

POWERING AND EVALUATING

DEEP LEARNING-BASED SYSTEMS
USING GREEN ENERGY

Teză destinată obţinerii
titlului ştiinţific de doctor inginer

la
Universitatea Politehnica Timişoara

în domeniul Calculatoare și Tehnologia Informației
de către

ing. Sorin Liviu JURJ

Conducător ştiinţific: Prof.em.dr.ing Mircea VLĂDUȚIU
Referenţi ştiinţifici: Acad. Mircea PETRESCU – UPB București
 Prof.dr.ing. Liviu MICLEA – UTC Cluj-Napoca
 Prof.dr.ing. Nicolae ROBU – UPT Timișoara

Ziua susţinerii tezei: 09.07.2020

BUPT

Seriile Teze de doctorat ale UPT sunt:

1. Automatică 9. Inginerie Mecanică
2. Chimie 10. Ştiinţa Calculatoarelor
3. Energetică 11. Ştiinţa şi Ingineria Materialelor
4. Ingineria Chimică 12. Ingineria sistemelor
5. Inginerie Civilă 13. Inginerie energetică
6. Inginerie Electrică 14. Calculatoare şi tehnologia informaţiei
7. Inginerie Electronică şi Telecomunicaţii 15. Ingineria materialelor
8. Inginerie Industrială 16. Inginerie şi Management

Universitatea Politehnica Timişoara a iniţiat seriile de mai sus în scopul diseminării
expertizei, cunoştinţelor şi rezultatelor cercetărilor întreprinse în cadrul Şcolii
doctorale a universităţii. Seriile conţin, potrivit H.B.Ex.S Nr. 14 / 14.07.2006, tezele
de doctorat susţinute în universitate începând cu 1 octombrie 2006.

Copyright © Editura Politehnica – Timişoara, 2020

Această publicaţie este supusă prevederilor legii dreptului de autor. Multiplicarea
acestei publicaţii, în mod integral sau în parte, traducerea, tipărirea, reutilizarea
ilustraţiilor, expunerea, radiodifuzarea, reproducerea pe microfilme sau în orice altă
formă este permisă numai cu respectarea prevederilor Legii române a dreptului de
autor în vigoare şi permisiunea pentru utilizare obţinută în scris din partea
Universităţii Politehnica Timişoara. Toate încălcările acestor drepturi vor fi penalizate
potrivit Legii române a drepturilor de autor.

România, 300159 Timişoara, Bd. Republicii 9,
Tel./fax 0256 403823

e-mail: editura@edipol.upt.ro

BUPT

Cuvânt înainte

 Teza de doctorat a fost elaborată pe parcursul activităţii mele în cadrul
Departamentului de Calculatoare și Tehnologia Informației al Universităţii Politehnica
Timişoara.
 Mulţumiri deosebite se cuvin conducătorului de doctorat prof.em.dr.ing.
Mircea Vlăduțiu, în primul rând, pentru că a crezut în mine și m-a încurajat să urmez
un doctorat încă din perioada studiilor mele de licență în Inginerie Calculatoare. Încă
de la început, el a modelat modul în care percepeam, defineam și rezolvam o
problemă, precum și modul în care răspândeam noile cunoștințe în articolele mele
de cercetare, în rapoarte cât și în prezenta teză de doctorat. Experiența vastă a
profesorului Mircea Vlăduțiu a făcut ca sfaturile sale să fie nu numai constructive,
sincere și practice, ci și orientate spre succes. Am fost foarte norocos și mă simt
onorat să am un conducător de doctorat atât de grozav în această călătorie.

De asemenea doresc să mulțumesc sincer lui Flavius Oprițoiu. După ce am
venit la Universitatea Politehnica din Timișoara, am avut ocazia să primesc
îndrumările și sfaturile sale referitoare la predarea materiei „Arhitectura
Calculatoarelor” în laboratorul Advanced Computer Systems and Architectures
(ACSA), precum și referitoare la cercetarea mea în domeniul de Deep Learning și cel
de testare hardware și software. Problemele întâmpinate în timpul studiilor mele de
doctorat au fost ușor rezolvate datorită sprijinului său.

Aș dori, de asemenea, să le mulțumesc lui Lucian Prodan, Mihai Udrescu,
Alexandru Topîrceanu, Alexandru Iovanovici și Raul Rotar de la laboratorul ACSA
pentru sfaturile și suportul lor deosebit în timpul studiilor mele de cercetare. A fost o
onoare să fac parte din echipa ACSA încă de la început.

Și sunt recunoscător celei care mi-a fost mai mult decât o familie, Dita
Merkler-Poenaru. Nu voi uita niciodată sprijinul uimitor pe care mi l-ai oferit
întotdeauna, precum și toate sfaturile educaționale. Tu ai fost mereu modelul meu în
societate. Îți mulțumesc pentru toată dragostea și prezența ta în viața mea.

Aș mulțumi, de asemenea, prietenului meu, Franz Löer, că a fost mereu
acolo pentru mine cu sfaturi deosebite, în special celor legate de comunicare,
precum și pentru tot sprijinul acordat.

Mulțumiri speciale prietenei mele Dipty Sharma, pentru toată energia
pozitivă, dragostea, râsul, mâncarea delicioasă, încurajările și sprijinul acordat pe
toată durata studiilor mele de doctorat. Am fost binecuvântat că te-am întâlnit.

În cele din urmă, aș dori să le mulțumesc tuturor profesorilor și studenților
din întreaga lume care fac tot posibilul pentru a menține viu spiritul de cercetare și
care, prin ideile lor inovatoare, transformă societatea noastră într-un loc mai
creativ, mai pașnic, mai prietenos și mai deschis pentru toată lumea.

Timişoara, Iulie 2020 ing. Sorin Liviu Jurj

BUPT

Jurj, Sorin Liviu

“Powering and Evaluating Deep Learning-based Systems using Green
Energy”

Teze de doctorat ale UPT, Seria X, Nr. YY, Editura Politehnica, 2020, 196 pagini,
91 figuri, 39 tabele.

Cuvinte cheie: deep learning, green energy, solar energy, metrics, solar tracker,
hardware testing, software testing, hash algorithms

Rezumat: În ultimii ani, progresele din domeniul inteligenței artificiale, în special
în ceea ce privește algoritmii de învățare profundă, au crescut într-un ritm rapid
și vor continua această tendință pentru anii următori. De la implementări
hardware până la software, pentru a integra acești algoritmi inspirați de creier în
fiecare aspect al vieții noastre, studii de cercetare active sunt realizate în diferite
industrii. Cu toate acestea, datorită faptului că acești algoritmi necesită o
cantitate mare de timp, energie, date și putere de procesare, impactul lor asupra
mediului este o problemă definitorie.

Pentru a rezolva această problemă, în prezenta teză de doctorat
construim și testăm la nivel software și hardware un tracker solar cu două axe pe
care îl folosim ca sursă autonomă de energie curată pentru un sistem de învățare
profundă care clasifică imagini în timp real. Apoi, propunem patru metrici pentru
evaluarea performanței modelelor și sistemelor de învățare profundă bazate nu
numai pe precizia acestora, ci și pe consum de energie și cost, după care
implementăm o aplicație care oferă posibilitatea oricărui utilizator de a folosi
metricile propuse într-o interfață prietenoasă și rezolvă probleme legate de
colectarea, curățarea și etichetarea datelor necesare pentru antrenarea
modelelor de învățare profundă.

În cele din urmă, am construit și un dispozitiv pentru testarea plăcilor de
circuite imprimate, care este eficient în ceea ce privește precizia, timpul de
testare, consumul de energie și costul, precum și am propus un set de tehnici
pentru îmbunătățirea performanțelor de transfer a unei implementări hardware
Secure Hash Algorithm-256.

BUPT

Abstract

In recent years, advancements in the field of Artificial Intelligence,

especially regarding Deep Learning algorithms, grew at a rapid pace and will

continue this trend for the years to come. From hardware to software

implementations, active research studies are conducted across different industries,

in order to integrate these brain-inspired algorithms in every aspect of our life.

However, due to the fact that these algorithms require a huge amount of time,

energy, data, and processing power, their impact on the environment is a defining

issue. To solve this problem, considering recent „Green AI” efforts that focus on the

energy efficiency of AI systems, we propose four novel environmentally-friendly

metrics for evaluating the performance of Deep Learning models and systems based

not only on their accuracy but also on their energy consumption and cost.

The current Ph.D. thesis begins by implementing Deep Learning image

classification applications that solve problems related to fraud and security. By

observing the huge amount of energy consumption and cost as well as the amount

of time needed for data curation, we decide to solve these problems using hardware

and software approaches. For this, we first build and improve a dual-axis solar

tracker which we use to successfully power a real-time Deep Learning-based

system. In order to minimize the operation costs of the proposed dual-axis solar

tracker and make sure that we will be notified as soon as there is a possible

malfunction, we implemented hardware and software testing methods for detecting

possible faults that can appear during its operation. Secondly, we implemented a

Computer Vision application that not only solves the problem related to data

collection, cleaning, and labeling with the help of Deep Learning but also offers the

possibility for anyone to use our proposed metrics in a user-friendly interface.

Finally, we also implemented an affordable and sensorless Flying Probe-

inspired In-Circuit-Tester for testing Printed Circuit Boards which is efficient

regarding precision, test time, power consumption and cost as well as a set of

techniques for improving the throughput performance of a Secure Hash Algorithm-

256 hardware implementation.

BUPT

 Acknowledgments

First of all, I would like to thank my Ph.D. advisor, Professor Mircea

Vlăduțiu, for believing in me and encouraging me to pursue a Ph.D. ever since my
Bachelor's degree in Computer Engineering. From the very beginning, he shaped the
way I was perceiving, defining and solving a problem as well as spreading the new
knowledge in my research articles, Ph.D. Reports and lastly, the present Ph.D.
Thesis. The vast experience of Professor Mircea Vladuțiu made his advice be not
only constructive, sincere and practical, but also success-oriented. I have been very
lucky and feel humbled to have such a great advisor in my Ph.D. journey.

I give my sincere thanks to Flavius Oprițoiu. After coming to the Politehnica
University of Timisoara, I had the opportunity to receive his guidance and advice
related to teaching Computer Architecture in the Advanced Computing Systems and
Architectures (ACSA) laboratory as well as researching in the field of Deep Learning
and Hardware and Software Testing. The challenging problems encountered during
my Ph.D. studies were easily solved because of his effortless support.

I would also like to thank Lucian Prodan, Mihai Udrescu, Alexandru
Topîrceanu, Alexandru Iovanovici and Raul Rotar from the ACSA laboratory for their
great advice and support during my research studies. It has been an honor to be
part of the ACSA team since the very beginning.

And I am grateful to the one who was more than family to me, Dita Merkler-
Poenaru. I will never forget the amazing support you always gave me as well as all
the educational advice. You set me a great role model. Thank you for your love and
presence in my life.

I would also thank my friend, Franz Löer, for being there for me with great
advice, especially the ones related to communication, as well as for all the support.

Special thanks to Dipty Sharma, for all the positive energy, love, laughter,
delicious food, encouragements and support during my Ph.D. studies. I have been
blessed to have met you.

Finally, I would like to say thank you to all the professors and students
around the world who give their best to keep the research spirit alive and who,
through their innovative ideas, transform our society into a more creative, peaceful,
friendly and open place for everyone.

BUPT

 7

TABLE OF CONTENTS

1. INTRODUCTION .. 16

1.1. Motivation .. 17
1.2. Contribution and Ph.D. Thesis Outline ... 19

2. THEORETICAL BACKGROUND .. 24

2.1. About Deep Neural Networks .. 24
2.1.1. Deep Neural Network Architectures .. 26
2.1.2. Analysis of Datasets for Different Applications 30
2.1.3. Deep Learning Frameworks ... 31
2.2. Green Energy .. 31
2.2.1. Solar Energy .. 32
2.2.2. Dual-Axis Solar Tracking Devices ... 32
2.3. About Hardware and Software Testing .. 33
2.3.1. Linear Feedback Shift Register ... 34
2.3.2. Signature Registers .. 35
2.3.3. Built-In Self-Test .. 35
2.3.4. In-Circuit Testing ... 36
2.3.5. White-Box Testing .. 36
2.4. Hash Functions .. 37
2.4.1. SHA-256 Algorithm .. 38
2.5. Related Work ... 38
2.5.1. Different Deep Learning Applications for Detecting Fraud and Increasing
Security ... 39
2.5.2. Position Optimization and Testing of Dual-Axis Solar Trackers 40
2.5.3. Deep Learning Inference using Nvidia Jetson TX2 and Motion Detection
 42
2.5.4. Metrics for Evaluating the Performance of Deep Learning 43
2.5.5. Data Science-Oriented Computer Vision Application 44
2.5.6. Affordable Flying Probe-Inspired In-Circuit-Tester for Printed Circuit
Boards 44
2.5.7. SHA-256 Hardware Implementation Acceleration Techniques 45

3. DIFFERENT DEEP LEARNING-BASED APPLICATIONS FOR DETECTING
FRAUD AND INCREASING SECURITY .. 46

3.1. Mobile Application for Receipt Fraud Detection Based on Optical
Character Recognition .. 46
3.1.1. Proposed Receipt Fraud Detection Application 46
3.1.2. Implementation Decisions for Phase 1 (Product Prices) 48
3.1.3. Implementation Decisions for Phase 2 (Receipt Prices)...................... 50
3.1.4. Android Application GUI .. 51
3.1.5. Experimental Setup and Results ... 53
3.2. Identification of Traditional Motifs using Convolutional Neural Networks
 56
3.2.1. Proposed System Design for Classifying Romanian Traditional Motifs .. 57
3.2.2. Experimental Setup and Results ... 62

BUPT

1.1. Motivation 8

3.3. Real-Time Identification of Animals Found in Domestic Areas of Europe
 63
3.3.1. Proposed Real-Time Animal Class Identification System 64
3.3.2. Experimental Setup and Results ... 73

4. POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR
ENERGY.. 78

4.1. Constructing a Dual-Axis Solar Tracking Device using the Cast-Shadow
Principle ... 78
4.1.1. Position Optimization Method ... 78
4.1.2. Performance Evaluation of Electrical Equipment 81
4.1.3. Algorithm Testing ... 86
4.1.4. Experimental Results Regarding Position Optimization 89
4.2. Software and Hardware Testing of a Dual-Axis Solar Tracking Device . 93
4.2.1. White-Box Testing Applied to our Dual-Axis Solar Tracker 93
4.2.2. White-Box Testing System Overview .. 95
4.2.3. Wireless-Based Software Technique.. 96
4.2.4. Experimental Setup and Results for White-Box Testing 101
4.2.5. Online Built-In Self-Test Architecture for Automated Testing of a Solar
Tracking Equipment ... 104
4.2.6. Hardware BIST Components .. 107
4.2.7. Proposed OBIST Architecture ... 110
4.2.8. Experimental Setup and Results for OBIST 112
4.3. Efficient Implementation of a Self-Sufficient Solar-Powered Real-Time
Deep Learning-Based System ... 114
4.3.1. Solar Panel Improvements .. 115
4.3.2. Deep Learning Models used for Inference 116
4.3.3. Motion Detection .. 118
4.3.4. Experimental Setup and Results ... 119

5. ENVIRONMENTALLY-FRIENDLY METRICS FOR DEEP LEARNING 128

5.1.1. Weighted Consumption/Cost .. 130
5.1.2. Accuracy Per Consumption (APC) Inference Metric 131
5.1.3. Accuracy Per Energy Cost (APEC) Inference Metric 133
5.1.4. Time To Closest Accuracy Per Measured Energy (TTCAPME) Training
Metric 133
5.1.5. Time to closest Accuracy Per Consumption (TTCAPC) Training Metric 135
5.1.6. Time to closest Accuracy Per Energy Cost (TTCAPEC) Training Metric 135
5.1.7. Experimental Setup and Results Regarding APC, APEC, TTCAPC, and
TTCAPEC Metrics ... 136
5.2.1. The Proposed Deep Learning-Based Computer Vision Application 142
5.2.2. Experimental Setup and Results ... 151

6. AFFORDABLE FLYING PROBE-INSPIRED IN-CIRCUIT-TESTER FOR
PRINTED CIRCUIT BOARDS EVALUATION WITH APPLICATION IN TEST
ENGINEERING EDUCATION .. 157

6.1. Hardware Components of the Proposed FPICT 157
6.1.1. Mechanical Components .. 158
6.1.2. Electrical Components... 159

BUPT

 9

6.2. Sensorless-Based Test Point Tracking ... 160
6.3. Experimental Setup and Results ... 164

7. TECHNOLOGICAL SOLUTIONS FOR THROUGHPUT IMPROVEMENT OF A
SECURE HASH ALGORITHM-256 ENGINE .. 166

7.1. Throughput Improvement Solutions for SHA-256 166
7.2. Experimental Results .. 171

8. CONCLUSIONS AND FUTURE WORK .. 173

8.1. Publications ... 177
8.1.1. Book Chapters at International Publishers 177
8.1.2. International Conferences ... 177
BIBLIOGRAPHY ... 179

BUPT

1.1. Motivation 10

LIST OF FIGURES

Fig. 1.1. Ph.D. thesis contributions (summarized view). 22
Fig. 2.1. DL in the context of AI. ... 24
Fig. 2.2. Example of how an ANN learns by minimizing the cost function.............. 25
Fig. 2.3. Summarized view of a VGG-16 Architecture [25]. 27
Fig. 2.4. Summarized view of a GoogleNet (Inception) Architecture [39]. 28
Fig. 2.5. Summarized view of a 34-layer ResNet architecture with Skip / Shortcut
Connection (Right) compared to a 34-layer Plain Network (Middle) and a 19-layer
VGG-19 architecture (Left) [27]. ... 29
Fig. 2.6. MobileNetV1 and MobileNetV2 CONV Blocks Comparison. 30
Fig. 2.7. Green power based on its relative environmental benefits [51]. 32
Fig. 2.8. Example of an On-Line Testing mechanism that is used in our research. . 33
Fig. 2.9. The architecture of a Rank-4 Galois LFSR. ... 34
Fig. 2.10. SISR flip-flop design. .. 35
Fig. 2.11. Example of a Built-In Self-Test (BIST). ... 35
Fig. 2.12. White-Box Testing General Diagram. .. 37
Fig. 3.1. Image Processing Techniques applied on the dataset regarding price
images from Products (Top) and Receipts (Bottom): Images of Product and Receipt
after thresholding (Left), Manually cropped images of Product and Receipt (Middle)
and Contours detected in Product and Receipt images (Right). 47
Fig. 3.2. Example of noise (Top-Left side) found in our dataset. 47
Fig. 3.3. Summary overview of the proposed application for Receipt Fraud Detection.
 .. 48
Fig. 3.4. Proposed CNN Architectures for identifying prices from cropped Product
(Left) and Receipt (Right) images. .. 50
Fig. 3.5. Summarized Android GUI view of the proposed Receipt Fraud application:
Products (Items) View (1 and 2); Receipt View (3); Products (Items) View after
price comparison between Receipt and Products was made and Price is equivalent
(4) or not equivalent (5). ... 52
Fig. 3.6. Training and Validation Accuracy (Top) together with Training and
Validation Loss (Bottom) for the CNN model regarding Product Prices. 54
Fig. 3.7. Training and Validation Accuracy (Top) together with Training and
Validation Loss (Bottom) for the CNN model regarding Receipt Prices. 55
Fig. 3.8. Example of cultural appropriation of traditional clothes by major brands
[155]. ... 57
Fig. 3.9. Summarized data flow of our detection and identification system. 57
Fig. 3.10. Our proposed network architecture (left) and a typical ResNet (right). The
dotted arches represent an increase in dimension. .. 58
Fig. 3.11. Train and Validation Accuracy (top) as well as Train and Validation Loss
(bottom) of the proposed model. .. 59
Fig. 3.12. Example of random images from the 4 categories (clothes, ceramics,
carpets, painted eggs) identified by our model. .. 61
Fig. 3.13. Top Left: Detection of Ceramics class (i.e. Horezu). Top Right: Detection
of Clothes class (i.e. IA). Bottom: Grad-CAM heatmap is generated for both classes.
 .. 62
Fig. 3.14. Summarized view of the proposed real-time animal class identification
system. ... 64
Fig. 3.15. Proposed (left) and Original (right) VGG-19 architecture. 65
Fig. 3.16. Schematic diagram of the proposed InceptionV3 model architecture
(compressed view). ... 66

