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Summary, 
In the last two decades there has been an accelerated growth in the 
complexity of real-time appiications. This growth leads to the evolution 
of the real-time programming. Thus, if in early age of real-time 
programming both functionality and timing were expressed in the same 
programming language, nowadays real-time programming requires 
separation of timing from the functionality. Thus in the last few years 
there has been a great interest in developing new programming 
constructs for specifying temporal behavior of an appiication. The work in 
this thesis is based on Hierarchical Timing Language, which is a language 
for specifying timing and interactions between sets of periodic tasks. 
After HTL language is presented (Chapter 2), there are described two 
possible implementations of this language (Chapter 3 and Chapter 4). An 
experimental as well as an analytical comparison of the two 
implementations is presented in the last part of Chapter 4. In Chapter 5 
it is described a real-time control appiication for the Three Tanks System 
implemented in HTL. Chapter 6 presents an implementation of HTL for 
Exotask; Exotask is a new programming construct that uses Java. The 
HTL implementation for Exotask has been tested by developing a real-
time appiication for a quad-rotor helicopter, named JAviator. In Chapter 
7 it is presented an implementation of HTL that targets a microcontroller, 
implementation has been tested through a control appiication for 
JAviator, a detailed analysis of the performance is also presented. In 
Chapter 8 it is discussed a solution for modeling an HTL description in 
Simulink. Thesis ends with a short summary of the obtained resuits. 
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1. Introduction 

A real-time appiication is an appiication that processes information on-line (i.e., it reads 
the inputs directiy from the source that produces them and writes the outputs directly to 
the destination that uses them), that controls live a plant, and that respects some temporal 
constraints to ensure that: input data Is read often enough so that no significant change 
is lost, input data processing finishes on time, and output data is written fast enough so 
that it is well-timed and efTicient [1]. 

Nowadays real-time appiications can be found everywhere: from the flight control 
of an airplane to the steering control of a car, and from the appiications that provide 
stock information in real-time to the game consoles. One important category of real-
time appiications is represented by the real-time control appiications, which can contain 
periodic, sporadic, and aperiodic tasks. In this thesis the focus is on real-time control 
appiications that contain oniy periodic tasks. This type of appiications typically consists 
of reading sensor values from a plant, performing some computations with those values 
(e.g.: filtering input data, computing control laws, etc.)/ writing commands to the plant 
actuators, and repeating previous steps with a frequency that depends on the controlled 
plant. Thus, it is obvious that for such an appiication to work properly, each task has to 
respect strict timing constraints. Many of the control appiications that exist today require 
multiple modes of operations that may have similar or different timing behavior, thus 
expressing timing behavior of such an appiication using a general purpose programming 
language (e.g.: C, Java, etc.) may result in a very complicated source code, which is 
very difficult to be maintained and more important very difficult to be checked formally 
for temporal behavior correctness. Thus, in this thesis will be presented new high-level 
programming constructs for describing timing behavior of real-time control appiications; 
the focus is on how such programming constructs can be implemented. Examples of 
real-time control appiications developed using this new programming constructs will be 
presented also. 

Hierarchical Timing Language (HTL) [2; 3; 4] is a time-triggered language for 
specifying temporal behavior and Interactions between periodic tasks, HTL can not express 
functionality of an appiication, which has to be implemented in a different programming 
language (e.g.: C, Java, etc.). HTL Is considered to be the successor of Giotto [5]. HTL can 
express temporal behavior for multl-mode appiications through the sequential composition 
of sets of tasks. Some control solutions have to be implemented in appiications that 
contain periodic tasks that run at different frequencles; HTL support this through parallel 
composition of sets of tasks. Many of the plants that need to be control have a varlable 
mathematical model in which case the control solution consists of using different control 
laws for different mathematical models, thus In such a scenario the control appiication 
consists of multiple modes having similar temporal behavior but different functionality. 
HTL addresses this issue by ailowing the specificatlon of an abstract timing specification, 
which is inherit by all the modes that have similar temporal behavior. Thus in HTL a 
hierarchical structure of timing specificatlons can be constructed. An HTL description can 
have onIy one root timing specification. The hierarchical structure of an^HTl dpgrriptinn 
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1, INTROPUCTION ^ 

is useful especially when properties like schedulability have to be checked, i.e., oniy the 
root timing specification has to be checked, and if the property is true for the root timing 
specification it will be true for the rest of the specifications in the HTL descriptions, since 
all of them inherit the root timing specifications. 

The entire work presented in this thesis is based on HTL. Thus, after an informai 
presentation of the syntax of HTL, there are presented two implementations of this lan-
guage. As in the case of its predecessor, HTL descriptions are not compiled directiy into 
machine code, but into E code, which is interpreted by a virtual machine, namely, Embed-
ded Machine (E machine) [6]. This approach makes timing behavior that is expressed in 
HTL portable, i.e., it will be the same regardiess of the platform on which the HTL descrip-
tion is executed, provided that there exists an E machine implementation for that platform. 
The first HTL implementation targets the original E machine, nevertheless since the origi-
nal set of E code instructions has not been designed to support hierarchical structure, the 
HTL compiler, named, flattening HTL compiler, needs to flatten the hierarchical structure 
of an HTL description before compiling it intro E code. Since the flattening algorithm may 
cause an exponenţial blow in the number of modes, a second implementation of HTL is 
presented. The second implementation of HTL targets an extended Version of the E ma-
chine, named, Hierarchical E machine (HE machine) [7], which can handie hierarchical 
structure at runtime. The instructions set that can be interpreted by the HE machine is 
a super set of the original E code instructions set, named, HE code instructions set. The 
compiler that transforms an HTL description into an HE code program, named, hierarchy-
preserving HTL compiler, is also described in this thesis. The two HTL implementations 
are then compared both analytical and experimental. The comparison considers the size 
of generated E code program and HE code program for the same HTL description, and the 
runtime overhead introduced by interpreting an E code program and an HE code program, 
which have been generated for the same HTL description. Both the E machine and the 
HE machine are implemented in C for Unix. The compilers that target the two virtual 
machines are implemented in Java. 

Given that in the last few years there has been a growing interest in using Java as 
a programming language for real-time appiication, in this thesis there is also presented 
an HTL implementation for Exotask [8; 9]. Exotask is a new programming construct for 
developing real-time appiications using Java. One of the advantages of Exotask is the sup-
port for extension, i.e., it is possible to define new timing grammars and new schedulers 
that can understand the new grammars. The HTL implementation for Exotask consists 
of a timing grammar that can express HTL syntax and a scheduler that implements the 
hierarchy-preserving HTL compiler, which converts an Exotask timing specification that 
uses HTL grammar into an HE code program represented in Java, and a Java implemen-
tation of the HE machine, which can execute the compiled Exotask timing specification. 

All the HTL implementations discussed above can be used to develop real-time 
appiications that are designed to run on hardware platforms on which a real-time oper-
ating systems is running (e.g., Unix). However, there are many embedded systems that 
are based on less powerful hardware, namely, a microcontroller, on which there are not 
enough resources to run a real-time operating system. Thus in this thesis a fourth HTL 
implementation, which targets a microcontroller, is presented. The implementation con-
sists of an optimized version of the HE machine and a modified version of the hierarchy-
preserving HTL compiler that targets the optimized HE machine. For scheduling tasks 
released by HE machine a small real-time executive, which uses EDF as a scheduling 
algorithm, has been implemented. 

Knowing that it is a common practice for control engineers to use modeling tools 
like Simulink [10] to develop and test control algorithms, it is presented a possible mapping 
of an HTL description to a Simulink model and the implementation of a tool that can 
be used to covert an HTL description into a Simulink model using this mapping. The 

BUPT



21 1,1 Related Work 

Simulink model of an HTL description can be used to simulate both timing behavior and 
functionality of a real-time control appiication before it is implemented. Another advantage 
is represented by the possibility to generate C code from Simulink models, which can be 
used as implementation of tasks functionality. 

AII the ideas discussed in this thesis have been validated and tested by imple-
menting real-time control appiications for two plants: JAviator[ll; 12], and Three Tanks 
System (3TS). 

1.1. Related Work 

In the last two decades real-time programming model has evolved from the physical-
execution-time (PET), to bounded-execution-time (BET), to zero-execution-time (ZET), 
and to logical-execution-time (LET) [13]. 

PET [13] programming consists of wringing a real-time appiication in a sequential 
(usually low-level) programming language (e.g., assembly, C, etc.); the entire timing of 
the appiication depends on knowing exactiy the execution time of each instruction. Thus 
real-time appiications can be developed using PET programming oniy for architectures 
that have instructions that execute in constant time (i.e., microcontrollers). Timing of 
PET appiication is very accurate; nevertheless any small change in the source code can 
change the entire timing of the appiication, thus PET is not suitable for developing complex 
real-time appiications. 

BET [13] programming uniike PET uses concurrent programming. Thus a real-time 
appiication consists of a set of periodic, sporadic, and aperiodic tasks that interact with 
each other. For the development of such appiication there are used programming lan-
guages associated with mechanism of real-time programming, which are usually included 
in a real-time executive [1] or a real-time operating system (i.e., Real-Time Linux [14]). 
A real-time scheduler (i.e., Earliest Deadiine First (EDF) [15]) is used to schedule the set 
of tasks. Nevertheless, adding a new task to the existing set of tasks will affect the timing 
of the entire program and might cause the program to miss its deadiines. 

ZET is the programming model used by synchronous languages [16] (i.e., Lus-
tre [17], Esterel [18], etc.). Synchronous languages assume that the hardware configu-
ration is powerful enough to execute tasks in zero time, e.g., a task reads its input and 
writes its output in zero time. Many of the synchronous languages allow using of formal 
verification in order to prove certain properties of the program. Thus synchronous lan-
guages have been used to develop safe criticai control appiications, i.e.. Lustre has been 
used for implementing flight control for Airbus A380 [19]. 

LET [5] is the newest programming model for developing real-time appiication. 
LET has been introduced by Giotto [5], a language that can specify timing behavior and 
interactions between periodic sets of tasks. LET model assumes that a task reads its 
inputs, does some computation, and the result will be available after a period of time, 
called the LET of the task, even if the tasks finishes execution earlier. LET model ailows 
sequential composition, parallel composition, and refinement of sets of tasks [2; 5]. 

Temporal behavior of a real-time appiication is either specified implicitly in written 
source code or explicitly using special high-level programming constructs [20]. Implicit 
specification of temporal behavior is often used for developing relatively simple real-time 
appiication, e.g., appiications that run on a microcontroller, where there is an infinite loop 
that does all the computation and that can be interrupted by interrupt event handiers, 
which are used to communicate with the environment, the temporal behavior of the ap̂ -
plication is implemented using timers. One very important disadvantage of using implicit 
specification of temporal behavior is that formal analysis can not be used in order to test 
certain properties of the appiication. Thus high-level programming languages have been 
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developed to allow specification of temporal constraints, i.e., Lustre [17] and Esterel [18] 
have mathematically formalized semantics in order to allow verification of temporal be-
havior, they can specify both timing and functionality, Giotto [5] and Hierarchical Timing 
Language (HTL) [2] are two programming languages for specifying temporal behavior of 
reai-time appiications. 

The work presented In this thesis focuses on the implementation of high-level 
programming constructs that are based on the LET programming model and that allow 
specification of temporal behavior explicitly. 

1.1.1. T imed Languages 

Giotto [5] is the pioneer of timed languages, it has introduced the concept of LET. Af-
ter Giotto, other languages have been developed based on the concept of LET: Timing 
Definition Language (TDL) [21], Timed Multitasking (TM) [22], xGiotto [23], Timing Spec-
ification Language (TSL) [24], and Hierarchical Timing Language (HTL) [2]. TDL extends 
the structure of Giotto with the notion of parallel composition. TM and xGiotto are based 
on the notion of LET, nevertheless, uniike Giotto, they are not timed-lriggered languages, 
but event-triggered languages. TSL relaxes the notation of LET of a task, namely, the LET 
of a task is not implicitly defined by the period of the task, but by the period, the offset, and 
duration of the task; TSL also supports direct communication between tasks in the same 
mode. HTL is the newest timed-triggered language, which is based on the concept of LET. 
HTL supports parallel composition as TDL, relaxes the LET of a task and supports direct 
communication between tasks in the same mode as TSL, supports hierarchical structure, 
and introduces the notion of communicator. In HTL the LET of a task is defined by the 
period of the task, the latest read input port and the earliest written output port. 

The focus in this thesis is on the implementation of HTL. Semantics of HTL has 
been discussed in details in [3]. The implementation of HTL consists of designing and 
implementing a compiler and of designing and implementing a virtual machine, on which 
compiled HTL descriptions can be executed. As in the case of Giotto and all the languages 
based on it, the target platform for HTL is the Embedded Machine (E machine) [6], which 
is a virtual machine that interprets the so-called E code. In this thesis are presented two 
HTL implementations. One implementation is based on the original E machine [6], which 
has been introduced for Giotto. Since the E machine has not been designed to support 
hierarchical structure at runtime, the compiler that converts an HTL description into an 
E code program has to flatten the hierarchical structure of an HTL description, which leads 
to an exponenţial blow in the number of modes, and in the end to an exponenţial blow 
in the number of generated E code instructions and in the runtime overhead introduce by 
interpreting such an E code program. Thus, a second HTL implementation, which targets 
an extended version of the E machine that supports hierarchical structure at runtime, is 
also presented. The extended E machine is called the Hierarchical Embedded Machine 
(HE machine), and the code interpreted by it is called the Hierarchical E code (HE code). 
In this thesis it is presented a complexity analysis of the compilers designed for the two 
HTL implementations and an analysis of the runtime overhead introduced by interpret-
ing E code and HE code. Such an analysis has not been conducted before for any of the 
other LET based languages. The HTL implementation that is based on the HE machine 
has been done for two different types of platforms, e.g., for Unix based platforms and 
for a microcontroller based platform on which there is no operating system running. The 
HTL implementation for microcontroller (micro HTL) is new to LET based languages; all 
the existing implementations target either Unix, OSEK, or Windows based platforms. Two 
control appiications have been implemented using micro HTL, for both appiications a de-
tailed timing analysis, which considers both the worst case execution time of tasks and the 
runtime overhead introduced by the HE code interpretation, has been conducted. Timing 
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analysis that considers E machine runtime overhead has not been done before for any of 
the LET based languages. 

1.1.2. Java and Real-T ime Programming 

Java is one of the most used programming languages for regular (non-real-time) ap-
plications. Nevertheless, when it comes to real-time appiication low-level programming 
languages (e.g.: assembly) and medium-level programming languages (e.g.: C) are still 
intensively used. The reason for not using high-level programming languages for develop-
ing real-time appiication is represented by the need for high speed of computation (many 
real-time appiication requires latencies below one millisecond), and more important, the 
need for deterministic temporal behavior. Although the need for height speed of computa-
tion is mainly solved by the powerful hardware that exists today, the second requirement 
still remains. 

Attempts to make Java suitable for developing real-time appiications have been 
recorded since 1997, e.g., creating an operating system that has Java support buiit in [25], 
or creating an microprocessor that is able to interpret Java bytecode [26]. Nevertheless 
before 2000 when The Real Time Specification for Java (RTSJ) [27] has been introduced, 
the work in this fieid lacked clear direction. RTSJ defines some guide lines for making Java 
a programming language for real-time appiications, e.g.: backward compatibility with non 
real-time Java programs, support the principie "Write Once, Run Anywhere", require no 
syntactic extensions to the Java language, allow implementer's flexibility, etc. [28]. 

Recently, one important source of no-determinism in a Java appiication, which was 
introduced by Garbage Collector (GC), has been eliminated, since a real-time garbage col-
lection (RTGC) for Java [29; 30; 31] has been proposed. This made possible the use of Java 
programming language for developing real-time appiication. Nevertheless, implementing 
in Java periodic task that have a frequency higher then IKhz is currently impossible due 
to the overhead introduced by the RTGC (which is around Ims). Different solutions have 
been proposed to solve this problem, and all of them suggested that a special type of 
tasks, which have a private heap and which can not access the global heap, shouid be 
used (e.g., Eventrons [32], Reflexes [33], and StreamFlex [34]). This way a real-time 
task couid interrupt the GC; thus the GC does not influence the temporal behavior of a 
real-time task. However, there are and there will be embedded system that can not afford 
to use Java as a development language, this is mainly due to that fact that although JVM 
has become predictable it will still require a relatively powerful hardware (in terms of power 
of computation and memory), i.e., the interpretation of byte code introduces an overhead 
that makes it impossible to run a JVM on a microcontroller, which is a hardware platform 
that is often used for embedded systems. Thus the use of Java as a programming lan-
guage is feasible for complex embedded system for which spending money on a powerful 
hardware is less important than the benefit of being able to use an object-oriented pro-
gramming language, e.g., next generation battleships [35], whereas for simple embedded 
systems using a microcontroller and C as a programming language is less expensive and 
thus more feasible, i.e., for embedded system that are produced in huge quantities every 
penny matters. 

Exotask [8] is a new programming construct for developing real-time appiications 
using Java. Exotask addresses low latency problem in a less restrictive way as compared 
to previous solutions, but still using a similar approach, e.g., tasks that have their own 
private heap. Exotask system support pluggable schedulers. An interface for developing 
third-party schedulers has been defined, which is different from RTSJ where oniy virtual 
machine vendors can define new schedulers. But, maybe the most Important achievement 
of Exotask is that Exotask appiications are not onIy portable from the functionality point of 
view but also from the temporal behavior point of view, which is not the case for many other 

BUPT



1, INTROPUCTION ^ 

currently existing solutions since they rely on platform dependent information. Timing 
portability is achieved in Exotask by using LET programming model [5]. 

In this thesis it is presented a new timing grammar for Exotask that is based on 
the HTL semantics. A new scheduler that understands the new timing grammar is also 
presented; uniike the scheduler that comes with the Exotask distribution, which uses a 
single physical thread to run aii the tasks in an Exotask appiication, the new scheduler 
supports single threading as well as multithreading execution of tasks. 

1.2. Overview 

The remaining of this thesis is structured in eight chapters. Chapter 2 describes informally 
the semantic of HTL and the features of this language: sequential composition, parallel 
composition, refinement, and distribution. Target platform for a real-time appiication de-
veloped with HTL is represented by the E machine, which makes HTL appiication portable 
in terms of timing behavior; in Chapter 3 are presented two version of the E machine: 
the original E machine [6] that was initially developed for Giotto [5], and an extended 
E machine, which offers support for handiing hierarchical structure at runtime, namely, 
HE machine. In Chapter 4 are presented two HTL compiler algorithms, i.e., flattening HTL 
compiler, which targets E machine, and hierarchy presen/ing HTL compiler, which targets 
HE machine. The two compilers are then analyzed and compared both formally and exper-
imentally. Next, Chapter 5, depicts Three Tanks Systems (3TS) plant, which is one of the 
two plants that are used as case studies in the thesis. An HTL implementation of a control 
appiication for the 3TS plant is also presented; the implementation uses all HTL features. 
Chapter 6 presents the Exotask programming constructs, then an implementation of the 
HTL grammar for Exotask and a scheduler that understands the new grammar. The chap-
ter ends with a presentation of the JAviator [11], which is the second plant used as a case 
study in the thesis. Finally, the new Exotask-HTL grammar is used to develop a controller 
for the JAviator. Many embedded systems are based on microcontrollers, thus Chapter 7 
describes an implementation of HTL that targets a microcontroller; the implementation is 
named micro HTL. The micro HTL is then used to develop two control appiications: one 
for 3TS plant and the other one for the JAviator plant. The simulations show that the 
efficacy [1] of the micro HTL is between 75% and 80% for the JAviator control appiication 
and about 95% for 3TS control appiication. Chapter 8 presents a way of modeling an 
HTL description in Simulmk and how such a model can be used to improve development 
of real-time appiication. The chapter ends with a case study for the 3TS plant. Finally, 
Chapter 9 concludes the thesis. 
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2. Hierarchical Timing Language 

Hierarchical Timing Language (HTL) [2; 3; 4] is a tinned triggered programming language 
that is based on the concept of Logical Execution Time (LET), which has been first intro-
duced for Giotto [5]. HTL is a high level programming language for specifying timing of a 
real-time appiication. It can oniy be used to define the timing of a real-time appiication, 
and not the functionality, which has to be specified in regular programming language (e.g., 
C, Java, etc.). Besides of separating the functionality of a real-time appiication from its 
timing, HTL also separates, in the spirit of platform-based design [36], the timing specifi-
cation of a real-time appiication (i.e., release time and termination time of a task), from the 
implementation (i.e., WCET of the task). Furthermore, HTL has been recently extended 
to support separation of concerns for the reliability of a real-time appiication [3; 37]. 

2.1. Overview 

HTL can express interactions between periodic non-blocking tasks. Tasks in HTL are pure 
funcţional and finite blocks of code; they do not use any synchronization mechanisms or 
blocking I/O operations. A task has it's own private memory space, and the onIy way to 
communicate with a task is through its input and output ports. 

i1 i2 o1 o2 

X t(WCET) 
t1 12 13 14 

^ P 
release time termination time 

Fig. 2.1: HTL task model 

A task in HTL consists of a set of input ports and a set of output ports. In Fig. 2.1 
it is presented an example of an HTL task. An HTL task has a period (e.g., p); the entire 
timing of a task is relative to the period of the task. The moment in time when the latest 
input port is read (i.e., i2), defines the release time of the task, while the moment in 
time when the earliest output shouid be written defines the termination time of the task 
(i.e., ol). The time interval between task release time and task termination time specifies 
the LET of the task. In between this two moments the task shouid be executed, but 
from HTL point of view it is not important when the task physically executes (i.e., it can be 
preempted and resumed several times), the onIy thing that matters, is that task execution 
has to complete before termination time. The release time, termination time, and LET are 
considered to be platform independent information, while WCET is platform dependent 
information. 
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Fig. 2.2: Sequential composition 
HTL supports sequential composit ion of sets of tasks, i.e., a set of tasks, 

can be replaced with another set of tasks . In Fig. 2.3 are presented two task, tl and 
12, that are con îposed sequentially, i.e., oniy one of the two tasks will be executed at a 
particular moment in time, the task being executed is chosen based on a condition. The 
onIy constraint that HTL requires for a task to switch to another task, is that both tasks 
have the same period. 

LET1 : LET2- ^̂^ 
t1(WCET1) 1 X t2(WCET2) 

t11 t12 t13 t14 t21 t22 t23 t24 
P1 " P2 

Fig. 2.3: Parallel composition 

Paraliel composit ion of tasks is also supported by HTL. In Fig. 2.3 are pre-
sented two tasks, e.g., n and t2, that are executed in paralleL The two tasks can have 
different periods. The platform on which the two tasks are executed has to ensure that the 
timing requirements of both tasks are met (i.e., the program is schedulable for the given 
platform). Currently existing HTL runtime system uses Earliest Deadiine First (EDF) [15] 
algorithm in order to schedule tasks that are composed in parallel. 

, i tICWCETI) 1 
t11 t12 t13 ' tl'4 • " 1 

- p i ^ 

O 

i21 ^ o p 

L ~ t2(WCCT2r L 
t21 t22 t23 t24 : 

P2 1 

Fig. 2.4: Refinement 

Refinement of tasks is one of the strongest features of HTL. In HTL a task can 
be either abstract or concrete. An abstract task is a task with no functionality; it is used 
as a placeholder for a concrete task. A concrete task is a task that has functionality. 
OnIy abstract tasks can be refined by concrete tasks or by other abstract tasks. In HTL 
a hierarchica! structure of tasks can be defined. Abstract tasks have no impact on the 
functionality of a program; they are used onIy to specify abstract timings, which can 
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be refined into concrete timings. The main benefit of the hierarchical structure of an 
HTL description is represented by the fact that testing properties like schedulability and 
reliability, for an HTL specification is simplified, e.g., if certain constrains (Section 2.3) are 
imposed on the refinement, it is enough to test the property oniy for top most abstract 
timing, and if the top most abstract timing has the property, then the entire HTL description 
has the property, due to the refinement constraints. 

Fig. 2.5: Direct task communication 

HTL supports two nnodels of communication between tasks: (a) direct inter-
tasks communication(Fig. 2.5) and (b) inter-tasks communication through com-
municators (Fig. 2.6). Direct inter-task communication means that a task can read the 
output of another task; this kind of communication can onIy happen between tasks that 
have the same period. Direct inter-task communication introduces a dependency relation 
between the two tasks, e.g., if a task t reads the output port of another task t \ then task 
t can not execute uniess task f has completed execution. 

1 2 3 4 5 6 7 8 9 
1 2 3 4 5 1 2 3 4 

C: . > . f 

t1 

t2 

Fig. 2.6: Inter task communication through communicators 

Inter-tasks communication through communicators can happen between tasks 
that have the same period as well as between tasks that have different periods, the onIy 
constraint being the fact that the period of the communicator that is used for the com-
munication, shouid be harmonic to the periods of the two tasks that communicate. A 
communicator is a typed variable that has a period associated with it. A communicator 
can be accessed oniy at specific moments in time, which are determined by the period 
of the communicator. In Fig. 2.6 it is illustrated how task tl, which has a period of ten 
time units, communicates with task t2, which has a period of five time units, through com-
municator c, which has a period of one time unit. Since task tl has a period of 10 time 
units, there are ten instances of communicator c that can be accessed by task tl; in this 
case task tl writes to the fifth instance of communicator c. On the other hand for task t2 
there are oniy five instances of communicator c that can be accessed; task t2 reads the 
first instance of communicator c. If two tasks that have different periods communicate 
through a communicator, then if the task that writes to the communicator has a higher 
period than the task that reads from the communicator, then the task that reads will end 
up reading same value multiple times (i.e., in the example presented in Fig. 2.6, task t2 
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will read twice the same value). On the other hand if the task that reads the communicator 
has a higher period than the task that writes the communicator, then the task that writes 
the communicator will end up overriding values that have not been read. Thus when this 
type of communication is used, one shouid be aware of the two situations. 

Many embedded system require the software to be distributed over a set of hosts. 
HTL supports distribution of an HTL description over a set of host by ailowing tasks to be 
mapped to different hosts. In HTL oniy for root tasks can be specified a host mapping, while 
the refining tasks implicitly will be mapped to the host to which parent task is mapped. 

2.2. Syntax 

The basic elements of an HTL description are the ports, communicators and tasks. A port 
Is a typed variable; declaration of a port consists of a type, a name, and an initialization 
driver. An initialization driver is a function written in a different language than HTL (i.e., 
C) that is called by the E machine when something (i.e., port, communicator, etc.) needs 
to be initialized. In Alg. 2.1 it is declared a port p, of type int, and which is initialized by 
initialization driver zero. 

Alg, 2.1 Example of port declaration (concrete syntax) 

port 
int p := zero; 

A communicator is a typed variable that can be accessed at particular moments in 
time; it is defined by a name, a type, a period, which restricts the access (i.e., read or write 
operation) to the communicator, and an Initialization driver. In Alg. 2.2 it is presented an 
example of a communicator declaration, c, which has a period of 100 time units, is of type 
int, and it is initialize by the initialization driver init. 

A lg . 2.2 Exannple of connnnunicator declaration (concrete syntax) 

communicator 
int c period 100 init zero; 

A task declaration consists of a name, a set of input ports, a set of output ports, a 
set of state ports, and a function. An input/output/state port declaration consists of a type 
and a name. Declaration of a state port specifies an initialization driver also. The input 
and output ports are formal ports, i.e., they are replaced at invocation time with actual 
ports, while state ports are actual ports. Task input ports represent the input for the task 
function, and task output ports represent the output of the task function. The state ports 
are used to store internai state of the task function. If a task declaration has no function 
associated with it, then the task is considered to be abstract, otherwise it is concrete. In 
Alg. 2.3 it is declared a task that has one input port, i, of type int, one state port, s, of 
type int, which is initialized by initialization driver zero, one output port, o, of type int, and 
the function that implements the functionality of the task is /. 

Alg, 2.3 Exannple of task declaration (concrete syntax) 

task t input (int 1) state (int s:=zero) output (int o) function f; 

One or more tasks form a mode. A mode consists of a name, a period, a program 
name, a set of task invocations, and a set of mode switches. The period of a mode specifies 
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how often the tasks that are invoked in the mode are executed and how often the mode 
switches are tested. The program name specifies the program that refines the mode; it 
can be empty if there is no such program. A task invocation consists of a task name, which 
identifies the task that has to be executed, and a mapping of actual input ports to formal 
input ports and actual output ports to formal output ports. The type of the actual port 
has to match the type of formal port to which it is mapped. As an actual port it can be 
used either a port, in which case it has to be specified the name of the port being used, or 
a communicator instance, which consists of a communicator name and a number, which 
identifies the communicator instance number, relative to the period of the mode, that will 
be used. A communicator can be used as an actual port in a mode oniy if the period of 
the communicator is harmonic to the period of the mode, i.e., the period of the mode is a 
multiple of the period of the communicator. The number of communicator instances that 
are available for a communicator c that has a period of t t c time unit, in a mode m that has 
a period of vrm time units it is equal to ^ . A task invocation can also specify the name 
of the parent task, if any. 

In Alg. 2.4 it is declared a mode, m, which has a period of lOOO time units, invokes 
three tasks, i.e., tl, f2, and t3, and contains one mode switch, which changes execution 
to mode m\ when condition cond evaluates to true. The mode is the structure through 
which HTL supports sequential composition, i.e., in HTL it is possible to specify a set of 
modes, out of which a single mode can execute at a particular moment in time, which is 
called the active mode, and that can switch between each other. 

A l g . 2 .4 Example of mode declarat ion (concrete syntax) 

mode m period 1000{ 
invoke t l input ( ( c l , l ) ) output((c2,l)); 
invoke t2 input ( (c2, l ) ) output(p); 
invoke t3 input (p) output((cl,4)); 
switch(cond(c)) m ' ; 

J 

Tasks in a mode can communicate to each other either through ports or through 
communicators. In Alg. 2.4 task tl and t2, and tasks and tl communicate through 
communicators, i.e., task tl writes to the second instance of communicator cl, and task t2 
reads the same instance of the same communicator, while task t3 writes to the fifth instance 
of communicator cl and task t l reads the second instance of communicator cl. In Alg. 2.4 

there is also an example of communication through ports, e.g., task t2 writes to port p, 
which is read by task t3, this communication imposes a dependency relation between tasks 
t2 and t3, i.e., task t3 can not execute before task t2 has fmished its execution. 

The LET of a task that is invoked in a mode is determine by both the period 
of the mode and the communicators that are read or written by the task, and it is not 
influenced by the ports that are read or written by the task. Thus, the LET of the task is 
the time interval between the latest read communicator or the beginning of the period if 
no communicator is read, and the earliest written communicator or the end of the period 
if there is no written communicator. 

Assuming that communicator cl has a period of 100 time units and that communi-
cator c2 has a period of 200 time units, Fig. 2.7 depicts timing analysis for tasks invoked in 
mode m. Task tl has an LET of 100 time units, i.e., it reads second instance of communi-
cator cl and updates second instance of communicator c2. Tasks t2 and t3 have an LET of 
200 time units, i.e., task t2 reads the second instance of communicator c2, and although it 
does not write to any communicator, it communicates through port p with task t3, which 
writes to the fifth instance of communicator cl , thus the LET of t2 can not be higher than 
200 time units, similar for t3 it can be shown that it can not have an LET higher then 200 
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Fig. 2.7: Timing analysis of tasks in mode m 

time units. 
A set of modes that are composed sequentially form a module. A module dec-

laration consists of a name, a start mode name, a set of port declarations, a set of task 
declarations; and a set of mode declarations. The start mode name represents the name 
of the mode that is active first time the module is executed. The set of port declarations 
specifies the ports that can be used to communicate between tasks that are invoked in 
modes from the module. The set of task declarations specifies the set of tasks that can 
be invoked in the modes from the module. The set of mode declarations specifies the 
modes that are composed sequentially in the module, i.e., oniy one of these modes can be 
executed at a particular moment in time. Modules in HTL represent the structures that are 
used to support parallel composition, e.g., in HTL there can be defined a set of modules, 
which are executed in parallel. 

In Alg. 2.5 it is declared a module, which contains one port declaration, i.e., p, 
three task declarations, ti, t2, and ^3, and two mode declarations m l and m2, with ml 

being the start mode. 

Alg . 2.5 Exannple of module declaration (concrete syntax) 

module M start ml{ 

port 
int p:=zero; 

task t l input(int i l ) state() output(int ol ) function f l ; 
task t2 input(int i l ) stateQ output(int ol ) function f2; 
task t3 input(int i l ) stateQ output(int ol ) function G; 

mode ml period 1000{ 
invoke t l input ( (c l , l ) ) output((c2,l)); 
switch(cond(c)) m2; 

} 
mode m2 period 1000{ 
invoke t2 input ( (c l , l ) ) output(p); 
invoke t3 input (p) output((c2,l)); 
switch(cond(c)) ml; 

} 
} 

A set of modules that are composed in parallel form a program. A program dec-
laration consists of a name, a set of communicator declarations, and a set of module 
declarations. The set of communicator declarations represents the communicators that 
can be read or written by task that are invoked in a mode in any of the modules that are 
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in the program. The set of module declarations specifies the modules that are composed 
in parallel in the program. 

In Alg. 2.6 it is declared a program, P, which contains two communicators, i.e., 
ci and c2, and two modules, i.e., A/l and A/2. 

