consists of a name, a set of communicator declarations, and a set of module
declarations. The set of communicator declarations represents the communicators that
can be read or written by task that are invoked in a mode in any of the modules that are

BUPT

31 2.2 Syntax

in the program. The set of module declarations specifies the modules that are composed
in parallel in the program.

In Alg. 2.6 it is declared a program, P, which contains two communicators, i.e.,
cl and c2, and two modules, i.e., M1 and Af2.

Alg. 2.6 Example of program declaration (concrete syntax)

program P{
communicator
int c1 period 100 init zero;
int ¢c2 period 200 init zero;

module M1 start m1{
task t1 input(int i1) state() output(int o1) function f1;
mode m1 period 1000{
invoke t1 input ((c1,1)) output((c1,4));
}
}

module M2 start m2{
task t2 input(int i1) state() output(int 01) function f1;
mode m2 period 1000{
invoke t2 input ((c2,0)) output({c2,2));
}
}
}

In HTL the program is the structure through which refinement is supported. An HTL
description consists of a set of programs; one of them being the root program, while the
rest of the programs refine modes from the root program. In other words, the root program
specifies an abstract timing of a real-time application, which is refined into concrete timings
by the rest of the programs in an HTL description.

In Alg. 2.7 it is presented an HTL description that consists of two programs, i.e., P
and P1. Program P is the root program, it contains one module, which contains one mode,
which invokes two tasks, e.g., t1 and t2, and which is refined by program P1. Program
P1 contains two modules: M11, which refines task ¢1 from the refined mode in two tasks,
i.e., t11 and t13, and M12, which refines task ¢2 from the refined mode into task ¢12.

Program P directly refines another program P, if there is a mode m in P’ that
specifies P as its refinement. Program P indirectly refines another program P, if there is
a set of programs P1 ... Pn so that P1 directly refines P, P directly refines Pn, and for
any two consecutive programs Pk and Pk+1in Pl ... Pn, program Pk + 1 directly refines
program Pk.

Module M contained in a program P directly refines module M contained in a
program P, if P directly refines P'. Module M contained in a program P indirectly
refines module M contained in a program P, if P indirectly refines P".

Mode m contained in a program P directly refines mode m " contained in a program
P’ , if P directly refines P'. Mode m contained in a program P indirectly refines module
m" contained in a program P°, if P indirectly refines P .

A program, P, which (directly or indirectly) refines a mode from another program,
P, is a child program or a sub-program of P°, while P" is the parent program or the
super-program of P. A program P is the sub-program as well as the super-program of
itself. A module, M, which (directly or indirectly) refines a mode or a set of tasks from a
mode from another module, M ", is a child module or a sub-module for M ", while M~ is
the parent module or the super-module of M. A module M is the sub-module as well as

BUPT

2. HIERARCHICAL TIMING LANGUAGE 32

Alg. 2.7 Example of HTL description with refinement (concrete syntax)

program P{
communicator

int c1 period 100 init zero;
int c2 period 200 init zero;

module M1 start mi{
task t1 input(int i1) state() output{int 01);
task t2 input(int i1) state() output(int o1);
mode m1 period 1000 program P1{
invoke t1 input ((c1,1)) output((c1,4));
invoke t2 input ((c2,1)) output((c2,2));
}
}
}

program P1{
module M11 start m11{
task t11 input(int i1) state() output(int ol1);
task t13 input(int i1) state() output(int ol);
mode m11 period 1000{
invoke t11 input ((c1,1)) output((cl,4)) parent t1;
switch(cond1{cl)) m13;

}

mode m13 period 1000{
invoke t13 input ((c1,1)) output({c1,4)) parent tl;
switch(cond2(cl)) m11;

}

}

module M12 start m12{
task t12 input(int i1) state() output(int o1);
mode m12 period 1000{

invoke t2 input ((c2,1)) output((c2,2)) parent t2;

}

}

}

the super-module of itself. A mode, m, which refines a set of tasks from a mode, m", is a
child mode or a sub-mode for m"', while m" is the parent mode or the super-mode of m.
A mode m is the sub-mode as well as the super-mode of itself.

Parts of an HTL description can be distributed over a set of hosts. The distribu-
tion works by annotating modules in the root program with the information about the
host on which each module will run. All the modules in the rest of the programs will be
automatically mapped to the host to which the refined module from the root program is
mapped.

2.3. Well-Formed and Well-Timed HTL Descriptions

An HTL description is well-formed if it meets to the following constraints:

Constraints on program: (1) there is only one top-level program; and (2) each mode
(other than those of the top-level program) has an unique parent mode.

Constraints on communicators: (1) if a communicator is declared in program P, then it
is not redeclared in any other sub-program of P; (2) if a communicator ¢ is accessed
(read or written) by a task invocation or a mode switch in a mode of module M

BUPT

33 2.3 Well-Formed and Well-Timed HTL Descriptions

in program P, then c is declared in one of the super-programs of P; and (3) if a
communicator ¢ belongs to the hierarchical write-set of a module Af, then ¢ does not
belong to hierarchical write-set of any sibling module of Af.

Constraints on task invocations: (1) for every task invocation, the read time is earlier
than the write time; (2) the precedence relation on task invocations is acyclic; (3)
two task invocations in a mode cannot write to the same port or to the same instance
of a communicator; (4) if a task invocation reads from or writes to a communicator ¢
(resp. port p), then the type of ¢ (resp. p) complies to the type of the corresponding
formal parameter in task declaration; (5) if a task invocation in a mode m reads from
or writes to a communicator ¢, then period r,, is a multiple of the communicator
period =..

Constraints on refinement: (1) if program P refines a mode m, then the period of all
modes in P is equal to =, (this ensures that when there is a mode switch, there is
no unsafe termination of tasks in lower-level modes); (2) every task invocation of a
mode m that does not belong to the top-level program has an abstract parent task
invocation in the parent of m (this ensures that the parent task acts as a placeholder
for its children during chedulability analysis); (3) any two distinct task invocations
in two modes of two (possibly identical) sibling modules have distinct parent task
invocations (this ensures that all tasks that can potentially execute in parallel have
unique parents); and (4) if inv’ is the parent task invocation of inv, then the read
time of inv is not later than that of int’, the write time of inv is not earlier than that of
inv’, and every invocation that precedes inv refines a task invocation that precedes
inv’ (this ensures that the parent invocation is more constrained in time than the
child task invocation, which is used in the schedulability analysis).

An HTL description is well-timed if the worst-case execution time (WCET) of any
task invocation is less or equal to the WCET of the parent task invocation and the worst-
case transmission time (WCTT) of any task invocation is less or equal to the WCTT of the
parent task invocation. Well-formedness is independent of the implementation platform,
well-timedness is not.

BUPT

2. HIERARCHICAL TIMING LANGUAGE 34

BUPT

3. Embedded Machine

Embedded machine (E machine) is a virtual machine that mediates interactions between
tasks. The E machine can release a task for execution but it can not execute it; the task
has to be executed by the operating system. The code interpreted by the E machine
is the so-called E code. The E code contains instructions for copying values from one
variable to another, for releasing tasks, and control-flow instructions. Since an E code
program is interpreted by the E machine, it can be executed on any platform for which
there is an E machine implemented, thus an E code program is portable. The E machine
was first introduced as a target platform for Giotto (6]. Then the E machine has been
extended [7] to handle hierarchical structure at runtime, in order to support execution
of E code generated for HTL descriptions that contain at least one level of refinement.
The extended E machine with hierarchical support is calted the hierarchical E machine
(HE machine). The set of E code instructions has been extended also; the extended E code
being named hierarchical E code (HE code). In this chapter, first the original E machine
will be presented, then the HE machine.

3.1. Original Embedded Machine

Fig. 3.1 depicts visually the structure of the E machine. The E machine is divided in three
parts: core E machine functionality and data structures, E code program related data
structures, and application functionality.

Application functionality consists of: task functions, driver functions, condition
function, and state. Task functions implement the functionality of tasks that are released
by the E code program. Each task has its own private memory. Tasks communicate to
the environment only through task input ports and task output ports, which are variables
declared in the global memory. Driver functions implement the functionality that is invoked
by the E code program to transfer information between two variables, a variable and a
task input/output port, or between an input port and an output port of two different tasks.
A task can not directly access the input port or the output port of an other task, thus
the communication has to be implemented through drivers. Condition functions represent
functional code which evaluates conditions based on some inputs, and returns a boolean
value, which represents the result of the evaluation. State is a set of variable that can be
accessed only through driver functions and condition functions.

E code program related data structures consists of: list of E code instructions and
for each type of function (i.e., task, driver, and condition), there is a table, which asso-
ciates an index to a task, driver, or condition, respectively. The list of E code instructions
represent the E code program that has to be interpreted. The index of a task (dniver or
condition) in the tasks (drivers or conditions) table is used to refer to that task (driver ar
condition) from an E code instruction.

The central part of the E machine core is represented by the £ code interpreter. The
E code interpreter accesses the list of E code instructions through a pointer, i.e., program

BUPT

3. EMBEDDED MACHINE 36

state :
a S
RN . v
¢ ’ 1
task I' driver condition
functions , ! functions . functions
| - :
task i driver condition !
table . table table ‘
list of ‘ 1 .
E code y £ code
instructions PC <4 -» interpreter < % tasks
] - A - . I -
» » —--»
i R T
: trigger queue i
E machine core __application functionality ' _'E code program specific data structure

Fig. 3.1: E machine overview

counter (PC), that indicates which is the next instruction in the list of E code instructions
that has to be interpreted. The program counter is either incremented after an instruction
has been interpreted or is set to an explicit value, if the interpreted instruction is a control
flow instruction (e.g., jump). Another data structure which is used by the E machine
core is the FIFO queue of triggers; there is only one queue of triggers. A trigger, g, is
an association between a list of events and an address of an E code instruction, e.qg.,

= (Je.a). The list of events, /e can contain at most one time event and zero or more
task completion events, i.e., listofevents = (n.cmps). A time event, n, represents a period
of time that has to elapse from the moment when the trigger was added to the trigger
gueue. A task completion event is fired when a task has finished its execution. A trigger
is considered to be active if all the events (e.g., time event and task completion events)
on which it depends have triggered. The trigger queue is checked every time an event
happens and the first found active trigger is remove from the queue and the PC is set to
the address associated with the trigger, thus the E machine will start interpreting E code at
that address. There is also a list of tasks that have been released for execution; whenever
a task has been released by the E machine its index in the task table will be inserted into
the tasks list, and it will be removed from the list when task finishes its execution.

The E machine always starts interpreting instructions at address zero. During
E code interpretation tasks can be released and triggers can be added to the trigger queue,
when the E code interpreter encounters a return instruction, the E machine enters the
waiting state. When the E machine is in waiting state, no € code is interpreted, the only
thing that the E machine does in the waiting state is to observe for time events and
task completion events and to update its trigger queue. When a trigger in the trigger

BUPT

37 3.1 Original Embedded Machine

queue becomes active, the trigger is removed from the queue and the E machine starts
interpreting E code at the address specified in the trigger.

Formally the E machine is a tuple (TF, DF, CF, state, TT, DT, CT, Eprogram,
interpreter, PC, Q, tasks), where TF represents task functions, DF represents driver func-
tions, CF represent condition functions, state represents the state, 77T represents the ta-
ble of tasks, DT represents the table of drivers, CT represents the table of conditions,
Eprogram represents the list of E code instructions, interpreter represents the E code in-
terpreter, PC represents the program counter, Q represents the queue of triggers, tasks
represents the list of released tasks.

Nevertheless only some parts of the E machine will undergo changes during E code
execution, whereas some part will not change at all. Thus the E machine configuration
is defined as tuple (state, PC, Q, tasks). First E machine configuration is (state = stateo,
PC=0, Q=0, tasks = 9).

3.1.1. List of E code Instructions

E code interpretation can be seen as a sequence, U0, ul, ..., of E machine configurations.
Where u0 is the initial configuration. In the remaining of this subsection, each E code
instruction will be explained based on the effect it has on the E machine configuration.
Thus before executing an instruction the configuration is (state, PC, Q, tasks), and after
the instruction has been executed the new configuration is (state’, PC", Q°, tasks’).

call(d): invokes diver function identified by driver index d in the drivers table; the config-
uration after executing this instruction is (state’ <> state, PC° = PC+ 1, Q' = Q,
tasks® = tasks); this instruction affects the state of the E machine since a driver
always copies a value from a variable into another variable;

release(t): releases task identified by task index ¢t in tasks table for execution; the con-
figuration after executing this instruction is (state’ = state, PC' = PC+1, Q" = Q,
tasks' = tasks Nt); the released task is added to the list of released tasks;

future(n,cmps, a): adds a trigger, g = (n(\cmps,a), to the trigger queue, the list of events
the trigger depends on is represented by a time event that fires at n time ticks after
the trigger has been appended to the queue, and on the set of task completion events
represented by cmps, when the trigger becomes enabled E machine will start inter-
preting instructions at address a; the configuration after executing this instruction is
(state’ =state, PC' =PC+1, Q" =Qog, tasks' = tasks)

Jjump(a): executes an unconditioned jump to address a ; after executing this instruction
the configuration is (state’ = state, PC' = a, Q" = Q, tasks' = tasks);

iflcnd,a): executes an conditioned jump to address a; the condition that has to be evalu-
ated in order to determine whether the jump should be performed or not is identified
by the index cnd in the conditions table; after executing this instruction if the con-
dition was evaluate to true the configuration is (state’ = state, PC* = a, Q = Q,
tasks' = tasks), otherwise the configuration is (state’ = state, PC" = PC+1, Q" =Q,
tasks' = tasks);

return: interrupts E code interpretation and brings the E machine into waiting state; after
executing this instruction the configuration is (state’ = state, PC' = 1, Q' = Q,
tasks® = tasks).

L)

3.1.2. Handling Parallelism in E code

One of the features of HTL, is parallel composition of sets of tasks, thus when an HTL
description is compiled, the generated E code has to ensure that several blocks of E code

BUPT

3. EMBEDDED MACHINE 38

are executed in parallel (cvasi-parallel). In other words, the parallel composition of sets of
periodic tasks, reduces, at E code level, to cvasi-parallel composition of blocks of E code.
In order to achieve this, a future instruction with zero time ticks as time event and an
empty list of task completion event (this future instruction is farther referred as future
zero instruction) is generated for each block of E code that has to be executed in parallel.
This will ensure that execution of all blocks is started in parallel; it is up to each block to
ensure periodicity after the block was started.

future(0, adr1)
future(0, adr2)

1 return
v - Y ..

_adr: adr2:

call(d11) call(d21)

future(0, adr12) future(0, adr21)

return return)

adr12: adr21:

call(d12) call(d22)

release(t1) release(t2) .

future(S, adrt) ' future(10, adr2) .
2 3 e

Fig. 3.2: Parallel composition in E code

In Fig. 3.2 it is presented an example of an E code program that composes in
parallel two tasks: t1, which has a period of 5 time units, and t2, which has a period of ten
time units. Both tasks have one input port and one output port, and the output port of ¢1
is copied into input port of 2, and the output port of t2 is copied into input port of t1. The
E code program consists of three blocks. The first block is the initialization block, i.e., the
block that will be executed first. After initialization block is executed, two triggers will be
added to the trigger queue; both triggers depend on a time event of zero time ticks. One
of the trigger ensures that the second block of E code will be executed, and the second
trigger ensures that the third block of E code will be executed.

The initialization block is executed only once, while blocks two and three are exe-
cuted periodically, i.e., every 5 and every 10 time units, respectively. The first instruction
in blocks two and three is a call instructions, which ensures that the values produced by
tasks t1 and t2, respectively, in the previous invocation are copied into two global vari-
ables, i.e., v1 and ©2, respectively. The copy operation is done through drivers 411 and
d21, respectively. Since the values of the global variables v1 and v2 are also written into
input ports of task t2 and t1, respectively, by drivers d22 and 412, respectively, the E code
program has to ensure that first drivers d11 and d21 are executed and then di2 and 422
are executed. Thus the call instructions that updates global variables v1 and v2 (e.qg.:
call(d11) and call(d21), respectively) have to be executed prior to the call instructions that
read global variables vl and 2 (e.g.: call(d22) and call{d12), respectively). This is way
a future zero instruction is generated after drivers dil and d21 are executed and then a
return instruction is generated. The future zero instruction will place a trigger in the trigger
queue that will resume execution of corresponding E code block. The return instruction
will bring the E machine into waiting state, thus allowing the other block of E code to
start/resume its execution. After driver d11 and d2! have been executed, driver 412 will
be executed, task t1 will be released and a trigger will be placed in the trigger queue to
start again execution of block two after 5 time units; similar for the third block. Thus the
actual execution of the three blocks is: block one, block two, block three, block two, and

BUPT

39 3.2 Hierarchical Embedded Machine

block three. Thus we can say that block two and three are executed cvasi-parallel.

3.2. Hierarchical Embedded Machine

Although the E machine offers support for sequential composition and parallel composition
of set of task, it does not offer support for handling refinement (i.e., hierarchical struc-
ture) at runtime. Thus before compiling an HTL description into E code, the description
needs to be flatten. As shown in Chapter 4 flattening an HTL description can lead to an
HTL description that has exponentially many modes in terms of number of modes of the
onginal description. Thus the E machine has been modified so that it offers support for
handling hierarchical structure at runtime, the modified E machine is called Hierarchical
Embedded Machine (HE machine). The set of E code instructions has been extended with
new instruction that can exploit the new structure of the E machine; the extended E code
is called the Hierarchical E code (HE code).

e
Y 4
. task . driver . condition
. functions functions ! functions
task : driver condition
table . table table
list of <4 » tasks
HE code T HE code
instructions PC <« > interpreter A
“ v v vy
RO R1 R2{R3
- A -
- v v
T T a A
write queue % »
switchqueue % ' »
- v v
[readqueuve -~ » P - . :
stack of parent
_ addresses stack
" HE machine core ___ application functionality !HE code program specific data structure

Fig. 3.3: HE machine overview

Fig. 3.3 offers an overview on the structure of the HE machine. The HE machine
is also divided in three parts: core HE machine functionality and data structures, HE code
program related data structures, and application functionality. The application functional-
ity and HE code program related data structures are the same as in case of the E machine.
Only the core HE machine has been changed, i.e., there is not one trigger queue, but three
trigger queues, there are also two stacks, and four trigger registers.

The three trigger queues are named based on the trigger that will be added into
each queue. Thus write queue is the trigger queue in which are added triggers for HE code

BUPT

3. EMBEDDED MACHINE 40

blocks that update global variables with values from tasks output ports. Switch queue is
the trigger queue in which are added triggers for HE code blocks that handle switches
between sets of tasks. Read queue is the trigger queue in which are added triggers for
HE code blocks that read global variables.

The HE machine core contains two stacks: one stack stores HE code addresses
and the other stack stores trigger references. The stack of addresses is used to implement
subroutine calls. The stack of trigger references is used for handling hierarchical structure,
i.e., in case of HE code program generated for HTL description, the stack of triggers is used
to store references to parent triggers, this is why this stack is called parent stack.

The HE machine contains four trigger registers, e.g.: RO, R1, R2, and R3, which
can store references to trigger. The trigger register are used to implement operation with
trigger, e.qg., setting the parent of a trigger, changing the children list of a trigger or clearing
the children list of a trigger.

The concept of trigger has been extended; a trigger g is not anly a pair of a list of
events and an address, but a trigger also has a parent trigger, and a list of child triggers.
Thus in the case of HE machine a trigger g is tuple (/e,a,par,clist), where le contains
events on which trigger activation depends (it can contain one time event and one or
more task completion events), a is the address of the E code that will be interpreted when
the trigger gets enabled, par is a reference to a trigger, which is considered the parent of
g, the clist is a list of trigger references, which are considered children of g. Thus through
the two new elements that have been added to a trigger it is possible to construct an
hierarchical structure of triggers, in which each trigger knows who is its parent and which
are its children. A trigger can have at most one parent (i.e., it can have no parent if it is
a root trigger), and can have none, one or many children.

When the HE machine is started, it will interpret HE code starting at address zero.
The HE machine will interpret HE code until a retumn instruction is encountered and no
address is in the stack of addresses. The semantics of the return instruction in the case of
HE machine has been overloaded, i.e., it can be used both to return from a subroutine call
and to bring the HE machine in a waiting state. Thus if a return instruction is interpreted
and there is at least one address in the stack of addresses, an address will be popped from
the stack and HE code interpretation will continue at that address. On the other hand if
there is no address in the stack of addresses, the execution of the return instruction will
cause the HE machine to enter the write waiting state. In the write waiting state, the
HE machine checks the write queue for enabled triggers. If a trigger is found, then the
trigger is removed for the write queue and the HE machine resumes execution, interpreting
HE code at address corresponding to the enabled trigger. If no enabled trigger is found
in write queue, the HE machine enters the switch waiting state. In the switch waiting
state, the HE machine checks for enabled triggers in the switch queue. If an enabled
trigger is found, then that trigger is removed from the switch queue and the HE machine
will continue interpreting HE code at address associated with the enabled trigger. If no
enabled trigger is found, the HE machine will enter the read waiting state. In the read
waiting state, the HE machine checks for enabled triggers in the read queue. If an enabled
trigger is found, then it will be removed form the read queue, and HE machine will start
interpreting HE code at address associated with the enabled trigger. If no enabled trigger
is found, then the E machine will start waiting for events like time ticks or task completion,
when the trigger queues has to be updated and checked again for enabled triggers. Since
the three trigger queues are priorities, i.e., write queue has the highest priority and the
read queue has the lowest priority, the triggers are priorities not only by the position in a
queue but also by the queue in which they are.

Formally the HE machine is a tuple (TF, DF, CF, state, TT, DT, CT, HEprogram,
interpreter, PC, writeQ, switchQ, readQ, addressStack, parentStack, RO, R1 , R2, R3,
tasks), where TF represents task functions, DF represents driver functions, CF represent

BUPT

41 3.2 Hierarchical Embedded Machine

condition functions, state represents the state, 7T represents the table of tasks, DT repre-
sents the table of drivers, CT represents the table of conditions, HEprogram represents the
list of HE code instructions, interpreter represents the HE code interpreter, PC represents
the program counter, writeQ, switchQ, and readQ are queues of triggers, addressStack
represents the stack of addresses, parentStack represents the stack of trigger references,
RO, R1 , R2, and R3 are tigger registers, and tasks represents the list of released tasks.
The parts of the HE machine that change during HE code execution form the
HE machine configuration. Thus the E machine configuration is defined as tuple (state,
PC, writeQ, switchQ, readQ, addressStack, parentStack, RO, R1 , R2, R3, tasks). First
HE machine configuration is (state = state,, PC = 0, writeQ = 0, switchQ = 0, readQ = 9,
addressStack = 0, parentStack =9, RO=1,R1 =1 ,R2=1,R3 =1, tasks =0).

3.2.1. List of HE code Instructions

HE code interpretation can be seen as a sequence, w0, ul, ..., of HE machine configu-
rations. Where u0 is the initial configuration. In the remaining of this subsection, each
HE code instruction will be explained based on the effect it has on the HE machine con-
figuration. Thus before executing an instruction the configuration is state, PC, writeQ,
switchQ, readQ, addressStack, parentStack, RO, R1 , R2, R3, tasks), and after the in-
struction has been executed the new configuration is (state’, PC’, writeQ", switchQ’,
readQ’ , addressStack’ , parentStack™, RO", R1" , R2", R3", tasks’).

call(d): executes driver identify by driver index d (which updates variable state to state’),
PCis incremented; the HE machine after interpreting this instruction is (state’, PC" =
PC + 1, writeQ" = writeQ, switchQ' = switchQ, readQ’ = readQ, addressStack’
addressStack, parentStack® = parentStack, RO = R0, R1° =R1,R2 =R2,R3’
R3, tasks’ = tasks);

release(t): releases for execution task identify by task index t, PC is incremented; the
HE machine after interpreting this instruction is (state’ = state, PC' = PC + 1,
writeQ' = writeQ, switchQ' = switchQ, readQ’ = readQ, addressStack’ =
addressStack, parentStack™ = parentStack, RO = R0, R1' = R1 , R2' = R2,
R3" =R3, tasks™ = tasksut);

writeFuture(e,a): creates a new trigger g = (e,a, L, @), adds the trigger to the write queue,
stores a reference to g in R1, and increments program counter; the HE machine con-
figuration after executing this instruction is (state’ = state, PC' = PC+ 1, writeQ" =
writeQ o g, switchQ' = switchQ, readQ’ = readQ, addressStack’ = addressStack,
parentStack™ = parentStack, RO" = R0, R1" = referenceOf(g) ,R2" = R2,R3' =R3,
tasks' = tasks);

([

switchFuture(e,a): creates a new trigger g = (e,a, L,0), adds the trigger to the switch
queue, stores a reference to g in R1, and increments program counter; the HE ma-
chine configuration after executing this instruction is (state’ = state, PC" = PC + 1,
writeQ' = writeQ, switchQ' = switchQ o g, readQ’ = readQ, addressStack' =
addressStack, parentStack™ = parentStack, RO' = RO, R1' = referenceOf(g) ,
R2° =R2,R3' =R3, tasks' = tasks);

readFuture(e.a): creates a new trigger g = (e, a, L,0), adds the trigger to the read queue,
stores a reference to g in R1, and increments program counter; the HE machine con-
figuration after executing this instruction is (state’ = state, PC* = PC+ 1, writeQ™ =
writeQ, switchQ' = switchQ, readQ” = readQ o g, addressStack' = addressStack,
parentStack’ = parentStack, RO" = R0, R1" = referenceOf(g) , R2" = R2,R3’ =R3,
tasks® = tasks);

BUPT

3. EMBEDDED MACHINE 42

jumplficnd. a): executes condition function represented by condition index cnd, if condi-
tion function return true, then program counter is set to a, else program counter
is incremented; after executed this instruction there are two possible configu-
ration: if condition function returns true, then configuration is (state’ = state,
PC’ = a, writeQ" = writeQ, switchQ™ = switchQ, readQ’ = readQ, addressStack’
addressStack, parentStack’ = parentStack, RO° = R0, R1° =R1,R2’ =R2,R3’
R3, tasks' = tasks), else configuration is (state' = state, PC’ = PC + 1, writeQ’
writeQ, switchQ' = switchQ, readQ’ = readQ, addressStack™ = addressStack,
parentStack’ = parentStack, RO° = RO, R1' = R1 , R2' = R2, R3> = R3,
tasks' = tasks);

JumpAbsolute(a): performs an unconditioned jump to address a; the configuration after
executing this instruction is (state’ = state, PC' = a, writeQ' = writeQ, switchQ" =
switchQ, readQ’ = readQ, addressStack’ = addressStack, parentStack™ =
parentStack, RO’ = R0, R1" =R1 ,R2" =R2, R3' =R3, tasks" = tasks);

JumpSubroutine(a): executes a subroutine jump to address a; incremented value of the
program counter is pushed onto the stack of addresses and the program counter
is set to a@; the configuration after executing this instruction is (state’ = state,
PC" = a, writeQ' = writeQ, switchQ' = switchQ, readQ" = readQ, addressStack' =
addressStacko(PC-+-1), parentStack™ = parentStack, RO® = R0,R1’ =R1,R2" =R2,
R3' = R3, tasks' = tasks);

copyRegister(Rr.Ry) where r.y € {0,1,2.3} and r # y: copies the content of register Rz
to register Ry and program counter is incremented; configuration after executing this
instruction is (state” = state, PC" = PC + 1, writeQ" = writeQ, switchQ" = switchQ,
readQ’ = readQ, addressStack’ = addressStack, parentStack' = parentStack, RO,
R1' ,R2°, R3’, tasks' = tasks), the values of trigger registers RO, R1" , R2", and
R3" depends on the arguments of the instruction;

pushRegister(Rz) where z < {0,1.2,3}: pushes the content of the register Rz on to
parentStack, the program counter is incremented; configuration after executing this
instruction is (state” = state, PC" = PC + 1, writeQ" = writeQ, switchQ' = switchQ,
readQ’ = readQ, addressStack’ = addressStack, parentStack® = parentStack o Rz,
RO =RO,R1’ =R1,R2" =R2,R3" =R3, tasks' = tasks);

popRegister(Rr) where r € {0,1.2,3}: pops content from parentStack to register Rz, i.e.,
Rz' = pop(parentStack), and increments program counter; configuration after exe-
cuting this instruction is (state”™ = state, PC' = PC+1, writeQ" = writeQ, switchQ" =
switchQ, readQ' = readQ, addressStack’ = addressStack, parentStack’ =
parentStack™\ {pop(parentStack)}, RO", R1' , R2", R3", tasks' = tasks), the val-
ues of trigger registers R0', R1' , R2", and R3" depends on the argument of the
instruction;

getParent(Rz,Ry) where z.y € {0.1,2.3} and z # y: loads the reference of parent trigger
of trigger pointed to by Rr into register Ry and increments program counter; con-
figuration after executing this instruction is (state" = state, PC" = PC + 1, writeQ’ =
writeQ, switchQ" = switchQ, readQ’ = readQ, addressStack’ = addressStack,
parentStack’ = parentStack, RO*, R1' , R2", R3°, tasks' = tasks), the values
of trigger registers RO", R1' , R2", and R3" depends on the argument of the in-
struction;

setParent(Rz,Ry) where r.y € {0.1,2,3} and z # y: the trigger name in Ry is stored as
the parent of the trigger pointed to by register Rz and the program counter is in-
cremented; configuration after executing this instruction is (state’ = state, PC" =
PC + 1, writeQ" = writeQ, switchQ" = switchQ, readQ" = readQ, addressStack’ =

BUPT

43 3.2 Hierarchical Embedded Machine

addressStack, parentStack’ = parentStack, RO° = R0, R1° = R1 , R2° = R2,
R3" = R3, tasks' = tasks);

copyChildren(Rz.Ry) where r.y € {0.1.2.3} and r # y: the children list of the trigger
pointed to by Ry is stored as the children list of the trigger pointed to by regis-
ter Rr and the program counter is incremented; configuration after executing this
instruction is (state’ = state, PC' = PC + 1, writeQ’ = writeQ, switchQ' = switchQ,
readQ’ = readQ, addressStack’ = addressStack, parentStack’ = parentStack,
RO =R0O,R1' =R1,R2 =R2,R3 =R3, tasks' = tasks);

updateChildren(Rz.Ry) where z,y € {0.1,2,3} and = # y: sets the trigger name in Ry as
the parent of all the triggers in the children list of the trigger pointed by register Rz
and increments the program counter; configuration after executing this instruction
is (state’ = state, PC" = PC + 1, writeQ' = writeQ, switchQ™ = switchQ, readQ’ =
readQ, addressStack™ = addressStack, parentStack’ = parentStack, RO° = RO,
R1' =R1,R2' =R2,R3 =R3, tasks’ = tasks);

deleteChildren(Rz) where x € {0,1,2.3}: for all trigger references in children list of trigger
referred by register Rzr: (recursively) deletes the triggers pointed by the children list
and remove the triggers from the queue and increments the program counter; con-
figuration after executing this instruction is (state’ = state, PC' = PC+ 1, writeQ" =
writeQ, switchQ' = switchQ, readQ” = readQ, addressStack® = addressStack,
parentStack™ = parentStack, RO° = RO, R1° = R1 , R2° = R2, R3' = R3,
tasks' = tasks);

replaceChild(Rz.Ry.Rz) where z.y,z € {0,1,2,3} and z # y # z: in the children list of trig-
ger pointed to by register Rz, replaces the trigger reference in Ry by the trigger ref-
erence in Rz and increments the program counter; configuration after executing this
instruction is (state’ = state, PC" = PC + 1, writeQ" = writeQ, switchQ' = switchQ,
readQ’ = readQ, addressStack’ = addressStack, parentStack™ = parentStack,
RO® =RO,R1' =R1,R2" =R2,R3' =R3, tasks' = tasks);

cleanChildren(Rz) where z € {0,1,2,3}: deletes the children list of trigger pointed by reg-
ister Rx and increments the program counter; configuration after executing this in-
struction is (state’ = state, PC' = PC + 1, writeQ' = writeQ, switchQ' = switchQ,
readQ’ = readQ, addressStack’™ = addressStack, parentStack’ = parentStack,
RO® =RO, R1° =R1,R2" =R2,R3 =R3, tasks' = tasks);

return(): pops an address from address stack into the program counter; PC =
pop(addressStack); configuration after executing this instruction is (state' = state,
PC’ = pop(addressStack), writeQ" = writeQ, switchQ' = switchQ, readQ’ = readQ,
addressStack™ = addressStack, parentStack™ = parentStack, RO" = R0, R1" =R1,
R2° =R2, R3" =R3, tasks' = tasks);

3.2.2. Handling Hierarchy in HE code

Sequential composition in E code is supported through conditional jump instruction, par-
allel composition is supported through future zero instruction, the only HTL feature that is
not supported by the E code is the refinement. Thus the E code has been extended into
HE code in order to support refinement. In this subsection it is presented how hierarchical
structure is handled in HE code.

