
Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara 

Seria e l e c t r o n i c a şi TELECOMUNICAŢII 
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS 

Tom 49(63), Fascicola 2, 2004 

Parameter estimation of the chirp signal 
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Abstract - The paper presents the characteristics of the 
parameters of the chirp signal, and the situations where 
this signa) intervene. Using Kalman filtering, a few 
parameters of the chirp signal will be estimated, such as 
frequeticy and phase. The estimation results and the 
impact of changes in the Kalman Filter's are analysed 
graphicaily, and fînally some conclusions are drawn. 
Keywords: Kalman Filter, chirp signal, simulation, 
estimation 

1. INTRODUCTION 

The solulion of the optimal filter problem is a filter 
weighting function that tells us how the past values of 
the input should be weighted in order to determine the 
present value of the output, the optimal estimate. The 
Kalman solution has two main features: ones a vector 
modeling of the random processes and a recursive 
processing of the noisy measurement data. 
The input data makes part of the common case of 
noisy sensor measurements. The time-varying ratio of 
the pure signal to the electrica! noise affects the 
quantity and the quality of the information. The result 
is that the measured information must be qualified as 
it is interpreted as part of an overall sequence of 
estimates. 
The main feature of Kalman filtering is the recursive 
operation mode. The key element in any recursive 
procedure is the use of the results of the previous step 
to aid in obtaining the desired result for the current 
step. 

11. DISCRET-TIME MODEL 

Discrete-time processes may arise in two ways: the 
situation where a sequence of events takes place 
naturally in discrete steps, with a fixed or random 
variable for each step length. Another solution is to 
sample a continuous process at discrete time. 
Irrespective of how the discretization arises, the 
generai format is: 

where 
\ i - vector state of the process at time t̂ , x^=x(tk) 
(t)k - matrix that relates x-, to x^^ 
Wk - vector whose elements are white sequences 
Bl - linear connection matrix between output ŷ  

and state X|, 

Consider a dynamic process described by an n-th 
order difference equation of the form: 

This difference equation can be re-written as: 
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which leads to the state space model form from 
equations (1) and (2), with Bl=[1 O ... 0]. 
Generally, a continuous process can be described by 
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.X = Fjc ^ Gii 
( 5 ) 

yk =^kXk 

(1) 

(2) 

where u is a vector forcing function whose elements 
are white noise. 
One special case of evaluating (t)k is in case of fixed 
parameters for the dynamical system (i.e., F is a 
constant), the state transition matrix (STM) may be 
written as an exponenţial series: 
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afier setting the derived equal to zero, is caJled the 
Kalman gain: 

where At is the step size. 

III. KALMAN FILTER 

The Kahnan filter is essentially a set of mathematical 
equations that implements a predictor-corrector type 
estimator that minimizes the estimated error 
covariance. 
The random process that has to be estimated can be 
modeled in form of equation (1). The process 
measurement, at discrete points is: 

( 1 3 ) 

The coN ariance matrix, associated vvith the optimal 
estimate, is now: 

(14) 

The update estimates Xj, can be projected ahead via 
the transition matrix: 

( 1 5 ) 

where 
Zk - vector measurement at lime t̂  
Hk - matrix given the ideal connection between 

the measurement and the state vector at time tk 
\ \ - measurement error 

The covariance matrices for the vectors vj, and v̂ ^ are 
given by: 

(8) 

( 9 ) 

The estimation error is defmed as the difference 
between the state and his a priori estimate (' best 
estimate): 

(10) 

With the assumption of a prior estimate x^ the 
measurement Zk can be used to improve a prior 
estimate: 

x.= Xk + K. 
J 

(11) 

where is the update estimate and Kj, an blending 
factor. The expression for the error covariance matrix 
associated with the update (a posteriori) estimate is: 

= £ 
f Y " ̂  
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(12) 

The expressions (7) and (11) will be substiiuted in 
(12). The next step is to minimize die expression of P, 
the sum of the mean-squaie error (12), differentiating 
P with respect to K. This particularly K^ solution, 

The error covariance matrix associated vvith the 
updated estimated has the expression: 

e k^\e (16) 

The table 1 ofTers a complete picture of the Kalman 
filter operation that processes discrete measurements 
(input) into optimal estimates (the output). 