Alg . 2.6 Example of program declaration (concrete syntax) 

program P{ 
communicator 

int cl period 100 init zero; 
int c2 period 200 init zero; 

module Ml start ml{ 
task t l input(int 11) state() output(int ol) function f l ; 
mode ml period 1000{ 
invoke t l input ( (c l , l ) ) output((cl,4)); 

} 
} 
module M2 start nn2{ 
task t2 input(int 11) state() output(int ol) function f l ; 
mode m2 period 1000{ 
invoke t2 input ((c2,0)) output((c2,2)); 

} 
} 

J 

In HTL the program is the structure through which refinement is supported. An HTL 
description consists of a set of programs; one of them being the root program, while the 
rest of the programs refine modes from the root program. In other words, the root program 
specifies an abstract timing of a real-time appiication, which is refined into concrete timings 
by the rest of the programs in an HTL description. 

In Alg. 2.7 it is presented an HTL description that consists of two programs, i.e., P 
and P I . Program P is the root program, it contains one module, which contains one mode, 
which invokes two tasks, e.g., t\ and t2, and which is refined by program F l . Program 
PI contains two modules: Af l i , which refines task t\ from the refined mode in two tasks, 
i.e., tu and tl3, and Afl2, which refines task t2 from the refined mode into task tl2. 

Program P directiy refines another program P\ if there is a mode m in P ' that 
specifies P as its refinement. Program P indirectiy refines another program P ' , if there is 
a set of programs P l . . . Pn so that P l directiy refines P\ P directiy refines Pn, and for 
any two consecutive programs Pk and PA:+ l in P l . . . Pn, program Pk-^ l directiy refines 
program Pk. 

Module M contained in a program P directiy refines module A/' contained in a 
program P\ if P directiy refines P\ Module M contained in a program P indirectiy 
refines module Af' contained in a program P\ if P indirectiy refines P ' . 

Mode m contained in a program P directiy refines mode m ' contained in a program 
P\ \f P directiy refines P ' . Mode m contained in a program P indirectiy refines module 
m' contained in a program P\ \f P indirectiy refines P ' . 

A program, P, which (directiy or indirectiy) refines a mode from another program, 
P\ is a child program or a sub-program of P \ while P ' is the parent program or the 
super-program of P. A program P is the sub-program as well as the super-program of 
itself. A module, M, which (directiy or indirectiy) refines a mode or a set of tasks from a 
mode from another module, M\ \s a child module or a sub-module for Af \ while M^ is 
the parent module or the super-module of M. A module M is the sub-module as well as 
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A l g . 2 . 7 Example of HTL description with refinement (concrete syntax) 
program P{ 
communicator 

int cl period 100 înlt zero; 
int c2 period 200 init zero; 

module Ml start ml{ 
task t l input(int i l ) state() output(int ol); 
task t2 input(int i l ) state() output(int ol); 
mode ml period 1000 program Pl{ 
invoke t l input ( (c l , l ) ) output((cl,4)); 
invoke t2 input ((c2,l)) output((c2,2)); 

} 
} 

program Pl{ 
module M I I start m l l { 
task t l l input(int i l ) state() output(int ol); 
task t l3 input(int i l ) state() output(int ol); 
mode m l l period 1000{ 
invoke t l l input ( (c l , l ) ) output((cl;4)) parent t l ; 
switch(condl(cl)) ml3; 

} 
mode ml3 period 1000{ 
invoke t l3 input ( (c l , l ) ) output((cl,4)) parent t l ; 
switch(cond2(cl)) m l l ; 

} 
} 
module M12 start ml2{ 
task t l2 input(lnt i l ) state() output(int ol); 
mode ml2 period 1000{ 
invoke t2 input ((c2,l)) output((c2,2)) parent t2; 

} 
} 

} 

the super-module of itself. A mode, m, which refmes a set of tasks from a mode, m\ \s a 
child mode or a sub-mode for m ,̂ while m is the parent mode or the super-mode of m. 
A mode m is the sub-mode as well as the super-mode of itself. 

Parts of an HTL description can be distributed over a set of hosts. The distribu-
tion works by annotating modules in the root program with the information about the 
host on which each module will run. AII the modules in the rest of the programs will be 
automatically mapped to the host to which the refined module from the root program is 
mapped. 

2.3. Well-Formed and Well-Timed HTL Descriptions 

An HTL description is well-formed if it meets to the foilowing constraints: 

Constraints on program: (1) there is oniy one top-level program; and (2) each mode 
(other than those of the top-level program) has an unique parent mode. 

Constraints on communicators: (1) if a communicator is declared in program P, then it 
is not redeclared in any other sub-program of P; (2) if a communicator c is accessed 
(read or written) by a task invocation or a mode switch in a mode of module M 
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in program P, then c is declared in one of the super-programs of P; and (3) if a 
communicator c belongs to the hierarchical write-set of a module M, then c does not 
belong to hierarchical write-set of any sibling module of M. 

Constraints on task invocations: (1) for every task invocation, the read time is earlier 
than the write time; (2) the precedence relation on task invocations is acyclic; (3) 
two task invocations in a mode cannot write to the same port or to the same instance 
of a communicator; (4) if a task invocation reads from or writes to a communicator c 
(resp. port p), then the type of c (resp. p) complies to the type of the corresponding 
formal parameter in task declaration; (5) if a task invocation in a mode m reads from 
or writes to a communicator c, then period tt^ is a multiple of the communicator 
period t tc. 

Constraints on refinement: (1) if program P refines a mode m, then the period of all 
modes in P is equal to nm (this ensures that when there is a mode switch, there is 
no unsafe termination of tasks in lower-level modes); (2) every task invocation of a 
mode m that does not belong to the top-level program has an abstract parent task 
invocation in the parent of m (this ensures that the parent task acts as a placeholder 
for its chiidren during chedulability analysis); (3) any two distinct task invocations 
in two modes of two (possibly identical) sibling modules have distinct parent task 
invocations (this ensures that all tasks that can potentially execute in parallel have 
unique parents); and (4) if inv' is the parent task invocation of inv, then the read 
time of inv is not later than that of inv, the write time of inv is not earlier than that of 
inv, and every invocation that precedes inv refines a task invocation that precedes 
zW (this ensures that the parent invocation is more constrained in time than the 
child task invocation, which is used in the schedulability analysis). 

An HTL description is weli-timed if the worst-case execution time (WCET) of any 
task invocation is less or equal to the WCET of the parent task invocation and the worst-
case transmission time (WCTT) of any task invocation is less or equal to the WCTT of the 
parent task invocation. Well-formedness is independent of the implementation platform, 
well-timedness is not. 
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3. Embedded Machine 

Embedded machine (E machine) is a virtual machine that mediates interactions between 
tasks. The E machine can release a task for execution but it can not execute it; the task 
has to be executed by the operating system. The code interpreted by the E machine 
is the so-called E code. The E code contains instructions for copying values from one 
variable to another, for releasing tasks, and control-flow instructions. Since an E code 
program is interpreted by the E machine, it can be executed on any platform for which 
there is an E machine implemented, thus an E code program is portable. The E machine 
was first introduced as a target platform for Giotto [6]. Then the E machine has been 
extended [7] to handie hierarchical structure at runtime, in order to support execution 
of E code generated for HTL descriptions that contain at least one level of refmement. 
The extended E machine with hierarchical support is called the hierarchical E machine 
(HE machine). The set of E code instructions has been extended also; the extended E code 
being named hierarchical E code (HE code). In this chapter, first the original E machine 
will be presented, then the HE machine. 

3.1. Original Embedded Machine 

Fig. 3.1 depicts visually the structure of the E machine. The E machine is divided in three 
parts: core E machine functionality and data structures, E code program related data 
structures, and appiication functionality. 

Application functionality consists of: task functions, driver functions, condition 
function, and state. Task functions implement the functionality of tasks that are released 
by the E code program. Each task has its own private memory. Tasks communicate to 
the environment oniy through task input ports and task output ports, which are variables 
declared in the global memory. Driver functions implement the functionality that is invoked 
by the E code program to transfer Information between two variables, a variable and a 
task input/output port, or between an input port and an output port of two different tasks. 
A task can not directiy access the input port or the output port of an other task, thus 
the communication has to be implemented through drivers. Condition functions represent 
funcţional code which evaluates conditions based on some inputs, and returns a boolean 
value, which represents the result of the evaluation. State is a set of variable that can be 
accessed onIy through driver functions and condition functions. 

E code program related data structures consists of: list of E code instructions and 
for each type of function (i.e., task, driver, and condition), there is a table, which asso-
ciates an index to a task, driver, or condition, respectively. The list of E code instructions 
represent the E code program that has to be interpreted. The index of a task (driver or 
condition) in the tasks (drivers or conditions) table is used to refer to that task (driver r̂ 
condition) from an E code instruction. 

The central part of the E machine core is represented by the E code interpreter. The 
E code interpreter accesses the list of E code instructions through a pointer, i.e., program 
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Fig. 3.1: E nnachine overview 

counter (PC), that indicates which is the next instruction in the list of E code instructions 
that has to be interpreted. The progranri counter is either incremented after an instruction 
has been interpreted or is set to an explicit value, if the interpreted instruction is a control 
flow instruction (e.g., jump). Another data structure which is used by the E machine 
core is the FIFO queue of triggers; there is oniy one queue of triggers. A trigger, g, is 
an association between a list of events and an address of an E code instruction, e.g., 
g = {le.a). The list of events, le can contain at most one time event and zero or more 
task completion events, i.e., Hstofevents = {n.cmps). A time event, n, represents a period 
of time that has to elapse from the moment when the trigger was added to the trigger 
queue. A task completion event is fired when a task has finished its execution. A trigger 
is considered to be active if all the events (e.g., time event and task completion events) 
on which it depends have triggered. The trigger queue is checked every time an event 
happens and the first found active trigger is remove from the queue and the PC is set to 
the address associated with the trigger, thus the E machine will start interpreting E code at 
that address. There is also a Ust of tasks that have been released for execution; whenever 
a task has been released by the E machine its index in the task table will be inserted into 
the tasks list, and it will be removed from the list when task finishes its execution. 

The E machine always starts interpreting instructions at address zero. During 
E code interpretation tasks can be released and triggers can be added to the trigger queue, 
when the E code interpreter encounters a return instruction, the E machine enters the 
waiting state. When the E machine is in waiting state, no E code is interpreted, the onIy 
thing that the E machine does in the waiting state is to observe for time events and 
task completion events and to update its trigger queue. When a trigger in the trigger 
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queue becomes active, the trigger is removed from the queue and the E machine starts 
interpreting E code at the address specified in the trigger. 

Formally the E machine is a tuple {TF, DF, CF, state, TT, DT, CT, Eprogram, 
interpreter, PC, Q, tasks), where TF represents task functions, DF represents driver func-
tions, CF represent condition functions, state represents the state, TT represents the ta-
ble of tasks, DT represents the table of drivers, CT represents the table of conditions, 
Eprogram represents the list of E code instructions, interpreter represents the E code in-
terpreter, PC represents the program counter, Q represents the queue of triggers, tasks 
represents the list of released tasks. 

Nevertheless oniy some parts of the E machine will undergo changes during E code 
execution, whereas some part will not change at all. Thus the E machine configuration 
is defined as tuple {state, PC, Q, tasks). First E machine configuration is {state = stateo, 
PC = o, Q = id, tasks = 

3.1.1. L is t o f E c ode I n s t r u c t i on s 

E code interpretation can be seen as a sequence, uo, al, . . . , of E machine configurations. 
Where uO is the iniţial configuration. In the remaining of this subsection, each E code 
instruction will be explained based on the effect it has on the E machine configuration. 
Thus before executing an instruction the configuration is {state, PC, Q, tasks), and after 
the instruction has been executed the new configuration is {state^, PC^, Q^, tasks^). 

call{cf): invokes diver function identified by driver index d in the drivers table; the config-
uration after executing this instruction is {state^ o state, PC^ = PC-h l, Q' = Q, 
tasks^ = tasks); this instruction affects the state of the E machine since a driver 
always copies a value from a variable into another variable; 

release{t): releases task identified by task index t in tasks table for execution; the con-
figuration after executing this instruction is {state^ = state, PC^ = PC-f-1, Q' = Q, 
tasks^ = tasks nt); the released task is added to the list of released tasks; 

future{n,cmps,a): adds a trigger, g = {nf]cmps,a), to the trigger queue, the list of events 
the trigger depends on is represented by a time event that fires at n time ticks after 
the trigger has been appended to the queue, and on the set of task completion events 
represented by cmps, when the trigger becomes enabled E machine will start inter-
preting instructions at address a; the configuration after executing this instruction is 
{state' = state, PC' = PC+l, Q' = Qog, tasks' - tasks) 

Jump{a): executes an unconditioned jump to address a ; after executing this instruction 
the configuration is {state' = state, PC = a, Q' = Q, tasks' = tasks); 

if(cnd,a): executes an conditioned jump to address a; the condition that has to be evalu-
ated in order to determine whether the jump shouid be performed or not is identified 
by the index cnd in the conditions table; after executing this instruction if the con-
dition was evaluate to true the configuration is {state' = state, PC = a, Q' = Q, 
tasks' = tasks), otherwise the configuration is {state' = state, PC = PC+l, Q' = Q, 
tasks' = tasks); 

return: interrupts E code interpretation and brings the E machine into waiting state; after 
executing this instruction the configuration is {state' = state, PC = ±, Q' = Q, 
tasks' = tasks). 

3.1.2. Hand i i ng Pa ra l i e l i sm in E c ode ^ 

One of the features of HTL, is parallel composition of sets of tasks, thus when an HTL 
description is compiled, the generated E code has to ensure that several blocks of E code 
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are executed in parallel (cvasi-parallel). In other words, the parallel composition of sets of 
periodic tasks, reduces, at E code level, to cvasi-parallel connposition of blocks of E code. 
In order to achieve this, a future instruction with zero tinne ticks as time event and an 
empty list of task completion event (this future instruction is farther referred as future 
zero instruction) is generated for each block of E code that has to be executed in parallel. 
This will ensure that execution of all blocks is started in parallel; it is up to each block to 
ensure periodicity after the block was started. 

future(0. adrl) 
fu1ure(0, adr2) 

^ retum 

adrl: adr2: 
call(d11) call(d21) 
future(0, adr12) future(0, adr21) 
retum retum 

adn2: adr21: 
call(d12) call(d22) 
release(tl) release(t2) 
future(5, adrl) future(10, adr2) , 

z 

Rg. 3.2: Parallel composition in E code 

In Fig. 3.2 it is presented an example of an E code program that composes in 
parallel two tasks: tl, which has a period of 5 time units, and t2, which has a period of ten 
time units. Both tasks have one input port and one output port, and the output port of t l 

is copied into input port of /2, and the output port of t2 is copied into input port of t l . The 
E code program consists of three blocks. The first block is the initialization block, i.e., the 
block that will be executed first. After initialization block is executed, two triggers will be 
added to the trigger queue; both triggers depend on a time event of zero time ticks. One 
of the trigger ensures that the second block of E code will be executed, and the second 
trigger ensures that the third block of E code will be executed. 

The initialization block is executed oniy once, while blocks two and three are exe-
cuted periodically, i.e., every 5 and every 10 time units, respectively. The first instruction 
in blocks two and three is a call instructions, which ensures that the values produced by 
tasks t l and t2, respectively, in the previous invocation are copied into two global vari-
ables, i.e., v\ and v2, respectively. The copy operation is done through drivers d l i and 
d2l, respectively. Since the values of the global variables v\ and v2 are also written into 
input ports of task t2 and t l , respectively, by drivers d22 and dl2, respectively, the E code 
program has to ensure that first drivers dll and d2\ are executed and then dl2 and d22 
are executed. Thus the call instructions that updates global variables vi and v2 (e.g.: 
call(dn) and call(d2l), respectively) have to be executed prior to the call instructions that 
read global variables vi and v2 (e.g.: call{d22) and call{d\2), respectively). This is way 
a future zero instruction is generated after drivers d l l and d2l are executed and then a 
return instruction is generated. The future zero instruction will place a trigger in the trigger 
queue that will resume execution of corresponding E code block. The retum instruction 
will bring the E machine into waiting state, thus ailowing the other block of E code to 
start/resume its execution. After driver d l l and d2l have been executed, driver dl2 will 
be executed, task ti will be released and a trigger will be placed in the trigger queue to 
start again execution of block two after 5 time units; similar for the third block. Thus the 
actual execution of the three blocks is: block one, block two, block three, block two, and 
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block three. Thus we can say that block two and three are executed cvasi-parallel. 

3.2. Hierarchical Embedded Machine 

Although the E machine offers support for sequential composition and parallel connposition 
of set of task, it does not offer support for handiing refinement (i.e., hierarchical struc-
ture) at runtime. Thus before compiling an HTL description into E code, the description 
needs to be flatten. As shown in Chapter 4 flattening an HTL description can lead to an 
HTL description that has exponentially many modes in terms of number of modes of the 
onginal description. Thus the E machine has been modified so that it offers support for 
handiing hierarchical structure at runtime, the modified E machine is called Hierarchical 
Embedded Machine (HE machine). The set of E code instructions has been extended with 
new instruction that can exploit the new structure of the E machine; the extended E code 
is called the Hierarchical E code (HE code). 

state 

task , driver condition 
functions functions i funcţiona 

task driver cx)ndltion 
table table table 

listof < • tasks 
HE code _ hE code 

instnjctions interpreter 
T T T 
RO R1 R2 R3 

• • 

writequeue> • 
sv\̂ chqueue > • 

read queue _ . _ ^ : 
stack of parent 

addresses stack 

HE machine core j appiicatlon functionality j HE code program specific data structure 

Fig. 3.3: HE machine overview 

Fig. 3.3 offers an oven/iew on the structure of the HE machine. The HE machine 
is also divided in three parts: core HE machine functionality and data structures, HE code 
program related data structures, and appiication functionality. The appiication functional-
ity and HE code program related data structures are the same as in case of the E machine. 
Oniy the core HE machine has been changed, i.e., there is not one trigger queue, but three 
trigger queues, there are also two stacks, and four trigger registers. 

The three trigger queues are named based on the trigger that will be added into 
each queue. Thus write queue is the trigger queue in which are added triggers for HE code 
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blocks that update global variabies with values from tasks output ports. Switch queue is 
the trigger queue in which are added triggers for HE code blocks that handie switches 
between sets of tasks. Read queue is the trigger queue in which are added triggers for 
HE code blocks that read global variabies. 

The HE machine core contains two stacks: one stack stores HE code addresses 
and the other stack stores trigger references. The stack of addresses is used to implement 
subroutine calls. The stack of trigger references is used for handiing hierarchical structure, 
i.e., in case of HE code program generated for HTL description, the stack of triggers is used 
to store references to parent triggers, this is why this stack is called parent stack, 

The HE machine contains four trigger registers, e.g.: RO, Rl, R2, and R3, which 
can store references to trigger. The trigger register are used to implement operation with 
trigger, e.g., setting the parent of a trigger, changing the chiidren list of a trigger or clearing 
the chiidren list of a trigger. 

The concept of trigger has been extended; a trigger g is not oniy a pair of a list of 
events and an address, but a trigger also has a parent trigger, and a list of child triggers. 
Thus in the case of HE machine a trigger g is tuple {le,a,par,clist), where le contains 
events on which trigger activation depends (it can contain one time event and one or 
more task completion events), a is the address of the E code that will be interpreted when 
the trigger gets enabled, par is a reference to a trigger, which is considered the parent of 
g, the clist is a list of trigger references, which are considered chiidren of g, Thus through 
the two new elements that have been added to a trigger it is possible to construct an 
hierarchical structure of triggers, in which each trigger knows who is its parent and which 
are its chiidren. A trigger can have at most one parent (i.e., it can have no parent if it is 
a root trigger), and can have none, one or many chiidren. 

When the HE machine is started, it will interpret HE code starting at address zero. 
The HE machine will interpret HE code until a retum instruction is encountered and no 
address is in the stack of addresses. The semantics of the return instruction in the case of 
HE machine has been overioaded, i.e., it can be used both to return from a subroutine call 
and to bring the HE machine in a waiting state. Thus if a return instruction is interpreted 
and there is at least one address in the stack of addresses, an address will be popped from 
the stack and HE code interpretation will continue at that address. On the other hand if 
there is no address in the stack of addresses, the execution of the return instruction will 
cause the HE machine to enter the write waiting state. In the write waiting state, the 
HE machine checks the write queue for enabled triggers. If a trigger is found, then the 
trigger is removed for the write queue and the HE machine resumes execution, interpreting 
HE code at address corresponding to the enabled trigger. If no enabled trigger is found 
in write queue, the HE machine enters the switch waiting state. In the switch waiting 
state, the HE machine checks for enabled triggers in the switch queue. If an enabled 
trigger is found, then that trigger is removed from the switch queue and the HE machine 
will continue interpreting HE code at address associated with the enabled trigger. If no 
enabled trigger is found, the HE machine will enter the read waiting state. In the read 
waiting state, the HE machine checks for enabled triggers in the read queue. If an enabled 
trigger is found, then It will be removed form the read queue, and HE machine will start 
interpreting HE code at address associated with the enabled trigger. If no enabled trigger 
is found, then the E machine will start waiting for events like time ticks or task completion, 
when the trigger queues has to be updated and checked again for enabled triggers. Since 
the three trigger queues are priorities, i.e., write queue has the highest priority and the 
read queue has the lowest priority, the triggers are priorities not oniy by the position in a 
queue but also by the queue in which they are. 

Formally the HE machine is a tuple (TF, DF, CF, state, 7T, DT, CT, HEprogram, 
interpreter, PC, writeQ, switchQ, readQ, addressStack, parentStack, RO, Rl , R2, R3, 
tasks), where TF represents task functions, DF represents driver functions, CF represent 
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condition functions, state represents the state, TTrepresents the table of tasks, DTrepre-
sents the table of drivers, c r represents the table of conditions, HEprogram represents the 
list of HE code instructions, interpreter represents the HE code interpreter, PC represents 
the program counter, writeQ, switchQ, and readQ are queues of triggers, addressStack 
represents the stack of addresses, parentStack represents the stack of trigger references, 
RO, R1 , R2, and R3 are tigger registers, and tasks represents the list of released tasks. 

The parts of the HE machine that change during HE code execution form the 
HE machine configuration. Thus the E machine configuration is defined as tuple {state, 
PC, writeQ, switchQ, readQ, addressStack, parentStack, RO, R1 , R2, R3, tasks). First 
HE machine configuration is {state = stateo, PC = O, wr/feQ = 0, switchQ = 0, readQ = 0, 
addressStack = 0, parentStack = id, RO = R1 = l. , R2 = R3 ^ L, tasks = 0). 

3.2.1. L ist o f HE c ode I n s t r u c t i on s 

HE code interpretation can be seen as a sequence, uO, u\, of HE machine configu-
rations. Where uO is the iniţial configuration. In the remaining of this subsection, each 
HE code instruction will be explained based on the effect it has on the HE machine con-
figuration. Thus before executing an instruction the configuration is state, PC, writeQ, 
switchQ, readQ, addressStack, parentStack, RO, R1 , R2, R3, tasks), and after the in-
struction has been executed the new configuration is {state\ PC\ writeQ\ switchQ\ 
readQ^, addressStack^, parentStack^, R0\ RV , R2\ R3\ tasks^). 

call{d): executes driver identify by driver index d (which updates variable state to state'), 
PC is incremented; the HE machine after interpreting this instruction is {state^, PC^ = 
PC+ 1, writeQ^ = writeQ, switchQ^ = switchQ, readQ^ = readQ, addressStack^ = 
addressStack, parentStack^ = parentStack, RO^ = RO, Rl^ = R1 , R2^ = R2, R3^ = 
R3, tasks^ = tasks); 

reiease{t): releases for execution task identify by task index t, PC is incremented; the 
HE machine after interpreting this instruction is {state^ = state, PC^ = PC + l, 
writeQ^ = writeQ, switchQ^ = switchQ, readQ^ = readQ, addressStack^ = 
addressStack, parentStack^ = parentStack, RO^ = RO, Rl^ = R1 , R2^ = R2, 
R3^ = R3, tasks^ = tasks ut); 

writeFuture{e,a): creates a new trigger g = (e,a,-L,0), adds the trigger to the write queue, 
stores a reference to g in Rl, and increments program counter; the HE machine con-
figuration after executing this instruction is {state^ = state, PC^ = PC-\-1, writeQ^ = 
writeQ o g, switchQ^ = switchQ, readQ^ = readQ, addressStack^ = addressStack, 
parentStack^ = parentStack, RO^ = RO, Rl ^ = referenceOf{g) , R2 = R2, R3^ = R3, 
tasks^ = tasks); 

switchFuture{e,a): creates a new trigger g = (e,a,-L,0), adds the trigger to the switch 
queue, stores a reference to g \n Rl, and increments program counter; the HE ma-
chine configuration after executing this instruction is {state^ = state, PC^ = PC-\-l, 
writeQ^ = writeQ, switchQ^ = switchQ o g, readQ^ = readQ, addressStack^ = 
addressStack, parentStack^ = parentStack, RO^ = RO, Rl^ = referenceOf{g) , 
R2' = R2, R3^ = R3, tasks^ = tasks); 

readFuture{e,a): creates a new trigger g = (e,a,-L,0), adds the trigger to the read queue, 
stores a reference to g 'mRl, and increments program counter; the HE machine con-
figuration after executing this instruction is {state^ = state, PC^ = PC-\-l, writeQ^ = 
writeQ, switchQ^ = switchQ, readQ^ = readQ o g, addressStack^ = addressStack, 
parentStack^ = parentStack, RO^ = RO, Rl ^ = referenceOf{g) , R2^ =R2, R3^ = R3, 
tasks^ = tasks); 
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jumpificnd a): executes condition function represented by condition index cnd, if condl-
tion function return true, then program counter is set to a, else program counter 
is incremented; after executed this instruction there are two possible configu-
ration: if condition function returns true, then configuration is {state^ = state, 
PC^ a, writeQ^ = whteQ, switchQ^ = switchQ, readQ^ = readQ, addressStack^ = 
addressStack, parentStack^ = parentStack, RO^ = RO, Rl^ = R1 , R2^ = R2, R3^ = 
R3, tasks^ = tasks), else configuration is {state^ = state, PC = PC+ l, v^riteQ^ = 
writeQ, sv\/itchQ' = switchQ, readQ^ = readQ, addressStack^ = addressStack, 
parentStack^ = parentStack, RO^ = RO, RV = R1 , R2^ = R2, R3^ = R3, 
tasks^ =tasks); 

JumpAbsolute(a): performs an unconditioned jump to address a; the configuration after 
executing this instruction is {state^ = state, PC = a, writeQ^ = writeQ, switchQ^ = 
switchQ, readQ^ = readQ, addressStack^ = addressStack, parentStack^ = 
parentStack, RO' = RO, RV ^ R1 , Rr = R2, R3' = R3, tasks^ = tasks); 

JumpSubroutine(a): executes a subroutine jump to address a; incremented value of the 
program counter is pushed onto the stack of addresses and the program counter 
is set to a; the configuration after executing this instruction is {state^ = state, 
PC = a, writeQ^ = writeQ, switchQ^ = switchQ, readQ^ = readQ, addressStack^ = 
addressStacko{PC-^l), parentStack' = parentStack, RO^ = RO, RV = R1, R2^ = R2, 
R3' = R3, tasks' = tasks)) 

copyRegister{Rx.Ry) where x.y e {0,1,2,3} and copies the content of register Rx 
to register Ry and program counter is incremented; configuration after executing this 
instruction is {state' = state, PC =PC^\, writeQ' = writeQ, switchQ' = switchQ, 
readQ' = readQ, addressStack' = addressStack, parentStack' = parentStack, RO', 
Rl' ,R2',R3\ tasks' = tasks), the values of trigger registers RO', Rl' , R2', and 
R3' depends on the arguments of the instruction; 

pushRegister{Rx) where xe{0A/2,3}: pushes the content of the register Rx on to 
parentStack, the program counter is incremented; configuration after executing this 
instruction is {state' = state, PC = PC-f l, writeQ' = writeQ, switchQ' = switchQ, 
readQ' = readQ, addressStack' = addressStack, parentStack' = parentStack o Rx, 
RO' = RO, Rl' =R1 , R2' = R2, R3' = R3, tasks' = tasks); 

popRegister(Rx) where t g { o , 1 , 2 , 3 } : pops content from parentStack to register Rx, i.e., 
Rx' = pop(parentStack), and increments program counter; configuration after exe-
cuting this instruction is {state' = state, PC = PC-\-i, writeQ' = wnteQ, switchQ' = 
switchQ, readQ' = readQ, addressStack' = addressStack, parentStack' = 
parentStack\{pop{parentStack)}, RO', Rl' , R2', R3', tasks' = tasks), the val-
ues of trigger registers RO', Rl' , R2', anâ R3' depends on the argument of the 
instruction; 

getParent{Rx.Ry) where x.y ̂  {0,1,2,3} and x^y\ loads the reference of parent trigger 
of trigger pointed to by Rx into register Ry and increments program counter; con-
figuration after executing this instruction is {state' = state, PC = PC-\-1, writeQ' = 
writeQ, switchQ' - switchQ, readQ' = readQ, addressStack' = addressStack, 
parentStack' = parentStack, R0\ Rl' , R2', R3', tasks' = tasks), the values 
of trigger registers RO', Rl' , R2', and R3' depends on the argument of the in-
struction; 

setParent(Rx,Ry) where x,ye {o, 1/2,3} and x^y: the trigger name in Ry is stored as 
the parent of the trigger pointed to by register Rx and the program counter is in-
cremented; configuration after executing this instruction is {state' = state, PC = 
PC^l, writeQ' = writeQ, switchQ' - switchQ, readQ' = readQ, addressStack' = 
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addressStack, parentStack^ = parentStack, RO^ = RO, Rl^ ^ R1 , R2^ = R2, 
R3' = R3, tasks' = tasks)] 

cop/CA7/7dren(/^x,Ry) where x.y G {0,1,2,3} and X / i/: the chiidren list of the trigger 
pointed to by Ry is stored as the chiidren lIst of the trigger pointed to by regis-
ter Rx and the program counter is incremented; configuration after executing this 
instruction is {state^ = state, PC = PC+ l, writeQ^ = writeQ, sv^itchQ^ = switchQ, 
readQ^ = readQ, addressStack^ = addressStack, parentStack^ = parentStack, 
RO^ = RO, Rl' =R1 , R2' = R2, R3' = R3, tasks^ = tasks); 

updateChildren{Rx, Ry) where x,y e {0,1,2,3} and x ̂ y: sets the trigger name in Ry as 
the parent of all the triggers in the chiidren list of the trigger pointed by register Rx 
and increments the program counter; configuration after executing this instruction 
is {state^ = state, PC = PC-h l, writeQ^ = writeQ, switchQ^ = switchQ, readQ^ = 
readQ, addressStack^ = addressStack, parentStack^ = parentStack, RO^ = RO, 
Rr =R1 ,Rr ^ R2, R3' = R3, tasks' = tasks); 

deleteChildren{Rx) where x e {O, l, 2,3}: for aii trigger references in chiidren list of trigger 
referred by register Rx: (recursively) deletes the triggers pointed by the chiidren list 
and remove the triggers from the queue and increments the program counter; con-
figuration after executing this instruction is {state' = state, PC = PC-h l, writeQ' = 
writeQ, switchQ' = switchQ, readQ' = readQ, addressStack' = addressStack, 
parentStack' = parentStack, RO' = RO, Rl' = R1 , R2' = R2, R3' = R3, 
tasks' = tasks); 

replaceChild{Rx, Ry, Rz) where x,y,z e {0,1,2,3} and x^^y^z: in the chiidren list of trig-
ger pointed to by register Rx, replaces the trigger reference in Ry by the trigger ref-
erence in Rz and increments the program counter; configuration after executing this 
instruction is {state' = state, PC = PC^l, writeQ' = writeQ, switchQ' = switchQ, 
readQ' = readQ, addressStack' = addressStack, parentStack' = parentStack, 
RO' = RO, Rl' =R1 , R2' = R2, R3' = R3, tasks' = tasks); 

cleanChildren{Rx) where x e {0,1,2,3}: deletes the chiidren list of trigger pointed by reg-
ister Rx and increments the program counter; configuration after executing this in-
struction is {state' = state, PC = PC+ l, writeQ' = writeQ, switchQ' = switchQ, 
readQ' = readQ, addressStack' = addressStack, parentStack' = parentStack, 
RO' = RO, Rl' =R1 , R2' = R2, R3' = R3, tasks' = tasks); 

return{): pops an address from address stack into the program counter; PC = 
pop{addressStack); configuration after executing this instruction is {state' = state, 
PC = pop{addressStack), writeQ' = writeQ, switchQ' = switchQ, readQ' = readQ, 
addressStack' = addressStack, parentStack' = parentStack, RO' = RO, Rl' = Rl , 
R2' = R2, R3' = R3, tasks' = tasks); 

3.2.2. Handiing Hierarchy in HE code 

Sequential composition in E code is supported through condiţional jump instruction, par-
allel composition is supported through future zero instruction, the oniy HTL feature that is 
not supported by the E code is the refinement. Thus the E code has been extended into 
HE code in order to support refinement. In this subsection it is presented how hierarchical 
structure is handied in HE code. 

