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Parameter estimation of the chirp signal

Chioncel Cristian', Gal Janos’

Abstract — The paper presents the characteristics of the
parameters of the chirp signal, and the situations where
this signal intervene. Using Kalman filtering, a few
parameters of the chirp signal will be estimated, such as
frequency and phase. The estimation results and the
impact of changes in the Kalman Filter’s are analysed
graphically, and finally some conclusions are drawn.
Keywords: Kalman Filter, chirp signal, simulation,
estimation

I. INTRODUCTION

The solution of the optimal filter problem is a filter
weighting function that tells us how the past values of
the input should be weighted in order to determine the
present value of the output, the optimal estimate. The
Kalman solution has two main features: ones a vector
modeling of the random processes and a recursive
processing of the noisy measurement data.

The input data makes part of the common case of
noisy sensor measurements. The time-varying ratio of
the pure signal to the electrical noise affects the
quantity and the quality of the information. The result
is that the measured information must be qualified as
it is interpreted as part of an overall sequence of
estimates.

The main feature of Kalman filtering is the recursive
operation mode. The key element in any recursive
procedure is the use of the results of the previous step
to aid in obtaining the desired result for the current
step.

I1. DISCRET-TIME MODEL

Discrete-time processes may arise in two ways: the
situation where a sequence of events takes place
naturally in discrete steps, with a fixed or random
variable for each step length. Another solution is to
sample a continuous process at discrete time.
Irrespective of how the discretization arises, the
general format is:

Xpar = PpXy + Wy (1)

Yi=Byx, @)

where
xi — vector state of the process at time ty, x,=x(1;)
&, - matrix that relates x; to x.;
wy - vector whose elements are white sequences
By - lincar connection matrix between output y,
and state x;

Consider a dynamic process described by an n-th
order difference equation of the form:

Yiep T a9 Y, ""-+alrl.}':-lhl +ul’i2 0 (3)

This difference equation can be re-written as:
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which leads to the state space model form from
equations (1) and (2), with B,=[1 0 ... 0}.
Generally, a continuous process can be described by

5
x=Fx+Gu ®

where u is a vector forcing function whose elements
are white noise.

One special case of evaluating ¢ is in case of fixed
parameters for the dynamical system (ie., F is a
constant), the state transition matrix (STM) may be
written as an exponential series:
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- FAtL 2 (6)
g, =e™ :h(ﬁm),(__z!lh.

where At is the step size.
ITI. KALMAN FILTER

The Kalman filter is essentially a set of mathematical
equations that implements a predicior-corrector type
estimator that minimizes the estimated error
covariance.

The random process that has to be estimated can be
modeled in form of equation (1). The process
measurement, at discrete points is;

Z4 =Hkx,‘ +VI‘. (7)

where

Z; — vector measurement at time t;

H; — matrix given the ideal connection between
the measurement and the state vector at time t;

Vi — measurement error
The covariance matrices for the vectors v, and w, are
given by:

Elew! =0, ®)
EV,‘V,?-J= R‘ (9)

The estimation error is defined as the difference
between the state and his a priori estimate ( best
estimate):

(10)
e, =X, — Xk

A

With the assumption of a prior estimate x, the
measurement z, can be used to improve a prior

estimate:

R an

x,,=X/.-+K,{(K,‘—H* Xk 1
/

where xj is the update estimate and K, an blending

factor. The expression for the error covariance matrix
associated with the update (a posteriori) estimate is:

r . N (12)
P = Ee,‘e,,r]= E[(xk —x::{x,, -—XI:J
/

The expressions (7) and (11) will be substituted in
(12). The next step is 10 minimize the expression of P,
the sum of the mean-square error (12), differentiating
P with respect to K. This particularly K, solution,

after setting the derived cqual to zero. is called the
Kalman gain:

. o -1 (13)
K, =P HI(H,PrH] +R,)

The covariance matrix, associated with the optimal
estimate, is now:

Pk:‘(l—KIka)Pk_ (14)

The update estimates x, can be projected ahead via
the transition matrix:

A A (15)
Xk-1 =@ Xk

The error covariance matrix associated with the
updated estimated has the expression:

Piy = Ele smeial= 0, Pg] + 0, (16)

The table 1 offers a complete picture of the Kalman
filter operation that processes discrete measurements

(input) into optimal estimates (the output).