Table 1 
Predict 

(time update) 
Correct 

(measurement update) 
(1) Project the state 

ahead 
_ A 

Xk^\ =(t>k Xk 

(2) Project tlie error 
covariance ahead 

(1) Compute the Kalman 
gain 

(2) Update estimate with 
measurement zj; 

Kf^ - H^ X k 

(3) Update the 
covariance error 

IV CHIRP SIGNAL 

Chirp signals are encountered in many different 
engineering applications including radar, active sonar 
and passive sonar systems. The main characteristic of 
the chirp signals is the linear change of their 
instantaneous frequencies, and therefore they have 
often been used in representing signals with lime 
varying spectra. Parameter estimation of chirp signals 
has been of great interest in the past, and a wide 
variety of estimation procedures have been proposed 
and studied. 
The chirp signal can be fomied in two sweep modes. 
A unidirecţional one, Fig. 1, where the cosine 
frequency is immediately reset to f(0), the iniţial 
frequency, after the sweep period is traversed. When 
the sweep mode is bi-directional, Fig. 2, the frequency 
sweep reverses direction half way through the period, 
and retums to f(0) along a symmetrical trajector>'. 
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Fig.l Chirp signal wjih unidirecţional sweep 
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Fig-2 Chirp signal with bi-direaional sweep 

V. INSTANTANEOUS FREQUENCY AND PHASE 

The chirp signal to be dealt with is a linear, quadratic 
one, given by 

>̂  = 005 
1 + p 

(17) 

(18) 

1 d m 
In dt 

(20) 

VI. SIMULATIONS MODEL USING KALMAN 
FILTERING 

We consider the problem of estimating the parameters 
of a chirp signal observed in additive noise. This 
paper presents the results of the computer simulation 
for a signal with constant amplitude and linear 
frequency modulation defmed through the equations 
(13) and (14). The considered values are the 
instantaneous frequency at time O, f()=50 Hz, 
instantaneous frequency fi achieved at time t |=ls is fi 
=500H2, p=l. The signal wiil be discretized in 21 
points. The first plot, figure 3, shows the 'real* phase, 
the noise afTected phase and the estimated one. The 
Kalman filter parameters for this estimation are: f, 
=0.98, H=l, Q=l, R=l, X=0, P=l, 1=1. The 
implemented algorithm follows tht steps presented in 
Table 1. 

The frequency sweep of a chirp signal can be cosine, 
similar to linear, quadratic, or logarithmic. The linear 
frequency sweep uses an instantaneous frequency 

sweep nt), / ( / ) = / ( o ) - Pt , where P = , 

tg - target time, fi[tg) - target frequency. Quadratic 
frequency sweep uses an instantaneous frequency 

sweep f(t) o f / ( 0 = /(0)+/5^^ and the logarithmic 

once with the frequency sweep /{/) = / (O)^IO^ , 

where /? = . 

Fig 3 Phase eslimaiion 

After the first eight steps, the filter settles down to a 
steady - state condition where the Kalman filter gain 
is about 0.8274. Fig. 4 shows the evolution of the 
phase estimation corresponding to the first part of the 
Kalman algorithm. 

— priase 
- p âsfirnasE 
• pnase estnaaor 

where p is the polynomial order and phi de iniţial 
phase. 
The model of the signal that is here considered can be was computed based on equation (16). 
expressed as: 

Fig. 4 First part of the phase estimation 

The expression of the instantaneous frequency (17) 

y[t)=Acos(P{t) (19) 
(21) 

\ + p In 

with A constant. The instantaneous frequency, f,(t), of , , . ^ , . . . . . . 
the signal is Usmg the same Kalman filter parameters like those m 

the phase estimation, but for a greater number of 
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points, 101, the simularion for the frcquency 
parameter estimation is shown in Fig. 5. 

Fig. 5 Frequency estimation 

After the first ten steps the Kalman filter stabilizes by 
0.618. If we repeat the simulation for other filter 
parameters like the state transition matrix (scalar in 
this case) (j)̂ , we can observe a different behavior of 
the estimated result. For (t)k=1.45, the phase estimation 
will have the following allure, Fig 6. 

I — pnasE 
: — phass+noisB 
, * pnase esdmadjn 

If we choose a sub unitar>' value for the transition 
matrix (j)̂  and do not change the time at which the 
noisy measurements of this process are taken. At, the 
resulted frequency estimation is shown in Fig. 7. 

Fig.7 Frequency estimation with < 1 

CONLUSIONS 

The plot for the estimation of the phase of the 
analyzed chirp signal gives us a parabola, a second-
degree function. We observe that, as time goes by, the 
filter depends more on the measurements and less on 
the iniţial assumptions. The estimated frequency has a 
linear evolution, but also, the simulation result also 
shows that the filter parameters need to be adapted for 
an optimal result. If this doesn't happen, then the 

estimation will follow too much the measurcment and 
the noise that affects it. 
The importance of the correct determination of the 
filter parameters ^ - state transition matrix, Hj, -
measurement relationship to x, the noise sequence Qk 
and the measurement error Rt, have been evidenced in 
the plots form Fig. 6 and 7. The estimation, after a 
higher number of steps, doesn't settle dovm to an 
optimum estimation but increases or decreases from 
the actual process x(t). 
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