The main idea is to build an implicit tree of triggers. The hierarchical relations 
between the triggers reflect the hierarchical relations between the HTL modes for which 
the HE code that created the triggers has been generated. The implicit tree structure is 
needed onIy to stop executing modes that refine a mode m that has switched to another 
mode m'. Since in the switch queue, for each mode that is executed it is placed one 
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and oniy one trigger, which will ensure that the mode is executed periodically, and all the 
thggers related to a mode that are in the write queue or read queue will activate by the 
end of the mode period, it is enough to create a tree like structure onIy with the triggers 
that are in the switch queue. Thus for each mode m there will be a trigger in the switch 
queue, which has as a parent the trigger from the switch queue that corresponds to the 
direct parent mode of m, and as chiidren all the triggers that corresponds to the direct 
child modes of m. The trigger of the parent mode is added to the trigger queue before 
the trigger of the child mode. Thus if the parent mode switches to a different mode, the 
triggers corresponding to the child modes will be removed recursively from the queue 
using the tree information, this will ensure that if the parent mode switches, then all its 
child modes stop executing. 

m1 m2 

m11 m12 m21 

m13 m22 

Fig. 3.4: Handiing hierarchy: HTL descriptlon example 

Fig. 3.4, depicts in simplified (i.e., onIy the modes and hierarchical relations be-
tween them are presented) visual syntax the structure of an HTL description that is used 
as an example to explain how hierarchical structure is handied in HE code. The description 
consists of modes m l and m2, which are composed sequentially. Mode m l is refined by 
modes m l l and m\2, which are composed in parallel. Mode ml3 refines mode m l l . Mode 
77x2 is refined be mode m2\, which is farther refined by mode m22. 

ii. ^ % X 

t12t13t11 t1 
g  

Z ^ ^ X 
t r t i 2 t i 3 t i i 

(a) 

wt * itf 4 

t12t13t11 t1 

(b) ^ i i 
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"T" 

(i) 

rr 

(ii) 

Fig. 3.5: Handiing hierarchy: implicit tree evolution 

In Fig. 3.5 it is presented the evolution of the switch queue in two situations that 
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can happen when HE code for mode ml is interpreted: mode ml does not switch to m2 

and mode ml switches to m2. For both scenarios has been considered that mode ml is the 
start mode. Thus initially in the switch queue there is a trigger for mode ml and all its child 
modes, e.g., triggers t\, tu, tl3, and tu correspond to modes ml , m l l , ml3, and ml2, 

respectivelly. In the first situation (Fig. 3.5-1), since the switch to mode m2 is not enabled 
during HE code interpretation, a new trigger f T is created; replaces trigger tl in the 
switch queue and will presen/e all its connections to other triggers. On the other hand if 
the mode switch happens (Fig. 3.5-II), then all the triggers that are chiidren of trigger t\ 
are removed from the switch queue, i.e., in this case all the triggers are removed, and 
new triggers, corresponding to the new active mode and its child modes, are created and 
added to the switch queue. When a sub-tree of modes from an HTL description is started 
for the first time the modes are executed in the top-down and left-to-right order, this is 
way trigger tl3 is added to the switch queue before trigger t\2. When a trigger that is 
added to the switch queue is created, its parent will be automatically set to the parent of 
the trigger referred by register RO. During the iniţial execution of a sub-tree of modes, the 
parent stack is used to store the parent triggers, as the execution goes down the sub-tree 
of modes, e.g., when trigger tl3 is created the parent of trigger referred by Rzero si tu 
and in the parent stack there is one trigger reference, which points to trigger tl. When 
the execution returns the parent of the trigger referred by RO is restored from the stack, 
i.e., when trigger tl2 is created the parent of the trigger referred by RO is trigger tl. 
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4. HTL Compiler 

Fig. 4.1 depicts visually the actions that happen at compile-time and at runtime. In gen-
eral, the compilation of any HTL description involves a specific analysis of the description 
and then code generation. The analysis ensures that the input description is well-formed, 
i.e., it satisfies the constraints on parallel composition of modules and refinement of modes 
presented in Section 2.3, and that the description is schedulable relative to the target plat-
form (well-timed). For the schedulability analysis, the WCET/ WCTT information for tasks 
is provided by an externai tool. If all the constraints are satisfied, code generator gen-
erates code for a distributed implennentation. Code generation is done by compiling the 
whole description for each host. For each host it is maintained a set of copies of all com-
municators and ports. However, tasks are executed on the host oniy if the corresponding 
mode (in which the task is invoked) is mapped onto that host. At runtinne, whenever a 
task connpletes execution, all output ports of that task are broadcasted to all hosts; each 
host will store the value locally. When a communicator (on a host) is to be written with 
the value from a task output port, the locally stored value of the output port is copied to 
the communicator. Released tasks are dispatched for execution by an EDF scheduler; the 
scheduler is externai to the E machine (and HE machine). 

no 

HTL 
program 

Satisfy parallel composition constraints ? 
Satisfy refinement constraints ? 

Is schedulable ? 

timing 
description 

i r 
E/HE code generator Schedule generator 

compiler 
i 1 - 1 1 
î ? • T 

lE/HE codel T" i 
A 

1 schedulei - iE/HE codel 
' T ' 

controller p 
schedule 1 
p 

1 

wcET-wcrr 
estimator 

^ 

• E machine 
host1 

scheduler ! E machine! scheduler 
host n 

inter hosts communication 

sensors / actuators sensors / actuators 

task code 

functionality 
description 

plant 
Fig. 4.1: Structura of compiler and runtime system 
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In this chapter there will be presented two HTL compilers, i.e., flattening HTL 
compller [2] and hierarchy-preserving HTL compiler [7]. Flattening HTL compiler needs to 
flatten the hierarchical structure of an HTL descriptlon before generating E code for it; the 
target platform is represented by the E nnachine (Section 3.1). Hierarchy-preserving HTL 
compiler generates HE code directiy from the input HTL description without altering its 
structure, it relays on hierarchical support at runtime; the target platform is represented 
by the HE machine (Section 3.2). 

4.1. Flattening HTL Compiler 

After parallel composition constraints, refinement constraints, and schedulability have 
been checked on the input HTL description, the flattening HTL compiler transforms the 
input HTL description into a flat HTL description by appiying a flattening algorithm. The 
flattening algorithm consists of traversing the hierarchical structure of the input HTL de-
scription bottom-up and left-to-right, merging all the modules in the same child program 
into a single module that contains all possible combination of modes from the merged 
modules, and then the resulted module is merged with the parent mode of the merged 
modules and the resulted set of modes will replace the parent mode. Modules in the root 
program are not merged. The above presented flattening algorithm is possible since all 
the modes in child programs have the same period as the parent mode from the root 
program. 

Given a well-formed, well-timed, schedulable, and flattened HTL description and 
a mapping of its top-level modules to hosts, the HTL compiler generates E code for the 
description and mapping by invoking Alg. 4.1 on its root program (which is also the single 
program in a flatten HTL description) for each host to which modules from the descrip-
tion are mapped; the algorithm invokes Alg. 4.2 to generate E code for each module of 
the program, which finally invokes Alg. 4.3 to generate E code for each mode of each 
module. The compiler conceptually divides each mode into uniform temporal segments 
called units. The unit of a mode is the smallest time interval at which any two consec-
utive communicator instances are accessed in the mode. Given a mode m, the duration 
of Its unit is denoted by i H , which is the gcd of all access periods of all communicators 
accessed in m. The total number of units of m Is 7r[m]/7[m], where 7r[mj is the period of m. The 
compiler generates separate E code blocks for each unit of a mode. The address of an 
E code block corresponding to unit i of a mode m is denoted by unit^ddress{m,i], This is a 
symbolic address to which instructions may forward reference and therefore may need fix 
up during compilation. Similar notation for other symbolic addresses, are used. 

The foilowing auxiliary operators are used In order to present compiling algorithm 
for the flattening HTL compiler. The driver i i i it(x) initializes the communicator or task 
port X. The set readDrivers(m,/) contains the drivers that load the tasks in mode m with val-
ues of the communicators that are read by these tasks at unit /. The set writeDrivers(m,/) 

contains the drivers that load the communicators with the output of the tasks in mode m 
that write to these communicators at unit /. The set portDrivers(t) contains the drivers 
that load input ports of task t with the values of module pori:s on which t depends. The set 
coiiipiGte(t) contains the events that signal the completion of the tasks on which task t de-
pends, and that signal the read time of the task t. The set reieasedTasks(m,/) contains the 
tasks in mode m with no precedences that are released at unit /. The set precedenceTasks(m) 

contains the tasks in mode m with precedences. 
Alg. 4.1 generates instructions to initialize all communicators and modules. Here 

future{0,module^ddress[vi]) instruction is used to start parallel execution of all modules 
in the root program. The actual mechanism is relatively complicated: for a future{0,a) 
instruction the E machine appends the aiready enabled trigger-address pair (true,a) to the 
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Alg . 4.1 GenerateECodeForProgramOnHost(P.h) 

// initialize communicators 
Vc G coininuiiicators(P):em/f(ca//(iiiit(c))) 

// initialize and start each module 
VM G mod\iies{?):emit{future{0,module-address[n])) 
// end initialization phase 
emit{return) 
U generate code for each module 
VM G moduies{?):GenerateECodeForModuleOnHost{V[,h) 

trigger queue and then proceeds to the next instruction. Oniy when the E machine reaches 
a return instruction, the machine checks the trigger queue again and eventually removes 
the pair (true.a) from the trigger queue and executes the E code at the address a, but 
not before it has executed the E code of all other enabled trigger-address pairs occurring 
before (tme.a) in the queue. 

Aig . 4 .2 GenerateECodeForModuleOnHost(M,h) 

set moduleuaddress[n] to PC and fix up 
// initialize task ports 
Vp G taskPorts(M):en7/f(ca//(iiiit(p))) 

// jump to the start mode at unit O 
emitijump. unit-address[staoct[n], 0]) 
// generate code for each mode 
Vm G modes{n):GenerateECodeForModeOnHost{m,h) 

Alg. 4.2 generates instructions to initialize all task ports in a module, and to start 
the execution of the module by jumping to the E code of the first unit of the start mode 
of the module. PC denotes the program counter of the compiler. 

Alg. 4.3 generates the E code for all units of a mode. OnIy unit O contains in-
structions to check mode switching because mode switching may onIy occur at the begin-
ning of a mode period. When a mode switch occurs, E code execution continues at the 
mode^ddress[m] of the target mode m', not the unituaddress[m,0], since onIy at most one 
mode switch per time instant may occur. At each time instant, the generated E code uses 
future{0,a) instructions to write communicators always before any communicator is read 
making sure that the latest communicator values are used across all modules. Communi-
cator and port values do not need to be buffered since tasks are invoked at most once per 
mode period and communicator-to-port transactions are done as soon as possible while 
port-to-communicator transactions are done as late as possible. It is therefore sufficient 
to have a single copy of each communicator and task port on each host. 

4.2. Hierarchy-Preserving HTL Compiler 

The hierarchy-preserving compiler generates code for programs, modules, and modes 
by invoking Alg. 4.4, Alg. 4.5, and Alg. 4.6, respectively. The compiler uses symbolic 
addresses to refer to different parts of the code. For each program P, programInit[K] 
(resp. programStart[?]) denotes the address of the HE code block that initializes (resp. ex-
ecutes) p. For each module M, moduleInit[n] (resp. moduleStart[n]) denotes the address of 
the HE code block that initializes (resp. executes) M. For each mode m, modeStart[m] is the 
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Alg . 4 .3 GenerateECodeForModeOnHost(m,h) 

O 
While / < 7r[mj/7(mJ dO 
set unit^ddress[m, i] to PC and fix up 
// update communicators with task output 
vd e writeDrivers(m,/):em/f-(ca//(c/)) 
// continue after other modules updated communicators 
emit{future{0,PC+2)) 
emit(return) 
if (/ = 0) 
// check mode switches 
V(cncy,m') G Bwitche8(m):en7/t(//(cnd,mode-adcyress[m'])) 
set modejaddress[m] to PC and fix up 

end if 
if (mode m is contained in a module on host h) 
// read communicators into tasks 
VJ 6 rGadDrivers(m,0:em/t(ca//((/)) 
// release tasks with no precedences 
Vt G releasedTasks(m,/):e/77/t(re/ease(f)) 
if (/ = 0) 
// release tasks with precedences 
Vt e precedenceTasks(m): 

// wait for tasks on which t depends to complete 
emit{future{compiete(t),PC + 2)) 
emit(Jump{PCb -(- |portDrivers(f)|)) 
// release t afler other modules updated communicators 
emit{future{0,PC-h2)) 
emitlretum) 
// read ports of tasks on which t depends, then release t 
Vc/ 6 poTtUT±veTs{t):emit(call{d)) 
emit(release{t)) 
emit{retum) 

end if 
end if 
// continue mode after 7[m) time 
emit{future{^[m],unituaddress[mj'l mod 7r[m]/7[m]])) 

emit[return) 
/ : - /+ 1 

end while 
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address of the HE code block that starts m, and targetMode[m] is the address of HE code 
block that is executed when another mode switches to m. Each mode m is divided in uniform 
units corresponding to the smallest period between two time events (i.e., write of a com-
municator or read of a communicator) in m. Given a mode m, the duration of an unit [̂m] is 
the greatest common divisor of all access periods of all communicators read or written in 
m; the total number of units is 7r[m]/7[ml, where 7r[m] is the period of m. For each unit / of every 
mode m the compiler generates separate code blocks for updating communicators, check-
ing switches (and related actions), and reading communicators (and releasing tasks): the 
address of the HE code block that writes communicators is unitWrite[mj], the address of 
the HE code block that checks switch condition is unitSwitch[mj], and the address of the 
HE code block that reads communicators is unitRead[mj]. HTL semantics constraints that 
at any instance, communicator writes, mode switch checks, communicator reads, and task 
releases shouid be done in the above order to maintain consistency of communicator val-
ues across all modules. The address of the HE code block that sets up the execution order 
of communicator writes, switch checks, and communicator reads (and task releases) is 
modeBody[m]. Instructions may forward reference to any of the above symbolic addresses 
which may require fix up during compilation. 

A lg . 4-4 GenerateECodeForProgramOnHost(P,h) 

set programInit[?] to PC and fix up 
// initialize communicators 
Vc 6 coimiiiiiiicators(P):em/f(ca//(init(c))) 

// initialize all the modules in p 
VM G mod}jj.es{?):emitUumpSubroutine{moduleInit[n])) 
U return from initialization subroutine of P 
emit{return) 
set programStartl?] to PC and fix up 
// start all the modules in p 
VM e moduies{?):emit(jumpSubroutine{moduleStart[V[])) 
U return from start subroutine of P 
emit{return) 

Alg. 4.4 generates code fora program p on a hosth. The code at addressprogramInit[?] 
initializes all communicators declared in p by calling corresponding initialization drivers 
( in i t ( ) denotes the initialization driver for a communicator or a port), then it calls initial-
ization subroutine of each module in p. Code at address programStart[p] calls the start 
subroutine of each module m in p. 

A ig . 4.5 GenerateECodeForModuleOnHost(M,h) 

set moduleInit[n] to PC and fix up 
// initialize task port 
Vp G taskPorts(M):eni/t(ca//(init(p))) 

// return from initialization subroutine of M 
emit{return) 
set moduleStart[n] to PC and fix up 
//start the start mode of m 
emit{jumpSubroutine{modeStart[st^x. [M]])) 
// return from start subroutine of M 
emit{return) 
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Alg. 4.5 generates code for a module M on host h. Code at address moduleInit[y[] 
initializes all task ports (denoted by taskPorts(M)) of the tasks in M by calling respective 
initiallzation drivers. All tasks maintain two sets of local ports, called task input ports 
and task output ports, which are not accessible by other tasks. Before a task is released, 
values of the communicators and ports that are read by the released task are copied into 
task input ports, which are used by task at execution. At completion, the task output 
ports are updated; communicators and ports are written from the task output ports when 
the writing is due. Code at moduleStart[VL] calls the start subroutine of the start mode, 
startiM], Of M. 

The foilowing auxiliary operators are used for Alg. 4.6. The set rea<iDrivers(m,/) 

contains the drivers that load the tasks in mode m with values of the communicators that 
are read by these tasks at unit /. The set vriteDrivers(m, /) contains the drivers that load the 
communicators with the output of the tasks in mode m that write to these communicators 
at unit /. The set portDrivers(f) contains the drivers that load task input ports of task 
t with the values of the ports read by t. The set compiete(f) contains the events that 
signal the completion of the tasks on which task t depends, and that signal the read time 
of the task t. The set reieasedTasks(m./) contains the tasks invoked in mode m, with no 
precedences, that are released at unit /. The set precGdeiiceTasks(m) contains the tasks in 
mode m that depend on other tasks. 

A l g . 4 . 6 GenerateECodeForModeOnHost(m,h) 

0 GenerateECodeToStartModeOnHost(m,h); 

1 / : = 0 
2 whi le / < 7r[ml/̂ [ml do 
3 set unitWhte[mj] to PC and fix up 
4 // write communicators with the values of task output ports 
5 VĈ  e writeDrivers(m, i)\emit{call{d)) 
6 // wait for other triggers to become enabled 
7 emit{retum) 
8 if (/ = 0) 
9 GenerateECodeToTestSwitchesForModeOnHost(m, h) 

1 0 GenerateECodeToPreserveHierarchyForModeOnHost(m,h) 

11 emit(return) 
12 end i f 
13 GenerateECodeToReleaseTasksForModeOnHost(m, h, /) 
14 if(/<7rH/^[mj-l) 
15 // jump to the next unit of mode m 

16 emit(writeFuture{-t[m],unitWrite[m, i -h 1])) 
17 emit[readFuture[')\m], unitRead[m. i + ij)) 
18 end if 
19 // wait for other triggers to become enabled 
20 // OR retum from body subroutine of m 

2 1 emit {retum) 
22 /:-/-hi 
23 end whi le 

Alg. 4.6 starts by invoking Alg. 4.7, which emits HE code to start a mode. Alg. 4.7 
emits code (at address modeStart[m]) for checking all the mode switches (lines 1 - 3) in 
a mode m, so that they are tested first time m is invoked. Next, code is generated (at 
address targetMode[m]) to handie the case when no switch is enabled: a call to code at 
modeBody[m], foilowed by a call to the refinement program (if any). This sets the execution 
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Alg . 4 .7 GenerateECodeToStartModeOnHost(m,h) 

0 set modeStart[m] to PC and fix up 
1 // check mode switches 
2 V(cnd,m') G switches(m): 

3 emit(jumplf{cnd, targetMode[m])) 
4 set targetMode[m] to PC and fix up 
5 emit(JumpSubroutine{modeBody[m])) 
6 if (program p refines m) 
7 //increment the level 
8 emitigetParentiRO, R3)) 
9 emitlpushRegister{R3)) 
10 emit{setParent{RO, R2)) 
11 emit{cleanChildren{RO)) 
12 emit{jumpSubroutine{programStart\pTogr^[m]])) 
13 //decrement the level 
14 emit{popRegister{R3)) 
15 emit{setParent{RO, R3)) 
16 emit{cleanChildren{RO)) 
17 end if 
18 // return from start subroutine of m 
19 // OR wait for other triggers to become enabled 
20 emit{return) 

of a mode before the execution of the refinement program. Code emission at lines 6 -
17 checks whether a refinement program exists and subsequently updates the hierarchy 
Information if there is one. Before the code for refinement program is invoked (line 12), 
the hierarchy is updated (lines 7 - 11), as refinement adds one level of hierarchy; once 
the invocation of the refinement program completes, the level is restored (lines 13 - 16). 
Update of hierarchy consists of pushing the parent of the trigger that is referred by the 
trigger name in register RO onto the stack (lines 8 - 9 ) ; the parent of the trigger pointed 
by RO is then changed to the trigger pointed by R2 (which contains a pointer to the last 
trigger added to the switch queue), and chiidren list is reset (code for refinement program 
has yet to be invoked, thus there is no chiidren Information). In effect, for the execution 
of the refinement program, parent of trigger pointed by RO points to the parent trigger 
of all the triggers that will be added in the switch queue for that program. To restore 
the hierarchy level, the parent of trigger pointed by RO is updated by popping the parent 
stack. 

After the call to Alg. 4.7 returns, Alg. 4.6 generates E code for each mode unit /. 
Lines 4 - 7 generates E code that calls the driver for each communicator being written 
at unit /. Next Alg. 4.8 is invoked for mode unit zero to generate code that tests mode 
switch conditions, and takes necessary action when a switch is enabled. In HTL, modes 
can switch oniy at period boundaries; thus the switches are checked oniy for unit zero. If 
no mode switch occurs (line 4), then the code jumps to modeBody[m]. If a mode switch 
occurs, then all chiidren of the last enabled trigger in the switch queue (its name is stored 
in register RO) are removed from switch queue (lines 5 - 8). The removal of chiidren is 
recursive, thus all chiidren of subsequent chiidren are also removed. Once the chiidren are 
removed, the code execution jumps (lines 9 - 10) to the target address of the destination 
mode targetMode[m], where m' is the destination mode. 

After code for mode switches has been generated, Alg. 4.9 is invoked to sequence 
the execution order of communicator writes, switch checks, and communicator reads (and 
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A i g , 4 - 8 GenerateECodeToTestSwitchesForModeOnHost(m,h) 

O^^etLrnitSwitchlm, 0] to PC and fix up 
1 // check mode swltches 
2 V(cncy.m') (E switches(in): 

3 emiVJumpIficnd, PC + 2)) 
4 emit(jumpAbsolute(PC + 4)) 
5 // cancel all triggers related to the refining 
6 // program of n, and its subprograms 
7 emit{ deleteChildren(RO)) 
8 emit{cleanChildren{RO)) 
9 // switch to mode m' 
10 emit{jumpAbsolute(targetMode[m])) 

subsequent task release), for unit zero of mode m. This is done by emitting a future 
instruction (line 1) for unitWrite[m.O\ (trigger will be added to wr/teQ), a future instruction 
(line 2) for unitSv^itch\m,o] (trigger will be added to switchQ), and a future Instruction (line 
9) for unitRead[m,o\ (trigger will be added to readQ), Whenever a trigger is created and 
added to a queue, the relevant trigger pointer is stored in register Rl. Once a trigger 
is added in the switch queue, the hierarchy Information has to be updated (lines 3 - 8). 
Depending on how the code is reached, there are two scenarios: first, the code is invoked 
by handiing an enabled trigger in the switch queue, i.e., a mode switch has occurred or a 
mode is being reinvoked, and second, the code is invoked when a mode is executed for the 
first time. In both scenarios register RO records the relevant hierarchy Information. In the 
first scenario, it stores the name of the last trigger in the switch queue that was handied 
(by semantics, if any trigger is handied the name is stored in RO). In the second scenario, 
it stores the name of the last trigger in the switch queue that was created. Code at lines 3 
- 7 sets the parent of the trigger pointed by RO as a parent for the trigger pointed by Rl, 
and copies the chiidren list from the trigger pointed by RO to the trigger pointed by Rl, A 
new trigger for the read queue may remove the Information of the last trigger added to 
the switch queue from Rl] so a copy of Rl is stored in R2 (line 8). 

A l g . 4 . 9 GenerateECodeToPreserveHierarchyForModeOnHost(m,h) 

~ 0 set modeBody[m] to PC and fix up 
1 emit( v^riteFuture( n [m]. un/t^r/telm, 0])) 
2 em/t(svv/tchFuturel7rlm].un/tSkv/tchlm.0])) 
3 emit{getParent{R0,R3)) 
4 emit{replaceChild{R3,RO,Rl)) 
5 emit(updateChildren{RO,Rl)) 
6 emit(setParent{Rl.R3)) 
7 emit(copyChHdren{RlMO)) 
8 emit{copyRegister{Rl,R2)) 
9 emit{readFuture{o, unitRead[m, 0])) 

Once the call to Alg. 4.9 retums, Alg. 4.10 is invoked. Alg. 4.10 generates code 
(at unitRead[m,i]) that reads (lines 2 - 3 ) all communicators (by calling drivers that copy 
from communicators into task input ports) that are to be read at unit i, and releases all 
tasks (with no precedences) that shouid be released at unit /. For unit zero (line 6), code 
is generated to release precedence tasks (lines 7 - 15). For each task t with precedences, 
a trigger is added to readQ: the trigger is activated at the completion of preceding tasks 
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of t, and the subsequent code writes input ports of t and releases t. 
Last stage in code generation for an unit of mode m consists of emitting code to 

jump from one unit to the next (lines (14 - 18), Alg. 4.6). The generated code adds 
triggers to the write queue and the read queue oniy. Switches are not possible in other 
units except unit zero. For unit zero the future instructions that ensure continuity of 
execution are generated by Alg. 4.9. 

Alg . 4 .10 GenerateECodeToReleaseTasksForModeOnHost(m,h,/) 

0 set unitRead[m.i] to PC and fix up 
1 if (mode m is contained in a module on host h) 

2 // read communicators into task input ports 
3 Vd e readDrivers(m, r}-.emit{call{d)) 
4 // release tasks with no precedences 
5 \fte reieasedTasks(m. f)\emit{release{t)) 
6 îf (/ = 0) 
7 // release tasks with precedences 
8 Vt G precedenceTasks(m): 

9 // wait for tasks on which t depends to complete 
10 emit{readFuture{comipiete{t). PC + 2)) 
11 emit(jumpAbSOlute{PC + 3 -f |portDrivers(t)|)) 

12 // read ports of tasks on which t depends, 
13 // then release t 
14 Vd E portDrivers(t):em/t(ca//(d)) 
15 emit{release{t)) 
16 // wait for other triggers to become enabled 
17 emit{return) 
18 end if 
19 end if 

The code generation algorithm for programs/ modules/ modes accesses other pro-
grams, modules, or modes through symbolic addresses and does not influence the code 
generation of other programs, modules, and modes. Thus parts of HTL programs can be 
compiled in any order separately. 

4.3. Compilers Analysis 

Complexity of the two HTL compilers, flattening and hierarchy-preserving, are analyzed in 
terms of efficiency of code generation and runtime overhead. Efficiency of code generation 
is measured by the number of instructions generated (by a compiler) for a given HTL 
description. The runtime overhead is the average time spent at each instant in executing 
instructions and searching for enabled triggers; thus the overhead is measured as the 
number of instructions that have to be interpreted per instant, and the number of triggers 
in the trigger queues. 

In this rest of this section the two HTL compiler algorithms are compared both 
analytically and experimentally. First, the lower bound and upper bound, of the complex-
ity of each compiler algorithm are identified intuitively, next a more detailed analytical 
comparison is presented, and in the end there are presented some experimental results, 
which confirm the analytical statement. 

BUPT



4. HTL COMPILER 56 

4.3.1. Overv iew on the Complex i ty of the T w o Compi ler A lgo r i thms 

Glven an HTL description that specifies, p e N>o programs, m e N>p modules, and n g N>o 
modes per module, Table 4.1 presents the space complexity and the runtime complexity 
of both flattening HTL compiler and hierarchy-preserving HTL compiler. The bounds pre-
sented in Table 4.1 represent upper bounds. However for the hierarchy-preserving HTL 
compiler these bounds are also lower bounds. For the flattening HTL compiler the upper 
bounds for the generated code size and for the number of instructions that have to be in-
terpreted per instant are also lower bounds for an HTL description that consists of p 6 N>o, 
771 € N>p modules, and n e N>o modes per module, for which all the HTL programs except 
an HTL program p that is a direct child of the root HTL program, contain one module, and 
for which program P contains the remaining m - p + l modules. The upper bound for the 
number of triggers in trigger queue presented in Table 4.1 for the flattening HTL compiler 
is a lower bound for the same compiler for an HTL description thsit consists of p g N>o, 
m € N>p modules, and n e N>o, and for which all the HTL programs except the root HTL 
program contain one module, and the root HTL program contains m- p-\-l modules. 

The focus of the analysis is to understand the handiing of hierarchy by the two 
compilation algorithms. The code generation for handiing communicators, ports, and task 
invocations is the same for both the compilers, thus the non-hierarchy description is kept 
to a minimum as foilows: the root program contains one communicator declaration; non-
root programs do not contain communicator declarations; and modes do not invoke any 
task. Any mode m in a module can switch to any other mode m' in the module. 

i compiler code size instructions/instant triggers in queue(s) 
flattening 

! hierarchy-preserving Oimrr) 
O(n'̂ -P) O(m-p) 
0(mn) 0(m) 

Tab. 4.1: Comparison of the two compilers 

The generated E code size increases exponentially with the number of modules 
for the flattening compiler, while the size of generated HE code is linear bounded for the 
hierarchy-preserving compiler. The exponenţial explosion in the case of the flattening 
compiler is caused by the flattening process, which in order to merge the refining program 
into the refined mode computes all possible combinations between the modes in parallel 
modules from the refining program. The combination of modes generates an exponenţial 
number of new modes and mode switches, which in the end leads to an exponenţial growth 
of the number of instructions. On the other hand the number of generated instructions 
decreases exponentially with the number of programs; this is due to the fact that as the 
number of programs increases, for a constant number of modules, the number of parallel 
modules in the refmement decreases, thus there are fewer modules to be merged together, 
and less modes will be generated. The hierarchy-preserving compiler generates the same 
number of instructions for each mode no matter where it is declared in the hierarchy. Thus 
for n modes per module (where each mode can switch to any of the other n - 1 modes), 
the number of generated instructions is O(mn^). 

The second column in Table 4.1 compares the number of triggers in trigger queues. 
In case of the flattening compiler, there will be one trigger in the trigger queue for each 
parallel module in the root program of an HTL test description; i.e., in the worst case there 
can be m - p triggers in the trigger queue. For the hierarchy-preserving compiler, there 
will be one trigger in each of the three trigger queues (i.e., write queue, switch queue, 
and read queue) for each mode. Thus in the worst case (when all modules are executed) 
the number of triggers in the queues is 0(m) for the hierarchy-preserving compiler. 

The number of instructions that have to be executed per instant is given by the 
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number of mode switches that have to be checked in the worst case. Since the number 
of mode switches in a mode for a flattened program is exponenţial in terms of number of 
parallel modules in the refinement, the number of instructions that have to be executed 
per instant is also exponenţial in terms of number of parallel modules in the refinement. 
For the hierarchy-preserving compiler, the E machine checks (in the worst case) all modes 
switches for the active mode in each of the modules, which means that in the worst case 
the number of instructions is bound by 0{nm) for each instant. 

4.3.2. Detai led Complex i ty Analys is 

For the detailed analysis, an HTL test description that contains p e N>o programs, m e 
N>p modules, and n e N>o modes per module, has been considered as an input for both 
compilers. All the modes in the test description contain no task invocation and any mode 
can switch to any other mode in the containing module. 

For this kind of HTL descriptions, formulas will be presented for calculated the 
worst case generated code size, worst case number of instructions interpreted per instant, 
and worst case triggers in queues; the formulas will get as an input parameters p, m, and 
n, which describe a class of HTL test description that have p programs, m modules, and n 
modes per module, but which vary in the hierarchical structure. 

4.3.2.1. Worst Case Generated Code Size 

Flattening HTL compiler. In the case of flattening HTL compiler finding a formula that 
can describe the worst case generated code size for an arbitrary number of programs 
is very difficult, due to the fact that the flattening algorithm is highiy noniinear. Thus 
for this compiler it has been considered oniy the case when the HTL description has two 
programs, a similar analysis can be performed for any number of programs not just for 
two, but combining the results in a single formula that will appiy for an arbitrary number 
of program is very difficult. As presented in Section 4.3.1, the flattening HTL compiler 
generates less instructions as the number of programs increases due to the fact that the 
degree of parallelism in the refinement decreases as the number of program increases, 
and since for an HTL description with a single program, the flattening algorithm does not 
affect at all the code generation (i.e., the program is aiready flat), it is obvious that for the 
flattening HTL compiler the worst case generated code size is for an HTL description that 
has two programs and for which all the m - l modules are in the refining program (e.g., 
highest degree of parallelism in the refinement). 

In order to determine the size of generated code for an HTL description with the 
flattening HTL compiler, two analyses have to be performed. In the first analysis the 
flattening algorithm is analyze in order to determine the number of programs, modules, 
and modes in the flatten HTL description. In the second analysis the compilation algorithm 
is analyzed in order to determine the size of the generated code. 
(a) Flattening algorithm. After an HTL description, which has two programs and m mod-
ules, out of which m - 1 are in the child program, is flatten, the number of programs 
is reduce to one, and the number of modules is reduced to the number of modules in 
the root program. Nevertheless the number of modes and modes switches in the flatten 
description is still unknown. 

The first step in flattening an HTL description consists of merging all the modules 
in the refining program into a single module, this merging process will generate a mode 
for every possible combination between the modes in the m - 1 modules from the refining 
program, thus the number of modes in the merged module is n"" ^ Knowing that in each 
of the m - 1 modules, any mode can switch to any other mode, then any mode generated 
from merging together the m - 1 modules shouid also be able to switch to any other 
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generated mode, this gives a total of - l mode switches per generated mode. Thus 
after first step the refming program will contain a single module with modes and 
n"' Vrr^^ - i) mode switches. 

The second step in flattening the program consists of replacing the refined mode 
with the modes in the refming program. After this step, the number of modes in top 
program will be the sum between the number of modes from the previous step and the 
number of modes that are aiready in the top level module (i.e., n) minus one (e.g., the 
mode that will be replaced with the modes from the refining program). As for the mode 
switches, since the refined mode couid switch to n - l modes it means that all the modes 
that replace it, also have to be able to switch to any of the n - 1 modes in the top module, 
this gives n - l more mode switches for each mode that comes from the refming program 
(thus number of mode switches in a modes that comes from refining program is 

+ - 1)). If we now consider the mode switches that are in the top level modes 
(i.e., {n - I)-) we get a total of (n - l)̂  + - + --1) mode switches. 