The main idea is to build an implicit tree of triggers. The hierarchical relations
between the triggers reflect the hierarchical relations between the HTL modes for which
the HE code that created the triggers has been generated. The implicit tree structure is
needed only to stop executing modes that refine a mode n that has switched to another
mode =’. Since in the switch queue, for each mode that is executed it is placed one

BUPT

3. EMBEDDED MACHINE 44

and only one trigger, which will ensure that the mode is executed periodically, and all the
triggers related to a mode that are in the write queue or read queue will activate by the
end of the mode period, it is enough to create a tree like structure only with the triggers
that are in the switch queue. Thus for each mode n there will be a trigger in the switch
queue, which has as a parent the trigger from the switch queue that corresponds to the
direct parent mode of m, and as children all the triggers that corresponds to the direct
child modes of m. The trigger of the parent mode is added to the trigger queue before
the trigger of the child mode. Thus if the parent mode switches to a different mode, the
triggers corresponding to the child modes will be removed recursively from the queue
using the tree information, this will ensure that if the parent mode switches, then all its
child modes stop executing.

m1 m2

mit mi2 m21

mi3 m22

Fig. 3.4: Handling hierarchy: HTL description example

Fig. 3.4, depicts in simplified (i.e., only the modes and hierarchical relations be-
tween them are presented) visual syntax the structure of an HTL description that is used
as an example to explain how hierarchical structure is handled in HE code. The description
consists of modes m1 and m2, which are composed sequentially. Mode m1 is refined by
modes m11 and m12, which are composed in parallel. Mode m13 refines mode mil. Mode
m2 is refined be mode m21, which is farther refined by mode m22.

o “« « ¥a - Trigger
-« 3 3 H2HM3 11 1 () pemboeeram
t12 t13 t11 t1 (a) R S e t
' ' list of

| N (b) " eonid tiggers
e w & o ST
t 12113111 (b) - & X
————— 2211 2 (c)

TR —

(i) (i)
Fig. 3.5: Handling hierarchy: implicit tree evolution

In Fig. 3.5 it is presented the evolution of the switch queue in two situations that

BUPT

45 3.2 Hierarchical Embedded Machine

can happen when HE code for mode m1 is interpreted: mode m1 does not switch to m2
and mode m1 switches to m2. For both scenarios has been considered that mode m1 is the
start mode. Thus initially in the switch queue there is a trigger for mode m1 and all its child
modes, e.g., triggers t1, t11, t13, and t12 correspond to modes ml, mll, m13, and m1l2,
respectivelly. In the first situation (Fig. 3.5-I), since the switch to mode m2 is not enabled
during HE code interpretation, a new trigger t1° is created; t1° replaces trigger t1 in the
switch queue and will preserve all its connections to other triggers. On the other hand if
the mode switch happens (Fig. 3.5-II), then all the triggers that are children of trigger t1
are removed from the switch queue, i.e., in this case all the triggers are removed, and
new triggers, corresponding to the new active mode and its child modes, are created and
added to the switch queue. When a sub-tree of modes from an HTL description is started
for the first time the modes are executed in the top-down and left-to-right order, this is
way trigger t13 is added to the switch queue before trigger t12. When a trigger that is
added to the switch queue is created, its parent will be automatically set to the parent of
the trigger referred by register R0. During the initial execution of a sub-tree of modes, the
parent stack is used to store the parent triggers, as the execution goes down the sub-tree
of modes, e.g., when trigger t13 is created the parent of trigger referred by Rzero si t11
and in the parent stack there is one trigger reference, which points to trigger t1. When
the execution returns the parent of the trigger referred by RO is restored from the stack,
i.e., when trigger t12 is created the parent of the trigger referred by RO is trigger t1.

BUPT

3. EMBEDDED MACHINE 46

BUPT

4. HTL Compiler

Fig. 4.1 depicts visually the actions that happen at compile-time and at runtime. In gen-
eral, the compilation of any HTL description involves a specific analysis of the description
and then code generation. The analysis ensures that the input description is well-formed,
i.e., it satisfies the constraints on parallel composition of modules and refinement of modes
presented in Section 2.3, and that the description is schedulable relative to the target plat-
form (well-timed). For the schedulability analysis, the WCET/ WCTT information for tasks
is provided by an external tool. If all the constraints are satisfied, code generator gen-
erates code for a distributed implementation. Code generation is done by compiling the
whole description for each host. For each host it is maintained a set of copies of all com-
municators and ports. However, tasks are executed on the host only if the corresponding
mode (in which the task is invoked) is mapped onto that host. At runtime, whenever a
task completes execution, all output ports of that task are broadcasted to all hosts; each
host will store the value locally. When a communicator (on a host) is to be written with
the value from a task output port, the locally stored value of the output port is copied to
the communicator. Released tasks are dispatched for execution by an EDF scheduler; the
scheduler is external to the E machine (and HE machine).

| no
— ¥ H . H S
Satisfy parallel composition constraints ? b WOET.WOTT |
rHr’tm e Satisfy refinement constraints ? < - ngr;‘\;vtgr :
_program - Is schedulable ? | sstmator
' I
l y !
E/HE code generator 1 i Schedule generator l}
compiler
! s ! 1
L : 4 h 4 4
det;rgrlgtyion | E/HE code ischedule. -~ E/HE code! .schedule:
T oo R R o
. — controller B ‘t
) ¥ T task code
'E machine l scheduler : | E machine ! l l scheduler S
' host 1 host n |
[inter hosts communication 1] o
f —— l 4 functionality
sensors / actuators | sensors / actuators . descniption
- 7_2‘._(;, . e - ——*—~7ﬁ?”77»/,7;
< L Y
” plant

Fig. 4.1: Structure of compiler and runtime system

BUPT

4. HTL COMPILER 48

In this chapter there will be presented two HTL compilers, i.e., flattening HTL
compiler [2] and hierarchy-preserving HTL compiler [7]. Flattening HTL compiler needs to
flatten the hierarchical structure of an HTL description before generating E code for it; the
target platform is represented by the E machine (Section 3.1). Hierarchy-preserving HTL
compiler generates HE code directly from the input HTL description without altering its
structure, it relays on hierarchical support at runtime; the target platform is represented
by the HE machine (Section 3.2).

4.1. Flattening HTL Compiler

After parallel composition constraints, refinement constraints, and schedulability have
been checked on the input HTL description, the flattening HTL compiler transforms the
input HTL description into a flat HTL description by applying a flattening algorithm. The
flattening algorithm consists of traversing the hierarchical structure of the input HTL de-
scription bottom-up and left-to-right, merging alt the modules in the same child program
into a single module that contains all possible combination of modes from the merged
modules, and then the resulted module is merged with the parent mode of the merged
modules and the resulted set of modes will replace the parent mode. Modules in the root
program are not merged. The above presented flattening algorithm is possible since all
the modes in child programs have the same period as the parent mode from the root
program.

Given a well-formed, well-timed, schedulable, and flattened HTL description and
a mapping of its top-level modules to hosts, the HTL compiler generates E code for the
description and mapping by invoking Alg. 4.1 on its root program (which is also the single
program in a flatten HTL description) for each host to which modules from the descrip-
tion are mapped; the algorithm invokes Alg. 4.2 to generate E code for each module of
the program, which finally invokes Alg. 4.3 to generate E code for each mode of each
module. The compiler conceptually divides each mode into uniform temporal segments
called units. The unit of a mode is the smallest time interval at which any two consec-
utive communicator instances are accessed in the mode. Given a mode m, the duration
of its unit is denoted by ~[m}, which is the gcd of all access periods of all communicators
accessed in m. The total number of units of o is =(n]/4[n], where =[n] is the period of m. The
compiler generates separate E code blocks for each unit of a mode. The address of an
E code block corresponding to unit i of a mode m is denoted by wnit_addressm, i]. This is a
symbolic address to which instructions may forward reference and therefore may need fix
up during compilation. Similar notation for other symbolic addresses, are used.

The foliowing auxiliary operators are used in order to present compiling algorithm
for the flattening HTL compiler. The driver init(z) initializes the communicator or task
port r. The set readDrivers(m,/) contains the drivers that load the tasks in mode m with val-
ues of the communicators that are read by these tasks at unit /. The set writeDrivers(m,/)
contains the drivers that load the communicators with the output of the tasks in mode n
that write to these communicators at unit /. The set portDrivers(t) contains the drivers
that load input ports of task t with the values of module ports on which t depends. The set
complete(t) contains the events that signal the completion of the tasks on which task t de-
pends, and that signal the read time of the task t. The set releasedTasks(m,/) contains the
tasks in mode n with no precedences that are released at unit /. The set precedenceTasks(m)
contains the tasks in mode m with precedences.

Alg. 4.1 generates instructions to initialize all communicators and modules. Here
future(0. module addressM]) instruction is used to start parallel execution of ali modules
in the root program. The actual mechanism is relatively complicated: for a future(0,a)
instruction the E machine appends the already enabled trigger-address pair (true,a) to the

BUPT

49 4.2 Hierarchy-Preserving HTL Compiler

Alg. 4.1 GenerateECodeForProgramOnHost(P.h)

// initialize communicators

Yc¢ € communicators(P):emit(call(init(c)))

// initialize and start each module

VM € modules(P):emit(future(0. module_address(M]))

// end initialization phase

emit(return)

// generate code for each module

VYM € modules(P):GenerateECodeForModuleOnHost(M.h)

trigger queue and then proceeds to the next instruction. Only when the E machine reaches
a return instruction, the machine checks the trigger queue again and eventually removes
the pair (true.a) from the trigger queue and executes the E code at the address a, but
not before it has executed the E code of all other enabled trigger-address pairs occurring
before (true.a) in the queue.

Alg. 4.2 GenerateECodeForModuleOnHost(M,h)

set module_addressM] to PC and fix up

// initialize task ports

Vp € taskPorts(M):emit(call(init(p)))

// jump to the start mode at unit 0
emit(jump.unit_address|start[M].0])

// generate code for each mode

Vo € modes(M):GenerateECodeForModeOnHost(m, h)

Alg. 4.2 generates instructions to initialize all task ports in a module, and to start
the execution of the module by jumping to the E code of the first unit of the start mode
of the module. PC denotes the program counter of the compiler.

Alg. 4.3 generates the E code for all units of a mode. Only unit 0 contains in-
structions to check mode switching because mode switching may only occur at the begin-
ning of a mode period. When a mode switch occurs, E code execution continues at the
mode_address(n’| of the target mode o', not the unit.addressn’, 0], since only at most one
mode switch per time instant may occur, At each time instant, the generated E code uses
future(0, a) instructions to write communicators always before any communicator is read
making sure that the latest communicator values are used across all modules. Communi-
cator and port values do not need to be buffered since tasks are invoked at most once per
mode period and communicator-to-port transactions are done as soon as possible while
port-to-communicator transactions are done as late as possible. It is therefore sufficient
to have a single copy of each communicator and task port on each host.

4.2. Hierarchy-Preserving HTL Compiler

The hierarchy-preserving compiler generates code for programs, modules, and modes
by invoking Alg. 4.4, Alg. 4.5, and Alg. 4.6, respectively. The compiler uses symbolic
addresses to refer to different parts of the code. For each program P, programlinit|R]
(resp. programStart|P|) denotes the address of the HE code block that initializes (resp. ex-
ecutes) P. For each module M, modulelnitM] (resp. moduleStart4]) denotes the address of
the HE code block that initializes (resp. executes) M. For each mode n, modeStartn] is the

BUPT

4. HTL COMPILER 50

Alg. 4.3 GenerateECodeForModeOnHost(m,h)
f:=0
while i < 7[n!//+/m| do
set unit_address(m, i} to PC and fix up
// update communicators with task output
Vd € writeDrivers{m./):emit(call(d))
// continue after other modules updated communicators
emit(future(0, PC + 2))
emit(return)
if (i=0)
// check mode switches
Y(cnd,n') € switches(m):emit(if(cnd. mode_addressiu’]))
set mode _addressim] to PC and fix up
end if
if (mode n is contained in a module on host h)
// read communicators into tasks
Vd € readDrivers(m,/):emit(call(d))
// release tasks with no precedences
vt € releasedTasks(m./):emit{release(t))
if (i=0)
// release tasks with precedences
Vt € precedenceTasks(m):
// wait for tasks on which t depends to complete
emit(future(complete(t),PC + 2))
emit(jump(PC + 5 + |portDrivers(t)|))
// release t after other modules updated communicators
emit(future(n, PC + 2))
emit(return)
// read ports of tasks on which t depends, then release ¢
vd € portDrivers(t):emit(call(d))
emit(release(t))
emit(return)
end if
end if
// continue mode after +|m] time
emit(future(~(m), unit_addressm,i + 1 mod =(m]/[m]]))
emit(return)
Fi=i+1
end while

BUPT

51 4.2 Hierarchy-Preserving HTL Compiler

address of the HE code block that starts m, and targetMode[u] is the address of HE code
block that is executed when another mode switches to m. Each mode m is divided in uniform
units corresponding to the smallest period between two time events (i.e., write of a com-
municator or read of a communicator) in m. Given a mode m, the duration of an unit v[m] is
the greatest common divisor of all access periods of all communicators read or written in
m; the total number of units is #[m]/~[n], where =[m] is the period of m. For each unit/ of every
mode n the compiler generates separate code blocks for updating communicators, check-
ing switches (and related actions), and reading communicators (and releasing tasks): the
address of the HE code block that writes communicators is unitWritem./], the address of
the HE code block that checks switch condition is unitSwitchim.i}, and the address of the
HE code block that reads communicators is unitRead(m, /]. HTL semantics constraints that
at any instance, communicator writes, mode switch checks, communicator reads, and task
releases should be done in the above order to maintain consistency of communicator val-
ues across all modules. The address of the HE code block that sets up the execution order
of communicator writes, switch checks, and communicator reads (and task releases) is
modeBodyn|. Instructions may forward reference to any of the above symbolic addresses
which may require fix up during compilation.

Alg. 4.4 GenerateECodeForProgramOnHost(P,h)

set programlInit{p] to PC and fix up

// initialize communicators

Ve € communicators(P):emit(call(init(c)))

// initialize all the modules in P

VM € modules(P):emit(jumpSubroutine(modulelnit|M]))
// return from initialization subroutine of p
emit(return)

set programStart|P] to PC and fix up

// start all the modules in P

VM € modules(P):emit(jumpSubroutine(moduleStart|M}))
// return from start subroutine of P

emit(return)

Alg. 4.4 generates code for a program P on a host h. The code at address programInit{p]

initializes all communicators declared in P by calling corresponding initialization drivers
(init(-) denotes the initialization driver for a communicator or a port), then it calls initial-
ization subroutine of each module in P. Code at address programStart|P] calls the start
subroutine of each module M in P.

Alg. 4.5 GenerateECodeForModuleOnHost(M,h)

set modulelnitM] to PC and fix up

// initialize task port

Vp € taskPorts(M):emit(call(init(p)))

// return from initialization subroutine of M
emit(return)

set moduleStart(M] to PC and fix up

//start the start mode of ¥
emit(jumpSubroutine(modeStart(start(M]]))
// return from start subroutine of M
emit(return)

BUPT

4. HTL COMPILER 52

Alg. 4.5 generates code for a module ¥ on host h. Code at address modulelnit(¥]
initializes all task ports (denoted by taskPorts(M)) of the tasks in M by calling respective
initialization drivers. All tasks maintain two sets of local ports, called task input ports
and task output ports, which are not accessible by other tasks. Before a task is released,
values of the communicators and ports that are read by the released task are copied into
task input ports, which are used by task at execution. At completion, the task output
ports are updated; communicators and ports are written from the task output ports when
the writing is due. Code at moduleStart{M] calls the start subroutine of the start mode,
start(M}, of M.

The following auxiliary operators are used for Alg. 4.6. The set readDrivers(m,/)
contains the drivers that load the tasks in mode m with values of the communicators that
are read by these tasks at unit/. The set vriteDrivers(m./) contains the drivers that load the
communicators with the output of the tasks in mode n that write to these communicators
at unit /. The set portDrivers(t) contains the drivers that load task input ports of task
t with the values of the ports read by t. The set complete(t) contains the events that
signal the completion of the tasks on which task t depends, and that signal the read time
of the task t. The set releasedTasks(m./) contains the tasks invoked in mode m, with no
precedences, that are released at unit /. The set precedenceTasks(m) contains the tasks in
mode o that depend on other tasks.

Alg. 4.6 GenerateECodeForModeOnHost(m, h)

0 GenerateECodeToStartModeOnHost(z,b);

1/.=0

2 while i < w[n|/y(n] doO

set unitWrite[w. /] to PC and fix up

// write communicators with the values of task output ports

vd € writeDrivers(m,i):emit(call(d))

// wait for other triggers to become enabled

emit(return)

if (i =0)
GenerateECodeToTestSwitchesForModeOnHost(m, h)

10 GenerateECodeToPreserveHierarchyForModeOnHost(m, h)

11 emit(return)

12 endif

13 GenerateECodeToReleaseTasksForModeOnHost(m, b, /)

14 if(i < x[n}/y{m) - 1)

15 // jump to the next unit of mode m

16 emit(writeFuture(ym]. unitWritelm,7 + 1))

17 emit(readFuture(y[n]. unitReadm.i + 1j))

18 endif

19 // wait for other triggers to become enabled

20 // OR return from body subroutine of m

21 emit{return)

22 j:=i+i

23 end while

VONTNLW

Alg. 4.6 starts by invoking Alg. 4.7, which emits HE code to start a mode. Alg. 4.7
emits code (at address modeStart{n]) for checking all the mode switches (lines 1 - 3) in
a mode m, so that they are tested first time n is invoked. Next, code is generated (at
address targetModefnj) to handle the case when no switch is enabled: a call to code at
modeBodyun], followed by a call to the refinement program (if any). This sets the execution

BUPT

53 4.2 Hierarchy-Preserving HTL Compiler

Alg. 4.7 GenerateECodeToStartModeOnHost(m.h)

set modeStart|n] to PC and fix up

// check mode switches

v(cnd.n') € switches(m):
emit(jumplIf(cnd. targetModen']))

set targetModein| to PC and fix up

emit(jumpSubroutine{(modeBody|m]))

if (program P refines m)
//increment the level
emit(getParent(R0.R3))
emit(pushRegister(R3))

10 emit(setParent(RO.R2))

11 emit(cleanChildren(R0))

12 emit(jumpSubroutine(programStart{program(m|}))

13 //decrement the level

14 emit(popRegister(R3))

15 emit(setParent(R0O,R3))

16 emit(cleanChildren(R0))

17 end if

18 // return from start subroutine of m

19 // OR wait for other triggers to become enabled

20 emit(return)

voNOOULAWNKROQ

of a mode before the execution of the refinement program. Code emission at lines 6 -
17 checks whether a refinement program exists and subsequently updates the hierarchy
information if there is one. Before the code for refinement program is invoked (line 12),
the hierarchy is updated (lines 7 - 11), as refinement adds one level of hierarchy; once
the invocation of the refinement program completes, the level is restored (lines 13 - 16).
Update of hierarchy consists of pushing the parent of the trigger that is referred by the
trigger name in register RO onto the stack (lines 8 - 9); the parent of the trigger pointed
by RO is then changed to the trigger pointed by R2 (which contains a pointer to the last
trigger added to the switch queue), and children list is reset (code for refinement program
has yet to be invoked, thus there is no children information). In effect, for the execution
of the refinement program, parent of trigger pointed by RO points to the parent trigger
of all the triggers that will be added in the switch queue for that program. To restore
the hierarchy level, the parent of trigger pointed by RO is updated by popping the parent
stack.

After the call to Alg. 4.7 returns, Alg. 4.6 generates E code for each mode unit /.
Lines 4 - 7 generates E code that calls the driver for each communicator being written
at unit /. Next Alg. 4.8 is invoked for mode unit zero to generate code that tests mode
switch conditions, and takes necessary action when a switch is enabled. In HTL, modes
can switch only at period boundaries; thus the switches are checked only for unit zero. If
no mode switch occurs (line 4), then the code jumps to modeBody(m]. If a mode switch
occurs, then all children of the last enabled trigger in the switch queue (its name is stored
in register RO) are removed from switch queue (lines 5 - 8). The removal of children is
recursive, thus all children of subsequent children are also removed. Once the children are
removed, the code execution jumps (lines 9 - 10) to the target address of the destination
mode targetMode(r'], where &’ is the destination mode.

After code for mode switches has been generated, Alg. 4.9 is invoked to sequence
the execution order of communicator writes, switch checks, and communicator reads (and

oA s

Loes td

T

e

BUPT

4. HTL COMPILER 54

Alg. 4.8 GenerateECodeToTestSwitchesForModeOnHost(w, h)

0 set unitSwitchim. 0] to PC and fix up

1 // check mode switches

2 vicnd.w') € svitches(m):

3 emitijumplficnd. PC + 2))

4 emit{jumpAbsolute(PC + 1))

5 // cancel all triggers related to the refining
6 // program of m, and its subprograms
7
8
9

emitideleteChildren(R0))
emit(cleanChildren(R0))
// switch to mode m'

10 emit(jumpAbsolute(targetModer'}))

subsequent task release), for unit zero of mode m. This is done by emitting a future
instruction (line 1) for unitWrite[m.0] (trigger will be added to writeQ), a future instruction
(line 2) for unitSwitchlw, 0) (trigger will be added to switchQ), and a future instruction (line
9) for unitRead'n. 0} (trigger will be added to readQ). Whenever a trigger is created and
added to a queue, the relevant trigger pointer is stored in register R1. Once a trigger
is added in the switch queue, the hierarchy information has to be updated (lines 3 - 8).
Depending on how the code is reached, there are two scenarios: first, the code is invoked
by handling an enabled trigger in the switch queue, i.e., a mode switch has occurred or a
mode is being reinvoked, and second, the code is invoked when a mode is executed for the
first time. In both scenarios register RO records the relevant hierarchy information. In the
first scenario, it stores the name of the last trigger in the switch queue that was handled
(by semantics, if any trigger is handled the name is stored in R0). In the second scenario,
it stores the name of the last trigger in the switch queue that was created. Code at lines 3
- 7 sets the parent of the trigger pointed by RO as a parent for the trigger pointed by R1,
and copies the children list from the trigger pointed by RO to the trigger pointed by R1. A
new trigger for the read queue may remove the information of the last trigger added to
the switch queue from R1; so a copy of R1 is stored in R2 (line 8).

Alg. 4.9 GenerateECodeToPreserveHierarchyForModeOnHost(m, h)

set modeBody(z] to PC and fix up
emit(writeFuture(x|a]. unitWrite{m, 0}))
emit(switchFuture(rm}. unitSwitchim, 0}))
emit(getParent(RO.R3))
emit(replaceChild(R3.R0.R1))
emit(updateChildren(R0O.R1))
emit(setParent(R1.R3))
emit(copyChildren{R1,R0))
emit(copyRegister(R1.R2))
emit(readFuture(0, unitRead|m, 0)))

VoONOMTNLWNKHO

|

Once the call to Alg. 4.9 returns, Alg. 4.10 is invoked. Alg. 4.10 generates code
(at unitRead(n. /]) that reads (lines 2 - 3) all communicators (by calling drivers that copy
from communicators into task input ports) that are to be read at unit /i, and releases all
tasks (with no precedences) that should be released at unit i. For unit zero (line 6), code
is generated to release precedence tasks (lines 7 - 15). For each task t with precedences,
a trigger is added to readQ: the trigger is activated at the completion of preceding tasks

BUPT

55 4.3 Compilers Analysis

of t, and the subsequent code writes input ports of t and releases t.

Last stage in code generation for an unit of mode n consists of emitting code to
jump from one unit to the next (lines (14 - 18), Alg. 4.6). The generated code adds
triggers to the write queue and the read queue only. Switches are not possible in other
units except unit zero. For unit zero the future instructions that ensure continuity of
execution are generated by Alg. 4.9.

Alg. 4.10 GenerateECodeToReleaseTasksForModeOnHost(m, h. /)

0 set unitReadw.i] to PC and fix up
1 if (mode n is contained in a module on host h)
// read communicators into task input ports
vd € readDrivers(m,§):emit(call(d))
// release tasks with no precedences
vt € releasedTasks(m. /):emit(release(t))
if (i=0)

// release tasks with precedences

Vt € precedenceTasks(m):

// wait for tasks on which t depends to complete

10 emit(readFuture(complete(t). PC + 2))
11 emit(jumpAbsolute(PC + 3 + |portDrivers(t)|))
12 // read ports of tasks on which t depends,
13 // then release t
14 Vd € portDrivers(t):emit(call(d))
15 emit(release(t))
16 // wait for other triggers to become enabled
17 emit(return)
18 endif
19 end if

VONGOCUVNLWN

The code generation algorithm for programs/ modules/ modes accesses other pro-
grams, modules, or modes through symbolic addresses and does not influence the code
generation of other programs, modules, and modes. Thus parts of HTL programs can be
compiled in any order separately.

4.3. Compilers Analysis

Complexity of the two HTL compilers, flattening and hierarchy-preserving, are analyzed in
terms of efficiency of code generation and runtime overhead. Efficiency of code generation
is measured by the number of instructions generated (by a compiler) for a given HTL
description. The runtime overhead is the average time spent at each instant in executing
instructions and searching for enabled triggers; thus the overhead is measured as the
number of instructions that have to be interpreted per instant, and the number of triggers
in the trigger queues.

In this rest of this section the two HTL compiler algorithms are compared both
analytically and experimentally. First, the lower bound and upper bound, of the complex-
ity of each compiler algorithm are identified intuitively, next a more detailed analytical
comparison is presented, and in the end there are presented some experimental results,
which confirm the analytical statement.

BUPT

4. HTL COMPILER 56

4.3.1. Overview on the Complexity of the Two Compiler Algorithms

Given an HTL description that specifies, p € N5o programs, m € N>, modules, and n € N5¢
modes per module, Table 4.1 presents the space complexity and the runtime complexity
of both flattening HTL compiler and hierarchy-preserving HTL compiler. The bounds pre-
sented in Table 4.1 represent upper bounds. However for the hierarchy-preserving HTL
compiler these bounds are also lower bounds. For the flattening HTL compiler the upper
bounds for the generated code size and for the number of instructions that have to be in-
terpreted per instant are also lower bounds for an HTL description that consists of p € N5,
m € N>, modules, and n € N5, modes per module, for which all the HTL programs except
an HTL program P that is a direct child of the root HTL program, contain one module, and
for which program P contains the remaining m — p + 1 modules. The upper bound for the
number of triggers in trigger queue presented in Table 4.1 for the flattening HTL compiler
is a lower bound for the same compiler for an HTL description that consists of p € Nso,
m € N>, modules, and n € N.o, and for which all the HTL programs except the root HTL
program contain one module, and the root HTL program contains m — p + 1 modules.

The focus of the analysis is to understand the handling of hierarchy by the two
compilation algorithms. The code generation for handling communicators, ports, and task
invocations is the same for both the compilers, thus the non-hierarchy description is kept
to a minimum as follows: the root program contains one communicator declaration; non-
root programs do not contain communicator declarations; and modes do not invoke any
task. Any mode m in @ module can switch to any other mode m' in the module.

compiler code size | instructions/instant triggers in queue(s)
flattening O(n™"P) O(n™"P) O(m - p)
hierarchy-preserving | O(mn®) O(mn) O(m)

Tab. 4.1: Comparison of the two compilers

The generated E code size increases exponentially with the number of modules
for the flattening compiler, while the size of generated HE code is linear bounded for the
hierarchy-preserving compiler. The exponential explosion in the case of the flattening
compiler is caused by the flattening process, which in arder to merge the refining program
into the refined mode computes all possible combinations between the modes in parallel
modules from the refining program. The combination of modes generates an exponential
number of new modes and mode switches, which in the end leads to an exponential growth
of the number of instructions. On the other hand the number of generated instructions
decreases exponentially with the number of programs; this is due to the fact that as the
number of programs increases, for a constant number of modules, the number of parallel
modules in the refinement decreases, thus there are fewer modules to be merged together,
and less modes will be generated. The hierarchy-preserving compiler generates the same
number of instructions for each mode no matter where it is declared in the hierarchy. Thus
for n modes per module (where each mode can switch to any of the other n — 1 modes),
the number of generated instructions is O(mn?).

The second column in Table 4.1 compares the number of triggers in trigger queues.
In case of the flattening compiler, there will be one trigger in the trigger queue for each
parallel module in the root program of an HTL test description; i.e., in the worst case there
can be m — p triggers in the trigger queue. For the hierarchy-preserving compiter, there
will be one trigger in each of the three trigger queues (i.e., write queue, switch queue,
and read queue) for each mode. Thus in the worst case (when all modules are executed)
the number of triggers in the queues is O(m) for the hierarchy-preserving compiler.

The number of instructions that have to be executed per instant is given by the

BUPT

57 4.3 Compilers Analysis

number of mode switches that have to be checked in the worst case. Since the number
of mode switches in @ mode for a flattened program is exponential in terms of humber of
parallel modules in the refinement, the number of instructions that have to be executed
per instant is also exponential in terms of number of parallel modules in the refinement.
For the hierarchy-preserving compiler, the E machine checks (in the worst case) all modes
switches for the active mode in each of the modules, which means that in the worst case
the number of instructions is bound by ©(nm) for each instant.

4.3.2. Detailed Complexity Analysis

For the detailed analysis, an HTL test description that contains p € N, programs, m €
N>, modules, and n € N, modes per module, has been considered as an input for both
compilers. All the modes in the test description contain no task invocation and any mode
can switch to any other mode in the containing module.

For this kind of HTL descriptions, formulas will be presented for calculated the
worst case generated code size, worst case number of instructions interpreted per instant,
and worst case triggers in queues; the formulas will get as an input parameters p, m, and
n, which describe a class of HTL test description that have p programs, m modules, and n
modes per module, but which vary in the hierarchical structure.

4.3.2.1. Worst Case Generated Code Size

Flattening HTL compiler. In the case of flattening HTL compiler finding a formula that
can describe the worst case generated code size for an arbitrary number of programs
is very difficult, due to the fact that the flattening algorithm is highly nonlinear. Thus
for this compiler it has been considered only the case when the HTL description has two
programs, a similar analysis can be performed for any number of programs not just for
two, but combining the results in a single formula that will apply for an arbitrary number
of program is very difficult. As presented in Section 4.3.1, the flattening HTL compiler
generates less instructions as the number of programs increases due to the fact that the
degree of parallelism in the refinement decreases as the number of program increases,
and since for an HTL description with a single program, the flattening algorithm does not
affect at all the code generation (i.e., the program is already flat), it is obvious that for the
flattening HTL compiler the worst case generated code size is for an HTL description that
has two programs and for which all the m — 1 modules are in the refining program (e.g.,
highest degree of parallelism in the refinement).