BUPT

 11

Fig. 3.17. Proposed ResNet-50 architecture with the last FC layer having 34 outputs
representing the animal classes. On the right side are presented the identity
shortcuts between all residual blocks (solid lines when the input and output have the
same dimensions; dotted lines when otherwise). .. 67
Fig. 3.18. The proposed MobileNetV2 architecture. .. 69
Fig. 3.19. Weights by Class for the considered 34 animal classes. 70
Fig. 3.20. Random images from our training dataset. A total number of 34 classes
representing animals found in domestic areas of Europe (bat, bear, canary, cat,
cattle, chicken, deer, dog, donkey, duck, fox, frog, goat, goose, hamster, hedgehog,
horse, lizard, magpie, mole, owl, parrot, pig, pigeon, rabbit, raven, sheep, snake,
sparrow, squirrel, stork, tortoise, turkey, and woodpecker). 71
Fig. 3.21. Train and Validation Accuracy (left), Train and Validation Loss (middle) as
well as LR (right) of the proposed VGG-19 model. ... 71
Fig. 3.22. Train and Validation Accuracy (left), Train and Validation Loss (middle) as
well as LR (right) of the proposed InceptionV3 model. 72
Fig. 3.23. Train and Validation Accuracy (left), Train and Validation Loss (middle) as
well as LR (right) of the proposed ResNet-50 model. ... 73
Fig. 3.24. Train and Validation Accuracy (left), Train and Validation Loss (middle) as
well as LR (right) of the proposed MobileNetV2 model. 73
Fig. 3.25. Example of random animal images and their textual information
generated in real-time by our proposed DL-based system from videos as well as
using a webcam. ... 76
Fig. 4.1. Electrical Connection Scheme for PV modules with the added bypass
diodes. .. 79
Fig. 4.2. Heating Effect on Monocrystalline Solar Cells. 80
Fig. 4.3. Schematic Overview of the Solar Tracking System. 81
Fig. 4.4. Mechanical System of PV Panel with enhanced Stepper Motors. 83
Fig. 4.5. System Power Consumption of the Solar Tracking Device. 85
Fig. 4.6. Solar System Standby Power Consumption between Hour Times. 85
Fig. 4.7. Logical Flowchart for PV Panel Algorithm. .. 86
Fig. 4.8. Logical Flowchart of Algorithm based on the White-box testing approach. 88
Fig. 4.9. Voltage, Current and Power Gain of Automated Panel (red color) over Static
Variant (blue color). .. 91
Fig. 4.10. Overview of our Implemented System and White-Box Testing Equipment
for a Solar Tracker Device. ... 94
Fig. 4.11. GUI for controlling our Solar Panel. ... 96
Fig. 4.12. The flow of Data and Control. ... 97
Fig. 4.13. Group of Nodes in the Node-RED Interface for our Solar Tracking Device.
 .. 97
Fig. 4.14. White-Box Testing Strategy Execution Flow. 98
Fig. 4.15. Solar Panel Left and Right Rotation generated by pairing terminals from
both windings. .. 102
Fig. 4.16. Solar Panel Left and Right Rotation generated by pairing terminals from
both windings. .. 103
Fig. 4.17. Fault Injection Strategy General Model applied to our Solar Tracker. ... 105
Fig. 4.18. Case A: Arduino Output Signals 4 and 5. Case B: Code worded Signal
(Blue) and Cycle Time (Pink). ... 105
Fig. 4.19. Top: L298N Output Signals 1 and 4. Bottom: L298N Output Signals 2 and
3. ... 106
Fig. 4.20. Arduino UNO Output Signals. ... 106

BUPT

1.1. Motivation 12

Fig. 4.21. Faulty Output Signals resulted from the Injection Process (Top: Arduino
UNO and Bottom: L298N Dual H Bridge). ... 107
Fig. 4.22. Proposed BIST Architecture. .. 108
Fig. 4.23. Proposed LFSR Configuration. .. 108
Fig. 4.24. Example of an LM741 Operational Amplifier. 109
Fig. 4.25. Idle State Detector Hardware Implementation.................................. 109
Fig. 4.26. Configurable OBIST Architecture Block Diagram. 110
Fig. 4.27. Test Mode Architecture for the proposed OBIST strategy. 113
Fig. 4.28. Summarized view of the proposed solar-powered real-time DL-based
system. ... 115
Fig. 4.29. Example of an automated SMS alert using Twilio API. 117
Fig. 4.30. Summarized view of the proposed motion detection. 118
Fig. 4.31. Power usage comparison on the laptop (GTX 1060 GPU) running the
proposed real-time animal class identification implementation during a 5 hours test
using the webcam without and with motion detection method for VGG-19 (V),
InceptionV3 (I), ResNet-50 (R) and MobileNetV2 (M) architectures. The y-axis
represents the Watts value and the x-axis represents the total number of sample
values taken every 10 minutes. .. 121
Fig. 4.32. Power usage comparison on the Nvidia Jetson TX2 board running the
proposed real-time animal class identification implementation during a 5 hours test
using the webcam without and with motion detection method for VGG-19 (V),
InceptionV3 (I), ResNet-50 (R) and MobileNetV2 (M) architectures. The y-axis
represents the Watts value and the x-axis represents the total number of sample
values taken every 10 minutes. .. 122
Fig. 4.33. Connection diagram of the proposed autonomous solar-powered real-time
DL-based system. ... 123
Fig. 5.1. How different values of α and β affect the APC metric. 132
Fig. 5.2. APC Grid with energy delta () = 1 and accuracy delta () = 0.01. Redder
colors represent higher values of APC. ... 134
Fig. 5.3. Summarized view of the proposed Computer Vision application that
incorporates features such as an automatic Image Crawler and Image Sorter
assisted by inference classification, an Image Deduplicator, a DL Model Trainer with
Data Augmentation capabilities as well as calculators regarding Accuracy, APC,
APEC, TTCAPC, and TTCAPEC. .. 142
Fig. 5.4. Summarized view of the proposed Image Crawler feature assisted by
inference classification. .. 144
Fig. 5.5. Summarized view of the proposed Image Deduplication feature. 144
Fig. 5.6. Summarized view of the proposed Image Sorter feature assisted by
inference classification. .. 146
Fig. 5.7. Summarized view of the proposed DL Model Trainer feature. 146
Fig. 5.8. Summarized view of the proposed Data Augmentation feature. 147
Fig. 5.9. Summarized view of the proposed Accuracy Calculator feature. 148
Fig. 5.10. Summarized view of the proposed APC Calculator feature. 149
Fig. 5.11. Summarized view of the proposed APEC Calculator feature. 150
Fig. 5.12. Summarized view of the proposed TTCAPC Calculator feature. 150
Fig. 5.13. Summarized view of the proposed TTCAPEC Calculator feature. 151
Fig. 5.14. Summarized view of comparison between existent and the proposed
image crawling solution. The pictures marked with a red rectangle are some
examples of “dirty” images found in existent solutions. By comparison, the proposed
image crawling feature assisted by DL inference contains only clean images. 152

BUPT

 13

Fig. 6.1. Left: FPICT Mechanical Structure with Axis Array (a, b) and MELS
Placement (c, d). Right: Complete experimental setup for the proposed FPICT. .. 158
Fig. 6.2. Flying Probe Sensorless Tracking Procedure Based on Configurable Data
Files. ... 160
Fig. 6.3. The configuration file structure of an execution line for a voltage
parameter. ... 163
Fig. 7.1. The basic architecture for SHA-256. ... 167
Fig. 7.2. Proposed architecture for SHA-256 hash calculation. 169
Fig. 7.3. Detail of the fused architecture. ... 170

BUPT

1.1. Motivation 14

LIST OF TABLES

Table 1. Test Accuracy and other metrics of the CNN model regarding Product
Prices. ... 54
Table 2. Test Accuracy and other metrics of the CNN model regarding Receipt Prices.
 .. 55
Table 3. Recognition Accuracy and Speed Comparison between the proposed OCR
and Tesseract OCR on images with cropped Product and Receipt prices. 56
Table 4. Test Accuracy together with other metrics values and webcam processing
time. ... 62
Table 5. Model Classification Comparison Results .. 63
Table 6. Test Accuracy Report for the proposed models. 74
Table 7. Confusion matrix values for the proposed VGG-19 (V), InceptionV3 (I)
ResNet-50 (R) and MobileNetV2 (M) models. .. 75
Table 8. Comparison between one of our 4 proposed CNN model architectures
(MobileNetV2) and other related works. ... 75
Table 9. Technical Data for Stepper Motors. ... 82
Table 10. Optocoupler – Arduino Pin Connections. ... 84
Table 11. Voltage and Current Monitoring for Static and Automated PV Panel. 90
Table 12. Voltage, Current and Power Monitoring for Static and Automated PV Panel
(over one week). .. 90
Table 13. Energy Gain Analysis for Solar Tracking Devices. 91
Table 14. Input values flow obtained from simulating environmental solar changes
induced by artificial light. ... 101
Table 15. Coverage and Speed of Execution for our WBST. 103
Table 16. LTV847 Optocoupler combined with DAC and ADC Components. 111
Table 17. MISR Output Signal Generation. ... 111
Table 18. Arduino UNO and L298N equations translated in C++ language. 112
Table 19. Fault Analysis of single bit-flip errors as well as single bit stuck-at-faults.
 .. 113
Table 20. Inference Speed Testing between Nvidia GTX 1060 GPU and Nvidia Jetson
TX2 on a video as well as using a webcam for VGG-19 (V), InceptionV3 (I), ResNet-
50 (R) and MobileNetV2 (M) model architectures. ... 120
Table 21. Energy generated by our solar tracker when the Nvidia Jetson TX2 is
running the VGG-19 (V), InceptionV3 (I), ResNet-50 (R) and MobileNetV2 (M) model
architectures in real-time using the external webcam with motion detection during a
5 hours test time. ... 123
Table 22. Energy stored by our accumulator using the solar tracker when the Nvidia
Jetson TX2 is running the VGG-19 (V), InceptionV3 (I), ResNet-50 (R) and
MobileNetV2 (M) model architectures in real-time using the external webcam with
motion detection during a 5 hours test time. .. 125
Table 23. Energy requirements for the Nvidia Jetson TX2 when running the VGG-19
(V), InceptionV3 (I), ResNet-50 (R) and MobileNetV2 (M) model architectures in
real-time using the external webcam with motion detection during a 5 hours test
time. ... 126
Table 24. APC with alpha=0.1 and beta=0.1 for our MobileNetV2 DL model [15, 16]
running inference in real-time for 2 hours, with 12 samples taken every 10 minutes.
 .. 136
Table 25. APEC with alpha=0.1 and beta=50 for our MobileNetV2 DL model [15, 16]
running inference in real-time for 2 hours with regular (paid) energy as well as with
solar (free) energy. ... 137

BUPT

 15

Table 26. TTCAPC with Accuracy delta = 0.1, Energy delta = 1, beta = 0.1,
alpha=0.1 for four different DL models (V-VGG-19, I-InceptionV3, R-ResNet-50, M-
MobileNetV2) in two different hardware platforms. .. 138
Table 27. TTCAPC with Accuracy delta = 5, Energy delta = 10, beta = 0.1 for four
different DL models (V-VGG-19, I-InceptionV3, R-ResNet-50, M-MobileNetV2) in two
different hardware platforms. ... 138
Table 28. TTCAPEC with Accuracy delta = 0.1, Energy delta = 0.001, beta = 50,
alpha=0.1 for four different DL models (V-VGG-19, I-InceptionV3, R-ResNet-50, M-
MobileNetV2) in two different hardware platforms. .. 139
Table 29. TTCAPEC with Accuracy delta = 5, Energy delta = 0.1, beta = 50 for four
different DL models (V-VGG-19, I-InceptionV3, R-ResNet-50, M-MobileNetV2) in two
different hardware platforms. ... 140
Table 30. Comparison between existent and the proposed Image Crawling solution.
 .. 151
Table 31. Speed Results for the 4 hashing methods of the proposed Image
Deduplication feature. ... 153
Table 32. Speed Time for the proposed Images Sorting feature. 153
Table 33. Summarized Results of the proposed APC Calculator feature. 154
Table 34. Summarized Results of the proposed APEC Calculator feature. 155
Table 35. TTCAPC with Accuracy delta = 0.1, Energy delta = 1, beta = 0.1, alpha =
0.1. ... 156
Table 36. TTCAPEC with Accuracy delta = 0.1, Energy delta = 1, beta = 0.1, alpha =
0.1. ... 156
Table 37. Example of the configuration structure for measuring voltage and current
on the selected test points. .. 162
Table 38. Single Point, Multiple Point, and Measurement Testing Results............ 164
Table 39. SHA-256 Architectures Comparison. .. 171

BUPT

1.1. Motivation 16

1. INTRODUCTION

The present Ph.D. Thesis entitled „Powering and Evaluating Deep Learning-
based Systems using Green Energy” describes the research activity carried on
between 2016 and 2020 in the Department of Computers and Information
Technology at the Politehnica University of Timisoara. Our work is mainly focused on
powering Deep Learning (DL)-based systems using green energy as well as on
developing environmentally-friendly metrics for DL [1] in order to evaluate the
performance of DL models and systems based not only on their accuracy but also on
their energy consumption and cost.

The success of DL in the last years in various Artificial Intelligence (AI)
applications related to computer vision, speech recognition, machine translation and
Natural Language Processing (NLP) is mostly based on the recent advances
regarding computing power and the huge amount of digital data available (e.g.
photos). From self-driving cars [2] and cancer detection [3] to even arrhythmia
detection [4] and robotics [5], the performance of DL is outperforming that of
humans, showing significant improvements related to both speed and accuracy.
These improvements related to speed and accuracy are happening every year
thanks to efforts from both academia as well as the industry. On one side,
companies are pushing towards creating more powerful computing platforms and
optimized libraries, whereas, on the other side, new specializations and jobs related
to DL and Data Science are created, these being also ones of the best paid in the
industry [6].

However, in order to increase the training or the inference speed of such DL
models, usually, the use of a single Graphics Processing Unit (GPU) is not always
enough, with some projects even requiring hundreds (i.e. 512) of power-hungry
GPUs [7]. As a consequence, this results in high energy consumption and cost,
which ultimately have a negative impact not only on the financial side but also on
the environment [8, 9, 10], with the work in [9] even proving that the training of a
single NLP model results in a massive carbon footprint equivalent to the amount of
carbon emission that five cars have in their lifetime. Additionally, the evaluation of
DL models and systems is mainly done with traditional metrics such as accuracy or
throughput, without considering their energy consumption or cost.

Another key challenge, especially for data scientists is the time spent
preparing the data. In order to increase the accuracy of DL models, the most
amount of work time goes into collecting, cleaning and labeling the data, reaching
around 80% of the total time allocated for a DL project. This not only slows the
process of AI innovation but can also be very costly, especially when the dataset is
very large and many people are involved [11].

Additionally, because we as researchers owe our present knowledge due to
past enormous efforts by fellow students, professors, as well as scientists who
pushed the boundaries and tried their best to share their knowledge, in the domain
of test engineering, especially in the case of testing Printed Circuit Boards (PCBs),
the available testing devices are still very expensive [12] and non-existent in
engineering-related schools or universities. This situation not only makes the
delicate and important process of testing PCBs be harder to comprehend, but it can
also reduce the number of possible specialists in the testing domain.

BUPT

Introduction 17

Due to the internet, the number of users online, as well as the number of
electronic devices, increase year after year, thus the security not only of the
information that is stored and exchanged is of great importance but also that of
these hardware devices.

In this Ph.D. thesis, we developed and implemented methods for solving the
above-mentioned problems by first implementing different novel DL applications
that solve different problems related to fraud [13, 14] and security [15]. Then,
because we observed that a real-time DL-based system [15] consumes more energy
than their non-real-time counterparts, we decided to not only run the same
implementation on a platform that consumes 5× less energy, but we also wanted to
not pay for this energy consumption [16]. We achieved this by considering the use
of green energy and by constructing a novel dual-axis solar tracker that is based on
the Cast-Shadow principle [17] and which was later modified with minimal costs
[16]. We demonstrated in [16] that our solar tracker is efficient and, to the best of
our knowledge, for the first time in literature, that it is possible to completely use
solar energy for powering a real-time DL-based system when running inference.

In order to be aware of any possible faults in our dual-axis solar tracking
device, we also investigated possibilities to test it at the software and hardware
level. For this, we implemented a novel White-Box testing technique in [18] and a
novel Online Built-In Self-Test (OBIST) testing technique in [19], both achieving
high fault coverage. It is important to mention that, to the best of our knowledge,
testing a solar tracking equipment has also never been done before in literature.

As mentioned earlier, because we succeeded in making use of green (solar)
energy for powering a DL-based system [16] and because we want to encourage
future generations of researchers to consider the impact their DL project can have
on our environment, we proposed four novel DL metrics [20] that evaluate the
performance of DL models and systems for both inference and training by taking
into consideration not only the accuracy but also the energy consumption and cost,
proving to be more valuable metrics when compared with the existent ones found in
the literature. We also created a Computer Vision application [21] that incorporates
the four proposed metrics and offers an easy way to calculate and evaluate the
performance of DL-based systems. Additionally, the application consists of multiple
features that make use of DL inference in order to speed-up tasks related to data
collection, cleaning, and labeling, outperforming existent solutions by a large
margin.

Additionally, in order to offer engineering students a chance to have a
hands-on approach for testing PCBs, we implemented a low-cost and portable PCB
testing device in the form of a sensorless Flying Probe-Inspired In-Circuit-Tester
(FPICT) [22] that has a high fault coverage and a very low cost.

Finally, in order to increase the throughput performance of a Secure Hash
Algorithm (SHA)-256, we implemented different techniques to speed-up the hash
generation in hardware [23].

1.1. Motivation

The main philosophy behind this Ph.D. thesis is to make the evaluation of DL
models and systems possible by using environmentally-friendly metrics.
Additionally, to significantly reduce the amount of energy consumption and cost of
DL-based systems as well as to reduce the time needed to collect, clean and label
image datasets needed for training DL models.

BUPT

1.1. Motivation 18

The motivation for Implementing Different DL Applications Related
to Fraud and Security: First, the demand for transparency, especially regarding
money transactions in a Supermarket where the price tag of the products doesn’t
always reflect the price seen on the receipt and customers end up paying the wrong
price because of incorrect prices on the receipt. Also, on-device inference with high
accuracy by building our own Optical Character Recognition (OCR) algorithm which
is resistive to noise eliminates the need for expensive and commercial cloud-based
solutions.

The second reason is the necessity of preventing cultural appropriation by
big brands from the fashion industry. By implementing a DL-based algorithm, we
can automate the detection and recognition of traditional motifs with high accuracy
and reduced processing time.