In conclusion after flattening the program we get modes and ( n - + 
n"' '(n - 1) + ' - 1) mode switches. 
(b) Compiler algorithm. The compiler algorithm for the flattening HTL compiler is mode 
up of three algorithms (Section 4.1). Algorithm 4.1 generates one call instruction for 
each communicator declared in a program (there is one communicator in the considered 
HTL description), one future instruction for each module in a program, and one return 
instruction, thus for the considered HTL description, this algorithm will generate three in-
structions. Algorithm 4,2 first generates instructions to initialize task output ports, since 
in the considered HTL description there is no task output port, this will generate no in-
struction, next the algorithm generates a jump instruction to the start mode, since in the 
flatten program there is oniy one module, there will be oniy one instruction generated by 
this algorithm for the considered HTL description. Algorithm 4.3 generates one instruction 
for each mode switch in a mode, and for each mode it will generate four more instructions 
(since there are no tasks in any of the modes, no E code will be generated to release tasks 
or read/write communicators). The compiler also generates an instruction that invokes 
the root program. Thus total number of instruction generated by the flattening compiler 
algorithm is 3 -f l -h 4n' -h + 1 = 5 + 4n' + where 0 is the number of mode switches in 
the flatten HTL description, and n is the number of modes in the flatten HTL description. 
Now if we use the results from the flattening algorithm analysis we get that for flattening 
HTL compiler the worst case generated code size for an HTL description with 2 programs, 
m modules, and n modes per module is -f n"" -h + n̂  + 2n + l. 
Hierarchy-preserving HTL compiler. The compilation algorithm for the hierarchy-
preserving HTL compiler consists of three algorithms, one for each structural unit (i.e., 
program, modules, and mode) of an HTL description. Algorithm 4.4, which compiles a 
program, generates one instruction for each communicator, i.e., l instruction for the HTL 
test description (there is oniy one communicator declared), two instructions for each mod-
ule in a program, i.e., 2m for the HTL test description, and two return instructions for each 
program, i.e., 2p for the HTL test description. Algorithm 4.5, which compiles a module, 
for the HTL test description, generates three instructions for each module, and one in-
struction for each output port declared in a module, thus it will generate 3m instructions. 
Algorithm 4.6, which compiles a mode, can be split in two parts: (a) mode initialization 
code generation and (b) mode unit code generation. For mode initialization, there will 
be generated one instruction for each mode switch in a mode, two instructions for each 
mode, and for each mode that is refmed there will be generated eight instructions to start 
refmmg program. Knowing that for the HTL test description there are n - l refming pro-
grams, mn modes, and n - l switches per mode, the total number of instruction generated 
for initializing modes is ((n -1)4- 2)mn + 8(p - i). For mode units, there are generated five 
instructions for each mode switch in a mode and twelve instructions for each mode. Total 
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number of instructions generated for mode units when compiling HTL test description is 
((rî - 1)5+ l2)rrîn. In order to start executed HTL program there has to be generated an in-
struction to call each program initialization section, one instruction to start executing root 
program and a retum instruction. Thus the hierarchy-presen/ing HTL compiler generates 
6mn^ + Smn + l ip + 5m - 5 instructions when compiling the HTL test description. 

4.3.2.2. Runtime Overhead 

In order to analyze runtime overhead both the worst case number of instructions that have 
to be interpreted per instance and the worst case number of triggers in queue have to be 
computed. 
Flattening HTL compiler. The worst case number of triggers in the trigger queue, when 
executing an E code program that has been generated for the HTL test description using 
flattening HTL compiler, is influenced oniy by the number of parallel modules in the root 
program, thus in the worst case for an HTL test description there can be at most m - p 
triggers in the trigger queue. The worst case number of instructions that have to be 
interpreted per instant depends on the number of instructions that have to be executed at 
the beginning of the period of a mode. Since in the worst case there can be ^̂  + n - l 
mode switches in a mode in a flatten program, it means that together with two instructions 
from the beginning of a mode unit and with the two instructions from the end of a mode 
unit, a total of + n + 3 instructions have to be interpreted per instance in the worst 
case for an E code program that was generated using flattening HTL compiler for an HTL 
test description. 
Hierarchy-preserving HTL compiler. For the hierarchy-preserving HTL compiler the 
degree of parallelism is always equal to the number of modules, i.e., m modules are 
executed in parallel. Since all the modes in all the modules are similar, it is enough to 
count maximum number of triggers for a mode and then multiply it by number of modules 
that are executed in parallel (e.g., m) in order to find the highest number of triggers in 
trigger queues. Since, for an HTL test descriptions the modes contains no task invocation, 
it means that the maximum number of triggers in trigger queues is three. Thus when 
executing HE code generated using the hierarchy-preserving HTL compiler for an HTL test 
description, the worst case number of triggers in trigger queues is 3m. In order to evaluate 
the highest number of instructions that have to be interpreted per instant it is important 
to notice that the degree of parallelism for an HTL test description is n, and that all the 
modes have the same period, thus in the worst case the HE machine will need to interpret 
HE code for unit zero for all the active modes. Thus in this case the worst case number of 
instructions that have to be interpreted per instant is (n -h 7)m. 

4.3.3. Experimental Analysis 

This subsection compares the efficiency of both flattening compiler and hierarchy-
preserving compiler, experimentally. In order to compare the runtime overhead intro-
duced by interpreting E code and HE code generated by flattening compiler and hierarchy-
preserving compiler, respectively, the time spent in interpreting E code and HE code for 
the 3TS case study HTL description (presented in Chapter 5) has been measured; the 
delay introduced by code interpretation Is below 1% for both E code and HE code. This re-
sult proves that for relatively simple HTL descriptions (i.e., with no parallel modules in the 
refinement), the runtime overhead introduced by interpreting HE code is not significantly 
higher than the runtime overhead introduced by interpreting E code. % 

The code size is compared for HTL descriptions with p programs (i.e., one top-level 
program and p- 1 refinement programs) and m modules (p < m), where each module has 
n = 2 modes switching between themselves. For each such scenario there are a number of 
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possible HTL descriptions. AII the HTL descriptions for which 1 < p < 7 and 1 < m < 7 have 
been automatically generated, and compiled with both HTL compilers. For each scenario 
the highest generated code size for each compiler has been recorded. In Fig. 4.2 it is 
plotted the highest generated code size for flattening compiler, and in Fig. 4.3 it is plotted 
the highest generated code size for the hierarchy-preserving compiler. The two figures 
show that the results from the previous section are correct. Thus in the worst case the 
size of generated E code (4364 instructions) is an order of magnitude larger than the size 
of generated HE code (387 instructions). 
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5. Case Study: Three Tanks System 

AII the case studies that are presented in this thesis consists of implementing a real-time 
control appiication for one of the foilowing two plants: Three Tanks System (3TS) [38] 
and JAvaiator [11]. Both plants are non-linear plants, which require multi-mode con-
trol strategies. This chapter consists of two sections: in the first one it is described the 
3TS plant and one possible control strategy, in the second section it is presented an HTL 
implementation for the 3TS control strategy, which is presented in the previous section. 

5.1. Three Tanks System Overview 

The Three Tanks System (3TS) plant consists of three interconnected tanks, e.g.. Ti, T2, 
and T3; in Fig. 5.1 it is presented schematically the 3TS plant. Each of the three tanks 
is connected to an evacuation tap, e \ , €2, and ea respectively. Tank T2 is connected to an 
additional evacuation tap, g. 

Fig. 5.1: Schematic representation of 3TS plant 

Tank T3 is interconnected with both tank Ti and 72. The interconnection between tanks 
T3 and Ti is done through tap sis, and the interconnection between tank T3 and T2 is 
done through tap S32. Evacuation taps and interconnection taps are used to introduce 
perturbation in the system. The 3TS plant also contains two pumps, e.g., Pi and P2 
connected to tanks Ti and T2, respectively. In Fig. 5.2 It is presented the real 3TS plant. 
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Fig. 5.2: 3TS plant 

Mathematical model. For one tank, depending on if there is perturbation in the tank or 
not, there are two mathematical models: 

1. one tank with no perturbation behaves like a pure integrator: 

Hp{s) = kp-
s (5.1) 

2. one tank with perturbation behaves like a plant proporţional with first order tempo-
rization (PTl): 

For a detailed mathematical model of the 3TS plant please refer to Appendix A. 

Controller desîgn. The goal of the controller is to control water level in tanks Ti and T2 
by controlling pumps Pi and Po based on the feedback information obtained from three 
sensors, which measure the water in each of the three tanks. For the controller design 
it has been considered that there are two distinct controllers, i.e., one controller for tank 
7i and another one for tank T2. Also it has been considered that tanks Ti and T2 are 
two independent tanks, i.e., the dynamics of the water level in each of the tanks can be 
described by equations (5.1) or equation (5.2), depending on if there is perturbation or 
not in that tank. Thus a controller for one tank in general has be designed and then used 
for both Ti and T2. When there is no perturbation in a tank, a proporţional (P) controller is 
a good solution. On the other hand when there is perturbation in the tank, a proporţional 
controller is not enough anymore and a proportional-integrator (PI) controller is needed. 
Thus the final control strategy consists of switching between the P and PI control law, 
based on the presences or absence of the perturbation. 
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5.2. HTL Implementation of the Three Tanks System 
Controller 

In this section it is presented the HTL description that implements the 3TS controller. The 
hierarchical structure of the HTL description is presented in Fig. 5.3. 

Hierarchical Structure Modes Structure 

• progra [ ) modute d l ! i • modeswitcfi start mod. 

Rg. 5.3: 3TS Controller: Hierarchical Structure 

The top level HTL program contains three modules, i.e., A/7 1, MT2, and 
MCommunication. Module MCommunication specifies the timing for the communication; 
it contains one mode mCommunication, which invokes six tasks: task tjrtad, which reads 
water level sensors, task t.write, which updates pump commands, tasks tjp.stimateV\ and 
tjestimateV2, which compute if there is any perturbation in tank Ti, and T2, respectively, 
the last two tasks tJilterHl and t.filterH2, compute a Butterworth filter for the two sensed 
signals, i.e., water level in tank Ti and water level in tank T2, in order to reduce the noise. 
The modules MTl and MT2 specify the timing for the first tank controller and the second 
tank controller, respectively. Each module contains one mode, which invokes one task 
(e.g., the controller task for the corresponding tank). In both cases the controller task 
is refined into two tasks, one that implements the P controller and one that implements 
the PI controller. The PI controller task is further refined into a fast PI and a slow PI, the 
difference between this two consists in the amplification factor, which is higher for the 
fast PI controller. The fast PI controller is used for a high control error, while the slow PI 
controller is used for a low control error. The strategy of switching between a fast and a 
slow PI controller is meant to reduce overshooting. 

In Fig. 5.4 it is presented the data-flow graph for the root HTL program that spec-
ifies the abstract timing for the 3TS controller. Task t read reads the two sensors that 
measure the water level in tank Ti and T2, respectively, and writes those vales into com-
municator hi and /12. The two communicators are read by tasks t.JilurX and tjilur2, 
respectively, which compute the filtered water level in tank 1\ and T2, respectively. The 
communicators hi and /12 are also read by tasks and t.T2, respectively, which compute 
the control law for tanks Ti and T2, respectively, and update communicators U] and u-j. 
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• task direct intertask communication intertask communication through a communicator 

Fig. 5.4: 3TS Controller: Data-Flow 

Tasks t.estimateVl and t^estimateV2 estimate if there is perturbation in tanks Ti and T2, 
respectively, it also compute if a fast PI or a slow PI control law shouid be used, and up-
dates communicators vi and PIJSFI, and V2 and PI^F2, respectively. Finally tasks t.write 
reads from communicators ui and U2 and sends the new command to the two pumps Pi ^ 
and Po, respectively. 

Timing behavior of the 3TS controller is presented in Fig. 5.5. The program that 
implements the 3TS controller consists of running in parallel the functionality that imple-
ments the communication with the 3TS plant, the functionality that controls tank Ti, and 
the functionality that controls tank T2. In general the program invokes eight tasks every 
500ms. The first task to be invoked is the tjread task, which has an LET of 300ms, this task 
will write to the fourth instance of communicator hi and /i2. Tasks tJTl and t_T2 have an 
LET of lOOms; they will read the fourth instance of communicators hi and /12, respectively, 
and in the end they will update fifth instance of communicators ui and U2, respectively. 
Tasks t.fîlterHl and t.JiltcrHl have an LET of 200ms; these tasks read fourth instance 
of communicators hi and /12, and their output port will be read by tasks t.estimateVl and 
t.estimateV2, respectively. Tasks t-estimateVl and t.estimateV2 have an LET of lOOms; 
these tasks read from fifth instance of and U2, and from tasks t.filterHl and t.filterH2 
and writes to the second instance of communicators î i and v^, and PIJSFl and PIJ5F2. 

5.2.1. A r ch i t e c t u r e 

The 3TS system plant is connected to a Windows 98 machine through a DAC98 acquisition 
board. Since for this implementation the Unix version of the E machine has been used, a 
TCP server has been implemented, which sits on the Windows 98 machine, communicates 
to the 3TS plant and with the machines on which the 3TS controller runs. The HTL pro-
gram that implements the controller was distributed over three Unix machines: first Unix 
machine runs the controller for Ti, second machine runs the controller for T2, and third 
Unix machine runs the communication module The communication between two different 
instances of E machine is done through UDP/IP protocol, and the communication with the 
server that is connected to the 3TS plant is done through TCP/IP protocol. In Fig. 5.6 it is 
presented the architecture on which the 3TS controller has been implemented. 

5.2.2. Resu i t s 

In order to evaluate the 3TS HTL controller that has been presented, a number of three 
experiments have been conducted. AII the experiments have been run on the real 3TS 
plant. In the first experiment the implemented controller has been modified so that a 
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Rg. 5.5: 3TS Controller: Timing 
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proporţional (P) controller Is used for both tank Ti and 72. The target for tank Ti was set 
to 30cm, and the target for tank 72 was set to 40cm. In tank Ti there was no perturbation 
while in tank there was perturbation. In Fig. 5.7 it can be seen the water level in the two 
tanks. In the two diagrams one can observe that for tank Ti (where is no perturbation) 
the P controller is good enough and the target water level is reached in about l lOs, but for 
tank 12 (where is perturbation) the target water level is never reached, which means that 
the P controller is not good in this case (i.e., it can not compensate for the perturbation). 
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Fig. 5.7: P Controller for both T I and T2 (TI without perturbation, T2 with perturbation) 

In the second experiment the controller has been modified so that a proportional-
integrator (PI) controller is used for both tank Ti and To. The target for tank Ti was set to 
30cm, and the target for tank To was set to 30cm. In tank Ti there was no perturbation 
while in tank T> there was perturbation. In Fig. 5.8 it can be seen the water level in the two 
tanks. From the two diagrams one can observe that for tank Ti (where is no perturbation) 
the PI controller is not good, i.e., the target water level is overshoot, nevertheless for tank 
Tz (where is perturbation) the target water level is reached in about lOOs. 

In the third experiment either a P or a PI controller is used for both tanks, de-
pending on the presence or absence of perturbation in the controlled tank. The target for 
tank T was set to 30cm, and the target for tank T2 was set to 40cm. In tank Ti there 
was perturbation, while in tank T2 there was no perturbation. In Fig. 5.9 it can be seen 
the water level in the two tanks. From the two diagrams one can observe that for tank 
Ti (where is perturbation) the P-PI controller is good enough and the target water level is 
reached in about 150s, and for tank T2 (where is no perturbation) the target water level 
is overshoot, but the difference between the reached level and target level is oniy around 
2cm, the control time is 200s. 

From the three experiments that were presented above nor a P controller neither 
a PI controller is good enough to control water level in tank Ti and T2 in all the possible 
scenarios, but if it is used a controller that switches between a P control law if there is 
no perturbation in the controlled tank, and a PI control law if there is perturbation in the 
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Fig. 5.8: PI Controller for both T I and T2 (TI without perturbation, T2 wlth perturbation) 
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Fig. 5.9: P-PI controller for both T I and T2 (TI with perturbation, T2 without perturbation) 
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control tank, the results become very good and we can say that this controller can control 
the 3TS plant In any scenario. 

Controller TI T2 Controller 
7%J tc[s\ 7 l % | 

P 
PI 

P-PI 

110 
75 
150 

0 
11 
10 

0 
36 
0 

150 
200 

10 
0 

-77 
0 
5 

Tab. 5.1: Control quality indicators 

In Tab. 5.1 it Is presented the control time (te), overshoot (ai), and the difference 
between the target value and the value at which water level stabillzes (7), for the three 
experiments. As shown in the table oniy the P-PI controller is able to control the plant 
in any scenario. The P controller is not able to compensate for perturbation, while the PI 
controller is not able to control water level when there is no perturbation. 
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6. Exotask HTL 

The constant growth in complexity of embedded systems requires development of new 
real-time programming languages and tools that improve development of such systems. 
In this context more and more attention is paid to Java, which has been shown to be very 
efficient for non-real-time appiications. The main advantages of Java over other object-
oriented languages, i.e., C-I-+, are: automatic memory management, namely, in Java 
programmer does not have to explicitly allocate/de-allocate memory since these opera-
tions are done behind the scene; Java programs are portable, i.e., once a program was 
compiled it can be run on any platform for which there exists a Java virtual machine im-
plemented; code reusability. AII this advantages are not for free, the price that is paid for 
them is represented by the lost in efficacy (the ratio between the time the processor is 
available for executing appiication specific code in a period and the period for which the 
efficacy is analyzed [1]) and non-determinism. The lost in efficacy is due to the fact that 
Java programs are not directiy compiled into machine code but into bytecode, which is 
interpreted by the Java virtual machine. The non-determinism is due to the garbage col-
lector (GC). Although the non-determinism due to the GC has been removed, thus making 
possible the use of Java for developing real-time appiications, the former problem still 
remains and limits the categories of real-time appiications for which Java can be used. 
Thus, Java can be used for developing complex real-time appiications for embedded sys-
tems that use a relative powerful hardware (over 300MHz processor and at least 32MB 
of memory), whereas for embedded systems that use microcontrollers, C or C+-i- are still 
the best choice. 

Exotask [8] is a new programming construct for developing real-time appiication 
in Java. It addresses three key problems: low latencies, pluggable schedulers, and deter-
ministic timing behavior. Tasks in Exotask can be run at frequencies below the barrier of 
one millisecond; this is not something new for Java, nevertheless Exotask is less restric-
tive as compared to other solutions (Eventrons [32], Reflexes [33], and StreamFlex [34]). 
In the Exotask system, a task can be annotated with Information that defines its timing 
and that is used by the scheduler when task has to be scheduled. The set of Java classes 
that are used to specify timing Information form the so called timing grammar. Although 
Exotask comes with a predefined timing grammar and a predefined scheduler, which can 
interpret the predefined grammar, it is not limited to the predefined trimming grammar 
and scheduler, since Exotask specifies an interface through which a new timing grammar 
can be specified and a new scheduler, which can interpret the new timing grammar, can 
be registered into the system; the new scheduler has full control over the task execution. 
Although Java provides funcţional portability across platforms, not all real-time program-
ming methodologies that have been developed for Java support timing portability, this 
is because they relay on platform dependent characteristics in order to tune the appii-
cation. In the case of Exotask, timing portability is guaranteed, with the condition that 
there are enough resources. In order to achieve timing portability, Exotask uses LET [5] 
model of computation. Exotask supports distribution of a program over a set of hosts and 
composition of Exotask graphs specification. 
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Exotask framework consists of a hierarchy of Java classes that are used to specify 
and to execute an Exotask program, and an Eclipse [39] plug-in, which provides a graphical 
editor for the Exotask program. In order to run an Exotask program IBM WebSphere Real 
Time (WRT) product JVM [40] its needed. The WRT includes RTSJ [27], the Metronome 
real-time garbage collector [29], and an ahead-of-time (AOT) compiler, which is used to 
eliminate non-determinism due to JIT compilation [41]. 

An Exotask program consists of an Exotask specification graph, which can specify 
data-flow between the tasks invoked in the program and timing of the tasks. The pro-
gram also contains a set of Java classes that implement the functionality of the nodes in 
the Exotask graph specification. In Fig. 6.1 it is presented an overview of how a real-time 
appiication is developed using Exotask. The nodes in an Exotask graph specification are 
represented by specifications of Exotasks (Exotask specification), while the edges rep-
resent specifications of connections (Exotask connection specification) between the Exo-
tasks. Thus an Exotask graph specification depicts the data-flow jn an Exotask program. 
In order to specify the timing of an Exotask graph, each node and each edge of an Exo-
task graph specification has to be annotated with timing information, e.g.: the period, the 
offset with in the period, etc. The timing information that can be used to annotate nodes 
and edges in an Exotask graph specification, depends on the selected grammar. The Ex-
otask system comes with two predefined grammars: Timed-Triggered (single mode) and 
Timed-Triggered (multiple modes). The difference between the two grammars consists in 
the fact that the second grammar supports sequential composition of sets of Exotasks, 
whereas the first one does not support such composition. 

Timing 
expressed in 
an Exotask 

graph 

Functionality 
written in 

Java 

JAVA 
connpiler 

real-time 
appiication 
(b^ecode) 

Fig. 6.1: Overview of Exotask programmlng model 

There are three types of Exotasks specifications: communicator specification, task 
specification, and predicate specification. A communicator is a system provided Exotask, 
which has one input port, one output port, and exposes an execute method, which copies 
the value from communicator input to communicator output. A communicator acts like 
a buffer, it is inspired from HTL, and it can be used to communicate between tasks that 
have different frequencies. A communicator specification in an Exotask graph specification 
consists of a name, which can be used to refer the communicator, a data type, which 
specifles what kind of values can be buffered by the communicator, an iniţial value, and 
communicator's timing. A task is an Exotask written by the user. A task specification 
consists of a name, an implementation class, a list of input ports, a list of output ports, 
and timing annotation. The name is a string that is used to refer to the Exotask. The 
implementation class, is a Java class that implements the functionality of the task; it 
has to obey certain restrictions [8]. The list of input ports and the list of output ports 
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represent the interface through which the task can communicate with other Exotasks in a 
program. Each input/output port has a type associated with it; it can handie oniy values 
of the associated type. A predicate is still an Exotask written by user that Is invoked 
by the scheduler and which computes a boolean value based on a set of inputs. The 
boolean value computed by a predicate is interpreted by the scheduler according to the 
timing grammar, i.e., in the case of Timed-Triggered (single mode) predicates are not used 
at all, but the Timed-Triggered (multiple modes) uses predicates in order to Implement 
mode switching. A predicate is specified through a name, an implementation class, a 
list of input ports, and timing annotation. The name is a sthng value used to refer to 
the predicate. The implementation class is a Java class that implements the functionality 
behind the predicate; as in the case of a task, the class has to obey some restrictions. The 
list of input ports are used to read values from other Exotasks, values that influence the 
boolean result. The timing annotation for all types of Exotasks specifies when an Exotasks 
has to be executed. 

o 
TTS&igte,.. 

0 . . B 
Sensor Cbniput» Actuator 

Fig. 6.2: Example of Exotask graph in graphical editor 

An Exotask connection specification consists of a name, a data type, a source 
and a target. The name is a string value, which is used to refer to the connection. The 
data type identifies the type of values that can be exchanged though the connection. The 
source Identifies the source Exotask and the source port, and the target specifies the 
destination Exotask and destination port. Both the type of the source port and the type 
of the destination port have to match the type of the connection. The timing annotation 
for an Exotask connection specification specifies when the value from the source port is 
transferred to the destination port. 

There are three ways to create an Exotask graph specification: using the java 
classes for specifying an Exotask graph, which are provided by the Exotask framework, 
editing an XML file that can be parse by an XML parser provided by the Exotask framewoi^, 
or using the graphical editor, which is provided by Exotask framework. In the case of the 
graphical editor, the graph is saved in an XML file. Exotask framework provides function-
ality for switching between the Java representation of an Exotask graph specification and 
an XML representation. In Fig. 6.2, Fig. 6.3, and Fig. 6.4 is represented an Exotask graph 
specification, which contains three tasks and which uses Timed-Tnggered (smgie mod%) 
grammar, in the three possible ways: graphical editor, XML, and Java code respectively. 

The graphical editor is very expressive when it has to represent data-flow never-
theless there is no view for illustrating timing of the entire program; timing of an Exotask 
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<Exoca3)cOraph> 
<TiiningProvider )cind»'simple' 
par ser »' co». Ib». rea It iac. exotasks. t i»ing. s mp le. S imp leTiaingDataParser' 

! graphics-'bO 60 300 15' period='5'/> 
<Task id-'Sensor' implenentation»'test.exennpleO.Sensor' graphic3='60 60 124 172'> 
<Output id- oucC type-'oava.lang.Integer'/> 
</Taslo 
<Task id-'Actuator' iasplementation"'test .exampleO. Actuator' graphic3='60 60 429 171'> 
<Input id-'inC type-'java.iang.Integer'/> 
<Ti»lng offsets-'5'/> 
</Taslo 
<Tas)c id"'CoB)pute' unplenentation»' test.exampleO.Conipute' graphic3='60 60 267 171'> 
<Input id«'inO' type*'java.lang.Integer'/> 
<Output ld»'out0' type-'java.lang.Integer'/> 
</Tas)c> 
<Coiinect ion id»' Ccuopute_Actuator • source= • Conpute • target=' Actuatoc.' > 
</Connection> 
<ConnectloQ id«'Sensor^Compute* source»'Sensor' target='Conpute'> 
</Connection> 
</Exotas)cGraph> 

Rg. 6.3: Example of Exotask graph In XML 

E x o t a s l c G r a p h S p c c i t i c a c i o n «ana - n e v E x o t a s k O r a p h S p e c i f a c a t i o n ( ) ; 
E * o t a s k T a s k 3 p e c l f l e a t i o n S e n a c r - n e w E x o c a a k T a a l c S p e c i f i c a t l o n O ; 
3cd0oi: . s e t N a a e ( *?e iL9oc* ) ; 
S c a s o c . s e t l n p I e n e n t a c i O D C l a s s ( " t e s t . e j r c t a p l e O . S e n i o r " ) ; 
3 e a s o r . 9 e c l B p u t P o c t T y p e s ( n a « S c c a B 0 [ ] n » ; 
3 « n s o r . s e c X n p u t P o r c N a a e s ( n e v S t E l n o ( ] { n ; 
Senscc . scc .Pacoa iecerTypeC" ' ) ; 
S e n s o r . 9 e t . P a z a B e c e r V a l u e C " ) : 
S « n 2 0 c . 9 e t O u c p u t P o c c T Y p e 9 ( n e v S t r i n g C J { " J a v a . l a n g . I n t e g e r " , ) ) ; 
Seosor . M t O u t p u c P o c c l I a n e 9 ( n « v S c r i n g [ ) { " o u t O " , ) ) ; 
3 e n a o r . i » « t » e a k i y l 8 0 l a t e d ( X « l « e ! ; 
a n s . g e c T a s J c s O . a d d ( S e n s o r ) ; 
E s o t a s f c T a a k S p e c i f i c a t i o n I c t - o a t o r - n e » E x o t a a k T a s i c S p e c l f i c a t i o n ( ) ; 
l c t . u a t o c . 8 e t . H « B D e ( " A r t u a r o t " ) ; 

i c c u a t o t . s e t T i a i n g P a t a (nev c a » , i b a . r e a l t x a e . e x o t a a t o . t u a i n g . s i a i p i e . S i a p l e T i m i n g J L n n o t a t i o n ( 
nmw S t r i n g [ J <n«UJ.>, n e v ran9[][]{ne* King[ J ( 5 0 0 0 0 0 0 L , ) , > ) ) ; 

I c t u a t o r - s e t i M p i e n e n t a i i o n C l a s s ( " t e s t . cxonfp isO.JLctuaccc" ) ; 
A c t u a t o r . s e t I n p u r P o r t T y p e s ( n e w 3 t r l n o ( ) ( " j a v a . l a n g . I n t e g e r - , > ) ; 
A c t u a t o E . s c t I a p u t P o r t K « e s ( n r w S t r l n g E l < " i n O " , ) \ ; 
i c t u a t o t . s e t P a r a a e t e t T y p e ( " " ) ; 
Â c t u a t o r . s e t P a t a » e t e r V a l u e ( • " ) ; 
A c t u a c o c . 9 e c O u t p u t P o r c T 7 9 e 9 ( n w S t r i n o d ( ) ) ; 
lctuator.9etC'\JtputPortNanie9(n®w S t r i n g l ) ( ) ) ; 
JLctuator . s e t H e a ) c l 7 l 9 o l a t e < l ( t a l « e ) ; 
a A 9 . g e ^ T a 9 ) c s ( ) . a d d C l c t u a t o n : 
E x o t a a k T a a f c S p e c i f i c a t I o n C o n p u t e - n e w Exotas IcTaa lcSpec i f l e a t i o n () ; 
CcaE«>ute.9etlfaaK < • - ro i ipute ' '» ; 
C o a p u t e . 9 e t l o p l e n e n t a t l o n C i a g g ( " t e a t . exan jp leO. Computc") ; 
C o i » p u t e . 9 e t I n p u t P o r t T y p c 9 ( n e w S t r i n f l f H " j a v a . l a n g . I n t e g e r - , ) ) ; 
C o z n p u t e . s e t I n p u t P o r t N a x B e * ( n e « S t r i n g [ ] C i n O " , >) ; 
C o n p u t e . s e t P a c a a e c e r T y p e » ; 
C o m p u t e . g e t P a r o a B e t e c V o l u e C — ) ; 
Conipute . o e t O u t p u t P o r t T y p e g (new S t r I n g l ] < " 3 a v a . l a n g . I n t e g e r " , >) ; 
C o i n p u t e . g e t O u t p u t P o c c N a M e s (nev 3 t r x n g [ ] { " c i u O " , ) ) ; 
CoBipute . 9 e t a e a k l y l 9 o i a t e d ( f a L s e ) ; 
a n g . getTaslca ( ) . add (Conpute ) : 
an9.gecConnection9(« .add(new Exota9lcConnection3pecificat Ion ("Conpute Xct uator-,nulX Coapute O Ictuator O ) ) • 
an9.getConnection9n ..ad(l(aĉ  i c a t l o n l - S e . M o r JoţBpute",nuIJL, Sw O n • 
an9.9etTliPlngData(nr» con». l b n . r e a l t i « i e . e x o t a 9 l C 3 . t i a i n g . 9 i j B p l e . P e E i o d ( 5 0 0 0 0 0 0 L ) ) ; ' ' 

Rg. 6.4: Example of Exotask graph In Java 
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or a connection can be view oniy by clicking on it. The XML and Java code representations 
of an Exotask graph specification are more intended to be autonnatically generated and 
not edited manually. 

Once the Exotask graph has been specified, the resulted Exotask graph specifica-
tion is validated by the scheduler associated with timing grammar that has been used for 
specifying the Exotask graph. As a result of validating the Exotask graph specification, 
an Exotask graph is generated, which can be used to control execution of the Exotask 
program. 

In the remaining of this chapter I will present a timing grammar for Exotask which 
implements the HTL semantics. In order to achieve this, the foilowing three steps had to 
be performed: definition of new timing annotations and extension of the graphical editor in 
order to support new timing annotations, implementation of a scheduler that can interpret 
HTL grammar, the scheduler also compiles an Exotask graph specification into an HE code 
program represented in Java, and finally implementation of an E code interpreter, which 
is invoked when Exotask graph is started. 

6.1. Exotask HTL Grammar 

In this section are presented the timing annotations that have been defined in order to 
express HTL semantics in an Exotask graph specification. First the hierarchical structure 
of an HTL program has to be specified as global timing annotation for an Exotask graph 
specification that uses HTL grammar. The HTL global timing annotation consists of a list 
of HTL program declarations, a list of HTL module declarations, and a list of HTL mode 
declarations. An HTL program declaration consists of specifying the name of the HTL 
program. An HTL module declaration consists of specifying the name of the module, the 
name of the start mode, and the name of the HTL program that contains the HTL module. 
An HTL mode declaration consists of specifying mode name, the period of the mode, the 
name of the HTL module that contains the HTL mode, and the name of the refining HTL 
program if any. In Fig. 6.5 it is presented an example of a global timing annotation for an 
HTL description that contains two HTL programs, i.e., PI and P2. Program P i contains one 
module. M l , which contains two modes ml and m3. Program P2 refines ml and contains 
one module, M2, which contains one mode, m2. 

<TittingProvider kină = ' ht 1' parser = ' at. ijjii_2al ibur g. cs . exot asUs .iaing. hr: i . HTLTia.ir.5: a-" î»F ar r 
graphiC3= 60 60 245 45' > 

<Pi:ograinLi3t> 
<Progran) naure = 'Pl'/> 
<Prograffl nairie = ' P2 ' / > 

</Prograrr.Lisr,> 
<HoduleLi3t> 

<Hodule nace = 'El scart = 'ml' prograic = •Pl /> 
<Hoduie naire = ' H2' atart = ' rnZ prograrc - F2 /> 

</HoduieLi3t> 
<HodeLi3t> 

<Hcde name ̂  'rol' period '5s' modulţ - 'HI' r̂ iine - ?2 : 
<Hcde naioe = ' rt2 ' period = '52' inoduie = ' H2 ' refine - / > 
<Hode name = " m3' period = 'lOs' module •= 'Hi' ref:ne •= 

</HodeLi3C> 
</TiiDiEigPcQvider> 

Fig. 6.5: Example of global timing annotation for HTL grammar 

HTL communicators are mapped directiy to Exotask communicators, thus a com-
municator is annotated with the program in which the communicator is declared and with 
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the access period. In Fig. 6.6 it is presented an example of a communicator annotation; 
comnnunicator ri is declared in program P l and has a period of Is. 