In order to determine the size of generated code for an HTL description with the

flattening HTL compiler, two analyses have to be performed. In the first analysis the
flattening algorithm is analyze in order to determine the number of programs, modules,
and modes in the flatten HTL description. In the second analysis the compilation algorithm
is analyzed in order to determine the size of the generated code.
(a) Flattening algorithm. After an HTL description, which has two programs and m mod-
ules, out of which m — 1 are in the child program, is flatten, the number of programs
is reduce to one, and the number of modules is reduced to the number of modules in
the root program. Nevertheless the number of modes and modes switches in the flatten
description is still unknown.

The first step in flattening an HTL description consists of merging all the modules
in the refining program into a single module, this merging process will generate a mode
for every possible combination between the modes in the m - 1 modules from the refining
program, thus the number of modes in the merged module is n™ !. Knowing that in each
of the m — 1 modules, any mode can switch to any other mode, then any mode generated
from merging together the m — 1 modules should also be able to switch to any other

BUPT

4. HTL COMPILER 58

generated mode, this gives a total of »™ ! — 1 mode switches per generated mode. Thus
after first step the refining program will contain a single module with »™"! modes and
n™ Y(n™ !~ 1) mode switches.

The second step in flattening the program consists of replacing the refined mode
with the modes in the refining program. After this step, the number of modes in top
program will be the sum between the number of modes from the previous step and the
number of modes that are already in the top level module (i.e., n) minus one (e.g., the
mode that will be replaced with the modes from the refining program). As for the mode
switches, since the refined mode could switch to n — 1 modes it means that all the modes
that replace it, also have to be able to switch to any of the n — 1 modes in the top module,
this gives n — 1 more mode switches for each mode that comes from the refining program
(thus number of mode switches in a modes that comes from refining program is n™ !(n —
13 +n™ Yn™ ! - 1)). If we now consider the mode switches that are in the top level modes
(i.e., (n — %) we get a total of (n — 1)2 +n™ " }(n - 1)+ n™ (n™ ! — 1) mode switches.

In conclusion after flattening the program we get n™ ! +n—1 modes and (n—1)+
n™ Yn—-1)+n" Yn™ ! - 1) mode switches.

(b) Compiler algorithm. The compiler algorithm for the flattening HTL compiler is mode
up of three algorithms (Section 4.1). Algorithm 4.1 generates one call instruction for
each communicator declared in a program (there is one communicator in the considered
HTL description), one future instruction for each module in a program, and one return
instruction, thus for the considered HTL description, this algorithm will generate three in-
structions. Algorithm 4.2 first generates instructions to initialize task output ports, since
in the considered HTL description there is no task output port, this will generate no in-
struction, next the algorithm generates a jump instruction to the start mode, since in the
flatten program there is only one module, there will be only one instruction generated by
this algorithm for the considered HTL description. Algorithm 4.3 generates one instruction
for each mode switch in @ mode, and for each mode it will generate four more instructions
(since there are no tasks in any of the modes, no E code will be generated to release tasks
or read/write communicators). The compiler also generates an instruction that invokes
the root program. Thus total number of instruction generated by the flattening compiler
algorithm is 3+ 1+4n" + 3+ 1 = 5+ 4n’ + 3, where 3 is the number of mode switches in
the flatten HTL description, and »n’ is the number of modes in the flatten HTL description.
Now if we use the results from the flattening algorithm analysis we get that for flattening
HTL compiler the worst case generated code size for an HTL description with 2 programs,
m modules, and n modes per module is n2m~1) 4 ™ 4 opim=1) 4 n2 4 9y 4],

Hierarchy-preserving HTL compiler. The compilation algorithm for the hierarchy-
preserving HTL compiler consists of three algorithms, one for each structurat unit (i.e.,
program, modules, and mode) of an HTL description. Algorithm 4.4, which compiles a
program, generates one instruction for each communicator, i.e., 1 instruction for the HTL
test description (there is only one communicator declared), two instructions for each mod-
ule in a program, i.e., 2m for the HTL test description, and two return instructions for each
program, i.e., 2p for the HTL test description. Algorithm 4.5, which compiles a module,
for the HTL test description, generates three instructions for each module, and one in-
struction for each output port declared in a module, thus it will generate 3m instructions.
Algorithm 4.6, which compiles a mode, can be split in two parts: (a) mode initialization
code generation and (b) mode unit code generation. For mode initialization, there will
be generated one instruction for each mode switch in a mode, two instructions for each
mode, and for each mode that is refined there will be generated eight instructions to start
refimng program. Knowing that for the HTL test description there are n — 1 refining pro-
grams, mn modes, and n — 1 switches per mode, the total number of instruction generated
for initializing modes is ((n — 1) + 2)mn + 8(p — 1). For mode units, there are generated five
instructions for each mode switch in a mode and twelve instructions for each mode. Total

BUPT

59 4.3 Compilers Analysis

number of instructions generated for mode units when compiling HTL test description is
((n=1)5+12)mn. In order to start executed HTL program there has to be generated an in-
struction to call each program initialization section, one instruction to start executing root
program and a return instruction. Thus the hierarchy-preserving HTL compiler generates
6mn? 4+ 8mn + 11p + 5m — 5 instructions when compiling the HTL test description.

4.3.2.2. Runtime Overhead

In order to analyze runtime overhead both the worst case number of instructions that have
to be interpreted per instance and the worst case number of triggers in queue have to be
computed.

Flattening HTL compiler. The worst case number of triggers in the trigger queue, when
executing an E code program that has been generated for the HTL test description using
flattening HTL compiler, is influenced only by the number of parallel modules in the root
program, thus in the worst case for an HTL test description there can be at most m — p
triggers in the trigger queue. The worst case number of instructions that have to be
interpreted per instant depends on the number of instructions that have to be executed at
the beginning of the period of a mode. Since in the worst case there can be n/™ "V 4+ n—1
mode switches in a mode in a flatten program, it means that together with two instructions
from the beginning of a mode unit and with the two instructions from the end of a mode
unit, a total of n/™~Y + n + 3 instructions have to be interpreted per instance in the worst
case for an E code program that was generated using flattening HTL compiler for an HTL
test description.

Hierarchy-preserving HTL compiler. For the hierarchy-preserving HTL compiler the
degree of parallelism is always equal to the number of modules, i.e., m modules are
executed in parallel. Since all the modes in all the modules are similar, it is enough to
count maximum number of triggers for a mode and then multiply it by number of modules
that are executed in parailel (e.g., m) in order to find the highest number of triggers in
trigger queues. Since, for an HTL test descriptions the modes contains no task invocation,
it means that the maximum number of triggers in trigger queues is three. Thus when
executing HE code generated using the hierarchy-preserving HTL compiler for an HTL test
description, the worst case number of triggers in trigger queues is 3m. In order to evaluate
the highest number of instructions that have to be interpreted per instant it is important
to notice that the degree of parallelism for an HTL test description is n, and that all the
modes have the same period, thus in the worst case the HE machine will need to interpret
HE code for unit zero for all the active modes. Thus in this case the worst case number of
instructions that have to be interpreted per instant is (n + 7)m.

4.3.3. Experimental Analysis

This subsection compares the efficiency of both flattening compiler and hierarchy-
preserving compiler, experimentally. In order to compare the runtime overhead intro-
duced by interpreting E code and HE code generated by flattening compiler and hierarchy-
preserving compiler, respectively, the time spent in interpreting E code and HE code for
the 3TS case study HTL description (presented in Chapter 5) has been measured; the
delay introduced by code interpretation is below 1% for both E code and HE code. This re-
sult proves that for relatively simple HTL descriptions (i.e., with no parallel modules in the
refinement), the runtime overhead introduced by interpreting HE code is not significantly
higher than the runtime overhead introduced by interpreting E code. .
The code size is compared for HTL descriptions with p programs (i.e., one top-level
program and p — 1 refinement programs) and m modules (p < m), where each module has
n = 2 modes switching between themselves. For each such scenario there are a number of

BUPT

4. HTL COMPILER 60

Generated E Code Size
Generated HE Code Size

f

'lj
Fiyl,
SO
)

LT o - s €

3

Number of Modules ’ W of Programs Number of Modules = " Number of Programs

Fig. 4.2: Number of E code instructions Fig. 4.3: Number of HE code instructions

possible HTL descriptions. All the HTL descriptions for which 1 <p<7and 1 < m <7 have
been automatically generated, and compiled with both HTL compilers. For each scenario
the highest generated code size for each compiler has been recorded. In Fig. 4.2 it is
plotted the highest generated code size for flattening compiler, and in Fig. 4.3 it is plotted
the highest generated code size for the hierarchy-preserving compiler. The two figures
show that the resulits from the previous section are correct. Thus in the worst case the
size of generated E code (4364 instructions) is an order of magnitude larger than the size
of generated HE code (387 instructions).

BUPT

5. Case Study: Three Tanks System

All the case studies that are presented in this thesis consists of implementing a real-time
control application for one of the following two plants: Three Tanks System (3TS) [38]
and JAvaiator [11]. Both plants are non-linear plants, which require multi-mode con-
trol strategies. This chapter consists of two sections: in the first one it is described the
3TS plant and one possible control strategy, in the second section it is presented an HTL
implementation for the 3TS control strategy, which is presented in the previous section.

5.1. Three Tanks System Overview

The Three Tanks System (3TS) plant consists of three interconnected tanks, e.g., T\, T3,
and T3; in Fig. 5.1 it is presented schematically the 3TS plant. Each of the three tanks
is connected to an evacuation tap, e, ez, and e; respectively. Tank 7> is connected to an
additional evacuation tap, g.

g pE

T4 T3 T2
s13 s32 g9
T I T
1 | T

el e e3

Fig. 5.1: Schematic representation of 3TS plant

Tank T3 is interconnected with both tank 77 and T,. The interconnection between tanks
T; and T, is done through tap s;3, and the interconnection between tank 73 and 75 &5
done through tap s;». Evacuation taps and interconnection taps are used to introduce
perturbation in the system. The 3TS plant also contains two pumps, e.g., P and P,
connected to tanks T, and Tz, respectively. In Fig. 5.2 it is presented the real 3TS plant,

BUPT

5. CASE STUDY: THREE TANKS SYSTEM 62

Fig. 5.2: 3TS plant

Mathematical model. For one tank, depending on if there is perturbation in the tank or
not, there are two mathematical models:

1. one tank with no perturbation behaves like a pure integrator:
Hp(s) = kpé (5.1)

2. one tank with perturbation behaves like a plant proportional with first order tempo-
rization (PT1):
1

Ts+1
For a detailed mathematical model of the 3TS plant please refer to Appendix A.

Hp(s)=kp

(5.2)

Controller design. The goal of the controller is to control water level in tanks T, and T3
by controlling pumps P, and P, based on the feedback information obtained from three
sensors, which measure the water in each of the three tanks. For the controller design
it has been considered that there are two distinct controllers, i.e., one controller for tank
Ty and another one for tank 7,. Also it has been considered that tanks T, and T, are
two independent tanks, i.e., the dynamics of the water level in each of the tanks can be
described by equations (5.1) or equation (5.2), depending on if there is perturbation or
not in that tank. Thus a controlier for one tank in general has be designed and then used
for both T, and T.. When there is no perturbation in a tank, a proportional (P) controller is
a good solution. On the other hand when there is perturbation in the tank, a proportional
controller is not enough anymore and a proportional-integrator (PI) controller is needed.
Thus the final control strategy consists of switching between the P and PI control law,
based on the presences or absence of the perturbation.

BUPT

63 5.2 HTL Implementation of the Three Tanks System Controller

5.2. HTL Implementation of the Three Tanks System
Controller

In this section it is presented the HTL description that implements the 3TS controller. The
hierarchical structure of the HTL description is presented in Fig. 5.3.

Hierarchit;I Stru;:ture o - Modes Structure

Fig. 5.3: 3TS Controller: Hierarchical Structure

The top level HTL program contains three modules, i.e., AM71, MT7T2, and
MCommunication. Module MCommunication specifies the timing for the communication;
it contains one mode mCommunication, which invokes six tasks: task t_read, which reads
water level sensors, task t_write, which updates pump commands, tasks t_estimateV'1 and
t_estimateV2, which compute if there is any perturbation in tank T,, and T3, respectively,
the last two tasks t_filter H1 and t_filter H2, compute a Butterworth filter for the two sensed
signals, i.e., water level in tank T; and water level in tank T3, in order to reduce the noise.
The modules MT1 and MT2 specify the timing for the first tank controlier and the second
tank controller, respectively. Each module contains one mode, which invokes one task
(e.g., the controller task for the corresponding tank). In both cases the controller task
is refined into two tasks, one that implements the P controller and one that implements
the PI controller. The PI controller task is further refined into a fast PI and a slow PI, the
difference between this two consists in the amplification factor, which is higher for the
fast PI controller. The fast PI controller is used for a high control error, while the slow PI
controller is used for a low control error. The strategy of switching between a fast and a
slow PI controller is meant to reduce overshooting.

In Fig. 5.4 it is presented the data-flow graph for the root HTL program that spec-
ifies the abstract timing for the 3TS controller. Task t read reads the two sensors that
measure the water level in tank T, and T, respectively, and writes those vales into com-
municator h, and h,. The two communicators are read by tasks t filterl and t_filtere,
respectively, which compute the filtered water leve! in tank 7, and T, respectively. The
communicators k; and k., are also read by tasks ¢t 71 and ¢t.T2, respectively, which compute
the control law for tanks T, and T, respectively, and update communicators u; and u,.

BUPT

5. CASE STUDY: THREE TANKS SYSTEM 64

(ltask ——s direct intertask communication —e— intertask communication through a communicator

Fig. 5.4: 3TS Controller: Data-Flow

Tasks t.estimateV'1 and t.estimateV?2 estimate if there is perturbation in tanks T: and T3,
respectively, it also compute if a fast PI or a slow PI control law should be used, and up-
dates communicators v; and PI_SF1, and », and PI_SF2, respectively. Finally tasks t_write

reads from communicators u; and u, and sends the new command to the two pumps P’

and P», respectively.

Timing behavior of the 3TS controller is presented in Fig. 5.5. The program that
implements the 3TS controller consists of running in parallel the functionality that imple-
ments the communication with the 3TS plant, the functionality that controls tank T;, and
the functionality that controls tank T>. In general the program invokes eight tasks every
500ms. The first task to be invoked is the ¢_read task, which has an LET of 300ms, this task
will write to the fourth instance of communicator h; and h,. Tasks ¢.T'1 and t_T2 have an
LET of 100ms; they will read the fourth instance of communicators h; and h., respectively,
and in the end they will update fifth instance of communicators u; and u,, respectively.
Tasks t_filter H1 and t_filter H2 have an LET of 200ms; these tasks read fourth instance
of communicators h, and h;, and their output port will be read by tasks ¢_estimateV'1 and
t_estimateV'2, respectively. Tasks t_estinateV1 and t_estimateV2 have an LET of 100ms;
these tasks read from fifth instance of u, and u., and from tasks t_filter H1 and ¢_filter H2
and writes to the second instance of communicators v; and v, and PI_SF1 and PI_SF2.

5.2.1. Architecture

The 3TS system plant is connected to a Windows 98 machine through a DAC98 acquisition
board. Since for this implementation the Unix version of the E machine has been used, a
TCP server has been implemented, which sits on the Windows 98 machine, communicates
to the 3TS plant and with the machines on which the 3TS controller runs. The HTL pro-
gram that implements the controller was distributed over three Unix machines: first Unix
machine runs the controller for T, second machine runs the controller for T», and third
Unix machine runs the communication module. The communication between two different
instances of E machine is done through UDP/IP protocol, and the communication with the
server that is connected to the 3TS plant is done through TCP/IP protocol. In Fig. 5.6 it is
presented the architecture on which the 3TS controller has been implemented.

5.2.2. Resulits

In order to evaluate the 3TS HTL controller that has been presented, a number of three
experiments have been conducted. All the experiments have been run on the real 3TS
plant. In the first experiment the implemented controller has been modified so that a

BUPT

65

5.2 HTL Implementation of the Three Tanks System Controller

hi

o e o ° < o
2 O SO o ° O o
wvo o e} o o ° <
w o o o O o) ° o
i e SO o) o) °
v e o < o ~ °
PI_SF1 @ (@] O & e ®
PILSF2 @ o - 'S 2) °
A
[t_read B
[L]
[t_filterH1]
t_estimateV1]
[t_fiterH2 |
. ssimeioVZ
[
t12_ |
R B - | : >
0 100 200 300 400 500 tms]

task @ read/written communicator (_ unused communicator

Fig. 5.5: 3TS Controller: Timing

T T " Unie
i Machine 1 i Machine 2 . Machine 3 .
i :

- .
I
i

[Emachine | [Emachine | | Emachine |

S S

I UDP or TCP/IP

| Windows 98
i Machine
| DACSS |
T

4

\J v
ul h1 h2 u2

Fig. 5.6: 3TS Controller: Architecture

BUPT

5. CASE STUDY: THREE TANKS SYSTEM 66

proportional (P) controller is used for both tank T, and 7,. The target for tank T, was set
to 30cm, and the target for tank 7> was set to 40cm. In tank 7, there was no perturbation
while in tank 7, there was perturbation. In Fig. 5.7 it can be seen the water level in the two
tanks. In the two diagrams one can observe that for tank T, (where is no perturbation)
the P controller is good enough and the target water level is reached in about 110s, but for
tank 7: (where is perturbation) the target water level is never reached, which means that
the P controller is not good in this case (i.e., it can not compensate for the perturbation).

T T2
[e - 1.
pEree—— I T ;
1 A T O S 1Y SRS URNS
e » -t e el B N RN
o £ S TR
T . N Tl o
L i K '
T v R
: SR
: | ¢
hel T r’{ — e e
. - hw—n o Sorec waler wve
> &L 7} F s ' 4 A 49 X 8 1w 120
ts} tis]
I e T - A - e —
ot ! { T Pumeemd
i T o i i
RIS i !
: L . e -
| R '1 : :
B - a s T P Gl Y T N A T
E : - E . : : : i
5 ! «,”.. ! g2 4
4 Yo i e -
6. P 3
M i Ero e [-l
} . ‘9%\‘; .! 5. B o
P - - - :
1 & B &) (R} o i) LY 4] &0 a 12]
tis] {s]

Fig. 5.7: P Controlier for both T1 and T2 {T1 without perturbation, T2 with perturbation)

In the second experiment the controller has been modified so that a proportional-
integrator (PI) controller is used for both tank T, and T:. The target for tank 71 was set to
30cm, and the target for tank T, was set to 30cm. In tank T, there was no perturbation
while in tank T there was perturbation. In Fig. 5.8 it can be seen the water level in the two
tanks. From the two diagrams one can observe that for tank T, (where is no perturbation)
the PI controller is not good, i.e., the target water level is overshoot, nevertheless for tank
T: (where is perturbation) the target water level is reached in about 100s.

In the third experiment either a P or a PI controller is used for both tanks, de-
pending on the presence or absence of perturbation in the controlied tank. The target for
tank 7: was set to 30cm, and the target for tank T, was set to 40cm. In tank T there
was perturbation, while in tank T, there was no perturbation. In Fig. 5.9 it can be seen
the water level in the two tanks. From the two diagrams one can observe that for tank
T: (where is perturbation) the P-PI controller is good enough and the target water level is
reached in about 150s, and for tank T, (where is no perturbation) the target water level
is overshoot, but the difference between the reached level and target level is only around
2cm, the control time is 200s.

From the three experiments that were presented above nor a P controller neither
a PI controller is good enough to control water level in tank T, and T; in all the possible
scenarios, but if it is used a controller that switches between a P control law if there is
no perturbation in the controlled tank, and a PI control law if there is perturbation in the

BUPT

67 5.2 HTL Implementation of the Three Tanks System Controller

£l 00 150 23 p=] "] il p)] 150 Ki s 250

ts] tfs]

Fig. 5.8: PI Controller for both T1 and T2 (T1 without perturbation, T2 with perturbation)

T1 T2

—— tfwed waler el
T o s 0 % W %0
tfs]

L Pump 2 carroy

¢ & 10 % 20 %0 a0 %0 g

{s]

Fig. 5.9: P-PI controller for both T1 and T2 (T1 with perturbation, T2 without perturbation)

BUPT

5. CASE STUDY: THREE TANKS SYSTEM 68

control tank, the results become very good and we can say that this controller can control
the 3TS plant in any scenario.

i Controller T1 T2

: tcis] [o1[%] 1 A[%] | i8] | a1[%] | 7[%]
I 17 0 - - -77
; PI 75 | 11 | 36 |150| 10 0

i P-PI 150 10 | 0 [200| O 5

Tab. 5.1: Control quality indicators

In Tab. 5.1 it is presented the control time (t.), overshoot (,), and the difference
between the target value and the value at which water level stabilizes (v), for the three
experiments. As shown in the table only the P-PI controller is able to control the plant
in any scenario. The P controller is not able to compensate for perturbation, while the PI
controlier is not able to control water level when there is no perturbation.

BUPT

6. Exotask HTL

The constant growth in complexity of embedded systems requires development of new
real-time programming languages and tools that improve development of such systems.
In this context more and more attention is paid to Java, which has been shown to be very
efficient for non-real-time applications. The main advantages of Java over other object-
oriented languages, i.e., C++, are: automatic memory management, namely, in Java
programmer does not have to explicitly allocate/de-allocate memory since these opera-
tions are done behind the scene; Java programs are portable, i.e., once a program was
compiled it can be run on any platform for which there exists a Java virtual machine im-
plemented; code reusability. All this advantages are not for free, the price that is paid for
them is represented by the lost in efficacy (the ratio between the time the processor is
available for executing application specific code in a period and the period for which the
efficacy is analyzed [1]) and non-determinism. The lost in efficacy is due to the fact that
Java programs are not directly compiled into machine code but into bytecode, which is
interpreted by the Java virtual machine. The non-determinism is due to the garbage col-
lector (GC). Although the non-determinism due to the GC has been removed, thus making
possible the use of Java for developing real-time applications, the former problem still
remains and limits the categories of real-time applications for which Java can be used.
Thus, Java can be used for developing complex real-time applications for embedded sys-
tems that use a relative powerful hardware (over 300MHz processor and at least 32MB
of memory), whereas for embedded systems that use microcontrollers, C or C++ are still
the best choice.

Exotask [8] is a new programming construct for developing real-time application
in Java. It addresses three key problems: low latencies, pluggable schedulers, and deter-
ministic timing behavior. Tasks in Exotask can be run at frequencies below the barrier of
one millisecond; this is not something new for Java, nevertheless Exotask is less restric-
tive as compared to other solutions (Eventrons [32], Reflexes [33], and StreamFlex [34]).
In the Exotask system, a task can be annotated with information that defines its timing
and that is used by the scheduler when task has to be scheduled. The set of Java classes
that are used to specify timing information form the so called timing grammar. Although
Exotask comes with a predefined timing grammar and a predefined scheduler, which can
interpret the predefined grammar, it is not limited to the predefined trimming grammar
and scheduler, since Exotask specifies an interface through which a new timing grammar
can be specified and a new scheduler, which can interpret the new timing grammar, can
be registered into the system; the new scheduler has full control over the task execution.
Although Java provides functional portability across platforms, not all real-time program-
ming methodologies that have been developed for Java support timing portability, this
is because they relay on platform dependent characteristics in order to tune the appli-
cation. In the case of Exotask, timing portability is guaranteed, with the condition that
there are enough resources. In order to achieve timing portability, Exotask uses LET [5]
model of computation. Exotask supports distribution of a program over a set of hosts and
composition of Exotask graphs specification.

BUPT

6. EXOTASK HTL 70

Exotask framework consists of a hierarchy of Java classes that are used to specify
and to execute an Exotask program, and an Eclipse [39] plug-in, which provides a graphical
editor for the Exotask program. In order to run an Exotask program IBM WebSphere Real
Time (WRT) product JVM [40] its needed. The WRT includes RTS] [27], the Metronome
real-time garbage collector [29], and an ahead-of-time (AOT) compiler, which is used to
eliminate non-determinism due to JIT compilation [41].

An Exotask program consists of an Exotask specification graph, which can specify
data-flow between the tasks invoked in the program and timing of the tasks. The pro-
gram also contains a set of Java classes that implement the functionality of the nodes in
the Exotask graph specification. In Fig. 6.1 it is presented an overview of how a real-time
application is developed using Exotask. The nodes in an Exotask graph specification are
represented by specifications of Exotasks (Exotask specification), while the edges rep-
resent specifications of connections (Exotask connection specification) between the Exo-
tasks. Thus an Exotask graph specification depicts the data-flow in an Exotask program.
In order to specify the timing of an Exotask graph, each node and each edge of an Exo-
task graph specification has to be annotated with timing information, e.qg.: the period, the
offset with in the period, etc. The timing information that can be used to annotate nodes
and edges in an Exotask graph specification, depends on the selected grammar. The Ex-
otask system comes with two predefined grammars: Timed-Triggered (single mode) and
Timed-Triggered (multiple modes). The difference between the two grammars consists in
the fact that the second grammar supports sequential composition of sets of Exotasks,
whereas the first one does not support such composition.

Timing
" expressed in
an Exotask
graph
- : real-time
Sl - egfr\\\;/)'itl\er Gl application
. Functionality (bytecode)
written in o
Java

Fig. 6.1: Overview of Exotask programming model

There are three types of Exotasks specifications: communicator specification, task
specification, and predicate specification. A communicator is a system provided Exotask,
which has one input port, one output port, and exposes an execute method, which copies
the value from communicator input to communicator output. A communicator acts like
a buffer, it is inspired from HTL, and it can be used to communicate between tasks that
have different frequencies. A communicator specification in an Exotask graph specification
consists of a name, which can be used to refer the communicator, a data type, which
specifies what kind of values can be buffered by the communicator, an initial value, and
communicator's timing. A task is an Exotask written by the user. A task specification
consists of a name, an implementation class, a list of input ports, a list of output ports,
and timing annotation. The name is a string that is used to refer to the Exotask. The
implementation class, is a Java class that implements the functionality of the task; it
has to obey certain restrictions [8]. The list of input ports and the list of output ports

BUPT

71

represent the interface through which the task can communicate with other Exotasks in a
program. Each input/output port has a type associated with it; it can handle only values
of the associated type. A predicate is still an Exotask written by user that is invoked
by the scheduler and which computes a boolean value based on a set of inputs. The
boolean value computed by a predicate is interpreted by the scheduler according to the
timing grammar, i.e., in the case of Timed-Triggered (single mode) predicates are not used
at all, but the Timed-Triggered (multiple modes) uses predicates in order to implement
mode switching. A predicate is specified through a name, an implementation class, a
list of input ports, and timing annotation. The name is a string value used to refer to
the predicate. The implementation class is a Java class that implements the functionality
behind the predicate; as in the case of a task, the class has to obey some restrictions. The
list of input ports are used to read values from other Exotasks, values that influence the
boolean result. The timing annotation for all types of Exotasks specifies when an Exotasks
has to be executed.

€]
— . © <
Sensor Compute Actustor

Fig. 6.2: Example of Exotask graph in graphical editor

An Exotask connection specification consists of a name, a data type, a source
and a target. The name is a string value, which is used to refer to the connecti.on. The
data type identifies the type of values that can be exchanged though the connection. The
source identifies the source Exotask and the source port, and the target specifies the
destination Exotask and destination port. Both the type of the source port and the type
of the destination port have to match the type of the connection. The timing annotathn
for an Exotask connection specification specifies when the value from the source port is
transferred to the destination port. _ _ .

There are three ways to create an Exotask graph specification: using the java
classes for specifying an Exotask graph, which are provided by the Exotask framework,
editing an XML file that can be parse by an XML parser provided by the Exotask framework,
or using the graphical editor, which is provided by Exotask framework. In the case oflthe
graphical editor, the graph is saved in an XML file. Exotask framework provnd.es fqnctnon-
ality for switching between the Java representation of an.Exotask graph specification and
an XML representation. In Fig. 6.2, Fig. 6.3, and Fig. 6.4 is represepted an Exptask graph
specification, which contains three tasks and which uses Timed-Triggered (single rpodg)
grammar, in the three possible ways: graphical editor, XML, and Java code, respectively.

The graphical editor is very expressive when it has to represept Qata-ﬂow, never-
theless there is no view for illustrating timing of the entire program; timing of an Exotask

BUPT

6. EXOTASK HTL 72

<ExotaskGraph>
<TimingProvider kind='simple’
parser='cow. ibm.realtime.exotasks.timing. s1mple.SampleTimingDataParser!
! graphics='60 60 300 45' period='5'/>
<Task 1d='Senscr’' implementation='test.examplel.Sensor' graphics='60 60 124 172'>
<Output id= out0' type='java.lang.Integer'/>
</ Task>
<Task 1d=‘Actuator' implementation='test.exampleC.Actuator' graphics='60 60 429 171'>
<Ipnput 1id='in0' type=' jave.lang.Integer'/>
<Timing offsets='S'/>
</ Task>
<Task id=’Cowpute’ implementation='test.examplel.Compute’' graphics='60 60 267 171'>
<Input 1d='inC' type='java.lang.lnteger'/>
<Output id='outD’' type='java.lang,Integer'/>
</ Task>
<Comnection 1d='Compute_Actuator’' source='Compute' target='Actuator'>
</Connection>
<Connection 1d='Sensor Compute' source='Sensor' target='Compute'>
</Connection>
</ExotaskGraph>

Fig. 6.3: Example of Exotask graph in XML

ExotaskGraphSpecificarion ans * new ExotaskSraphSpecaificat on{):

ExotaskTaskSpecificetion Senscrenew IxotaskTaskSpecificecion():;

Sensor . setName ("Seasor”)

Sensor . setImplementationClass (“test.exanmple0.Sensor™);

3ensor.setinputPortTypes (now Scrang{)(});

3ensor.secvinputPorcNames (mew String(}(}):

Sensor . setParameter Type (77)

Sensor.setParamctecrValue (*7) ;

Sensor.setOutputPoreTypes (new Strang[){"java. lang. Integecr™,}):

Senssr.setOutpucPortNames (new Strang{) ("out0”,)):

Sensor.aecVeakliylsolated{false! :

ans.qget Tasks () .add (Sensor) @

ExotaskTask3pecification Actuator=new ExotaskTasiSpecification O

Actuator.setNaxe ("AStuaror ™) :

Actuator.setTimingData (new com.ibm.realtime.exotasks.t iming.saimple. SimpleTiminginnotation(
new String(](nall), new long{]{}{new Yong[] {5000000L,),}}};

Actuator.setImplementationClass ("test.exawp 120, Actuater N

Actuetor.secInpurPortTypes (new String()("java.lang. int egec”,)}

Actuator.setlaputPortNemes (new Scring[l(*1p0",));

Actuator.setParamecerType ("") .

