
Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara

Seria EIECTRQNICA şi TELECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 49(63), Fascicola 2, 2004

QRD-LSL Algorithm Suitable for Implementation on
D.S.P.

Andrei Alexandru Enescu, Constantin Paleologu, Silviu Ciochină^

Abstract - This paper deals with modirications brought
to the QRD-LSL algorithm presented in [S|, in order to
imptement it on Digital Signal Processor (DSF). It is
necessar> to choose a powerful proccssor, with a parallel
architecture that ailows scvcral instructions to be
executed simultaneousiy. This is the main reason for
choosing Motorola SC140 processor. In addition, we
have structured the algorithm in a way to allow a high
complexity algorithm to be run in real-time in a specific
application. The paper presents the main features of this
DSP and then makes compahsons between the original
algorithm, described in [1| and the improved version
with low complexity.

Keywords: adaptive lattice algorithm, least squares,
digital signal processor

1. INTRODUCTION

It has been shown in [2], [3] that QRD-LSL algorithm
has great performances when used in echo canceller
configuration. However, in the original version, the
complexity is quite large, making the algorithm
impossible to be implemented in real-time. In [1], a
modified version of the algorithm is presented. A
comparison between ihe two algorithms is presented
in Table 1:

Table 1.
Adaptive
algorithm QRD-LSL MQRD-LSL

multiplications 25M+11 22M+10
divisions 4M+2 4M+2

additions/ subtractions 8M-H3 8M+3
square-root operations 4M-2 0

It is to be noticed that the square root operations
require a large computing time, as they must be
approximated by another technique, e. g. Taylor
series. Either way, the computing time increases
significantly and the application area becomes
restricted due to a reduced sampling frequency. Thus,
the main goal is to minimize the number of
instructions within the implemented algorithm.

Another issue is the fixed-point representation.
Since fractional representation is used (i.e. for a
given number of bits, B, the range for any
fractional variable is [-l;l-2'®]), care must be
taken when arithmetic operations are made, in
order to avoid overflow. An overview on the
dynamics of the algorithm variables will prove
that scaling is needed in the implementation
process, because some variables are greater than
unit value.
Moreover, this paper presents the
implementation „tricks" used to simplily the
algorithm in order to implement it on a digital
signal processor.

II. AN OVERVIEW OF SC140 ARCHITECTURE

As we have chosen to implement the algorithm on
SCI40, it is necessary to describe the features of this
processor first. The specific features of this
architecture, described in [6] are the foilowing:

• High level abstraction of the Application
Software
- Applications development in C language
- Hardware supported integer and
fractional data

• Scalable performance
- A ALUs (Arithmetic logic Units) and 2
AAUs (Address Arithmetic Units)

4 MMACS (million multiply and
accumulate operations per second) for each
megahertz of clock frequency

• High Code Density for Minimized Cost
16-bit wide instruction encoding

The core important features are:

• Up to IO RJSC MIPS for each megahertz
of clock frequency

• A true (16*16) + 40->40-bit MAC unit
in t?iQ\\ALU

' Facultatea de Elecironicâ şi Telecomunicaţii, Caiedra de
Telecomunicaţii Bd. I Maniu 1-3, Bucureşti, e-mail: {aenescu, pale, silviu}(^comm pub.ro

165
BUPT

A true 40-bit parallel barrel shifter in
td^chALU

16 X 40-bit data registers for fractional
and integer data operand storage

16 X 32-bit address registers (8 can be
used as 32-bit base address registers)

4 address ofTset registers and 4 modulo
address registers

Unified data and program memor> space
(Harvard architecture)

Byte addressable data memory

However, the main feature that we have already
mentioned is the C compiler and the ability to convert
C source code into assembly code. The complexity of
QRD'LSL algorithm is quite large and therefore the
need for flexibility is important, since programming in
C code is much easier than implementing the
algorithm direct in assembly code. The C compiler
supports ANSI C standard and also intrinsic fbnctions
for ITU^ETSl primitives. Assembly code integration is
also possible, which optimizes supplementary the
code.
The block diagram of SC 140 core, as presented in [2],
is described in Fig. 1.

Program
aequencer

U n i f l e d DateL^Prsgram HeoMjry
— ^

Address Generator
R e g i s t e r F i l e

2 AAUs BHU

I n s c r u c t i o n Bus

A G U

DALU F e g i 3 t e r
r i l e

I
D A L U

S t a r C o r e S C 1 4 0 C o r e

Fig 1. Block Diagram of SC 140 Core

In Fig. 1, we present the SCI40 core, including:
DALU (Data Arithmetic Logic unit)

A register file of 16 x 40-bit
registers
4 parallel ALUs (each one
containing a MAC unit and a
BFU' bit-fleld unit)
8 data bus shifter/limiters

- AGU (Address Generation Unit)
2 AAUs, accessing 16 address
registers, 4 offset registers, 4
modulo registers

III. A>^A]^ALYZEO¥ QRD-LSLWDSF
IMPLEMENTATION CONTEXT

In [I], a version of QRD-LSL algorithm is
presented, after eliminating complex operations,
such as square roots. The algorithm is presented in
Table 2:

Table 2.

l. Initialization
Fororder w = 1,2....,A/

end
115 is a small positive constant

2. Computations
For time n compute

H x{n) is the input at time n

fld{n) is the desired response at time n

For order = l,2,...,/V/

166 BUPT

(") = (") - (" - I W „ - l (n - »

.„-, c o = c j (« - „ _ , (« - !) + j , „., (« - \)i,„

(« - 1) = Cj (n - !) / „ . , { « - 1)

(") = - l / v . , (« - 1) + fi^ 1) £> „ . , («)

At the price of losing from finite precision, some of
the bits used in quantization can be used for
scaling, regarded in binaiy arithmetic as a simply

i^^îght-shifting by the same number of bits.

= .„-l

- (") = (« - 1) - f / „ - • (« - »

»,-i (") = C ") ^ ™ - . (« - •) +

K (") = (« - D Ă : - 1) + „ - , (« - (")

end

M (n) =

^M.l («) = f w (") - (« - 1)

^ (") = - 1) + h . M (")

in)rM(n)

end

We focus on the echo cancelling configuration,
since it is demonstrated in [5] that this algorithm
proves good performances in double-talk
configuration.
Because the standard input signals, the learning
curve and other technical details can be found in
[5], we only show the dynamic range of some
variables during convergence process. Assuming a
css sl standard signal at the far end and a sinusoid
of normalized frequency 0.1 at the near end and
considering an echo path with a length of the
impulse response of 64, we present the evolution of
the cost functions on both forward and backward
prediction branches.
It can be easily seen that, during convergence, the
samples increase to a very large value, much
greater than 1. This observation is valid, especially
for the first cell, as we can see from Fig. 2. Also it
is to be noticed that a similar evolution have the
samples for the forward prediction cost function.

1000 2000 3X0 4000 5000 6000 700C 8000 9000

Fig. 2. Evolution of backward cost functions for the
64 cells of the structure

Then, the formula used for actualization of this cost
function becomes:

(1)

ln(l) :

B(n) = 8 (^) 2 - " (2)

Then, the variables that also depend on B(nj are
actualized as follows:

Cb,M,-\(A7 - 1) = - = (3)

(Az -1) - A . . . (A7 - (4)

The same modifications stand also for the forward
prediction part with the proper index replacements.
If the number of bits used in scaling is properly
chosen, then there is no overflow.
Even though an asymptotic limit for the cost
functions has not yet been found, an upper bound
for them can be deduced. Let us denote that:

(5)

From (l), assuming that the last term is smaller
than 1 in a correct fractional representation, we get:

and therefore:

167
BUPT

/ <•
1 - / 1

(6)

As shown in [3], a small residual error in an echo
cancelling configuration is achieved with a RLS
adaptive algorithm by setting the forgetting factor
as closer to 1 as possible. AII the same, if we set Ă
to the maximum possible represented number on
short format of 16 bits, i.e. 1-2*'^, then /„, is limited
by The number of bits used for scaling should
be log: which is unacceptable, since it is
exactly the precision used for a short format
variable. Thus, a trade-off is required berween echo
canceller's theoretical performances and the
precision used for cost functions.
In order to test echo canceller's performances, the
algoritlim has been implemented using Code
Warror C Compiler for SC 140. A simulation on the
evaluation board was run, with a sinusoid of a
normalized frequency 0.05 as near-end signal and a
scaling of 10 bits. The signals are described in Fig.
3:

j j i y i i g i J f J I i i i i y ^

i frr 2000 3000 4000 5000 70DC 3<XXi'

iQCC ?GDD 3000 400D SCOC 9000 70QD 9000

1G00 3000 3000 4000 5000 âOOC 7000 «YT

W
laoc 2000 3000 4ax scoc ecco /ax aocD

Fig. 3. Far-end signal. Near-end signal. Output
signal. Residual error.

IV. OPTIMIZING TECHN'IQUES USED FOR
QRD-LSL

In this paragraph, we evaluate the number of cycles
needed by the algorithm per iteration. The goal is
to minimize this number, in order to lower the
computaţional time per iteration under the
sampling time of the CODEC.
If we take advantage of the fact that the structure is
symmetrical, because of the similarities between
the forward prediction structure and the backward
prediction structure, then we can use two identical
blocks for each lattice cell, thus we can call twice a
function in C language during one iteration.
A behavioral description of the block is given in
Table 3.

Table 3

= predicUon{J, s„,-\

aUX = + Ea,-!

^m-i aux

^m-1 - ^ j

if flag

end

Fig. 5. Block diagram for one cell prediction

The filtering part is included in backward
prediction part and is performed if a flag is set.
This flag is set before the backward prediction and
reset before the forward prediction. Then, iteration
is described in Table 4.