<CoaiPunira!:or icJ-'cl cype='java. lang. Integer' ini!:ialVaiue='' graphic3='60 60 362 133'> 
<TiKing penc'.i = 'l3' pcogran = '?1 /> 

</CoiaBunica:.or̂ -

Fig. 6.6: Example of communicator timing annotation for HTL grammar 

HTL tasks are mapped directiy to Exotask tasks, thus a task has to be annotated 
with the name of the HTL mode in which the HTL task is invoked. Since in HTL a task 
can be abstract or concrete, a task in the Exotask graph specificatjon has to be marked 
as abstract or concrete, also for tasks that refine abstract tasks it has to be specified the 
name of the parent task. In Fig. 6.7 it is presented an example of a task timing annotation 
for tow task: tl, which is an abstract task invoked in mode m l and tu, which is a concrete 
task, it refines task ti and it is invoked in mode m2. 

<T»5K id= tl' mp icmentat ion= • nesţ:. simpie. ht 1. TI' isoiation=' atrong' gfraphiC3='60 60 526 122'> 
<Inpu: 1(1= mu' lype» :ava. iang. lateger'/> 
•:Outpiit GucO tvpe = 'java. lajig.lDteger:'/> 
-̂Tising iBXi:.2trac: « parer.t = • > 
:iedekss 1 mode » ' k 1' / > 

</Ta3)C' 
vTaŝ  id'' cir iirf iî»erttftţion=' iese. simple. h: 1. Tll • i3olation=' strong' graphic3='60 60 515 20'> 
•• Iripur id̂ 'inC;' Tava. laaj. Integer •/> 
<0'itpui icl« cur3 j-iva.lang.Integer'/̂  
•:Tiaing laibscrac; » lalse parent = 'tl'> 

<EoQ̂ kSiigueeDZ ncde » 'bC'.-> 

Fig. 6.7: Example of task timing annotation for HTL grammar 

HTL mode switches are mapped to Exotask predicates, thus a predicate it is an-
notated with the source mode and target mode. In Fig. 6.8 it is presented an example 
of predicate annotation; the annotated predicator is mapped to the mode switch that 
switches from mode m l to mode m3. 

•Prei.-at̂  is? If̂ ni ar i.n-' t ea'.. j itr.p 1; . J-.t i. Ssitch»! _.;_ta3 ' uc iacion-'strcng «jraphics» ' 60 60 771 237 > 
ItiPu' I.l» in; lany. .iiCf jer •. ^ 
Tmi;g ' ir P.df - •• 

• KocleJL? 3 : ;rji* r . «.j ' ' t : 
-TiEin^ 

Rg. 6.8: Example of predicate timing annotation for HTL grammar 

HTL tasks can communicate either directiy or indirectiy through an HTL communi-
cator. In an Exotask graph specification that uses HTL grammar a direct communication 
between two tasks is represented through an Exotask connection that connects an output 
port of one of the tasks and an input port of the other task. Indirect communication is 
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represented through two Exotask connections; one that connects one task and a commu-
nicator and the other one that connects the other task and the same communicator. Thus 
an Exotask communication is annotated with the foilowing information: the name of the 
mode in which connection is used, the instance number of the communicator read/whtten, 
and a flag to specify if the communicator is read or written. If the connection is used to 
communicate between two tasks then the instance value has to be set to - l and the 
flag does not matter. In Fig. 6.9 are presented two connections: t2J3, which is used 
to communicate between two tasks, and cUl, which is used to communicate between a 
communicator and a task. 

<Connect ion i d= ' t 2 _ t 3 ' s ou r ce= ' t 2 ' t a r g e t = ' t 3 ' > 
<Ti ining ins tance= ' - 1 ' ur itesComrnunicat.or= ' f a l s e ' > 

< H o d e A s s i g n m e n t m o d e = ' m 3 ' / > 
< / T i r r i i n g > 

< / C o n n e c t i o n > 
<Connect ion i d = ' c l _ t l ' s o u r c e = ' c l ' t a rge t= ' r: 1' > 

<Timing i n 3 t a n c e = ' l ' ur itesConiimunicator= ' f a l s e ' > 
< H o d e A s s i g n i n e n t m o d e = ' m l ' / > 

< / T i m i n g > 
< / C o n r i e c t i o r i > 

Fig. 6.9: Example of connection timing annotation for HTL grammar 

The Eclipse plug-in that implements the Exotask graph specification graphical ed-
itor has been extended to recognize the new annotations, and an XML parser has been 
implemented to parse HTL grammar annotation. 

6.2. Exotask HTL Scheduler 

As presented in Chapter 4, an HTL description is first compiled into HE code, then the 
resulted HE code program is executed on HE machine. Thus in order to executed an 
Exotask graph specification that uses HTL grammar, a scheduler that translates the HTL 
annotations of an Exotask graph specification into a form of HE code, which is designed to 
work with the corresponding instantiated Exotask graph, had to be designed. The compiler 
algorithm used here is based on the hierarchy-preserving HTL compiler (Section 4.2). 
When the execution of the Exotask graph is started, the generated HE code is interpreted 
by a Java HE machine. 

The compiler and the E machine together play the formal role of a pluggable Ex-
otask scheduler. E code instructions that release tasks cause those tasks to be assigned 
exclusively to a scheduler thread responsible for running it once (in general, the bind-
ing of tasks to threads is temporary and dynamic, but the compiler has determined the 
maximum concurrency level and the scheduler then requests enough scheduler threads 
to ensure that there will always be a thread available to run each released task). E code 
instructions whose purpose is to copy values between ports, or between ports and com-
municators, use the Exotask system interface made available to schedulers for performing 
the deep copying between Exotask heaps. E code instructions that perform mode switches 
interrogate condition nodes in the graph, just like any other scheduler. 

In adapting the latest HTL compiler to work with the Exotask system, compilation 
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Is always done "on demand" at the point where the Exotask system invokes the HTL sched-
uler. That is, despite the opportunity for separate compllation when using the hierarchical 
strategy, there is no ability to save code artifacts across successive runs. 

6.3. Case Study: JAviator 

The JAviator [11], [12] is a quadrotor helicopter [42]. Fig. 6.10 presents an overview of 
the real JAviator. The helicopter was developed at University of Saizburg in order to test 
different methodologies for designing and developing real-time appiications. 

Fig. 6.10: JAviator 

JAviator hardware configuration consists of: 

• one Gumstix [43], which is a full-function miniature computer, on top of which runs 
Linux operating system, it is powered by an XScale processor at 400MHz and it has 
64MB of RAM, there is also a version of IBM WebSphere Real Time (WRT) product 
JVM running on it, this makes possible development of Java real-time appiication 
for the Gumstix; for JAviator the Gumstix is used to run either parts of the control 
program or even the entire control program, and to communicate with the ground 
station over TCP or UDP; 

• one Robostix [44], which is a board based on the ATmegal28 processor (clock fre-
quency 16MHz, flash memory 128KB, EEPROM data memory 4096B, SRAM data 
memory 4096B, two timers/counters on Sbit and two on 16bit, two full duplex US-
ART, I2C interface, support for in-system programming, etc.) ; it is used for sensing, 
actuating, and for running parts of the control program, it is possible that the entire 
control is implemented on the Robostix, in which case the Robostix also has to com-
municate with the ground station; the communication can be either directiy over an 
RS232 communication channel, or indirectiy through the Gumstix; the communica-
tion between Gumstix and Robostix is performed over RS232; 

• one Microstrain gyroscope [45],which provides information about Euler's angles, 
derivative of Euler's angles, and accelerations on x, y, and 2 axies; 

• one SFRIO ultrasonic range finder [46], which provides information about the alti-
tude. 

For the JAviator there are at least two control problems that have to be addressed: 
low-level control{LLC) problem, which consists of controlling the altitude and the attitude 
(i.e., roll, pitch, and yaw) of the helicopter, and high-level control{hLC) problem, which 
consists of controlling the x and y position of the helicopter. In Fig. 6.11 it is presented on 
overview of the two JAviator controllers. 
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Fig. 6.11: JAviator control overview 

The low-level controller receives sensed data, from the gyroscope and from the 
ultrasonic sensor, and target values for z, roll, pitch, and yaw from ground station or 
from high-level controller, and computes the command for each of the four rotors of the 
JAviator (i.e., Ti, T2, T3, and T4), which is send to the helicopter as a PWM signal. The low-
level controller consists of: z controller, which controls the altitude, roll controller, which 
Controls the roll angle, pitch controller, which controls the pitch angle, and yaw controller, 
which controls the yaw angle. The z controller is a PID controller, while the roll, picth, and 
yaw controllers are PD controllers. The four controllers have been designed using the pole 
allocation method. For designing the controller the simplified mathematical model of the 
JAviator (Chapter B) has been used. 

The high-level controller has two modes of operations, e.g., the manual mode and 
the auto mode. In the manual mode the high-level control oniy passes the roll and pitch 
references received from the ground station to the low-level controller. In the auto mode 
the high-level controller computes the roll and pitch targets for the low-level controller so 
that the requested x and y target position is reached. Currently there is no sensor on the 
JAviator that can provide Information about the x and y position, thus the onIy way to get 
such Information is to estimate it based on the acceleration received from the gyroscope. 

So far there has been implemented a Java low-level controller using Exotask [8] 
framework, and a C low-level controller. In this thesis I will presented two more imple-
mentations, one that uses Exotask-HTL (Subsection 6.3.1), and the other one that uses 
micro HTL (Chapter 7). 

6.3.1. Exo ta sk -HTL Imp l emen t a t i o n o f t he JAv i a t o r LLC 

In this section it is presented an Exotask-HTL implementation of the low-level controller. 
Figure 6.12 depicts, in visual syntax, the HTL program that implements the the low-level 
control. The program consists of running in parallel functionality that implements the low-
level control as well as functionality that implements the communication with the JAviator 
and with the ground station. 

The top-level program contains three modules, namely, MLLControl, 
MJAviatarComm, and MGrcnindComm. The MJAviatorCamm module speclfies the 
timing of tasks that implement communication with the JAviator. It also computes the 
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Fig. 6.12: The HTL Program Structure of a JAviator Flight Controller 

next state for the altitude and attitude controllers. The module consists of a single mode, 
which has a period of 20ms. The mode Invokes the ReadFromJAviator, WriteToJAviator, 
and ComputeState tasks. The MGroundComm module specifies the timing of tasks that 
implement communication with the ground station. This module also contains oniy one 
mode that has a period of lOOms and invokes the ReadFromGround and WriteToGround 
tasks. Module MLLControl contains the mController and mShutdown modes, which both 
have a period of 20ms. The mShutdown mode specifies the timing of the emergency 
shutdown, while the mController mode specifies the timing of the altitude and attitude 
controllers. The mController mode invokes the Controller task, which implements the 
altitude, roii, pitch, and yaw controllers. 

The Controller task is refined by two tasks in the HTL program PLLController: one 
task is a concrete task and is invoked in the mOnCround mode, while the other one is an 
abstract task and is invoked in the mAirborne mode. The abstract task is further refined 
in the HTL program PAirborne by three other concrete tasks; one for each of the three 
possible states of a flying helicopter, i.e., take-off, hover, and land. 

Figure 6.13 presents in visual syntax the Exotask graph that specifies mController 
mode, and the Exotask graph that specifies both communication modules, i.e., with the 
sensors and actuators, which are connected to the JAviator, on one hand, and with the 
ground station on the other. The XML source of the two Exotask graphs can be found in 
Section E.5. AII the modes that refine the mControl are specified in Exotask graphs that 
have a similar structure with the Exotask graph that specifies mode mControl, before the 
Exotask program it is translated into HE code, all the Exotask graph specifications are 
composed into a single Exotask graph specification. 

Both the MJAviatorComm module and the MGroundComm module contain two 
tasks one for reading data from the sensors and the ground station, respectively, and the 
other one for writing data to the actuators and the ground station, respectively. In addition 
to the read and write task, module MJAviatorComm contains the task ComputeState, which 
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Rg. 6.13: Data-Flow View of the Top-Level HTL Program In Fig. 6.12 

computes the state of the low-level controller based on the data recelved from the ground 
station. The MLLControl module, contains two tasks, one task that sets all the command 
signals to zero, which it is invoked In mode mShutdow, and the other one Controller, which 
computes the actuate signals based on the values recelved from the sensors and from the 
ground station, and it is invoked in mode mController. The communication between the 
Controller task and the tasks invoked in the two communication modules is done through 
communicators. 
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Fig. 6.14: Timing View of the HTL Program in Fig. 6.12 

Figure 6.14, depicts, the timing of the HTL program. Tasks invoked in the 
MLLControl and MJAviatorComm modules are executed once every 20ms, while tasks 
in the MGroundComm module are executed once every lOOms. 

All the communicators have a period of 4ms. Task ReadFromCround and 
ReadFromJAviator have a LET of 4ms, they are released for execution at the begin-
ning of the period of the mode in which they are invoked, and they have to fînish 
within 4ms when they update the second instance of the communicators fromCround and 
fromJAviator, respectively. Task Controller reads the second instance of both fromCround 
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and Jrom.]Aviator communicators, and wrltes to the fifth instance of the toJAviator com-
municator, thus it has an LEI of 12ms. Task WriteToJAviator and ComputeState read 
the fifth instance of communicator toJAviator, and task ComputeState writes to the sixth 
instance of comnnunicator llcState, while task WriteToJ Aviator does not write to any com-
municator it oniy sends the new commands to the motors; both tasks have an LET of 4ms. 
Task WriteToGround read the sixth instance of all the communicators and sends a report 
to the ground station, it has an LET of 80ms. 

6.3.1.1. Results 

Two experiments have been conducted with the Exotask-HTL implementation of the JAvi-
ator LLC. In both experiments an AMD64 four-way 2.4GHz machine was used. Although 
using such a powerful machine for embedded systems might sound un-realistic, there are 
embedded systems which requires powerful processors and for which space and energy 
consumption is not a problem, i.e., next generation battleships [35]. Nevertheless in the 
future I hope to optimize the Exotask-HTL implementation so that it can run on a Gumstix; 
Exotask programs using TT grammar have aiready been shown to run on Gumstix [9]. 

In the first experiment the Exotask-HTL JAviator LLC has been run on the AMD64 
machine, at it was connected to a simulated JAviator plant. In Fig. 6.15 it is plotted the 
time interval between two successive runs of the ReadFromJAviator tasks. 
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Fig. 6.15: Interarrival times of the ReadFromJAvlator task, when no concurrent allocation is 
done 

In the second experiment the Exotask-HTL JAviator LLC has been run on the 
AMD64 machine and an additional task, which allocates memory at a rate of 2MB/s, was 
run on the same machine in the same JVM as the control appiication. Again control plant 
was a simulated JAviator plant. In Fig. 6.16 it is plotted the time interval between two 
successive runs of the ReadFromJ Aviator tasks. 

The two experiments show that the timing of the program is accurate enough, 
e.g., the time interval between two successive execution of a task varies with less then 
300/iSec. The second experiment shows that if there is enough computation power and 
if there are enough resources, the timing behavior of the appiication is not influenced by 
other tasks, not even by the GC task. 
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Fig. 6.16: Interarrival times of the ReadFromJAviator task, when concurrently allocating 2MB 
per second 
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7. Micro HTL 

Implementation of embedded appiications (i.e., helicopter hover control [11]) in many 
cases has to be done on a hardware platform that is limited both in terms of the speed 
of the processor and in terms of the available amount of memory (e.g.: microcontroller). 
Thus in this chapter it is presented a micro implementation of HTL (micro HTL), which 
consists of an optimized version of the HTL compiler, micro HTL compUer, and an optimized 
version of the E machine, micro E machine. 

The micro HTL compiler and the micro E machine support most of the features 
of HTL that have been presented in Chapter 2. The oniy feature that is currently not 
supported at all by the micro HTL is communication between tasks that are in the same 
mode through local ports, nevertheless it is possible to communicate between tasks that 
are in the same mode through communicators. The reason for not supporting this feature 
is that communicating between tasks through local ports introduces dependency constrains 
between those tasks, which requires invocation of the E machine after each task has 
completed execution in order to update the list of events for each trigger in readQ, which 
may introduce significant runtime overhead, and high memory cost. Thus in this case 
expressiveness has been trade off for runtime performance. 

The target platform for the micro HTL implementation is reppresented by the Ro-
bostix [44], which is based on ATmegal28 [47] microcontroller (clock frequency 16MHz, 
flash memory 128KB, EEPROM data memory 4096B, SRAM data memory 4096B, two 
timers/counters on Bbit and two on 16bit, two full duplex USART, I2C interface, support 
for in-system programming, etc.) from Atmel AVR. 

7.1. Micro Embedded Machine 

The micro E machine is the central part of the micro HTL runtime (Fig. 7.1). Micro HTL 
runtime also contains the Ims timer and the micro EDF scheduier. The Ims timer is a 
timer that has a resolution of Ims that is used as a time event generator. The micro EDF 
scheduier is an EDF scheduier [15] that is used to schedule tasks released by the micro 
E machine. The micro E machine runs as a task with deadiine zero. When there is no 
instruction to be interpreted and no active trigger in any of the three trigger queues (i.e., 
writeQ, switchQ, and readQ) the task in which the micro E machine runs, terminates. 
Before the task in which the micro E machine runs, terminates, the Ims timer will be set 
to release the micro E machine again after a time interval equal to the earliest time event 
on which one of the triggers in any of the three queues depends. 

7.1.1. M i c ro EDF Schedu ie r 

The micro EDF scheduier has been developed based on the Super Simple Tasker or 
SST [48]. SST is a priorities based scheduier that has been designed to work on a mi-
crocontroller. The main advantage of SST is that context switching is very cheap since it 
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FIg. 7.1: Micro HTL runtime 

uses a single stack to store context for all tasks. There are certain limitations regarding 
the tasks that can be scheduled by SST, thus a task has to be finite, it shouid contain no 
synchronization points, and it shouid not change dynamically its priority. Since HTL tasks 
are pure funcţional tasks, that are finite, periodic, and have a fix deadiine, they meet the 
above limitations. 

The micro EDF scheduler, schedules tasks based on their deadiine, i.e., task with 
the earliest deadiine will be run first. The micro EDF scheduler assumes that tasks can be 
released either be another task, or from outside (e.g., from an interruption event handier). 
When a task t releases for execution another task t', task t' must have a deadiine greater 
or equal with the deadiine of task t. The scheduler maintains an ordered list of tasks that 
have been released for execution, i.e., whenever a task is released it will be inserted into 
this list ordered ascending by its deadiine. When a task finishes execution the first task 
in the list will be executed. When a task is released from outside, the schedule function 
has to be invoked manually. However, the schedule function does not have to be invoked 
manually if the task is released from another task, since it will be invoked automatically 
when task finishes execution and since the task that is released can not have a deadiine 
smaller than the deadiine of the task that does the release, it is obvious that the currently 
running tasks is still the task with the earliest deadiine. 

In the case of micro E machine implementation, the micro E machine runs as a 
task with a deadiine of zero, while all other tasks have a deadiine greater than zero. The 
oniy task that can release other tasks is the task in which the micro E machine runs. After 
the micro E machine task has finished execution it will be released for execution again 
after a period of time by the Ims timer. 
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ng. 7.2: Micro EDF scheduling example 
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In Fig. 7.2 it is presented an example of how the micro EDF scheduler works. 
Initially there is no task running except the micro E machine task (Fig. 7.2-a); during its 
execution the micro E machine releases for execution k tasks (e.g., h, t-z, . . t k ) - After 
the micro E machine task fmishes execution, task ti, which has the earliest deadiine of 
aii k tasks, is executed (Fig. 7.2-b). Next (Fig. 7.2-c) the micro E machine is released 
again from the event handier of the Ims timer, this causes task u to be suspended and 
its context to be saved onto the stack, and the micro E machine task is executed again. 
During the second execution of the micro E machine task, a new task {tk. i) is released 
for execution; since this task has a deadiine that is earlier than the deadiine of it will 
be executed after the micro E machine task completes its execution (Fig. 7.2-d). Finally, 
after task tk^i finishes, task ti will be resumed. 
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Fig. 7.3: Runtime overhead introduce by the release task operation in the worst case 

Since the list of tasks that has to be executed is a list ordered by task deadiine, 
it means that the time consuming operation in case of the micro EDF is the release task 
operation. Thus, release task operation has been benchmarked; in Fig. 7.3 it is presented 
the evolution of the runtime overhead introduced by the release task operation in the 
worst case. The worst case for the release task operation is represented by the case when 
the task that is released has the latest deadiine of all aiready released tasks. In case of 
a single task the worst case runtime overhead is around ISfis. The worst case runtime 
overhead increases with 7/is for each task. Thus, the runtime overhead introduced by the 
release task operation in the worst case is linear in terms of number of tasks. 

7.1.2. M i c r o E m b e d d e d Mach i ne Imp i emen t a t i o n 

Implementation of the micro E Machine has to consider both the limited amount of memory 
that is available on a microcontroller and the low speed processing unit of a microcontroller. 
Thus, in order to minimize the size of memory used for data, each data structured has to 
be carefully analyzed so that the memory is not wasted. On the other hand, knowing that 
the processing power of a microcontroller is limited the runtime overhead introduced by 
the micro E machine has to be as low as possible. The micro E machine presented in this 
section has been developed starting from the HE machine that has implemented in C f̂ r 
Unix (Chapter 3). 

In Fig. 7.4 it is presented the structure of the micro E machine. The micro E ma-
chine consists of an HE code interpreter and a set of lists, queues, and tables. The HE code 
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interpreter either interprets HE code or checks the three trigger queues for enabled trig-
gers; when there is no Instruction to be executed and no active trigger In any of the three 
queues, the HE code Interpreter computes the smallest time Interval after which at least 
one of the triggers In any of the three queues wlll get enabled, and sets the Ims timer to 
release the HE code interpreter after that period of time. The micro E machine uses no 
dynamic memory allocation; everything Is statically allocated at compile time. 

task driver ^ ! condition i 
functions functions | functions i 

task ' driver condition 
table table table 

list of PC . ^^ c ® ^ 
HE code 
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Interpretor ^ 
instructions: ^ R3 

wqueî  
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E machine cor» _ _ ' functlonality , j auto generated 

Fig. 7.4: Micro E machine 

The C code from which the micro E machine is compiled, consists of three groups 
of code: C code that implements micro E machine functionallty (i.e., HE code Interpretor), 
C code that implements functionallty of the HTL description to be run, and C code that Is 
generated by the HTL compller when complling the HTL description. Thus every time the 
HTL description changes the entire micro E machine has to be recomplled. 

The micro E machine contains three statically allocated tables: task table, driver 
table, and condition table. AH the three tables are generated by the micro HTL compller. 
Task table assoclates an Index with a task function (l.e., a pointer to a C function that 
implements the functionallty of a task); when a task has to be released for execution the 
release{t) instruction Is used, where t is the Index of the task function of the task that 
has to be released. Driver table assoclates an index with a driver function (e.g., a pointer 
to a C function that implements the functionality of a driver); when a driver has to be 
invoked the call{d) instruction will be used, where d is the index of the driver function of 
the driver that has to be invoked. Condition table assoclates a condition function (l.e., a 
pointer to a C function that Implements the verification of a condition and returns one if 
condition Is met and zero if condition Is not met); when a condiţional jump has to be made 
a jumplf{cnd,a) Instruction Is used, where cnd is the index of the condition function that 
has to be evaluated and a is the address where the execution will jump If the condition Is 
true. The micro E machine contains also four registers (e.g., RO, Rl, R2, and R3), which 
in the micro E machine are represented as pointers to triggers. 

One of the optimizatlons that has been done for the micro E machine. In order to 
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save data memory, was the encoding of the HE code instructions. In Fig. 7.5 it is presented 
the encoding of an HE code instruction. Each HE code instruction is encoded on 24 bits (3 
bytes). The first five bits are used to encode instruction code; next eleven bits are used 
to encode first argument (in many cases this is an HE code address); last eight bytes are 
used to encode second and third arguments. Since the address parameter of an HE code 
instruction is limited to 11 bits this will limit the maximum size of an HE code program to 
2048 instructions, nevertheless this is more then enough for a program that is intended 
to be run on a microcontroller. 

instruction 

code ^ arg2/arg3 

Fig. 7.5: Instruction encoding 
AII the HE code instructions have a maximum number of two arguments, except 

the three future instructions (e.g., writeFuture, switchFuture, and readFuture), and the 
updateChiIdren instruction. Since for the micro HTL there is no dependency relation be-
tween tasks, the third argument for the three future instructions (i.e., the lists of task 
completion events) is never used, thus the future instructions can be seen as a two ar-
guments instruction also. For the updateChiIdren instruction arguments two and three 
can be encoded in the last eight bits of the instruction; the two arguments can take rela-
tively small values, i.e., between O and 3. In Appendix C is presented encoding for each 
instruction. 

The stack of addresses was build around a statically allocated array of integers on 
16 bits in order to optimize each operation with the stack. The maximum size of the stack 
is computed by the HTL compiler. 

The trigger queue is based on a double linked list, which has triggers as nodes. A 
trigger is represented as a structure that uses an unsigned 16 bits integer for the address, 
an unsigned 32 bits integer for the time event on which the trigger gets enabled, a double 
linked list that contains child triggers of the trigger, and a pointer to the parent trigger. 
Since a trigger can be a node in more then one double linked list at the same moment, 
i.e., trigger queue, parent stack, and chiidren list of another trigger, it contains two arrays 
of pointers to triggers that are used to build the double linked list connections. In order 
to optimize runtime overhead triggers in all the trigger queues are ordered after the time 
event on which they have to activate. Triggers are statically allocated; the maximum 
number of triggers is computed by the compiler. 

7.1.3. M i c ro E Mach i ne P e r f o rmance 

Performance of the micro E machine implementation has been evaluated based on four 
experiments. In the first experiment the time interval between two consecutive releases 
of the same task has been measured. The HTL description that has been used in the 
first experiment implements the altitude and attitude control of a helicopter [11] (Sub-
section 6.3.1). The program has a period of 20ms. In Fig. 7.6 it is presented the time 
interval between two successive releases of the groundConnect task; the results have been 
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collected for over 20min. As shown in the figure, in one case the time interval between 
two successive releases of task groundConnect is off by O.Snns, while in the rest of the 
cases it is off by less than V s . The second experiment is similar to the first one, just that 
another task has been added to the set of running tasks, in order to simulate heavy load. 
With the new task added, the load of the period was around 95%. As shown in Fig. 7.7 the 
performance of the micro E machine is preserved, as long as there are enough resources, 
even in heavy load conditions. 

i*yxy. 

,0 

Period [ms] Count 
19.455124 1 
19.999312 1 
19.999376 3 
19.999438 37781 
19.999562 16200 
19.999624 10795 
19.9995 5402 

19 19 ̂ 31: 19 9993̂ 'b 19 999438 19 9995 19 999562 ^ 9 999624 

t |ni*) 

Rg. 7.6: Time interval between two consecutive releases of task groundConnect 

Period [ms] Count 
19.464938 1 
19.999376 18576 
19.999438 2 
19.9995 83609 

19.999562 1 
19.999624 18576 
19.999688 1 

Fig. 7.7: Time interval between two consecutive releases of task groundConnect fora period load 
of 95% 

In the third experiment the memory usage has been measured. In order to mea-
sure the amount of memory that is occupied by the micro E machine independent of the 
HTL description for which the micro E machine was compiled, the micro E machine has 
been compiled for an HTL description that has one program, one module, one mode, and 
one task. Fig. 7.8 shows that the micro E mchine needs at least 16Kb of program mem-
ory, which represents 12.2% of the entire program memory available on an ATmegal28 
microcontroller, and at least 710 bytes of data memory, which represents 17.3% of the 
entire data memory available on an ATmegal28 microcontroller. Of course the amount 
of program and data memory used by the micro E machine is directiy proporţional with 
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the complexity of the HTL description for which the virtual machine has been compiled, 
i.e., for the JAviator control program about 25% of the program memory is occupied and 
about 65% of the data memory is occupied. 

100% 
90% 

80% 

70% 

60% 

50% 

40% 

30% 

20% 

10% 
0% 

Used Data Memory Used Program Memory 

Fig. 7.8: Memory usage 

In the last experiment the runtime overhead introduced by the micro E machine 
has been measured. For measuring the runtime overhead a high precision timer (62.5ns) 
has been used. The overhead was measured as foilows: whenever the micro E machine 
has to be invoked the timer is started and before the micro E machine finishes execution 
the timer is stopped and the elapsed time, which represents the micro E machine runtime 
overhead, is computed. The experiment has been performed for the JAviator controller 
(Subsection 6.3.1). In Fig. 7.9 it is presented the overhead introduced by the micro 
E machine for several time periods. In the figure are presented time periods, in which 
different modes are executed, for the same set of modes the runtime overhead is always 
the same or there is very littie variation. As presented in the figure the highest runtime 
overhead is 3.17ms. Higher runtime overhead is always at the beginning of the period, 
this is because at the beginning of the period the mode switches have to be checked, and 
the HE code that preserves the hierarchy has to be interpreted. 

In Fig. 7.10 it is presented the total overhead introduced in a period by the ex-
ecution of the micro E machine. In the figure are presented total overheads for several 
periods in which different sets of modes are executed, for the same set of modes the over-
head is always the same or there is very littie variation. The highest overhead is 4.93ms, 
which represents 24.65% of the entire 20ms period. 

In orderto measure the efficiency of micro E machine, the efficacy indicator (E) [1] 
will be used. Efficacy is defined as the ratio between the time the processor is available for 
executing appiication tasks and appiication period of execution. Thus for the overheads 
presented in Fig. 7.10 there is a maximum efficacy of Emxn = 0.81 and a minimum efficacy 
of Emax = 0.75. 
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FIg. 7.9: Micro E machine runtime ovei+iead for JAvlator control appilcatlon,, for different modes 
combinatlons 

r 

i 6.000 

5.000 

4.000 

3.000 

2.000 

1.000 

0.000 

1 = 

FIg. 7.10: Micro E machine total runtime overhead over a period for JAvlator control appilcation, 
for different modes combinatlons 
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7.2. Micro HTL Compiler 

The micro HTL compiler was implemented starting from the hierarchy-preserving HTL com-
piler presented in Section 4.2. The micro HTL compiler takes as input an HTL description 
and generates the HE code for it; the compiler also generates the task table, diver table, 
and condition table (Fig. 7.11), which are tables that associate a task, driver, and a condi-
tion, respectively, with an index, which is used in the HE code generation process to refer 
to a task, a driver, and a condition, respectively. 

HTL 
description 

\ 7 

micro HTL compiler 

rn 

HE task driver condition 
code table table table 

Fig. 7.11: Micro HTL compiler overview 

Before generating HE code, the micro HTL compiler checks that the HTL description 
is well-formed and time-safe (Fig. 7.12). The Type Checker, verifles that formal parame-
ters of a task declaration and actual parameters of a task invocation match, and that there 
are no references to program elements that are not declared. The Frequency Checker, 
checks that the frequency of a communicator matches the frequency of all the modes in 
which the communicator is accessed (i.e., read or written), and that hierarchy constraints 
are met. The Schedulabilty Checker, verifies that the HTL description is schedulable for 
a given architecture, which is specified though the WCET of each task. The Tables Gen-
erator, generates the task table, driver table, and condition table. The emph HE Code 
Generator, generates the HE code for the program. 

The compiler algorithm implemented by the micro HTL compiler is the hierarchy-
preserving HTL compiler algorithm (Section 4.2), which was optimized not to generate 
HE code for empty units, i.e., units in which nothing happens (e.g., no task is released 
and no communicator is read or written). The micro HTL compiler was extended to com-
pute the maximum size of address stack, the maximum size of parent stack, and the 
maximum number of triggers that are needed to run the compiled HTL description. All 
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Type Checker 

Tables Generator 

Frequency Checker 

Schedulabllity Checker 

HE Code Generator 

Fig. 7.12: Micro HTL compiler 

this information is used to statically allocate address stack, parent stack, and the triggers 
that will be used at runtime. 

7.3. Case Study 

In this section are presented two examples of real-tinne control appiications that have been 
implemented using micro HTL. The first example represents a controller for the 3TS plant. 
The second example implements the JAviator low-level controller. 

7.3.1. 3TS Con t r o l l e r 

The first example of real-time control appiication implemented using micro HTL, represents 
a controller for the 3TS plant. The hierarchical structure of the HTL description is similar 
to the one presented in Section 5.2, the oniy difference is represented by the fact that the 
functionairty of the filter tasks has been moved into tjread task (Fig. 7.13). The entire HTL 
description can be found in Section E.3. 

Although the structure of the HTL description is similar to the one presented in 
Section 5.2, the timing has been changed (Fig. 7.14). The program consists of six tasks 
that are executed every 250ms. Task tjread has an LET of 50ms, e.g., it reads no com-
municator and updates the second instance of communicators hi and /i2. Tasks and 
t.T2 read the second instance of communicators hi and h2, respectively, and update the 
fourth instance of communicators ui and u2, respectively; both and have an LET 
of lOOms. Tasks t.estimateVl and t.estimateV2 read the fourth instance of communica-
tors hi and h2, respectively, and update the sixth/first instance of communicators vi and 
PISF\, and v2 and PIJSF2, respectively; tasks t^estimateVl and t.estimateV2 have an LET 
of lOOms. Finally, task t-write, reads the fourth instance of communicators ui and u2, and 
updates no communicator, thus it has an LET of lOOms. 