Actuator.setParameterValue (=) ;

Actuacor.setOutpurPort Types(new Strang(j(i}:

Actuator.setCutputPortNames (new Sctrang[)()):

Actuator.sec¥Weakiylsolatedifalse);

ans.ge-Tasks () . add (ACtvator::

ZxotaskTaskSpecification Compute=new ExotaskTaskSpecification()

Compute . setName | " cmpute”) ;

Campute.setlimplementationClass("test.exanpleD.Computse®);

Cowpute.setInputPorrTypes(new String{}t"java. lang. Integer™,));

Compute.set InputPorctNames (new Scering{l(~1n0",)):

Compute.se-ParameterType(*™):

Compute.setParameterValue (™) ;

Compute .oetOutputPortTypes (new Stringl) { "java.lang. Integer®,});

Compute.setDutputPortNames (new Scerang{] (“cunz0”,) ;

Compute.setleaklylsolated(talse)

ans.getTaska () . add (Compute)

ans.gecConnections () .add{new ExotaskConnectionSpecificatiaon{"Comput &_Actuator”,null,Compute,0, Actuator,0)) ;

ans.gectConnections (i .add (new ExptaskConnect ionSpecification (,"Se_h;nx_Coppu:g',nnu,jengog,n,qmpu;e‘,p!):

ans, secTimingData (new com. itbm. r:nui.-e.exotuk:.:man.smple.?er 10d (5000000L) } ;

Fig. 6.4: Example of Exotask graph in Java

BUPT

73 6.1 Exotask HTL Grammar

or a connection can be view only by clicking on it. The XML and Java code representations
of an Exotask graph specification are more intended to be automatically generated and
not edited manually.

Once the Exotask graph has been specified, the resulted Exotask graph specifica-
tion is validated by the scheduler associated with timing grammar that has been used for
specifying the Exotask graph. As a result of validating the Exotask graph specification,
an Exotask graph is generated, which can be used to control execution of the Exotask
program.

In the remaining of this chapter I will present a timing grammar for Exotask which
implements the HTL semantics. In order to achieve this, the following three steps had to
be performed: definition of new timing annotations and extension of the graphical editor in
order to support new timing annotations, implementation of a scheduler that can interpret
HTL grammar, the scheduler also compiles an Exotask graph specification into an HE code
program represented in Java, and finally implementation of an E code interpreter, which
is invoked when Exotask graph is started.

6.1. Exotask HTL Grammar

In this section are presented the timing annotations that have been defined in order to
express HTL semantics in an Exotask graph specification. First the hierarchical structure
of an HTL program has to be specified as global timing annotation for an Exotask graph
specification that uses HTL grammar. The HTL global timing annotation consists of a list
of HTL program declarations, a list of HTL module declarations, and a list of HTL mode
declarations. An HTL program declaration consists of specifying the name of the HTL
program. An HTL module declaration consists of specifying the name of the module, the
name of the start mode, and the name of the HTL program that contains the HTL module.
An HTL mode declaration consists of specifying mode name, the period of the mode, the
name of the HTL module that contains the HTL mode, and the name of the refining HTL
program if any. In Fig. 6.5 it is presented an example of a global timing annotation for an
HTL description that contains two HTL programs, i.e., P1 and P2. Program Pi contains one
module, M1, which contains two modes m1 and m3. Program P2 refines 1 and contains
one module, M2, which contains one mode, m2.

<TimingProvider kind = 'htl' parser = ‘a\:.vmg:al'_but;.f:s.exoca:k:.’.:m:r.q.h'.x.HT'.Tx:‘u.qIa'a}a::er
graphics= 60 60 245 4%5'>
<Programlbist .
<Program name = 'P1'/>
<Program name = 'PIZ’/>
</Programlist:
“<Modulelizt:
<Module nawe = 'Ml° =tart = ‘pl’ program = 'Fl°/>
<Module name = 'Mz' start = ‘mZ program = F2°/>
</MHodulelist>
<ModelList>
<Mcde name = 'ml' period = 'S3' module = "H1' reiine = TPIose
<Mcde namwe = 'mz' period = 'Sg' moduie = CHI° refine = [
<Mode rame = 'm3' perind = '10s’ module = 'Mi' refine = '

</ModelLi3st>
</TimingProvader>

Fig. 6.5: Example of global timing annotation for HTL grammar
.

HTL communicators are mapped directly to Exotask communicators, thus a com-
municator is annotated with the program in which the communicator is declared and with

BUPT

6. EXOTASK HTL 74

the access period. In Fig. 6.6 it is presented an example of a communicator annotation;
communicator 1 is declared in program P1 and has a period of 1s.

<Communizator 1d='c! type='java.lang.Integer’' 1mitialValue='' graphics='60 60 362 133'>

<Timing perizd = '13’ program = 'P1 />
</Comsur:cator™

Fig. 6.6: Example of communicator timing annatation for HTL grammar

HTL tasks are mapped directly to Exotask tasks, thus a task has to be annotated
with the name of the HTL mode in which the HTL task is invoked. Since in HTL a task
can be abstract or concrete, a task in the Exotask graph specification has to be marked
as abstract or concrete, also for tasks that refine abstract tasks it has to be specified the
name of the parent task. In Fig. 6.7 it is presented an example of a task timing annotation
for tow task: t1, which is an abstract task invoked in mode m1 and t11, which is a concrete
task, it refines task t1 and it is invoked in mode m2.

<Tmek 1d= tl' 1mpiementation='test.simple.htl.T1l' 1=olation='strong' graphicg='60 60 526 122'>
<Input 1d='in¢' type='java.lanj.lInteger'/>
<Lutput 1d= gut®’ type='java.lang.ioteger')>
“Tiring 1=do2tract = roue’ parent @ '
{BcdaAzgignment mode = 'mlt/
«'Tiriny:
< Task:
~Tagk .d= ti1' urpismentarion=’cest.simple.htl.Til' 1solation= strong' graphics='60 60 S15 20'>
~Inpur :d='1pC’ ripe= java,lanjy. lnteger />
<Output 34 0und t§pe=’java.lang.Integer'/.
<Ti21ng 12ibgtraci = fal®e parent = 't1'>
<Bodedssigdoent mode = ‘it
< Timany
</ Task:

Fig. 6.7: Example of task timing annotation for HTL grammar

HTL mode switches are mapped to Exotask predicates, thus a predicate it is an-
notated with the source mode and target mode. In Fig. 6.8 it is presented an example
of predicate annotation; the annotated predicator is mapped to the mode switch that
switches from mode m! to mode m3.

cPreiicate ii1=°ml_ . m' 1mpiexentat lun":t!'_v!xn.ple.!:ll.:‘v:'_:h»nl_-‘_ﬂl' isclatione'streng graphics='60 60 771 237 >
Turut 1de ins 25 JAva. lADY. .hteger |
Timi:g *aryer®odes ml
SEodedrs: grc mole <ozl
STiming

JEiedicwre

Fig. 6.8: Example of predicate timing annotation for HTL grammar

HTL tasks can communicate either directly or indirectly through an HTL communi-
cator. In an Exotask graph specification that uses HTL grammar a direct communication
between two tasks is represented through an Exotask connection that connects an output
port of one of the tasks and an input port of the other task. Indirect communication is

BUPT

75 6.2 Exotask HTL Scheduler

represented through two Exotask connections; one that connects one task and a commu-
nicator and the other one that connects the other task and the same communicator. Thus
an Exotask communication is annotated with the following information: the name of the
mode in which connection is used, the instance number of the communicator read/written,
and a flag to specify if the communicator is read or written. If the connection is used to
communicate between two tasks then the instance value has to be set to -1 and the
flag does not matter. In Fig. 6.9 are presented two connections: t2.t3, which is used
to communicate between two tasks, and c1t1, which is used to communicate between a
communicator and a task.

<Connection id='tZ t3' source='t2' target='t3'>

<Timing instance='-1' writesCommunicator='false'>
<HModebssignwent mode = 'm3'/>
</ Tinming>

</Connection>

<Connection id='el tl' source='cl' target='rl'>

<Timing instance='1l' wvyritesCommwunicator='false'>
<Modeldssignment mode = 'ml'/>

</ Tiring>

</Connection>

Fig. 6.9: Example of connection timing annotation for HTL grammar

The Eclipse plug-in that implements the Exotask graph specification graphical ed-
itor has been extended to recognize the new annotations, and an XML parser has been
implemented to parse HTL grammar annotation.

6.2. Exotask HTL Scheduler

As presented in Chapter 4, an HTL description is first compiled into HE code, then the
resulted HE code program is executed on HE machine. Thus in order to executed an
Exotask graph specification that uses HTL grammar, a scheduler that translates the HTL
annotations of an Exotask graph specification into a form of HE code, which is designed to
work with the corresponding instantiated Exotask graph, had to be designed. The compiler
algorithm used here is based on the hierarchy-preserving HTL compiler (Section 4.2).
When the execution of the Exotask graph is started, the generated HE code is interpreted
by a Java HE machine.

The compiler and the E machine together play the formal role of a pluggable Ex-
otask scheduler. E code instructions that release tasks cause those tasks to be assigned
exclusively to a scheduler thread responsible for running it once (in general, the bind-
ing of tasks to threads is temporary and dynamic, but the compiler has determined the
maximum concurrency level and the scheduler then requests enough scheduler threads
to ensure that there will always be a thread available to run each released task). E code
instructions whose purpose is to copy values between ports, or between ports and com-
municators, use the Exotask system interface made available to schedulers for performing
the deep copying between Exotask heaps. E code instructions that perform mode switches
interrogate condition nodes in the graph, just like any other scheduler.

In adapting the latest HTL compiler to work with the Exotask system, compilation

BUPT

6. EXOTASK HTL 76

is always done "on demand' at the point where the Exotask system invokes the HTL sch_ed—
uler. That is, despite the opportunity for separate compilation when using the hierarchical
strategy, there is no ability to save code artifacts across successive runs.

6.3. Case Study: JAviator

The JAviator {11], [12] is a quadrotor helicopter [42]. Fig. 6.10 presents an overview of
the real JAviator. The helicopter was developed at University of Salzburg in order to test
different methodologies for designing and developing real-time applications.

Fig. 6.10: JAviator

JAviator hardware configuration consists of:

e one Gumstix [43], which is a full-function miniature computer, on top of which runs
Linux operating system, it is powered by an XScale processor at 400MHz and it has
64MB of RAM, there is also a version of IBM WebSphere Real Time (WRT) product
JVM running on it, this makes possible development of Java real-time application
for the Gumstix; for JAviator the Gumstix is used to run either parts of the control
program or even the entire control program, and to communicate with the ground
station over TCP or UDP;

e one Robostix [44], which is a board based on the ATmega128 processor (clock fre-
quency 16MHz, flash memory 128KB, EEPROM data memory 4096B, SRAM data
memory 4096B, two timers/counters on 8bit and two on 16bit, two full duplex US-
ART, I12C interface, support for in-system programming, etc.) ; it is used for sensing,
actuating, and for running parts of the control program, it is possible that the entire
control is implemented on the Robostix, in which case the Robostix also has to com-
municate with the ground station; the communication can be either directly over an
RS232 communication channel, or indirectly through the Gumstix; the communica-
tion between Gumstix and Robostix is performed over RS232;

e one Microstrain gyroscope [45],which provides information about Euler's angles,
derivative of Euler's angles, and accelerations on z, y, and z axies;

e one SFR10 ultrasonic range finder [46], which provides information about the alti-
tude.

For the JAviator there are at least two control problems that have to be addressed:
low-level control(LLC) problem, which consists of controlling the altitude and the attitude
(i.e., roll, pitch, and yaw) of the helicopter, and high-level control/(HLC) problem, which
consists of controlling the = and y position of the helicopter. In Fig. 6.11 it is presented on
overview of the two JAviator controllers.

BUPT

77 6.3 Case Study: JAviator

ground high-level low-level

. oM
station controller controlier PWM » .
-
P, n
S, - ‘E\ -
‘Azitaltge{ ; ————— o — e - 2 controiler N \‘-‘/ J
_ — _ _ - S A
- WM
- ,,!,;4 - manual -~ P - - v
T : o T4 i
x " - - - - roli controlier teel et a
- t
rolitarget . —-= = 0
T e auto - -» pdch controiter . ultrasonic v
tch b . - - -
pich target)) ~
e RS23
yaw target Lot <8232
)

e S yaw controier

Fig. 6.11: JAviator control overview

The low-level controller receives sensed data, from the gyroscope and from the
ultrasonic sensor, and target values for z, roll, pitch, and yaw from ground station or
from high-level controller, and computes the command for each of the four rotors of the
JAviator (i.e., Th, T», T3, and T3), which is send to the helicopter as a PWM signal. The low-
level controller consists of: z controller, which controls the altitude, roll controller, which
controls the roll angle, pitch controller, which controls the pitch angle, and yaw controller,
which controls the yaw angle. The z controller is a PID controller, while the roll, picth, and
yaw controllers are PD controllers. The four controllers have been designed using the pole
allocation method. For designing the controller the simplified mathematical model of the
JAviator (Chapter B) has been used.

The high-level controller has two modes of operations, e.g., the manual mode and
the auto mode. In the manual mode the high-level control only passes the roll and pitch
references received from the ground station to the low-level controller. In the auto mode
the high-level controller computes the roll and pitch targets for the low-level controller so
that the requested x and y target position is reached. Currently there is no sensor on the
JAviator that can provide information about the x and y position, thus the only way to get
such information is to estimate it based on the acceleration received from the gyroscope.

So far there has been implemented a Java low-level controller using Exotask [8]
framework, and a C low-level controller. In this thesis I will presented two more imple-
mentations, one that uses Exotask-HTL (Subsection 6.3.1), and the other one that uses
micro HTL (Chapter 7).

6.3.1. Exotask-HTL Impliementation of the JAviator LLC

In this section it is presented an Exotask-HTL implementation of the low-level controller.
Figure 6.12 depicts, in visual syntax, the HTL program that implements the the low-level
control. The program consists of running in parallel functionality that implements the low-
level control as well as functionality that implements the communication with the JAviator
and with the ground station.

The top-level program contains three modules, namely, MLLControl,
M J AviatorComm, and MGroundComm. The MJAviatorComm module specifies the
timing of tasks that implement communication with the JAviator. It also computes the

BUPT

6. EXOTASK HTL 78

hserarchical structure

modes structure

PIAvistor) o o
"L Cantret ¢ sastatcrCarorn ! WoroundComm
Pl
- L - ~ R t
"\ . Lt : | \\\..__,/ R
(o), |
e s A
?)
PArtborma B o
| mANpome — \‘J i

) s -
jerogam { Lo () moce (T} ts pemode seach start mode

Fig. 6.12: The HTL Program Structure of a JAviator Flight Controller

next state for the altitude and attitude controllers. The module consists of a single mode,
which has a period of 20ms. The mode invokes the ReadFromJ Aviator, WriteToJ Aviator,
and ComputeState tasks. The MGroundComm module specifies the timing of tasks that
implement communication with the ground station. This module also contains only one
mode that has a period of 100ms and invokes the ReadFromGround and WriteToGround
tasks. Module M LLControl contains the mController and mShutdown modes, which both
have a period of 20ms. The mShutdown mode specifies the timing of the emergency
shutdown, while the mController mode specifies the timing of the altitude and attitude
controllers. The mController mode invokes the Controller task, which implements the
altitude, rolf, pitch, and yaw controllers.

The Controller task is refined by two tasks in the HTL program PLLController: one
task is a concrete task and is invoked in the mOnGround mode, while the other one is an
abstract task and is invoked in the mAirborne mode. The abstract task is further refined
in the HTL program PAirborne by three other concrete tasks; one for each of the three
possible states of a flying helicopter, i.e., take-off, hover, and land.

Figure 6.13 presents in visual syntax the Exotask graph that specifies mController
mode, and the Exotask graph that specifies both communication modules, i.e., with the
sensors and actuators, which are connected to the JAviator, on one hand, and with the
ground station on the other. The XML source of the two Exotask graphs can be found in
Section E.5. All the modes that refine the mControl are specified in Exotask graphs that
have a similar structure with the Exotask graph that specifies mode mControl, before the
Exotask program it is translated into HE code, all the Exotask graph specifications are
composed into a single Exotask graph specification.

Both the MJAviatorComm module and the MGroundComm module contain two
tasks one for reading data from the sensors and the ground station, respectively, and the
other one for writing data to the actuators and the ground station, respectively. In addition
to the read and write task, module M J AviatorComm contains the task ComputeState, which

BUPT

79 6.3 Case Study: JAviator

communication modules low-level control module
@ R <'¢ > i [0
ReadamGroud fresrowd i @ & o
; |- S ®
. Semiiviaa
> =§-— > — > r
Q . oabasw a—— @ - r——=2 i .
RzadFromitvetor . _ % wtrsloemud LY —
i froawGmund
. © !
| wisleeay | w
& & o o W
Sestote toMatax
it ﬁ — <)¢= .
Compupuhates icSte

Fig. 6.13: Data-Flow View of the Top-Level HTL Program in Fig. 6.12

computes the state of the low-level controller based on the data received from the ground
station. The M LLControl module, contains two tasks, one task that sets all the command
signals to zero, which it is invoked in mode mShutdow, and the other one Controller, which
computes the actuate signals based on the values received from the sensors and from the
ground station, and it is invoked in mode mController. The communication between the
Controller task and the tasks invoked in the two communication modules is done through
communicators.

fromJAviator - - - - o
fromGround = - . “r - =
tolavistor » < - L d L4
BcStais . < < - .
'
ResdfF ramroarsd
_ ReadFrom Usdator
[. Comola — 1
W Tousrmer |
[Comptean -
S N T
- cT N il
4 16 20 100

_ . _ lowievel control and communication with the JAvistor __

-
Communication
-— e e oo munication with the ground station

Sn— [rmteros e

Fig. 6.14: Timing View of the HTL Program in Fig. 6.12

Figure 6.14, depicts, the timing of the HTL program. Tasks invoked in the
MLLControl and MJAviatorComm modules are executed once every 20ms, while tasks
in the MGroundComm module are executed once every 100ms.

All the communicators have a period of 4ms. Task ReadFromGround and
ReadFromJ Aviator have a LET of 4ms, they are released for execution at the begin-
ning of the period of the mode in which they are invoked, and they have to finish
within 4ms when they update the second instance of the communicators fromGround and
from.J Aviator, respectively. Task Controller reads the second instance of both fromGround

BUPT

6. EXOTASK HTL 80

and fromJ Aviator communicators, and writes to the fifth instance of the toJ Aviator com-
municator, thus it has an LET of 12ms. Task WriteToJ Aviator and ComputeState read
the fifth instance of communicator toJ Aviator, and task ComputeState writes to the sixth
instance of communicator licState, while task WriteToJ Aviator does not write to any com-
municator it only sends the new commands to the motors; both tasks have an LET of 4ms.
Task WriteToGround read the sixth instance of all the communicators and sends a report
to the ground station, it has an LET of 80ms.

6.3.1.1. Results

Two experiments have been conducted with the Exotask-HTL implementation of the JAvi-
ator LLC. In both experiments an AMD64 four-way 2.4GHz machine was used. Although
using such a powerful machine for embedded systems might sound un-realistic, there are
embedded systems which requires powerful processors and for which space and energy
consumption is not a problem, i.e., next generation battleships [35]. Nevertheless in the
future I hope to optimize the Exotask-HTL implementation so that it can run on a Gumstix;
Exotask programs using TT grammar have already been shown to run on Gumstix [9].

In the first experiment the Exotask-HTL JAviator LLC has been run on the AMD64
machine, at it was connected to a simulated JAviator plant. In Fig. 6.15 it is plotted the
time interval between two successive runs of the Read FromJ Aviator tasks.

:Nl‘l

- min 19955.1 usec
|‘ max 20254.0 usec
- mean 20070.4 usec

) median 20066.0 usec
e stddev 22.7 usec

9.
13000 11643 16888 1TB40 10837 16913 10304 21481 72084 23847 24830
1300¢ »23¢

Fig. 6.15: Interarrival times of the ReadFromlAviator task, when no concurrent allocation is
done

In the second experiment the Exotask-HTL JAviator LLC has been run on the
AMD64 machine and an additional task, which allocates memory at a rate of 2MB/s, was
run on the same machine in the same JVM as the control application. Again control plant
was a simulated JAviator plant. In Fig. 6.16 it is plotted the time interval between two
successive runs of the ReadFromJ Aviator tasks.

The two experiments show that the timing of the program is accurate enough,
e.g., the time interval between two successive execution of a task varies with less then
300usec. The second experiment shows that if there is enough computation power and
if there are enough resources, the timing behavior of the application is not influenced by
other tasks, not even by the GC task.

BUPT

81

6.3 Case Study: JAviator

200§ -

10t -

Count (1og)

min
max
mean
median
stddev

19909.5 usec
20334.0 usec
20069.2 usec
20064.0 usec
22.8 usec

15000 15087 15065 17849 18932 19915 20288 21881 22884 7347 24230
«15000 >230

Fig. 6.16: Interarrival times of the ReadFromJAviator task, when concurrently allocating 2MB

per second

BUPT

6. EXOTASK HTL 82

BUPT

7. Micro HTL

Implementation of embedded applications (i.e., helicopter hover control [11]) in many
cases has to be done on a hardware platform that is limited both in terms of the speed
of the processor and in terms of the available amount of memory (e.g.: microcontroller).
Thus in this chapter it is presented a micro implementation of HTL (micro HTL), which
consists of an optimized version of the HTL compiler, micro HTL compiler, and an optimized
version of the E machine, micro E machine.

The micro HTL compiler and the micro E machine support most of the features
of HTL that have been presented in Chapter 2. The only feature that is currently not
supported at all by the micro HTL is communication between tasks that are in the same
mode through local ports, nevertheless it is possible to communicate between tasks that
are in the same mode through communicators. The reason for not supporting this feature
is that communicating between tasks through local ports introduces dependency constrains
between those tasks, which requires invocation of the E machine after each task has
completed execution in order to update the list of events for each trigger in readq, which
may introduce significant runtime overhead, and high memory cost. Thus in this case
expressiveness has been trade off for runtime performance.

The target platform for the micro HTL implementation is reppresented by the Ro-
bostix [44], which is based on ATmegal28 [47] microcontroller (clock frequency 16MHz,
flash memory 128KB, EEPROM data memory 40968, SRAM data memory 4096B, two
timers/counters on 8bit and two on 16bit, two full duplex USART, 12C interface, support
for in-system programming, etc.) from Atmel AVR.

7.1. Micro Embedded Machine

The micro E machine is the central part of the micro HTL runtime (Fig. 7.1). Micro HTL
runtime also contains the 1ms timer and the micro EDF scheduler. The 1ms timer is a
timer that has a resolution of 1ms that is used as a time event generator. The micro EDF
scheduler is an EDF scheduler [15] that is used to schedule tasks released by the micro
E machine. The micro E machine runs as a task with deadline zero. When there is no
instruction to be interpreted and no active trigger in any of the three trigger queues (i.e.,
writeQ, switchQ, and readQ) the task in which the micro E machine runs, terminates.
Before the task in which the micro E machine runs, terminates, the 1ms timer will be set
to release the micro E machine again after a time interval equal to the earliest time event
on which one of the triggers in any of the three queues depends.

7.1.1. Micro EDF Scheduler

A Y
The micro EDF scheduler has been developed based on the Super Simple Tasker or
SST [48]. SST is a priorities based scheduler that has been designed to work on a mi-
crocontroller. The main advantage of SST is that context switching is very cheap since it

BUPT

7. MICRO HTL

84

micro E machine

Fig. 7.1: Micro HTL runtime

K oo 0 oo el e

hardware

uses a single stack to store context for all tasks. There are certain limitations regarding
the tasks that can be scheduled by SST, thus a task has to be finite, it should contain no

synchronization points, and it should not change dynamically its priority. Since HTL tasks .

are pure functional tasks, that are finite, periodic, and have a fix deadline, they meet the
above limitations.

The micro EDF scheduler, schedules tasks based on their deadline, i.e., task with
the earliest deadline will be run first. The micro EDF scheduler assumes that tasks can be
released either be another task, or from outside {e.g., from an interruption event handler).
When a task t releases for execution another task ¢, task ¢t must have a deadline greater
or equal with the deadline of task t. The scheduler maintains an ordered list of tasks that
have been released for execution, i.e., whenever a task is released it will be inserted into
this list ordered ascending by its deadline. When a task finishes execution the first task
in the list will be executed. When a task is released from outside, the schedule function
has to be invoked manually. However, the schedule function does not have to be invoked
manually if the task is released from another task, since it will be invoked automatically
when task finishes execution and since the task that is released can not have a deadline
smaller than the deadline of the task that does the release, it is obvious that the currently
running tasks is still the task with the earliest deadline.

In the case of micro E machine implementation, the micro E machine runs as a
task with a deadline of zero, while all other tasks have a deadline greater than zero. The
only task that can release other tasks is the task in which the micro E machine runs. After
the micro E machine task has finished execution it will be released for execution again
after a period of time by the 1ms timer.

list of
ready tasks
4 "E’ AJ;

E - is running

(@

© 11 - is running

(b)

Fig. 7.2: Micro EDF scheduling example

list of
. ready tasks

TE
[
(2]
T

" € - is running

©

stack

L

tist of

, ready tasks

_

" tk+1 — is running

[)

LY
L2

(d)

a

list of
stack ! ready tasks
|
bt
D]
1]

4

" t1 - is running

(e

BUPT

85 7.1 Micro Embedded Machine

In Fig. 7.2 it is presented an example of how the micro EDF scheduler works.
Initially there is no task running except the micro E machine task (Fig. 7.2-a); during its
execution the micro E machine releases for execution & tasks (e.g., ti, t2, ..., tx). After
the micro E machine task finishes execution, task t,, which has the earliest deadline of
all k tasks, is executed (Fig. 7.2-b). Next (Fig. 7.2-c) the micro E machine is released
again from the event handler of the 1ms timer, this causes task ¢, to be suspended and
its context to be saved onto the stack, and the micro E machine task is executed again.
During the second execution of the micro E machine task, a new task (tx..) is released
for execution; since this task has a deadline that is earlier than the deadline of ¢, it will
be executed after the micro E machine task completes its execution (Fig. 7.2-d}. Finally,
after task ¢« finishes, task ¢, will be resumed.

95
90 a
-
a5 -
80 .
75 =
-
70 .
65 -
— 60 -
2 s .-
= =
° -
@ 45 -
-] =
£ 40 -
= 35
0 -
> 3 -
O 2 =
20 -
15 .
10
5
[
1 2 3 4 5 6 7 8 8 10 11 12 13 14 15 16 17 18 19 20
number of tasks

Fig. 7.3: Runtime overhead introduce by the release task operation in the worst case

Since the list of tasks that has to be executed is a list ordered by task deadline,
it means that the time consuming operation in case of the micro EDF is the release task
operation. Thus, release task operation has been benchmarked; in Fig. 7.3 it is presented
the evolution of the runtime overhead introduced by the release task operation in the
worst case. The worst case for the release task operation is represented by the case when
the task that is released has the latest deadline of all already released tasks. In case of
a single task the worst case runtime overhead is around 15us. The worst case runtime
overhead increases with 7us for each task. Thus, the runtime overhead introduced by the
release task operation in the worst case is linear in terms of number of tasks.

7.1.2. Micro Embedded Machine Implementation

Implementation of the micro E Machine has to consider both the limited amount of memory
that is available on a microcontroller and the low speed processing unit of a microcontroller.
Thus, in order to minimize the size of memory used for data, each data structured has to
be carefully analyzed so that the memory is not wasted. On the other hand, knowing that
the processing power of a microcontroller is limited the runtime overhead introduced by
the micro E machine has to be as low as possible. The micro E machine presented in this
section has been developed starting from the HE machine that has implemented in C fQr
Unix (Chapter 3).

In Fig. 7.4 it is presented the structure of the micro E machine. The micro E ma-
chine consists of an HE code interpreter and a set of lists, queues, and tables. The HE code

BUPT

7. MICRO HTL 86

interpreter either interprets HE code or checks the three trigger queues for enabled trig-
gers; when there is no instruction to be executed and no active trigger in any of the three
queues, the HE code interpreter computes the smallest time interval after which at least
one of the triggers in any of the three queues will get enabled, and sets the 1ms timer to
release the HE code interpreter after that period of time. The micro E machine uses no
dynamic memory allocation; everything is statically allocated at compile time.

1

. task driver ' ' condition |

“functions ' functions ; ; functions |
task . driver - condition |
table _ table © table

__Ro
. ORI
list of PC HE code E :tlat:
HE code lnterpretor = = ':,::;:’
instructions ; . R3_.
: e __Wwqueue _
stack of parent ;;t__;_:
addresses stack squeue
3 C A T
P s
. Ll
v v ___rqueue
(B 1 > e
_ E machine core _ 7 functionality C; auto generated

Fig. 7.4: Micro E machine

The C code from which the micro E machine is compiled, consists of three groups
of code: C code that implements micro E machine functionality (i.e., HE code interpretor),
C code that implements functionality of the HTL description to be run, and C code that is
generated by the HTL compiler when compiling the HTL description. Thus every time the
HTL description changes the entire micro E machine has to be recompiled.

The micro E machine contains three statically allocated tables: task table, driver
table, and condition table. All the three tables are generated by the micro HTL compiler.
Task table associates an index with a task function (i.e., a pointer to a C function that
implements the functionality of a task); when a task has to be released for execution the
release(t) instruction is used, where t is the index of the task function of the task that
has to be released. Driver table associates an index with a driver function (e.g., a pointer
to a C function that implements the functionality of a driver); when a driver has to be
invoked the call(d) instruction will be used, where d is the index of the driver function of
the driver that has to be invoked. Condition table associates a condition function (i.e., a
pointer to a C function that implements the verification of a condition and returns one if
condition is met and zero if condition is not met); when a conditional jump has to be made
a jumplf(cnd. a) instruction is used, where cnd is the index of the condition function that
has to be evaluated and a is the address where the execution will jump if the condition is
true. The micro E machine contains also four registers (e.g., RO, R1, R2, and R3), which
in the micro E machine are represented as pointers to triggers.

One of the optimizations that has been done for the micro E machine, in order to

BUPT

87 7.1 Micro Embedded Machine

save data memory, was the encoding of the HE code instructions. In Fig. 7.5 it is presented
the encoding of an HE code instruction. Each HE code instruction is encoded on 24 bits (3
bytes). The first five bits are used to encode instruction code; next eleven bits are used
to encode first argument (in many cases this is an HE code address); last eight bytes are
used to encode second and third arguments. Since the address parameter of an HE code
instruction is limited to 11 bits this will limit the maximum size of an HE code program to
2048 instructions, nevertheless this is more then enough for a program that is intended
to be run on a microcontroller.

5 nis

- o
& s
-4 78
o ____I L - e
- > > »>
instruction
code arg1 arg2/arg3

Fig. 7.5: Instruction encoding

All the HE code instructions have a maximum number of two arguments, except
the three future instructions (e.g., writeFuture, switchFuture, and readFuture), and the
updateChildren instruction. Since for the micro HTL there is no dependency relation be-
tween tasks, the third argument for the three future instructions (i.e., the lists of task
completion events) is never used, thus the future instructions can be seen as a two ar-
guments instruction also. For the updateChildren instruction arguments two and three
can be encoded in the last eight bits of the instruction; the two arguments can take rela-
tively small values, i.e., between 0 and 3. In Appendix C is presented encoding for each
instruction.

The stack of addresses was build around a statically allocated array of integers on
16 bits in order to optimize each operation with the stack. The maximum size of the stack
is computed by the HTL compiler.

The trigger queue is based on a double linked list, which has triggers as nodes. A
trigger is represented as a structure that uses an unsigned 16 bits integer for the address,
an unsigned 32 bits integer for the time event on which the trigger gets enabled, a double
linked list that contains child triggers of the trigger, and a pointer to the parent trigger.
Since a trigger can be a node in more then one double linked list at the same moment,
i.e., trigger queue, parent stack, and children list of another trigger, it contains two arrays
of pointers to triggers that are used to build the double linked list connections. In order
to optimize runtime overhead triggers in all the trigger queues are ordered after the time
event on which they have to activate. Triggers are statically allocated; the maximum
number of triggers is computed by the compiler.

