Buletinul Stiintific al Universitatii "Politehnica" din Timisoara

Seria ELECTRONICA si TELECOMUNICATI

TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 49(63), Fascicola 2, 2004

QRD-LSL Algorithm Suitable for Implementation on
D.S.P.

Andrei Alexandru Enescu, Constantin Paleologu, Silviu Ciochina'

Abstract - This paper deals with modifications brought
to the QRD-LSL algorithm presented in [S], in order to
implement it on Digital Signal Processor (DSP). It is
necessary to choose a powerful processor, with a parallel
architecture that allows several instructions to be
executed simultaneously. This is the main reason for
choosing Motorola SCI/40 processor. In addition, we
have structured the algorithm in a way to allow a high
complexity algorithm to be run in real-time in a specific
application. The paper presents the main features of this
DSP and then makes comparisons between the original
algorithm, described in [1] and the improved version
with low complexity.

Keywords: adaptive lattice algorithm, least squares,
digital signal processor

[. INTRODUCTION

It has been shown in [2], [3] that QRD-LSL algorithm
has great performances when used in echo canceller
configuration. However, in the original version, the
complexity is quite large, making the algorithm
impossible to be implemented in real-time. In [1], a
modified version of the algorithm is presented. A
comparison between the two algorithms is presented
in Table 1:

Table 1.
Adaptive
algorithm QRD-LSL | MQRD-LSL
multiplications 25M+11 22M+10
divisions 4M+2 4M+2
additions/ subtractions| 8M+3 §M+3
square-root operations | 4M-2 0

It is to be noticed that the square root operations
require a large computing time, as they must be
approximated by another technique, e. g. Taylor
series. Either way, the computing time increases
significantly and the application area becomes
restricted due to a reduced sampling frequency. Thus,
the main goal is to minimize the number of
instructions within the implemented algorithm.

' Facultatea de Electronica §i Telecomunicalit, Catedra de

Another issue is the fixed-point representation.
Since fractional representation is used (i.e. for a
given number of bits, B, the range for any
fractional variable is [-1;1-2'3]), care must be
taken when arithmetic operations are made, in
order to avoid overflow. An overview on the
dynamics of the algorithm variables will prove
that scaling is needed in the implementation
process, because some variables are greater than
unit value.

Moreover, this paper presents the
implementation ,tricks” used to simplify the
algorithm in order to implement it on a digital
signal processor.

[i. AN OVERVIEW OF SC140 ARCHITECTURE

As we have chosen to implement the algorithm on
SC140, it is necessary to describe the features of this
processor first. The specific features of this
architecture, described in [6] are the following:

® High level abstraction of the Application

Software
- Applications development in C language
- Hardware supported integer and

fractional data

® Scalable performance
- 4 ALUs (Arithmetic logic Units) and 2
AAUs (Address Arithmetic Units)
- 4 MMACS (million multiply and
accumulate operations per second) for each
megahertz of clock frequency

® High Code Density for Minimized Cost
—- 16-bit wide instruction encoding

The core important features are:
® Upto 10 RISC MIPS for each megahertz
of clock frequency

® A true (16*16) + 40>40-bit MAC unit
ineach ALU

Telecomunicatii Bd. I. Maniu 1-3, Bucuresti, e-mail: {aenescu, pale, silviu}@comm pub.ro

165

BUPT

However, the main feature that we have already

° b . . !t
QC:U:L?IO bit parallel barrel shifter in mentioned is the C compiler and the ability to convert
C source code into assembly code. The complexity of
® 16 x 40-bit data registers for fractional ORD-LSL algorithm is quite large and therefore the
and integer data operand storage need for flexibility is important, since programming in
® 16 x 32-bit address registers (8 can be C code is much casier than implementing the
used as 32-bit base address registers) algorithm direct in assembly code. The C compiler
. supports ANSI C standard and also intrinsic functions
® 4 address offset registers and 4 modulo ¢ yyyETS) primitives. Assembly code integration is
address registers also possible, which optimizes supplementary the
® Unified data and program memory space code. ‘
(Harvard architecture) The block diagram of SC/40 core, as presented in [2],
® Byte addressable data memory is described in Fig. 1.
: Unified Data/Program Memory
L
b 32 3z 254 1‘:4 iz8
fize (-—-—i 7
Program Address Generator DALU Register
aequencer Regiscer File File EOnCE
Power Instruction Set
Hanagement Accelerator
2 AALs= BMU 4 ALUs CLK
Generato: Tzs
FLL
AGU] DALU
Instruction Bus
StarCore 8Cl40 Core