Data-flow between tasks is similar to the data-flow presented in Section 5.2, with 
the observation that there are no filter tasks, thus tasks t.estimateVl and t.estimateV2 
communicate with task tjread through communicators hi and h2, respectively. 

7.3.1.1. Timing Analysis 

For timing analysis, the WCET of each task has been measured using a high precision 
timer. Given the limited computation power of the microcontroller, the runtime overhead 
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Rg. 7.13: 3TS Controller: Hierarchical Structure 
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FIg. 7.14: 3TS Controller: Timing 
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introduced by each E machine invocation has been measured and has been considered 
in the analysis. Timing analysis for the 3TS controller is depicted in Fig. 7.15.With black 
arrow it is represented the LET of a task and in parenthesis it is noted the WCET of the 
task. With read arrows it is represented the time spent in interpreting E code for each 
E machine invocation. 

task logtcal exBoutIor 

!LwrttoiWCET= 1.W5J ^̂  _ _ 
LET = 100 « 

r ^ LET =100 < < ^ 

{WCET- 0 01825) 
LET = 50 

5 47 ^ J.-W 

^ ^ - - ^ ^ - - r -
2 4 6 8 50 52 56 58 150 152 154 156 158 llms] 

Fig. 7.15: 3TS Controller: Timing analysis 

For the schedulability analysis the time overhead introduced by each E machine 
invocation has been added to the WCET of the task that has the earliest deadiine rela-
tive to the moment when the E machine is invocated, the new WCET is further referred 
as extended worst case execution time (EWCET). For instance task tjread has an WCET 
of 0.01825ms, the overhead introduced by the E machine before executing this task is 
5.47ms, thus the EWCET for task t.read is 5.48825ms which is less then the LET of the 
task, thus task t.read is schedulable. Similar it can be shown that all tasks in the program 
are schedulable. The efficacy of the E machine for this control appiication is around 95%. 

7.3.1.2. Results 

Fig. 7.16 presents the experimental results obtain by using the 3TS control appiication to 
control a simulated 3TS plant. The water level target is set to 40cm for tank Ti and to 30cm 
for tank 72. At moment t = Os the evacuation tap for tank Ti is open; the rest of the taps 
are closed. Since in tank Ti is perturbation the PI controller is used, while for tank T2 a P 
controller is used (there is no perturbation). At moment t = 70s evacuation tap for tank T2 
is open, thus the controller for the second tank switches to a PI controller, whIch succeeds 
to compensate for the perturbation. At moment t = 3675 the evacuation tap for tank Ti is 
shutdown, thus the controller for Ti switches back to P. 

7.3.2. J Av i a t o r L ow - L e ve l Con t ro l l e r 

The real-time control appiication presented in this subsection, implements the JAviator 
low-level controller, which has been presented in Section 6.3), using micro HTL The HTL 
program that specifies the timing of the low-level controller is presented in visual syntax 
in Fig. 7.17, the entire HTL program can be found in Section E.6. The program consists 
of a root program, e.g., Micro JAviator, and two refining programs, i.e., PControl and 
PAuto, The root program contains three modules: Control, GroundCommunication, and 
J Aviator CoTnmuTiication. 

The GroundCommunication module contains two modes that can switch between 
each other, e.g., mOroundConnect and mCroundCommunication. The Start mode is 
mGroundConnect mode, in which a single task is invoked, which waits for the ground sta-
tion to connect. When the ground station connects the mGroundConnect mode switches to 
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mGrcrundCcnnmumcxitian, which invokes two tasks, i.e., read task, which reads information 
sent by the ground station (i.e., target values), and wriie task, which sends to the ground 
station reports about the altitude and the attitude of the JAviator, and about the com-
mands that were sent to the rotors. In order to limit the traffic, the write tasks can not 
send more than 8 bytes of data in a single period, thus it needs four periods to send all the 
data to the ground station. In the period when the first packet is sent all the information 
that has to be sent (e.g., rotors commands, altitude, roii, pitch, yaw, etc.) is stored in the 
state of the task, and in the next three periods, the task will sent the information stored 
in its state and not the latest information available. When the ground station disconnects, 
the mode mGroundCommunication, switches back tO mode mGroundConnect, 

The JAviatorCommunication module contains two modes that can switch between 
each Other, i.e., mJAviatorConnect and mJAviatorCommunication. The Start mode iS 
mJAviatorConnect, which invokes one task, which waits for the JAviator simulator to 
connect, when the simulator connects the mode mJAviatorConnect switches to mode 
mJAviatorCommunication. Mode mJAviatorCommunication invokes twO tasks: sensisng, 
which reads sensor data sent by the simulator, and actuating, which sends rotors com-
mands to the simulator. When the simulator disconnects, the mJAviatorCommunication 
mode switches back to the mJAviatorConnect mode. 

The Control module contains two modes, i.e., mControl, which is also the start 
mode, and mShutDown. Mode mShutDown can not switch to any mode, it implements 
the emergency shutdown procedure. Mode mControl can switch to mode mShutDown, it 
invokes control task, which is abstract (i.e., a placeholder for the task that implements the 
control). Mode mControl is refmed by program PControL Program PControl refines the 
Control mode into auto and manual mode. The auto mode is further refined by program 
PAuto into take off, hover, and land modes. In the manual mode, the commands for the 
four rotors are sent directiy from the ground station. In the take off mode, the thrusts 
produce by the rotors are increased with a constant value until the gravity is compensated, 
when the helicopter can go into hover mode. In the hover mode a PID controller is used 
for the altitude and a PD controller is used for roll, pitch, and yaw, respectively. In the 
land mode the thrusts produced by the four rotors are decremented with a constant value 
until they are zero. 

_ _ simConn̂  _ J 
manuamwuste thrusts 0 ' 
_ 1 manualConfaT^I ! 

growdSWaO 
groundCpnr̂  ' j 

ţl^l 
10 12 16 20 

Flg. 7.18: TIming and data-flow before connect 

Timing of the program can be divided in two: timing before the ground station 
and the simulator have connected, and timing after the ground station and simulator have 
connected. In Fig. 7.18 it is presented the timing of the program before the ground sta-
tion and the simulator have connected. In this case there are oniy three tasks invoked. 
Task groundConnect is released at the beginning of the period, has an LET of 5ms, and 
updates the sixth instance of communicator groundState. Task simConnect is released at 
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the beginning of the period, has an LET of 12ms, and updates the thirteenth instance of 
communicator simState. Task manualControl reads the thirteenth instance of communica-
tor manualThrusts and updates the seventeen instance of communicator thrusts, thus it 
has an LET of 4ms. 
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Fig. 7.19: Timing and data-flow after connect 

Fig. 7.20, depicts the timing of the program after the ground station and sim-
ulator have connected, in this case there are invoked five tasks. Task read has an LET 
of 5ms and updates sixth instance of communicators: manulThrusts, graundStatc, target, 
and nextState. Task write has an LET of 5ms , reads the sixth instance of communica-
tors: crrState, nextState, thrusts, altitxide, and attitude, and updates eleventh instance of 
communicators: nextState, stateChanged, and crr State. Task sensing has an LET of 2ms, it 
reads the eleventh instance of communicator dummy (this is a communicator used oniy to 
set the desired LET for task sensing, it contains no Information), and updates thirteenth 
instance of communicators: simState, altitude, and attitude. Task actuating has an LET of 
4ms, it reads the seventh instance of communicator thrusts. The control task has an LET 
of 4ms, depending on the active control mode, the control task can be one of the follow-
ing tasks: manulControl, takeOff, hover, or land. The control task updates the seventh 
instance of communicator thrusts. 

7.3.2.1. Timing Analysis 

For timing analysis, the WCET of each task has been measured using a high precision 
timer. Given the limited computation power of the microcontroller, the runtime overhead 
introduced by each E machine invocation has been measured and has been considered in 
the analysis. Here onIy two possible combinations of active modes are analyzed: before 
the simulator and ground station have connected and after they have connected; the rest 
of the combinations are similar to this two. In Fig. 7.20 it is presented the timing analysis 
for the HTL program before the ground station and the simulator have connected. Io 
Fig. 7.21 it is presented the timing analysis for the HTL program after the ground station 
and the simulator have connected. With black arrow It is represented the LET of a task 
and in parenthesis it is noted the WCET of the task. With read arrows it is represented the 
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time spent in interpreting E code for each E machine invocation. 
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Fig. 7.21: Timing analysis after connect 

For the schedulability analysis the tinne overhead introduced by each E machine 
invocation has been added to the WCET of the task that has the earliest deadiine rela-
tive to the moment when the E machine is invocated, the new WCET is further referred 
as extended worst case execution time (EWCET). The schedulability analysis has been 
conducted using the EWCET of each task. Thus, for instance in case of Fig. 7.20 the 
EWCET for tasks groundConnect and simConnect, which are executed in parallel, is 4ms and 
l.29ms, which means that for an LET of bms for groundConnect task and an LET of I2ms 
for simConnect, the two tasks are schedulable. Similar it can be shown that all the task 
are schedulable for both scenarios that have been considered (Fig. 7.20 and Fig. 7.21). 
The efficacy for the two timing analyses that were presented is: 80% for the case when 
the ground station and simulator are not connected and 75% after the ground station and 
simulator have connected. 

7.3.2.2. Results 

In order to test the implementation of the low-level controller for the JAviator, the control 
appilcation has been tested using a simulated version of the JAviator plant. In Fig. 7.22 
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are presented the evolution of the altitude, roii, pitch, and yaw, while in Fig. 7.23 are 
presented the thrusts prescribed by the controller. Although the period of the controller 
is 20ms, data collection is done once every five period, thus data collection happens every 
lOOms; this is way the charts do not look smooth. 

mj^immmm 

Rg. 7.22: Sensors values when using low-level controller implemented In micro HTL 

2-. O 

Fig. 7.23: Actuators values when using low-level controller implemented in micro HTL 

At time zero both the ground station and the simulator connect to the controller 
implemented in micro HTL The altitude target is set to im and at time 1.865 the helicopter 
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is commanded to take off. In the take off mode the thrusts for each rotor are incremented 
with a constant value until the gravity is compensated. At this moment the controller 
waits for a confirmation from the user in order to go into hover mode. As seen in Fig. 7.22 
the target value is reached in about 25, and the overshooting is around 25% of the target 
value. Next, at moment 5s the target for roll and pitch are both set to 5 degrees; for both 
roll and pitch the control time is around Is and the overshooting is zero. There is a small 
chattering (+/ - 0.6 degrees) for both roll and pitch; it is due to the rounding caused by 
the use of fixed point arithmetic operations for the implementation of the control laws. 
Finally at time l l5 the target for the yaw is set to 45 degrees; the control time is around 
3.S and the overshooting is 11%. 

Also there is some inter-influence between the attitude controller and altitude 
controller, in the sense that when there is a non-zero roll or pitch target angle, the altitude 
can not compensate for the variation in the thrusts, and the controlled level is lower then 
the target level. Nevertheless in normal flight conditions the target values for roll and 
pitch will be set to zero, and oniy when a movement in the horizontal plane is needed the 
targets will be set to a different value for a short time interval. 
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8. HTL to Simuiink 

In the process of development of real-time control appiication offline testing plays an 
important role. Simuiink [10], which is a tool for modeling, simulating, and analyzing 
multidomain dynamic systems, is widely used for designing control algorithm. Simuiink 
offers the possibility to model both plant and controller dynamics, thus ailowing testing 
of a control algorithm before it is used on the real plant. Nevertheless even if the model 
of the plant is very close to the real plant, simulating the control algorithm in Simuiink 
it is not enough to ensure that the implementation of the control algorithm for a given 
platform will work. This is because when the control algorithm is simulated in Simuiink, it 
does not consider the timing of the appiication that will implement the controller, thus the 
implementation couid introduce some unknown delays, which have not been accounted in 
the design of the control algorithm, and which in the end couId make the control appiication 
not to work properiy. 

In this chapter, a way of modeling HTL descriptions in Simuiink will be presented. 
The HTL compiler (Chapter 4) has been extended in order to compile an HTL description 
into a Simuiink model. Using this new feature of the HTL compiler, it is possible to simulate 
not oniy the control algorithm, but also the timing of the real-time appiication that imple-
ments the controller, which shouid improved development of real-time control appiication 
using HTL. Beside of being able to simulate the control algorithm and the timing of the 
appiication that will implement the algorithm, modeling an HTL description in Simuiink has 
another important advantage: the ability to generate C code for tasks directiy from the 
Simuiink schema, using Real-Time Workshop [49]. Thus, once the tasks have been mod-
eled in Simuiink funcţional C code for them can be generated automatically. Generated C 
code can be used as tasks implementation. 

Modeling timing of a real-time appiication in Simuiink is not a new idea, it has 
been done before for Giotto [50]. Nevertheless modeling a Giotto program is different 
than modeling an HTL description, since Gitto has no hierarchical structure and no com-
municators. Generating code from a Simuiink schema has been done for Gitto and for 
other languages. For Lustre it has been developed a tool chain [51] that can generate a 
Lustre program out of a Simuiink model, which is the opposite of what it is presented in 
this chapter for HTL, since from an HTL description it is generated the Simuiink model, 
while for Lustre the Simuiink model is created first and then from it the Lustre program is 
generated. 

8.1. încremeni/Decrement Counter 

In order to facilitate the description of the method that maps an HTL description to a 
Simuiink model, an HTL description that increments every second with a variable step 
(i.e., iniţial step is 1, then 5, and the last step is 10), a counter until it reaches the value 
of 50, then the counter is decrement every second with a constant step (i.e., 1) until the 
value of the counter reaches O, then the entire process repeats. The hierarchical structure 
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of the description is presented in Fig. 8.1, while the timing and data-flow are presented in 
Fig. 8.2. 

hierarchical structure modes structure 

t incft ̂  y 

[ program [ ] module O communicator mode I I task - • m o d e s w i t c h start mode 

Fig. 8.1: Increment/decrement counter: structure 

The description consists of two HTL programs: PJnc.dec and PJnc. The root pro-
gram (i.e., PJnc-dec) declares two communicators, e.g., counter and ref. The counter 
communicator has a period of lOOms, it represents the counter which is incremented and 
decremented, and ref communicator has a period of lOOms and it is an auxiliary commu-
nicator, its role will be explained in Section 8.2. The root program contains two modules: 
MJnc.dec and Mreadj^hte. Module MJncjdec specifies the timing of the increment and 
decrement operations; it consists of two modes, mJnc and m.dec, that can switch between 
one another. Mode mJnc invokes every second task tJnc, which is a place holder (e.g., 
it is an abstract task) for the tasks that implement the three possible increment opera-
tions. Mode mJnc is reflned by program PJnc, and it can switch to mode P.dec) the switch 
becomes enabled when the counter value reaches the value of 50. Mode m.dec invokes ev-
ery second task t.dec, which decrements with one unit the second instance of the counter 
communicator and writes back the result to the third instance of the same communicator. 
Mode m^dec can switch to mode mJnc; the switch gets enabled when the counter reaches 
zero. The module Mj^ead.write specifies the timing for the communication with the envi-
ronment (i.e., counter sensing and actuating), it contains one mode, msead.write. Mode 
mj-ead-write has a period of one second and invokes three tasks: task tsead reads the 
counter from the environment and updates the second instance of communicator counter, 
task t.write reads the third instance of communicator counter and writes its value to the 
environment, and task tj-ef whose role will be explained in Section 8.2. 

The program PJnc refines the increment operation into three operations: incre-
ment with 1, increment with 5, and increment with 10. It contains one mode for each 
operation, i.e., mode mJncl invokes a task that increments the counter with 1, mode 
mJncS invokes a task that increments the counter with 5, and mode mJnclO invokes a 
task that increments the counter with 10. AII the three modes have exactiy the same 
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Fig. 8.2: Increment/decrement counter: timing 

timing as the parent mode mJnc. Mode mJncl switches to mode mJncS when counter 
reaches the value of 5, and mode mJncS switches to mode mJnclO when counter reaches 
the value of 20. Mode mJnclO does not switch to any mode. 

8.2. Mapping HTL Programming Elements to Simulink Bocks 

A control appiication monitors sensor values of a plant based on which it wlll compute a 
command, which will be sent to the plant, throughout the actuators. In order to ensure 
that the plant will achieve a desired state, which is defined through the so called reference 
values. Thus the HTL descriptions that are to be translated into Simulink models, consists 
of one and oniy one communication module with the plant and with the environment, 
which does the sensing and actuating, and which reads the reference values. Otherwise 
the program can contain as many modes, modules, and programs as they are needed, 
but they will communicate with the environment and with the plant indirectiy through the 
communication module. The Simulink blocks that will be used in this section are explained 
in Appendix F. 

(Xajrfam.iO 
m.Ref 

PiartMemplatc 

i.:J HTL root program .. plant 

Fig. 8.3: Increment/decrement model first level 

Having the idea of control appiication in mind the Simulink model that is generated 
from an HTL description will have on the top level two subsystems that communicate to 
each other. One subsystem will represent the HTL description (i.e., the control appiication), 
this subsystem will be referred as controller subsystem, while the other subsystem will 
represent the plant, and it will be referred as plant subsystem. The controller subsystem 
reads the sensor values from the plant subsystem and the reference values, and writes 
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the commands back to the plant subsystem. In Fig. 8.3 it is presented the first level of the 
Simulink model that has been generated for the increment/decrement HTL description. 

module • communicator 1 j input/output port :12:34; digital dock 

Fig. 8.4: Simulink model incrementydecrement root program 

For any HTL program an atomic subsystem block will be generated, which will con-
tain an atomic subsystem block for each HTL module in the HTL program and a subsystem 
block for each communicator. The difference between the root HTL program and any child 
HTL program consists in the fact that for the root program a digital docic is generated, 
while a child program receives the clock from the parent program. Also the inputs and 
outputs of the root program communicate with the plat, while for a child HTL program 
they are connected to communicators in the parent program. The digital clock that is gen-
erated for the root program is used to simulate time events, it shouid have a period that 
is at least an order of magnitude smaller then the smallest period in the HTL description; 
since the smallest period in the current implementation of HTL is Ims, for the digital clock 
shouid be enough to have a period of lOOus. In Fig. 8.4 it is presented the content of 
the atomic subsystem that represents the root program of the increment/decrement HTL 
description. 

toi.oter_1 
U«ige 

Mernory_counte! 
0'jt_wunt«r 
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Fig. 8.5: Simulink model for counter communicator 

An HTL communicator is modeled in Simulink as a subsystem that contains a 
merge block that is connected to a memory block. The subsystem always has one input. 
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but it can have as many inputs as modules, since for each module that writes to a certain 
instance of the communicator there has to be an Input. At most one input can carry a 
value at a particular moment in time; this is ensured by HTL constraints since no com-
municator instance can be written from two different modes. In Fig. 8.5 it is presented 
the model of the counter communicator from the increment/decrement HTL description. 
The communicator can be written from both modules in the root program, thus it has two 
inputs. 

mode Merge merge block 1 input/output port mode selector 

Rg. 8.6: Simulink model for MJnc_dec module 

The Simulink model of a module consists of a set of action subsystems, which 
represent the modes that are in the module, a mode selector, which determines which 
mode shouid be invoked, and for each communicator that is written in more than one mode 
there has to be a merge block in order to merge together the signals from different modes 
and to produce a single signal that will be connected to the input of the communicator. 
The Simulink model of a module receives as an input the clock signal from the containing 
program and is broadcasted to each Simulink model of a mode. Except for the clock input, 
a Simulink model of a module has as inputs all the communicators that are read in a 
mode in the module being modeled. The outputs of the Simulink model of a module are 
represented by all the communicators written in any of the modes in the module. In order 
to implement mode switching each mode is associated with a unique integer number and 
each mode generates a signal that specifies which is the next mode. The mode selector 
block reads the next mode signals from each mode and activates the action subsystem 
that corresponds to the mode that has to be executed. For each mode in a module, the 
mode selector block has an output, which is connected to the action port of the action 
subsystem which models the mode. Also for modes that can switch to other modes, the 
mode selector block generates a reset signal, which ensures that a mode does not switch 
in the first period when the mode is executed. In Fig. 8.6 it is presented the Simulink 
model of the MJnc.dec module. 

A mode selector consists of a merge block which merges together the next mode 
signals from all the modes in the containing module, a memory block which stores the last 
enabled mode (this block is needed in order to avoid algebric loops), and a switch case 
block which does the mode selection based on the signal that comes from the memory 
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Fig. 8.7: Simulink model for mode selector in module MJnc 

block. Beside the role of selecting the active mode, the mode selector block has a second 
role, which is the generation of reset signals. The reset signals are generated for aii 
modes that can switch to any other mode; thus for each such mode there will be a reset 
mode generator. The reset signal is active oniy in the first period a mode is active; in 
order to do this, the value of the merged next mode signal at the beginning of the active 
mode period Is stored until next mode period, the stored value is then compared with the 
current value of the same signal and if they are different, then one of the reset signal 
Is activated based on the value of the merged next mode signal (which actually specifies 
which mode activated), this will ensure that the reset signal for a mode is active onIy in 
the first period of the mode that got active. The mode selectors that are in the modules 
from other programs than the root program, have a third role: to reset the active mode to 
the default mode whenever one of the parent modes switches. In order to do this a reset 
signal generated by the parent mode that switches is used in order to force the current 
active mode to the start mode of the module. In Fig. 8.7 it is presented the mode selector 
for module MJnc, which is in a child program, that is why the mode selector has a reset 
input. 

The Simulink model of a mode consists of a set of blocks that implement mode 
clock generator, a set of blocks that implement tasks invoked in a mode, and set of blocks 
that implement mode switches. The mode clock generator computes modulo function 
between the system clock scaled with 10000 and the period of the mode expressed in ms. 
The mode clock has to be scaled by 10000 in order to achieve high precision. For modes 
that are not in the root program, the mode clock is generated by the parent mode (i.e., 
the parent mode and the child mode have the same period in a well-formed HTL program). 
For each task there is an atomic subsystem, which reads the mode clock signal and the 
communicators read by the task; the task block has an output port for each output port 
of the task being modeled. If two task invocations write to two different instances of the 
same communicator, then the two outputs will be merged by a merge block. For each 
mode switch in a mode a trigger subsystem is generated which implements the switch 
condition. The switch block has an input for each communicator read by a mode switch 
and one single output, which can take two values: O when the switch is not enabled and 1 
when the switch is enabled. The switch block executes onIy at the beginning of the period; 
this is ensured by a block that reads the mode clock and if the clock is between O and 10, 
then the switch block execution will be triggered. The output of each switch block is read 
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Fig. 8.8: Simulink model for mode m.dec 

by an action subsystem which computes the next mode based on aii the swltch blocks 
outputs. If a mode contains at least one switch, then it also has to read a reset signal, 
which is active in the first period the mode is executed and which is used to disable mode 
switch logic and to force the next mode signal to the integer value that is associated with 
the mode modeled by the block. 

m e ^ bkx* mput/output port program swrtch 
• • jm 
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l̂ ul) 
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Fig. 8.9: Simulink model for mode mJnc 

In Fig. 8.8 it is presented the Simulink model for the m_dec mode and in Fig. 8.9 
it is presented the Simulink model for the mJnc mode. The main difference between tije 
two models consists in the fact that mode m.inc is refined by program PJnc; it can be 
seen that the mode clock computed in mode mJnc is transmitted to the program PJnc. 
Also based on the switch block in mode mJnc the reset signal for all the modes in program 
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P.lnc is computed, if there are multiple swltches, then the reset signal has to be active 
whenever a switch is active. If the mode is not in the root program, then the reset signal 
has to be active not oniy when a switch is active, but also when the reset that comes from 
the parent mode is active. 

1 • Cî] 
t funcbon tpggered sub rpput/outpul port task funcbon tPggered subsystem alomc ik; subsystem delay 

Fig. 8.10: Simulink model for task t_dec 

An HTL task invocation is modeled as an atomic subsystem, which contains a 
triggered subsystem fro each task input and output, the Implementation of the task func-
tionality is also done in a triggered subsystem. For each input/output, logic is generated 
to activate the corresponding triggered subsystem based on the mode clock and on the 
communicator instance that is read/written. For the activation of the inputs a delay block 
is used in order to allow a communicator to be written before it is read. The delay is very 
small as compare to the entire period of a mode, thus the timing is not affected. The 
triggered subsystem that represents the task functionality has to be activated when the 
latest communicator is read, for tasks with dependencies activation of the triggered sub-
system that implements the functionality has to consider the latest communicator read by 
any task in the dependency list. In Fig. 8.10 it is presented the Simulink model for the 
invocation of task t_dec, which reads instance two of communicator counter and writes 
back to instance three of the same communicator. 

An HTL mode switch is modeled as a triggered subsystem, which is activated at 
the beginning of the period of a mode. A mode switch block consists of an if block which 
implements the switch condition and which activates one of two blocks. If the condition is 
true, then a block that has always one at output is activated, otherwise a block that has 
always zero at output is activated. The output of the two blocks is merged and written to 
a single output. In Fig. 8.11 it is presented the Simulink model of the mode switch that 
switches from mode m_dec to mJnc. 

The result of simulating the Simulink model that has been generated for the incre-
ment/decrement HTL description is presented in Fig. 8.12. In the figure one can see that 
initially the counter is incremented with one every second until the counter value reaches 
the value of five, when the mode mJnc l switches to mode mJnc5. Next the counter is 
incremented with five every second until it reaches the value of twenty, when the mode 
mJnc5 switches to mode mJnclO. In mode mJnclO the counter is incremented with ten 
every second until it reaches fifty, the parent mode of mJnclO switches to mode m_dec. 
Next the counter is decremented with one every second until it reaches zero, when mode 
m_dec switches back to mJnc and the entire process is repeated. 

The HTL compiler has been extended to support generation of a Simulink model 
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FIg. 8.12: Counter evolution 
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out of an HTL program. So far the oniy HTL programs with no task dependencies and with 
no more than one nnode switch per mode can be converted into Simulink model with the 
current Implementation. 

8.3. Developing Real-Time Control Applications with HTL 
and Simulink 

In Fig. 8.13 it is presented an oven/iew of the methodology of developing real-time control 
appiication using HTL and Simulink. Based on the iniţial specifications for the control 
appiication, the timing of the appiication can be extracted and implemented as an HTL 
description. From the HTL description using the HTL compiler it can be generated both 
the HE code (represented as C code) and a Simulink model. The Simulink model of the 
HTL description will be used to develop the control algorithm, and it can also be used to 
simulate and test timing of the appiication; in case of errors the HTL description can be 
reviewed. After the control solution has been developed and tested in Simulink, the Real-
Time Embedded Coder can be used to generate C code for those blocks that implement 
tasks; which represent the functionality of the appiication. In the last step the HE code 
and the functionality are compiled together with the C implementation of the E machine . 
and it results the real-time control appiication which can be tested on the real plant. If 
this test fails then either the functionality or the timing of the appiication can be reviewed. 
The process is repeated until a stable appiication results. 

i HEcode j ' 

i HTL representedi.^^ i 

description i real-time' 

; HTL 0 i ; appiication I 
compiler ^ . i i compiler 1 | (machine 

; : SimuFink | r t w functionarrty | 1 i j code) j 
model Embalded ! 

Coder 
implemented I-

Rg. 8.13: HTL-Simullnk toci chain 

8.4. Case Study 

In order to test and validate the HTL2simulink conversion tool, a controller for the three 
tanks system plant has been implemented using this tool. The structure of the HTL de-
scription that specifies the timing of the controller is presented in visual syntax in Fig. 8.14, 
the entire HTL description is presented in Section E.4. 

The description consists of a root program that contains three modules: two of 
them (i.e., T l and T2) specify the timing for tank T i controller and tank T2 controller and 
the third module specifies the timing for the communication module (i.e., 10). Each of the 
controller modules contains one mode, which invokes one task (e.g., task that implements 
the control law), which is refined by a program (i.e., PJTl or P_T2) into a P or a PI controller. 
The switch between the P and PI depends on the presence or absence of the perturbation, 
for this example it has been considered that there are sensors not onIy for measuring the 
height but also for determining if there is perturbation in a tank or not, thus no estimation 
is needed. The communication module, IO, contains one mode, readWrite, which invokes 
three tasks: t.read, which reads sensor values and updates communicators /il, /i2, vl, and 
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Fig. 8.14: 3TS controller: hierarchical structure 

v2, ijwrite, which reads communicators u\ and u2 and sends the connmands to the pumps, 
and tjref, which reads the target values and updates communicators /ii.re/ and h2^ef. 
The HTL description presented above is different from the one presented in Subsection 5.2 
in the sense that here there is oniy one level of refmement and it has been considered 
that the presence or the absence of the perturbation can be sensed. 

task • intertask communication through a communicator \ / mode swltch 

Fig. 8.15: 3TS controller: data flow 

In Fig. 8.15 it is presented the data-flow between the tasks in the HTL description. 
Thus task t.read reads the sensor values and updates communicators h\, h2, vl, and v2, 
Communicators vl and v2 are read by mode switches in the control modes. Task tjref 
reads target values and updates communicators hi.ref and h2-ref.Jhe controller task for 
TI and the controller task for T2, read communicators h\ and hl^ref, and h2 and h2,ref, 
respectively, and updates communicator ui and u2, respectively. Finally task t.wnte reads 
the values of communicators ui and u2 and sends them to the plant. 

The timing of the HTL description is depicted in Fig. 8.16. The program consists of 
running every 500ms five tasks. Task t.read has an LET of SOOrns, it updates forth instance 
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Fig. 8.16: 3TS controller: timing 

of communicators: hl, h2, vl, and v2. The controller tasks for Tl and T2, read the forth 
instance of communicators h\ and hl.ref, and h2 and h2jref, respectively, and updates the 
fifth instance of communicator ui and u2, respectively; they have an LET of lOOms. Task 
t.write reads the fifth instance of communicators l i l and îx2; it has an LET of lOOms. 

8.4.1. S imu l i n k M o d e l f o r t h e 3 TS Con t r o l l e r 

The Simulink model of the 3TS controller has been generated using the SimulinkZHTL tool. 
On the top level (Fig. 8.17) the model contains two subsystems: the plant subsystem 
and the controller subsystem. In the plant subsystem the model of the plant has to be 
implemented manually, while in the controller subsystem has been generated the Simulink 
model of the timing specified by the HTL description. 
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3 HTL root program i—. plant 

Rg. 8.17: Top level of the 3TS controller Simulink model 
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Fig. 8.18 presents the Simulink model which was generated for the top level pro-
gram; it contains a subsystem for each module and communicator in the program. The 
model defines input and output ports for communicating with the plant and a digital clock, 
which generates the clock that is used to implement the timing. 

npcVoutpui port 

Rg. 8.18: Model Simulink for the root program of 3TS controller 

After the tasks, mode switches and plant Simulink models have been implemented, 
the entire model has been simulated using a target value of 0.5m for tank T i and 0.4m for 
tank T2. In Fig. 8.19 are plotted the levels of the water in the two tanks. Initially there 
was no perturbation in any of the tanks, thus the P controller was used for both tanks. At 
time moment t = I80s, perturbation is introduced in tank T 2 , thus the controller for tank 
T2 switches to P I and compensates perturbation. Similar for tank T l at time moment 
t = 2l0s it is introduced perturbation, thus the controller for T l switches to PI also. 

so 100 tSf ao aau «D 4âo 'joo JOv Xti JOi «JU «U SJO 

Fig. 8.19: Evolution of the level of the water in T l and T2 (/iio = 50, /i20 = 40 for the simulated 
controller 

8.4.2. Imp l emen t a t i o n 

For the controller tasks, C code has been generated using the Real-Time Embedded Work-
shop, which was then used as the implementation of the controller tasks and was compiled 
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together wlth the Unix implementation of the E machine. The resulted appiication was used 
to control a simulated 3TS plant, which is implemented in Java. Fig. 8.20, depicts the evo-
lution of the level of the water in the two tanks; the target value for tank T l was set to 
o.5m and for tank T2 it was set to OAm. Initially there was no perturbation in any of the 
two tanks. At time moment t = I8O5, perturbation was introduced in tank T2, and at time 
moment t = 200.s, perturbation was introduced in tank T l . As seen in Fig. 8.20, the results 
obtained in the case of the real appiication are close to the results obtained by simulating 
the Simulink model of the appiication. 
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Fig. 8.20: Evolution of the level of the water in T l and T2 (/ilO = 50, h20 = 40 for the controller 
implemented in C 
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9. Conclusion 

In the last two decades there has been an accelerated growth in the complexity of em-
bedded and real-time systems. This growth lead to the evolution of the programming 
models for real-time appiication from the physical execution model to logical execution 
model, and to the evolution of the real-time programming languages from assembly pro-
gramming languages to object oriented programming languages (i.e., Java). The focus in 
this thesis was on high-level programming constructs for specifying timing behavior of a 
real-time appiication. 

HTL [2] is one of the most recent innovations in the fieid of real-time programming 
languages; it is a programming language that can be used to specify timing behavior of 
tasks in a real-time appiication, and interaction between them. HTL is considered to be the 
successor of Giotto [5]. An informai description of the HTL syntax and the most important 
features of HTL were presented in Chapter 2. 