The third reason is security and the need for automatically classifying and
identifying wild and domestic animals present in an area, in order to increase their
safety as well as that of humans. With the help of DL algorithms, non-intrusive
identification systems can be developed that can perform animal classification in
real-time from videos or using a webcam, being of great help, especially for
researchers and farmers.

The fourth reason was energy consumption and cost. Running these
applications in different platforms results in different power consumptions and costs
which ultimately affect the user and the environment.

The motivation for Building, Testing and Deploying a Dual-Axis Solar
Tracker to Power a Self-Sufficient Real-Time DL-based system: First, because
most of the existent solutions for powering DL-based systems harm the
environment and the urgent need of alternative energy sources such as green
energy is crucial. Capturing the maximum potential of solar energy by using a dual-
axis type of solar tracker that uses no sensors and which, with the help of a blocking
system reduces the power consumption of the entire solar tracking equipment and
maximizes its energy gains results in a low-cost and portable solution that
eliminates the carbon footprint on our environment by using green (solar) energy
instead of traditional polluting power sources.

The second reason was the energy cost. By using solar energy, there are 0
electricity costs. Also, by testing a solar tracker at the software and hardware level,
a high fault coverage can be achieved, at the same time maintaining low costs and
efficient testing solutions that can minimize also operation costs.

The motivation for Proposing Environmentally-Friendly Metrics and
Implementing a DL-based Computer Vision Application: First, existent metrics
based only on accuracy to evaluate the performance of DL-based systems ignore the
economic, environmental and social costs. It is of crucial importance to use
environmentally-friendly metrics for evaluating DL models and systems in order to
mitigate climate change.

The second reason is energy consumption and cost. Different hardware
platforms and DL models consume different amounts of energy, thus having
different costs. This is especially the case in AI populated data center workloads
where the energy consumption and electricity bill costs are very expensive. By using
green energy, there will be no negative impact on the environment and the cost of
training or running inference will be 0.

The third reason is encouraging new researchers to use only green energy
for powering their DL-based systems.

The fourth reason is the need for reducing execution time for Data
Scientists. In order to train a DL image classification model, a huge amount of time

BUPT

Introduction 19

(around 80% of the entire time dedicated to a DL project) is lost when huge
amounts of images need to be collected, cleaned and labeled. Thus, a DL-based
application with a user-friendly interface is very helpful, being time and costs-
efficient. especially with environmentally-friendly metrics calculators.

The motivation for Implementing a Flying Probe-inspired In-Circuit-
Tester: First, recent efforts in bringing affordable and equal access to education
seen on the United Nations (UN) agenda, one example being the UN Sustainable
Development Goals.

The second reason is the inexistence in the academic environment anywhere
in the world of an affordable, portable and user-friendly testing device which can
give students a chance to have a hands-on experience with the inner workings of a
Flying Probe Testing (FPT) and the real parameter values of a PCB.

The third reason is the cost of In-Circuit-Tester (ICT) versions found in the
industry, which are very expensive.

The motivation for Implementing an SHA-256 in Hardware: First, the
need for security, e.g. for servers that offer services based around Internet Protocol
Security (IPsec) and Secure Sockets Layer (SSL)/Transport Layer Security (TLS)
and which rely on fast computation when updating hash values. This is especially
important for DL-based systems that store or exchange sensitive information that
requires confidentiality, e.g. medical data.

The second reason is the execution time. By implementing different
throughput improvement techniques of the SHA-256 in hardware instead of
software, we relieve the Central Processing Unit (CPU) from latencies that can occur,
thus optimizing the clock cycle usage.

1.2. Contribution and Ph.D. Thesis Outline

We reduce the energy consumption and eliminate the electricity costs of a
real-time DL-based system by using solar energy. We also propose environmentally-
friendly metrics for performance evaluation of DL models and systems. Additionally,
we reduce the time needed for collecting, cleaning and labeling image datasets.
Finally, we improve the operation costs and fault coverage of the built electrical
equipment (dual-axis solar tracker and FPICT) as well as the throughput of a hash
algorithm hardware implementation. The contributions of this Ph.D. Thesis are
summarized in Fig.1.1 and are as follows:

 We developed a receipt fraud detection method by using two
Convolutional Neural Networks (CNNs) models which can recognize
multiple digits with decimals from pictures taken by a smartphone
camera. The proposed solution can run on-device and proves to be
noise-resistant, being able to detect receipt fraud by identifying and
comparing the prices of the products from the shelf with the prices
of the products from the final receipt given by the cashier in the
Supermarket with an overall test accuracy of more than 99%

 We developed a DL model and implemented a webcam-based
system that can detect and identify Romanian traditional motifs
found on 4 categories (clothes, ceramics, carpets, and painted
eggs). By using transfer learning, we achieve 99.4% overall test
accuracy and reduced webcam processing time

BUPT

1.2. Contribution and Ph.D. Thesis Outline 20

 We developed an ecology-oriented system that can classify 34
classes representing the most popular species of animals found in
domestic areas of Europe in real-time from videos or using a
webcam, with an overall test accuracy of 94.5% for the best (i.e.
MobileNetV2) out of four trained CNN architectures (VGG-19,
InceptionV3, ResNet-50, and MobileNetV2) and which can also
generate 2 new datasets in real-time, one dataset containing textual
informations (animal class name, date, time) and one dataset
containing images of the identified animal classes

 We implemented a position optimization method for a solar tracker
by using the Cast-Shadow principle and verifying the software code
that runs on Arduino UNO. With the help of a novel approach that
makes use of limit switches and blocking elements, we reduce the
overall power consumption of the autonomous solar system by
86.93%. When compared to a static solar panel, our method shows
a 45.77% voltage, 48.21% current, and 53.62% power increase,
resulting in an efficient solution

 We implemented a White-Box testing technique that tests the
software code running on a Wi-Fi module of a solar tracker but is
also capable of giving the operator the ability to remotely control the
stepper motors movements of the solar tracker. This Wireless-Based
Software Technique (WBST) achieves a total coverage of 70.12% for
all targeted errors, resulting in an efficient and low-cost testing
solution

 We implemented an OBIST architecture for testing a solar tracking
device for possible hardware faults during its normal operation by
identifying its inactive mode (resting state) using an idle state
detector. The hardware implementation and software simulation
achieve an average of 93.93% coverage for single bit-flip errors
(last 8 bits, mutant), 100% coverage for single stuck-at-faults (8,
12 and 16 random bits) as well as 96.96% for all targeted faults,
showing that the proposed OBIST architecture is efficient with
regard to test coverage and cost points of view

 We implemented a self-sufficient solar-powered real-time DL-based
system that runs inference 100% on solar energy and which is
composed of an Nvidia Jetson TX2 board and a dual-axis solar
tracker based on the Cast-Shadow principle. In order to lower the
power consumption, a software motion detection method is also
implemented that triggers the inference process only when there is
substantial movement in the webcam frame. Experiments prove that
real-time DL-based systems can be powered by solar trackers
without the need for traditional power plugs or need to pay for
electricity bills

 We introduce four novel DL metrics, two regarding inference called
Accuracy Per Consumption (APC) and Accuracy Per Energy Cost
(APEC) and two regarding training called Time to Closest APC
(TTCAPC) and Time to Closest APEC (TTCAPEC), which take into
account not only a DL model’s accuracy but also its energy
consumption, energy cost and the time it takes to train it up to that
point. Experimental results prove that all four DL metrics are
efficient in benchmarking, encouraging future DL researchers to

BUPT

Introduction 21

adopt and use only green energy when powering their DL-based
systems

 We implemented a DL-based Computer Vision application with
multiple built-in Data Science-oriented capabilities, mainly for image
classification tasks that are able to automatically: a) gather images
needed for training DL models with a built-in search engine crawler;
b) remove duplicate images; c) sort images using built-in pretrained
DL models or user’s own trained DL model; d) apply data
augmentation; e) train a DL classification model; f) evaluate the
performance of a DL model and hardware by using an accuracy
calculator as well as the APC, APEC, TTCAPC and TTCAPEC metrics
calculators. Experimental results show that the proposed Computer
Vision application has several unique features and advantages,
proving to be efficient regarding execution time and much easier to
use when compared to similar applications. The motivation behind
creating this tool was regarding obtaining our experimental results
and to also make it available to the scientific community

 Additionally, we also implemented a hybrid sensorless ICT design by
combining the features of FPT and the capabilities of a Coordinate
Measuring Machine (CMM). The experimental results show that the
proposed FPICT is suitable for smaller sized PCBs and proves
efficient regarding precision (overall precision of 95.70% for the
measurements testing), test time (an average of 10.35s for a single-
point test cycle), power consumption (an overall of 3.92W for all
considered test cases) and cost (around 25 dollars) points of view
being much more affordable and user-friendly when compared to
traditional and expensive FPTs found in the industry

 Finally, we also developed hardware acceleration techniques for an
SHA-256 algorithm which resulted in up to 18% throughput
improvement. The first acceleration technique eliminates one clock
cycle used for hash value update, delivering a higher throughput.
The second techniques improve the performance by fusing the Carry
Propagate Adders (CPAs) of the multi-operand adders to speed up
the generation of the round functions. The third technique has a
synthesis driven approach that improves the delay balancing in the
Carry Save Adder (CSA) tree, resulting in a reduced critical path

Chapter 2 presents the theoretical background for a better understanding

of the research papers that comprise this Ph.D. Thesis and which are presented
starting with chapter 3. We present some of the neural network architectures,
frameworks, and analysis of datasets for different DL applications. We also cover a
section related to hardware and software testing which describes different off-line
and on-line testing methods we used. Finally, the related works regarding our DL
applications, hardware, and software testing, low-power hardware platforms,
metrics, data collection, and labeling as well as regarding hardware implementations
of SHAs are also presented.

Chapter 3 presents 3 different DL image classification applications: a) a
novel method in detecting receipt fraud by using a smartphone application that
makes use of an OCR algorithm composed of image processing techniques and
CNNs. The proposed method successfully detects prices from product price tags as
well as receipts with high accuracy. Additionally, the proposed CNN models

BUPT

1.2. Contribution and Ph.D. Thesis Outline 22

outperform other popular open-source OCR algorithms regarding test accuracy on
images with cropped Product and Receipt prices that contain noise; b) a novel
method in identifying Romanian traditional motifs found on 4 categories (clothes,
ceramics, carpets, and painted eggs) using CNNs.

Fig. 1.1. Ph.D. thesis contributions (summarized view).

We also implemented a system that can detect and identify these learned

motifs through a webcam with high accuracy and reduced processing time; c) a
novel method of identifying animals that belong to the 34 most popular species
found in domestic areas of Europe. We implemented a system that can identify
these species in images, videos or through a webcam and generate 2 new datasets
in real-time, one containing textual information about the animal present in front of
the webcam, and one containing images of the identified animal species. Our
method has several advantages compared with other related works. This chapter's
contents are mainly based on our works in [13-15].

Chapter 4 presents the construction, testing, and deployment of a dual-axis
solar tracker in order to power a real-time DL-based system. More exactly: a) a
testing technique in verifying the software code that runs on an Arduino UNO
microcontroller which optimizes the position of a solar tracking device by resorting
to novel elements such as limit switches and blocking elements. Our software
method contributed to a significant reduction in power consumption and proved the
efficiency of automated versions of solar panels over static ones; b) a novel White-
Box Testing technique applied on a solar tracker which tests the software code that
runs on a NodeMCU Lua ESP8266 Wi-Fi module and proves that is effective from the
point of view of fault coverage and cost. Additionally, we gain the ability to control
directly the stepper motor movements of the autonomous solar tracker in a wireless
manner; c) a hardware testing technique that makes use of an OBIST which
intervenes in testing the electrical equipment of a solar tracking device for possible
hardware faults, aiming to minimize the operation costs and being efficient

BUPT

Introduction 23

regarding test coverage; d) a novel method in powering a real-time DL-based
system using 100% green energy by using an Nvidia Jetson TX2 embedded platform
and an improved dual-axis solar tracker that was connected to a chain of two
inverters, one accumulator and one solar charge controller. Our software
implementation modifications help in detecting the optimum GPU memory usage
and frames-per-second (fps) to run our DL models without any risk of „out of
memory” kind of errors and together with a software motion detection method, we
succeed to reduce the energy consumption of the entire DL-based system. This
chapter's contents are mainly based on our works in [16-19].

Chapter 5 presents the proposed environmentally-friendly metrics for DL as
well as a Computer Vision application with multiple built-in Data Science-oriented
capabilities. More exactly: a) the four novel APC, APEC, TTCAPC and TTCAPEC
metrics for evaluating the performance of DL models and systems not only
regarding the accuracy but also their energy consumption and cost, showing that
green energy-powered DL-based systems are evaluated as being much more
performant compared to existent ones that still use a traditional power grid; b) an
application with a user-friendly interface that solves many problems related to data
curation and which offers an easy way to evaluate the performance of DL-based
systems with the APC, APEC, TTCAPC and TTCAPEC metrics calculators. This
chapter's contents are mainly based on our works in [20, 21].

Chapter 6 presents an affordable, portable and user-friendly FPICT that has
educational purposes in the domain of test engineering, mainly for testing smaller
sized PCBs such as Arduino Uno without the need for sensors. The FPICT can easily
be connected to any computing platform that has a USB port and its C written
configuration files can easily be modified, providing students easy access to study
and experiment with the inner workings of an FPT when operating on a real PCB
board. This chapter's contents are mainly based on our work in [22].

Chapter 7 presents several acceleration techniques for improving the
throughput of SHA-256 hardware implementation. First, the throughput acceleration
technique eliminates one clock cycle used for hash value update and allows
delivering a higher throughput. Also, the critical path of a CSA tree structure is
considerably reduced by using a fast 32-bit Kogge-Stone adder. With the second
technique, we evaluated alternative multi-operand addition structures and
implemented the CPAs of the multi-operand adders in a fused manner to speed up
the generation of the round functions. The synthesis driven approach for arranging
the operands’ order (delay balancing improvement) in the CSA tree further reduce
the critical path and show that our solution resonates with the increasing demands
for a more secure biometric implementation. This chapter's contents are mainly
based on our work in [23].

Chapter 8 presents the conclusions of this Ph.D. thesis.

BUPT

2.1. About Deep Neural Networks 24

2. THEORETICAL BACKGROUND

In this chapter we will introduce what DL is and the way it works, followed
by its applications in the real world. Then, we will introduce the Deep Neural
Network (DNN) architectures, the datasets and the DL frameworks we used in order
to be able to train and run inference with the proposed DL models. Also, an
introduction to green energy is made, especially regarding solar energy and of the
dual-axis solar tracking devices that are used to gather this type of energy. After
that, we will also introduce the different types of hardware and software testing
methods as well as the hashing algorithm we used. Finally, we will present the
related works with regard to DL, test engineering as well as regarding hardware
implementations of SHA-256 algorithms.

2.1. About Deep Neural Networks

Today's computer architecture is significantly different regarding processing
capabilities, organizational structure, and power requirements when compared to
the human brain. Because of the approaching end of Moore’s law, the feasibility of
creating an alternative architecture that is brain-inspired was put in question [24].
This resulted in a pursuit that caused important discoveries in the fields of AI,
Machine Learning (ML), Artificial Neural Networks (ANNs), especially in DNNs, due to
their high number of hidden layers or neurons that have the ability to train
themselves without the need to be specifically programmed. How DL relates to AI
can be seen in Fig.2.1.

Fig. 2.1. DL in the context of AI.

The methods used in training these ML type of algorithms are divided into

supervised (classes are known before training) and unsupervised learning (the

BUPT

THEORETICAL BACKGROUND 25

computer itself must determine the classes). DL is currently considered to be state-
of-the-art virtually in all AI-related applications, mostly because it speeds the
incremental advances in a field, e.g. advances that used to take years to achieve,
are now happening much faster [25]. Neural networks are formed of a group of
neurons and connections that are organized in layers in order to solve ML tasks. In
order to produce an output, a neuron receives many inputs from predecessor
neurons that are summed up by their weights followed by an activation function
which is usually nonlinear, e.g. the Rectified Linear Unit (ReLU) [26]. Weights are
very crucial for ANNs because this is how neural networks learn and depending on
their values, the activation function will pass or not the signal to the neuron’s
output. This adjustment of weights during the learning process is what we call
training. The neurons that have no predecessor are known as input neurons and the
neurons that have no successor are known as output neurons. In between the input
and output neurons, hidden layers of neurons are to be found that are connected to
each other by their connections, also called synapses. It is not a rule, but it is
considered that when the number of hidden layers are more than eight, it is called a
DNN.

DNNs can have not only a few but also hundreds of layers [27] and in order
to train them, a common technique called Gradient Descent, e.g. Stochastic
Gradient Descent (SGD) [28] is used. Gradient Descent is an optimization method
based on a back-propagation algorithm which calculates loss function’s gradient. A
very important step in calculating the gradient is to first calculate the activation of
each layer during the inference, as can be seen in Fig.2.2.

Fig. 2.2. Example of how an ANN learns by minimizing the cost function.

During inference, the value can be either continuous, e.g. regression

problems, or it can be discrete, e.g. in classification problems. This feed-forward,
back-propagation, and update of the weights using the gradient descent constitute
one training iteration. During the training of a DNN, hundreds of iterations are
needed, e.g. ResNet-50 [27] takes more than 450 thousand iterations on ImageNet
[29], the dataset used by many researchers in the ILSVR (ImageNet Large Scale
Visual Recognition) challenge [30].

DNNs are significantly improving many AI applications including computer
vision [31], speech recognition [32], gaming [33, 34], self-driving cars [2], cancer
detection [3], arrhythmia detection [4] and robotics [5], to name only a few,
resulting in a rapid improvement of performance regarding the accuracy also on

BUPT

Deep Neural Network Architectures 26

ImageNet challenge [30]. An example of how powerful DNNs are, is the success of
AlphaGo, the first program to achieve better performance than human players in the
ancient game of Go [33] which was, shortly after, surpassed by AlphaGo Zero [34].
While the accuracy surpassed the human’s one, the high power consumption and
cost behind these computations have a negative impact on the environment. This
brings the urgent need of research that focuses on how to not only minimize the
carbon footprint and energy needs of DL systems but also on how to correctly
evaluate DL models and systems using envinronmentally-friendly metrics.

2.1.1. Deep Neural Network Architectures

This section presents an overview of different types of neural network
architectures that we extensively experimented within our research presented in this
Ph.D. thesis.

A widely used neural network arhitecture, especially in Computer Vision, is a
Convolutional Neural Network (CNN), mainly because of their ability to efficiently
extract features from images and classify them. CNNs are typically consisting of 2D
convolutional (CONV) layers, pooling layers and classifier layers which take the
flattened output of the previous layers as input. The CONV layer creates a specified
number of feature maps with the help of feature detectors and applies an activation
function in order to increase the non-linearity. By doing this, the CNNs are able to
learn the internal feature representations and preserve the spatial relationship
between pixels. The purpose of the CONV and the pooling layers is to assure spatial
invariance (map retention characteristics needed for classification via translation
and rotational invariants) [35] and to significantly reduce the size of the images (by
reducing the resolution of the feature maps). Pooling also gets rid of the features
that are not important (features we are not looking for), resulting in a reduced
computation cost. The neural network will then combine the features extracted by
the CONV layers into more attributes that can predict the classes even better. This
is done using a Dense layer which contains neurons that are connected to all the
neurons in the prior layer. Additionally, because during the training of CNNs neurons
develop co-dependency amongst each other, it can result in decreased detection
power of each neuron and can lead to overfitting. In order to prevent overfitting and
regularize a neural network, a technique called Dropout [36] is used on fully-
connected (FC) layers. The Dropout layer deactivates (zeros out) a certain amount
(e.g. 50%) of neurons randomly at each update during training time and forces the
neural network to learn features in a robust manner. This is needed especially when
the neural network is big in size, is training for too long or if there is insufficient
data. Another method to regularize and prevent overfitting of a neural network is
called Batch Normalization (BN) [37]. The BN layer is inserted between successive
CONV layers and gives resistance to the vanishing gradient problem by reducing the
training time.

