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Abstract - Power suppi ies normal ly provide a constant 
output voltage. In most of the appi icat ions a D C / D C -
converter is control led b> a voltage mode or a current 
m o d e control ler . Of ten thcse control ler types are com-
bined with feed f o n v a r d techniques of the input voltage 
or output current , because these variables are distur-
bance variables . In this paper three state-space control 
s tructures are introduced. Based on the state-space 
representat ion an easy control ler is des igned first. An 
improved one works with an inner one-cycle control ler. 
The third control ler is designed for a buck converter 
with a minimized input filter 
Keywords : s tate-space control ler , buck converter , input 
filter 

1. INTRODUCTION 

Power suppiies normally provide a constant output 
voltage. In most of the appiications a DC/DC-con-
verter is controlled by a voltage mode or a current 
mode controller [1]. These controller types are vvell 
known and there are a lot of PWM controller ICs on 
the market. The controllers are often combined with 
feed forward techniques of the input voltage or output 
current, because these variables are disturbance va-
riables. There are different types of current mode 
control like peak current mode or average current 
mode control, a kind of cascade control. Furthermore 
there are some other controllers types like sliding 
mode control, one-cycle control, optimal time control, 
two-step control or delta sigma control. 
In this paper three state-space control structures are 
introduced. Based on the state-space representation an 
easy controller is designed first. An improved one 
works with an inner one-cycle controller and an outer 
l-controller for improving robustness. The third cont-
roller is designed for a buck converter with an input 
filter. The advantages of state-space controllers are 
pole placement and easy implementation. The input 
filter requires no resistor for damping and the filter 
elements can be very small. A disadvantage is low 
robustness. 

II. MODELING A BUCK CONVERTER 

Modeling a converter using state-space averaging 
is well known since many years [2]. The circuit is 
shown in fig. 1. 

Figl Circuit of the buck converter and low frequency equivaleni 
circuit 

The state-space description for the continuous con-
duction mode is given with (d is the duty cycle, index 
1: switch conducting, index 2: diode conducting) 

X ^ A^ x + b^ u for ^ < t < d-T. 

X = A2 X ^ b2 11 for d-T < t < T. 

The idea of state-space averaging is joining the two 
equations together considering the action time of each 
equation. We will get 

X ^ A X ^ b u 

with 

A-^ A, d ^ md b = b^'d ^ b2 {\-d). 

Every signal can be represented by a DC part and an 
AC part (e. g. h = fl + h). Than the small signal 
control-to-output transfer function can be calculated 
by [3] 

^ = • / - / ! ) - ' [ (>1 , - / I 2 ) X . - ) -h (c, - C2) X ^ 
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where X is the steady state vector X ^ - A b V^. 

Thcrefore a buck converter has the control-to-output 
transfer function 

o _ 
d 

F 

The daty cycle consists a DC part and an AC part 
d = D-hd , The DC part D correspondents with feed 
forward of the input voltage. So the AC part d is the 
manipulated variable. 

III. STATE-SPACE CONTROL 

The block diagram of a state-space controller is 
shown in fig. 2 [4]. 

Using this description in the error state-space equation 
results in 

vr 
1 '' r 

X = A X 1 b 

y = c^ X 

Fig 2: Block diagram of a staie-space controller 

In fig. 2 the manipulated variable becomes 
u = w - k ^ -X. This requires that all state variables 
are measurable. The state equation than is 

x = Ax-\-bu = Ax + ^ x) = {A~ bk^)x + bw . 

The system matrix is now A - b k ^ . Therefore the 
closed loop poles are the zeros of the characteristic 
polynomial 

P(ş) = dcl{sl-A^bk^). 