7.1.3. Micro E Machine Performance

Performance of the micro E machine implementation has been evaluated based on four
experiments. In the first experiment the time interval between two consecutive releases
of the same task has been measured. The HTL description that has been used in the
first experiment implements the altitude and attitude control of a helicopter [11] (Sub-
section 6.3.1). The program has a period of 20ms. In Fig. 7.6 it is presented the time
interval between two successive releases of the groundConnect task; the results have been

BUPT

7. MICRO HTL 88

collected for over 20min. As shown in the figure, in one case the time interval between
two successive releases of task groundConnect is off by 0.5ms, while in the rest of the
cases it is off by less than 4us. The second experiment is similar to the first one, just that
another task has been added to the set of running tasks, in order to simulate heavy load.
With the new task added, the load of the period was around 95%. As shown in Fig. 7.7 the
performance of the micro E machine is preserved, as long as there are enough resources,
even in heavy load conditions.

W T Period [ms] | Count

i 19.455124 T

T T SRU— 19.999312 1

r 19.999376 3
o 19.999438 | 37781
= "eT 19.999562 | 16200
2 X 19.999624 | 10795
T g — 19.9995 5402

n L,._A-____

i
i o Lot
Tor =

Cy ——

[} 1O 4E6° 24 19 395312 19 935375 19 998433

v -

Qo395 16 9995E2 19 IUIH24 Py

1 s

Fig. 7.6: Time interval between two consecutive releases of task groundConnect

o Period [ms] | Count
20006 7 - e sy 19.464938 i
- _ 19.999376 18576

_ 19.999438 2
-~ 19.9995 83609
= 19.999562 1
E 19.999624 | 18576
S 19.999688 1

10

1 - + el —— P T T _— T T

¢ 194643 199334 19 93U 129995 1999% 1999% 199997 20
t [ms}

Fig. 7.7: Time interval between two consecutive releases of task groundConnect for a period load
of 95%

In the third experiment the memory usage has been measured. In order to mea-
sure the amount of memory that is occupied by the micro E machine independent of the
HTL description for which the micro E machine was compiled, the micro E machine has
been compiled for an HTL description that has one program, one module, one mode, and
one task. Fig. 7.8 shows that the micro E mchine needs at least 16Kb of program mem-
ory, which represents 12.2% of the entire program memory available on an ATmegal28
microcontroller, and at least 710 bytes of data memory, which represents 17.3% of the
entire data memory available on an ATmegal28 microcontroller. Of course the amount
of program and data memory used by the micro E machine is directly proportional with

BUPT

89 7.1 Micro Embedded Machine

the complexity of the HTL description for which the virtual machine has been compiled,
i.e., for the JAviator control program about 25% of the program memory is occupied and
about 65% of the data memory is occupied.

100% - ——p— —_ ———

90% -

80% -

70% I

60% F—

50% _ ———

40% S

30% SN

20%

10%

0%

Used Data Memory Used Program Memory
Fig. 7.8: Memory usage

In the last experiment the runtime overhead introduced by the micro E machine
has been measured. For measuring the runtime overhead a high precision timer (62.5ns)
has been used. The overhead was measured as follows: whenever the micro E machine
has to be invoked the timer is started and before the micro E machine finishes execution
the timer is stopped and the elapsed time, which represents the micro E machine runtime
overhead, is computed. The experiment has been performed for the JAviator controller
(Subsection 6.3.1). In Fig. 7.9 it is presented the overhead introduced by the micro
E machine for several time periods. In the figure are presented time periods, in which
different modes are executed, for the same set of modes the runtime overhead is always
the same or there is very little variation. As presented in the figure the highest runtime
overhead is 3.17ms. Higher runtime overhead is always at the beginning of the period,
this is because at the beginning of the period the mode switches have to be checked, and
the HE code that preserves the hierarchy has to be interpreted.

In Fig. 7.10 it is presented the total overhead introduced in a period by the ex-
ecution of the micro E machine. In the figure are presented total overheads for several
periods in which different sets of modes are executed, for the same set of modes the over-
head is always the same or there is very little variation. The highest overhead is 4.93ms,
which represents 24.65% of the entire 20ms period.

In order to measure the efficiency of micro E machine, the efficacy indicator (£) [1]
will be used. Efficacy is defined as the ratio between the time the processor is available for
executing application tasks and application period of execution. Thus for the overheads
presented in Fig. 7.10 there is a maximum efficacy of E,.., = 0.81 and a minimum efficacy
of Epaz = 0.75.

BUPT

MICRO HTL

90

=Lk

Fig. 7.9: Micro E machine runtime overhead for JAviator control application, , for different modes

combinations

Fig. 7.10: Micro E machine total runtime overhead over a period for JAviator control application,
for different modes combinations

BUPT

91 7.2 Micro HTL Compiler
7.2, Micro HTL Compiler

The micro HTL compiler was implemented starting from the hierarchy-preserving HTL com-
piler presented in Section 4.2. The micro HTL compiler takes as input an HTL description
and generates the HE code for it; the compiler also generates the task table, diver table,
and condition table (Fig. 7.11), which are tables that associate a task, driver, and a condi-
tion, respectively, with an index, which is used in the HE code generation process to refer
to a task, a driver, and a condition, respectively.

HTL
description

Y;V/
T T T
| |
} micro HTL compiler !
| I
- 1]

R 4

HE task driver condition
code table : table table

Fig. 7.11: Micro HTL compiler overview

Before generating HE code, the micro HTL compiler checks that the HTL description
is well-formed and time-safe (Fig. 7.12). The Type Checker, verifies that formal parame-
ters of a task declaration and actual parameters of a task invocation match, and that there
are no references to program elements that are not declared. The Frequency Checker,
checks that the frequency of a communicator matches the frequency of all the modes in
which the communicator is accessed (i.e., read or written), and that hierarchy constraints
are met. The Schedulabilty Checker, verifies that the HTL description is scheduiable for
a given architecture, which is specified though the WCET of each task. The Tables Gen-
erator, generates the task table, driver table, and condition table. The emph HE Code
Generator, generates the HE code for the program.

The compiler algorithm implemented by the micro HTL compiler is the hierarchy-
preserving HTL compiler algorithm (Section 4.2), which was optimized not to generate
HE code for empty units, i.e., units in which nothing happens (e.g., no task is released
and no communicator is read or written). The micro HTL compiler was extended to com-
pute the maximum size of address stack, the maximum size of parent stack, and the
maximum number of triggers that are needed to run the compiled HTL description. All

BUPT

7. MICRO HTL 92

Type Checker , o __y
Y - Tables Generator ‘
Frequency Checker . j R
B 0 HE Code Generator

- \j

Schedulability Checker

Fig. 7.12: Micro HTL compiler

this information is used to statically allocate address stack, parent stack, and the triggers
that will be used at runtime.

7.3. Case Study

In this section are presented two examples of real-time control applications that have been
implemented using micro HTL. The first example represents a controller for the 3TS plant.
The second example implements the JAviator low-level controller.

7.3.1. 3TS Controller

The first example of real-time control application implemented using micro HTL, represents
a controller for the 3TS plant. The hierarchical structure of the HTL description is similar
to the one presented in Section 5.2, the only difference is represented by the fact that the
functionality of the filter tasks has been moved into t_read task (Fig. 7.13). The entire HTL
description can be found in Section E.3.

Although the structure of the HTL description is similar to the one presented in
Section 5.2, the timing has been changed (Fig. 7.14). The program consists of six tasks
that are executed every 250ms. Task t.read has an LET of 50ms, e.qg., it reads no com-
municator and updates the second instance of communicators k1 and h2. Tasks t.T'1 and
t_T2 read the second instance of communicators hl and h2, respectively, and update the
fourth instance of communicators ul and u2, respectively; both t_T'1 and t_T2 have an LET
of 100ms. Tasks t_estimatel’l and t_estimateV'2 read the fourth instance of communica-
tors h1 and h2, respectively, and update the sixth/first instance of communicators v1 and
PI_SF1, and v2 and PI_SF2, respectively; tasks t_estimateV'1 and t_estimateV2 have an LET
of 100ms. Finally, task t_write, reads the fourth instance of communicators u1 and «2, and
updates no communicator, thus it has an LET of 100ms.

Data-flow between tasks is similar to the data-flow presented in Section 5.2, with
the observation that there are no filter tasks, thus tasks t_estimateV1 and t_estimateV'?2
communicate with task t_read through communicators Al and h2, respectively.

7.3.1.1. Timing Analysis

For timing analysis, the WCET of each task has been measured using a high precision
timer. Given the limited computation power of the microcontroller, the runtime overhead

BUPT

93

7.3 Case Study

Hierarchical Structure

P_3TS

Tngd;s‘Stmcturé !

Dwram Dmndlh @mo@:lu "L mMode swiich atart mode

Fig. 7.13: 3TS Controller: Hierarchical Structure

MmO o o o o -0
R O L 2 1o} OO —— O = |
M O—— OO = O = O e
2 oOo——O— O —® O O - !
i e o O O O e —
v e&——O0—— 000~ - ~@ -
PILSFt @ — —O————O————O-——-—- o
PSR @ ——O———— 0O ——O0 O~ —— @ ——— |
‘
t_read : i
t_wrile: |
» [testmatevs | |
| . . i
| [t_estimatev2 !
t 11 I ; |
12] | '
i i [
| | t N
200 250 fims] ;

0 50 100 150

D'ask @ read/written communicator i

Fig. 7.14: 3TS Controller: Timing

BUPT

7. MICRO HTL 94

intraduced by each E machine invocation has been measured and has been considered
in the analysis. Timing analysis for the 3TS controller is depicted in Fig. 7.15.With black
arrow it is represented the LET of a task and in parenthesis it is noted the WCET of the
task. With read arrows it is represented the time spent in interpreting E code for each
E machine invocation.

[
- - & (ask gl expOUTION
- - ’AW.‘E;’"\:’!«?V&I‘LU»;SV__ . (WCET = 1.4045)_
i e
LT (WCET = 0.214) 2
T LET * _t_estimataV1 (WCET = 1.25]
LET = 100 al_ertim 'L’ETgbﬁ =1.25) 22—
T2 (WCET = 0.214) - 22 -
- LET = *1 L estimateV2 (WCET = 1.25) j
o LTO8d (WCET - 001825) > - LET = 100 Le " @Tgm,) ER 5 S
LET =50
547 212 1.44
- - - - -
- SR e @R s e S Ry
0 2 4 6 8 6 52 4 5 58 150 152 154 156 158 250

Fig. 7.15: 3TS Controller: Timing analysis

For the schedulability analysis the time overhead introduced by each E machine
invocation has been added to the WCET of the task that has the earliest deadline rela-
tive to the moment when the E machine is invocated, the new WCET is further referred
as extended worst case execution time (EWCET). For instance task ¢_read has an WCET
of 0.01825ms, the overhead introduced by the E machine before executing this task is
5.47ms, thus the EWCET for task t_read is 5.48825ms which is less then the LET of the
task, thus task t_read is schedulable. Similar it can be shown that all tasks in the program
are schedulable. The efficacy of the E machine for this control application is around 95%.

7.3.1.2. Results

Fig. 7.16 presents the experimental results obtain by using the 3TS control application to
control a simulated 3TS plant. The water level target is set to 40cm for tank 71 and to 30cm
for tank T.. At moment ¢ = 0s the evacuation tap for tank T is open; the rest of the taps
are closed. Since in tank T, is perturbation the PI controller is used, while for tank 7> a P
controller is used (there is no perturbation). At moment ¢t = 70s evacuation tap for tank T,
is open, thus the controller for the second tank switches to a PI controller, which succeeds
to compensate for the perturbation. At moment ¢ = 367s the evacuation tap for tank T is
shutdown, thus the controller for T, switches back to P.

7.3.2. JAviator Low-Level Controller

The real-time control application presented in this subsection, implements the JAviator
low-level controller, which has been presented in Section 6.3), using micro HTL. The HTL
program that specifies the timing of the low-level controller is presented in visual syntax
in Fig. 7.17, the entire HTL program can be found in Section E.6. The program consists
of a root program, e.g., MicroJAviator, and two refining programs, i.e., PControl and
PAuto. The root program contains three modules: Control, GroundCommunication, and
J AviatorCommunication.

The GroundCommunication module contains two modes that can switch between
each other, e.g., mGroundConnect and mGroundCommunication. The start mode is
mGroundConnect mode, in which a single task is invoked, which waits for the ground sta-
tion to connect. When the ground station connects the mGroundConnect mode switches to

BUPT

95

7.3 Case Study

07 - 34 |
3
6 axs !
|
1
€3 —_— 1
0s
'
(3] 1
e - _— - '
£ o l
z £ o2
o , |
o l
)
02~ !
0a- 1
I
o 0es . |
' i |
' 2 e .
° 5 10 150 200 =0 200 0 0) = 100 150 200) 00 % 00
1 L]
10— - - - - nc-|
3 \ 5
e 2
'
7+ - b -
5" - — - 8!
Z sk - Z s
H T %
! . -
o . i srserere s
1
' !
a| L x|
2k 2]
i
i
1 - il
|
[J 0= = —_—
° 50 100 150 200 250 300) >]) 1 15¢ 20 %0 200 % &
1) wl

Fig. 7.16: 3TS Controller: Experimental resuits

hierarchical structure

! modes structure

| W NE

megmm ['_]modma @Mﬁ T mode awitch

T Ttask

Fig. 7.17: The Structure of the Low-Leve Controller Implemented in Micro JAviator

BUPT

7. MICRO HTL 96

mGroundCommunication, which invokes two tasks, i.e., read task, which reads information
sent by the ground station (i.e., target values), and write task, which sends to the ground
station reports about the altitude and the attitude of the JAviator, and about the com-
mands that were sent to the rotors. In order to limit the traffic, the write tasks can not
send more than 8 bytes of data in a single period, thus it needs four periods to send all the
data to the ground station. In the period when the first packet is sent all the information
that has to be sent (e.g., rotors commands, altitude, roll, pitch, yaw, etc.) is stored in the
state of the task, and in the next three periods, the task will sent the information stored
in its state and not the latest information available. When the ground station disconnects,
the mode mGroundCommunication, switches back to mode mGroundConnect.

The J AviatorCommunication module contains two modes that can switch between
each other, i.e., mJAviatorConnect and mJ AviatorCommunication. The start mode is
mJ AviatorConnect, which invokes one task, which waits for the JAviator simulator to
connect, when the simulator connects the mode mJAviatorConnect switches to mode
mJ AviatorCommunicalion. Mode mJ AviatorCommunication invokes two tasks: sensisng,
which reads sensor data sent by the simulator, and actuating, which sends rotors com-
mands to the simulator. When the simulator disconnects, the mJ AviatorCommunication
mode switches back to the mJ AviatorConnect mode.

The Control module contains two modes, i.e., mControl, which is also the start -

mode, and mShutDown. Mode mShutDown can not switch to any mode, it implements
the emergency shutdown procedure. Mode mControl can switch to mode mShutDown, it
invokes control task, which is abstract (i.e., a ptaceholder for the task that implements the
control). Mode mControl is refined by program PControl. Program PControl refines the
Control mode into auto and manual mode. The auto mode is further refined by program
PAuto into take off, hover, and land modes. In the manual mode, the commands for the
four rotors are sent directly from the ground station. In the take off mode, the thrusts
produce by the rotors are increased with a constant value until the gravity is compensated,
when the helicopter can go into hover mode. In the hover mode a PID controller is used
for the altitude and a PD controller is used for roll, pitch, and yaw, respectively. In the
land mode the thrusts produced by the four rotors are decremented with a constant value
until they are zero.

Fig. 7.18: Timing and data-flow before connect

Timing of the program can be divided in two: timing before the ground station
and the simulator have connected, and timing after the ground station and simulator have
connected. In Fig. 7.18 it is presented the timing of the program before the ground sta-
tion and the simulator have connected. In this case there are only three tasks invoked.
Task groundConnect is released at the beginning of the period, has an LET of Sms, and
updates the sixth instance of communicator groundState. Task simConnect is released at

BUPT

97 7.3 Case Study

the beginning of the period, has an LET of 12ms, and updates the thirteenth instance of
communicator simState. Task manualControl reads the thirteenth instance of communica-
tor manualThrusts and updates the seventeen instance of communicator thrusts, thus it
has an LET of 4ms.

‘1 read commurscaior erstance

-:i::g o m_\manms::’
10 dummy atuce(p)
A " sensing .
manaThss@) s nextSae B P
groundStat 5 s nextState ' 12 menuaThrusss hruss
wpet@) 3 stade smiCrenged ... manyaiControl
nextSate @ 5, amtde N o
_ __ read T T wite” T T (12 et hruss
T - o takeOff
1z
EEm e
P rnats
Q‘%M . parbausle moment
Jgemee e "
...hover e
12 sy Rl 1) ‘
_ _dang
l‘7m
actuating
t [ms]
- - - »
0 5 10 12 16 20

Fig. 7.19: Timing and data-flow after connect

Fig. 7.20, depicts the timing of the program after the ground station and sim-
ulator have connected, in this case there are invoked five tasks. Task read has an LET
of 5ms and updates sixth instance of communicators: manulThrusts, groundState, target,
and nertState. Task write has an LET of 5ms , reads the sixth instance of communica-
tors: crrState, nextState, thrusts, altitude, and attitude, and updates eleventh instance of
communicators: nextState, stateChanged, and crrState. Task sensing has an LET of 2ms, it
reads the eleventh instance of communicator dummy (this is a communicator used only to
set the desired LET for task sensing, it contains no information), and updates thirteenth
instance of communicators: simState, altitude, and attitude. Task actuating has an LET of
4ms, it reads the seventh instance of communicator thrusts. The control task has an LET
of 4ms, depending on the active control mode, the controf task can be one of the follow-
ing tasks: manulControl, takeOf f, hover, or land. The control task updates the seventh
instance of communicator thrusts.

7.3.2.1. Timing Analysis

For timing analysis, the WCET of each task has been measured using a high precision
timer. Given the limited computation power of the microcontroliler, the runtime overhead
introduced by each E machine invocation has been measured and has been considered in
the analysis. Here only two possible combinations of active modes are analyzed: before
the simulator and ground station have connected and after they have connected; the rest
of the combinations are similar to this two. In Fig. 7.20 it is presented the timing analysis
for the HTL program before the ground station and the simulator have connected. In
Fig. 7.21 it is presented the timing analysis for the HTL program after the ground station
and the simulator have connected. With black arrow it is represented the LET of a task
and in parenthesis it is noted the WCET of the task. With read arrows it is represented the

BUPT

7. MICRO HTL 98

time spent in interpreting E code for each E machine invocation.

A '« task logical execution
- » E machine execution ;
manualControl (WCET=0.006)

T e
simConnect (WCET=1.06}

- T ETER2 - e
groundConnect (WCET=1.06)
- CLET=S e

24 cz23 075 8.36
- - - - - - - -
0 2 4 6 8 10 12 14 16 18 20 t{ms]

A e
. -—» task logical execution
- - -» £ machine execution '
, actuating (WCET=2.36) _
-— .
control (WCET=0.8) ' LET=4
sensing - — - - —————»
(WCET=0.054). LET=4 i
-
L _ite (WCET=2007) | LET=2
_ read (WCET=0.025) LET=5 i
- LET=5 -
32 04z 026 1077 051
- - - g - - » - - -
B e Tt S S - :
‘0 2 a 6 8 10 12 14 16 18 20 t(ms]

Fig. 7.21: Timing analysis after connect

For the schedulability analysis the time overhead introduced by each E machine
invocation has been added to the WCET of the task that has the earliest deadline rela-
tive to the moment when the E machine is invocated, the new WCET is further referred
as extended worst case execution time (EWCET). The schedulability analysis has been
conducted using the EWCET of each task. Thus, for instance in case of Fig. 7.20 the
EWCET for tasks groundConnect and simConnect, which are executed in parallel, is 4ms and
1.29ms, which means that for an LET of 5ms for groundConnect task and an LET of 12ms
for simConnect, the two tasks are schedulable. Similar it can be shown that all the task
are schedulable for both scenarios that have been considered (Fig. 7.20 and Fig. 7.21).
The efficacy for the two timing analyses that were presented is: 80% for the case when
the ground station and simulator are not connected and 75% after the ground station and
simulator have connected.

7.3.2.2. Results

In order to test the implementation of the low-level controller for the JAviator, the control
application has been tested using a simulated version of the JAviator plant. In Fig. 7.22

BUPT

99

7.3 Case Study

are presented the evolution of the altitude, roll, pitch, and yaw, while in Fig. 7.23 are
presented the thrusts prescribed by the controlier. Although the period of the controller
is 20ms, data collection is done once every five period, thus data collection happens every

100ms; this is way the charts do not look smooth.

” i TR
1z A el t—} 1 '_‘
1 P b e v :‘l L , JI
3¢ \Mﬂ__vm/] _‘;r | § ! ihe { i J:
i
0F . 4 L] .;
64 { 2 4
i i
MT ‘ { ; i
o b L L |
9 5 i % F=3N £ ' 1 i
3 P . .
[—Fee_t o
W LA < f
‘ . T3 : j ‘
‘ Sy . . |
i] (|
' 2 i i
z : {1 | !
‘ | i ;
Wt : 1
1 [4 [i
U‘) :. 9 1 2 25 CE) 1‘ - 1‘7 T T T
Fig. 7.22: Sensors values when using low-level controller implemented in micro HTL
3 — 3
) ==
7 LY | .
st {6
5 S 4 3 e B
1 4)
3t 3 1
zf 2 ‘
1 Ty L
% 10 ' 7 iR T w T T %
! =)
r 2 !
5{» N E‘r] <‘i
st J e o e e e
it 4 4 ,}
N i i |
z'L <o J'
|
1. <« 1- !
5 0 1 x 2 0 3 =2 i

Fig. 7.23: Actuators values when using low-level contrailer impiemented in micro HTL

At time zero both the ground station and the simulator connect to the controller
implemented in micro HTL. The altitude target is set to 1m and at time 1.86s the helicopter

BUPT

7. MICRO HTL 100

is commanded to take off. In the take off mode the thrusts for each rotor are incremented
with a constant value until the gravity is compensated. At this moment the controller
waits for a confirmation from the user in order to go into hover mode. As seen in Fig. 7.22
the target value is reached in about 25, and the overshooting is around 25% of the target
value. Next, at moment 5s the target for roll and pitch are both set to 5 degrees; for both
roll and pitch the control time is around 1s and the overshooting is zero. There is a small
chattering (+/ - 0.6 degrees) for both roll and pitch; it is due to the rounding caused by
the use of fixed point arithmetic operations for the implementation of the control laws.
Finally at time 11s the target for the yaw is set to 45 degrees; the control time is around
3s and the overshooting is 11%.

Also there is some inter-influence between the attitude controlier and aititude
controller, in the sense that when there is a non-zero roll or pitch target angle, the altitude
can not compensate for the variation in the thrusts, and the controlled level is lower then
the target level. Nevertheless in normal flight conditions the target values for roll and
pitch will be set to zero, and only when a movement in the horizontal plane is needed the
targets will be set to a different value for a short time interval.

BUPT

8. HTL to Simulink

In the process of development of real-time control application offline testing plays an
important role. Simulink [10], which is a tool for modeling, simulating, and analyzing
multidomain dynamic systems, is widely used for designing control algorithm. Simulink
offers the possibility to model both plant and controlier dynamics, thus allowing testing
of a control algorithm before it is used on the real plant. Nevertheless even if the model
of the plant is very close to the real plant, simulating the control algorithm in Simulink
it is not enough to ensure that the implementation of the control algorithm for a given
platform will work. This is because when the control algorithm is simulated in Simulink, it
does not consider the timing of the application that will implement the controller, thus the
implementation could introduce some unknown delays, which have not been accounted in
the design of the control aigorithm, and which in the end could make the control application
not to work properly.

In this chapter, a way of modeling HTL descriptions in Simulink will be presented.
The HTL compiler (Chapter 4) has been extended in order to compile an HTL description
into a Simulink model. Using this new feature of the HTL compiler, it is possible to simulate
not only the control algorithm, but also the timing of the real-time application that imple-
ments the controller, which should improved development of real-time controt application
using HTL. Beside of being able to simulate the control algorithm and the timing of the
application that will implement the algorithm, modeling an HTL description in Simulink has
another important advantage: the ability to generate C code for tasks directly from the
Simulink schema, using Real-Time Workshop [49]. Thus, once the tasks have been mod-
eled in Simulink functional C code for them can be generated automatically. Generated C
code can be used as tasks implementation.

Modeling timing of a real-time application in Simulink is not a new idea, it has
been done before for Giotto [50]. Nevertheless modeling a Giotto program is different
than modeling an HTL description, since Gitto has no hierarchical structure and no com-
municators. Generating code from a Simulink schema has been done for Gitto and for
other languages. For Lustre it has been developed a tool chain [S1] that can generate a
Lustre program out of a Simulink model, which is the opposite of what it is presented in
this chapter for HTL, since from an HTL description it is generated the Simulink model,
while for Lustre the Simulink model is created first and then from it the Lustre program is

generated.

8.1. Increment/Decrement Counter

In order to facilitate the description of the method that maps an HTL description to a
Simulink model, an HTL description that increments every second with a variable step
(i.e., initial step is 1, then 5, and the last step is 10), a counter until it reaches the value
of 50, then the counter is decrement every second with a constant step (i.e., 1) until the
value of the counter reaches 0, then the entire process repeats. The hierarchical structure

BUPT

8. HTL TO SIMULINK 102

of the description is presented in Fig. 8.1, while the timing and data-flow are presented in
Fig. 8.2.

hierarchical structure modes structure
iP_inc_dec © counter -O-ref
| (M_inc_dec M_read_write
} B
| (o

;

P_inc

M_inc

I !

program D module O communicator O mode [_] task ~~_p»mode switch start mode

Fig. 8.1: Increment/decrement counter: structure

The description consists of two HTL programs: P_nc_dec and P_nc. The root pro-
gram (i.e., P.inc._dec) declares two communicators, e.g., counter and ref. The counter
communicator has a period of 100ms, it represents the counter which is incremented and
decremented, and ref communicator has a period of 100ms and it is an auxiliary commu-
nicator, its role will be explained in Section 8.2. The root program contains two modules:
M_inc_.dec and M read write. Module M_inc_dec specifies the timing of the increment and
decrement operations; it consists of two modes, m_inc and m_dec, that can switch between
one another. Mode m_inc invokes every second task tinc, which is a place holder (e.g.,
it is an abstract task) for the tasks that implement the three possible increment opera-
tions. Mode m_inc is refined by program P_inc, and it can switch to mode P_dec; the switch
becomes enabled when the counter value reaches the value of 50. Mode m_dec invokes ev-
ery second task t_dec, which decrements with one unit the second instance of the counter
communicator and writes back the result to the third instance of the same communicator.
Mode m_dec can switch to mode m_nc; the switch gets enabled when the counter reaches
zero. The module M_read_write specifies the timing for the communication with the envi-
ronment (i.e., counter sensing and actuating), it contains one mode, m_read_write. Mode
m_read_write has a period of one second and invokes three tasks: task t_read reads the
counter from the environment and updates the second instance of communicator counter,
task t_write reads the third instance of communicator counter and writes its value to the
environment, and task t_ref whose role will be explained in Section 8.2.

The program P_inc refines the increment operation into three operations: incre-
ment with 1, increment with 5, and increment with 10. It contains one mode for each
operation, i.e., mode m._ncl invokes a task that increments the counter with 1, mode
m_inc5 invokes a task that increments the counter with 5, and mode m_inc10 invokes a
task that increments the counter with 10. All the three modes have exactly the same

BUPT

103 8.2 Mapping HTL Programming Elements to Simulink Bocks

counter o >0
ref - e
N f
t_read H{
.]
<« t_Inch_dec ¢
S
"y t_write
- - ST >
1 2 w {100ms]
T taskLET © unused communcator instance @ read/wriien communcator msmance * 5 read communcator ivstance ¢ . wnte commumeator nistance

Fig. 8.2: Increment/decrement counter: timing

timing as the parent mode m_nc. Mode m_ncl switches to mode m_nc5 when counter
reaches the value of 5, and mode m_inc5 switches to mode m_nc10 when counter reaches
the value of 20. Mode m_inc10 does not switch to any mode.

8.2. Mapping HTL Programming Elements to Simulink Bocks

A control application monitors sensor values of a plant based on which it will compute a
command, which will be sent to the plant, throughout the actuators, in order to ensure
that the plant will achieve a desired state, which is defined through the so called reference
values. Thus the HTL descriptions that are to be translated into Simulink models, consists
of one and only one communication module with the plant and with the environment,
which does the sensing and actuating, and which reads the reference values. Otherwise
the program can contain as many modes, modules, and programs as they are needed,
but they will communicate with the environment and with the plant indirectly through the
communication module. The Simulink blocks that will be used in this section are explained
in Appendix F.

E o Res Our_piam [0 P in_plant (Ot _Pare
Pjin_|

P_snc_dec Piant_tempiate

1eference

i HTL root program - . plant
Fig. 8.3: Increment/decrement model first level

Having the idea of control application in mind the Simulink model that is generated
from an HTL description will have on the top level two subsystems that communicate to
each other. One subsystem will represent the HTL description (i.e., the control application),
this subsystem will be referred as controller subsystem, while the other subsystem will
represent the plant, and it will be referred as plant subsystem. The controller subsystem
reads the sensor values from the plant subsystem and the reference values, and writes

BUPT

8. HTL TO SIMULINK 104

the commands back to the plant subsystem. In Fig. 8.3 it is presented the first level of the
Simulink model that has been generated for the increment/decrement HTL description.

counter

ret

— ! 1

Out_plant_ID

M_ine_dec

BR module B communicator 1 input/output port '12:34. digital clock

Fig. 8.4: Simulink model increment/decrement root program

For any HTL program an atomic subsystem block will be generated, which will con-
tain an atomic subsystem block for each HTL module in the HTL program and a subsystem
biock for each communicator. The difference between the root HTL program and any child
HTL program consists in the fact that for the root program a digital clock is generated,
while a child program receives the clock from the parent program. Also the inputs and
outputs of the root program communicate with the plat, while for a child HTL program
they are connected to communicators in the parent program. The digital clock that is gen-
erated for the root program is used to simulate time events, it should have a period that
is at least an order of magnitude smaller then the smallest period in the HTL description;
since the smallest period in the current implementation of HTL is 1ms, for the digital clock
should be enough to have a period of 100us. In Fig. 8.4 it is presented the content of
the atomic subsystem that represents the root program of the increment/decrement HTL
description.

)

~—
counter_1

Meige —b@—.’ﬂ

Qut_counter
Memary_counter

counter_2

Merge

Merge'merge block "1 input/output port _~'memory block

Fig. 8.5: Simulink model for counter communicator

An HTL communicator is modeled in Simulink as a subsystem that contains a
merge block that is connected to a memory block. The subsystem always has one input,

BUPT

105 8.2 Mapping HTL Programming Elements to Simulink Bocks

but it can have as many inputs as modules, since for each module that writes to a certain
instance of the communicator there has to be an input. At most one input can carry a
value at a particular moment in time; this is ensured by HTL constraints since no com-
municator instance can be written from two different modes. In Fig. 8.5 it is presented
the model of the counter communicator from the increment/decrement HTL description.
The communicator can be written from both modules in the root program, thus it has two
inputs.