In 2014, an architecture called VGGNet [38] was presented by researchers
from Visual Geometry Group (VGG) at Oxford and which can be seen in Fig.2.3. The
most common versions of VGG are the ones with 16 (VGG-16) and 19 (VGG-19)
layers. In our research we experimented mostly with the VGG-19 version which has
138 million parameters across 16 CONV and 3 FC layers. The VGG-19 uses 3×3
filters with stride and padding of 1 along with 2×2 max-pooling layers with stride of
2, being one of the most influential CNN architectures which proved that deeper
layers can help the model learn richer feature representations. The pre-trained

BUPT

THEORETICAL BACKGROUND 27

model of the VGG-19 is commonly used in segmentation tasks, detection, and
classification of images.

Fig. 2.3. Summarized view of a VGG-16 Architecture [25].

In the same year, 2014, a new architecture that is parameter-efficient came

out, called GoogleNet or InceptionV1 [39] which can be seen in Fig.2.4. Similar to
the VGGNet, despite there being many versions of Inception architectures, the most
common is the InceptionV3 architecture which was proposed a year after, in 2015
[40] and which is also the version with which we experimented in our research.

The InceptionV3 architecture increased the accuracy and reduced the
computational complexity of the initial version by using factorization, e.g. reducing
the size of CONV parameters by replacing one 5×5 CONV by two 3×3 CONV.

In 2015, a new architecture called Residual Network (ResNet) [27] is
introduced. The ResNet architecture was the winner of ILSVRC 2015 in image
classification, detection, and localization, as well as winner of MS COCO 2015 [41]
detection, and segmentation and can be seen in Fig.2.5. ResNet is known as the
first architecture that allowed the accuracy to stay stable or increase even when
having deeper layers thanks to the new concept of residual learning. The ResNet
architecture has a fundamental building block (Identity) where a previous layer is
merged into a future layer (additive), forcing the network to learn residuals by using
a skip connection (by fitting the input from a previous layer to the next layer
without any modification of the input). A popular version of ResNet is called ResNet-
50, having 50 layers and consisting of more than 25 million parameters, balancing
computational complexity together with prediction accuracy, this being also one of
the main reasons why we used it in our research as well.

In 2017, a new mobile-friendly architecture is introduced by Google called
MobileNetV1 [42] which introduces the „Depthwise Separable CONV” block
(composed of a 3×3 Depthwise CONV layer that filters the input, followed by a 1×1
pointwise CONV layer that combines these filtered values to create new features by
keeping the same number of channels or doublig them) to reduce the complexity
(fewer multiplications and additions) and model size (fewer number of parameters).

BUPT

Deep Neural Network Architectures 28

Fig. 2.4. Summarized view of a GoogleNet (Inception) Architecture [39].

BUPT

THEORETICAL BACKGROUND 29

Fig. 2.5. Summarized view of a 34-layer ResNet architecture with Skip / Shortcut Connection
(Right) compared to a 34-layer Plain Network (Middle) and a 19-layer VGG-19 architecture

(Left) [27].

BUPT

Analysis of Datasets for Different Applications 30

After a year, in 2018, an updated version of the MobileNet architecture is

introduced called MobileNetV2 [43] which adds an extra 1×1 pointwise CONV layer
also called „Projection layer” that makes the number of channels smaller, thus
making this version of the architecture much smaller in size and faster than the
previous one. An example of a MobileNetV1 and MobileNetV2 building block can be
seen in Fig.2.6.

MobileNetV2 uses a module with inverted residual structure (instead of
narrow/bottleneck layers in between wide layers of a CONV block, MobileNetV2 has
wide layers in between narrow/bottleneck layers in a CONV block, resulting in fewer
parameters), an expansion factor “t” (e.g. if the input has 32 channels, and the
expansion factor t is 6, then the internal output will be 32×t=32×6=192 channels),
2 types of blocks (one with stride of 1 and another one with stride of 2 for
downsizing), each MobileNetV2 block having 3 layers. More exactly, the first layer is
a 1×1 pointwise CONV (combination step) with RELU6 as the activation function, the
second layer is the depthwise (filtering step) 3×3 CONV and the third layer is also a
1×1 pointwise CONV (combination step), but in this case, without any non-linear
function. Due to the depthwise separable CONV, which is the combination of
depthwise CONV and pointwise CONV, the computation time and the number of
parameters are greatly reduced.

Fig. 2.6. MobileNetV1 and MobileNetV2 CONV Blocks Comparison.

In our research, we make use of MobileNetV2 architecture.

2.1.2. Analysis of Datasets for Different Applications

As mentioned earlier, the huge amount of data available today, gave
researchers the possibility to train DNNs in such a way that the accuracy surpasses
the human level in many tasks. In our research we use different datasets for a
variety of DL applications. Most of the datasets we use are custom datasets, mostly
consisting of private images as well as images scrapped from the internet for
educational purposes. For this reason, we will introduce these datasets later when
we will describe each implemented DL application. However, we make use also of
free publicly available datasets such as MNIST [44] and ImageNet [29].

MNIST [44] is one of the most popular dataset and it consists of 70.000
images representing handwritten digits, 60.000 of them are found in the training
set, and 10.000 images in the test set, organized in 10 classes, representing the 10

BUPT

THEORETICAL BACKGROUND 31

digits (0-9). The size of the images are 28×28 pixels, each image being greyscaled.
This dataset is very good for training a model in only a few minutes, with minimum
effort in data preprocessing, the entire dataset having a total size of around 50MB.

ImageNet [29] is a large-scale dataset used in the ILSVRC challenge until
2017. It consists of 1.2 million images in the training set and 50.000 images in the
test set. It is a very popular dataset which helped researchers increase the accuracy
of their models in classifying objects from around 72% up to 97.3% in just seven
years during the ILSVRC challenge, proving that human abilities can be surpassed
with the help of DL algorithms that can take better decisions when having access to
bigger amounts of data. The size of the ImageNet dataset is around 150GB.

2.1.3. Deep Learning Frameworks

Through a high level programming interface, DL frameworks are useful
when training and validating DNNs. They help us build algorithms of considerable
complexity by abstracting the computation into simple mathematical operations,
mostly found in algebra, like matrix multiplications, CONV operations, etc., and
which are optimized for the hardware they run on. DL frameworks provide
programmers the ability to write just a description of the computation, without the
need to program a multi-core CPU or GPU directly. For training and running
inference, in our research we made use of two very popular frameworks called
Tensorflow [45] and Keras [46].

Tensorflow [45] is a library based on Python programming language which
can run on multiple processors like CPUs and GPUs and has support for other
programming languages like C/C++, Java, Go and R.

Keras [46] is wrapped around Tensorflow and is a high-level API
programmed in Python. Because of its simplicity and popularity, Keras is since 2017
included in the Tensorflow framework.

2.2. Green Energy

Due to the continuous growth of the human population as well as the energy
consumption, mainly in the industrial sector, the demand for more energy is
expected to increase by up to 28% in the next decades [47]. Even though the
current energy model was satisfying the demand for energy for many decades by
making use of fossil or nuclear sources, their negative impact on the environment
has resulted in many decisions to replace them with renewable energy sources in
order to achieve sustainability and reliability [48].

Recent efforts made to move towards 100% clean and renewable energy
infrastructure by 2050 [49] are clearly showing the growing interest towards clean
and unlimited energy sources. Despite many types of renewable energy sources
such as solar, wind, water, biomass, geothermal, some of these sources are not
considered „green”, as summarized in Fig.2.7, e.g. large hydropower can have a
negative impact on land use and fisheries.

Green energy is considered to be the most environmentally-friendly type of
renewable energy because it is sustainable and clean (doesn’t release greenhouse
gases such as CO2, being able to mitigate the problem of climate change [10, 50]).

BUPT

Solar Energy 32

2.2.1. Solar Energy

Since millions of years, sun radiates enourmous amounts of energy towards
our planet. More exactly, the energy flow on earth’s surface is composed of more
than 99.9% solar radiation that comes from the sun, making solar energy the most
important source of energy our planet has. However, despite being the main life
source for life on this planet, when indirectly used, solar energy can also have a
negative impact on our life, e.g. because solar energy was stored for millions of
years in the form of chemical energy, we developed mechanisms to extract and
make use of fossil fuels such as oil, gas and coal, but with a huge health and
environmental cost as a result [9, 10].

Solar energy, besides being abundant, inexhaustible, readily available and
free of CO2 emissions, it is also the only source of energy that can be transformed
directly into electricity. For achieving this direct transformation into electricity, a
phenomenon which is also known as the photovoltaic (PV) effect, usually solar cells
made out of silicon, are used.

Fig. 2.7. Green power based on its relative environmental benefits [51].

2.2.2. Dual-Axis Solar Tracking Devices

Because of Sun's availability and its unlimited quantities of clean energy,
recently, there is a growing interest in the academia and in the industry of
developing efficient solar energy collectors. With regard to modern approaches in
how energy output can be improved, two major paths can be listed: a) the
Maximum Power Point Tracking (MPPT) method and b) active solar panel tracking
solutions (or in other cases a mixture between both these techniques). As far as the
second method is concerned, solar panel tracking solutions are a more advanced
technology for mounting PV panels and appear under two models: single-axis and
dual-axis solar tracking devices.

BUPT

THEORETICAL BACKGROUND 33

While single-axis solar trackers follow the Sun’s position only in the East-
West direction [52], its peer, the dual-axis model can also cover the North-South
direction, hence presenting a much better option, especially for sunny and cloudy
days [53]. An actual overview of solar energy technology [54] validates a 50%
energy increase for Sun-tracking designs compared to fixed-tilted PV panels over
the year. Nevertheless, solar tracking techniques are efficient and reliable methods
that embrace a variety of applications in domains of interest such as railway
transportation, AI [55, 16] and Internet of Things (IoT) [56].

2.3. About Hardware and Software Testing

This section presents an overview over some of the on-line (concurrent) as
well as off-line (non-concurrent) testing methods existent in the literature and which
are also used in our research, either when testing our solar tracking equipment [17]
at the hardware [19] and software [18] level or when developing the FPICT device
[22].

The non-concurrent nature of off-line testing significantly minimize the use
of hardware overhead and can be designed to cover almost if not all of the Circuit
Under Test (CUT) area as possible [57]. This is because, in order for the off-line test
mechanism to allow a test process to be executed, the entire digital system or at
least a part of it, is required to be inoperative/inactive as compared to the online-
testing method where the system is required to be in its normal operation mode.

Off-Line Testing, because of their non-concurrent nature, are able to detect
defects at a larger set of locations and require that the inputs as well as the state of
the system are controllable. The purpose of typical testing processes is to construct
test vector sets that are relevant for a given fault model or a set of them, in order
to maximize the coverage while minimizing the test application execution time.
Because the off-line test is usually applied after the circuit is manufactured as part
of a more thorough manufacturing test, it is also used in maintenance tests on a
regular basis during the lifetime of the system.

As compared to Off-Line Testing, On-Line Testing, also referred as
concurrent checking or concurrent error detection, is a test technique used in
permanent validation of a CUT integrity. An example of the on-line testing
mechanism used in our research can be seen in Fig.2.8.

Fig. 2.8. Example of an On-Line Testing mechanism that is used in our research.

A consistent on-line test discipline is very important, especially in assuring

the reliability in critical systems such as medical devices, satellites,
telecommunications, solar tracking devices, railway control, and automotive
systems, to name only a few. The behavior of a circuit can affect the entire system
it is part of in many ways, thus the main task of an on-line test is to detect any

BUPT

Linear Feedback Shift Register 34

modifications as soon as they occur, ideally in a matter of seconds. The
modifications in a CUT’s behavior can be affected either by a permanent fault or an
intermittent fault. Because of the limited manifestation duration as well as the
unpredictability of their occurrence, the intermittent faults are creating a much more
critical situation in maintaining the dependability of a system as compared to the
permanent faults, mostly because their effect does not remain permanent. Off-Line
testing, for example, will not be able to detect a transient fault the moment it
happened (e.g. its effect disappeared) but can successfully identify the permanent
faults, mostly because their effect remains constant for a large period of time.

The intermittent faults can affect the correct behavior of a circuit during its
normal operation, resulting in a system failure. The effect of intermittent faults is
often described as gate-level or transistor-level fault models. In order to make sure
that the on-line testing technique used is correctly functioning, the integrity of the
circuit is evaluated by inspecting all the inputs and outputs of the CUT and signaling
them through an error indicator message or line to the user of the system or to the
control unit.

2.3.1. Linear Feedback Shift Register

In this section we will discuss the linear pseudo-random generator called
after the young French mathematician Evariste Galois.

In the vast domain of digital electronics, a Linear Feedback Shift Register
(LFSR) defines itself as a chain of D Flip-Flops where the output of the last storage
element is connected to the input of the first storage element, thus forming an
endless cycle that provides a fixed number of test patterns [58]. Therefore, LFSRs
represent typical mechanisms for generating test vectors in Built-In Self-Test (BIST)
architectures. They are constructed as shift registers with feedback connection,
operated by EXOR gates. In computing we can distinguish two types of LFSR
architectures: Fibonacci and Galois representation. An example of a common form
of Galois LFSR can be seen in Fig.2.9, which describes a typical LFSR structure that
is generated by the primitive and irreducible polynomial function x4+x+1.

Fig. 2.9. The architecture of a Rank-4 Galois LFSR.

When initialized with a non-zero vector, a LFSR generates at its output, a

pseudo-random, periodic sequence.

BUPT

THEORETICAL BACKGROUND 35

2.3.2. Signature Registers

Similar to a LFSR implementation, a Single Input Signature Register (SISR)
contains also a fixed number of D Flip-Flops, each of them having a clock, a reset
and a set input, connected in the same manner as the Rank-4 Galois LFSR register
presented earlier in Fig.2.9. However, the SISR contains an additional EXOR gate at
the input of the first D Flip-Flop, which is denoted with A. Additionally, the set line
will load the SISR with an initial vector B = [0 0 0 0] while the reset line is always
connected to a high logic level (1’d1), as can be seen in Fig.2.10.

2.3.3. Built-In Self-Test

Integrated circuits (ICs) nowadays are built around an internal logic that
takes a set of inputs, applies successive operations on them and generates the
expected outputs. In unfortunate cases, these complex circuits can be affected by
errors derived from manufacturing processes.

Fig. 2.10. SISR flip-flop design.

Errors are defined with respect to a system’s service or in other words its

intended functionality. The system’s service is represented by a chain of external
states and, in this context, an error occurs when at least one of the system’s
external states deviates from the intended, correct behavior.

A BIST error detection method transforms a design into a self-testable
architecture, capable of detecting the presence of errors in an autonomous manner.
According to Fig.2.11, the Test Pattern Generator (TPG) provides test vectors to be
delivered to Logic Circuit inputs. Here a multiplexer is capable by means of a
selection line to choose between the standard data inputs and the delivered
generated test vectors. The injected test vectors will find their path through the
internal logic of the circuit and eventually will be delivered at the Outputs.

Fig. 2.11. Example of a Built-In Self-Test (BIST).

BUPT

In-Circuit Testing 36

The Results Gatherer or sometimes called Output Response Analyzer (ORA)

will perform data compaction (with loss of information) by processing all CUTs
responses while exercised with the test vectors generated by the TPG. At the final
stage of the compaction process, the ORA device will provide a signature. The
signature is a reduced, fixed-size vector, characterizing the entire set of results. The
signature for a CUT is associated equally to a TPG unit as well as an ORA device,
generating CUT’s input vectors. The gold signature refers to the signature obtained
for the correct, fault-free circuit and is usually procured through simulation. The
presence of errors in a CUT can be detected by comparing the obtained signature
with the gold signature. This is managed by the output multiplexer that is mounted
at the end of the BIST architecture. The Results Gatherer can be replaced by a SISR
design or a Multiple Input Signature Register (MISR) structure which will be detailed
in the next subchapters of this PhD Thesis.

2.3.4. In-Circuit Testing

In-Circuit testing reffers to the domain where ICs are verified for their
functionality by using a dedicated test equipment such as bed of nails and flying
probe devices, to name only a few.

Due to the cost of the Automated Test Equipment (ATE) necessary for at-
speed functional tests, the test development time and effect, no possible options for
upgrading to a BIST solution and the lack of fast/accurate fault diagnostics
determined companies to drive away from functional testing and make use of Scan-
based test strategies which, on the other hand, offer better alternative methods for
testing inputs/outputs, more practical ways to detect delay defects, higher coverage
for all circuit types and reduced testing time for embedded analog cores and
Application Specific Integrated Circuits (ASICS) [59].

On the other hand, Design for Testing (DFT) procedures are intended to
introduce engineers to the challenge of making ICs more testable. Integrated filters,
Analog to Digital Converters (ADCs) and Digital to Analog Converters (DACs) will be
also taken into account as they are today the main analog and mixed-signal cores
found in Systems-on-Chip (SoC) devices. In particular, the possibilities offered by
techniques using small circuit modifications will be specifically focused as the means
to improve the testability of circuits and thus the coverage of faults, while at the
most avoiding the degradation of the final electronic system's performance [60].

2.3.5. White-Box Testing

When it comes to software testing, one of the primary objectives is often the
security. White-Box testing [61] is summarized in Fig.2.12 and is a software test
method in which the tester is familiar with the internal structure, design, and
implementation of the test item or Device Under Test (DUT).

The name White-Box testing derives from the fact that the tester is able to
„see” inside the white/transparent box which is the software program. Here, the
tester selects inputs through the code to exercise paths and to determine
appropriate outputs which can result in an improved design, usability, and security.

BUPT

THEORETICAL BACKGROUND 37

Fig. 2.12. White-Box Testing General Diagram.

 Some of the advantages of the White-Box testing method are that the
testing can be done at the earlier stage, without the need of a Graphical User
Interface (GUI) and also that this testing method is more comprehensive. Some
disadvantages are that, in order for the analysis of the internal structure of the
system or component to be tested successfully, the White-Box testing method
requires that the tester has advanced knowledge of programming and
implementation. This is essential, especially in case of an update to the existent
code for which the White-Box testing script was written, where the maintenance of
such script that should be able to find security issues can be very difficult.

Also, it is important to mention that a White-Box testing method is closely
tied to the Application Under Test (AUT), thus it cannot be re-used to every kind of
implementation or platform out there. White-Box testing method is mainly applied
for testing paths within a unit (Unit Testing), but can also be applied for testing
paths between units (Integration Testing) and subsystems (System Testing). Unit
Testing is often the first type of testing performed on an application because it helps
to identify most bugs early in the lifecycle of software development, making them
cheaper and easier to fix.

In our research, we implemented Unit Testing techniques and successfully
investigated Communication, Control Flow and Error handling faults by using a
White-Box testing strategy applied on a solar tracking device [18].

2.4. Hash Functions

Hash functions represent an important instrument in the secure computing
paradigm operating at the core of many of today’s most popular cryptographic
protocols and services such as Public Key Infrastructure (PKI), TLS and IPSec. Other
applications relying on cryptographic hash functions are authenticated access to
Virtual Private Networks, file integrity verification and electronic voting systems
[62]. A hash function maps a message of arbitrary length to a binary sequence of a
fixed length, known as the hash value or message digest, being used to secure the
integrity of the original message [63]. The security of hash functions relies on their
collision resistance, meaning that given a message, it must be computationally
infeasible [57] to find a different one generating the same hash value.