It can be shown that the controllability matrix of the 
system matrix A and the input vector b of the buck 
converter has full rank [5]. So the buck converter is 
fully controllable by a state-space controller. 
But in fact state-space controllers are proporţional 
controller. So there will be a steady state error, if the 
output current or the input voltage is varying. To 
minimize the error the system description can be 
rewritten in a way where the state variables are 
replaced by the errors of the original state variables. 
We get now 

e = 

Furthermore is e = x , The state-space equations 
becomes 

R 

[o ' D 1 • 
e = L e-h /, L 1 1 

_ (' RC _ 0 0 

e = 
o - f 
± » 
r Rcj 

The last equation has the familiar form of a state-
space equation with û  as the manipulated variable. 

The state-space equation with x = [ii v Ĵ̂  does not 
fulfill this condition, because in that case the input va-
riable u is the generator voltage Vg and the generator 

voltage is a disturbance variable. The state-space 
equation in ^ , in fact the matrix A^ and the vector 

b^, enables the test of control lability. A block dia-
gram of the system is shown in fig. 3. 

^ . 
a 

e = A^ e f b, u, 
X 

U 
t 

e = A^ e f b, u, U 
t 
Fig 3: Block diagram of a state-space controller 

The structure in fig. 3 is nearly the same as in con-
venţional control structures. An important difference 
to the block diagram in fig. 2 the setpoint w . In fig. 3 
the steady state vector of the state variables is 
required. Because of the defmition of the vector e the 
set value/actual value comparison is reversed. The 
controller design works with the characteristic poly-
nomial of the closed loop 

£ = + b,u, = A^e + b,k ^e = (A^ + b^k ̂  )e . 

The solution of this first order differential equation 
will go to zero, if the eigen-values have negative real 
parts. The calculation of the feedback parameters 
and is carried out via a comparison of the cha-
racteristic polynomial of the system and the pole 
placement. 

Example 1: 
I = 2 4 ^ H . C = 40nF. /? = 1.2Q. The pole of the 

plant are at = - 1 0 4 1 6 | ± 730548^ . If the poles of 

, the control led system shouid be at 
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j ; = - 3 0 0 0 0 f ± y 10000^ 

the feedback coefficients are /r̂  = - 0 , 9 4 0 and 
kf̂^ = 0,8233 . A simulation of the averaged model is 
shown in fig. 4. 

j i 

11» 

l» JUO UMl VAt 100 l'K) .VH) 
l' fis 

Fig 4: Step response of the set value: output voltage vq . inductor 

current , manipulated voltage u 

Although a good controller design is available in 
small signal area, a DC error results in large signal 
area because of the proporţional feedback [6]. 
Particulari)' the wave form of the inductor current has 
a large AC part. A second disadvantage is that the 
steady state load current has to be known. To avoid 
both disadvantages two measures are suggested. The 
output current can be taken as set point of the current 
and the inductor current can be filtered with a low 
pass filter. The accompanying signal flowchart is 
shown in fig. 5. 

L 
O 

The characteristic polynomial of this matrix is 

- ^ - RC) -\RCT, LC RJ.C l.C LT, T LCT, LCT, 

The denominator of the control transfer function of 
the closed loop can be written in linear factors. 

= (^-£ . .3) 

Comparing the two forms of the denominator gives 

T, RC 

This equation shovvs that for the three poles of the 
denominator of the closed loop pole placement cannot 
be used. The dynamics of the closed loop depends on 
the choice of the time constant 7j of the low pass 
filter and the load. In summary the easy form of a 
state-space controller showed in this chapter does not 
fulfill the requirements of a satisfactory controller 
design. So the easy state-space controller has to be 
modified in an other way to work robust and 
independent of load R and input voltage V^ . 

- © ^ © ^ E H 

Fig. 5: Signal flowchart of the modified state-space controller 

The signal flowchart in fig. 5 has the system matrix 

ij^ ii v / ) . 

IV. STATE-SPACE CONTROLLER WITH INNER 
ONE-CYCLE CONTROLLER AND OUTER I-

CONTROLLER 

In fig. 1 the low frequency equivalent circuit of the 
buck converter is shown. The voltage source d • V^ 

can be realized by an one-cycle controller (OCC), 
which integrates the input voltage of the converter [7]. 
An outer I-controller is added to improve robustness 
[4]. The structure is shown in fig, 6. 