@l mode Merge merge block 1 input/output port mode selector

Fig. 8.6: Simulink model for M_inc_.dec module

The Simulink model of a module consists of a set of action subsystems, which
represent the modes that are in the module, a mode selector, which determines which
mode should be invoked, and for each communicator that is written in more than one mode
there has to be a merge block in order to merge together the signals from different modes
and to produce a single signal that will be connected to the input of the communicator.
The Simulink model of a module receives as an input the clock signal from the containing
program and is broadcasted to each Simulink model of a mode. Except for the clock input,
a Simulink model of 8 module has as inputs all the communicators that are read in a
mode in the module being modeled. The outputs of the Simulink model of a module are
represented by all the communicators written in any of the modes in the module. In order
to implement mode switching each mode is associated with a unique integer number and
each mode generates a signal that specifies which is the next mode. The mode selector
block reads the next mode signals from each mode and activates the action subsystem
that corresponds to the mode that has to be executed. For each mode in a module, the
mode selector block has an output, which is connected to the action port of the action
subsystem which models the mode. Also for modes that can switch to other modes, the
mode selector block generates a reset signal, which ensures that a mode does not switch
in the first period when the mode is executed. In Fig. 8.6 it is presented the Simulink
model of the M_inc_dec module.

A mode selector consists of a merge block which merges together the next mode
signals from all the modes in the containing module, a memory block which stores the fast
enabled mode (this block is needed in order to avoid algebric loops), and a switch case
block which does the mode selection based on the signal that comes from the memory

BUPT

8. HTL TO SIMULINK 106

" —— b anae v ot
? PR 4 RSN -
R ey, - - :
EH o
3l v
"L T R
Ry
Ty
PR A
W 0€" -
() B _’a
' - ezl m_ril
- R —
Mel'wr 1 D ; - m _—

merge block inputoutput port atomic subsystem memory block triggered subsystem switch case

Fig. 8.7: Simulink model for mode selector in module M.inc

block. Beside the role of selecting the active mode, the mode selector block has a second
role, which is the generation of reset signals. The reset signals are generated for all
modes that can switch to any other mode; thus for each such mode there will be a reset
mode generator. The reset signal is active only in the first period a mode is active; in
order to do this, the value of the merged next mode signal at the beginning of the active
mode period is stored until next mode period, the stored value is then compared with the
current value of the same signal and if they are different, then one of the reset signal
is activated based on the value of the merged next mode signal (which actually specifies
which mode activated), this will ensure that the reset signal for a mode is active only in
the first period of the mode that got active. The mode selectors that are in the modules
from other programs than the root program, have a third role: to reset the active mode to
the default mode whenever one of the parent modes switches. In order to do this a reset
signal generated by the parent mode that switches is used in order to force the current
active mode to the start mode of the module. In Fig. 8.7 it is presented the mode selector
for module M_inc, which is in a child program, that is why the mode selector has a reset
input.

The Simulink model of a mode consists of a set of blocks that implement mode
clock generator, a set of blocks that implement tasks invoked in a mode, and set of blocks
that implement mode switches. The mode clock generator computes modulo function
between the system clock scaled with 10000 and the period of the mode expressed in ms.
The mode clock has to be scaled by 10000 in order to achieve high precision. For modes
that are not in the root program, the mode clock is generated by the parent mode (i.e.,
the parent mode and the child mode have the same period in a well-formed HTL program).
For each task there is an atomic subsystem, which reads the mode clock signal and the
communicators read by the task; the task block has an output port for each output port
of the task being modeled. If two task invocations write to two different instances of the
same communicator, then the two outputs will be merged by a merge block. For each
mode switch in a mode a trigger subsystem is generated which implements the switch
condition. The switch block has an input for each communicator read by a mode switch
and one single output, which can take two values: 0 when the switch is not enabled and 1
when the switch is enabled. The switch block executes only at the beginning of the period;
this is ensured by a block that reads the mode clock and if the clock is between 0 and 10,
then the switch block execution will be triggered. The output of each switch block is read

BUPT

107 8.2 Mapping HTL Programming Elements to Simulink Bocks

1

ety

e
{

Morge. 8 00 M e = [3

a
merge block Mput/output port task switch NextMode gan # action subsystem atomic subsystem constant

Fig. 8.8: Simulink model for mode m_dec

by an action subsystem which computes the next mode based on all the switch blocks
outputs. If a mode contains at least one switch, then it also has to read a reset signal,
which is active in the first period the mode is executed and which is used to disable mode
switch logic and to force the next mode signal to the integer value that is associated with
the mode modeled by the block.

Morge: T & L = - 3
rne}ge block input/output port DEﬂm Eﬁh gain it action subsystern atomic subsystem constant

Fig. 8.9: Simulink model for mode m_inc

In Fig. 8.8 it is presented the Simulink model for the m_dec mode and in Fig. 8.9
it is presented the Simulink model for the m.inc mode. The main difference between tQe
two models consists in the fact that mode m.inc is refined by program P.inc; it can be
seen that the mode clock computed in mode m.inc is transmitted to the program P.inc.
Also based on the switch block in mode m_inc the reset signal for all the modes in program

BUPT

8. HTL TO SIMULINK 108

P.inc is computed, if there are multiple switches, then the reset signal has to be active
whenever a switch is active. If the mode is not in the root program, then the reset signal
has to be active not only when a switch is active, but also when the reset that comes from
the parent mode is active.

Franslorn .t
(; LSRR e

E
(D—N o el 1150 _emtel u_eme! —'b@
T earter
. J4_counE
WIRE _(U_Dile -
;] o [
mputioutput port task funcbon triggered subsy atomic subsy delay

Fig. 8.10: Simulink model for task t_.dec

An HTL task invocation is modeled as an atomic subsystem, which contains a
triggered subsystem fro each task input and output, the implementation of the task func-
tionality is also done in a triggered subsystem. For each input/output, logic is generated
to activate the corresponding triggered subsystem based on the mode clock and on the
communicator instance that is read/written. For the activation of the inputs a delay block
is used in order to allow a communicator to be written before it is read. The delay is very
small as compare to the entire period of a mode, thus the timing is not affected. The
triggered subsystem that represents the task functionality has to be activated when the
latest communicator is read, for tasks with dependencies activation of the triggered sub-
system that implements the functionality has to consider the latest communicator read by
any task in the dependency list. In Fig. 8.10 it is presented the Simulink model for the
invocation of task t.dec, which reads instance two of communicator counter and writes
back to instance three of the same communicator.

An HTL mode switch is modeled as a triggered subsystem, which is activated at
the beginning of the period of a mode. A mode switch block consists of an if block which
implements the switch condition and which activates one of two blocks. If the condition is
true, then a block that has always one at output is activated, otherwise a block that has
always zero at output is activated. The output of the two blocks is merged and written to
a single output. In Fig. 8.11 it is presented the Simulink modei of the mode switch that
switches from mode m_dec to m.inc.

The resuit of simulating the Simulink model that has been generated for the incre-
ment/decrement HTL description is presented in Fig. 8.12. In the figure one can see that
initially the counter is incremented with one every second until the counter value reaches
the value of five, when the mode m_incl switches to mode m_.inc5. Next the counter is
incremented with five every second until it reaches the value of twenty, when the mode
m_inc5 switches to mode m_inc10. In mode m.inc10 the counter is incremented with ten
every second until it reaches fifty, the parent mode of m.inc10 switches to mode m.dec.
Next the counter is decremented with one every second until it reaches zero, when mode
m_dec switches back to m_inc and the entire process is repeated.

The HTL compiler has been extended to support generation of a Simulink model

BUPT

109 8.2 Mapping HTL Programming Elements to Simulink Bocks

4ih

harooe_m_TETalate
fivtes]) -
@—D J Znabie
iT_swicn’ ese
f_Block >
Werge
A Search_Enatled
ei3€ 1 Nerge
hat)ode_m_Tempiate!

Drsat'e

Merge! s e |

merge block inputioutputport if action subsystem

Fig. 8.11: Simulink model for mode switch m._dec to m_inc

e R T e R e ¢ PR AR 2 "—@
=71

i

|

Fig. 8.12: Counter evolution

BUPT

8. HTL TO SIMULINK 110

out of an HTL program. So far the only HTL programs with no task dependencies and with
no more than one mode switch per mode can be converted into Simulink model with the
current implementation.

8.3. Developing Real-Time Control Applications with HTL
and Simulink

In Fig. 8.13 it is presented an overview of the methodology of developing real-time control
application using HTL and Simulink. Based on the initial specifications for the control
application, the timing of the application can be extracted and implemented as an HTL
description. From the HTL description using the HTL compiler it can be generated both
the HE code (represented as C code) and a Simulink model. The Simulink model of the
HTL description will be used to develop the control algorithm, and it can also be used to
simulate and test timing of the application; in case of errors the HTL description can be
reviewed. After the control solution has been developed and tested in Simulink, the Real-
Time Embedded Coder can be used to generate C code for those blocks that implement
tasks, which represent the functionality of the application. In the last step the HE code
and the functionality are compiled together with the C implementation of the E machine .
and it results the real-time control application which can be tested on the real plant. If
this test fails then either the functionality or the timing of the application can be reviewed.
The process is repeated until a stable application results.

o HE code | .
HTL ‘-,;Ereprgsentedg: S omTiToTmaoom e | :
| ' descripon _'f‘/c,/J I | reattime
.specifications -- - -, HIL A . € i application:
: l ; 7 compiter .. . _. ' :compiler .~ | (machine :
‘- ; o ¢ Simulink | . RTw ' !functionafity! | t | code)
o ' -+ model . Embedded?:slimplemented |::~1 Do i

> Cod ’_I . Coder ! inC P .

s N S |

RS —_——— —————

Fig. 8.13: HTL-Simulink tool chain

8.4. Case Study

In order to test and validate the HTL2simulink conversion tool, a controller for the three
tanks system plant has been implemented using this tool. The structure of the HTL de-
scription that specifies the timing of the controller is presented in visual syntax in Fig. 8.14,
the entire HTL description is presented in Section E.4.

The description consists of a root program that contains three modules: two of
them (i.e., T1 and T2) specify the timing for tank T1 controller and tank T2 controller and
the third module specifies the timing for the communication module (i.e., I0). Each of the
controller modules contains one mode, which invokes one task (e.g., task that implements
the control law), which is refined by a program (i.e., P.T'1 or P_T?2) into a P or a PI controller.
The switch between the P and PI depends on the presence or absence of the perturbation,
for this example it has been considered that there are sensors not only for measuring the
height but also for determining if there is perturbation in a tank or not, thus no estimation
is needed. The communication module, 10, contains one mode, readWrite, which invokes
three tasks: t_read, which reads sensor values and updates communicators ki, h2, v1, and

BUPT

111 8.4 Case Study

modes structure

e m@\

VO Y T N

__program [] module @& mode "~ task > mode switch

Fig. 8.14: 3TS controller: hierarchical structure

v2, t write, which reads communicators «1 and »2 and sends the commands to the pumps,
and t_ref, which reads the target values and updates communicators hl.ref and h2_ref.
The HTL description presented above is different from the one presented in Subsection 5.2
in the sense that here there is only one level of refinement and it has been considered
that the presence or the absence of the perturbation can be sensed.

/<> P1->PI1
vi)
/>y P2->PI2

h1

h2

h1_ref
g

A\ .
|:| task —e—» intertask communication through a communicator <_, mode switch

h2_ref

Fig. 8.15: 3TS controller: data flow

In Fig. 8.15 it is presented the data-flow between the tasks in the HTL description.
Thus task t_read reads the sensor values and updates communicators hl, h2, v1, and v2.
Communicators v1 and v2 are read by mode switches in the control modes. Task t.ref
reads target values and updates communicators hl.ref and h2_ref.The controller task for
T1 and the controller task for T2, read communicators hl and hl.ref, and h2 and h2.ref,
respectively, and updates communicator «1 and u2, respectively. Finally task ¢ .write reads
the values of communicators ul and «2 and sends them to the plant.

The timing of the HTL description is depicted in Fig. 8.16. The program consists of
running every 500ms five tasks. Task t_read has an LET of 300rns, it updates forth instance

BUPT

8. HTL TO SIMULINK

112

ht > < < [- -0-
h2 o e o} * ~O- - O -
h_ref < - o o o O —
h2_ref & o] fe) * - - O O -
ut <o -0 - < D - e e &
u2 [© [e - D ®- - - O e e
vi [2 - o - - -
v2 L J o -

I'y

{ t_read]

{ t_ref]

t. T1 i
1 L I R -
0 100 200 300 400 500 Yms]
mcalor

Blasu @ read/writlen

Fig. 8.16: 3TS controller: timing

of communicators: hl, h2, vl, and v2. The controller tasks for T'1 and T2, read the forth
instance of communicators hl and hl_ref, and h2 and h2_ref, respectively, and updates the
fifth instance of communicator ul and u2, respectively; they have an LET of 100ms. Task
t.write reads the fifth instance of communicators u1 and »2; it has an LET of 100ms.

8.4.1. Simulink Model for the 3TS Controller

The Simulink model of the 3TS controlier has been generated using the Simulink2HTL tool.
On the top level (Fig. 8.17) the model contains two subsystems: the plant subsystem
and the controller subsystem. In the plant subsystem the model of the plant has to be
implemented manually, while in the controller subsystem has been generated the Simulink
model of the timing specified by the HTL description.

n_plant
M adn ret

h1_ret

Out_plant_I0;

h2_ret

P_3Ts

Out_Ptant

Plant_3TS

2 HTL root program __— plant

Fig. 8.17: Top level of the 3TS controller Simuilink model

BUPT

113 8.4 Case Study

Fig. 8.18 presents the Simulink model which was generated for the top level pro-
gram; it contains a subsystem for each module and communicator in the program. The
model defines input and output ports for communicating with the plant and a digital clock,
which generates the clock that is used to implement the timing.

Fig. 8.18: Model Simulink for the root program of 3TS controller

After the tasks, mode switches and plarit Simulink models have been implemented,
the entire model has been simulated using a target value of 0.5m for tank T1 and 0.4m for
tank T2. In Fig. 8.19 are plotted the levels of the water in the two tanks. Initially there
was no perturbation in any of the tanks, thus the P controller was used for both tanks. At
time moment ¢t = 180s, perturbation is introduced in tank 72, thus the controller for tank
T2 switches to PI and compensates perturbation. Similar for tank 71 at time moment
t = 210s it is introduced perturbation, thus the controller for T'1 switches to PI also.

D o s e e

or

nijm}
am

{
'
i
" esf’ 2 :
i
1
J

o — oL - O

o W0 AL 20 A0 3% a0 &0 90 0T T e T @ AT I A «w
s} L

Fig. 8.19: Evolution of the level of the water in T1 and T2 (h10 = 50, h20 = 40 for the simulated
controller

8.4.2. Implementation

For the controller tasks, C code has been generated using the Real-Time Embedded Work-
shop, which was then used as the implementation of the controller tasks and was compiled

BUPT

8. HTL TO SIMULINK

together with the Unix implementation of the E machine. The resulted application was used
to control a simulated 3TS plant, which is implemented in Java. Fig. 8.20, depicts the evo-
lution of the level of the water in the two tanks; the target value for tank T'1 was set to
0.5m and for tank T2 it was set to 0.4m. Initially there was no perturbation in any of the
two tanks. At time moment ¢ = 180s, perturbation was introduced in tank 72, and at time
moment t = 200s, perturbation was introduced in tank T1. As seen in Fig. 8.20, the results
obtained in the case of the real application are close to the results obtained by simulating

the Simulink model of the application.

Fig. 8.20: Evolution of the level of the water in T1 and T2 (h10 = 50, h20 = 40 for the controller

implemented in C

]
I) 9

BUPT

9. Conclusion

In the last two decades there has been an accelerated growth in the complexity of em-
bedded and real-time systems. This growth lead to the evolution of the programming
models for real-time application from the physical execution model to logical execution
model, and to the evolution of the real-time programming languages from assembly pro-
gramming languages to object oriented programming languages (i.e., Java). The focus in
this thesis was on high-level programming constructs for specifying timing behavior of a
real-time application.

HTL [2] is one of the most recent innovations in the field of real-time programming
languages; it is a programming language that can be used to specify timing behavior of
tasks in a real-time application, and interaction between them. HTL is considered to be the
successor of Giotto [5]. An informal description of the HTL syntax and the most important
features of HTL were presented in Chapter 2.

As its predecessor, Giotto, HTL it is not compiled directly into machine code, but
into the so called E code, which is code interpreted by a virtual machine, namely, the
E machine [6]. Thus, real-time applications developed with HTL can be executed on any
platform for which an E machine implementation exists, and if there are enough resources
to run the application, its timing behavior will be the same independent of the platform.
In Chapter 3 it was presented the original E machine and how parallel composition of sets
of periodic tasks can be expressed in E code. Nevertheless, when hierarchy had to be
expressed in original E code it turned out to be impossible. Thus, the original E machine
has been extended in order to allow handling of hierarchical structure at runtime. The
extended E machine is named HE machine and the extended E code interpreted by the
HE machine is called HE code. In Chapter 3 is also presented the HE machine and how
hierarchical structure can be expressed in HE code.

Two compile algorithms have been designed to translate an HTL description into
E code or HE code, respectively, both algorithms were presented in Chapter 4. The flat-
tening HTL compiler transiates an HTL description into an E code program; since E code
can not express hierarchical structure, the flattening HTL compiler has to flatten the HTL
description before it generates the E code program for it. The hierarchy-preserving HTL
compiler translates an HTL description into an HE code program;, it does not have to alter
the structure of the HTL description being compiled. In the last part of Chapter 4 the
two compilers have been compared both analytically and experimentaily. Both analytical
results and experimental results show that the flattening HTL compiler generates expo-
nentially many E code instruction in terms of the degree of parallelism in the refinement,
while in the case of hierarchy-preserving HTL compiler the number of generated HE code
instructions grows linearly with the degree of parallelism in the refinement. Neverthe-
less, the flattening HTL compiler turns out to generate more efficient E code than the
hierarchy-preserving HTL compiler, when there is no parallelism in the refinement.

All the ideas presented in the thesis have been tested on real-time control ap-
plications. Two plants have been used as case studies: the Three Tanks System (3TS),
which exists at University "Politehnica” of Timisoara, it was presented in Chapter 5, and

BUPT

9. CONCLUSION 116

the JAviator, which is a quad rotor helicopter developed at University of Salzburg in order
to be used as a test platform for new real-time programming techniques, it was presented
in Chapter 6. In Chapter 5 has been presented a real-time control application developed
using HTL for controlling 3TS plant. The control application was intended to show the ca-
pabilities of HTL, i.e., refinement, parallel composition of sets of tasks, distributions, etc.
All the tests presented in this chapter have been run on the real 3TS plant. The rest of
the HTL control applications presented in the thesis have been tested only on simulated
3TS or JAviator plants, nevertheless this does reduce the relevance of the results since
the timing of the application is the same regardless if the controlled plant is a real one or
a simulated one.

In the last decade there has been a growing interest in making Java a programming
language for real-time application. One of the latest innovations in the field of real-time
programming constructs that use Java is Exotask [8; 9]. An Exotask program consists of a
graph in which nodes represent tasks and edges represent connections between tasks. The
main elements of Exotask have been presented in Chapter 6. One important advantage
of Exotask is the support for pluggable timing grammar and scheduler, thus in Chapter 6
has been presented a timing grammar for Exotask that makes possible the use of HTL
syntax into an Exotask graph; the new programming construct was named Exotask-HTL.
A scheduler that understands the new grammar has been developed also; it was presented
in the same chapter. The Exotask-HTL programming construct has been used to develop
a control application for the JAviator plant. The application has been tested on an AMD64
four-way 2.4GHz machine and it was observed that the variation in the period of the
application (20ms) was bellow 0.5ms (1% of the period). Although the hardware might
be considered unrealistic for an embedded application, there are embedded applications
that use powerful computers, i.e., next generation battleships [35].

Many of the embedded systems that exists today are limited in terms of resources
and power of computation, thus in this thesis has been presented an implementation
of HTL that targets a microcontroller (Chapter 7), the new software platform was called
micro HTL. The platform consists of an optimized version of HE machine that can run on
a microcontroller, namely, micro E machine, and an HTL compiler based on the hierarchy-
preserving HTL compiler, which generates optimized HE code, i.e., no HE code is generated
for empty units. Since there was no operating system on the microcontroller, a small real-
time executive, which can schedule tasks based on the EDF scheduling algorithm, had to
be developed. Micro HTL has been tested by implementing two control application: one
for 3TS plant and the other one for JAviator plant. For the JAviator contro!l application,
it has been achieved an efficacy of 75%-80% which is closed to the efficacy of reqular
real-time application 90% {1] and for the 3TS control application the efficacy was around
95%.

Automatic control system represents an important category of embedded systems.
It is a common practice among the control engineers to use modeling tools, e.g., Simulink,
in order to design and test control algorithms. However, it is not that common to also
model and test the timing of the application that will implement the control algorithm,
thus problems my arise after the application has been implemented due to delays that
have not been considered in the design of the control algorithm. In Chapter 8 has been
presented a way of modeling an HTL description in Simulink. The HTL compiler has been
extended in order to be able to convert an HTL description into a Simulink model. The
advantage of converting an HTL description into a Simulink model consists in the fact that
the timing of the final application can be simulated and tested in Simulink before it is
implemented. Another important advantage is the possibility to generate C code for a
Simulink model, which can be used as functional code for tasks in the final application.
The HTL-to-Simulink tool chain has been tested by implementing a control application for
the 3TS plant. It has been shown that the results obtain by simulating the Simulink model

BUPT

117 9.1 Personal Contributions

of the control application are very close to does obtain by executing the application for
which functional code has been generated directly from the Simulink model.

9.1. Personal Contributions

As a result of my scientific research I have published as a coauthor a total of seven papers.
Five conference papers: three ISI papers [2; 8; 37], two papers at international confer-
ences in Romania [24; 38]. One technical report at University of California at Berkeley [4].
One paper that has been accepted to be published in the ACM Transactions on Embedded
Computing Systems journal [9]. Another paper has been submitted at Elsevier Science of
Computer Programming journal, but I have received no response from the editors yet; this
joumnal paper is based on the paper that has been presented at the APGES workshop [7].

Contributions summary:

« I have designed and implemented the compiler for Timing Specification Language,
which is an intermediate language between HTL and Giotto [24];

I have contributed to the development of HTL [2; 4, 37]:

- design and implementation of the flattening HTL compiler
~ implementation of the separation of concerns concept for reliability into the HTL
compiler and E machine

I have contributed to the design of the HE machine and to the design of the HTL
compiler that generates code for this new E machine, I have implemented both
the HE machine and the HTL compiler, and I have compared both analytical and
experimental the flattening HTL compiler and the hierarchy-preserving HTL com-
piler [7; 52];

I have designed and implemented the HTL grammar for Exotask system [8; 9];

I have designed and I have implemented the micro HTL;

¢ I have defined the mapping of an HTL description to a Simulink model and I have
implemented the HTL2Simulink module in the HTL compiler;

I have designed and implemented HTL and Exotask-HTL controllers for the 3TS and
the Javiator plants.

9.2. Future Work

Current HTL syntax allows only specification of timing behavior for periodic tasks; nev-
ertheless many real-time applications contain also aperiodic and sporadic tasks. Thus
one possible research direction would be to extend HTL to support timing specification for
aperiodic and sporadic tasks.

Applications developed with Exotask-HTL has been shown to be working only on
powerful hardware; still it should be possible to run it on less powerful hardware, i.e.,
Gumstix, e.g., Exotask has already been tested with success on such a hardware. In
order to improve performance of Exotask-HTL there are two changes that can be made:
use of more efficient HE code (e.g., define new instructions or remove the existing ones),
and improve the Exotask-HTL scheduler.

So far all the timing analysis that have been done for Giotto and HTL descriptions
assumed that overhead introduce by E machine is zero; this might be true for powerful

BUPT

9. CONCLUSION 118

hardware, nevertheless when it comes to running HTL real-time applications on micro-
controllers this assumption does not hold anymore. In Chapter 7 it has been presented a
timing analysis that considers not only tasks WCET but also overhead introduced by micro
E machine; it was shown that in the worst case the overhead could go up to 25% of the
application period, which is a significant overhead and has to be consider in the timing
analysis. The overhead that used in the analysis was measured experimentally, thus an-
other research direction would be to find a way of computing the overhead based on the
generated HE code and on the target hardware platform.

Micro E machine presented in Chapter 7 does not support distribution of HTL de-
scriptions. Developing a micro E machine that can support distribution represents another
research direction; for communication between different E machines, on which parts of
an HTL application are executed, it could be used either the RS232 interface, or the 12C
interface, or maybe both. An even more ambition plan would be to allow communication
between E machines that run on heterogeneous hardware (i.e., PC and microcontroller)
that use different communication interface (i.e., RS232, I12C, and Ethernet). Timing anal-
ysis for such a distributed system should consider worst case transmission times for all
the communication channels, worst case overhead introduced by E machines running on
different hardware, and worst case execution time of each task.

The JAviator control applications that have been implemented using micro HTL ,

and Exotask-HTL have only been tested on simulated JAviator plants, in the future I plan
to use both this application in order to control the real JAviator plant.

Finally,I want to create a software development tool for HTL that can be used to
developed HTL real-time application for PCs, microcontrollers and for Exotask. The new
development environment will contain all the tools that have been developed for HTL so far,
a graphical editor for HTL, with possibility to edit either an HTL description or an Exotask
graph that uses HTL grammar and a graphical timing analyzer that can be used to visualize
the timing behavior of a real-time application.

BUPT

A. Three Tank System Mathematical Model

Three Tanks System (3TS) plant is made up of three identical cylindrical tanks (T, T2, Ta),
which have the same transversal section A. The three tanks are interconnected through
pipes, which have the same section S (S << A(m?)). Each thank has a tap through which
the fluid drains. Tank 7> has a supplementary tap. There are also two pumps P, and
P,, which are connected to T, and Tz, respectively. The pumps are powered by two DC-
motors. In order to be able to simulate perturbations in the system, the interconnection
pipes as well as the draining pipes are equipped with a tap a; where : € {5:.52.92.¢e1,€2,€e3}.
In Fig. A.1 it is presented the block schema for 3TS plant.

- M " Xom
1 [.
b, by |

b,

s ay s N a/"’

1PN eamacy e
a, ‘ A, s A,y s A
’ - " L) - a,. "
LRl 3 L) O q: 9

Fig. A.1: Three Tanks System

The level of the fluid in the three tanks depends on:
o the filling flow capacities of T; and T (i.e., gp1 and gp2, respectively);
¢ the draining flow capacities of the six taps:
— Ge1, Ge2, ge3, aNd gg2 - emptying flow capacities (these represent the perturba-
tions);
- q13 and gs; - the interconnection flow capacities;

The interconnection flow capacities are considered to be oriented:
qiz > 0. if h1 > hs (Tl — T}),
q13 <0, if hy < ha (Tz — Ty);
respectively:
q32 >0, if ha > ha (T3 — T2);
ga2 < 0. if ha < h2 (T2 —_ Tg),'

BUPT

A. THREE TANK SYSTEM MATHEMATICAL MODEL 120

In order to be able to mathematically model the plant, the physical phenomena
that takes place must be known.The main equation for 3TS system is Bernoulli's equation.
The equation relates the speed and the pressure off moving fluid.

§v?
P+ - + 8gh = const. - (A.1)

Considering the "homogeneous environment" and S << A, then the speed of the
draining fluid could be approximated by the following relation:

v~ V2R (A.2)

where Ah represents the fluid level deference between interconnected tanks.

Nonlinear model for the Three Tanks System (3TS) plant is:

h:I = %(q;)l —q13 — Qel)
hs = %(gp2 + g32 — qe2 ~ gg2) (A.3)
hs = Lq13 — g32 — ges
where

@13 = ps1- S - sgn(hy — hs)y/2glh1 — h|

qa2 = ps2 - S - sgn(ha — h2)y/2g|hs — hy|

G20 = pig2 - S - /2gh2 (A.4)

Gei = Hei - S- v 29;is

Gpi = Cillci

BUPT

121

Linearized model of the 3TS plant in the neighborhood of (hjo, h2o, h3o) :

4

\

Ahy

Ahs

Ahs

—%ﬁsgn(hzo — hao) - /1h10 — h30| Aug

_ Y23 - O
A uleSgn’(hlo h30) |h10 LEGY Ahl
1
+ % u105gn(h1o — hao) - m B

25 . \/hio - Duer ~ @uem . ﬁ.ﬁhx + FAug

—ssgn(hao — hao) - /Thao — haol - Ause

_g - e
+ ¥ usz059n(hao — h2o) - 24/ th30 _hzo! Ahs
L msgn(hso - hon) - e B

2+/ihao—h2o;

—2 . fhao - Dz — Lluezo - 5 A= - Aho
_\/—2_3\/h20Au92 - A/72_“21@20 2;\/;'—2(-,:3’12 + 2Auc

ﬁ.sgn(hw — hao) - /|hio — haol - Aus

+—2u,1o sgn{hio — hao) - —d Ak

th1o—haol
_ﬁuslo - sgn(hio — hao) - - Ahs

____.1_
2¢/Ih1o—haoi
_,4‘259" (hao — h2o) - \/1h3o — hzo Auy

_ Y% - Se——

A us20 - 5gn(hso = hao) - Tommmes - B
Y23, . - e
+¥5 % us20 - sgn(hao h20_) 2y/lhao —hzo! Aha

~22 - fh3o - Atea = Fhueso - 575 Aha

(A.5)

In Fig. A.2 it is presented the Simulink model of the 3TS plant. The Simulink model
was used to test control algorithms before they were used for the real plant. In order to be
able to test the final HTL program a simulator of the 3TS plant has been implemented in
Java (Fig. A.3). The program works like a TCP server to which TCP clients that implement
different control strategy can connect in order to control the plant. Although the simulator
accepts multiple connections, only one client can control the plant.

BUPT

A. THREE TANK SYSTEM MATHEMATICAL MODEL 122

e, T S T R T T T RO S e e O >]

o
g

Sawple [sangme)

s

i

33323233

Fig. A.3: Java simulator of the 3TS plant

a

BUPT

B. JAviator Mathematical Model

In the literature there are several simplified mathematical models for the quadrotor heli-
copter ([53], [54], and [55], are just a few papers in which such a model is presented).
The mathematical model presented here is the mathematical model described in [55].

NE
D:V -

ATa // ™ R3 “
et AT
R,) PR -
-\\;\1/}‘ ‘ - ,,q R,

> % v
"R <. ! 2
\\\‘I \\\\ //

— _'/ AD

Fig. B.1: Quadrotor block diagram.

In Fig. B.1 it is presented the block diagram of a quadrotor helicopter. As shown
in the figure a quadrotor helicopter consists of four rotors: two of them are spinning
clockwise (R, and R4), while the other two are spinning counterclockwise (R, and R;).
The effect of each spinning rotor is represented by a force perpendicular on the rotation
plane (T;, i = 1,2,3,4) and one force in the rotation plane (D;, i = 1.2.3,4). The resultant
of T; forces will be noted with T, while the resultant of D; will be noted with D.

The simplified input-output mathematical model is presented in (B.1).

