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Abstract - The paper presents some ejjîcient 
algorithms for adaptive filtering: Wiener filter, Least 
Mean Square (LMS) algorUhin^ Kalman algorithnt These 
are used in several applications such as: echo canceiier on 
telephone lines, enclosure noise canceiier, adaptive 
equalization etc. 

The above-mentioned algorithms were implemented 
using the virtual instrumentation program LabVlEW, and 
Simulinkj respectively. Experiments were carried out and 
their utilityy limits and efficiency are demonstrated on 
different types of signals (Sine wave, audio signals). 

Keywords: Wiener fîUers, mean square error, 
perfortnance area, steepest descent, convergence, Kalman 
filter. 

1. INTRODUCTION 

Adaptive filtering is used vvhen is necessary to 
realize, simulate or mode! a system which 
characteristics develop with time. This leads to the 
use of time variable coefficients filters. The variations 
of the coefficients are defined by an optimization 
criterion and are realized according to an adaptive 
algorithm. In the literature there are many different 
criteria and algorithms. The simplest but the most 
important in practice is the case where the criterion of 
mean square error minimization is associated witli the 
gradient algorithm. 

While the filtering with constant coefficients is 
generally associated with frequency domain 
specifications, the adaptive filtering corresponds to 
time domain specifications and is obvious to use it for 
the filter coefficient computation [2]. 

2. PRESENTATION OF THE ADAPTIVE 
ALGORITHMS 

2.1 The Wiener algorithm 

The principie of an adaptive filter consists in time 
variation and auto fitting of its characteristics. 
Usually, an adaptive filter takes the shape of a FIR 
filter structure, with an adaptive algorithm 
permanently updating the filter coefficients, when the 
error signal is minimized in accordance with a 
criterion. 

The Wiener filter structure is shown in figure 1. 
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Fig. 1. Wmni^r filicr iimcturc. 

At the k moment, the samplc yk contains two 
components: the main signal ŝ  and a noise component 
nk, which is correlated with Xj,. The Wiener filter 
produces an optimum estimation of n^, named . It is 
presumed that the Wiener filter is a FIR filter with N 
coefficients and the estimated error signal e^ is 
computed by subtraction of noise estimation ĥ  from 
the input signal 

(1) 

where w{i) are the Wiener filter coefficients. Because 
it operates with discrete values, the input signal and 
the filter coefficients can be represented in matrix 
form: 

w = [w(0) M'dj 
(2) 

By substituting these matrices in equation (1), the 
estimated error signal vvill be: 

(3) 

The instantaneous biquadratic error of the signal can 
be obtained by squaring equation (3): 

el - - y i - 2 W ' ( y , X j ^ W ' ' X X ^ ' • (4) 

The square mean error {SME) ^ is defined by the 
probabilistic operator of the quadratic error from 
equation (4). Thus SME can be described: 
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i = E[eiy E[yl \-2W'E [y, \ \ ] ^ H-e[x\ ]w . (5) 

The SME function can be expressed more suitable by 
substituting the term E[XkXj} from (5) wilh the 
antocorrelatîon matrix Rxx More, the term E[yifXiJ 
can be substituted with the intercorrelation matrix 
Ryx. Thus, the SME can be expressed as: 

^ = E{e:} = E{yi}-21V'R^, ^W'R^^W . (6) 

From (6) we can observe that is a quadratic function 
of the weights of vector W (filters coefficients). When 
equation (6) is expanded, the elements of W will be 
only of first and second order. This equation is valid 
when the input components and the desired response 
are stochastic (random) variables. 

2.1.1 Perfor mance ar ea 

A part of a bidimensional mean error function is 
shown in figure 2. The vertical axis represents the 
SME and the other t\vo horizontal axes represent the 
values of two coefficients of the filter. The square 
error or the performance are a can be used to 
determine the optimum vector of weights WofH 
{Wiener filter coefficients). A quadratic performance 
function allows only a unique optimum global value; 
a local minimum does not exist. If the graphical 
representation is varying with many coefficients, the 
shape of the function will be hyper-parabolic. 
The gradient method is used in many adaptive 
processes to determine the optimum vector of weights 
corresponding to the minimum of the performance 
are a [6]. 

^mmmm 

W(1) 

Fig. 2. Bidimensional quadratic performance area. 

The gradient of the SME of the performance area V 
can be obtained by derivation of (6) with respect to 
each component of the vector of weights: 

V = dt 
dW ^dw(O) d^v(î) dw(N-l)^ . (7) 

Note that SME was obtained with the probability 
operator of the square error (equation (6)). In the same 
manner. the gradient can be found by the derivation of 

the probabilistic operator of the square error function 
with respect to the vector of weights. 