Fig. 6. Siaie-space coniroller with ouier l-controllcr and mner one-
cycle controller 
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The controller design equation is 

\A-bk^ -Kb 
c' -dk' -dK 

X \ E o' 
1 r 1 

Z 
- r 

f 

So the controller coefîicients have the fulfill the 
characteristic equation of the closed loop. 

P{ş) = 
i.r sI-A-^bk 

-c'+dk' 
Kb 

s-dK 

P(sJ = 
şl-A + bk^ Kb 

-c' 

Putting the matrices and vectors inlo the equation one 
gets 

P{s) = 
O - l 

Example 2: 
A = C = 40^F, R = \ . 2 n , = lOOkHz . 
rhe poles of the plant are at 

Normalization with the constants 0 )^=10^1 and 

gives the poles of the plant 

= -0 .104I6± y 0.30548. Ifthe normalized poles 

of the ccntrolled systein should be at ş l =-1 .25 the 
feedback coefificients are 

A' = 18.75| , ki =8 .5Q and ^^ =36.917. 

A simulation of the witch model is shown in tlg. 7. 

in fig. 6 the plant is the buck converter including the 
one-CNcle controller (OCC). The one-cycle controller 
causes an ideal fecd forward of the input voltage and 
realizes a quasi linear voltage at the buck convertcr 
lovv pass filter. So the state-space controller design 
can be done as if there is a linear continuous ampli-
fier. Because of the onc-cyclc controller and load de-
scription as a resistor the disturbance vector z is 
zero. The LC filter of the buck converter is a second 
order low pass filter. So the feed through factor d is 
zero. Considering these characteristics the dominator 
of the closed loop is calculated with 

Fig. 7 Slep response of the set value at / = O . step of the input 

voltage at ^ = 1 ms and load step at output voltage vq , inductor 

current 

If the poles of the closed loop are too fast, there will 
arise a chaotic behavior. For example there is a 
Period-2 orbit for the normalized poles of the closed 

loop at ^^ = - 1 . 5 . Thls is typically for proporţional 
feedback [9]. At r = 0.0015s the input voltage has a 
step from V̂  = 20 V to V̂  = 25 V . But there is nearly 

no efîect to the output voltage because of the one-
cyclc controller. The very small effect, which can be 
seen in fig. 7. is an influence of the larger current 
ripple of the inductor and the proporţional feedback. 
The ripple of the inductor current can be found in fig. 
7. The dynamic of the output voltage is according to 
the pole placement. A load step is corrected in 
approximatcly 500^s. The dynamic is nearly 
independent from the load resistor, if not the inductor 
current is feed back but the difference of the inductor 
current and the load current. In that case we have a 
feedback of the capacitor current. Under steady state 
conditions the mean value of capacitor cunent is zero. 
So the current measurement can be realized by a 
transformer very efficiently. The large voltage drop at 
the load step is a consequence of the every small 
output capacitor. 
The controller works very robust. Although an outer 
I-controller is added pole placement can be used. Be-
cause of the outer l-controIler the steady state error is 
zero independent of the load R . The inner one-cycle 
controller causes an ideal feed forward of the input 
voltage V^. Pole placement enables a very good 

damped and fast transients. 

V. STATE-SPACE CONTROLLER FOR A BUCK 
CONVERTER WITH INPUT FILTER 

The power stage circuit is shown in fig. 8 
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The circuit is undamped. So the pole points are on the 
imaginary axis. The poles are ^^ 3/4 = ±y 34167j 

an l̂ ^x.3/4 The zeros are 

2 =±7 I4142ţ . The bode plot of the control-to-

output transfer function is shown in fig. 9. 

