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Abstract — Power supplies normally provide a constant
output voltage. In most of the applications a DC/DC-
converter is controlled by a voltage mode or a current
mode controller. Often these controller types are com-
bined with feed forward techniques of the input voltage
or output current, because these variables are distur-
bance variables. In this a er three state-s ace control
structures are introduced. Based on the state-space
representation an easy controller is designed first. An
improved one works with an inner one-cycle controller.
The third controller is designed for & buck converter
with 2 minimized input filter.
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I. INTRODUCTION

Power supplies normally provide a constant output
voltage. In most of the applications a DC/DC-con-
verter is controlled by a voltage mode or a current
mode controller [1]. These controller types are well
known and there are a lot of PWM controller ICs on
the market. The controllers are often combined with
feed forward techniques of the input voltage or output
current, because these variables are disturbance va-
riables. There are different types of current mode
contro! like peak current mode or average current
mode control. a kind of cascade control. Furthermore
there are some other controllers types like sliding
mode control. one-cycle control, optimal time control,
two-step control or delta sigma control.

In this paper three state-space control structures are
introduced. Based on the state-space representation an
easy controller is designed first. An improved one
works with an inner one-cycle controller and an outer
l-controller for improving robustness. The third cont-
roller is designed for a buck converter with an input
filter. The advantages of state-space controllers are
pole placement and easy implementation. The input
filter requires no resistor for damping and the filter
elements can be very small. A disadvantage is low
robustness.
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1. MODELING A BUCK CONVERTER

Modeling a converter using state-space averaging
is well known since many vears [2]. The circuit is
shown in fig. 1.

Figl: Circuit of the buck converter and low frequency equivalent
circutt

The state-space description for the continuous con-
duction mode is given with (d is the duty cycle, index
1: switch conducting, index 2: diode conducting)

0<t<d T,
d- T <1<T.

x=A -x+b -u for
x=A,-x+ b, u for

The idea of state-space averaging is joining the two
equations together considering the action time of each
equation. We will get

x=Ax+bu
with

A=A -d+ A,-(1-d) and b=b-d + b, (1-d).

Every signal can be represented by a DC part and an
AC part (e. g. h=H + h). Than the small signal

control-to-output transfer function can be calculated
by (3]

7" =g T = A (A - A X (b =)V ]+ (e -63) X s
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where X is the steady state vector X = — A4~ bV, .

Therefore a buck converter has the control-to-output
transfer function

[II. STATE-SPACE CONTROL

The block diagram of a state-space controller is
shown in fig. 2 [4].

X=Ax:+bu
y=c'x

i’

X

k!

Fig 2: Block diagram of a state-space controller

In fig. 2 the variable becomes

u=w—k" -x. This requires that all state variables
are measurable. The state equation than is

manipulated

x=Ax+bu=,4x+b(w—k7vx)=(A—bkr)x+bw.

The system matrix is now A-—bk” . Therefore the
closed loop poles are the zeros of the characteristic
polynomial

P(s)=det(sI - A+bk").

It can be shown that the controllability matrix of the
systemn matrix 4 and the input vector b of the buck
converter has full rank [5]. So the buck converter is
fully controllable by a state-space controller.

But in fact state-space controilers are proportional
controller. So there will be a steady state error, if the
output current or the input voltage is varying. To
minimize the error the system description can be
rewritten in a way where the state variables are
replaced by the errors of the original state variables.
We get now

Furthermore is ¢ =x. The state-space equations
becomes

The duty cycle consists a DC part and an AC part
d=D+d.The DC part D correspondents with feed

forward of the input voltage. So the AC part d is the
manipulated variable.
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Using this description in the error state-space equation
results in

gt

The last cquation has the familiar form of a state-
space equation with u, as the manipulated variable.
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1
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!