8e, 1 
J 1 \dW\ 

= -2E{X,y,]±2E{X,Xl]W (8) 

When the vector of weights (filter coefîlcients) has 
the optimum value ff„p„ the SME will be minimum. 
So. the gradient V will be zero (V = 0). Equating (8) 
with zero results 

(9) 

Equation (9) is known as Wiener-Hopf equation in 
matrix form and the filter with coefficients given by 
V̂opi represents the Wiener filter. For non-stationery 

signais Ŵ ,̂ ,, must be computed recurrently which 
needs a complex computation. The steepest descent 
algorilhm represents an iterative solution of the 
Wiener-Hopf equation. 

2.2 Steepest descent algorithm 

In practice, it is not usually to compute the 
optimum value W p̂i using equation (9) because the 
evaluation of R'^ [N ^ N] implies the inversion of a 
matrix that needs complex computations. More, if the 
signais are non-stationer> (frequent case), the 
computations must be performed periodically to 
pursue the changes. 

An alternative method to compute the optimum 
vector of weights W^pt is represented by the steepest 
descent algorithm. In according to this method, the 
weights are fitted recurrently with respect to gradient: 

(10) 

where Wp is tlie weights vector at iteration /?, V^ is the 
gradient vector at iteration p computed by substitution 
of Wp in (8). Parameter is a constant that fits the size 
of the step and controls the stability and the 
convergence rate. 

2.3 The LMS algorithm 

This algorithm is very used due to its simplicity 
and for the easy computation. The algorithm is based 
on the ''steepest descent"" method, but it simplifies this 
method considering only one iteration per sample and 
computing only one estiniation of the gradient vector 
(V^) in each moment k. 

The estimation of the gradient vector at moment 
k, (V^), can be obtained from the error defmition, 
(equation (3)): 
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V, = 
oe: 

dw{0) dw(l) dw(N-l) 

(11) 

= (12) 

This gradient estimation can be replaced in equation 
(10) and we obtain: 

(13) 

2,4.1 Discrete Kalman filter 

2.4.1.1 Process estimation 

The Kalman filter iries to estimate a state a' e 'OV 
belonging to a controlled process, time discrete, 
described by the finite difference linear equation: 

- Ax,,^ - Bu, ' . (16) 

or: 
(14) 

0<M<': 
I 

(15) 

where Ă̂ ax is the maximum value from the input 
covariance matrix. 
The input signal x: can be chosen to suit the properties 
of the reference signal yĵ . 
The length N: a large value improves the quality of 
the estimations (of the convergence), but also 
increases the computation effort. 

2.4 The Kalman algorithm 

The Kalman filters, named after the scientist 
Rudolph E. Kalman, represent̂ » a set of mathematical 
equations, implementing a type of predictor-corrector 
estimator, that is optimum in the meaning of 
minimizing the estimated error covariance, when 
certain presumed conditions are accomplished. 

with measurement z e R"': 

z, (17) 
for i ^ O ;V - / . 
Express ion (14) represents the LMS algorithm. 
Parameter /y is a constant that controls the stability 
and the convergence rate just like in the case of 
steepest descent algorithm. According to equation 
(13), the hardware implementation of the LMS 
algorithm it can be made simpler, because it does not 
need square-, averaging- or derivation operations [6]. 

2.3.1 Con vergence of the LMS algorithm 

From the definition equation of the LMS 
algorithm (equation (14)), we can observe that the 
convergence properties of the algorithm depend on: 
step size fi; stochastic properties of the input signal x\ 
N - window length (used number cells). 
The step size //: there is a time depending on optimum 
step pLopî ix(i) with decreasing values for pL with time 
increasing (for example fi(0)=0.01... 0.0001). 
In practice it is very important to choose fi because 
that controls the convergence rate. If the value of // is 
too small, it will need a longer time to converge to 
n̂Mn- If the value of fi is too large, the algorithm 

becomes unstable and it will not converge to (̂ rnm-
Generally, the LMS algorithm will converge if the 
following condition is true: 

The random variables w^ and v̂  represents the 
process noise, respectively the measurements noise. It 
presumes that they are white noises, independent one 
to another and with norm^d distributions of 
probability: 

pfw)-N( O, Qj 
p(v)-N(O.R) 

(18) 

In practice, covariance of the process noise ^ and 
the covariance of the measurement noise R can be 
modified in each moment, but in our case it is 
presumed that they are constants. 

Matrix A[n'>^n] from (16) describes the process 
state from the previous moment k-l at the current 
moment k, in default of driver function or the process 
noise. In practice, matrix A can be modified at each 
moment, but here it is presumed to be constant. 
Matrix B[n^l] describes the opţional control of input 
weOi' about the state jc. Matrix Hfm^n] from 
equation, intended to measure (17), describes the 
measurement ẑ . In practice, matrix H can be modified 
at each moment or at each measurement, but here it is 
presumed to be constant [4]. 