Fig 1. Block Diagram of SC140 Core

In Fig. 1, we present the SC140 core, including:

DALU (Data Arithmetic Logic unit)

- A register file of 16 x 40-bit
registers

- 4 parallel ALUs (each one
containing a MAC unit and a
BF U- bit-field unit)

- 8 data bus shifter/limiters

AGU (Address Generation Unit)

- 2 AAUs, accessing 16 address
registers, 4 offset registers, 4
modulo registers

1I. AN ANALYZE OF QRD-LSL IN DSP
IMPLEMENTATION CONTEXT

In [1). a version of QRD-LSL algorithm is
presented, after eliminating complex operations,
such as square roots. The algorithm is presented in

Table 2:

Table 2.

1. Initialization
Fororder m=1,2.....M

166

’?/.m—l(o) = ’?b,m-l(o) = 0 ’ ﬁm(o) = O
Bm-l (0) = 6’ Fm—l (0) = 5
// & is a small positive constant

end

2. Computations
For time n compute

Ef-“(n) = E—fm(n) = x(n)

// x(n) 1s the input at time n

&(n)=d(n)
// d(n) is the desired response at time n
Zo(n) =1

Boon=-0H=1, g, (n-1)=1
Fororder m=1,2,.... M
B, ,(n-1)=AB, ,(n-2)+

+ ﬂb_m-| ('7 - l)lEb.m-| (H _ l)lz
z AB. (n-2
G- = D
m-1

E;im-l(n_l):ﬂb,m—l (n_l) B (n—l)

BUPT

Erm(n)= E/,m—l (n)~&, -y (n- l)i}.m-l (n-1)

At the price of losing from finite precision, some of
the bits used in quantization can be used for
scaling, regarded in binary arithmetic as a simply

) () = Gyt (1 =07, (B=D+5, (=D, ., ('?)ght-shif‘ting by the same number of bits.

7m(" —l’ = "—.b.m—l(n—llym-l(n_ 1)

Fy ()= A, (n=1)+ B, (n=DE, ., (n)]

_ AF,_(n-1)

Crmalm)= _F—l((T
m-1

E oy (M)

Fm—l (n)

Eb m(n) = Eh.m-l(n - l) - Ej.m-l(n)”_b..m—l(n _l)

‘?[.m—l (n)= ﬂ_[,-\ (n-1)

’?b..m-! no= E:,’--l(nih. m-| n —-—l~ +
+5, i (ME, . (n=1)

CE,an)=E,(n)-§,, (")ﬁ; (n-1)

Do) =3¢, ,(n-p,(n-0)+5,,,_(n-1DE,(n)

Bynin=-1)=¢,, ,(n-1p, ,_(n-1
ﬂ/_m (n)= E[.m—l (n)ﬂ/ ma (= D

end
By (m)= AByy (n=1)+ B, \, ()| 0y ()]
_ . _iB,(n-D)
G (M) = B, (1)
Eopr ()

S (1) = Bipg () B, ()
M

Epg (M) = £y (1) — £, 5, (n) By, (n—1)
Ew (n) = E[,M (”)1-7;4 (n-H+ E;,.M (")EM (n)
Y (1) =G, 1 ()Ypy (1)

eM.l(n) = 7[40] (n)EM-l(n)
end

We focus on the echo cancelling configuration,
since it is demonstrated in [5] that this algorithm
proves good performances in double-talk
configuration.

Because the standard input signals, the learning
curve and other technical details can be found in
[5]. we only show the dynamic range of some
variables during convergence process. Assuming a
¢ss_st standard signal at the far end and a sinusoid
of normalized frequency 0.1 at the near end and
considering an echo path with a length of the
impulse response of 64, we present the evolution of
the cost functions on both forward and backward
prediction branches.

It can be easily seen that, during convergence, the
samples increase to a very large value, much
greater than 1. This observation is valid, especially
for the first cell, as we can see from Fig. 2. Also it
is to be noticed that a similar evolution have the
samples for the forward prediction cost function.

167

100} Z =

!