BUPT

SHA-256 Algorithm 38

In our research, we implemented several techniques for improving the
thoughput and performance of a SHA-256 hardware implementation with the aim to
use them for future research regarding the implementation of a more secure
medical DL-based system that stores confidential and sensitive data regarding
patients health status and is used for training or inference of DL models with the
scope of predicting possible diseases such as pneumonia [64] and COVID-19 [65].

2.4.1. SHA-256 Algorithm

The SHA-256 is formally presented in [66] and operates with words on 32
bits. The hash value or message digest of a message is a 256-bit vector. Message
processing by SHA-256 involves three stages: padding and parsing, message
schedule and hash computation or data compression. The padded message is parsed
in blocks of 512 bits, each block being processed individually in order to obtain the

final hash. The hash value is a vector of 8 words, defined as
()i
jH

, with j being the
index of the hash word, 0≤j<8, and i being a counter for the currently processing

512-bit block. The initial values of the hash words,
(0)
jH

, are given in [66].
The message schedule expands the 16 words of the 512-bit block into 64

words, denoted from 0W to 63W . The first 16 words of the message scheduler are
the very input words forming the 512-bit block. The remaining 48 words are

generated by the message scheduler by using two dedicated functions,
{256}
0 and

{256}
1 , and a binary adder modulo 232. The data compression phase makes use of 8

working variables, a to h, initialized with the current hash value at the beginning of
each 512-bit block processing. This stage involves 64 iterations, each one updating
the 8 working variables and using one of the 64 words generated by the message
schedule.

The working variables’ processing makes use of 4 functions,
{256}
0 ,

{256}
1 , Ch

and Maj. The variables’ processing utilizes a lookup table for storing 64 word
constants and generates the result using a modulo 232 adder [66]. Finally, after the

64-th iteration, the hash values,
()i
jH

, are updated by adding to each of them the
content of the corresponding working variables. After processing the last 512-bit
block, the 8 hash words are delivered at the output as the message’s digest.

2.5. Related Work

In this section, we will present the previous works related to our research.
We examine previous attempts related to our DL applications, position optimizations
of dual-axis solar trackers, hardware and software testing as well as the deployment
of DL models on low-cost embedded platforms such as the Nvidia Jetson TX2. Then,
we will continue with works related to the evaluation of DL models and systems as
well as to the data collection, cleaning and labeling. Finally, we will review the
previous works related to FPT testing as well as the ones related to hardware
implementations of SHA-256 algorithms.

BUPT

THEORETICAL BACKGROUND 39

2.5.1. Different Deep Learning Applications for Detecting

Fraud and Increasing Security

Even though there are some efforts in the direction of making the shopping
experience better using mobile applications, they are lacking the ability to check for
equivalence between prices at the shelf and in the computer system database. An
example is the Carrefour Pay application [67], which gives customers the option to
scan the barcodes of products they intend to buy, find out their price and
automatically create a shopping list. However, this application lacks the ability to
run fully on-device and is cloud-dependent. The work in [68] proposed an Android
mobile application that creates an expense list based on the receipt photos taken by
the smartphone camera with the help of the Tesseract OCR engine [69]. Their
application performs poorly on images that contain noise, a problem which
Tesseract and other OCR libraries are known to have [70]. A CNN based solution for
the problem related to wrong labeling of use by date in retail food packages is
presented in [71] where the authors make use of transfer learning and Maximally
Stable Extremal Regions (MSER) algorithm in order to recognize the date within the
region of interest (ROI). Their architecture has more than 42 layers, resulting in
higher computational time and bigger complexity, which is not justifiable, especially
when deploying them on mobile applications [72]. Also, regarding digit recognition,
by making use of 2 CNNs and a Recurrent Neural Network (RNN) with Long Short-
Term Memory (LSTM), the work in [73] tackles the problem of detecting and
recognizing car license plates from natural scene images but is not efficient for
running in real-time. Also regarding license plate detection, this time in real-time
and using OpenCV and Tesseract, the authors in [74] proposed an OCR algorithm
that extracts characters from an image belonging to a license plate. Similar, another
work using Tesseract for recognizing digits is also presented in [75], where the
authors created a Thai lottery number reader Android application for blind people,
having a processing time of 4 seconds. and a distance of 8 inches between the
camera and the object .

In [76], a CNN for Fashion Classification and Object Detection was
implemented by using a standard AlexNet architecture that was pre-trained using
ImageNet for clothing type classification. In [77] a CNN model for clothes
classification is presented, where, in order to evaluate the performance of their
model, the authors adopted the classification accuracy as the measure criteria. In
[78], a fast and accurate fashion item detection model is proposed by modifying and
combining MultiBox and Fast R-CNN detection architectures. In [79], a method for
identification of an outfit in an image followed by a classification using CNNs is
presented. The authors use the weights from the InceptionV3 GoogLeNet
architecture which was trained on the ImageNet dataset. In [80], a CNN approach
to the classification of texture of clothing is presented, where the authors show that
CNNs outperform seven well known hand-engineered feature extraction methods. In
[81], a CNN application for scale analysis of clothes, styles, and fashion was
developed by the authors for million images taken by people from all around the
world spanning a couple of years.

Despite elaborate research and intensive work towards constructing
automated animal recognition systems, only a few approaches resulted in usable
tools. Some examples of available applications are iNaturalist [82], a popular app
for the automated identification of animals and plants at the species level as well as
Merlin Bird ID [83], an app that is aiming to identify 650 most common bird species

BUPT

Position Optimization and Testing of Dual-Axis Solar Trackers 40

in North America based on their images. The authors in [84] present an animal
recognition and identification system for automated wildlife monitoring by using
CNNs to identify the most common animal classes from images taken by trap
cameras in Australia. Their model is trained from scratch as well as by using fine-
tuning (having pre-trained weights from the ImageNet dataset) and show that the
deepest model, the ResNet architecture with 50 layers, also called ResNet-50,
achieves the best performance. The work in [85] presents an animal recognition
system based on Support Vector Machines (SVM) and a proposed CNN for animal
classification. Their results show that the CNN model outperforms other classical ML
methods when it comes to animal face recognition. A drawback of their model is
that it can classify images of animals only by their faces and not also their entire
body. The work in [86] presents a CNN and multiclass-SVM based method for
animal classification from images using the AlexNet architecture. Similarly, the
authors in [87] use a pre-trained CNN model on the AlexNet architecture that is
combined with a multi-class SVM classifier in order to classify 20 animal classes
from video frames, achieving 83.33% accuracy. Another works towards improving
the classification work of ecologists are presented in [88], where the authors
propose a VGG-16 CNN model that can classify 20 African wildlife species with
87.5% accuracy from images, as well as in [89], where the authors present a CNN
model on a ResNet-18 architecture for the classification of wildlife animal species
found on camera trap pictures obtained from U.S., Canada, and Tanzania.

We distinguish ourselves from the above mentioned related works by
proposing an application that targets the detection of fraud regarding product and
receipt prices in a Supermarket, an application that identifies the Romanian
traditional motifs as well as an application that identifies the most common animals
found in domestic areas of Europe in real-time.

2.5.2. Position Optimization and Testing of Dual-Axis Solar
Trackers

Variable weather conditions are a challenge even for professional solar
trackers. The work in [90] is bisecting this problem in two stages of direct and
indirect sensing of the Sun. By using an Arduino UNO board, DC motors with
gearbox, LDR sensor modules, angle sensors, timing circuit, Bluetooth module for
wireless operation and a motor driver circuit, the authors obtain an overall power
increase of 10 to 40% compared to a fixed-tilted solar panel, regardless of
atmospheric conditions. A similar configuration found in [91] which includes an
Arduino328, four LDRs and two servomotors, focuses on voltage measurements
comparison, showing an average rise of 37% for a dual-axis solar tracker over a
static solar panel. A multipurpose dual-axis solar tracker with two tracking
strategies (normal and daily adjustment strategies) is implemented in [92], which
can be applied to flat PV panels as well as Concentrating Solar Power (CSP)
systems. The authors in [93] propose an autonomous solar tracker oriented with the
support of light sensors and compare the experimental results of a dual-axis, single-
axis and fixed panel. According to their chart, the two-axis model is considerably
more efficient in generating an average of 77.58% Watt, followed by the single-axis
with 61.75% Watt when compared to the static PV panel on the course of one day
cycle. In terms of originality, two works are worthy of mentioning in this section.
First is a novel design of a bi-level automatic solar tracker described in [94] where
the authors investigate the possibility of rotating the payloads around orthogonal

BUPT

THEORETICAL BACKGROUND 41

axes and accomplish a unique structural design formed of four PV panels that allow
tilting with only five servo-motors rather than eight used in regular four dual axis
trackers. Their proposed method tops static PV panels and proves to be efficient
compared to some modern dual-axis solar trackers from other works. Secondly, the
work in [95] comes with a genuine idea of implementing an online sensorless dual-
axis sun tracker based on the MPPT method. Apart from traditional sensorless solar
trackers which operate in the open-loop regime, the proposed system works as a
closed-loop device which cumulates the advantages of both sensor-based and
sensorless dual-axis sun trackers but lacks all of their disadvantages.

Current advances in fault diagnosis and detection regarding solar harvesting
systems can be sustained by applications such as ANNs, Line-to-Line (L-L) fault
detection, online fault detection and diagnosis, simultaneous fault detection
algorithm and simulation of microgrid systems with distributed generation. The work
in [96] proposes an ANN-based model for fault identification and classification
towards PV systems. The simulation results show that the method is efficient in
detecting and classifying five different types of faults in PV systems. As the number
of PV panels increases, L-L faults may remain undetected causing loss of energy and
potential fire outbreaks. The authors in [97] resort to a fault detection algorithm
based on multi-resolution signal decomposition (MSD) for feature extraction and ML
techniques for decision making, demonstrating the accuracy of the adopted
approach. Another method of detecting faults is linked to an online fault detection
based on wavelet packets [98]. A concurrent fault detection algorithm is proposed in
[99] that can successfully identify faults such as faulty PV modules, faulty PV String,
faulty Bypass diode and faulty MPPT unit. A certain number of PV panels can be
combined together, resulting in a Grid-Connected PV (GCPV) plant. The simulation
experiments of the authors in [100] show that they are capable of switching
between grid-connected and isolated modes of operation, resulting in the detection
of errors that can occur in system behavior.

The interest shown in the literature for testing solar trackers at hardware
level is lower compared to the software level. However, BIST routines are part of
the industrial practices as well as an important research interest, especially in the
last 10 years, where researchers have developed an interest in proving their
efficiency in embedded memory testing [101]. In order to gain more flexibility with
the memory testing techniques, a generic BIST methodology has been created
around a set of March algorithm registers that can quickly adapt to the CUT and its
corresponding memory types. With the help of Modelsim simulations, the authors
achieved a proper validation, showing high coverage performance for common
faults. More recent advances in the testing domain are highlighting the
requirements for an efficient test pattern generation, configuration, oscillation
techniques and multilayer features of BIST systems. P. Moorthy et al. present a
novel TPG for the BIST without extending the length of test sequences [102]. Their
proposed method is described as a generation of multiple patterns with single input
change (SIC) that reduces the number of transitions during scan shift operations
and decreases the switch-mode activity in the DUT. By using a LFSR as a test
generator in combination with a MISR as a test compactor to verify a complex
Wallace tree circuit, the authors demonstrate that a multiple pattern single input
change (MSIC) method saves test power by 7% and reaches a fault coverage
greater than 70%.

We distinguish ourselves from the aforementioned related works by firstly
focusing on the development of a solar tracking device which rotates the PV panel
according to the Cast-Shadow principle. Secondly, by implementing a White-Box

BUPT

Deep Learning Inference using Nvidia Jetson TX2 and Motion Detection 42

strategy oriented toward the detection of common software errors found in modern
microcontroller units. Finally, by implementing an OBIST solution which is composed
of an TPG, an ORA, ADCs and DACs and an idle state detector, all of them
connected to several switch-batches for testing a solar tracking device that
comprises an Optocoupler (LTV-847), an Arduino UNO and two L298N ICs.

2.5.3. Deep Learning Inference using Nvidia Jetson TX2 and
Motion Detection

Similar work that evaluates the power efficiency of DL inference for image
recognition on embedded GPU systems is presented in [103] where the authors
compare different platforms like Nvidia Jetson TX1 and TX2 as well as a Tesla P40
and show that the Nvidia Jetson TX2 board is able to achieve the highest accuracy
with the lowest power consumption. The work in [104] make use of an Nvidia Jetson
TX2 to test a fully CNN for detecting traffic lights and use a power supply unit (12V)
with stabilizer in order to increase the stability of the system, mentioning that the
Nvidia Jetson TX2 has a low power consumption of around 10W, which is also
confirmed by our experimental results using different CNN architectures. The work
in [105] train and test two CNNs for classifying skin cancer images as Benign or
Malignant on the Nvidia Jetson TX2, proving that this embedded platform is capable
of handling DL computations even for training CNN models, not only for inference.
The authors in [106] propose an object detection implementation using MobileNet as
the backbone network on an Nvidia Jetson TX2 board, showing a higher fps and
reduced model size when compared to other networks. Nvidia Jetson TX2 is used
also in [107] where the authors propose a CNN based application that can run
onboard a satellite in order to detect and classify boats on the open ocean from
satellite imagery. Experimental results show that the Nvidia Jetson TX2 has almost
half the power consumption when compared with standard systems designed for a
satellite onboard processing. The authors in [108] use Nvidia Jetson TX2 for their
proposed methodology regarding a faster and more accurate object detection in
unmanned aerial vehicle (UAV) imagery. The work in [109] proposes a vehicle and
pedestrian detection system that uses CNNs in order to evaluate traffic violations
and which is implemented on an Nvidia Jetson TX2 board. Other related works that
use Nvidia Jetson TX2 are regarding real-time ear detection [110], when developing
embedded online fish detection and tracking system for ocean observatory network
[111], real-time multiple face recognition [112], a streaming cloud platform for real-
time video processing [113] and detecting diabetic foot ulcer in real-time [114]. A
comparison between different DNN computing platforms, including Nvidia Jetson
TX2, is made also by the work in [115].

Regarding motion detection, the authors in [116] present a comparative
analysis of motion-based and feature-based algorithms for object detection and
tracking and show that Adaptive Gaussian Mixture Model (AGMM) [117] is faster and
more robust to illumination (shadows) than Grimson Gaussian Mixture Model
(GGMM) [118] when performing on real-time videos. Also, the authors in [119]
present a study on preprocessing methods for tracking objects in soccer videos,
showing that background subtraction and edge detection are advantageous for
detecting moving objects. OpenCV is also using AGMM together with other several
algorithms for background subtraction which are presented in the works of [120]
and [121] but, in comparison with OpenCV, the algorithms in OpenCV are more

BUPT

THEORETICAL BACKGROUND 43

modern, accurate and faster (a reason for this is because they are continuously
developed by the OpenCV community).

We distinguish ourselves from the above mentioned related works by
making use of a motion detection method implemented with the help of OpenCV in
order to lower the power consumption of an Nvidia Jetson TX2 board that runs
inference in real-time and which is powered 100% by a dual-axis solar tracking
device.

2.5.4. Metrics for Evaluating the Performance of Deep
Learning

Awareness regarding the importance of energy consumption can be seen not
only in the field literature [118-126] but also in competitions such as the Low-Power
Image Recognition Challenge (LPIRC) [127]. The question of energy consumption to
be used as a metric when evaluating the performance of DL models or DL-based
systems is of high importance for many papers in the literature. An example is the
work in [8] where the authors advocate for a simple and compute-efficient metric,
suggesting the use of energy efficiency as a metric when evaluating a DL model
instead of “Red AI” which refers to the kind of AI research that uses extreme
computational power and costs to achieve state-of-the-art results regarding
accuracy. In order to measure the efficiency, after concluding that “Red AI” is used
today by almost anyone in the literature, the authors suggest that future
researchers should report the amount of work required to train a model using the
total number of floating-point operations (FPO). Despite several advantages (e.g.
agnostic and tied to the energy consumption of a hardware platform that runs a
model), FPO has some limitations regarding taking into consideration the memory
consumption of a model as well as its implementation, which, in the case of several
implementations of the same model, can lead to different amounts of processing
work.

A comprehensive analysis of important metrics such as accuracy, inference
time, memory footprint, power consumption, parameters, and operations count as
well as some combination of them for 14 DNN architectures is made in [128] where
the authors did all their experiments using only the Nvidia Jetson TX1 board and
show the importance of these metrics when designing efficient DNNs. Regarding
power consumption, they show that it is mostly independent with the batch size for
all neural network architectures. Similarly to the results in [128], the authors in
[129] expand the analysis to over 40 DNN architectures both on Nvidia Jetson TX1
board as well as on an Nvidia Titan X Pascal GPU, highlighting the importance of
metrics when evaluating the performance of a neural network, but lacking to
provide the energy consumption of the systems the DNN architectures are running
on. Also, the authors in [130, 131] contribute to the challenge of estimating the
energy consumption in ML by providing useful guidelines and a large selection of the
latest software tools for a ML expert who wants to design and estimate energy for
future DL systems.

Some arguments against using only TTA as a metric when evaluating DL
systems on the MLPerf Benchmark are presented by the work in [132] where the
authors propose the Time-To-Multiple-Thresholds (TTMT) curves and Average-Time-
To-Multiple-Thresholds (ATTMT) metric. By comparison, their metric targets the
training part, without taking into consideration the energy efficiency whereas our
metrics target both the training and the inference parts and take into consideration

BUPT

Data Science-Oriented Computer Vision Application 44

the energy consumption as well as the energy cost of a DL-based system.
Additionally, the TTA and ATTMT metrics are able to compare only different systems,
whereas our metrics are able to compare also different models trained and executed
in different systems, e.g. to identify on which hardware is better to train a DL model
and on which hardware is better to run an inference with the same DL model.

2.5.5. Data Science-Oriented Computer Vision Application

The authors in [133] propose a solution called ImageX for sorting large
amounts of unorganized images found in one or multiple folders with the help of a
dynamic image graph and which successfully groups together these images based
on their visual similarity. They also created many similar applications, e.g.
ImageSorter [134], which besides sorting images based on their color similarity, is
also able to search, download and sort images from the internet with a built-in
Google Image Search option. A drawback of their applications is that the user is able
to only visualize similar images, without also having this images automatically
cleaned and sorted in their respective class folder with high accuracy. Also, the
authors in [135] created an application called Sharkzor that combines user
interaction with DL in order to sort large amounts of images that are similar. Their
solutions only sort images by grouping them based on how similar they are to each
other after a human interacted and sorted these images initially. An on-device
option that uses DL capabilities and helps users find similar photos is presented also
by Apple in their newest version of Photos app [136]. Regarding the detection of
duplicate images, recently, a python package that makes use of hashing algorithms
and CNNs that finds exact or near-duplicates in an image collection called Image
Deduplicator (Imagededup) was released in [137]. When training DL models, the
work in [138] is assessing the feasibility and usefulness of automated DL in medical
imaging classification, where physicians with no programming experience can still
complete such tasks successfully. The authors in [139] created the Image ATM
(Automated Tagging Machine) tool that automatizes the pipeline of training an
image classification model (preprocessing, training with model tweaking, evaluation,
and deployment).

Our Computer Vision application distinguishes itself from the related works
by offering more functionalities that make use of DL inference and by introducing
the APC, APEC, TTCAPC and TTCAPEC metrics calculators, all in a user-friendly GUI.