2.4.1.2 Filter computation 

i ; 6 is defined to be the a priori estimated 
state at moment k and x^. e the a posteriori 
estimated state at moment k having the measurement 
Zii. It can be defined now the a priori and a posteriori 
estimated errors: 

^̂  = jf̂  - x^ and = jĉ  - . (19) 

Under these conditions, the covariances of the a priori 
and the a posteriori estimated error, is: 

respectively 
p; j (20) 

(21) 
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To obtain the equations for the Kalman filter, we 
have to find an equation which computes the a 
posteriori estimated state as a linear combination 

of the a priori estimated state i " and of the vveighted 
difference between the current measurement Zk and 
the measurement prediction / / i r : 

= i ; - K(z^ - Hi; ) . (22) 

The term (z^ - Hx~) from equation (22) is called 
the measurement innovation or residue. This 
difference reflects the discrepancy between the 
measurement prediction / f t ; and the current 
measurement z .̂ If the residue is zero then the two 
quantities are equal. 

The matrix K[ny^m] from (22) represents the gain 
or the interference factor and its role is to minimize 
the a posteriori estimated error covariance Pk from 
(21). This can be achieved by substituting equation 
(22) in the defmition equation of the obtained error 
will be replaced in (21) and the probability operator 
will be computed. The obtained result will be derived 
with respect to K, equated with zero and solved to 
compute K. The most encountered form of the 
Kalman gain, which minimizes equation (21), is: 

(23) 

When the covariance of the measurement noise R 
tends to zero, the gain K weights better the residue: 

îim K, = H~ (24) 

When the a priori estimated error covariance P~ is 
achieving zero. the gain K weights very slightly the 
residue: 

lim K, = H- (25) 

So, when the measurement noise covariance R is 
achieving zero, the current measurement zjc matters 
more and the measurement prediction Hx'̂  matters 
less. On the other side, when the a priori estimated 
error covariance is achieving zero, the current 
measurement ẑ  matters less and tlie measurement 
prediction Hx'̂  matters more. 

2.4.1.3 Description of the Kalman algorithm 

The Kalman filter estimates a process using a 
feedback control: the filter estimates the state of a 
process at a moment and then obtains a feedback in 
the form of the measurements (in noisy conditions). 
Thus. equations of the Kalman filter are divided in 

two groups: equations for re-update in time and 
equations for re-update of measurement. The 
equations for re-update in time are responsible for 
time designing of the current state and the estimated 
error covariance to obtain the a priori estimations for 
the next instant. The equations for re-update of the 
measurements are responsible for the realization of 
the inverse feedback - the inclusion of new 
measurement in the a priori estimation to obtain an 
improved a posteriori estimation. The equations for 
re-update in time are also called prediction equations 
and the equations for re-update of measurement are 
also called the correction equations. So, the final 
estimating algorithm is a predictor-corrector 
algorithm, shown in figure 3. 

Re-updaie in time 
(prediction) 

Re-updalc of measuremeni 
(correction) 

Fig. 3. DiSCTCte Kalman filter cycle. 

The specific time and measurements re-update 
equations are presented below: 

p; = AP,+Q 

x^ + -Hx:) 

(26) 

(27) 

From (27) we notice that the first step consists in 
Kalman gain K^ computation. The next step consists 
in measurement updating to obtain zĵ  and generating 
the a posteriori estimated state. The final step consists 
in obtaining tJie a posteriori estimated error 
covariance. 

After each re-update of the time and 
measurements pairs, the process is repeated using the 
a posteriori estimations to compute the new a priori 
estimations. That recurrence is one of the most 
interesting property of the Kalman filters, that makes 
its practicai implementation to be more easier to 
realize relative to implementation of the Wiener filter, 
designed to work directly on all data for each 
estimation [4]. Instead, the Kalman filter computes 
recursively the current estimation based on all 
measurements performed. 

3. IMPLEMENTATION AND SIMLLATION 

In the last years, LabVIEW and Matlab's Simulink 
became the most well known software packages used 
in education and industry for modeling and simulation 
of dynamic systems. 

An example for processing signals using the LMS 
algorithm is shown in figure 4. The LMS algorithm 
structure with 4 coefîicients is shown in figure 5. 
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Fig . 5. T h e Z.A/5 a lgor i thm structure 
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Fig . 6 . Input s igna l , Fi ltered s igna l ; D e s i r e d s ignal ( S i n e w a v e ) 

The resulls in figure 6 vvere obtained with the 
tbllowing program specifications: the algorithm 
contains 4 coefficients; amplitude of sine wave = IOV\ 
frequency of sine wave ^ lOOHz\ number of samples 
for sine wave = 11]\ amplitude of noise (white noise) 
wave = JOV; step value iu=5 10'\ 

In figure 7 arc shown the resuits obtained using 
the same specifications, but the number of the filter 
coefficients was increased to 16. It is visible that the 
fikered signal (continuous black line) is closer to the 
desired signal (continuous gray line) than in figure 6. 