:lue =A,e+bu,.
TRC

The state-space equation with x = [i,_ 17,,]7 does not
fulfill this condition. because in that case the input va-
riable u is the generator voltage V, and the generator

voltage is a disturbance variable. The state-space
equation in e, in fact the matrix A4, and the vector

b, , enables the test of controllability. A block dia-
gram of the system is shown in fig. 3.
+

- l[e:A,. 9+b,»u.]—x
t

Fig. 3: Block diagram of a state-space controller
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The structure in fig. 3 is nearly the same as in con-
ventional control structures. An important difference
to the block diagram in fig. 2 the setpoint w . In fig. 3
the steady state vector of the state variables is
required. Because of the definition of the vector e the
set value/actual value comparison is reversed. The
controller design works with the characteristic poly-
nomial of the closed loop

é=Ae+bu =Ae+bk e=(A,+bk )e.

The solution of this first order differential equation
will go to zero. if the eigen-values have negative real
parts. The calculation of the feedback parameters &,

and k. is carried out via a comparison of the cha-
racteristic polynomial of the system and the pole

placement.
k
e el
Example 1:
L=24pH, C=40pF, R=12Q. The pole of the
plant are at s, =-104161+ ;305481 . If the poles of

Ty_ .2 1
det(sI-A-bk')=3s +§(ﬁ,-- ¢

, the controlled system should be at
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5%, =~30000 + ;100001

the feedback coefficients are k; =-094Q and
k- =0.8233. A simulation of the averaged model is

shown in fig. 4.

S R S N S S S N
O I I 2000 2300 W 30 000 D0 X0

Ligen
Fig 4. Step response of the set value: output voltage v( . inductor

current /; , manipulated voltage u

Although a good controller design is available in
small signal area, a DC error results in large signal
area because of the proportional feedback [6].
Particularly the wave form of the inductor current has
a large AC part. A second disadvantage is that the
steady state load current has to be known. To avoid
both disadvantages two measures are suggested. The
output current can be taken as set point of the current
and the inductor current can be filtered with a low
pass filter. The accompanying signal flowchart is
shown in fig. S.
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Fig. S: Signal flowchart of the modified state-space controller

The signal flowchart in fig. 5 has the system matrix

ayx=li i ],

0 ky k(;—-l—‘—é‘
L L
={L L
Ap=lt -+ 0
i -
C 0 RC

The characteristic polynomial of this matrix is

N(s) =

3 Z(l I) .(Rl I kg — "L'_ kL) Lo ky
S S\ tre/t ke Yic T TIc T IntIen T e

The denominator of the control transfer function of
the closed loop can be written in linear factors.

N(s)=(s- o Jl-s,,)ls-5.5)

Com_ arin_ the two forms of the denominator gives
_(ix|_smz_sm})=l+L.
ST T RC

This equation shows that for the three poles of the
denominator of the closed loop pole ptacement cannot
be used. The dynamics of the closed loop depends on
the choice of the time constant 7, of the low pass

filter and the load. In summary the easy form of a
state-space controller showed in this chapter does not
fulfili the requirements of a satisfactory controller
design. So the easy state-space controller has to be
modified in an other way to work robust and

independent of load R and input voltage V, .

IV. STATE-SPACE CONTROLLER WITH INNER
ONE-CYCLE CONTROLLER AND OUTER I-
CONTROLLER

In fig. I the low frequency equivalent circuit of the
buck converter is shown. The voltage source d-V,

can be realized by an one-cycle controlier (OCC),
which integrates the input voltage of the converter [7].
An outer I-controller is added to improve robustness
[4). The structure is shown in fig. 6.

£
plaay
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Fig. 6. State-space controtler with outer I-controller and 1nner one-
cycle controller
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The controller design equation is
Tx) [ a-bk —l\’b][ J
‘pj L' —ak’  -dk |

So the controller coeflicients have the fulfill the
characteristic equation of the closed loop.