2.5.6. Affordable Flying Probe-Inspired In-Circuit-Tester for
Printed Circuit Boards

Placement accuracy is one of the primary issues in modern FPT systems.
The authors in [140] are aware of the fact that the growing complexity of PCBs can
introduce risks of faults at any stage of the manufacturing process and they propose
a hybrid approach based on the combination of a traditional FPT and an Automated
Optical Inspection (AOI) device. The second issue regarding modern FPT systems is
the probe’s navigation time between test nodes and is generally associated with the
Traveling Salesman Problem (TSP). The authors in [141] investigate the ordering
requirements for the complete amount of sample points and consider it an extension
of the above mentioned TSP because they use more than one probe in their
research. Test pad localization is the third issue which is concerned in recent FPT

BUPT

THEORETICAL BACKGROUND 45

designs and can be solved by applying a clustering method which was eployed by
the authors in [142] referring to a two-stage clustering procedure on a 71040-pixel
dataset derived from a PCB image with a precision ratio of 93.25%, proving that
their method is highly efficient in identifying test pad locations for electronic boards
which lack proper documentation. Finally, the test coverage problem is analyzed by
Soh Ying Seah et al. [143] in their work which targets test load boards that are used
as an interface between Automatic Test Equipment (ATE) and IC during package
level testing using a hybrid approach between the ATE and FPT in order to verify
four load board categories before and after merging the two methods together.
Their experimental results showed a substantial test coverage increase (up to
100%) categories of electronic load boards.

Despite the fact that the previous works focus on the feasibility of combining
FPT with other test methods as well as optimizing traveling paths between test
nodes, test pad localization and fault coverage, we are implementing a FPICT that
integrates the test node localization features of a CMM, resulting in a sensorless
solution.

2.5.7. SHA-256 Hardware Implementation Acceleration
Techniques

In [62], the authors investigate a number of acceleration techniques that
are expected to improve the performance of hash functions, in general, and of SHA-
1 and SHA-256 hash operations, in particular. The proposed techniques are related
to loop unrolling, spatial precomputation, prefetching of data, design of an iterative
architecture, and using a CSA structure for reducing the critical path and can be
applied in any combination in order to attain the targeted performance.

In [144], authors investigate additional acceleration techniques applicable to
SHA-256 and, by extension, to other functions from the SHA-2 family. Starting from
the critical path of the algorithm, the authors first replace all binary adders by CSAs
and include a final lookahead addition stage for computation of the sum in non-
redundant representation.

In [145], authors construct hardware architectures for SHA-1 and for SHA-
512 standards for high throughput. The hash acceleration techniques include loop
unrolling and precomputation for part of the values used for generating the next
working variables.

In comparison, we improve the throughput and performance of a standard
SHA-256 hardware implementation by proposing several acceleration techniques.

BUPT

Mobile Application for Receipt Fraud Detection Based on Optical Character
Recognition

46

3. DIFFERENT DEEP LEARNING-BASED
APPLICATIONS FOR DETECTING FRAUD AND

INCREASING SECURITY

Following, we will present three different DL-based applications that use several
state-of-the-art CNN architectures with the aim to solve three different problems
related to fraud and security.

3.1. Mobile Application for Receipt Fraud Detection
Based on Optical Character Recognition

Despite the fact that we live in an Internet Era where multi-billion
companies from the e-commerce industry like Amazon and Alibaba achieve record
profits year after year due to their online sales, many offline grocery stores existed,
exist and will continue to exist, recently, the most conventional ones being known
under the name of a hypermarket/supermarket like Kaufland and Carrefour, to
name only a few. A very common problem that occurs very often in
hypermarkets/supermarkets in many countries around the world is that the price of
individual products or the total price on the receipt that needs to be paid, don’t
always reflect the real price seen at the shelf and the real number of products in the
customer’s shopping cart. This problem exists due to a computer or human error
and can happen because various reasons: a product gets scanned more or less than
the number of times it was actually present in customer’s shopping cart, doesn’t get
its price scanned correctly or because its price or special offer discount seen at the
shelf is wrong, old or was not updated with the new price value. In order to solve
this problem, our approach in this chapter is to provide a DL-based solution in the
form of an on-device smartphone application that will give a user the options to take
photos of the products at the shelf as well as of the paid receipt and automatically
have their prices compared with the help of an OCR algorithm [146] based on image
processing techniques and two CNNs.

3.1.1. Proposed Receipt Fraud Detection Application

In comparison to a cloud-based solution, the on-device inference not only
has advantages regarding the price (cloud solutions can be costly) and latency (in
case of poor internet connection) but also regarding the protection of a user’s
privacy [147]. Despite their smaller size when compared to a personal computer or
a laptop, in recent years, smartphones became a platform of choice for DL
applications [72] and big names in the industry (e.g. Google, Facebook, etc.)
released their mobile versions of DL frameworks [45], [148] with the goal of
running inference on the device (e.g. Android) itself.

When it comes to recognizing digits in natural images (e.g. photos taken in
the hypermarket/supermarket with our smartphone), there are many problems that
can occur, as can be seen in Fig.3.1 and Fig.3.2: the lack of contrast between the

BUPT

DIFFERENT DEEP LEARNING-BASED APPLICATIONS FOR DETECTING FRAUD AND
INCREASING SECURITY

47

pixels representing the digit and the pixels representing the background as well as
the existence of noise like texture and patterns in their regions.

Fig. 3.1. Image Processing Techniques applied on the dataset regarding price images from
Products (Top) and Receipts (Bottom): Images of Product and Receipt after thresholding

(Left), Manually cropped images of Product and Receipt (Middle) and Contours detected in
Product and Receipt images (Right).

Another problem can be the size and alignment of the digits, their font style

or optical distortions (photos of these digits that represent the price can be situated
under a plastic cover or having different angles at the shelf).

Moreover, because of the artificial lighting conditions in a supermarket,
there can also be other obstructions like shadows or even that the lens of the
smartphone camera can be defocused. Other problems are related to the design of
digit recognition systems including the acquisition of images, their pre-processing,
segmentation as well as representation and classification. The main problem in such
a system is the segmentation part, which takes a string of digits (number) as input
and segments (crops) them into individual, single digits because it requires a high
number of hypotheses when extracting features from the contour of images as well
as their background or foreground.

Fig. 3.2. Example of noise (Top-Left side) found in our dataset.

Regarding the proposed receipt fraud detection application summarized in

Fig.3.3, there are two main phases considered. Phase 1, where a user takes one
photo of the product he/she intends to buy (e.g. in order to be able to prove, in
case of fraud detection, that the product at the shelf did had a wrong price tag),
then takes a second photo with the price tag and then crops out the single price
represented by multiple digits separated by a comma, usually found in a single row
in a horizontal position. Phase 2 represents the step where the user is done with the
shopping and received the receipt. Here, the user takes only a single picture, in this
case, of the receipt and crops out all prices (usually found on the right side of the
receipt, in multiple rows in vertical position). The user will be also able, at any point,
to review any of the pictures or crops and, if necessary, to edit them.

The reason behind our design decision regarding the cropping of the exact
single price (regarding the product) and cropping of multiple digits representing the
bought product prices (regarding the receipt) is because of the speed and memory
concerns, which in our case, are minimized as much as possible (an average of 1

BUPT

Implementation Decisions for Phase 1 (Product Prices) 48

second per item and 10MB app memory usage). As a result, both CNN models will
have to process a much smaller size image, representing very exactly the ROI.

Fig. 3.3. Summary overview of the proposed application for Receipt Fraud Detection.

In order to successfully identify all the multiple digits, comma, and noises

that are part of a price, the proposed receipt fraud application is going through 2
main phases, each having two main steps: A. Extracting digits from cropped image
and B. Identifying digits, comma, and noise.

3.1.2. Implementation Decisions for Phase 1 (Product Prices)

Following we will describe our implementation decisions regarding the
product prices.

Regarding product prices, for extracting digits from cropped images, we
defined a function that receives an image as input and returns a list of images of
digits, a comma, or noise. Sometimes dark shadows in an image can make the
contour finding algorithm detect elements that are neither a digit nor a comma. It is
not possible to avoid this problem without introducing another DL algorithm;

BUPT

DIFFERENT DEEP LEARNING-BASED APPLICATIONS FOR DETECTING FRAUD AND
INCREASING SECURITY

49

however, since we already have a DL algorithm that will receive the output from the
contours algorithm, we can add the task to that algorithm in order to identify noise
from an actual relevant character. For this function, we didn’t try to remove the
noise images, but instead, we focused on trying to isolate the actual digits, since it
is more efficient to remove the noise images with the next classifier.

This function makes also use of some of the functions from the OpenCV
library and finds the images in four steps:

1. Converts the image to grayscale
2. Inverts the color of the image. The contour-finding function assumes that

there are objects in the image with a black background. Since in our data
the opposite is true, the evident choice is to invert colors

3. Applies the adaptive threshold with the Gaussian method. This is known as a
method that works very good regarding contour detection [149]

4. Finds contours

This manages to extract correctly all the digits in 99% of the cropped
images. The reason for this is that sometimes a shadow or a dark object may block
the image or make it have a very dark appearance, resulting in the impossibility of
the algorithm to find contours since all of the darker pixels are connected. In those
cases, the algorithm fails. The 1% of the images are the ones that contain very dark
regions of pixels of noise, which causes the function to extract all the images as if it
were only one digit.

Regarding product prices, for identifying digits, comma, and noise, the
objective here is to have a CNN model that can classify each digit, comma or noise
with the least amount of processing power used, in order to embed it later in a
smartphone application (e.g. Android). To do this, we trained the CNN on
augmented data.

With regard to data augmentation, we defined a function that applies four
transformations to an image to create a random augmentation of that image:

 The first transformation rotates the image with an angle between -10°

and 10°
 The second transformation adds a shadow to the image by randomly

choosing a straight line and a side of the line, and darkens the pixels of
that side of the line

 The third transformation makes a perspective warp to the image
 The last transformation adds random padding to each side of the image

Using this method of data augmentation we successfully created 12.000

images in our product prices dataset, containing 1.000 images of each digit (0-9),
1.000 images of commas and 1.000 images of noise.

For the image preprocessing, since every input for the CNN must have the
same size, we defined a function that resizes and pads an image in order to fit a
target size, which in this case we chose 50 width × 100 height, approximately the
ratio that most digits in our Products dataset have. Before training, for a better
convergence of the weights, all images were normalized.

As can be seen on the left side of Fig.3.4, the proposed model architecture
used for identifying the Product Prices contains four layers:

BUPT

Implementation Decisions for Phase 2 (Receipt Prices) 50

1. Four units of a 2D CONV layer with a kernel size of 10×10, strides of 2×2 and
ReLU activation function [26] followed by a dropout [36] rate of 0.5. This
reduces the image from 100×50×1 to 46×21×4 and adds 404 trainable
parameters

2. A max-pooling layer with a pool size of 2×2. This reduces the image to
23×10×4

3. A dense layer with 12 outputs and ReLU activation function that adds 11052
trainable parameters

4. A dense layer with 12 outputs and Softmax activation function that adds 156
trainable parameters

The reason for this network design approach was to obtain a small

architecture, thus a more portable and faster algorithm. The proposed model was
obtained by minimizing the number of layers and trainable parameters while
preserving the model accuracy, in order to have a compact model that can be
deployed on resource-consrained devices (e.g. smartphones).

Fig. 3.4. Proposed CNN Architectures for identifying prices from cropped Product (Left) and

Receipt (Right) images.

Since the scope of this work aims to classify only one font of characters, the
reason for this being the lack of access to real-life product photos from
supermarkets [150], [151], it is possible to obtain close to perfect results with a
minimalistic model design. We used RMSprop as the optimizer, with a learning rate
(LR) of 0.001 and categorical cross-entropy as the loss function.

3.1.3. Implementation Decisions for Phase 2 (Receipt Prices)

Regarding receipt prices, for extracting digits from cropped images, the
processing of the receipt images is very similar to the processing of the product
prices. For extracting the digits from cropped images we used the same function but
changed the parameters of the adaptive threshold, achieving similar results.

Regarding receipt prices, for identifying digits, comma, and noise, we
defined a function that applies a random brightness change to the images. Receipts

BUPT

DIFFERENT DEEP LEARNING-BASED APPLICATIONS FOR DETECTING FRAUD AND
INCREASING SECURITY

51

images are expected to be better aligned and to contain less random shadows, so
the expected digit images are only varying in brightness according to the lighting
level where the photo is being taken and the camera that takes the picture. For that
reason, any other augmentation would add unnecessary complications and noise to
the DL model. Using this method of data augmentation, we created 1.200 images in
our receipt prices dataset, containing 100 images of each digit (0-9), 100 images of
commas and 100 images of noise (anything that isn’t a digit or a comma is
considered noise, this includes other characters as well). For the image
preprocessing, we padded and resized the images to fit 10 width x 20 height,
approximately the ratio that most digits in our Receipts dataset have.

As can be seen on the right side of Fig.3.4, the proposed CNN model
architecture used for identifying the Receipt Prices is a similar model to the one
used for the Product Prices, with the same number of layers but with the following
configuration:

1. 20 units of a 2D CONV layer with a kernel size of 2×2, strides of 1×1 and
ReLU activation function. This reduces the image from 20×10×1 to
19×9×20 and adds 100 trainable parameters.

2. A max-pooling layer with a pool size of 2×2 followed by a dropout rate of
0.5. This reduces the image to 9×4×20.

3. A dense layer with 20 outputs and a ReLU activation function that adds
14.420 trainable parameters.

4. A dense layer with 12 outputs and a Softmax activation function that adds
252 trainable parameters.

The optimizer, LR and the loss function are the same as the ones described

in Phase 1. For both network designs, the procedure was to start with a minimal
architecture (1 CONV unit, max pooling and an FC layer) but in both cases (products
and receipt) that was not enough to learn the features. We then added a second FC
layer with 12 units (the same size as output, which is proven [31] to be able to
solve any classification problem if given enough units), but the results were only
slightly better, so we added more units to the CONV layer to be able to obtain
different local features from the images. After this step, the model overfitted on the
training data, which made us add a dropout with a 0.5 rate before the CONV unit (in
both cases) to eliminate it. The results regarding product price detector were very
good, but not regarding receipt. Since input images are smaller in receipt prices, the
CONV layers are 2×2, meaning that the amount of trainable parameters is less; for
this reason, the receipt price detector has more CONV and FC units. Also, in the
receipt case, the dropout performed better after the max pooling.

3.1.4. Android Application GUI

The proposed receipt fraud application is composed of two views: Products
(Items) view” and “Receipt view”, each of them having 3 frames (header, body,
footer).

We implemented the Android smartphone application using Python
programming language. For the image processing, handling the camera and image
storage, we used the OpenCV library; for the application development, we used the
Kivy Framework [152] and finally, for deploying the application into an Android app,
we used the generic Python packager called Buildozer [153].

BUPT

Android Application GUI 52

In the case of products, as can be seen in Fig.3.5, the header frame
presents the user a button for adding new products he/she intends to buy, called
“Add item” as well as the “Total price” field, which represents the total price of all
products added in the shopping cart (sum of all rows from column 4 explained
below).

Fig. 3.5. Summarized Android GUI view of the proposed Receipt Fraud application: Products

(Items) View (1 and 2); Receipt View (3); Products (Items) View after price comparison
between Receipt and Products was made and Price is equivalent (4) or not equivalent (5).

The body frame contains 4 columns. After pressing the “Add item” button

from header section, Column 1 presents two buttons called “Add picture”, meaning
that the user should take a picture of the product he/she intends to buy and “Add
price tag”, meaning that the user should take a picture of the product price tag.
After taking the picture of the price tag, a third button appears called “Crop Price”
which gives the user the option to perfectly crop only the price out, representing the
price of the product (digits separated by a comma) from the price tag. This is
important because, usually, on a price tag there are many other characters and
digits representing the name of the product, name of the company, the price/Kg,
barcode, etc., and detecting all of them will be out of the scope of this application.
All these three pictures (full product, price tag, crop from price tag) will be stored in
column 1, all in the same row that belongs to a single product, the user having the
possibility to enlarge or edit them at any time. The decision for allowing the user to
take a picture of the full product instead of just the price tag is because it can be a
very important part of the proof, in case of a receipt fraud. Column 2 shows the unit
price which is the identified price by our first CNN model which received the cropped
price tag image as input. In case of failure regarding digit extraction, the prices can
also be edited. Column 3 gives the user the option to enter the number of times
he/she intends to add a product he intends to buy in the shopping cart. By default,
every product receives an amount value of “×1” and can be increased (e.g. in case
the user wants to buy more times the same product) or decreased to the amount
value of “×0” meaning that the product will be removed from the grocery list.
Column 4 presents the total price per row for every product added in the shopping
cart (e.g. if a product costs 1.50 but the number of times in column 3 is ×2, the
total price per row in column 4 will be 3.00). The footer frame shows a “Finish”
button meaning that all products intended to be bought are added, cropped and
prices correctly identified and the user is now ready to take a photo of the receipt.

In the case of receipts, as can be seen in Fig.3.5, the header frame shows
the user a button for adding a receipt photo called “Add receipt” as well as a button

BUPT

DIFFERENT DEEP LEARNING-BASED APPLICATIONS FOR DETECTING FRAUD AND
INCREASING SECURITY

53

for cropping the multiple prices vertically aligned on the right side of the receipt
called “Crop receipt”. The body frame contains 3 columns. Column 1 shows the
picture of the receipt taken by the user. Column 2 shows the picture of the vertically
aligned cropped prices from the receipt photo, which our second CNN will receive as
an input. Column 3 presents the identified prices (containing digits and commas) by
our second CNN model. In case of failure regarding digit extraction, these prices can
be also edited. The footer frame shows a button called “Return to items” which is
necessary to be used after detecting the receipt prices, in order to go back and see
the price comparison results (entire row of a product that has a different price than
that found on the receipt will have a red-colored background, otherwise, if the price
is equivalent, it will have a green-colored background) between products and
receipt.

It is important to know that after installing the application, the first thing
that needs to be done is to allow camera permission from the Android Settings
Menu. The smartphone application was compiled using Python 3.6.7, OpenCV 4.0
and Kivy 1.11.0.dev0. We tested the app with a Moto Z Play Android smartphone.
The Moto Z Play includes a 5.5-inch 1080p display, an octa-core Qualcomm
Snapdragon625 system-on-chip, and 3 GB of RAM. The application takes 3 seconds
to open. The average memory use of the appplication is always less than 10MB.
After an hour of use, the application consumed 5% of battery (120 milliampere-
hour (mAh)).

The app is installed locally and doesn’t require a network connection, works
smoothly, without lag, except when processing images. When it is detecting a price
tag it takes about 1 second to do it. When processing a receipt the time is longer,
depending on how many contours the algorithms found in the image. It takes an
average of 1 second per item.

The size of the .apk file is around 21MB and when installed on the
smartphone device, the size of the smartphone application is 73MB (OpenCV used in
the image processing algorithm together with the 2 proposed CNNs).

By implementing an OCR ourselves, we succeeded to adapt it to our specific
dataset, resulting in a smartphone-friendly model that can handle noise very well,
unlike other OCR methods [70].

3.1.5. Experimental Setup and Results

For the experimental setup, it is important to notice that our two models
were trained on a Desktop-PC with the following configuration: on the hardware
side, we use an Intel(R) Core(TM) i5-6600 CPU @ 3.30GHz and a GIGABYTE
GeForce GTX 1060 WINDFORCE 2 GPU with 6GB GDDR5 memory; on the software
side, we use an Ubuntu distribution of Linux, version 18.04, together with Keras
2.2.0 framework using Tensorflow 1.10.

During training, for the first proposed CNN model, regarding the recognition
of prices with commas from products, we applied it to the augmented data for 200
epochs, with a batch size of 100 and a validation split of 10%. We obtained 98%
training accuracy after 18 epochs and at the end of the training, we obtained
99.84% accuracy, 99.50% validation accuracy, and an overall 99.96% test
accuracy, as can be seen in Table 1.