Sir« mft 
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Fig . 7. Input s igna l , Filtered s ignal ; D e s i r e d s ignal ( S i n e w a v e ) . 

The resuits of the LMS algorithm - figure 9 
(implemented in Simulink - figure 8) were obtained 
with the following program specifications: LMS filter 
with 16 coefficients; the step the input 

signal is an audio wave signal on 16 bits, with 8 KIIz 
frequency, on single channcl (mono). 

J ' O.iJntn.' 

r - - ^ 

H ' 

' Jng . „ . l KgM 

Fig . 8. S ignal p r o c e s s i n c w i th adapt ive AA/5 a lgor i thm 

b) 

c ) 

F ig . 9. a) A u d i o s ignal w i th n o i s e , b) f i l tered a u d i o 
s igna l ; c ) de s i red a u d i o s igna l 

The resuits of the filtering cxamplc (figure 11) 
with the Kalman algorithm (implemented in 
LabVIEW - figure 10) vvere obtained under the 
following program specifications: amplitude of sine 
wave = 10V\ noise amplitude = IOV\ sine wave 
frequency = IOOHz\ samples of sine = 7/7; 
R=J 10'^. Figure 10 shows the structure of ihe 
Kalman filter. 
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Fig . 10. Kalman f i lter structure 
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Fig. 11. înpiit sigiial; Filtered signaL Eksircd signal (Sme wavs) 

In the simuiation example with Kdman algorithm 
(implementcd in Simulink), an input audio signal of 8 
KHZ frequency, represenled on 16 bits, and Q=î -10'^: 
R = 1 I 0 ' ' were considered. The obtained results are 
shou'ii in figure 12. 

C) 

Fig. 12. a) Audio signal with noise, b) filiered 
audio signal; c) desired audio signal. 

4. CONCLUSIONS 

A. General conclusions. 
In this paper, several techniques for designing and 

implemenîing adaptive filters were presented. These 
techniques were based on the gradient algorithm, 
being the simplest and the most efficient instrument 
for varying the coefficients. 

The gradient algorithm leads to slowly modifying 
filter coefficients values, when it requests a reduced 
residual error and it is used in the simpler form (the 
sign algorithm). To find the most rapid adaptation 
rate, all of the coefficients can be re-computed 
periodically using rapid iterative procedures. 

It is possible to consider some other criteria, 
which, for other precision applications, are more 
suitable ihan the minimizing ShdE criterion, thus. 

more efficicnl algorithms than the gradient algorithm 
can be developed. The gradient algorithm can be 
improved, for example, using different coefficient 
step variations, which are obtained from statistical 
estimations of the signal characteristics. However, due 
to implcmentation imperfections, applying these 
algorithms and sensitivit>' problems can be more 
difficult. 

The specific noise cancellation case was already 
studied since 4 decades but lately hardware 
implementation possibilities of the theoretical systems 
with signal processors are loomed. 

This paper tries to achievc some important sides 
of the adaptive systems in noise cancellation. 
B. Conclusions concerning the simuiation results, 
From simulations. we can observe when the noise 
amplitude is growing up, the filtered signal is visible 
distorted. that reduces the respectively algorithm 
performances. Otherwise, increasing the number of 
filter coefficients, the accuracy of the filtered signal 
increases. 

Another important problem is choosing the 
optimum parameters of the adaptive filters. For 
example, in case of the LMS algorithm, choosing the 
step (/i), which determines the convergence rate is 
criticai. I f / i is too large, the algorithm will converge 
ver> rapidly but will present oscillations until stability 
limit is reached, or, the effect of inverse error 
minimizing - another drawback - appears. If a too 
small step // is chosen, oscillations will not appear 
during the convergence process, but the convergence 
speed is slower. 

The optimum Wiener filter theory was made for 
random stationer)' processes. When the statistical 
properties of the random processes are changing in 
time, the above description becomes more difficult. 
Due to the permanently modifying of the error surface 
of which minimum is to be searched, the adaptive 
algorithm must ensure not only the convergence to the 
optimum solution, but also to follow the continuous 
changing of this optimum value. The Kalman filter 
theory that allows a model, for the considered 
appiication, based on state equations gives the 
solution. The obtained recursive algoritlim is more 
rapid than the LMS algorithm and less dependent by 
the static characteristics of input data, but presumes 
more complex computations. 
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