KMj UMIU i(il)0(i 
f/\ly 

Fig 9: Bode plot of the control-to-output transfer function 

UKKiOO 

The buck converter in fig. 8 can be written in state-
space with the errors of the inductor currents and 
capacitor voltages (see chapter 2)[5]. We will get 

hi 

ro _ _L 0 0 r 1 z.. 

c. 0 c. 0 ea 

Li 0 ^Ll 

0 0 

0 

1 
L. 
6 

Fig 8 Buck converter with undamped mput filter 

The control-to-output transfer function is 

d 1+ r(A,C; + Z . 2 C 2 C , L 2 C 2 ' 

According to the characteristics of the equivalent 
circuit of the converter with a DC transformer the 
elements on the left side of the converter ( L̂  and Q ) 

are considered by D^ in this fonnula and there are 
two conjugated complex right half plane zeros 
because of the usually low damping factor. The same 
result can be obtained using Middlebrook's extra 
element theorem [8]. 

Example 3: 
I , = 5 0 | i H , C,=iOO^F, 

fciock = lOOkHz . The buck converter output filter is 
L2=24pH and C 2 = 4 0 ^ F . The load current is 
/^^=5A(fig. 8). Putting these values into the 

equation above one gets 

In this equation are D^^ = V^^ IV^. u = k^e, 

^^ - ^c:] '̂sp the set point of 
the voltage. It can be shown that the system is con-
trollable [5]. The denominator of the closed loop with 
state feedback can be calculated with the determinate 

This polynomial has to fulfill the pole placement. So 
the polynomial of the closed loop can be written as 

Comparing the two polynomials results in solving a 
linear system of equations for calculating the feed-
back coefficients of the controller. 

Example 4: 
The buck converter according fig. 8 is considered 
with the values used in example 3. Putting these 
values into the equations above and normalizing with 
the constants o)̂ , = ^ and R^ = IQ one gets 

A good pole placement for a damped step response is 

the closed loop becomes 

i/v.0.1/2 ="^ and The denominator of 

= + 4 0 ^ ; , + 1 6 . 
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The linear system of equalions can be written in 
malrix form. 

f 0 20833 0 0 0 0 - 4 16666' 10.0 

; 2 0833 - 0 . 4 1 6 6 6 - 1 0 4 1 6 6 0.43403 k ' 19.542 

' - 2 17101 - 4 . 1 6 6 6 6 1 08507 - 8 . 3 3 3 3 3 40.0 

0.0 4 3 4 0 2 8 - 2 0 8333 0 0 - 4 . 8 3 3 3 

Solving this system of equations yields 

10.521 

kn -0 .33 

kii 0.16326 

U r z . -1.8739 

This vector is the feedback vector of the errors of the 
state variables of the system. Under steady state 
conditions the converter works well with a smooth 
input current and a smooth output voltage (fig. 10). 
Disadvantages are a difficult controller design and the 
dependency of the feedback coeftlcients of the input 
voltage and the output current. 

Fig 10: Steady state operation of the buck converter with input 

filter: capacitor voltage , output voltage v^ , inductor current 

. input current V/ , 

converter, even though the input filter elements are 
much smaller than in convenţional designs [1]. 

The advantages of the proposed controller are a 
smaller size, lower costs and higher efficiency of the 
converter, compared with a converter v '̂ith a conven-
ţional input filter, which is damped by a resistance. 
Disadvantages are a difficult controller design and the 
dependency of the feedback coefficients of the input 
voltage and the output current. 
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VI. SUMMARY 

State-space controllers can be applied to buck con-
verters using linear models of the power stage. Be-
cause of the proporţional feedback of the state 
variables an outer I-controller is recommended to 
avoid steady state error. For a good audiosuscep-
tibility an inner one-cycle controller is added. This 
one-cycle controller v^orks as a feed forward of the 
input voltage. 

State-space controllers are predestinated to control 
high order systems. Such systems are buck converters 
with an input filter. Because of consideration of the 
input filter at the design step of the controller, there 
will be no interaction between input filter and 
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