BUPT

Experimental Setup and Results 54

Table 1. Test Accuracy and other metrics of the CNN model regarding Product Prices.

Class Samples
Test

Accuracy Precision Recall
F1-

Score
0 37 1 1 1 1

1 125 1 1 1 1

2 147 1 1 1 1

3 41 1 1 1 1

4 72 1 1 1 1

5 19 1 1 1 1

6 21 1 1 1 1

7 38 0.99 1 0.97 0.98

8 8 1 1 1 1

9 365 0.99 1 0.99 0.99

Comma 365 0.99 0.99 1 0.99

Noise 41 0.99 0.97 1 0.98

Overall Test Accuracy 99.96%

Additionally, the accuracy and loss results during training and validation of

the CNN model regarding Product Prices, are presented in Fig.3.6.

Fig. 3.6. Training and Validation Accuracy (Top) together with Training and Validation Loss

(Bottom) for the CNN model regarding Product Prices.

Also, for the second proposed CNN model, regarding the recognition of
prices with commas from receipts, during training on the same setup, we applied it
to the augmented data for 1.100 epochs, with a batch size of 1200 and a validation

BUPT

DIFFERENT DEEP LEARNING-BASED APPLICATIONS FOR DETECTING FRAUD AND
INCREASING SECURITY

55

split of 10%. We obtained 99% accuracy after 360 epochs and at the end of the
training, we obtained 100% validation accuracy, and an overall 99.35% test
accuracy, as can be seen in Table 2.

Table 2. Test Accuracy and other metrics of the CNN model regarding Receipt Prices.

Class Samples Test
Accuracy

Precision Recall F1-
Score

0 28 0.99 1 0.96 0.98

1 29 0.97 0.68 1 0.81

2 17 1 1 1 1

3 12 0.97 1 0.57 0.72

4 7 1 1 1 1

5 22 1 1 1 1

6 13 1 1 1 1

7 7 1 1 1 1

8 6 1 1 1 1

9 43 1 1 1 1

Comma 69 0.98 0.98 0.95 0.97

Noise 107 0.98 0.96 0.99 0.97

Overall Test Accuracy 99.35%

Additionally, the accuracy and loss results during training and validation of

the CNN model regarding Receipt Prices, are presented in Fig.3.7.

Fig. 3.7. Training and Validation Accuracy (Top) together with Training and Validation Loss

(Bottom) for the CNN model regarding Receipt Prices.

BUPT

Identification of Traditional Motifs using Convolutional Neural Networks 56

More details regarding the number of samples used for the test accuracy of

both CNN models as well as other metrics values like Precision, Recall and F1-Score
[154], can be seen in Table 1 and Table 2.
 Because of the very small size of our model’s architecture, especially the
one used in Phase 1, it is important to mention that it is possible to run the training
even on any other smaller personal hardware device, which is an important
advantage.
 In order to validate the decision of creating our own OCR implementation
with regard to recognition accuracy and speed, we compared the proposed OCR with
the Tesseract OCR Engine [69] on the same system configuration and the same
number of samples.
 As can be seen in Table 3, the proposed OCR outperforms Tesseract by a
large margin regarding test accuracy on images with cropped Product and Receipt
prices from our dataset.

Table 3. Recognition Accuracy and Speed Comparison between the proposed OCR
and Tesseract OCR on images with cropped Product and Receipt prices.

Accuracy Test Samples
Proposed

OCR
Tesseract OCR

[69]
Cropped Price tags 254 98.43% 51.18%

Cropped Receipt prices 32 71.87% 3.12%

Speed Test Samples Test Time
[s]

Average
Time/Recognition

[ms]
Cropped Price tags proposed

CNN 254
6.6 24.2

Cropped Price tags Tesseract 27.34 101.9
Cropped Receipt prices

proposed CNN
32

3.51 685.3

Cropped Receipt prices
Tesseract 1.02 186.4

The first CNN, regarding price tag recognition, is 47% more accurate and

76% faster than Tesseract, while the second CNN, regarding receipt prices
recognition, is 68.57% more accurate than Tesseract, but due to our image
preprocessing, Tesseract performs the inference 70% faster than the proposed
method.

3.2. Identification of Traditional Motifs using
Convolutional Neural Networks

Ancient knowledge was preserved in many places around the globe in many
forms (architecture, wood carving, pottery, etc.), one of them being the form of
motifs sewn in the textiles. Often, these traditional motifs are found in clothes that
are copied without permission or without giving credit by the international clothing
design industries [155], [156] as seen in Fig.3.8. Romanian traditional motifs are
beautiful patterns that help the Romanian traditional clothing be characterized by
unity (such as the composition of the garment, the raw material from which the

BUPT

DIFFERENT DEEP LEARNING-BASED APPLICATIONS FOR DETECTING FRAUD AND
INCREASING SECURITY

57

pieces of clothing are made, the tailoring, the harmonious fresh colors or by the
stitching points) and by continuity (evolution of clothes over the years) [173],
[174].

Fig. 3.8. Example of cultural appropriation of traditional clothes by major brands [155].

In order to prevent cultural appropriation and the takeover (or theft) of

traditional clothes by major brands [155, 156], this work contributes to proposing a
method for the classification of Romanian traditional motifs using CNNs and which,
when compared to other traditional manually-designed feature extraction methods,
outperforms them by a large margin.

3.2.1. Proposed System Design for Classifying Romanian
Traditional Motifs

We propose a system that inherits the advantages of ResNet-50
architecture, the most important ones being to obtain higher accuracy and faster
training performance regarding image classification. Our model is trained using the
Keras framework, a Tensorflow high-level API written in Python and integrated into
the proposed classification system. For training and processing the features
detected in the hidden CONV layers, a CPU as well as a high-performance GPU were
used. Using a webcam, these detected features (motifs) are identified by the
proposed CNN, as shown in Fig.3.9.

Fig. 3.9. Summarized data flow of our detection and identification system.

BUPT

Proposed System Design for Classifying Romanian Traditional Motifs 58

We trained the proposed model on the widely known academically dataset
called ImageNet using a modified ResNet-50 architecture, as seen in Fig.3.10, which
was initially loaded with pre-trained weights.

Fig. 3.10. Our proposed network architecture (left) and a typical ResNet (right). The dotted

arches represent an increase in dimension.

ResNet-50 is chosen for its favorable properties in transfer learning and also
because it achieves better accuracy than VGGNet and GoogLeNet while being
computationally more efficient than VGGNet [128], as the experimental results
prove. Also, because ResNet-50 is quicker to train than the deeper variants, thus
allowing for more hyperparameter tuning.

We modified these weights by training on the images from 5 categories (4
categories for the motif classes: clothes, ceramics, carpets, painted eggs and a fifth
category for images not representing any of the learned motifs) without the FC and
the previous layer. Instead, we added 3 CONV layers, equivalent to FC layers, each
accompanied by a 50% dropout and a BN layer. The neural network architecture is
completed by a final flattening layer followed by the output dense layer consisting of
5 neurons corresponding to the 5 classes. In order to reduce the complexity of
training the network, consisting of 36.392.834 parameters, we trained on phases,
for 56 epochs. In Fig.3.11, the top-left figure shows how fast the accuracy evolved
through the 56 epochs used for training.

BUPT

DIFFERENT DEEP LEARNING-BASED APPLICATIONS FOR DETECTING FRAUD AND
INCREASING SECURITY

59

Fig. 3.11. Train and Validation Accuracy (top) as well as Train and Validation Loss (bottom) of

the proposed model.

For increasing the performance of the proposed network, before the actual
training, we reduced the size of all images belonging to the 5 categories to 256
pixels by keeping the aspect ratio and trained them with a batch size of 32. The
need for resizing the images arises due to the network size, available GPU
computation power and size of the receptive field. By scaling down the images, our
network is able to identify the key features in the initial layers instead of being
learned later, resulting in less computation per layer and fewer memory
requirements. Additionally, in order to increase the amount of relevant data in our
dataset, we apply data augmentation. This helps our CNN model to robustly classify
objects that may exist in a variety of conditions, such as different orientation, scale,
brightness, location, etc., resulting in our CNN model to gain the invariance
attribute. The following data augmentations are applied: horizontal flipping with a
probability of 0.5; zoom in the range of 0.8 and 1.2 of the original image and sheer
transformation with a shear angle of 0.2. Finally, in order for the network to
converge faster, the per-channel mean of the ImageNet dataset is subtracted from
the input images. In other words, the mean of red, green and blue (RGB) channels
are subtracted. This is a common practice, as even the pre-trained ResNet-50 had
the images preprocessed in this way [27].

As expected, the accuracy increased above 99% in the last 16 epochs.
However, the train loss graph seen at the bottom left of Fig.3.11 exposes the error
on the training dataset where the error was under 4% in the last 13 epochs, hitting
the minimum error of 2,67% in the 53rd epoch and then slightly rising. Because the
validation accuracy seen in top-right of Fig.3.11 stays above 99% in the last 26
epochs and the validation loss seen in bottom-right of Fig.3.11 was under 3% for
the last 17 epochs, we decided to end the training process at the 56th epoch in

BUPT

Proposed System Design for Classifying Romanian Traditional Motifs 60

order to avoid overfitting the training set. The graphs seen in Fig.3.11 are useful in
evaluating the performance of the training and how effectively the proposed CNN
architecture was trained. Because ResNet-50 was pre-trained on ImageNet (the size
of this dataset is around 150GB, which consists of 1.2 million labeled images and
1000 categories in the training set as well as 50.000 images, 50 per class, in the
test set), the first few layers already captured universal features like curves and
edges that are relevant to our problem. In consequence, we decided on making the
proposed network to focus on learning only the new dataset-specific features (the
dataset containing the traditional motifs) in the subsequent layers. For this, first, we
trained only the last 3 CONV layers, then the last 1/3 and finally the last 2/3rds. As
mentioned earlier, we used one dataset of positive samples with images from the 4
categories containing Romanian traditional motifs and another dataset from
ImageNet for the negative samples. These negative samples were drawn randomly
from ImageNet in each training epoch, up to the number of positive samples. Since
it is much larger than the positive examples dataset, we use only a fraction (2%) of
ImageNet. This allows the model not to be overwhelmed by negative examples and
to learn new parameters from the positive ones. This 2% portion of ImageNet is
randomly selected at the beginning of each epoch. Before training, we resize each
input image to 256×256 pixels and take random 224×224 crops out of it.

The modifications to the standard ResNet-50 architecture can be seen in
Fig.3.10 presented earlier and are as follows:

1. We remove the last FC layer and the global average pooling layer before it. This

is done in order to give the next, newly added layers more fine-grained
information.

2. The ResNet-50 architecture applies seven bottleneck (they are called
“bottleneck” because it adds the activations of two branches in one) blocks
which include CONV layers with a stride of 2 and a single max pooling layer with
a stride of 2, thus reducing the size of the input image 32 times. Since we start
off with 224×224 pixel images, the activations map that is output by ResNet-50
has a dimensionality of 7×7×2048. More exactly, the bottleneck blocks which
include a stride of 2 and the max pooling, are reducing the dimensions 32 times
(224/32=7). Thus, we add a CONV layer with a kernel size of 7×7 and 128
filters. This layer is able to capture the knowledge present in the output of the
pre-trained ResNet-50 while lowering the dimensionality.

3. We then add two CONV layers with a kernel size of 1×1 and 64 filters. These
layers are equivalent to FC layers with 64 units. The reason for making this
choice is because traditional CONV networks having FC layers cannot manage
different input sizes, whereas fully CONV networks have CONV layers that can
do this.

4. All three CONV layers described above use ReLU activations. Each CONV layer in
the proposed network architecture is followed by a dropout layer with a rate of
0.5 and a BN layer. We chose a dropout value of 0.5 because it regularizes the
network effectively for the purpose of our work. The BN layer gives our CNN
model resistance to vanishing gradient during training by decreasing the training
time, resulting in a better performance.

5. Finally, a Softmax-activated CONV layer with a kernel size of 1×1 and 5 filters
follows. The layer uses a Softmax activation function to classify the input image
characteristics generated in different classes based on the training dataset.

BUPT

DIFFERENT DEEP LEARNING-BASED APPLICATIONS FOR DETECTING FRAUD AND
INCREASING SECURITY

61

For training, since there are no balanced samples in each class (ImageNet =
456.567 images, Carpets = 132 images, Ceramics = 4.688 images, Clothes =
19.549 images, and Painted eggs = 190 images), we oversample the Carpets and
the Painted eggs classes 8 times. We do oversampling only on training data in order
for our model to generalize better on new data. Examples of random images from
the 4 categories (clothes, ceramics, carpets, painted eggs) identified by our CNN
model can be seen in Fig.3.12.

Fig. 3.12. Example of random images from the 4 categories (clothes, ceramics, carpets,

painted eggs) identified by our model.

We utilize the following training schedule:
1. First, we freeze the weights and biases on the pre-trained ResNet-50 network

and train only our newly added layers for 5 epochs with a LR of 0.1, for the next
3 epochs with LR of 0.01 and for the next 3 epochs with LR of 10-3. This enables
these randomly-initialized layers to train without perturbing the earlier layers.

2. Then, the first 10 bottleneck blocks of ResNet-50 are kept frozen, and the rest
are trained with an LR of 10-4 and 10-5 for 5 epoch each. After this, 6 more
bottleneck blocks are thawed and trained for with LR of 10-4 and 10-5 for 5
epoch each.

3. Finally, the whole network is trained for 20 more epochs with an LR of 10-5.

Also, in order to keep track of the accuracy results after every epoch,
checkpoints and logs files are automatically generated and saved. This is important
not only for keeping the training records but also because the whole dataset doesn’t
need to be retrained in case of possible errors. As mentioned earlier, we
implemented the proposed model in order to detect and identify motifs using a
webcam. First, we do inference using the trained model to detect the predominant
class in the image. Then, in order to see what part of the identified class contributed
the most to the successful classification, we apply the Gradient-weighted Class
Activation Mapping (Grad-CAM) algorithm [157]. Grad-CAM approach adds more
interpretability (simplicity) [158], transparency and trust [159] in our model. An

BUPT

Experimental Setup and Results 62

example of how two classes (ceramics and clothes) are being detected, can be seen
in Fig.3.13.

Fig. 3.13. Top Left: Detection of Ceramics class (i.e. Horezu). Top Right: Detection of Clothes

class (i.e. IA). Bottom: Grad-CAM heatmap is generated for both classes.

One important aspect to notice here is that after the Grad-CAM technique is
applied, the image gets automatically zoomed for better clarity of what part of the
detected class contributed the most (where the CNN identified motifs in the image
to actually distinguish between the classes) to the prediction accuracy.

3.2.2. Experimental Setup and Results

For the experimental results regarding training and testing of our model, we
make use of a Desktop PC system that has the following configuration: on the
hardware side, we use an Nvidia GTX 1080 Ti GPU together with an Intel-Core i5-
7500 3.4GHz Quad-Core Processor. On the software side, we used an Ubuntu
distribution, version 16.04 together with CUDA 9 [160], CuDNN 7 [161] and
Tensorflow 1.5 using the Keras framework.

The experimental results of the proposed model’s accuracy are summarized
in Table 4 and show that our novel CNN model implementation is able to classify the
Romanian traditional motifs found in 4 categories (carpets, ceramics, clothes, and
painted eggs) with high accuracy and reduced processing time.

Table 4. Test Accuracy together with other metrics values and webcam processing time.

Identified
Classes

Test
Accuracy

[%]
Samples Precision Recall

F1-
Score

Webcam
Processing
Time [ms]

Carpets 92.8 14 1.0 0.93 0.96 47.7
Ceramics (e.g.

Horezu)
98.4 459 1.0 0.98 0.99 46.8

Clothes (e.g.
IA) 99.3 1944 1.0 0.99 1.00 4.8

Painted Eggs 100 20 1.0 1.00 1.00 48.7

BUPT

DIFFERENT DEEP LEARNING-BASED APPLICATIONS FOR DETECTING FRAUD AND
INCREASING SECURITY

63

However, it is important to notice here that for the webcam detection,

identification, and processing time, we use an Asus ROG-GL752VW Laptop with an
Intel-Core i7-6700HQ 2.6GHz CPU having an NVIDIA GeForce GTX 960M with 2GB
memory. In order to show how well our system performs the classification task of
Romanian traditional motifs found on the 4 categories, we also presented the
Precision, Recall, and F1-Score metrics values in Table 4.

The model comparison results presented in Table 5, clearly show that the
proposed ResNet-50 model outperforms other architectures in classification accuracy
and by means of Keras’ Grad-CAM technique, our solution can be used with high
confidence when it comes to features extraction.

Table 5. Model Classification Comparison Results
Models Grad-CAM Accuracy [%]

SVM [162]

NO

35.0

Random Forests [162] 38.3

Transfer Forests [162] 41.4

Fine-tuned FC Layers CaffeNet [76] 46.0

Fine-tune All Layers CaffeNet [76] 50.2

CNN [163] 61.2

AlexNet [38] 81.8

VGG_S [38] 82.9

Deep CNN [80] 84.5

Inception v3 [79] 98.2

Our proposed model YES 99.4

3.3. Real-Time Identification of Animals Found in
Domestic Areas of Europe

 The world’s human population is constantly growing and the necessity for
shelter and food is pushing our civilization towards exploring new areas and building
residential areas there. A consequence of this is that unaware, we are destroying
many flora and fauna habitats, thus steps towards preserving biodiversity are of
major importance. Regarding animals, in order to track and monitor them, classical
animal recognition methodologies like ear tattoos, embedded microchips or
transponders in the electronic devices, sensors and radio frequency identification
(RFID) [164] were used for many years and are still in use today. These methods
are intrusive in their nature and depend heavily on the direct contact between
humans and animals (e.g. when tagging them for research purposes). A minimally
intrusive and remotely method in monitoring and identifying animals is that of using
camera traps (e.g. especially in the case of wild animals), but a common limitation
is that it requires spending a huge amount of time to manually label and classify
these images (which can reach millions) [11]. This is due to the complexity of the
real-life pictures analyzed which can contain perturbations regarding background,

ImageNet 99.7 2555 0.99 1.00 0.99 0.04
Overall

Accuracy [%]
99.4

BUPT

Proposed Real-Time Animal Class Identification System 64

illumination, position, posture, inter-class variations, etc. In order to accelerate the
discovery, tracking and monitoring of animal species that are on the verge of
extinction, the recent AI algorithms, e.g. DL, are showing promising results. An
example in this direction is Microsoft’s AI for Earth project [165].

Considering the animals found in domestic areas, in the case of residents or
farmers, the need to avoid accidents (e.g. animal-vehicle collisions) or maintain the
security of their domestic animals and crops against wild animals is also crucial and
show a clear demand for systems that can automatically detect, classify and store
information about the identified animal class, regardless of real-life scenarios and
challenges.

3.3.1. Proposed Real-Time Animal Class Identification System

The proposed real-time animal class identification system is composed of
two main processes called Main Process and Inference Process, as can be seen in
Fig.3.14.

Fig. 3.14. Summarized view of the proposed real-time animal class identification system.