P(s) :{

In fig. 6 the plant is the buck converter including the
one-cycle controller (OCC). The one-cycle controller
causes an ideal feed torward of the input voltage and
realizes a quasi linear voltage at the buck converter
tow pass filter. So the state-space controller design
can be done as if there is a linear continuous ampli-
fier. Because of the one-cycle controller and load de-
scription as a resistor the disturbance vector z is
zero. The LC filter of the buck converter is a second
order low pass filter. So the feed through factor 4 is
zero. Considering these characteristics the dominator
of the ciosed loop is calculated with

Putting the matrices and vectors into the equation one
gets

[E 0
+[_f7' o .

}

X

?
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sI-A+bk"
—cl +dk”
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Example 2:
L=24uH, C=40pF, R=12Q, f.u« =100kHz .
The poles of the plant are at

s, =-104161 £ 305481

Normalization with the constants wy =101 and

Ry =16 gives the poles of the plant
S, ~=-0.10416 % j0.30548 . If the normalized poles

of the controlled system should be at s° =-1.25 the
feedback coefficients are

_k, =8.5Q and k. =36.917.

A simulation of the witch model is shown in fig. 7.
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Fig. 7. Step response of the set value at 1 = 0, step of the input

voltage at / = I ms and load step at output voltage vg , inductor

current '

If the poles of the closed loop are too fast. there will
arise a chaotic behavior. For example there is a
Period-2 orbit for the normalized poles of the closed

loop at s_ =-1.5. This is typically for proportional
feedback [9]. At r=0.0015s the input voltage has a
step from 17, =20V 1o V', =25V. But there is nearly

no effect to the output voltage because of the one-
cycle controller. The very small effect, which can be
seen in fig. 7. is an influence of the larger current
ripple of the inductor and the proportional feedback.
The ripple of the inductor current can be found in fig.
7. The dynamic of the output voltage is according to
the pole placement. A load step is corrected in
approximately 500ps. The dynamic is nearly

independent from the load resistor, if not the inductor
current is feed back but the difference of the inductor
current and the load current. In that case we have a
feedback of the capacitor current. Under steady state
conditions the mean value of capacitor current is zero.
So the current measurement can be realized by a
transformer very efficiently. The large voltage drop at
the load step is a consequence of the every small
output capacitor.

The controller works very robust. Although an outer
I-controller is added pole placement can be used. Be-
cause of the outer I-controller the steady state error is
zero independent of the load R . The inner one-cycle
controller causes an ideal feed forward of the input
voltage V. Pole placement enables a very good

damped and fast transients.

V. STATE-SPACE CONTROLLER FOR A BUCK
CONVERTER WITH INPUT FILTER

The power stage circuit is shown in fig. 8
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Fig. 8 Buck converter with undamped input filter
The control-to-output transfer function is

v, (1+57Lc)
1+ 52 (LG, + L,D*C, + LGy J+ s* LG L,C,

Yy
d

According to the characteristics of the equivalent
circuit of the converter with a DC transformer the
¢lements on the left side of the converter (L, andC, )

are considered by D? in this formula and there are
two conjugated complex right half plane zeros
because of the usually low damping factor. The same
result can be obtained using Middlebrook’s extra
element theorem {8].

Example 3:
V,=24V, L, =50uH, C =100ypF,
Jciek =100kHz . The buck converter output filter is
L,=24pH and C,=40pF. The load current is
I,=5A (fig. 8).

equation above one gets

v, =12V,

Putting these values into the

Vg-(l+§2~5~10'952)
1+5°-6.46-107s* +5* . 4.8.107'%s*

A
d

The circuit is undamped. So the pole points are on the
imaginary axis. The poles are s, =+;34167+

and s, ,,=%/13359L.  The zeros are

§oll‘z=ijl4l42-§'_‘-.

output transfer function is shown in fig. 9.