‘:1:’=§(T2*T4)
9=§(T1—T3)
V=LK1 - Ta+ T3 - Tu)
(= 2(Ty + T2 + T3 + Ty — mg)

(B.1)

From the input-output mathematical model the following input-state-output mathematical
model was driven:

BUPT

B. JAVIATOR MATHEMATICAL MODEL 124

I 01 00 00 0 0\ /z 0o 0 o0 0 0
2 0000 O0O0O0 0f]z - —mg
T3 0001000 0]z 0o 0 0 0 T 0
£}_j0 00000 00 x4+0§0—§ T2y | O
s 0000010 0f]azs 0o 0 o0 0 Ts 0
s 000000 O0 Of]as i 0 - o0 Ta 0
I 0000000 1]]|x 0 0 0 0 0
s 00000 O0O0 0/ \zs £ K K K 0
(B.2)

where

Ty =z

$2=2

I3=‘I’

.’134:@

P (B.3)

Te = O

=V

g = ¥

m = 2kg - the weight of the flying object, [= 0.34m - the length of the arm measured
from the center of the flying object, I = 0.017kg x m? - the moment of inertia of the flying
object (I,, = Iy, = I, I, = 2I), g = 9.8m/s” - gravitational acceleration, and K, = 4 - the
proportionality factor between T; and D; (D; = K. T;).

The mathematical model presented above was used only for the design of the
controllers, its may advantage being the fact that it can be split into four independent
processes, i.e., altitude process, roll process, pitch process, and yaw process, thus the
controllers for each of the four processes can be designed separately. Nevertheless for
the real plant the four processes are not decoupled, thus the control solution should be
tested on a more detailed mathematical model which also considers the interdependence
between the four processes. The mathematical model of the JAviator plant that has been
used for testing the contro! solution is presented in equations (B.4).

& =Lf(T - Ty

6= %f(T} - 13)

V=5 -T2+ T5-Ts)

4 2='-:‘-(f(T1+T2+T3+T4)—mg) (B.4)
& = (sin(®)sin(¥) + cos(®)sin(O)cos(¥))(Th + T2 + Ta + Ty) L

i = (sin(®)cos(¥) + cos(®)sin(O)sin(¥))(T1 + T2 + Tz + T4) =

f = cos(P)cos(B)

The detailed mathematical model of the JAviator also describes how the z and y
position evolve based on the four forces, e.g., T, T2, T3, and Ty, and on the roll, pitch,
and yaw angles. This detailed model has been implemented both in Simulink and in a
Java program. The Simulink model is presented in Fig. B.2. In Fig. B.3 it is presented
the Simulink modet for the roll process. In Fig. B.4 it is presented the Simulink model for
the pitch process. In Fig. B.S it is presented the Simulink model for the yaw process. In
Fig. B.6 it is presented the Simulink model for the z process. In Fig. B.7 it is presented
the Simulink model for the x process. In Fig. B.8 it is presented the Simulink model for
the y process.

BUPT

125

i D
| | T
| | Ty atz :
Ta %.
bl kot 1
e
'
Tt -~
g | 5 N
. 15
L | ractir oo > ¢
Feh, cel

o

Progun!

it

Prcr

T3 rYave

s —
tartar ekt ’@

Fig. B.2: JAviator: detailed Simulink model.

i

B
i
__E:; - o .

A4 0ed

>,

Productl

—
N

) <0<
AVAVAY,

|

factor

Fig. B.3: JAviator: roll Simulink model.

% -
¥ . ix» 1—
Product [_"‘ y :
. Gain Integrator

Inteqratar!

y
w -

wstrll

BUPT

B. JAVIATOR MATHEMATICAL MODEL

126

x
4 _]——b
q Productd .
= > L.
- 1
>+ >
= - R
2-aductt I
D [N
) ”
3
failor

Fig. B.4: JAviator: pitch Simulink model.

Wyy

Gain

dotpitch

Q_’I >‘—’1 x
b Preduct
i D > X ; ‘
) > Fraduct) I—» s s o
3 _al X - Gan Inte~r-tor| Integr-tor!
2
~ Frodue
T4 . % dotyaw
3
2 Praguct3
factor
Fig. B.5: JAviator: yaw Simulink model.
‘ O
h = , z
Integratorl ntegrator
()
dotz
»(
dotdotz
Froguetd X
o] ‘
0

Zonstart?

Sench2

Constantd

Canstant

Fig. B.6: JAviator: z Simulink modei.

BUPT

127

T goname:~:
F_nctons

T-gonome:~:
F_nctronZ

Trconome:- 2
F.nchiond

T-.conome:” :
F.nctionl

e

Tr conome:r:
F_nctond

cos

Trgonometnc
Functiond

CO— sin

rol

Tngoncmetne
Function2

Prodactt

x

Frogets

Fig. B.7: JAviator:

x

Product

cin

Tngonometnc
Functiond

Tagonometnc
Functior!

sin

Tngonometnc
Functions

x

Product!

Negeatzrt

x Simulink model.

x

Productz

O

T2

S I
T4

inteuratar

(D

degratars

Fig. B.8: JAviator: y Simulink model.

3
,.u<'

BUPT

B. JAVIATOR MATHEMATICAL MODEL 128

BUPT

C. Encoding of HE code Instructions for Micro HTL

instruction arg1 arg2/arg3

Fig. C.1: Instruction encoding

Encoding of each HE code instructions for the micro E machine is as follows:

e call(d) Fig. C.2

4 " DRIVER_IDX

Fig. C.2: Call instruction encoding

argl = DRIVER_DX: the index of the driver to be executed;
e release(t,dl) Fig. C.3

5 TASK DX DEADLINE

Fig. C.3: Release instruction encoding

argl = TASK_IDX: the index of the task that has to be released;
arg2 = DEADLINE: relative time when the task should have complete execution;

o writeFuture(e,a) Fig. C.4
1 ADDRESS EVENT
Fig. C.4: WriteFuture instruction encoding

argl = ADDRESS: address of the block of HE code that has to be executed when the
trigger created by the instruction gets enabled;
arg2 = EVENT: time event on which created trigger gets enabled;

BUPT

C. ENCODING OF HE CODE INSTRUCTIONS FOR MICRO HTL 130

2 ADDRESS | EVENT

Fig. C.5: SwitchFuture instruction encoding

e switchFuture(e.a) Fig. C.5
argl = ADDRESS: address of the block of HE code that has to be executed when the
trigger created by the instruction gets enabled;
arg2 = EVENT: time event on which created trigger gets enabled;

e readfuture(e.a) Fig. C.6

| EVENT

e

'3+ ADDRESS
Fig. C.6: ReadFuture instruction encoding

argl = ADDRESS: address of the block of HE code that has to be executed when the
trigger created by the instruction gets enabled;
arg2 = EVENT: time event on which created trigger gets enabled;

e jumplficnd.a) Fig. C.7

6 | ADDRESS | COND_IDX |

Fig. C.7: Jumplf instruction encoding

argl = ADDRESS: address of the block of HE code that has to be executed when
condition is true;
arg2 = COND_DX: index of the condition to be evaluated;

e jumpAbsolute(a’) Fig. C.8

7 | ADDRESS

Fig. C.8: JumpAbsolute instruction encoding

argl = ADDRESS: address of the block of HE code where the execution has to jump;
e jumpSubroutine(a’) Fig. C.9

9 _ ADDRESS

Fig. C.9: JumpSubroutine instruction encoding

argl = ADDRESS: address of the block of HE code that has to be invoked;
e copyRegister(Rz,Ry) Fig. C.10
argl = Rx: integer value between 0 and 3 that identifies the source register;
arg2 = Ry: integer value between 0 and 3 that identifies the destination register;
e pushRegister(Rz) Fig. C.11
argl = Rx: integer value between 0 and 3 that identifies the register that has to be
pushed onto the parent stack;

BUPT

131

10 Rx Ry

Fig. C.10: CopyRegister instruction encoding
o R L
Fig. C.11: PushRegister instruction encoding

R - - e aLtT R TN P

12 Rx

Fig. C.12: PopRegister instruction encoding

e popRegister(Rz) Fig. C.12
argl = Rx: integer value between 0 and 3 that identifies the register that will be
loaded with the value popped from the parent stack;

e getParent(Rz,Ry) Fig. C.13

13 R Ry

Fig. C.13: GetParent instruction encoding

argl = Rx: integer value between 0 and 3 that identifies the register whose parent
will be copied in register identified by parameter Ry;

arg2 = Ry: integer value between 0 and 3 that identifies the register in which the
parent of the register identified by parameter Rx, will be copied;

e setParent(Rz,Ry) Fig. C.14

14 Rx Ry

Fig. C.14: SetParent instruction encoding

argl = Rx: integer value between 0 and 3 that identifies the register whose parent
will be copied from register identified by parameter Ry;

arg2= Ry: integer value between 0 and 3 that identifies the register from which the
parent of the register identified by parameter Rx, will be copied;

e copyChildren(Rz,Ry) Fig. C.15

19 Rx Ry

Fig. C.15: CopyChildren instruction encoding

argl = Rx: integer value between 0 and 3 that identifies the register to which childrec

list will be copied;
arg2 = Ry: integer value between 0 and 3 that identifies the register from which the

children list will be copied;

BUPT

C. ENCODING OF HE CODE INSTRUCTIONS FOR MICRO HTL 132

15 R« | Ry

Fig. C.16: UpdateChildren instruction encoding

e updateChildren(Rz.Ry) Fig. C.16
argl = Rx: integer value between 0 and 3 that identifies the register whose children
list will be updated;
arg2 = Ry: integer value between 0 and 3 that identifies the register that contains
the parent;

e deleteChildren(Rr) Fig. C.17

16 Rx

Fig. C.17: DeleteChildren instruction encoding

argl = Rx: integer value between 0 and 3 that identifies the register whose children
tree has to be deleted;

e replaceChild(Rz,Ry.Rz) Fig. C.18

8 R« | Ryre

Fig. C.18: replaceChild instruction encoding

argl = Rx: integer value between 0 and 3 that identifies the register whose children
will be updated;

arg2 = Ry: integer value between 0 and 3 that identifies the register whose value
will be replaced;

arg3 = Rz: integer value between 0 and 3 that identifies the register whose value
will replace the value identified by Ry;

e cleanChildren(Rz) Fig. C.19

18 R |

Fig. C.19: CleanChildren instruction encoding

argl = Rx: integer value between 0 and 3 that identifies the register whose children
list has to be cleaned;

e return{) Fig. C.20

L8 T

Fig. C.20: Return instruction encoding

BUPT

D. HTL Grammar

Package htlc;
Helpers

all = [0 .. OxFFFF];

lovwercase = ['a’' .. 'z'];
uppercase o '2'];
digit = ['9'];
hex_digit [digit + [['a' .. '£'] + ['A' .. 'F'11];

n o

tab = 9;
cr = 13;
1f = 10;
eol = cr 1f | cr | 1f; // This takes care of different platforms

not_cr_1f = {all -[cr + 1f]];
not_star = [all -'x'];
not_star_slash = [not_star -'/'];

blank = (' ' | tab | eol)+;
short_comment = '//' not_cr_lf#* eol;
long_comment = '/#*' not_star* 's'+ (not_star_slash not_stars ‘#'+)x '/';

comment = short_comment | long_comment;

letter = lowercase | uppercase | '_';
name = letter (letter | digit)s;
ident = pame ('.' name)s=;

number = digit+;

Tokens

program = 'program';

communicator = 'communicator';
sensor = 'sensor';
actuator = 'actuator';

general = 'general’;
period = 'period’;
uses='uses';

module = ‘'module’;
start = 'start';
import = 'import';
export = 'export';
task = 'task';
output = ‘output’;
input = 'input';
state = 'state';

BUPT

D. HTL GRAMMAR

134

parent = 'parent’;
function = 'function’;
update = 'update’;
port = 'port’;
mode = 'mode’;
invoke = 'invoke';
suitch = 'switch';
wcet = 'wcet';
init = ‘inpnit’;
host = 'host';

lrc = 'LRC’;

srg = 'SRG’;

model = 'model’;

ident = ident;
number = number;

semicolon = ';';
comma = ',';

dot = '.';

zero = '0';
colon = ':';

greater_than = '>';

less_or_equal = '<=';
assign = ':=';

1_par = '(';

r_par = ')';

1_brace = '{';
r_brace = '}';

1_bracket = '[';
r_bracket = ']’;

blank = blank;
comment = comment;

Ignored Tokens
blank, comment;
Productions

program_declaration_list

program_declaration = program [program_name]:ident 1_brace
communicator_declaration_list?

module_declaration_list
r_brace;

communicator_declaration_list

communicator_declaration

1lrc_specification = lrc lrc_value;

1lrc_value = float;

float = [int]:number dot [frac]:number;

program_declaration*;

communicator communicator_declarations* ;
[type_name] :ident [communicator_name] :ident
period [communicator_period] :number

init [init_driver]:ident

1rc_specification?

BUPT

135

module_declaration_list = module_declarations;
module_declaration = module [module_name]:ident host_declaration_list?
start [start_mode]:ident 1_brace
port_declaration_list?
task_declaration_list
mode_declaration_list
r_brace;

host_declaration_list = 1_bracket hosts_list? r_bracket;

hosts_list = {concrete} host_declaration host_declaration_tails* |
(host_declaration+) ;

host_declaration_tail = comma host_declaration ;

host_declaration = [host_name]:ident [bost_ip]:ip_declaration colon
[host_port] :number srg_specification?;

srg_specification = srg srg_value;

srg_value = float;

ip_declaration = [a] :number [di]:dot [b]:number [d2]:dot [c]:number
[d3] :dot [d] :number;

port_declaration_list = port port_declaration*;
port_declaration = [port_type):ident [port_name]:ident assign
[init_driver]:ident semicolon;

task_declaration_list = task_declarations;
task_declaration = task {task_name]:ident
input [input_formal_ports]:formal_ports
state [state_formal_ports]:state_ports
output [output_formal_ports]:formal_ports
task_function?
task_wvcet?
reliability_model?
semicolon;

task_function = function [function_name]:ident;
task_vcet = wcet [vcet_map]:number;
reliability_model = model [model_typel :number;

formal_ports = 1_par formal_port_list? r_par ;

formal_port_list = {concrete} formal port formal port_tails | (formal_port+) ;
formal _port_tail = comma formal_port ;

formal_port = [type_name]:ident [port_name]:ident default_value?;
default_value = assign [default_driver]:ident;

state_ports = 1_par state_port_list? r_par ;

state_port_list = {concrete} state_port state_port_tail=s | (state_port+) ;
state_port_tail = comma state_port ;

state_port = [type_name]:ident [state_name]:ident assign [init_driver]:ident ;

mode_declaration_list = mode_declarations;
mode_declaration = mode [mode_name]:ident period [mode_period]:number

refine_program?

1_brace

sensor_device_driver_list

actuator_device_driver_list

task_invocation_list

mode_switch_list

r_brace;

refine_program = program [program_name]:ident;

BUPT

D. HTL GRAMMAR 136

sensor_device_driver_list = sensor_device_drivers;
sensor_device_driver = sensor update [driver_name]:ident 1_par
{communjicator_name] :ident comma [communicator_instance]:number r_par semicolon;

actuator_device_driver_list = actuator_device_drivers;
actuator_device_driver = actuator update [driver_name]:ident 1_par [communicator_name]:ident
comma [communicator_instance] :number r_par semicolon;

task_invocation_list = task_invocations;

task_invocation = invoke [task_name]:ident input {input_actual_ports]:actual_ports output
[output_actual_ports]:actual _ports parent_task? semicolon;

parent_task = parent [task_name]:ident;

actual_ports = 1_par actual_port_list? r_par ;

actual_port_list = {concrete} actual_port actual_port_tails | (actual_port+) ;

actual _port_tail = comma actual_port ;

actual_port = {concrete} [port_name]:ident | communicator_instance ; -

communicator_instance = 1_par [communicator_port_name]:ident comma
{communicator_instance_number] : number r_par ;

mode_switch_list = mode_switchs;

mode_switch = switch
1_par [condition_function]:ident switch_ports r_par
[destination_mode] : ident
semicolon;

switch_ports = 1_par switch_port_list? r_par ;

switch_port_list = {concrete} switch_port switch_port_tail* | (switch_port+) ;
switch_port_tail = comma switch_port ;

switch_port = [port_name]:ident;

BUPT

E. HTL Descriptions

E.1. Increment/Decrement Counter

program P_inc_dec{
communicator
c_int counter period 100 init c¢_zero;
c_int ref period 100 init c_zero;

module M_read_vwrite start m_read_write{

task t_read input() state() output(c_int p_counter) function f_read;
task t_ref inmput() state() output(c_int p_ref) function f_ref;
task t_write input(c_int p_counter) state() output() function f_write;

mode m_read_write period 1000{
invoke t_read input() output((counter,1));
invoke t_ref input() output((ref,1));
invoke t_write input((counter,2)) output();
}
}

module M_inc_dec start m_inc{

task t_inc input(c_int p_counter_in) state() output(c_int p_counter_out);
task t_dec input(c_int p_counter_in) state() output(c_int p_counter_out) function f_dec;

mode m_inc period 1000 program P_INC{
invoke t_inc input((counter,1)) output((counter,2));
svitch(inc_to_dec(counter)) m_dec;

}

mode m_dec period 1000{
invoke t_dec input((counter,1)) output((counter,2));
switch(inc_to_dec(counter)) m_inc;
}
}
}

program P_inc{
module M_inc start m_inci{

task t_incl input(c_int p_counter_in) state() output(c_int p_counter_out) function f_incl;
task t_inc5 input(c_int p_counter_in) state() output(c_int p_counter_out) function f_inc5;
task t_inc10 input(c_int p_counter_in) state() output(c_int p_counter_out) function f_incl0;

mode m_incl period 1000{
invoke t_incl input((counter,1)) output((counter,2)) parent t_inc;
switch(incl_to_inc5(counter)) m_inc5;

}

mode m_inc5 period 1000{
invoke t_inc5 input((counter,1)) output((counter,2)) parent t_inc;
switch(inc5_to_inciO(counter)) m_inci0;

}

BUPT

HTL DESCRIPTIONS

138

}
}

mode m_inc10 period 1000{
invoke t_inc10 input((counter,1)) output((counter,2)) parent t_inc;

}

E.2. Three Tanks System Controller Distributed HTL

Implementation

program P_3TS{
communicator

c_double hi peried 100 init c_zero;
c¢_double h2 period 100 init c_zero;
¢_double ul period 100 init c_zero;
c_double u2 period 100 init c_zero;
c_bool vi period 500 init c_false;
c_bool v2 period 500 init c_false;
c_double hif period 500 init c_zero;
c_double h2f period 500 imit c_zero;
c_double hic period 500 init c_zero;
c_double h2c period 500 init c_zero;
c_bool PI_LR1 period 500 init c_false;
c_bool PI_LR2 period 500 init c_false;

module I0 start readWrite{

}

port
c_double local_hl := c_zero;
c_double local_h2 := c_zero;

task t_read input() state() output(c_double p_h1, c_double p_h2) function f_read;

task t_write input(c_double p_ul, c_double p_u2, c_double p.hif, c_double p_h2f,
c_double p_hic, ¢_double p_h2c) state() output() function f_write;

task t_estimateVi input(c_double p_hi, c_double p_ul) state() output(c_bool p_vi,
¢_double p_hic, c_bool p_PI_LR1) function f_estimateH1;

task t_estimateV2 input(c_double p_h2, c_double p_u2) state() output(c_bool p.v2,
c_double p_h2¢, c_bool p_PI_LR2) function f_estimateH2;

task t_filterH1 input(c_double p_hi) state() output(c_double p_hiF, c_double p_hif)
function f_filterHi;

task t_filterH2 input(c_double p_h2) state() output(c_double p_h2F, c_double p_h2f)
function f_filterH2;

mode readWrite period 500{
invoke t_read input() output((h1,3), (h2,3));
invoke t_write input((ui,4), (u2,4), (eif, 0), (h2f, 0), (hic, 0), (h2c, 0)) output();
invoke t_filterHi input((h1,3)) output(local_hi, (hif, 1));
invoke t_filterH2 input((h2,3)) output(lecal_h2, (h2f, 1));
invoke t_estimateVl input(local_hl, (ui,4)) output((vi,1), (hic, 1), (PI_LR1, 1));
invoke t_estimateV2 input(local_h2, (u2,4)) output({v2,1), (h2c, 1), (PI_LR2, 1));

module T1 start m_Ti{

}

task t_T1 input(c_double p_hl) state() output(c_double p_ul);
mode m_T1 period 500 program P_Ti{

invoke t_T1 input((h1,3)) output((ui,4));
}

module T2 start m_T2{

}
}

task t_T2 input(c_double v_h2) state() output(c_double v_u2);
mode m_T2 period 500 program P_T2{

invoke t_T2 input((h2,3)) output((u2,4));
}

program P_T1{

BUPT

139 E.2 Three Tanks System Controller Distributed HTL Implementation

module Ti_P_PI start m_T1_P{
task t_T1_P input(c_double v_hl) state() output(c_double v_ul) function f_T1_P;
task t_T1_PI input(c_double v_h1) state() output(c_double v_ul);
mode m_T1_P period 500{
invoke t_Ti_P imnput((h1,3)) output((ui,4)) parent t_Ti;
switch(withPerturbation{(v1)) m_T1_PI;
}

mode m_T1_PI period 500 program P_T1_2PI{
invoke t_T1_PI input((h1,3)) output((ul,4)) parent t_T1;
switch(withoutPerturbation(vi)) m_Ti_P;
}
}
}

program P_T2{
module T2_P_PI start m_T2_P{

task t_T2_P input(c_double v_h2) state() output(c_double v_u2) function f_T2_P;
task t_T2_PI input(c_double v_h2) state() output(c_double v_u2);

mode m_T2_P period 500{
invoke t_T2_P input((h2,3)) output((u2,4)) parent t_T2;
switch(withPerturbation(v2)) m_T2_PI;

}

mode m_T2_PI period 500 program P_T2_2PI{
invoke t_T2_PI input((h2,3)) output((u2,4)) parent t_T2;
svitch(withoutPerturbation(v2)) m_T2_P;
}
}
}

program P_T1_2PI
{
module T1_2PI start m_T1_PI_R{
task t_T1_PI_L input(c_double v_hl) state() output(c_double v_ul) function f T1 PI_L;
task t_T1_PI_R input(c_double v_h1l) state() output(c_double v_ul) function f_T1_PI_R;
mode m_T1i_PI_L period 500{
invoke t_T1_PI_L input((h1, 3)) output((ui, 4)) parent t_T1_PI;
switch(PIRapid(PI_LR1)) m_T1_PI_R;
}

mode m_T1_PI_R period 500{
invoke t_T1_PI_R input((hi, 3)) output((ul, 4)) parent t_T1_PI;
switch(PILent (PI_LR1)) m_T1_PI_L;
}
¥
}

program P_T2_2PT
{
module T2_2PI start m_T2_PI_R{
task t_T2_PI_L input(c_double v_h2) state() output(c_double v_u2) function £ _T2 PI_L;
task t_T2_P1_R input(c_double v_h2) state() output{c_double v_u2) function f_T2_PI_R;

mode m_T2_PI_L period 500{
invoke t_T2_PI_L input((h2, 3)) output((u2, 4)) parent t_T2_PI;
swvitch(PIRapid(PI_LR2)) m_T2_PI_R;

}

mode m_T2_PI_R period 500{
invoke t_T2_PI_R input((h2, 3)) output((u2, 4)) parent t_T2_PI;
switch(PILent(PI_LR2)) m_T2 PI_L;
}
}
}

BUPT

E. HTL DESCRIPTIONS 140

E.3. Three Tanks System Controller Micro HTL
Implementation

program P_3TS{

}

communicator

c_int h1l period 50 init c_zero;

c_int h2 period 50 init c_zero;

c_int ul period 50 init ¢_zero;

c_int u2 period 50 init c_zero;

c_bool vl period 50 init c_false;

c_bool v2 period 50 init c_false;

c_bool PI_SF1 period 50 init c_false;

c_bool PI_SF2 period 50 init c_false;

c_controller_type prevTiController period 50 init P_controller;
c_controller_type prevT2Controller period 50 init P_controller;

module I0 start read¥rite{

task t_read input() state() output(c_int p_hl, c_int p_h2) function f_read;

task t_vrite input(c_int p_ul, c_int p_u2) state() output() function f_write;

task t_estimateVl input(c_int p_hl, c_int p_ul) state(c_history history:=zero_history)
output (c_bool p_vi, c_bool p _PI_SF1) function f_estimateH1;

task t_estimateV2 input(c_int p_h2, c_int p_u2) state(c_history history:=zero_history)
output (c_bool p_v2, c_bool p_PI_SF2) function f_sestimateH2;

mode readWrite period 250{
anvoke t_read input() output((h1,1), (b2,1));
+ invoke t_write input((u1,3), (u2,3)) output();
invoke t_estimateVl inmput((h1,1), (ui,3)) output((vi,5), (PI_SF1, 5));
invoke t_estimateV2 imput((b2,1), (u2,3)) output((v2,5), (PI_SF2, 5));
}
}

module Ti start m_T1{
task t_T1 input(c_int p_h1) state() output(c_int p_ul);
mode m_T1 period 250 program P_Ti{
invoke t_T1 input((hi,1)) output((u1,3));
}
}

module T2 start m_T2{
task t_T2 input(c_int v_h2) state() output(c_int v_u2);
mode m_T2 period 250 program P_T2{
invoke t_T2 input((h2,1)) output((u2,3));
}
}

program P_T1{

}

module Ti_P_PI start m_T1_P{

task t_T1_P input(c_int v_h1) state() output(c_int v_ul, c_controller_type prevController)
function f_T1_P;
task t_Ti_PI input(c_int v_h1) state() output(c_int v_ul);

mode m_Ti_P period 250{
invoke t_T1i_P input((h1,1)) output((u1,3), (prevTiController,3)) parent t_Ti;
switch(withPerturbation(v1)) m_Ti_PI;

}

mode m_T1_PI period 250 program P_T1_2PI{
invoke t_T1i_PI input((hi,1)) output((u1,3)) parent t_Ti;
switch(withoutPerturbation(vl)) m_T1_P;
}
}

program P_T2{

BUPT

141 E.3 Three Tanks System Controller Micro HTL Implementation

module T2_P_PI start m_T2_P{

task t_T2_P input(c_int v_h2) state() output(c_int v_u2, c_controller_type prevController)
function f_T2_P;
task t_T2_PI input(c_int v_h2) state() output(c_int v_u2);

mode m_T2_P period 250{
invoke t_T2_P input((h2,1)) output((u2,3), (prevT2Controller,3)) parent t_T2;
svitch(withPerturbation(v2)) m_T2_PI;

}

mode m_T2_PI period 250 program P_T2_2PI{
invoke t_T2_PI input((h2,1)) output((u2,3)) parent t_T2;
switch(withoutPerturbation(v2)) m_T2_P;
}
}
}

program P_T1_2PI
{
module T1_2PI start m_T1_PI_F{
task t_T1_PI_S input(c_int v_hil, c_controller_type prevController0Qld, c_int ulold)
state(c_PI_state s:=init_state) output(c_int v_ul, c_controller_type prevControllerNew)
function f_T1_PI_S;
task t_T1_PI_F input(c_int v_h1, c_controller_type prevControllerQld, c_int ulold)
state{c_PI_state s:=init_state) output(c_int v_ul, c_controller_type prevControllerNew)
function f_T1_PI_F;

mode m_T1_PI_S period 250{
invoke t_T1_PI_S input((h1, 1), (prevTiController,1), (ul, 1)) output((ui, 3),
(prevTiController,3)) parent t_T1_PI;
svitch(PIFast(PI_SF1)) m_T1_PI_F;
}

mode m_T1_PI_F period 250{
invoke t_T1_PI_F input((h1, 1), (prevTiController,1), (ui, 1)) output({(ul, 3),
(prevTiController,3)) parent t_Ti_PI;
switch(PISlow(PI_SF1)) m_T1_PI_S;
}
}
}

program P_T2_2PI
{
module T2_2PI start m_T2_PI_F{
task t_T2_PI_S input(c_int v_h2, c_controller_type prevController0ld, c_int u2old)
state(c_PI_state s:=init_state) output(c_int v_u2, c_controller_type prevControllerNew)
function f_T2_PI_S;
task t_T2_PI_F input(c_int v_h2, c_controller_type prevController0ld, c_int u2old)
state(c_PI_state s:=init_state) output(c_int v_u2, c_controller_type prevControllerNeu)
function f_T2_PI_F;

mode m_T2_PI_S period 250{
invoke t_T2_PI_S input((h2, 1), (prevT2Controller,1), (u2, 1)) output((u2, 3),
(prevT2Controller,3)) parent t_T2_PI;
switch(PIFast(PI_SF2)) m_T2_PI_F;
}

mode m_T2_PI_F period 250{
invoke t_T2_PI_F input((h2, 1), (prevT2Controller,1), (u2, 1)) output((u2, 3),
(prevT2Controller,3)) parent t_T2_PI;
switch(PISlow(PI_SF2)) m_T2_PI_S;
}
}

BUPT

E. HTL DESCRIPTIONS 142

E.4. Three Tanks System Controller HTL-Simulink
Implementation

program P_3TS{
communicator

c_double h1 period 100 init c_zero;
c_double hl_tef period 100 init c_zero;
c_double h2 period 100 init c_zero;
c_double h2_ref period 100 init c_zero;
c_double ul period 100 init c_zero;
c_double u2 period 100 init c_zero;
c_bool v1 period 500 init c_false;
c_bool v2 period 500 init c_false;

module IO start readWrite{
task t_read input() state() output(c_double p_hl, c_double p_h2,c_bool p_V1, c_bool p_V2)
function f_read;
task t_vrite input(c_double p_ul:=det_double,c_double p_u2:=def_double) state() output()
function f_write;
task t_ref input() state() output(c_double p_hi_ref, c_double p_h2_ref) function f_ref;

mode readWrite period 500{
invoke t_read imput() output((h1,3), (h2,3), (v1,1), (v2,1));
invoke t_write input((ui,4), (u2,4)) output();
invoke t_ref imput() output((hi_ref,3), (h2_ref,3));
}
}

module T1 start m_Ti{
task t_T1 input(c_double p_hil,c_double p_hi_ref) state() output(c_double p_ul);

mode m_T1 period 500 program P_T1{
invoke t_T1 input((h1,3),(h1_ref,3)) output((ui,4));
}
}

module T2 start m_T2{
task t_T2 input(c_double v_h2,c_double v_h2_ref) state() output(c_double v_u2);

mode m_T2 period 500 program P_T2{
invoke t_T2 input((h2,3),(h2_ref,3)) output((u2,4));
}

}
program P_Ti{

module T1_P_PI start m_T1_P{
task t_T1_P ipput(c_double v_hi,c_double v_hi_ref) state() output(c_double v_ul)
function f_T1_P;
task t_T1_PI input(c_double v_hi,c_double v_hl_ref) state{) output(c_double v_ul)
function f_T1_PI;

mode m_Ti_P period 500{
invoke t_T1_P input((hi,3),(h1_ref,3)) output((ul,4)) parent t_Ti;
switch(withPerturbation(vi)) m_Ti_PI;

}

mode m_T1_PI period 500{

invoke t_T1_PI input((h1,3),(h1_ref,3)) output((ul,4)) parent t_Ti;
gwitch(withoutPerturbation(vl)) m_Ti_P;

}
program P_T2{

module T2_P_PI start m_T2_P{
task t_T2_P input(c_double v_h2,c_double v_h2_ref) state() output(c_double v_u2)

BUPT

143 E.5 Exotask-HTL Graphs

function f_T2_P;
task t_T2_PI input(c_double v_h2,c_double v_h2_ref) state() output(c_double v_u2)
function f_T2_PI;

mode m_T2_P period 500{
invoke t_T2_P imput((h2,3),(h2_ref,3)) output((u2,4)) parent t_T2;
svitch(withPerturbation(v2)) m_T2_PI;

}

mode m_T2_PI period 500{

invoke t_T2_PI input((h2,3),(h2_ref,3)) output((u2,4)) parent t_T2;
switch(withoutPerturbation(v2)) m_T2_P;