As its predecessor, Giotto, HTL it is not compiled directiy into machine code, but 
into the so called E code, which is code interpreted by a virtual machine, namely, the 
E machine [6]. Thus, real-time appiications developed with HTL can be executed on any 
platform for which an E machine implementation exists, and if there are enough resources 
to run the appiication, its timing behavior will be the same independent of the platform. 
In Chapter 3 it was presented the original E machine and how parallel composition of sets 
of periodic tasks can be expressed in E code. Nevertheless, when hierarchy had to be 
expressed in original E code it turned out to be impossible. Thus, the original E machine 
has been extended in order to allow handiing of hierarchical structure at runtime. The 
extended E machine is named HE machine and the extended E code interpreted by the 
HE machine is called HE code. In Chapter 3 is also presented the HE machine and how 
hierarchical structure can be expressed in HE code. 

Two compile algorithms have been designed to translate an HTL description into 
E code or HE code, respectively, both algorithms were presented in Chapter 4. The flat-
tening HTL compiler translates an HTL description into an E code program; since E code 
can not express hierarchical structure, the flattening HTL compiler has to flatten the HTL 
description before it generates the E code program for it. The hierarchy-preserving HTL 
compiler translates an HTL description into an HE code program; it does not have to alter 
the structure of the HTL description being compiled. In the last part of Chapter 4 the 
two compilers have been compared both analytically and experimentally. Both analytical 
results and experimental results show that the flattening HTL compiler generates expo-
nentially many E code instruction in terms of the degree of parallelism in the refinement, 
while in the case of hierarchy-preserving HTL compiler the number of generated HE code 
instructions grows linearly with the degree of parallelism in the refinement. Neverthe 
less, the flattening HTL compiler turns out to generate more efficient E code than the 
hierarchy-preserving HTL compiler, when there is no parallelism in the refinement. 

AII the ideas presented in the thesis have been tested on real-time control ap-
piications. Two plants have been used as case studies: the Three Tanks System (3TS), 
which exists at University "Politehnica" of Timişoara, it was presented in Chapter 5, and 
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the JAviator, which is a quad rotor helicopter developed at University of Saizburg in order 
to be used as a test platform for new real-time programming techniques, it was presented 
in Chapter 6. In Chapter 5 has been presented a real-time control appiication developed 
using HTL for controlling 3TS plant. The control appiication was intended to show the ca-
pabilities of HTL, i.e., refmennent, parallel composition of sets of tasks, distributions, etc. 
AH the tests presented in this chapter have been run on the real 3TS plant. The rest of 
the HTL control appiications presented in the thesis have been tested oniy on simulated 
3TS or JAviator plants, nevertheless this does reduce the relevance of the results since 
the timing of the appiication is the same regardiess if the controlled plant is a real one or 
a simulated one. 

In the last decade there has been a growing interest in making Java a programming 
language for real-time appiication. One of the latest innovations in the fieid of real-time 
programming constructs that use Java is Exotask [8; 9]. An Exotask program consists of a 
graph in which nodes represent tasks and edges represent connections between tasks. The 
main elements of Exotask have been presented in Chapter 6. One important advantage 
of Exotask is the support for pluggable timing grammar and scheduler, thus in Chapter 6 
has been presented a timing grammar for Exotask that makes possible the use of HTL 
syntax into an Exotask graph; the new programming construct was named Exotask-HTL. 
A scheduler that understands the new grammar has been developed also; it was presented 
in the same chapter. The Exotask-HTL programming construct has been used to develop 
a control appiication for the JAviator plant. The appiication has been tested on an AMD64 
four-way 2.4GHz machine and it was observed that the variation in the period of the 
appiication (20ms) was bellow 0.5ms (1% of the period). Although the hardware might 
be considered unrealistic for an embedded appiication, there are embedded appiications 
that use powerful computers, i.e., next generation battleships [35]. 

Many of the embedded systems that exists today are limited in terms of resources 
and power of computation, thus in this thesis has been presented an implementation 
of HTL that targets a microcontroller (Chapter 7), the new software platform was called 
micro HTL. The platform consists of an optimized version of HE machine that can run on 
a microcontroller, namely, micro E machine, and an HTL compiler based on the hierarchy-
preserving HTL compiler, which generates optimized HE code, i.e., no HE code is generated 
for empty units. Since there was no operating system on the microcontroller, a small real-
time executive, which can schedule tasks based on the EDF scheduling algorithm, had to 
be developed. Micro HTL has been tested by implementing two control appiication: one 
for 3TS plant and the other one for JAviator plant. For the JAviator control appiication, 
it has been achieved an efficacy of 75%-80% which is closed to the efficacy of regular 
real-time appiication 90% [1] and for the 3TS control appiication the efficacy was around 
95%. 

Automatic control system represents an important category of embedded systems. 
It is a common practice among the control engineers to use modeling tools, e.g., Simulink, 
in order to design and test control algorithms. However, it is not that common to also 
model and test the timing of the appiication that will implement the control algorithm, 
thus problems my arise after the appiication has been implemented due to delays that 
have not been considered in the design of the control algorithm. In Chapter 8 has been 
presented a way of modeling an HTL description in Simulink. The HTL compiler has been 
extended in order to be able to convert an HTL description into a Simulink model. The 
advantage of converting an HTL description into a Simulink model consists in the fact that 
the timing of the final appiication can be simulated and tested in Simulink before it is 
implemented. Another important advantage is the possibility to generate C code for a 
Simulink model, which can be used as funcţional code for tasks in the final appiication. 
The HTL-to-Simulink tool chain has been tested by implementing a control appiication for 
the 3TS plant. It has been shown that the results obtain by simulating the Simulink model 
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of the control appiication are very close to does obtain by executing the appiication for 
which funcţional code has been generated directiy from the Simulink model. 

9.1. Personal Contributions 

As a result of my scientific research I have published as a coauthor a total of seven papers. 
Five conference papers: three ISI papers [2; 8; 37], two papers at International confer-
ences in Romania [24; 38]. One technical report at University of California at Berkeiey [4]. 
One paper that has been accepted to be published in the ACM Transactions on Embedded 
Computing Systems journal [9]. Another paper has been submitted at Elsevier Science of 
Computer Programming journal, but I have received no response from the editors yet; this 
journal paper is based on the paper that has been presented at the APGES workshop [7]. 

Contributions summary: 

• I have designed and implemented the compiler for Timing Specification Language, 
which is an intermediate language between HTL and Giotto [24]; 

• I have contributed to the development of HTL [2; 4; 37]: 

- design and implementation of the flattening HTL compiler 

- implementation of the separation of concerns concept for reliability Into the HTL 
compiler and E machine 

• I have contributed to the design of the HE machine and to the design of the HTL 
compiler that generates code for this new E machine, I have implemented both 
the HE machine and the HTL compiler, and I have compared both analytical and 
experimental the flattening HTL compiler and the hierarchy-preserving HTL com-
piler [7; 52]; 

• I have designed and implemented the HTL grammar for Exotask system [8; 9]; 

• I have designed and I have implemented the micro HTL; 

• I have defined the mapping of an HTL description to a Simulink model and I have 
implemented the HTL2Simulink module in the HTL compiler; 

• I have designed and implemented HTL and Exotask-HTL controllers for the 3TS and 
the Javiator plants. 

9.2. Future Work 

Current HTL syntax ailows oniy specification of timing behavior for periodic tasks; nev-
ertheless many real-time appiications contain also aperiodic and sporadic tasks. Thus 
one possible research direction wouid be to extend HTL to support timing specification for 
aperiodic and sporadic tasks. 

Applications developed with Exotask-HTL has been shown to be working onIy on 
powerful hardware; still it shouid be possible to run it on less powerful hardware, i.e., 
Gumstix, e.g., Exotask has aiready been tested with success on such a hardware. In 
order to improve performance of Exotask-HTL there are two changes that can be made: 
use of more efTident HE code (e.g., define new instructions or remove the existing ones), 
and improve the Exotask-HTL scheduler. 

So far all the timing analysis that have been done for Giotto and HTL descriptions 
assumed that overhead introduce by E machine is zero; this might be true for powerful 
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hardware, nevertheless when it comes to running HTL real-time appiications on micro-
controllers this assumption does not hold anymore. In Chapter 7 it has been presented a 
timing analysis that considers not oniy tasks WCET but also overhead introduced by micro 
E machine; it was shown that in the worst case the overhead couid go up to 25% of the 
appiication period, which is a significant overhead and has to be consider in the timing 
analysis. The overhead that used in the analysis was measured experimentally, thus an-
other research direction wouid be to find a way of computing the overhead based on the 
generated HE code and on the target hardware platform. 

Micro E machine presented in Chapter 7 does not support distribution of HTL de-
scriptions. Developing a micro E machine that can support distribution represents another 
research direction; for communication between different E machines, on which parts of 
an HTL appiication are executed, it couId be used either the RS232 interface, or the I2C 
interface, or maybe both. An even more ambition plan wouId be to allow communication 
between E machines that run on heterogeneous hardware (i.e., PC and microcontroller) 
that use different communication interface (i.e., RS232, I2C, and Ettiernet). Timing anal-
ysis for such a distributed system shouid consider worst case transmission times for all 
the communication channels, worst case overhead introduced by E machines running on 
different hardware, and worst case execution time of each task. 

The JAviator control appiications that have been implemented using micro HTL 
and Exotask-HTL have onIy been tested on simulated JAviator plants, in the future I plan 
to use both this appiication in order to control the real JAviator plant. 

Finally,! want to create a software development tool for HTL that can be used to 
developed HTL real-time appiication for PCs, microcontrollers and for Exotask. The new 
development environment will contain all the tools that have been developed for HTL so far, 
a graphical editor for HTL, with possibility to edit either an HTL description or an Exotask 
graph that uses HTL grammar and a graphical timing analyzer that can be used to visualize 
the timing behavior of a real-time appiication. 
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A. Three Tank System Mathematical Model 

ThreeTanks System (3TS) plant is made up of three identical cylindrical tanks (Ti, T2, T3), 
which have the same transversal section A. The three tanks are interconnected through 
pipes, which have the same section 5 (5 << Each thank has a tap through which 
the fluid drains. Tank T2 has a suppiementary tap. There are also two pumps Pi and 
P2, which are connected to Ti and T2, respectively. The pumps are powered by two DC-
motors. In order to be able to simulate perturbations in the system, the interconnection 
pipes as well as the draining pipes are equipped with a tap a, where 2 € {5i, 82,92. ei, e2, ea}. 
In Fig. A . l it is presented the block schema for 3TS plant. 

Rg. A.l: Three Tanks System 

The level of the fluid in the three tanks depends on: 

• the filling flow capacities of Ti and T2 (i.e., q̂ i and qpo, respectively); 

• the draining flow capacities of the six taps: 

- Qeu Qe2, qe3, and qg2 " emptylng flow capacities (these represent the perturba-
tions); 

- 913 and 932 - the interconnection flow capacities; 

The interconnection flow capacities are considered to be oriented: 
913 >0, if hi > hs (Ti —^T:,)) 
913 < o, if hi < hs {Ts —^ Ti); 

respectively: ^ 
932 > O, if hs > /l2 (T3 — T2); 
932 < O, if hs < h2 (T2 — T3); 
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A. THREE TANK SYSTEM MATHEMATICAL MODEL 120 

In order to be able to mathematically model the plant, the physical phenomena 
that takes place must be known.The main equation for 3TS system is Bernoulli's equation. 
The equation relates the speed and the pressure off moving fluid. 

p -f- - — -h ogh = const. (A.l) 

Considering the "homogeneous environment" and S « A, then the speed of the 
draining fluid couid be approximated by the foilowing relation: 

V y/2gAh 

where Ah represents the fluid level deference between interconnected tanks. 

(A.2) 

Nonlinear model for the Three Tanks System (3TS) plant is: 

= - QlS - Qel) 
= ^iQp2 + q32 — qe2 - ) 
= - 932 - qe3 

where 
qi3 = /i5i • s • sgn{hi - h3)\/2g\hi - /13I 
q32 = /i52 • S • sgn{h3 - /i2)\/2p|/i3 - /12I 
q20 = flg2' S ' y/2gh2 

qei = ̂ ei - s ' \/2ghi 
qpi = CiUci 

(A.3) 

(A.4) 
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Unearized model of the 3TS plant in the neighborhood of (/iio, /120, hso) : 

Ahi = 
-^sgn{hio - hso) • v^l^io - • Au^i 
-^Usiosgn{hio - hso) • 

+ ^ U s i o s g n { h i o - / 1 3 0 ) • 

• ' Auel - ^lielO • 

2yViio-7i3oT 

2v/|/ilO-/»3o! 

A/îl 

A / 1 3 

A / 1 2 = 

^ s g n { h z o - / i 2 o ) • \ / | / i 3 o - / 1 2 0 I • A L t 5 2 

^ - ^ U s 2 Q s g n { h 3 Q - / 1 2 0 ) • 

- h20) • ^ 

• A/Î3 

•A/12 

A / 1 3 = 

- ^ « 9 2 0 A / 1 2 + f A « e 2 

^sgn{hio - hso) • v'l'^io - hao\ • Au,i 
+ • sgn{hio - /130) • , ' , , • A/ii 

(A.5) 

2y/1^10 —'iso' 

-^uno • sgnihro - h,o) • " A/»3 

- /l2o) • \/|/i30 - /i2o| • AîIs2 

- ^ t z . 2 0 • 5 p n ( / . 3 0 - / I 2 0 ) • ^ T J ţ ^ • A / 1 3 

.A/12 + • 5 p n ( / i 3 0 - / 1 2 0 ) • 

In Fig. A.2 it is presented the Simullnk model of the 3TS plant. The Simulink model 
was used to test control algorithms before they were used for the real plant. In order to be 
able to test the final HTL program a simulator of the 3TS plant has been implemented in 
Java (Fig. A.3). The program works like a TCP server to which TCP clients that implement 
different control strategy can connect in order to control the plant. Although the simulator 
accepts multiple connections, oniy one client can control the plant. 
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A. THREE TANK SYSTEM MATHEMATICAL MODEL 122 

Fig. A.2: Simulink model of the 3TS plant 
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Fig. A.3: Java simulator of the 3TS plant 
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B. JAviator Mathematical Model 

In the llterature there are several simplified mathematical models for the quadrotor heli-
copter ([53], [54], and [55], are just a few papers in which such a model is presented). 
The mathematical model presented here is the mathematical model described in [55]. 

Fig. B.l: Quadrotor block diagram. 

In Fig. B.l it is presented the block diagram of a quadrotor helicopter. As shown 
in the figure a quadrotor helicopter consists of four rotors: two of them are spinning 
clockwise {R2 and R4), while the other two are spinning counterclockwise {Ri and R3). 
The effect of each spinning rotor is represented by a force perpendicular on the rotation 
plane {Ti, i = 1,2,3,4) and one force in the rotation plane (D,, 2 = 1.2.3,4). The resultant 
of T̂  forces will be noted with T, while the resultant of D, will be noted with D. 

The simplified input-output mathematical model is presented in (B.l). 

j(T2-T4) 
e=i{T,-T3) 

Z = + T2 -f- Ta + T4 - mg) 

(B.l) 

From the input-output mathematical model the foilowing input-state-output mathematical 
model was driven: 
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B. JAVIATOR MATHEMATICAL MODEL 124 

fo 1 0 0 0 0 0 0 \ fxA / 0 0 0 0 \ / 0 \ 
X2 0 0 0 0 0 0 0 0 X2 J_ m m 

J_ m m -mg 
X3 0 0 0 1 0 0 0 0 X3 0 0 0 0 (Ti\ 0 

Xb 
0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
1 

0 
0 

0 
0 

X4 
X5 

+ 0 
0 

l 
I 
0 

0 
0 

l 
I 

0 
T2 
Ts 

+ 0 
0 

X6 0 0 0 0 0 0 0 0 xe l 
I 0 l 

I 0 KT4J 0 
XT 0 0 0 0 0 0 0 1 X7 0 0 0 0 0 

\xsj 0 0 0 0 0 0 0) w) Kr 
- f f I f 

Kr ^ 0 / 

where 

(B.3) 

Xi = z 
X2 = Z 
X3 = ̂  
X4 = ^ 
xs = e 
xe = e 
X7 = ^ 
X8 = 

m = 2kg - the weight of the flying object, / = 0.34m - the length of the arm measured 
from the center of the flying object, / = o.oiîkg - the moment of inerţia of the flying 
object (/xx = lyy = If Izz = 21), Q = 9.8m/ŝ  " gravitational acceleration, and Kr = ^ - the 
proportionality factor between T» and Di {Di = KrTi), 

The mathematical model presented above was used oniy for the design of the 
controllers, its may advantage being the fact that it can be split into four independent 
processes, i.e., altitude process, roll process, pitch process, and yaw process, thus the 
controllers for each of the four processes can be designed separately. Nevertheless for 
the real plant the four processes are not decoupled, thus the control solution shouid be 
tested on a more detailed mathematical model which also considers the interdependence 
between the four processes. The mathematical model of the JAviator plant that has been 
used for testing the control solution is presented in equations (B.4). 

= }/(T2-T4) 

e = j/(Ti - n) 
^ / ( T i - T 2 + r 3 - T 4 ) 

= + 72 + Ta + T4) - mg) (B.4) 

X = (5m(4>)sm(^) -f cos{^)sin{e)cos{^)){Ti + T2 + T3 -h Ta)^ 
y = H- cos(4>)sm(e)sm(^))(Ti -h T2 + T3 + 

/ = cos(^)cos(9) 
The detailed mathematical model of the JAviator also describes how the x and y 

position evolve based on the four forces, e.g.. Ti, T2, T3, and T4, and on the roll, pitch, 
and yaw angles. This detailed model has been implemented both in Simulink and in a 
Java program. The Simulink model is presented in Fig. B.2. In Fig. 8.3 it is presented 
the Simulink model for the roll process. In Fig. B.4 it is presented the Simulink model for 
the pitch process. In Fig. 8.5 it is presented the Simulink model for the yaw process. In 
Fig. 8.6 it is presented the Simulink model for the z process. In Fig. 8.7 it is presented 
the Simulink model for the x process. In Fig. 8.8 it is presented the Simulink model for 
the y process. 
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Fig. B.2: JAviator: detailed Simulink model. 
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Fig. B.3: JAviator: roll Simulink model. 
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KX) 
dotpltch 

Fig. B.4: JAviator: pitch Simulink model. 
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Rg. B.5: JAviator: yaw Simulink model. 

Fig. B.6: JAviator: z Simulink model. 
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Fig. B.7: JAviator: x Simulink model. 

Fig. B.8: JAviator: y Simulink model. 
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C. Encoding of HE code Instructions for Micro HTL 

'"̂ SdiT" afg2yarg3 

Fig. C.l: Instruction encoding 

Encoding of each HE code instructions for the micro E machine is as foilows: 

call{d) Fig. C.2 

_ 4 ^ DRIVERJDX 

Fig. C.2: Call instruction encoding 

argl = DRIVERJDX: the index of the driver to be executed; 

release{t,dl) Fig. C.3 

5 TASKJDX DEADLINE 

Fig. C.3: Release instruction encoding 

argl = TASK.IDX: the index of the task that has to be released; 
arg2 = DEADLINE: relative tinne when the task shouid have complete execution; 

writeFuture{e,a) Fig. C.4 

1 ADDRESS EVENT 

Fig. C.4: WriteFuture instruction encoding 

argl = ADDRESS: address of the block of HE code that has to be executed when the 
trigger created by the instruction gets enabled; 
arg2 = EVENT: time event on which created trigger gets enabled; 
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2 ADDRESS j EVENT 

Rg. C.5: SwitchFuture instmction encoding 

• s\/vitchFuture{e,a) Fig. C.5 
argl = ADDRESS: address of the block of HE code that has to be executed when the 
trigger created by the instruction gets enabled; 
arg2 = EVENT: time event on which created trigger gets enabled; 

• readFuture(e.a) Fig. C.6 

ADDRESS EVENT 

Rg. C.6: ReadFuture Instruction encoding 

argl = ADDRESS: address of the block of HE code that has to be executed when the 
trigger created by the instruction gets enabled; 
arg2 = EVENT: time event on which created trigger gets enabled; 

• jumplf{cnd.a) Fig. C.7 

6 i ADDRESS T CONDJDXn 

Fig. C.7: JL/mp/f instruction encoding 

argl = ADDRESS: address of the block of HE code that has to be executed when 
condition is true; 
arg2 = CONDJDX: index of the condition to be evaluated; 

• jumpAbsolute{a') Fig. C.8 

ADDRESS 

Rg. C,8: JumpAbsolute instruction encoding 

argl = ADDRESS: address of the block of HE code where the execution has to jump; 

• jumpSubroutine{a') Fig. C.9 

ADDRESS 

Fig. C.9: JumpSubroutine instruction encoding 

argl = ADDRESS: address of the block of HE code that has to be invoked; 

• copyRegister(Rx,Ry) Fig. C.IO 
argl = Rx: integer value between O and 3 that identifies the source register; 
arg2 = Ry: integer value between O and 3 that identifies the destination register; 

• pushRegister{Rx) Fig. C . l l 
argl = Rx: integer value between O and 3 that identifies the register that has to be 
pushed onto the parent stack; 
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10 Rx Ry 

Fig. C.IO: Copy Regi ster \nstnjct\on encoding 

11 Rx 

Fig. C . l l : PushRegister \nstnjct\on encoding 

12 Rx I rr : - ; 

Fig. C.12: PopRegister \r\st.rucX\on encoding 

• popRegister{Rx) Fig. C.12 
argl = Rx: integer value between O and 3 that identifies the register that will be 
loaded with the value popped from the parent stack; 

• getParent{Rx,Ry) Fig. C.13 

13 Rx Ry 

Fig. C.13: GetParent instruction encoding 

argl = Rx: integer value between O and 3 that identifies the register whose parent 
will be copied in register identified by parameter Ry; 
arg2 = Ry: integer value between O and 3 that identifies the register in which the 
parent of the register identified by parameter Rx, will be copied; 

• setParent{Rx,Ry) Fig. C.14 

14 Rx Ry 

Fig. C.14: SetParenf instruction encoding 

argl = Rx: integer value between O and 3 that identifies the register whose parent 
will be copied from register identified by parameter Ry; 
arg2= Ry: integer value between O and 3 that identifies the register from which the 
parent of the register identified by parameter Rx, will be copied; 

• copyChildren{Rx,Ry) Fig. C. 15 

19 Rx Ry 

Fig. C.15: CopyChiIdren instruction encoding 

argl = Rx: integer value between O and 3 that identifies the register to which chiidrec 
list will be copied; 
arg2 = Ry: integer value between O and 3 that identifies the register from which the 
chiidren list will be copied; 
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15 Rx [ Ry _ _ 

Fig. C.16: UpdateChiIdren instruction encoding 

• updateChildren{Rx,Ry) Fig. C.16 
argl = Rx: integer value between O and 3 that identifies the register whose children 
list will be updated; 
arg2 = Ry: integer value between O and 3 that identifies the register that contains 
the parent; 

• deleteChildren{Rx) Fig. C.17 

16 Rx 

Rg. C.17: DeleteChi/dren instruction encoding 

argl = Rx: integer value between O and 3 that identifies the register whose children 
tree has to be deleted; 

• replaceChild{Rx,Ry.Rz) Fig. C. 18 

Rx I Ry:Rz 

Rg. C.18: rep/aceC/7/7d instruction encoding 

argl = Rx: integer value between O and 3 that identifies the register whose children 
will be updated; 
arg2 = Ry: integer value between O and 3 that identifies the register whose value 
will be replaced; 
arg3 = Rz: integer value between O and 3 that identifies the register whose value 
will replace the value identified by Ry; 

• cleanChiIdreniRx) Fig. C.19 

18 Rx 

Fig. C.19: CleanChiIdren instruction encoding 

argl = Rx: integer value between O and 3 that identifies the register whose children 
list has to be cleaned; 

• returni) Fig. C.20 

Fig. C.20: Retum instruction encoding 
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Package htlc; 

Helpers 

all = [O .. OxFFFF]; 
lowercase = ['a' .. 'z']; 
uppercase = ['A' .. 'Z']; 
digit = ['O' .. '9']; 
hex.digit = [digit + [['a' .. - f ] + ['A' .. 'F']]]; 

tab = 9; 
cr = 13; 
If = 10; 
eol = cr If I cr I If; // This takes care of different platfonns 

not.cr.lf = [all -[cr + If]]; 
not_star = [all -'»']; 
not_star_slash = [not_star -'/']; 

blank = (• • I tab I eol)+; 
short.comment = '//' not_cr_lf« eol; 
long.comment = '/»' not_star̂  '•'+ (not_star_slash not_star» '•'+)• '/' 
coimnent = short.connnent I long.comment; 

letter = lowercase I uppercase I '_'; 
name = letter (letter I digit)*; 
ident = name ('.' name)•; 
number = digit+; 

Tokens 

program = 'program'; 
communicator = ' conmiunicator' ; 
sensor = 'sensor'; 
actuator = 'actuator'; 
general = 'general'; 
period = 'period'; 
uses='uses'; 
module = 'module'; 
start = 'start'; 
import = ' import' ; 
export = 'export'; 
task = 'task'; 
output = 'output'; 
input = 'input'; 
state = 'state'; 
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parent - 'parent'; 
function = 'function'; 
update = 'update'; 
port = 'port'; 
mode = 'mode'; 
invoke = 'invoke'; 
stfitch = 'switch'; 
wcet = 'wcet'; 
init = •init'; 
host = 'host'; 
Irc = 'LRC'; 
srg = 'SRG'; 
model = 'model'; 

ident = ident; 
number = number; 

semicolon = ';'; 
comma = ','; 
dot = '.•; 
zero = •O'; 
colon = •:'; 

greater_thaii = ' >'; 
less_or_equal = '<='; 

l_par = '(•; 
r.par = ')'; 
l.brace = '{'; 
r.brace = '}'; 
l.bracket = '['; 
r.bracket = ']'; 

blank = blank; 
comment = coimnent; 

Ignored Tokens 

blank, comment; 

Productions 

program_declaration_list = program_declaration«; 

program.declaration = program [program.name]:ident l_brace 
communicator_declaration_list? 
module_declaration_list 

r.brace; 

communicator_declaration_list = communicator coimnunicator.declaration» 
communicator.declaration = [type_name]:ident [conmiunicator.name]:ident 

period [communicator.period]:number 
init [init_driver]:ident 
Irc.specification? 
semicolon; 

lrc_specification = Irc Irc.value; 
Irc.value = float; 
float = [int]:number dot [frac]:number; 
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module_declaration_list = module_deciaration•; 
module.declaration = module [module_name] : ident host_decleiration_list? 

start [start_mode]:ident l_brace 
port_declaration_list? 
task_declaration_list 
mode_declaration_list 

r_brace; 

host_declaration_list = l_bracket hosts_list? r.bracket; 
hosts_list = {concrete} host.declaration host_declaration_tail« I 

(host_declaration+) ; 
host_declaration_tail = comma host_declaration ; 
host.declaration = [host_name]:ident [host_ip]:ip_declaration colon 

[host_port]:number srg_specification?; 
srg_specification = srg srg_value; 
srg_value = float; 
ip_declaration = [a]inumber [dl]:dot [b]:number [d2]:dot [c]rnumber 

[d3]:dot [d]:number; 

port_declaration_list = port port.declaration*; 
port_declaration = [port.tjrpe] : ident [port_name] : ident assign 

[init_driver]:ident semicolon; 

task_declaration_list = task.declaration*; 
task.declaration = task [task_name]:ident 

input [input_formal_ports]:formal_ports 
state [state_formal.ports]:state_ports 
output [output_formal_ports]:formal_ports 
task_function? 
task_wcet? 
reliability_model? 
semicolon; 

task.function = function [function_name]:ident; 
task_wcet = wcet [wcet_map]inumber; 
reliability.model = model [model_type]inumber; 

formal.ports = l_par formal_port_list? r_par ; 
formal_port_list = {concrete} formal.port formal_port_tail» I (formal_port+) 
formal_port_tail = comma formal.port ; 
formal.port = [type.name]iident [port_name]iident default.value?; 
default_value = assign [default_driver]iident; 

state.ports = l.par state_port_list? r_par ; 
state_port_list = {concrete} state.port state_port_tail* I (state_port+) ; 
state.port.tail = comma state_port ; 

state.port = [type.name]iident [state.name]iident assign [init_driver]iident 

mode_declaration_list = mode.declaration*; 
mode.declaration = mode [mode_name]iident period [mode.period]inumber 

ref ine_program? 
l.brace 
sensor_device_driver_list 
actuator_device_driver_list 
task_invocation_list 
mode_switch_list 
r_brace; 

refine.program = program [program_name]iident; 
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8ensor_device_driver_list = sensor_devic0_driver*; 
3ensor_device_driver = sensor update [driver.name]:ident l_par 

[communicator.name]:ident comma [commimicator.instance]rnumber r_par semicolon; 

actuator_device_driver_list = act\iator_device_driver»; 
actuator_device_driver = actuator update [driver_name]:ident l_par [communicator.name]:ident 

comna [connunicator.instance]:number r.par semicolon; 

task_invocation_list = task_invocation»; 
task.invocation = invoke [task.name]:ident input [input_actual_ports]:actual_ports output 

[output_actual_ports]lactual.ports parent_task? semicolon; 
parent.task = parent [task.name]:ident; 

actual_ports = l.par actual_port_list? r_par ; 
actual_port_list = {concrete} actual_port actual_port_taii» I (actual_port+) ; 
actual_port_taii = comma actual_port ; 
actual_port = {concrete} [port_name]:ident I communicator.instance ; 
communicator_instance = l_par [communicator_port_name]:ident comma 

[communicator_instance_number]rnumber r.par ; 

mode.switch.list = mode.switch»; 
mode_switch = switch 

l_par [condition.function]-.ident switch.ports r_par 
[destination.mode]:ident 
semicolon; 

switch.ports = l_par switch.port.list? r_par ; 
switch_port_list = {concrete} switch.port switch_port_tail» | (switch_port+) ; 
switch_port_tail = comma switch_port ; 
switch.port = [port_name]:ident; 
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E.l. Increment/Decrement Counter 
program P_iiic_dec< 

COTmmi i ica tor 
c.int coiinter period 100 init c_zero; 
c_int ref period 100 init c.zero; 

module M_read_write start m_read_write-C 

task t_read inputO stateO output(c_int p.counter) f\mction f.read; 
task t_ref inputO stateO output(c.int p_ref) function f.ref; 
task t_write inputCc.int p_counter) stateO outputO function f_write; 

mode m_read_write period 1000{ 
invoke t_read inputO outputC(counter, 1)) ; 
invoke t_ref ii^utO output((ref, 1)); 
invoke t_write input((counter,2)) outputO; 

} 
} 

module M_inc_dec start m_inc{ 

task t_inc input(c_int p_counter_in) stateO output(c_int p_counter_out); 
task t_dec input(c_int p_counter_in) stateO output(c.int p_counter_out) function f_dec; 

mode m_inc period 1000 program P_INC{ 
invoke t_inc input((counter,1)) output((counter,2)); 
switch(inc_to_dec(counter)) m_dec; 

} 

mode m.dec period 1000{ 
invoke t_dec input((counter,1)) output((counter,2)); 
switch(inc to_dec(counter)) m inc; 

> 
> 

} 

program P_inc{ 

module M_inc start m_incl-( 

task t_incl input(c_int p_counter_in) stateO output(c_int p_counter_out) function f.incl; 
task t_inc5 input(c_int p_counter_in) stateO output(c_int p_counter_out) function f_inc5; 
task t.inclO input(c_int p_counter_in) stateO output(c_int p.counter.out) function f.inclO; 

mode m_incl period 1000{ 
invoke t_incl input((counter,1)) output((counter,2)) parent t_inc; 
switch(incl_to_inc5(counter)) m_inc5; 

> 
mode m_inc5 period 1000{ 
invoke t_inc5 input((counter,1)) output((counter,2)) parent t_inc; 
switch(inc5_to_incl0(counter)) m_inclO; 

} 
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mode m.inclO period 1000{ 
invoke t inclO input((counter,1)) output((counter,2)) parent t inc; 

> 
> 

} 

E.2. Three Tanks System Controller Distributed HTL 
Implementation 

program P_3TS-( 
coniaxinicator 
c.double hl period 100 init c_2ero; 
c_double h2 period 100 init c.zero; 
c.double ul period 100 init c.zero; 
c.double u2 period 100 init c.zero; 
c.bool vl period 500 init c.false; 
c_bool v2 period 500 init c.false; 
c.double hlf period 500 init c_zero; 
c_double h2f period 500 init c.zero; 
c.double hlc period 500 init c_zero; 
c.double h2c period 500 init c_zero; 
c.bool PI_LR1 period 500 init c_false; 
c.bool PI_LR2 period 500 init c.false; 

module 10 start readWrite{ 
port 
c.double local.hl := c.zero; 
c.double local.h2 := c.zero; 

task t.read inputO stateO output (c.double p.hl, c.double p_h2) function f.read; 
task t.write input(c.double p.ul, c.double p.u2, c.double p.hlf, c.double p.h2f, 
c.double p.hlc, c.double p.h2c) state() outputO function f.write; 

task t.estimateVl input(c.double p.hl, c.double p.ul) stateO output(c.bool p.vl, 
c.double p.hlc, c.bool p.PI.LRl) function f.estimateHl; 

task t_estimateV2 input(c.double p_h2, c.double p_u2) stateO output(c.bool p.v2, 
c.double p_h2c, c.bool p.PI.LR2) function f_estimateH2; 

task t.filterHl input(c.double p.hl) stateO output(c.double p.hlF, c.double p.hlf) 
function f.filterHl; 

task t.filterH2 input(c.double p.h2) stateO output(c.double p_h2F, c.double p h2f) 
function f_filterH2; 

mode readVrite period 500< 
invoke t.read inputO output((hl,3), (h2,3)); 
invoke t.write input((ul.4), (u2,4), (hlf. 0), (h2f, 0). (hlc, 0), (h2c. 0)) outputO; 
invoke t.filterHl input((hl,3)) output(local.hl, (hlf, 1)); 
invoke t.filterH2 input((h2,3)) output(local_h2, (h2f, 1)); 
invoke t.estimateVl input(local.hl, (ul,4)) output((vl.1), (hlc, 1), (PI.LRl, 1)); 
invoke t_estimateV2 input(local_h2, (u2,4)) output((v2,1), (h2c, 1), (PiIlR2, D); 

module TI start m_Tl{ 
task t.Tl input(c.double p.hl) stateO output(c.double p.ul); 
mode m.Tl period 500 program P.Tl-( 
invoke t TI input((hl,3)) output((ul,4)); 