'

50 -) . ¢
J

0 1000 2000 3000 4000 5000 6000 700G BOOO 90CO

Fig. 2. Evolution of backward cost functions for the
64 cells of the structure

Then, the formula used for actualization of this cost
function becomes:

Bu-i(n—1) = ABu-i(n—2)+

- :, (D
By (= D[Esmr(n =1 2

In (1):

B(n) = B(n)2™* 2

Then, the variables that also depend on B(n) are
actualized as follows:

ermni(n—1) = 2Bminm2) 3)
Bu-i(n-1)
P N S il Gk B P

Bm»l(n -])

The same modifications stand also for the forward
prediction part with the proper index replacements.
If the number of bits used in scaling is properly
chosen, then there is no overflow.

Even though an asymptotic limit for the cost
functions has not yet been found, an upper bound
for them can be deduced. Let us denote that:

(%)

l, =limB, (n)

From (1), assuming that the last term is smaller
than 1 in a correct fractional representation, we get:
<Al +1

and therefore:

BUPT

©®)

! s__l_.
"1-4
As shown in [3], a small residual error in an echo
cancelling configuration is achieved with a RLS
adaptive algorithm by setting the forgetting factor
as closer to 1 as possible. All the same, if we set 4
to the maximum possible represented number on
short format of 16 bits, i.e. 1-2"", then /, is limited
by 2'°. The number of bits used for scaling should
be log: (ln)=15. which is unacceptable, since it is
exactly the precision used for a short format
variable. Thus, a trade-off is required between echo
canceller’s theoretical performances and the
precision used for cost functions.
In order to test echo canceller’s performances, the
algorithm has been implemented using Code
Warror C Compiler for SC/40. A simulation on the
evaluation board was run, with a sinusoid of a
normalized frequency 0.05 as near-end signal and a
scaling of 10 bits. The signals are described in Fig.
3

W 2000 000 SCIC 600 7O00C 300

Fig. 3. Far-end signal. Near-end signal. Qutput
signal. Residual error.

IV. OPTIMIZING TECHNIQUES USED FOR
ORD-LSL

In this paragraph, we evaluate the number of cycles
needed by the algorithm per iteration. The goal is
to minimize this number, in order to lower the
computational time per iteration under the
sampling time of the CODEC.

If we take advantage of the fact that the structure is
symmetrical, because of the similarities between
the forward prediction structure and the backward
prediction structure, then we can use two identical
blocks for each lattice cell, thus we can call twice a
function in C language during one iteration.

A behavioral description of the block is given in
Table 3.

Table 3

168

[J,--lyﬂm)gm’em’”m—l’pm—ll =
= prediction(J,_|, B,_,»Em-1,Eq
em-—l 4 ”m-l b pm—l)

— 2,
aux=AJ, , + ﬂ,,,_,|£m-:' 2

Al
- m-1
Cm-l -
aux
J,_, =aux
ﬂm = Cm-l m-1
= Bni€
sm-l -
J

m-1
Ep = Epmy —;m-lﬂm_,
Koy SC Ty T S Emey
if flag
€, =€p_) —Em-i1Dp_,
Pt =CmiPmy T SmiCm-s

end

]

-
L

Fig. 5. Block diagram for one cell prediction

The filtering part is included in backward
prediction part and is performed if a flag is set.
This flag is set before the backward prediction and
reset before the forward prediction. Then, iteration
is described in Table 4.

Table 4.

y=1-4
form=0M
flag = 1. // backward prediction

[B..is .Bh,mv € msCms W fmts pm—l] =

= prediction(B,”_,./7,,_,,,4,,2,,,4.5,‘,,,_,.
Con 127 g m1s Py)

flag =0.7 forward prediction

(£, ﬂ[.m‘ EpmsCm> Th yets Pt 1=

= prediction(F,_,, B, ...\, .-, \Emet,

€t Tp met> Prict)

BUPT

end

Another optimization technique, accomplished
using this procedure is that all the transformations
are made in-place, regardless of the iteration (i.c.
moment of time), saving a large amount of
memory. Choosing an appropriate level of
optimization from the C compiler, Code Warrior
(0-3). makes further optimization. As well, the
proper use of intrinsic functions from C compiler
can further reduce the number of cycles.

A very good approximation on computing time per
iteration shows that it is proportional to adaptive
filter’s order:

t, =aM)]

We shall refer to @ from now on as proportionality
constant. During implementation on StarCore, the
evolution of this constant was most relevant and it
is described in Fig. 6.

The evolution of proportionaiity constant

MO e mms e e N e o
1
o —_— [
o | \
| \
- ___"_4_>>_“¥;—
o
] —
00— [——
. 2 3 “ s) 14 [0
Sups

Fig. 6. Evolution of proportionality constant

In Fig. 6, on X axis, optimization steps are
represented in time. The optimization process also
included taking advantages of the parallel
architecture and can be found in {2].