E.5. Exotask-HTL Graphs

E.5.1. Exotask Graph for mControlier Mode

<ExotaskGraph>

<TimingProvider kind = 'htl' parser = 'at.uni_salzburg.cs.exotasks.timing.htl .HTLTimingDataParser’
slowdownFactor = '1' graphics='60 60 15 99'>

<ProgramList>
<Program name = ‘'JAviatorControl'/>
<Program name = 'PAttitudeControl'/>
</ProgramlList>
<Modulelist>

<Module name = 'MAttitudeControl' start = 'mAttitudeControl’ program = 'JAviatorControl'/>
</ModuleList>

<ModeList>
<Mode name = 'mAttitudeControl’ peried = '20' module = 'MAttitudeControl'
refine = 'PAttitudeControl’'/>
</ModeList>
</TimingProvider>

<Communicator id='fromGround' type='javiator.util.NavigationData' initialValue='()'
graphics='91 60 230 93'>

<Timing period = '1' program = 'JAviatorControl'/>

</Communicator>

<Communicator id='llcState' type='javiator.hierarchical.control.util.ControllerState’
initialValue='()' graphics='85 60 220 182'>

<Timing period = '1' program = 'JAviatorControl'/>

</Communicator>

<Task id='controlAttitude’' implementation='javiator.hierarchical.control.attitude.
AbstractAttitudeController' isolation='strong' graphics='72 60 464 70'>

<Input id='sensors' type='javiator.util.SensorData'/>

<Input id='targets' type='javiator.util.NavigationData'/>

<Input id='oldActuators' type='javiator.util.ActuatorData'/>

<Input id='isNewState' type='javiator.hierarchical.control.util.ControllerState'/>

<Qutput id='actuators' type='javiator.util.ActuatorData'/>

<Timing isAbstract = 'true' parent = ''>
<ModeAssignment mode = 'mAttitudeControl'/>

</Timing>

</Task>

<Communicator id='toJAviator' type='javiator.util.ActuatorData’' initialValue='()'
graphics='60 60 474 179'>
<Timing period = '1' program = 'JAviatorControl'/>
</Communicator>
<Communicator id='fromJAviator' type='javiator.util.SemsorData’ imitialValue='()'
graphics='62 60 225 21'>
<Timing period = '1' program = 'JAviatorControl'/>
</Communicator>
<Connection id='fromGround_controlAttitude’ source='fromGround' target='controlAttitude’
targetPort='targets'>
<Timing instance='4' writesCommunicator='false'>
<ModeAssignment mode = 'mAttitudeControl’'/>
</Timing>
</Connection>
<Connection id='fromJAviator_controlAttitude' source='fromJAviator' target="'controlAttitude'>

BUPT

E. HTL DESCRIPTIONS 144

<Timing instance='4' writesCommunicator='false'>
<ModeAssignment mode = 'mAttitudeControl'/>
</Timing>
</Connection>
<Connection id='controlAttitude_toJAviator' source='controlAttitude' target='toJAviator'>
<Timing instance='16' vritesCommunicator='true'>
<ModeAssignment mode = 'mAttitudeControl'/>
</Timing>
</Connection>
<Connection id='llcState_controlAttitude’ source='llcState’ target='controlAttitude’
targetPort='isNeuState'>
<Timing instance='0' writesCommunicator='false'>
<ModeAssignment mode = 'mAttitudeControl'/>
</Timing>
</Connection>
<Connection id='toJAviator_controlAttitude' source='toJAviator' target='controlAttitude'
targetPort='oldActuators'>
<Timing instance='0' vritesCommunicator='false'>
<ModeAssignment mode = 'mAttitudeControl’/>
</Timing> -
</Connection>
</ExotaskGraph>

E.5.2. Exotask Graph for Communication Modules

<ExotaskGraph>
<TimingProvider kind = 'htl’' parser = ‘at.uni_salzburg.cs.exotasks.timing.htl.HTLTimingDataParser'
slowdownFactor = 'l' graphics='60 60 446 19'>
<ProgramList>
<Program name = 'JAviatorControl'/>
</ProgramList>
<ModuleList>
<Module name = 'MGroundComm' start = 'mGroundComm' program = 'JAviatorComtrol'/>
<Module name = 'MState' start = 'mState’' program = 'JAviatorControl'/>
</ModulelList>
<ModelList>
<Mode name = 'mGroundComm’ period = '100' module = 'MGroundComm' refine = ''/>
<Mode name = 'mState’' period = '20' module = 'MState' refine = ''/>
</ModeList>
</TimingProvider>
<Communicator id='fromGround' type='javiator.util.NavigationData' initialValue='()"'
graphice='91 60 245 12'>
<Timing period = '1' program = 'JAviatorControl'/>
</Communicator>
<Task id='WriteToGround' implementation='javiator.hierarchical.control.communication.ProcessGroundReport’
isolation='strong' graphics='105 60 492 104'>
<Input id='fromGroundPort' type='javiator.util.NavigationData'/>
<Input id='fromJaviatorPort' type='javiator.util.SensorData'/>
<Input id='toJaviatorPort' type='javiator.util.ActuatorData'/>
<Input id='statePort’' type='javiator.hierarchical.control.util.ControllerState'/>

<Timing isAbstract = 'false' parent = ''>
<ModeAssignment mode = 'mGroundComm'/>

</Timing>

</Task>

<Communicator id='llcState' type='javiator.hierarchical.control.util.ControllerState' initialValue='()'
graphics='64 60 3%4 239'>
<Timing period = '1' program = 'JAviatorControl'/>
</Communicator>
<Task id='WriteToJAviator' implementation='javiator.JControl.exotasks.MotorActuator'
isolation='strong' graphice='78 60 254 162'>
<Input id='inToJAviator' type='javiator.util.ActuatorData'/>

<Timing isAbstract = 'false' parent = ''>
<ModeAssignment mode = 'mState'/>

</Timing>

</Task>

<Task id='ReadFromGround' implementation='javiator.JControl.exotasks.CommandSensor'
isolation='weak' graphics='84 60 124 15'>

<Qutput id='outNavigationData' type='javiator.util.NavigationData'/>

<Timing isAbstract = 'false' parent = ''>

BUPT

145 E.5 Exotask-HTL Graphs

<ModeAssignment mode = 'mGroundComm'/>

</Timing>

</Task>

<Task id='ComputeStates' implementation='javiator.hierarchical.control.communication.ComputeStates'
isolation='weak' graphics='74 60 270 236'>

<Input id='thrustsPort' type='javiator.util.ActuatorData'/>

<Output id='statePort' type='javiator.hierarchical.control.util.ControllerState'/>

<Timing isAbstract = 'false' parent = ''>
<ModeAssignment mode = 'mState’/>

</Timing>

</Task>

<Communicator id='toJAviator' type='javiator.util.ActuatorData' initialValue='()’
graphics='60 60 138 214'>

<Timing period = '1’' program = 'JAviatorControl'/>

</Communicator>

<Communicator id='fromJAviator' type='javiator.util.SensorData' initialValue='()'
graphics='62 60 261 80'>

<Timing period = '1’ program = 'JAviatorControl'/>

</Communicator>

<Task id='ReadFromJAviator' implementation='javiator.JControl.exotasks.FlightSensor'
isolation='strong' graphics='89 60 122 102'>

<Output id='outFromJaviator' type='javiator.util.SensorData'/>

<Timing isAbstract = 'false' parent = ''>
<ModeAssignment mode = 'mState'/>

</Timing>

</Task>

<Connection id='ComputeStates_llcState' source='ComputeStates' target='llcState'>
<Timing instance='20' writesCommunicator='true'>
<ModeAssignment mode = 'mState’'/>
</Timing>
</Connection>
<Connection id='fromJAviator_WriteToGround' source='fromJAviator' target='WriteToGround'
targetPort='fromJaviatorPort'>
<Timing instance='4' writesCommunicator='false'>
<ModeAssignment mode = 'mGroundComm'/>
</Timing>
</Connection>
<Connection id='toJAviator_WriteToJAviator' source='toJAviator' target='WriteToJAviator'>
<Timing instance='16' writesCommunicator='false'>
<ModeAssignment mode = 'mState'/>
</Timing>
</Connection>
<Connection id='ReadFromGround_fromGround' source='ReadFromGround' target='fromGround'>
<Timing instance='4' writesCommunicator='true'>
<ModeAssignment mode = 'mGroundComm'/>
</Timing>
</Connection>
<Connection id='toJAviator_ComputeStates' Bource='toJAviator' target='ComputeStates'>
<Timing instance='16' writesCommunicator='falsae'>
<ModeAssignment mode = 'mState'/>
</Timing>
</Connection>
<Connection id='llcState_WriteToGround' source='llcState’' target='WriteToGround'
targetPort="'statePort'>
<Timing instance='20' writesCommunicator='false'>
<ModeAssignment mode = 'mGroundComm'/>
</Timing>
</Connection>
<Connection id='fromGround_WriteToGround' source='fromGround' target='WriteToGround'>
<Timing instance='4' writesCommunicator='false'>
<ModeAssignment mode = 'mGroundComm'/>
</Timing>
</Connection>
<Connection id='toJAviator_WriteToGround' source='toJAviator' target='WriteToGround'
targetPort='toJaviatorPort'>
<Timing instance='16' writesCommunicator='false'>
<ModeAssignment mode = 'mGroundComm'/>
</Timing>
</Connection>
<Connection id='ReadFromJAviator_fromJAviator' source='ReadFromJAviator' target='fromJAviator'>
<Timing instance='4' writesCommunicator='true'>

BUPT

E. HTL DESCRIPTIONS 146

<ModeAssignment mode = 'mState‘'/>
</Timing>
</Connection>
</ExotaskGraph>

E.6. Micro JAviator JAviator Low-Level Control

program MicroJAviator{

communicator

t_attitude attitude period 1 init attitude_init; //t_atitude{roll, pitch, yaw, droll,
// dpitch, dyav, ddx, ddy, ddz}

t_target target period 1 init target_init; //t_target{roll_target, pitch_target,
// yav_target, z_target)}

t_altitude altitude period 1 init altitude_imit; //t_altitude{z, dz}

t_thrusts thrusts period 1 init thrusts_init; //t_thrusts{T1, T2, T3, T4}

t_thrusts manualThrusts period 1 init thrusts_init; //t _thrusts{T1, T2, T3, T4}

t_position position period 1 init position_init; //t_position(x, dx, y, dy)

t_state crrState period 1 init state_imit; //t_state = unsigned char

t_state nextState period 1 init state_init; //t_state = unsigned char ~

t_state groundState period 1 init state_init; //t_state = unsigned char

t_state simState period 1 init state_init; //t_state = unsigned char

t_int stateChanged period 1 init state_init; //t_int = int

t_int duzmy period 1 init zero_init; //t_int = int

module JAviatorCommunication start mJAviatorConnect{
// authenticate with JAvitor.
task simConnect input() state() output(t_state simState) function sim_connect;

//read sensor data and filter it.

//use dummy communicator to delay task execution.

task sensing input(t_int dummy) state() output(t_attitude attitude, t_altitude altitude,
t_state simState) function sensing;

//send new command to the JAviator
task actuating input(t_thrusts thrusts) state() output() function actuating;

mode mJAviatorComrunication period 20{
invoke sensing input((dummy, 10)) output((attitude, 12), (altitude, 12), (simState, 12));
invoke actuating input({thrusts, 16)) output();
switch(isNotConnected(simState)) mJAviatorConnect;

}

mode mJAviatorConnect period 20{
invoke simConnect input() output((simState, 12));
svitch(isConnected(simState)) mJAviatorCommunication;
}
}

module GroundCommunication start mGroundComnect{
// authenticate with JAvitor.
task groundConnect input() state() output(t_state groundState) function ground_comnect;

//read targets and next requested state

//t_thrust should be set only in manual mode

//ve need some synchronization primitives, maybe the best is

//to send data from ground only after log information has been recieved

task read input() state() output(t_target target, t_state nextState, t_thrusts thrusts,
t_state groundS:ate) function read;

//send log information to the Ground station:

// (1) roll, pitch, yaw, z

// (2) droll, dpitch, dyaw, dz
/" (3) ddx, ddy, ddz

17 (4) T1, T2

7/ (5) T3, T4

//although this data is send in 4 periode, it will be from
//the same period (i.e., period when first packet is sent)

//this task also computes next state
task write input(t_attitude attitude, t_altitude altitude, t_thrusts thrusts, t_state crrState,

a

BUPT

147 E.6 Micro JAviator JAviator Low-Level Control

t_state nextState)

state(t_attitude s_attitude:=empty_attitude, t_altitude s_altitude:=empty_altitude,

t_thrusts s_thrusts:=empty_thrusts, t_int count:=zero_init, t_int prevStateChanged:=zero_init)
output(t_state outCrrState, t_state outNextState, t_int outStateChanged) function write;

mode mGroundCommunication period 20{
invoke read input() output((target, 5), (nextState, 5), (manualThrusts, 5), (groundState, 5));
invoke write input((attitude, 5), (altitude, 5), (thrusts, 5), (crrState, 5), (nextState, 5))
output ((crrState, 10), (nextState, 10}, (stateChanged, 10));
switch(isNotConnected(groundState)) mGroundConnect;
}

mode mGroundConnect period 20{
invoke groundConnect input() output((groundState, 5));
switch(isConnected{groundState)) mGroundCommunication;
}
}

module Control start mControl{

//this task will be invoked when emergency shutdowm is needed
task shutDown input() state() output(t_thrusts thrusts) function shutDown;

//this task is a place holder for the control task
task abstractControl input(t_thrusts prevThrusts) state() output{(t_thrusts thrusts);

mode mControl period 20 program PControl{
invoke abstractControl imput ((thrusts, 12)) output((thrusts, 16));
switch(isShutDown{(crrState)) mShutDown;

}

mode mShutDown period 20{
invoke shutDown input() output((thrusts, 16));
}
}
}

program PControl{

module MControl start mManual{
//manual control task
task manualControl input(t_thrusts manualThrusts) state() output(t_thrusts thrusts) function manual;

//this task is a place holder for the control task
task autoControl input(t_thrusts prevThrusts) state() output(t_thrusts thrusts);

mode mManual period 20{
invoke manualControl input((manualThrusts, 12)) output((thrusts, 16)) parent abstractControl;
switch(isAuto(crrState)) mAuto;

}

mode mAuto period 20 program PAuto{
invoke autoControl input{(thrusts, 12)) output((thrusts, 16)) parent abstractControl;
switch(isManual(crrState)) mManual;
}
}
}

program PAuto{

module MAuto start mTakeDff{
//this task implements the takeoff procedure
task takeOff input(t_thrusts prevTbrusts) state() output(t_thrusts thrusts) function takeOff;

//this task implements the hover procedure
task hover input(t_int stateChanged, t_attitude attitude, t_altitude altitude, t_target target,
t_thrusts prevThrusts) state() output(t_thrusts thrusts) function hover;

//this task implements the land procedure
task land input(t_thrusts prevThrusts) state() output(t_thrusts thrusts) function land;

BUPT

E. HTL DESCRIPTIONS 148

}

}

mode mTakeOff period 20{
invoke takeOff input((thrusts, 12)) output({(thrusts, 16)) parent autoControl;
switch(isHover (crrState)) mHover;

}

mode mHover period 20{
invoke hover input((stateChanged, 12), (attitude, 12), (altitude, 12), (target, 12),
(thrusts, 12)) output ((thrusts, 16)) parent autoControl;
svitch(isLand(crrState)) mLand;
}

mode mLand period 20{
invoke land input((thrusts, 12)) output((thrusts, 16)) parent autoControl;
}

BUPT

Block

" UnitDelay

*m Outt &

atomic Subsystem

F. Simulink Blocks

Description

The output value of a memory block is repre-
sented by the input value from the previous
step. A memory block can have a constant
or an inherit sample time.

The unit delay block delays the input signal
with one step in time domain. The sample
time of the block can either be constant or
inherit.

A subsystem block can be used to modu-
larize a Simulink model, a subsystem de-
fines a set of inputs and outputs through
which the block is interconnected with the
rest of the Simulink model. The functional-
ity of a subsystem block is implemented us-
ing Simulink block, it is possible to use sub-
system blocks also. The atomic subsystem
is a subsystem which is treated as a single
entity when the Simulink schema has to be
simulated. If a subsystem is not marked as
atomic, then at simulation-time it is possible
that blocks, which implement the functional-
ity of the subsystem, to be intercalated with
blocks from the rest of the Simulink model.

BUPT

F. SIMULINK BLOCKS

150

Block

Description

- ot

Enabied
Scbsystem

=X et

Tnggered
Subsystem

).\! [¥}

Enabled and
Triggered Subsystem

The enabled subsystem is a subsystem
that has a control input, which determines
when the subsystem has to be executed
at simulation-time. The control input must
have a positive value in order for the block
to be executed. An enabled subsystem can
contain both continuous and discrete block,
and the sample time of discrete blocks does
not have to be inherit.

The triggered subsystem is a subsystem that
has a control input, which determines when
the block has to be executed at simulation-
time. The execution of the block can be trig-
gered: on the rising front of the control sig-
nal, on the falling front of the control signal,
or on both fronts. In order to detect that
there has been a rising or falling front, the
signal has to stay on 1 or 0, respectively, for
more than one sample time period. The sub-
system can not contain continuous blocks
and all the blocks must inherit the sample
time.

The ‘*rigg~r~~ -~~~ nabl u s bsystem is a
subsystem that combines the triggered sub-
system and the enabled subsystem. It has
‘wo con'rol inpu’'s: a trigger control input
and an enable control system. The subsys-
tem executes when both control inputs acti-
vate, e.g., there is a rising or a falling front
to the trigger control input and the enable
control input is positive.

BUPT

151

Block

Description

ha > 0)

eisefiu2 > 0 ¢

Action

In1 Outt

If Action
Subsystem

csef1]r

- e[l

T Tsmmchase

Senicn Corse Achoa
Sups, e

If block can be unused together with an if ac-
tion subsystem in order to models a behav-
ior similar to the if statement in a program-
ming language. The block can have a vari-
able number of inputs, and a variable num-
ber of outputs. Each output is associated
with an expression, which depends on the
inputs of the block and which is evaluated
in order to determine if the corresponding
output should be activated. Only one out-
put can be active at a particular moment in
time. When an output activates the execu-
tion of the action subsystem connected to
that output, will be triggered.

The if action subsystem is a subsystem
which can be connected to the outputs of an
if block. The subsystem executes only if the
output to which it is connected is active.

The switch case block together with an
switch case action subsystem block models
a behavior similar to the switch case state-
ment in programming languages. The switch
case block has one input and multiple out-
puts. Only one of the inputs can be active
at a specific moment in time. The block also
has a default output, which activates when
none of the inputs activates. Activation of
one of the outputs of the switch case block
will trigger execution of the action subsys-
tem that is connected to that output.

The switch case action subsystem is a sub-
system which can be connected to the out-
puts of a switch case block. The subsystem
executes only if the output to which it is con-
nected is active.

BUPT

F. SIMULINK BLOCKS

152

Block

Description

"

Switch

The mux block transforms the signals from
its inputs into a single vectorial signal. The
resulted signal at any moment contains an
array of values, i.e., one value for each input.
The block can have multiple inputs but only
one output. The input signals can be scalar
or vectorial.

The demux block splits a vectorila signal into
multiple scalar or vectorial signals, i.e., it is
the opposite of the mux block. The block can
have one input but multiple outputs. Usually
the mux and demux blocks are used in pair.

T e switch " 'oc’ " as t ree inputs and one
output, based on the second input the block
B, R » U | R
the third input.

The merge blocks combines multiple input
signals into one output single signal. The
output value of this block is equal with the
last output value of one of the blocks that
send signals to the block. Usually the merge
block is used to combine signals from blocks
that execute alternatively.

BUPT

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8l

(9]

[10]
[11]

(12]

References

Nicolae Robu. Programare Concurenta. Mecanisme Suport Orientate Timp
Real. Editura Politehnica, 2002. 19, 21, 24, 69, 89, 116

A. Ghosal, T.A. Henzinger, D. Iercan, C.M. Kirsch, and A.L. Sangiovanni-Vincentelli.
A Hierarchical Coordination Language for Interacting Real-Time Tasks. In
Proc. EMSOFT, Seoul, South Korea, 2006. 19, 21, 22, 25, 48, 115, 117

A. Ghosal. A hierarchical coordination language for reliable real-time tasks.
Technical report, University of California, Berkeley, 2008. Ph.D. thesis. 19, 22, 25

A. Ghosal, T.A. Henzinger, D. Iercan, C.M. Kirsch, and A.L. Sangiovanni-Vincentelli.
Hierarchical timing language. Technical report, University of California, Berkeley,
2006. Technical report. 19, 25, 117

T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Giotto: A Time-triggered Language
for Embedded Programming. Proceedings of the IEEE, 91(1):84--99, January
2003. 19, 21, 22, 24, 25, 69, 115

T.A. Henzinger and C.M. Kirsch. The Embedded Machine: Predictable, Portable
Real-Time Code. ACM TOPLAS, 29(6):33--61, October 2007. 20, 22, 24, 35, 115

A. Ghosal, D. Iercan, C.M, Kirsch, T.A. Henzinger, and A.L. Sangiovanni-Vincentelli.
Separate Compilation of Hierarchical Real-Time Programs into Linear-
Bounded Embedded Machine Code. In Workshop Proc. APGES 2007, Salzburg,
Austria, 2007. 20, 35, 48, 117

J. Auerbach, D.F. Bacon, D. Iercan, C.M. Kirsch, V.T.Rajan, H. Rock, and R. Trummer.
Java takes flight: Time-portable real-time programming with exotasks. In
Proceedings of the 2007 ACM SIGPLAN/SIGBED conference on Languages, compilers,
and tools, San Diego, California, USA, 2007. 20, 23, 69, 70, 77, 116, 117

1. Auerbach, D.F. Bacon, D. Iercan, C.M. Kirsch, V.T.Rajan, H. Rock, and R. Trum-
mer. Low-Latency Time-portable Real-time Programming with Exotasks.
ACM Transactions on Embedded Computing Systems, 2008. 20, 80, 116, 117

Simulink. http://www.mathworks.com/products/simulink/. 20, 101

S.S. Craciunas, C.M. Kirsch, H. Réck, and R. Trummer. The JAviator: A High-
Payload Quadrotor UAV with High-Level Programming Capabilities. In Proc.
AIAA Guidance, Navigation and Control Conference and Exhibit (GNC), 2008. 21, 24,
61, 76, 83, 87

JAviator homepage. http://javiator.cs.uni-salzburg.at/. 21, 76

BUPT

http://www.mathworks.com/products/simulink/
http://javiator.cs.uni-salzburg.at/

REFERENCES 154

(13]

[14]
[15]

[16]
{17]

(18]

(19]
(20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

(29]

(30]

C.M. Kirsch and R. Sengupta. The Evolution of Real-Time Programming. In
Handbook of Real-Time and Embedded Systems. Chapman and Hall/CRC, 2007. 21

Real-Time Linux. http://www.rtlinuxfree.com/. 21

G.C. Buttazzo. Hard Real-Time Computing Systems. Kluwer Academic Publisher,
1997. 21, 26, 83

N. Halbwachs. Synchronous programming and reactive systems. 21

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language Lustre. 21, 22

G. Berry and G. Gonthier. The Esterel synchronous programming language:
design, semantics, and implementation, 1992. 21, 22

N. Halbwachs. A synchronous language at work: the story of Lustre. 21

S. Fischmeister and 1. Lee. Temporal Control in Real-Time Systems: Languages
and Systems. In Handbook of Real-Time and Embedded Systems. Chapman and
Hall/CRC, 2007. 21 -

E. Farcas, C. Farcas, W. Pree, and J. Templ. Transparent distribution of real-time
components based on logical execution time. 22

J. Liu and E. A. Lee. Timed multitasking for real-time embedded software.
IEEE Control Systems Magazine, 2003. 22

A. Ghosal, T. A. Henzinger, C. M. Kirsch, and M. A. A. Sanvido. Event-driven pro-
gramming with logical execution times. Hybrid Systems Computation and Con-
trol, Lecture Notes in Computer Science 2993, 2004. 22

D. Iercan and A. Ghosal. Timed Input/Output Determinacy for Tasks with
Precedence Constraints. In Proc. Of the 7th International Conference On Tehnical
Informatics - CONTIO8, 2, pages 149--154, June 2006. 22, 117

G. Back, P. Tullmann, L. Stoller, W. C. Hsieh, and 1. Lepreau. Java operating sys-
tem: Design and implementation. Technical report, University of Utah, 1998.
23

H. McGhan and M. O'Connor. picolava: A direct execution engine for Java
bytecode. In IEEE Computer, 31, 1998. 23

G. Bollella, 1. Gosling, B.M. Brosgol, P. Dibble, S. Furr, D. Hardin, and M. Turnbull.
The Real-Time Specification for Java. The Java Series. Addison-Westey, 2000. 23,
70

A. Wellings and A. Burns. Real-Time Java. In Handbook of Real-Time and Embedded
Systems. Chapman and Hall/CRC, 2007. 23

D. F. Bacon, P. Cheng, and V. T. Rajan. A Real-time Garbage Collector with
Low Overhead and Consistent Utilization. In Proc. POPL, pages 285--298, New
Orleans, Louisiana, January 2003. 23, 70

Fridtjof Siebert. The Impact of Realtime Garbage Collection on Realtime Java
Programming. In Seventh IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC’'04), pages 33--40, 2004. 23

BUPT

http://www.rtllnuxfree.com/

155

REFERENCES

(31]

[32]

(33]

(34]

(35]

[36]

[37]

[38]

(39]

(40]
[41]

[42]
(43]
[44]
[45]
[46]

[47]
[48]

[49]

Fergus Henderson. Accurate garbage collection in an uncooperative environ-
ment. pages 256--263, 2002. 23

D. Spoonhower, J. Auerbach, D. F. Bacon, P. Cheng, and D. Grove. Eventrons: a
safe programming construct for high-frequency hard real-time applications.
In Proc. PLDI, pages 283--294, Ottawa, Ontario, Canada, 2006. 23, 69

J. H. Spring, F. Pizlo, R. Guerraoui, and J. Vitek. Programming Abstractions for
Highly Responsive Systems. In Proc. VEE, San Diego,, 2007. 23, 69

Jesper H. Spring, Jean Privat, Rachid Guerraoui, and Jan Vitek. StreamFlex: High-
throughput Stream Programming in Java. In Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA), October 2007. 23, 69

IBM. DDG1000 Next Generation Navy Destroyers, 2007.
www.ibm.com/press/us/en/pressrelease/21033.wss. 23, 80, 116

A. L. Sangiovanni-Vincentelli, L. Carloni, F. De Bernardinis, and M. Sgroi. Benefits
and Challenges for Platform-Based Design. In Proc. DAC, 91. ACM, 2004. 25

K. Chatterjee, A. Ghosal, D. Iercan, C.M. Kirsch, T.A. Henzinger, C. Pinello, and A.L.
Sangiovanni-Vincentelli. Logical reliability of interacting real-time tasks. In
Proc. DATE, pages 909--914. IEEE, 2008. 25, 117

D. Iercan and M. Mezin. A Distributed Multimode Real-Time Controller for the
Three Tanks System. In Proc. Of the 8th International Conference On Tehnical
Informatics - CONTIO8, 3, pages 67--70, June 2008. 61, 117

Eclipse Foundation. The Eclipse Open Development Platform. www.eclipse.org,
2007. 70

IBM Corp. WebSphere Real-Time User's Guide, first edition, 2006. 70

Mike Fulton and Mark Stoodley. Compilation Techniques for Real-Time Java
Programs. In Proc. International Symposium on Code Generation and Optimization,
2007. 70

Quadrotor wiki. http://en.wikipedia.org/wiki/Quadrotor. 76
Gumstix. http://www.gumstix.com/. 76

Robostix. http://docwiki.gumstix.org/index.php/Robostix. 76, 83
Microstrain Gyro. http://www.microstrain.com/3dm-gx1.aspx. 76

SFR10 Ultrasonic range finder. http://www.robot-
electronics.co.uk/htm/srf10tech.htm. 76

ATmegal128. http://www.atmel.com. 83

Miro Samek and Robert Ward. Build a Super Simple Taskex.
http://www.embedded.com/columns/ technicalinsights/190302110. 83

Real-Time Workshop. http://www.mathworks.com/products/rtw/. 101

BUPT

http://www.ibm.conn/press/us/en/pressrelease/21033.wss
http://www.eciipse.org
http://en.wikipedia.org/wiki/Quadrotor
http://www.gumstix.conn/
http://docwiki.gumstix.org/index.php/Robostix
http://www.microstrain.com/3dm-gxl.aspx
http://www.atmel.com
http://www.embedded.com/columns/
http://www.mathworks.com/products/rtw/

REFERENCES 156

(50]

(51]

(52]

{53]

[54]

(55]

T.A. Henzinger, C.M. Kirsch, M.A A, Sanvido, and W. Pree. From Control Models
to Real-Time Code using Giotto. IEEE Control Systems Magazine, 23(1):50--64,
February 2003. 101

S. Tripakis, C. Sofronis, P. Caspi, and A. Curic. Translating Discrete-Time
Simulink to Lustre. ACM Transactions on Embedded Computing Systems,
4(4):779--818, November 2005. 101

A. Ghosal, D. Iercan, C.M, Kirsch, T.A. Henzinger, and A.L. Sangiovanni-Vincentelli.
Separate Compilation of Hierarchical Real-Time Programs into Linear-
Bounded Embedded Machine Code. 2008. 117

M.S. Kang, S. Park, H.G. Lee, D.H. Won, and T.J. Kim. Development of a Hovering
Robot System for Calamity Observation. In ICCAS2005, June 2005. 123

S. Bouabdallah, P. Murrieri, and R. Siegwart. Design and Control of an Indoor
Micro Quadrotor. In ICRA, New Orleans, April 2004. 123

Steven L. Waslander, Gabriel M. Hoffmann, Jung Soon Jang, and Claire J. Tomlin.
Multi-Agent Quadrotor Testbed Control Design: Integral Sliding Mode vs.
Reinforcement Learning. In Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems, Edmonton, Alberta, Canada, August 2-6. 123

BUPT

Titluri recent publicate in colectia ,, TEZE DE DOCTORAT”
seria 10: Stiinta Calculatoarelor

1. Rodica Tirtea — Contributii la imbunatdtirea dependabilitatii si securitdtii
informatiei, ISBN 978-973-625-422-2, (2007);

2. lonel Muscalagiu — Contributii la implementarea, evaluarea i imbundtatirea
performantelor tehnicilor de cautare asincrone in cadrul programdrii bazate
pe constrangeri distribuite, ISBN 978-973-625-592-2, (2007);

3. Daniel Cioi — Contributii la utilizarea realitdtii virtuale in proiectarea
asistata de calculator, ISBN 978-973-625-613-4, (2008);

4. Sorin Babii — Cercetari privind cresterea performantelor retelelor neuronale
intr-un mediu de calcul distribuit, ISBN 978-973-625-559-5, (2008);

5. Norbert Neidenbach - Das Service-Management eines I[T-Outsourcing-
Projektes durch ITIL-Best-Practices, IT-Outsourcing kostenoptimiert planen
und steuern, ISBN 978-973-625-660-8, (2008);

6. Edwin Hans Wolf - Das Geschdftsmodell (Business model) MDS (Managed
Desktop Support) im IT-Outsourcing, Leistungserbringung im Rahmen des
MDS-Geschdftsmodells, ISBN 978-973-625-661-5, (2008);

7. Adrian Zafiu — Minimizarea sistemelor decizionale multivalente deterministe
si nedeterministe, ISBN 978-973-625-678-3, (2008).

EDITURA POLITEHNICA

BUPT