} 
} 

module T2 start m.T2{ 
task t_T2 input(c.double v.h2) stateO output(c.double v.u2); 
mode m_T2 period 500 program P_T2{ 
invoke t T2 input((h2,3)) output((u2,4)); 

> 
} 

program P_T1{ 
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module T1_P_PI start m_Tl_P"C 
task t_Tl_P input(c_double v_hl) stateO output(c.double v_ul) function f_Tl_P; 
task t_Tl_PI input(c_double v_hl) stateO output(c.double v_ul); 
mode m_Tl_P period 500{ 
invoke t_Tl_P input((hl,3)) output((ul,4)) parent t_Tl; 
switchCwithPerturbationCvl)) m_Tl_PI; 

} 

mode m_Tl_PI period 500 program P_T1_2PI{ 
invoke t_Tl_PI input((hl,3)) output((ul,4)) parent t_Tl; 
swit ch(without Perturbat ion (vD) m_Tl P; 

} 
} 

} 

program P_T2-C 

module T2_P_PI start m_T2_P{ 

task t_T2_P input(c_double v_h2) stateO output(c.double v_u2) function f_T2_P; 
task t_T2_PI input(c.double v_h2) stateO output(c.double v_u2); 

mode m_T2_P period 500-C 
invoke t_T2_P input((h2,3)) output((u2,4)) parent t_T2; 
switch(withPerturbation(v2)) m T2_PI; 

> 
mode m_T2_PI period 500 program P_T2_2PI{ 
invoke t_T2_PI input((h2,3)) output((u2,4)) parent t_T2; 
switch(withoutPerturbation(v2)) m_T2_P; 

} 
> 

} 

program P_T1_2PI 
{ 
module T1_2PI start m_Tl_PI_R{ 
task t_Tl_PI_L input(c.double v_hl) stateO output(c.double v_ul) function f_Tl_PI_L; 
task t_Tl_PI_R input(c_double v_hl) stateO output(c.double v_ul) function f_Tl_PI_R; 

mode m_Tl_PI_L period 500{ 
invoke t_Tl_PI_L input((hl, 3)) output((ul, 4)) parent t_Tl_PI; 
switch(PIRapid(PI_LRl)) m_Tl_PI_R; 

} 

mode m_Tl_PI_R period 500{ 
invoke t_Tl_PI_R input((hl, 3)) output((ul, 4)) parent t.Tl.PI; 
switch(PILent(PI_LRl)) m_Tl_PI_L; 

> 
} 

> 
program P_T2_2PI 
{ 
module T2_2PI start m_T2_PI_R{ 
task t_T2_PI_L input(c.double v_h2) stateO output(c.double v_u2) function f_T2_PI_L; 
task t_T2_Pl_R input(c.double v_h2) stateO output(c.double v_u2) function f_T2_PI_R; 

mode m.T2.PI.L period 500{ 
invoke t.T2_PI_L input((h2, 3)) output((u2, 4)) parent t.T2.PI; 
switch(PIRapid(PI.LR2)) m.T2.PI.R; 

> 
mode m.T2.PI.R period 500-C 
invoke t.T2.PI.R input((h2, 3)) output((u2, 4)) parent t.T2_PI; 
switch(PILent(PI.LR2)) m_T2.PI.L; 

} 
} 

} 
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E.3. Three Tanks System Controller Micro HTL 
Implementation 

program P_3TS{ 
coanunicator 
c.int hl period 50 init c_zero; 
c_int h2 period 50 init c.zero; 
c_int ul period 50 init c.zero; 
c_int u2 period 50 init c_zero; 
c.bool vl period 50 init c_false; 
c_bool v2 period 50 init c.false; 
c.bool PI.SFl period 50 init c.false; 
c.bool PI_SF2 period 50 init c.falee; 
c_controller_type prevTlController period 50 init P_controller; 
c_controller_type prevT2Controller period 50 init P.controller; 

module 10 start readVrite{ 

task t.read inp\rt() stateO output(c_int p_hl, c.int p_h2) function f.read; 
task t.write input(c_int p_ul, c_int p_u2) stateO outputO function f_write; 
task t_estimateVl input(c_int p_hl, c_int p_ul) state(c.history history:=zero_history) 
output(c_bool p.vl, c.bool p_PI_SFl) function f.estimateHl; 

task t_estimateV2 input(c_int p_h2, c_int p_u2) state(c_history history:=zero_history) 
output(c.bool p_v2, c.bool p_PI_SF2) function f_estimateH2; 

mode readVrite period 250< 
nvoke t.read inputO output((hl, 1), (h2,l)); 

• invoke t.write input((ul,3), (u2,3)) outputO; 
invoke t.estimateVl input((hl,l), (ul,3)) output((vl,5), (PI.SFl, 5)); 
invoke t.estimateV2 input((h2,1), (u2.3)) output((v2,5), (PI SF2, 5)); 

> 
} 

module TI start m_Tl{ 
task t.Tl input(c.int p.hl) stateO output(c_int p.ul); 
mode m_Tl period 250 program P_T1{ 
invoke t.Tl input((hl,l)) output((ul,3)); 

> 
> 
module T2 start m_T2{ 
task t.T2 input(c_int v_h2) stateO output(c.int v.u2); 
mode m.T2 period 250 program P_T2-( 
invoke t.T2 input((h2,l)) output((u2,3)); 

} 
> 

> 
program P.T1{ 

module Tl.P.PI start m_Tl_P< 

task t.Tl.P input(c.int v.hl) stateO output(c.int v.ul, c.controller.type prevController) 
function f.Tl.P; 

task t.Tl.PI input(c_int v.hl) stateO output(c_int v.ul); 

mode m.Tl.P period 250{ 
invoke t.Tl.P input((hl.1)) output((ul,3). (prevTlController,3)) parent t.Tl; 
switch(withPerturbation(vl)) m.Tl PI; 

> 
mode m.Tl.PI period 250 program P.T1.2PI{ 
invoke t.Tl.PI input((hl,1)) output((ul,3)) parent t.Tl; 
switch(withoutPerturbation(vl)) m.Tl.P; 

> 
> 

> 
program P.T2{ 
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module T2_P_PI start m_T2_P-( 

task t_T2_P input(c_int v_li2) stateO output(c_int v_u2, c_controller_type prevController) 
f\inction f_T2_P; 

task t_T2_PI inputCc.int v_h2) stateO output(c_int v_u2); 

mode m_T2_P period 250{ 
invoke t_T2_P input((h2,D) output((u2,3), (prevT2Coiitroller,3)) parent t_T2; 
switch(withPerturbation(v2)) m_T2_PI; 

> 

mode m_T2_PI period 250 program P_T2_2PI{ 
invoke t_T2_PI input((h2,1)) output((u2,3)) parent t_T2; 
switch(withoutPerturbation(v2)) m_T2_P; 

> 
} 

> 
program P_T1 2PI { 

module T1_2PI start m_Tl_PI_F{ 
task t_Tl_PI_S input(c.int v_hl, c_controller_type prevControllerOld, c_int ulold) 
state(c_PI_state s:=init_state) output(c_int v_ul, c_controller_type prevControllerNew) 

function f_Tl_PI_S; 
task t_Tl_PI_F input(c_int v_hl, c_controller_type prevControllerOld, c_int ulold) 
state(c_PI_state s:=init_state) output(c_int v_ul, c_controller_type prevControllerNew) 

function f_Tl_PI_F; 

mode m_Tl_PI_S period 25(K 
invoke t_Tl_PI_S input((hl, 1), (prevTlController.l), (ul, D ) output((ul, 3), 

(prevTlController,3)) parent t_Tl_PI; 
switch(PIFast(PI_SFl)) m.Tl_PI_F; 

} 

mode m.Tl.PI.F period 250{ 
invoke t_Tl_PI_F input((hl, 1), (prevTlController,1), (ul, D ) output((ul, 3), 

(prevTlController,3)) parent t.Tl.PI; 
switch(PISlow(PI_SFl)) m_Tl_PI_S; 

> 
> 

> 

program P_T2 2PI { 
module T2_2PI start m_T2_PI_F{ 
task t_T2_PI_S input(c_int v_h2, c_controller_type prevControllerOld, c_int u2old) 
state(c_PI_state s:=init.state) output(c.int v_u2, c_controller_type prevControllerNew) 

function f_T2_PI_S; 
task t_T2_PI_F input(c_int v_h2, c_controller_type prevControllerOld, c_int u2old) 
state(c_PI_state s:=init_state) output(c.int v_u2, c_controller_type prevControllerNew) 

function f_T2_PI_F; 
mode m_T2.PI_S period 250{ 
invoke t_T2_PI_S input((li2, 1), (prevT2Controller,1), (u2, D ) output((u2, 3), 

(prevT2Controller,3)) parent t_T2_PI; 
switch(PIFast(PI_SF2)) m_T2_PI_F; 

> 

mode m_T2_PI_F period 250< 
invoke t_T2_PI_F input((h2, 1), (prevT2Controller,1), (u2, D ) output((u2, 3), 

(prevT2Controller,3)) parent t_T2_PI; 
switch(PISlow(PI_SF2)) m.T2_PI_S; 

> 
} 

> 
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E.4. Three Tanks System Controller HTL-Simulink 
Implementation 

program P_3TS{ 
codamunicator 

c.double hl period 100 init c.zero; 
c_double hl.ref period 100 init c_zero; 
c.double h2 period 100 init c.zero; 
c.double h2_ref period 100 init c.zero; 
c_double ul period 100 init c_zero; 
c_double u2 period 100 init c_zero; 
c_bool vl period 500 init c_false; 
c.bool v2 period 500 init c.false; 

module 10 start readVrite< 
task t.read inputO state() output(c.double p_hl, c.double p_h2,c.bool p_Vl, c.bool p_V2) 

function f_read; 
task t_write input(c.double p_ul:=def_double,c_double p_u2:=def_double) state'O outputO 

function f_irrite; 
task t.ref inputO state() output(c_double p_hl_ref, c_double p_h2_ref) function f_ref; 

mode readWrite period 500{ 
invoke t.read inputO output((hl,3). (h2,3), (vl.l). (v2,l)); 
invoke t.write input((ul,4), (u2,4)) outputO; 
invoke t.ref inputO output((hl_ref,3), (h2 ref,3)); 

> 
> 
module TI start m_Tl{ 

task t_Tl input(c.double p_hl,c_double p_hl_ref) stateO output(c_double p_ul); 

mode m_Tl period 500 program P.Tl-C 
invoke t_Tl input((hl,3),(hl.ref,3)) output((ul,4)); 

> 
> 

module T2 start m_T2{ 
task t_T2 input(c_double v_h2,c_double v_h2_ref) stateO output(c_double v_u2); 

mode m_T2 period 500 program P_T2{ 
invoke t.T2 input((h2,3),(h2_ref.3)) output((u2,4)); 

} 
} 

> 
program P_Tl-( 

module T1_P_PI start m_Tl_P{ 
task t_Tl_P input(c_double v_hl,c_double v_hl_ref) stateO output(c_double v_ul) 

function f_Tl_P; 
task t_Tl_PI input(c_double v_hl,c_double v_hl_ref) stateO output(c_double v_ul) 

function f.Tl.PI; 

mode m_Tl_P period 500{ 
invoke t_Tl_P input((hl,3),(hl.ref,3)) output((ul,4)) parent t.Tl; 
switch(withPerturbation(vl)) m.Tl.PI; 

} 

mode m_Tl_PI period 500{ 
invoke t_Tl.PI input((hl,3),(hl.ref.3)) output((ul,4)) parent t.Tl; 
switch(withoutPerturbation(vl)) m.Tl.P; 

> 
> 

} 

program P_T2{ 

module T2.P.PI start m.T2_P{ 
task t_T2_P input(c.double v.h2,c.double v_h2_ref) stateO output(c.double v.u2) 
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function f_T2_P; 
task t_T2_PI input(c.double v_h2,c_double v_h2_ref) state O output(c.double v_u2) 

function f_T2_PI; 

mode m_T2_P period 500{ 
invoke t_T2_P input((h2,3),(h2_ref,3)) output((u2,4)) parent t_T2; 
switch(withPerturbation(v2)) m T2 PI; 

} 

mode m_T2_PI period 500{ 
invoke t_T2_PI input((h2,3),(h2_ref,3)) output((u2,4)) parent t_T2; 
swit ch(withoutPerturbat ion(v2)) m_T2_P; 

} 
} 

> 

E.5. Exotask-HTL Graphs 

E.5.1. Exotask Graph for mController Mode 

<ExotaskGr^h> 
<Timin^>rovider kind = 'htl' parser = 'at.uni.salzburg.cs.exotasks.timing.htl.HTLTimingDataParBer' 
slowdownFactor = '1' graphics='60 60 15 99'> 
<ProgramList> 
<Program name = 'JAviatorControl'/> 
<Program name = 'PAttitudeControl'/> 

</ProgramList> 
<ModuleList> 
<Mod\ile name = 'MAttitudeControl' start = 'mAttitudeControl' program = 'JAviatorControl'/> 

</ModuleList> 
<ModeList> 
<Mode name = 'mAttitudeControl' period = '20' module = 'MAttitudeControl' 
refine = 'PAttitudeControl'/> 

</ModeList> 
</TimingProvider> 
<Communicator id='fromGround' type='javiator.util.NavigationData' initialValue='O' 

graphics='91 60 230 93'> 
<Timing period = '1' program = 'JAviatorControl'/> 
</Communicator> 
<Commxmicator id='llcState' type='j aviator.hierarchical.control.util.ControllerState' 

initialValue='()' graphics='85 60 220 182'> 
<Timing period = '1' program = 'JAviatorControl'/> 
</Communicator> 
<Task id='controlAttitude' implementation='javiator.hierarchical.control.attitude. 

AbstractAttitudeController' isolation='strong' graphics='72 60 464 70'> 
<Input id='sensors' type='javiator.util.SensorData'/> 
<Input id='targets' type='javiator.util.NavigationData'/> 
<Input id='oldActuators' type='javiator.util.ActuatorData'/> 
<Input id='isNewState' type='j aviator.hierarchical.control.ut il.ControllerState'/> 
<Output id='actxiators' type='javiator.util.ActuatorData'/> 
<Timing isAbstract = 'true' parent = ''> 
<ModeAssignment mode = 'mAttitudeControl'/> 

</Timing> 
</Ta6k> 
<Communicator id='toJAviator' type='javiator.util.ActuatorData' iniţialValue='O' 

graphics='60 60 474 179'> 
<Timing period = '1' program = 'JAviatorControl'/> 
</Communicator> 
<Communicator id='fromJAviator' type='javiator.util.SensorData' initialValue='O' 

graphics='62 60 225 21'> 
<Timing period = '1' program = 'JAviatorControl'/> 
</Communicator> 
<Connection id='fromGround.controlAttitude' source='fromGround' target='controlAttitude' 

targetPort='targets'> 
<Timing instance='4' writeBCommunicator='false'> ^ 
<ModeAssignment mode = 'mAttitudeControl'/> 

</Timing> 
</Connection> 
<Connection id='fromJAviator.controlAttitude' source='fromJAviator' target='controlAttitude'> 
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<Timing in8tance='4' write6Connnmicator='false'> 
<HodeAssignment mode = 'mAttitudeControl'/> 

</Timing> 
</Conjiection> 
<Coniiection id='controlAttitude_toJAviator' 60urce='controlAttitude' target='toJAviator'> 
<Timing instance^'16' vrite6Coomninicator='true'> 
<ModeAssigiiment mode = 'mAttitudeControl'/> 

</Timing> 
</Coiinection> 
<Connection id='llcState.controlAttitude' source='llcState' target='controlAttitude' 

targetPort='isNewState'> 
<Timing instance='0' writeBConmunicator^'false'> 
<ModeAsBignment mode = 'mAttitudeControl'/> 

</Timing> 
</Connection> 
<Connection id='toJAviator_controLAttitude' source='toJAviator' target='controlAttitude' 

targetPort='oldActuators'> 
<Timing instance='0' writesCommunicator='false'> 
<ModeAssignment mode = 'mAttitudeControl'/> 

</Timing> 
</Connection> 
</EjtotaBkGraph> 

E.5.2. Exotask Graph for Communication Modules 

<Ezota8kGraph> 
<TimingProvider kind = 'htl' parser = 'at.uni_salzburg.cs.exotasks.timing.htl.HTLTimingDataParser' 

slowdownFactor = '1* graphics='60 60 446 19'> 
<ProgramLi6t> 
<Program name = 'JAviatorControl'/> 

</ProgramLi8t> 
<ModuleList> 
<Module name = 'MGroundComm' start = 'mGroundConm' program = 'JAviatorControl'/> 
<Module name = 'MState' start = 'mState' program = 'JAviatorControl'/> 

</ModuleList> 
<ModeList> 
<Mode name = 'mGroundComn' period = '100' module = 'MGroundComm' refine = ''/> 
<Mode name = 'mState' period = '20' module = 'MState' refine = ''/> 

</ModeList> 
</TimingProvider> 
<Conmunicator id='fromGro\ind' type='javiator.util.NavigationData' initialValue='()' 

graphicB='91 60 245 12'> 
<Timing period = '1' program = 'JAviatorControl'/> 
</Communicator> 
<Task id='WriteToGround' implementation='javiator.hierarchical.control.communication.ProcessGroundReport' 

isolation='strong' graphics='105 60 492 104'> 
<Input id='fromGroundPort' type='javiator.util.NavigationData'/> 
<Input id='fromJaviatorPort' type='javiator.util.SensorData'/> 
<Input id='toJaviatorPort' type='javiator.util.ActuatorData'/> 
<Input id='statePort' type='javiator.hierarchical.control.util.ControllerState'/> 
<Timing isAbstract = 'false' parent = ''> 
<ModeAssignment mode = 'mGroundComm'/> 

</Timing> 
</Task> 
<Coninxmicator id='llcState' type='javiator.hierarchical.control.util.ControllerState' initialValue='O' 

graphic8='64 60 394 239'> 
<Timing period = '1' program = 'JAviatorControl'/> 
</Communicator> 
<Task id='WriteToJAviator' implementation='javiator.JControl.ezotasks.MotorActuator' 

isolation='strong' graphic6='78 60 254 162'> 
<Input id='inToJAviator' type='javiator.util.ActuatorData'/> 
<Timing isAbstract = 'false' parent = ''> 
<ModeAssignment mode = 'mState'/> 

</Timing> 
</Ta8k> 
<Task id='ReadFromGround' implementation='javiator.JControl.ezotasks.CommandSensor' 

isolation='weak' graphics='84 60 124 15'> 
<Dutput id='outNavigationData' type='javiator.util.NavigationData'/> 
<Timing isAbstract = 'false' parent = "> 
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<ModeAssigninent mode = 'mGroundCoinm'/> 
</Timiiig> 
</Task> 
<Task id='ConţjuteStates' implementation='j aviator.hierarchical.control.communication.ComputeStates' 

isolation='weak' graphics='74 60 270 236*> 
<Input id='thrustsPort• type='javiator.util.ActuatorData'/> 
<Output id='statePort' type='javiator.hierarchical.control.util.ControllerState'/> 
<Timing isAbstract = 'false' parent = ''> 
<ModeAssignment mode = •mState'/> 

</Timing> 
</Task> 
<Communicator id='toJAviator' type='javiator.util.ActuatorData' iniţialValue='O' 

graphics='60 60 138 214'> 
<Timing period = '1' program - 'JAviatorControl'/> 
</Communicator> 
<Communicator id='fromJAviator' type='javiator.util.SensorData' initialValue='()' 

graphics='62 60 261 80'> 
<Timing period = '1' program = 'JAviatorControl'/> 
</Communi cat or> 
<Task id='ReadFromJAviator' implementation='javiator.JControl.exotasks.FlightSensor' 

isolation='strong' graphics='89 60 122 102*> 
<Output id='outFromJaviator• type='javiator.util.SensorData'/> 
<Timing isAbstract = 'false' parent = '*> 
<ModeAssignment mode = 'mState'/> 

</Timing> 
</Task> 
<Connection id='ComputeStates_llcState' source='ComputeStates' target='llcState'> 
<Timing instance='20' writesCommunicator='true'> 
<ModeAssignment mode = •mState'/> 

</Timing> 
</Connection> 
<Connection id='fromJAviator_WriteToGround' source='fromJAviator' target='WriteToGround' 

targetPort='fromJaviatorPort'> 
<Timing instance='4' writesCommunicator='false'> 
<ModeAssignment mode = 'mGroundConm'/> 

</Timing> 
</Connection> 
<Connection id='toJAviator.WriteToJAviator' source='toJAviator' target='WriteToJAviator'> 
<Timing instance='16' writesCommunicator='false'> 
<ModeA6signment mode = 'mState'/> 

</Timing> 
</Connection> 
<Connection id='ReadFromGround_fromGround' source='ReadFromGround' target='fromGround'> 
<Timing instance='4' writesCommunicator='true'> 
<ModeABSignment mode = 'mGroundComm'/> 

</Timing> 
</Connection> 
<Connection id='toJAviator_Conţ)uteStates' Bource='toJAviator' target='ComputeStates'> 
<Timing instance='16' writesCommunicator='false'> 
<ModeAssignment mode = 'mState'/> 

</Timing> 
</Connection> 
<Connection id='llcState.WriteToGround' source='llcState' target='WriteToGround' 

targetPort='statePort'> 
<Timing instance='20' writesComiminicator='false'> 
<ModeAssignment mode = 'mGroundCoinn'/> 

</Timing> 
</Connection> 
<Connection id='fromGround_WriteToGround' source='fromGround' target='WriteToGround'> 
<Timing instance='4' writesCommunicator='false'> 
<ModeABSignment mode = 'mGroundComm'/> 

</Timing> 
</Connection> 
<Connection id='toJAviator_WriteToGround' source='toJAviator' target='WriteToGround' 

targetPort='toJaviatorPort'> 
<Timing instance='16' writesCommunicator='false'> 
<ModeAssignment mode = 'mGroundComm'/> ^ 

</Timing> 
</Connection> 
<Connection id='ReadFromJAviator_fromJAviator' source='ReadFromJAviator' target='fromJAviator'> 
<Timing instance='4' writesCommunicator='true'> 
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<ModeAssigiiinent mode - 'mState'/> 
</Tiiaiiig> 
</Connection> 
</ExotaskGraph> 

E.6. Micro JAviator JAviator Low-Level Control 
program MicroJAviator{ 
connmnicator 
t_attitude attitude period 1 init attitude.init; //t_atitude<roll, pitch, yaw, droll, 
// dpitch, dyaw, ddx, ddy, ddz> 

t_target target period 1 init target.init; //t_target<roll_target, pitch.target, 
// yaw.target, z_target> 

t.altitude altitude period 1 init altitude.init; //t_altitude{z, dz} 
t.thrusts thrusts period 1 init thrusts.init; //t_thrusts-CTl, T2, T3, T4> 
t.thrusts manualThrusts period 1 init thrusts.init; //t_thrusts-(Tl, T2, T3, T4> 
t_position position period 1 init position.init; //t_position(x, dx, y, dy) 
t.state crrState period 1 init state.init; //t.state = unsigned char 
t.state nextState period 1 init state.init; //t.state = xmsigned char " 
t.state groundState period 1 init state.init; //t.state = unsigned char 
t_state simState period 1 init state.init; //t.state = unsigned char 
t.int stateChanged period 1 init state.init; //t.int = int 
t.int dummy period 1 init zero.init; //t.int = int 

module JAviatorCommimication start mJAviatorConnect-( 
// authenticate with JAvitor. 
task simConnect inputO state() output(t.state simState) function sim.connect; 

//read sensor data and filter it. 
//use duonny coommnicator to delay task execut ion. 
task sensing input(t.int dummy) state() output(t.attitude attitude, t.altitude altitude, 
t.state simState) function sensing; 

//send nev comand to the JAviator 
task actuating input(t.thrusts thrusts) stateO outputO function actuating; 

mode mJAviatorCominunication period 20{ 
invoke sensing input((dummy, 10)) output((attitude, 12), (altitude, 12), (simState. 12)); 
invoke actuating input ((thrusts, 16)) outputO; 
svitch(isNotConnected(simState)) mJAviatorConnect; 

> 
mode mJAviatorConnect period 20'C 
invoke simConnect input() output((simState, 12)); 
svitch(isConnected(simState)) mJAviatorCommunication; 

} 
> 
module GroundConomnication start mGroundConnect-C 
// authenticate with JAvitor. 
task groundConnect input() stateO output(t.state groundState) function ground.connect; 

//read targets and next requested state 
//t.thrust should be set only in manual mode 
//ve need some synchronization primitives, maybe the best is 
//to send data from ground only after log information has been recieved 
task read inputO stateO output(t.target target, t.state nextState, t.thrusts thrusts, 
t.state groundState) function read; 

//send log information to the Groxind station: 
// (1) roll, pitch, yaw, z 
// (2) droll. dpitch, dyaw, dz 
// (3) ddx, ddy, ddz 
// (4) TI, T2 
// (5) T3, T4 
//although this data is send in 4 periods, it will be from 
//the same period (i.e., period when first packet is sent) 
//this task also computes next state 
task write input(t.attitude attitude, t.altitude altitude, t.thrusts thrusts, t.state crrState, 
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t_state nextState) 
state(t.attitude s_attitude:=einpty_attitude, t_altitude s_altitude:=empty_altitude, 
t_thrusts s_thrusts:=einpty_thrusts, t_int count:=zero_init, t_int prevStateChanged:=zero_init) 
output(t_state outCrrState, t_state outNextState, t.int outStateChanged) function write; 

mode mGroundConnnxinication period 20{ 
invoke read inputO output((target, 5), (nextState, 5), (manualThrusts, 5), (groundState, 5)); 
invoke write inputC(attitude, 5), (altitude, 5), (thrusts, 5), (crrState, 5), (nextState, 5)) 
output ((crrState, 10), (nextState, 10), (stateChanged, 10)); 

switch(isNotConnected(groundState)) mGroundConnect; 
} 

mode mGroundConnect period 20{ 
invoke groundConnect input() output((groundState, 5)); 
svitch(isConnected(groundState)) mGroundCommunication; 

> 
} 

module Control start mControl-C 

//this task will be invoked when emergency shutdown is needed 
task shutDown input() stateO output(t_thrusts thrusts) function shutDown; 

//this task is a place holder for the control task 
task abstractControl input(t_thrusts prevThrusts) stateO output(t.thrusts thrusts); 

mode mControl period 20 program PControl{ 
invoke abstractControl input ((thr\ists, 12)) output((thrusts, 16)); 
switch(isShutDown(crrState)) mShutDown; 

> 
mode mShutDown period 20{ 
invoke shutDown input() output((thrusts, 16)); 

> 
> 

} 

program PControl-[ 

module MControl start mManual-C 
//manual control task 

task manualControl input(t_thrusts manualThrusts) stateO output(t.thrusts thrusts) function manual; 

//this task is a place holder for the control task 

task autocontrol input(t.thrusts prevThrusts) stateO output(t.thrusts thrusts); 

mode mManual period 20< 
invoke manualControl input((manualThrusts, 12)) output((thrusts, 16)) parent abstractControl; 
switch(isAuto(crrState)) mAuto; > mode mAuto period 20 program PAuto{ 
invoke autoControl input((thrusts, 12)) output((thrusts, 16)) parent abstractControl; 
switch(isHanual(crrState)) mManual; 

> 
} 

> 
program PAuto-C 

module MAuto start mTakeOff{ 
//this task implements the takeoff procedure 

task takeOff input(t.thrusts prevThrusts) stateO output(t.thrusts thrusts) function takeOff; 

//this task iiiţ>lements the hover procedure 
task hover input(t_int stateChanged, t.attitude attitude, t.altitude altitude, t.target target, 
t.thrusts prevThrtists) stateO output (t.thrusts thrusts) function hover; 

//this task implements the land procedure 
task land input(t.thrusts prevThrusts) stateO output(t.thrusts thrusts) function land; 
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mode mTakeOff period 20< 
invoke takeOff input((thrusts, 12)) output((thrusts, 16)) parent autoControl; 
svitchCisHoverCcrrState)) mHover; 

> 
mode mHover period 20{ 
invoke hover input((stateChanged, 12), (attitude, 12), (altitude, 12), (target, 12), 
(thrusts, 12)) output((thrusts, 16)) parent autoControl; 

switch(isLand(crrState)) mLand; 
> 
mode mLand period 20< 
invoke land input((thrusts, 12)) output((thrusts, 16)) parent autoControl; 

> 
} 

} 
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F. Simulink Blocks 

Block Description 

The output value of a memory block is repre-
sented by the input value from the previous 
step. A memory block can have a constant 
or an inherit sample time. 

Unrt Delay 

The unit delay block delays the input signal 
with one step in time domain. The sample 
time of the block can either be constant or 
inherit. 

"tomic Subsystem 

A subsystem block can be used to modu-
larize a Simulink model, a subsystem de-
fines a set of inputs and outputs through 
which the block is interconnected with the 
rest of the Simulink model. The functional-
ity of a subsystem block is implemented us-
ing Simulink block, it is possible to use sub-
system blocks also. The atomic subsystem 
is a subsystem which is treated as a single 
entity when the Simulink schema has to be 
simulated. If a subsystem is not marked as 
atomic, then at simulation-time it is possible 
that blocks, which implement the functional-
ity of the subsystem, to be intercalated with 
blocks from the rest of the Simulink model. 
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Block Description 

D«bM 
SubiyVcfr; 

The enabled subsystem is a subsystem 
that has a control input, which determines 
when the subsystem has to be executed 
at simulation-time. The control input must 
have a positive value in order for the block 
to be executed. An enabled subsystem can 
contain both continuous and discrete block, 
and the sample time of discrete blocks does 
not have to be inherit. 

The triggered subsystem is a subsystem that 
has a control input, which determines when 
the block has to be executed at simulation-
time. The execution of the block can be trig-
gered: on the rising front of the control sig-
nal, on the falling front of the control signal, 
or on both fronts. In order to detect that 
there has been a rising or falling front, the 
signal has to stay on 1 or O, respectively, for 
more than one sample time period. The sub-
system can not contain continuous blocks 
and all the blocks must inherit the sample 
time. 

EubtMMd 
Trtgoered Subtyslem 

The triggered and enabled subsystem is a 
subsystem that combines the triggered sub-
system and the enabled subsystem. It has 
two control inputs: a trigger control input 
and an enable control system. The subsys-
tem executes when both control inputs acti-
vate, e.g., there is a rising or a falling front 
to the trigger control input and the enable 
control input is positive. 
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Block Description 

mm > 0) • If block can be unused together with an ifac-
tion subsystem in order to models a behav-
ior sinnilar to the if statement in a program-
ming language. The block can have a vari-
able number of inputs, and a variable num-
ber of outputs. Each output is associated 
with an expression, which depends on the 
inputs of the block and which is evaluated 
in order to determine if the corresponding 
output shouid be activated. Oniy one out-
put can be active at a particular moment in 
time. When an output activates the execu-
tion of the action subsystem connected to 
that output, will be triggered. 

Action 

In1 Out1 

If Action 
Subsystem 

The if action subsystem is a subsystem 
which can be connected to the outputs of an 
if block. The subsystem executes onIy if the 
output to which it is connected is active. 

The switch case block together with an 
switch case action subsystem block models 
a behavior similar to the switch case state-
ment in programming languages. The switch 
case block has one input and multiple out-
puts. OnIy one of the inputs can be active 
at a specific moment in time. The block also 
has a default output, which activates when 
none of the inputs activates. Activation of 
one of the outputs of the switch case block 
will trigger execution of the action subsys-
tem that is connected to that output. 

The switch case action subsystem is a sub-
system which can be connected to the out-
puts of a switch case block. The subsystem 
executes onIy if the output to which it is con-
nected is active. 
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Block Description 

I The mux block transforms the signals from 
Its inputs into a single vectorial signal. The 
resulted signal at any moment contains an 
array ofvalues, i.e., one valueforeach input. 
The block can have multiple inputs but oniy 
one output. The input signals can be scalar 
or vectorial. 

I The demux block splits a vectorila signal into 
multiple scalar or vectorial signals, i.e., it is 
the opposite of the mux block. The block can 
have one input but multiple outputs. Usually 
the mux and demux blocks are used in pair. 

The switch block has three inputs and one 
output, based on the second input the block 
switches at its output between the first and 
the third input. 

The merge blocks combines multiple input 
signals into one output single signal. The 
output value of this block is equal with the 
last output value of one of the blocks that 
send signals to the block. Usually the merge 
block is used to combine signals from blocks 
that execute alternatively. 
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