We describe the stages from Fig. 2:

1-3. Intrinsec optimizations from procedure
prediction (use auxiliary value for J, rearrange the
cos factor computation)
4. Modularization by
prediction

5-6. Levels 0-1 of optimization
7. Use in-place transformation
8-9. Levels 2-3 of optimization

using the procedure

V. REMARKS

A modified version of QRD-LSL algorithm,
suitable for implementation on DSP has been
presented, along with the description of the
architecture of the StarCore, the DSP used for
implementation. Because this algorithm is known
to be complex and because it needs to run in real
time, it is necessary to furthermore reduce the
number of cycles. The next step is to write special
assembly routines within the program, replacing
the complex operations.

169

REFERENCES

[1} C. Paleologu, S. Ciochina, A. A. Enescu, “Modified
versions of QRD-LSL Adaptive Algorithm with Lower
Computational Complexity”, Rev. Roum. Sci. Techn. -
Electrotechn. et Energ., vol. 46, no.3, 2001.

[2] C. Paleologu, S. Ciochina, A.A. Enescu, ,,A Network Echo
Canceller Based on a SRF QRD-LSL Adaptive Algorithm
Implemented on Motorola StarCore SC140 DSP". IEEE
Int. Conf ICT 2004, Fortaleza, Brasil, 2004

[3] S. Ciochina, C. Paleologu, “On the Performances of
QRD-LSL Adapuve Algonthm n Echo Cancelling
Configurauion”, Proc. IEEE ICT 2001. Bucharest.
Romania, vol.1, 2001, pp. 563-567.

[4) S. Haykin, 4daptive Filter Theory, Third Edition, Prentice
Hall International, Inc. Englewood Cliffs, 1996.

[S] C. Paleologu, S. Ciochina, A. Enescu, “A Simplified
QRD-LSL Algorithm in Echo Cancelling Configuration”,
Proc. IEEE ICT 2002, Beijing, China, vol.}, 2001, pp.
563-567.

[6]) “SC140 DSP Core Reference Manual”, Revised 1, 6/2000

[7) St Gay, “An Efficient, Fast Converging Adaptive Filter
for Network Echo Cancellation”. Proc. Asilomar, Pacific
Grove, CA. Nov. 1998, pp 394-398.

{8] Ph Regalia, “Numerical Stability Properties of a QR-
Based Fast Least Squares Algonithm”, [EEE Trans. Signal
P---==-1=-, =1 41, =~ 6,]~~~ 1993, pp 2094-2109.

[9] M. Hartenek, R. W. Stewant, J. G. McWhirter, LK.

Proudler, “Algorithmic Enginecering Applied to the QR-

RLS Adaptive Algorithms”, Proc. 4% International

Conference on Math. Signal Proc., Warwick, U K 1996.

Regalia P., Bellanger G. “On the Duality Between Fast QR

Methods and Lattice Methods in Least Squares Adaptive

Filtering™. IEEE Trans. Signal Processing, vol. 39, no. 8,

April 1991, pp. 879-891.

Ciochina S., Negrescu C., Adapiive Systems, Ed. Tehnica,

Bucharest, 1999.

Liu J. "A Novel Adaptation Scheme in the NLMS

Algorithm for Echo Cancellation”, [EEE Signal Processing

Letters, vol. 8, no. 1, January 2001, pp. 20-22.

1.G. Proakis, C. M. Rader, F. Ling, C L. Nikias, Advanced

Dignal Signal ~ Processing Algorithms, Macmillan

Publishing Company, 1992.

W.M. Gentleman, “Least Squares Computations by Givens

Transformations without Square-Roots"”, J. Inst. Math. its

Appl., vol. 12,1973, pp. 329-336.

(15] ITU-T Recommendation G.168, Digital Network Echo
Cancellers, 2000, Draft 3.

[16] ITU-T Recommendation G.711}, pulse code modulation
(PCM) of voice frequencies, CCITT-Blue Book. Volume

111, Fasc. I11. 4, pp. 175-184.

[17) A. Andronache, C. Anghel, S. Pop, “A Novel Adaptation
Scheme in the NLMS Algorithm for Digital Network
Echo Canceller Implemented on Motorola StarCore
SC140™, Int. Conference COMM 2002, Dec. 2002,

Bucharest, Romania

(10]

i

12]

13]

(14]

BUPT