Table 4.

for m = O.M
flag = /; //backward prediction

flag = 0: // forward prediction

= prediction(F„,_,, , , ,

168 BUPT

end

Another optimization technique, accomplished
using this procedure is that all the transformations
are made in-place, regardless of the iteration (i.e.
moment of time), saving a large amoiint of
memory. Choosing an appropriate level of
optimization from the C compiler. Code Warrior
(0-3), makes further optimization. As well, the
proper use of intrinsic functions from C compiler
can further reduce the number of cycles.
A very good approximation on computing time per
iteration shows that it is proporţional to adaptive
filter's order:

t^^aM (!)
We shall refer to a from now on as proporţionality
constării. During implementation on StarCore, the
evolution of this constant was most relevant and it
is described in Fig. 6.

r Tht tvalutlon of proportlonality constant

Fig. 6. Evolution of proportionality constant

In Fig. 6, on X axis, optimization steps are
represented in time. The optimization process also
included taking advantages of the parallel
architecture and can be found in [2].
We describe the stages from Fig. 2:
1-3. Intrinsec optimizations from procedure
prediction (use auxiliary value for 7, rearrange the
cos factor computation)
4. Modularization by using the procedure
prediction
5-6. Levels 0-1 of optimization
7. Use in-place transformation
8-9. Levels 2-3 of optimization

REFERENCES

[I] C. Paleologu, S. Ciochina, A. A. Encscu, "Modificd
versions of QRD-LSL Adaptive Algoriihm with Lowcr
Computaţional Complexity", Rev. Roum Sci. Techn. -
Elcctrotcchn. et Energ.. voi 46. no.3, 2001.
C. Paleologu, S. Ciochină, A.A. Encscu, „A Network Echo
Canccilcr Based on a SRf QRD-LSL Adaptive Algorithin
Implemented on Motorola StarCore SC MO DSP", IEEE
Ini Conf ICT 2004, Fortaleza, Brasii, 2004
S Ciochina. C Paleologu, "On the Performances of
QRD-LSL Adaptive Algonthm in Echo Cancelling
Configuration", Proc IEEE ICT 2001. Bucharest.
Romania, voi 1, 2001, pp 563-567
S. Haykin, Adaptive Filter Theory, Third Edition, Prentice
Hali International, Inc. Englewood Cliffs, 1996
C. Paleologu, S. Ciochina, A. Enescu, "A Simplified
QRD-LSL Algonthm in Echo Cancelling Configuration",
Proc. IEEE ICT 2002, Beijing, China, voi 1, 2001, pp.
563-567.
"SC 140 DSP Core Reference Manual". Revised 1,6/2000
St. Gay, "An Efficient, Fast Converging Adaptive Filter
for Network Echo Cancellation", Proc. Asilomar, Pacific
Grove, CA. Nov. 1998, pp 394-398.
Ph Regalia, "Numerical Stability Properties of a QR-
Based Fast Least Squares Algonthm". IEEE Trans. SignaJ
Processing, voi 41, no 6, June 1993. pp 2096-2109.
M. Hartenek, R. W. Stewart, J. G. McWhirter. I.K.
Proudler, "Algorithmic Engmeering Applied to the QR-
RLS Adaptive Algorithms". Proc. 4^ International
Conference on Math Signal Proc., Warwick, U K 1996.
Regalia P., Bellanger G. "On the Duality Between Fast QR
Methods and Lattice Methods m Least Squares Adaptive
Filtering". IEEE Trans. Signal Processing, voi 39. no 8,
April 1991. pp. 879-891.

[II] Ciochină S., Negrescu C.. Adaptive Systema, Ed. Tehnică.
Bucharest. 1999.

[12] Liu J. "A Novei Adaptation Scheme in the NLMS
Algonthm for Echo Cancellation", IEEE Signal Processing
Letters. voi. 8, no. I. January 2001, pp. 20-22

[13] J.G. Proakis, C M Rader, F Ling, C L Nikias. Advanced
Digital Signal Processing Algorithms, Macmillan
Publishing Company. 1992

[14] W.M. Gentleman, "Least Squares Computations by Givens
Transformations without Square-Roots". J. Inst. Math. Its
Appl . voi. 12. 1973, pp. 329-336

[15] ITU-T Recommendation G 168, Digital Network Echo
Cancellers, 2000, Draft 3

[16] ITU-T Recommendation G 711, puise code modulation
(PCM) of voice frequencies, CCITT-Blue Book. Volume
III.Fasc. III. 4, pp. 175-184.

[17] A. Andronache, C Anghel. S. Pop, "A Novei Adaptation
Scheme in the NLMS Algoriihm for Digital Network
Echo Canceller Implemented on Motorola StarCore
SC 140", Int. Conference COMM 2002, Dec 2002,
Bucharest, Romania

[2]

13]

[4]

[5]

[6]
[7]

(8)

[91

(10)

V. REMARKS

A modified version of QRD-LSL algorithm,
suitable for implementation on DSP has been
presented, along v^ith the description of the
architecture of the StarCore, the DSP used for
implementation. Because this algorithm is known
to be complex and because it needs to run in real
time, it is necessary to furthermore reduce the
number of cycles. The next step is to vvrite special
assembly routines within the program, replacing
the complex operations.

169

BUPT