Table 1

Correct
{measurement update)

Predict
(time update)

(1) Project the state
ahead

(1) Compute the Kalman
gain

K =P HI(H,PCHT <R,)

(2) Update estimate with

measurement z,

Xkl =@y Xk

' (2) Project the error

covariance ahead .. ~

Pk_‘1=‘kpk’Z‘Qk xk=xk+Kk(K‘.—H,, ka

(3) Update the
covariance error

Py =(1‘Kka)Pk—

IV CHIRP SIGNAL

Chirp signals are encountered in many different
engineering applications including radar, active sonar
and passive sonar systems. The main characteristic of
the chirp signals is the linear change of their
instantaneous frequencies, and therefore they have
often been used in representing signals with time
varying spectra. Parameter estimation of chirp signals
has been of great interest in the past, and a wide
variety of estimation procedures have been proposed
and studied.

The chirp signal can be formed in two sweep modes.
A unidirectional one, Fig. 1, where the cosine
frequency is immediately reset to f(0), the initial
frequency, after the sweep period is traversed. When
the sweep mode is bi-directional, Fig. 2, the frequency
sweep reverses direction half way through the period,
and returns to f(0) along a symmetrical trajectory.
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Fig.t Chirp signal with unidirectional sweep
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Fig.2 Chirp signal with bi-directional sweep

The frequency sweep of a chirp signal can be cosine,
similar to linear, quadratic, or logarithmic. The linear
frequency sweep uses an instantaneous frequency
t. - 110
sweep fit), f(r)= f(0)~ f, where B= M ,
g
t, — target time, ft,) — target frequency. Quadratic
frequency sweep uses an instantaneous frequency
sweep f(t) of f{t)= f(0)+ %* and the logarithmic
once with the frcquency sweep f(t):f(0)+10ﬁ,

5 loelrle)-r0)

‘e

where

V. INSTANTANEOUS FREQUENCY AND PHASE

The chirp signal to be dealt with is a linear, quadratic
one, given by

p=Uh-1ok* (7

ﬁ i+ (]8)
y=cos| 2r ——1"*? + for+ phi/ 360
1+p

where p is the polynomial order and phi de initial
phase.
The model of the signal that is here considered can be
expressed as:

y(t)= A cos ¢(¢) (19)
with A constant. The instantaneous frequency, fi(t), of
the signal is

1 dg(n) (20)

f4)= 2 dr

VI. SIMULATIONS MODEL USING KALMAN
FILTERING

We consider the problem of estimating the parameters
of a chirp signal observed in additive noise. This
paper presents the results of the computer simulation
for a signal with constant amplitude and linear
frequency modulation defined through the equations
(13) anu (14). The considered values =re the
ins..n..n.ous .r qu ncy at time 0, f;=50 Hz
instantaneous frequency f; achieved at time t,=1s is f;
=500Hz, p=1. The signal will be discretized in 21
points. The first plot, figure 3, shows the ‘real’ phase,
t e no'se affecte " p ase an "t e estimate " one. T e
Kalman filter parameters for this estimation are: f]
=098, H=1, Q=1, R=1, X=0, P=1, I=1. The
implemented algorithm follows the steps presented in
Table 1.

Fig.3 Phase estimation

After the first eight steps, the filter settles down to a
steady — state condition where the Kalman filter gain
is about 0.8274. Fig. 4 shows the evolution of the
phase estimation corresponding to the first part of the
Kalman algorithm.

Fig. 4 First part of the phase estimation

The expression of the instantaneous frequency (17)
was computed based on equation (16).

(€2

Using the same Kalman filter parameters like those in
the phase estimation, but for a greater number of
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points, 101, the simulation for the frequency
parameter estimation is shown in Fig. 5.
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Fig.5 Frequency estimation

After the first ten steps the Kalman filter stabilizes by
0.618. If we repeat the simulation for other filter
parameters like the state transition matrix (scalar in
this case) ¢, we can observe a different behavior of
the estimated result. For §,=1.45, the phase estimation
will have the following allure, Fig 6.
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Fig.6 Phase estimation with ¢, > 1

If we choose a sub unitary value for the transition
matrix ¢, and do not change the time at which the
noisy measurements of this process are taken. At, the
resulted frequency estimation is shown in Fig. 7.
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Fig.7 Frequency estimation with ¢, < 1

CONLUSIONS

The plot for the estimation of the phase of the
analyzed chirp signal gives us a parabola, a second-
degree function. We observe that, as time goes by, the
filter depends more on the measurements and less on
the initial assumptions. The estimated frequency has a
linear evolution, but also, the simulation result also
shows that the filter parameters need to be adapted for
an optimal result. If this doesn’t happen, then the

estimation will follow too much the measurement and
the noise that affects it.

The importance of the correct determination of the
filter parameters ¢ — state trans'ton matrix, H, —
measurement relationship to x, the noise sequence Qx
and the measurement error Ry, have been evidenced in
the plots form Fig. 6 and 7. The estimation, after a
higher number of steps, doesn’t settle down to an
optimum estimation but increases or decreases from
the actual process x(t).
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