The bode plot of the control-to-
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Fig. 9: Bode plot of the control-to-output transfer function
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The buck converter in fig. 8 can be written in state-
space with the errors of the inductor currents and
capacitor voltages (see chapter 2)[5]. We wil! get

o -

- L 0 0 r
el 0E LT o ]
; ' L 9 2= 9 _ L
e |_|T C, l eci + O
. = D ) ) C U
‘sz b 0 T’z’— 0 —LLJ eLzJ T J
€c2 L ec2 0
. LO 0 e 0 L
In this equation are D, =V, /V, . u= k'e.
ey =i =V IR e =1,,-V,/R.

€c2=Vea ~ V\p .

eci =ver Vg e =i =V, /R,
7 .
=[kLI key kia kc:] and I,

the voltage. It can be shown that the system is con-
trollable [5]. The denominator of the closed loop with
state feedback can be calculated with the determinate

P(s)=det[§l—Ae ~bkT|.

the set point of

P(s)=s* (CoLLyt hey - CCoLY k)

= (('LL}

(CLY, =C\LV ks = CoLiDLY, +Colg¥y +

! .
Gttt \CalaDopl kg + Coly DV ke, - Colyd ky J

3

et (L ke + Dl ks ~ Co gkys = CaDo ¥ ckyy )~

m(" ~Vykey - Lke,)

This polynomial has to fulfill the pole placement. So
the polynomial of the closed loop can be written as

p 4 3 2 .
(Sy)=Sy +CaSy +CaSy +C Sy +C5.

Comparing the two polynomials results in solving a
linear system of equations for calculating the feed-
back coefficients of the controller.

Example 4:

The buck converter according fig. 8 is considered
with the values used in example 3. Putting these
values into the equations above and normalizing with

the constants w, =10*L and R, =1Q one gets
N s Y g

Ny (o 24k - 48k, )+

(15 504 2.4 ke, +0.48k;, +12key +0.5k;,)+

P(s)—s + =

IISZ
, lsz(2 Skey+4.8k; —1.25koy —=9.6k,,)+

(24— 5k, - 24ke,)

A good pole placement for a damped step response is

Syoys=-1 and 5. . =-4. The denominator of

the closed loo becomes

©3/4

P(sy)=sk +10sy +335y +403,, +16.
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The linear system of cquations can be written in
matrix form.

[ 020833 0.0 00  -416666 |'kL,] 10.0
20833 -041666 -104166 0.43403 | !k | 1 19.542
1-217101 -4.16666 108507 -833333|ik,| | 400 |
{00 434028 -208333 00 _Hk(-, -4.8333]

Solving this system of equations yields

k,] [ 10521

ke | | -033

k., || 0.16326
Lkes | [-1.8739]

This vector is the feedback vector of the errors of the
state variables of the system. Under steady state
conditions the converter works well with a smooth
input current and a smooth output voltage (fig. 10).
Disadvantages are a difficult controller design and the
dependency of the feedback coefticients of the input
voltage and the output current.

ITANITSAY
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Fig 10: Steady state operation of the buck converter with input
filter: capacitor voliage V(- , output voltage v, , inductor current

Vi 5, input curtent V|

Vi. SUMMARY

State-space controllers can be applied to buck con-
verters using linear models of the power stage. Be-
cause of the proportional feedback of the state
variables an outer I-controller is recommended to
avoid steady state error. For a good audiosuscep-
tibility an inner one-cycle controller is added. This
one-cycle controller works as a feed forward of the
input voltage.

State-space controllers are predestinated to control
high order systems. Such systems are buck converters
with an input filter. Because of consideration of the
input filter at the design step of the controller, there
will be no interaction between input filter and

[N
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converter, even though the input filter elements are
much smaller than in conventional designs [1].

The advantages of the proposed controller are a
smaller size. lower costs and higher efficiency of the
converter, compared with a converter with a conven-
tional input filter, which is damped by a resistance.
Disadvantages are a difficult controller design and the
dependency of the feedback coefficients of the input
voltage and the output current.
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