The Main Process is responsible for the model-specific preprocessing (e.g.

normalization of the RGB input channels), for the real-time stream preprocessing
(e.g. resizing the full-size frame from the webcam/video to 256×256 pixels and
doing a center and random crop for a better association of different parts with the
corresponding animal class) and for making a certain number of streamed frames
available to the Inference Process. The real-time stream preprocessing is realized
with the help of the OpenCV library in the Main Process (because of issues running
OpenCV in a multiprocess environment). In order to know how many fps our system
(the computer used for running the proposed model) can perform inference on,
initially, before running the Inference Process, a speed test is performed. This speed
test is measuring the inference speed for 1, 2, 4, 8, 16 and 24 frames as well as the
inference time for each number of frames. The speed test is relevant because it
helps to make available a higher number of images per second (e.g. 4 frames
instead of 1 frame) to the Inference Process, increasing the chances of a better
prediction. When tracking the predicted animal class, the Main Process is taking the
decision of generating the 2 datasets, one containing textual information and the
second one containing images, in real-time by verifying which animal class was
present the most in the last 3 seconds over other animal classes and "nothing
detected" class. This rule will help reduce misdetections.

BUPT

DIFFERENT DEEP LEARNING-BASED APPLICATIONS FOR DETECTING FRAUD AND
INCREASING SECURITY

65

As mentioned earlier, in order for the proposed real-time animal class
identification system to have an increased recognition accuracy, we decided to train
four state-of-the-art CNNs for image classification using Keras framework with
Tensorflow backend. More exactly, we fine-tuned the VGG-19 [38], InceptionV3
[40] ResNet-50 [27] and MobileNetV2 [43] architectures, each of them having a
different number of trainable parameters and prediction accuracy.
 The first architecture we trained our model on is called VGGNet [38], which
was originally proposed in 2014 when it won first place in the ILSVRC challenge
regarding image localization as well as second place regarding image classification.
More exactly we make use of the VGG-19 version, composed of 19 weight layers, 16
CONV and 3 FC layers.

As can be seen in Fig.3.15, because the original VGG-19 architecture didn’t
work well on our dataset, we modified it by a) adding a GlobalAveragePooling layer
after the last MaxPooling layer; b) removing first Dense/FC layer; c) modifying the
number of units of the second Dense/FC layer from 4096 units to 1024; d)
modifying the number of units in the last Dense/FC layer from 1000 units to 34
representing our animal classes. It is important to mention that the proposed VGG-
19 architecture has 12.3 million trainable parameters as compared to around 144
million parameters of the original VGG-19 and uses ReLU as the activation function
for all layers but the last one, which uses the Softmax activation function.

Fig. 3.15. Proposed (left) and Original (right) VGG-19 architecture.

BUPT

Proposed Real-Time Animal Class Identification System 66

The second architecture we trained is called InceptionV3 [40] which was
proposed in 2015 in order to increase the ImageNet classification accuracy. We
summarized the proposed InceptionV3 architecture in Fig.3.16 where, in order to
present a compacted view, we present a compressed view of it.

Fig. 3.16. Schematic diagram of the proposed InceptionV3 model architecture (compressed

view).

It is important to mention that all CONV layers are followed by a BN layer as
well as a ReLU activation function. Due to the GlobalAveragePooling layer, all the
channels after the last CONV layer are averaged out, reducing the number of
parameters, thus having a smaller weights size than the original VGG and ResNet
architectures. More exactly the proposed InceptionV3 architecture has 23.9 million
parameters. Regarding the last 2 Dense/FC layers, the first FC is having 1024 units
and ReLu as the activation function and the second one is having 34 units
representing the animal classes and Softmax as the activation function. We used the
SGD optimizer with an initial LR of 0.01, momentum 0.9 and categorical cross-
entropy as the loss function.

 The third architecture we trained is called ResNet [27]. More exactly, we use
a conventional version of ResNet called ResNet-50 which has 25.6 million trainable
parameters across 49 CONV layers and 1 FC layer and which we modified by
removing the top FC layer with outputs for 1000 target classes, and replacing it with
an FC layer with outputs for 34 target classes, as seen in Fig.3.17. Replacing the
last ResNet-50 layer with a single layer worked best for our scenario. More
expressive replacements (e.g. 3 FC layers of respectively 256, 128, 64 units) were
tested but were found to be hard to train and inaccurate, the reason for this being
the limited number of images available. An example of an architecture setup that
didn’t work well was: ResNet-50 -> FC layer with 64 units (ReLU activation) -> BN -
> FC layer with 34 units (Softmax activation). It is important to mention that we
use ReLU as the activation function not only after the first BN layer but also after all
BN layers inside the 16 residual blocks consisting of 4 CONV BLOCKs and 12
IDENTITY BLOCKs (each having 3 CONV layers = 48 CONV layers). Only after the FC
layer with 34 units, we use Softmax as the activation function. The identity
shortcuts are presented as solid and dotted lines shortcuts; the solid lines are used
where the input, as well as the output, have the same dimensions, whereas the
dotted lines are used where their dimension is different.

BUPT

DIFFERENT DEEP LEARNING-BASED APPLICATIONS FOR DETECTING FRAUD AND
INCREASING SECURITY

67

Fig. 3.17. Proposed ResNet-50 architecture with the last FC layer having 34 outputs

representing the animal classes. On the right side are presented the identity shortcuts between
all residual blocks (solid lines when the input and output have the same dimensions; dotted

lines when otherwise).

BUPT

Proposed Real-Time Animal Class Identification System 68

As mentioned earlier, the ResNet-50 architecture is more computationally

efficient than other architectures such as the VGG and GoogLeNet, requiring 0 extra
parameters, having considerably fewer operations (e.g. ResNet with only 34 layers
requires 18% of the operations compared to a VGG with 19 layers) and achieving
better accuracy. We used SGD as the optimizer (initially we experimented with
Adam, but SGD proved to give better results) with an initial LR of 0.01, the
momentum of 0.9 and categorical cross-entropy as the loss function.
 Forth and last architecture we trained our model on is called MobileNetV2
[43] which was released in 2018 at the Conference on Computer Vision and Pattern
Recognition (CVPR) and which outperforms all other 3 architectures presented
earlier regarding training and testing accuracy on our animal images dataset.
Moreover, it is a very light-weight architecture that uses in our case 6.1 million
trainable parameters, being much more efficient than all other architectures we
trained our model on. MobileNetV2 is suitable for mobile devices because it requires
less space, memory, and computation, thus it can run faster (e.g. when running
inference in real-time).

The proposed MobileNetV2 architecture can be seen in Fig.3.18 and is
composed of 10 blocks of stride 1 and 6 blocks of stride 2, each having ReLU6 as
the activation function after the 3×3 depthwise CONV layer. Because each stride
block is composed of 3 CONV layers, the entire architecture is composed of a total
of 52 CONV layers, 1 GlobalAveragePooling layer as well as 2 Dense/FC layers. It is
important to mention that the first Dense/FC layer with 1024 units has ReLU as the
activation function and the second (last) Dense/FC layer with 34 units representing
the animal classes, has Softmax as the activation function. We used SGD as the
optimizer with an initial LR of 0.01, the momentum of 0.9 and categorical cross-
entropy as the loss function.

In practice, it is very rare to have a self-made dataset consisting of millions
of images and very common to have small datasets consisting of hundreds or a few
thousands of images. With the size of a dataset reaching hundreds of thousands of
images, the complexity of a neural network also grows, this being the reason why
DNNs consisting of millions of parameters are very expensive to train, with most
complex models taking weeks (for example, the original ImageNet ILSVRC model
was trained on 1.2 million images over the period of 2-3 weeks across multiple
GPUs). In order to avoid this problem, we fine-tunned our models. More exactly, we
use a pre-trained version of all 4 architectures on the ImageNet dataset which
already provides us with the learned features relevant for our animal class
identification problem. We apply fine-tuning instead of training from scratch, in
order to prevent overfitting, reduce the training time and benefit the environment
[8].

We carry out experiments on a home-made dataset containing animal
images from personally made pictures (for some of the classes), as well as animal
pictures from other online resources, scrapped for educational purposes with the
help of a home-made Python script. Because the home-made Python script
randomly searched for thousands of images containing the name of this classes all
over the Internet (thus the reason we cannot reference the image sources), many of
the images found were noisy, meaning that additional manual data filtering was
required for removal of invalid images. Because the scope of our work is related to
animals found only in domestic areas of Europe, we considered only 34 species.

BUPT

DIFFERENT DEEP LEARNING-BASED APPLICATIONS FOR DETECTING FRAUD AND
INCREASING SECURITY

69

Fig. 3.18. The proposed MobileNetV2 architecture.

BUPT

Proposed Real-Time Animal Class Identification System 70

More specifically, our training dataset contains, as can be seen in Fig.3.19

and Fig.3.20, a number of 34 classes, each with large variations in scale, lighting
and pose: bat, bear, canary, cat, cattle, chicken, deer, dog, donkey, duck, fox, frog,
goat, goose, hamster, hedgehog, horse, lizard, magpie, mole, owl, parrot, pig,
pigeon, rabbit, raven, sheep, snake, sparrow, squirrel, stork, tortoise, turkey, and
woodpecker.

Fig. 3.19. Weights by Class for the considered 34 animal classes.

The training, validation and test sets were having a total number of 90.249

images (72.469 images for training, 8.994 images for validation and 8.786 images
for testing).

Before training, we resize each input image to 256 pixels by maintaining the
weight by height ratio and take 224×224 pixels random crop out of it. This helps out
the network to learn key features in the early layers rather than later, resulting in
faster training and less memory used. Also, because pooling layers induce
translational invariance, our CNN model is able to robustly classify images of
animals that can exist in a variety of conditions, such as location, brightness,
orientation, scale, etc. In order to increase the amount of relevant data in our
dataset, we apply data augmentation (horizontal flipping with a probability of 0.5;
zoom 0.1 of the original image as well as shear transformation with a shear angle of
0.1). The resized version of our dataset (train, validation and test set) consists of a
total of 90.249 images.

Following, we will present all 4 architectures (VGG-19, InceptionV3, ResNet-
50, and MobileNetV2) our model is trained on in order to determine which is the
best architecture that achieves the highest validation accuracy, has the smallest
number of trainable parameters and trains the fastest. During training, each class
was weighted to give more importance to classes that are underrepresented. For
example, as seen earlier in Fig.3.19, dog and cat classes were heavily
underweighted (0.09199101 and 0.16943509) because of the large number of
training samples in these classes. In order to decrease the training time as well as
estimate the error rate of the loss function, we make use of the following callback
functions from Keras: EarlyStopping with patience (number of epochs with no
improvement after which LR will be reduced) of 10 and ReduceLROnPlateau with a
factor (by which the LR will be reduced) of 0.2 and patience of 3.

BUPT

DIFFERENT DEEP LEARNING-BASED APPLICATIONS FOR DETECTING FRAUD AND
INCREASING SECURITY

71

Fig. 3.20. Random images from our training dataset. A total number of 34 classes representing
animals found in domestic areas of Europe (bat, bear, canary, cat, cattle, chicken, deer, dog,
donkey, duck, fox, frog, goat, goose, hamster, hedgehog, horse, lizard, magpie, mole, owl,

parrot, pig, pigeon, rabbit, raven, sheep, snake, sparrow, squirrel, stork, tortoise, turkey, and
woodpecker).

 We trained our VGG-19 model consisting of 12.359.202 trainable

parameters with a batch size of 64 on a number of 72.469 train images belonging to
34 animal classes for 27 epochs in the following training schedule:

1. First, we trained the first 13 epochs with an LR of 0.0001. This brought the

validation loss to 0.33725 and validation accuracy to 89.84%.
2. Next, we trained for 6 more epochs: 3 epochs with a LR of 2e-05 and 3

epochs with a LR of 4e-06. This didn’t improve the validation loss but
increased the validation accuracy to 90.84%.

3. Finally, we trained for 8 more epochs, 3 epochs with a LR of 8e-07, 3 epochs
with a LR of 2e-07 and 2 epochs with a LR of 3e-08. This didn’t improve the
validation loss and validation accuracy, so we decided to stop the training,
leading to convergence at 90.56% overall test accuracy, as can be seen in
Fig.3.21 and Table 6.

Fig. 3.21. Train and Validation Accuracy (left), Train and Validation Loss (middle) as well as LR

(right) of the proposed VGG-19 model.

BUPT

Proposed Real-Time Animal Class Identification System 72

The total amount of time needed to train the 27 epochs of the proposed

VGG-19 model was 20.273 seconds (around 5 hours and 37 minutes).
 We trained our InceptionV3 model consisting of 23.901.378 trainable

parameters with a batch size of 64 on a number of 72.469 train images belonging to
34 animal classes for 51 epochs in the following training schedule:

1. First, we trained the first 12 epochs with an LR of 0.01. This brought the

validation loss to 0.38108 and validation accuracy to 89.16%.
2. Next, we trained for 7 more epochs with an LR of 0.001. This brought the

validation loss to 0.25620 and validation accuracy to 94.06%.
3. Next, we trained for 16 more epochs: 3 epochs with a LR of 0.0003, 3

epochs with a LR of 8e-05, 3 epochs with a LR of 2e-05, 3 epochs with a LR
of 3e-06 and 4 epochs with a LR of 6e-07. This brought the validation loss to
0.25176 but without improving the validation accuracy.

4. Finally, we trained for 16 more epochs: 3 epochs with a LR of 1e-07, 3
epochs with a LR of 3e-08, 3 epochs with a LR of 5e-09, 3 epochs with a LR
of 1e-09, 3 epochs with a LR of 2e-10 and 1 epoch with a LR of 4e-11. This
didn’t improve the validation loss, but brought the validation accuracy to
94.28%, leading to convergence at 93.41% overall test accuracy, as can be
seen in Fig.3.22 and Table 6.

The total amount of time needed to train the 51 epochs of the proposed

InceptionV3 model was 38.853 seconds (around 10 hours and 47 minutes).
We trained our ResNet-50 model consisting of 25.583.394 trainable

parameters with a batch size of 64 on a number of 72.469 train images belonging to
34 animal classes for 28 epochs in the following training schedule:

Fig. 3.22. Train and Validation Accuracy (left), Train and Validation Loss (middle) as well as LR

(right) of the proposed InceptionV3 model.

1. First, we trained the first 10 epochs with an LR of 0.01. This brought the
validation loss to 0.36145 and validation accuracy to 89.37%.

2. Next, we trained for 4 more epochs with an LR of 0.001. This brought the
validation loss to 0.26349 and validation accuracy to 93.28%.

3. Next, we trained for 10 more epochs: 3 epochs with an LR of 0.0003 and 7
epochs with an LR of 8e-05. This brought the validation loss to 0.25335 and
validation accuracy to 93.62%.

4. Finally, we trained for 4 more epochs: 3 epochs with a LR of 2e-05 and 1
epoch with a LR of 3e-06. This didn’t improve the validation loss, but
brought the validation accuracy to 93.66%, leading to convergence at
93.49% overall test accuracy, as can be seen in Fig.3.23 and Table 6.

BUPT

DIFFERENT DEEP LEARNING-BASED APPLICATIONS FOR DETECTING FRAUD AND
INCREASING SECURITY

73

Fig. 3.23. Train and Validation Accuracy (left), Train and Validation Loss (middle) as well as LR

(right) of the proposed ResNet-50 model.

The total amount of time needed to train the 28 epochs of the proposed
ResNet-50 model was 21.396 seconds (around 5 hours and 56 minutes).

We trained our MobileNetV2 model consisting of 6.186.658 trainable
parameters with a batch size of 64 on a number of 72.469 train images belonging to
34 animal classes for 51 epochs in the following training schedule:

1. First, we trained the first 17 epochs with an LR of 0.01. This brought the
validation loss to 0.46479 and validation accuracy to 88.75%.

2. Next, we trained for 9 more epochs with an LR of 0.001. This brought the
validation loss to 0.22574 and validation accuracy to 94.05%.

3. Next, we trained for 18 more epochs: 4 epochs with a LR of 0.0003, 3
epochs with a LR of 8e-05, 5 epochs with a LR of 2e-05 and 6 epochs with a
LR of 3e-06. This brought the validation loss to 0.21380 and validation
accuracy to 94.28%.

4. Finally, we trained for 7 more epochs: 3 epochs with a LR of 6e-07, 3
epochs with a LR of 1e-07 and 1 epoch with a LR of 3e-08. This didn’t
improve the validation loss and validation accuracy, so we decided to stop
the training, leading convergence at 94.54% overall test accuracy, as can be
seen in Fig.3.24 and Table 6.

Fig. 3.24. Train and Validation Accuracy (left), Train and Validation Loss (middle) as well as LR

(right) of the proposed MobileNetV2 model.

The total amount of time needed to train the 51 epochs of the proposed
MobileNetV2 model was 38.847 seconds (around 10 hours and 47 minutes).

3.3.2. Experimental Setup and Results

For the experimental setup and results, our model was trained on a Desktop
PC system with the following configuration: on the hardware side, we used a
Desktop PC having an Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz (12-Core),
~3.5GHz processor, 32 GB RAM, and an Nvidia GTX 1080 Ti GPU; on the software
side, we used Windows 10 together with CUDA 9.0, CuDNN 7.6.0 and Tensorflow

BUPT

Experimental Setup and Results 74

1.10 using the Keras 2.2.4 framework. However, for the real-time identification of
animal classes using the webcam, we use an Asus ROG-GL752VW Laptop with an
Intel-Core i7-6700HQ 2.6GHz CPU having an NVIDIA GeForce GTX 960M GPU with
2GB of memory. The experimental results are presented in Table 6 and clearly show
that all CNN models are able to identify 34 classes representing animals found in
domestic areas of Europe with high accuracy.

Table 6. Test Accuracy Report for the proposed models.

Animal
Class Samples

Test Accuracy [%] for VGG-19 (V), InceptionV3
(I), ResNet-50 (R) and MobileNetV2 (M)

V I R M

Bat 236 91.6 95.4 90.3 94.9
Bear 208 88.4 93.8 92.8 92.8

Canary 130 86.9 92.3 93 93.8
Cat 279 91.7 94.9 95.3 95.0

Cattle 552 89.3 91.9 90.2 92.9
Chicken 402 92.5 93.8 95.8 96.5

Deer 401 92.8 93.8 94.3 96.0
Dog 346 85.5 92.8 92.2 93.1

Donkey 224 75.8 87.6 91.5 90.2
Duck 329 85.1 85.4 87.8 90.6
Fox 247 88.3 91.5 93.1 90.3
Frog 312 92.9 92 93.6 95.8
Goat 333 81.1 88 88.9 91.9

Goose 169 86.0 88.9 90.1 92.9
Hamster 197 88.3 94.9 93.4 95.4

Hedgehog 192 97.9 99.5 96.9 97.4
Horse 742 94.7 96.4 93.1 95.8
Lizard 211 90.0 90.5 92.4 91.9
Magpie 115 93.0 94.7 93.9 95.7
Mole 103 93.3 97.1 98.1 97.1
Owl 256 91.8 95.7 95.3 97.7

Parrot 307 94.1 96.1 95.4 94.8
Pig 274 93.1 96 96 97.4

Pigeon 227 89.9 94.7 94.7 97.8
Rabbit 285 93.0 94.4 96.2 97.2
Raven 105 88.8 94.4 94.4 95.2
Sheep 274 88.6 89.7 92.3 89.8
Snake 392 95.9 96.4 95.9 95.7

Sparrow 275 90.2 93.8 94.9 94.5
Squirrel 139 90.6 92.8 92.8 94.2
Stork 126 96.8 98.4 99.2 100.0

Tortoise 123 95.9 91.9 92.6 93.5
Turkey 141 88.0 94.4 97.2 93.6

Woodpecker 116 94.9 96.6 97.4 95.7
Overall Test

Accuracy [%]:
90.56 93.41 93.49 94.54

BUPT

DIFFERENT DEEP LEARNING-BASED APPLICATIONS FOR DETECTING FRAUD AND
INCREASING SECURITY

75

In order to show how well our system performs the animal class
identification task, we also present the Precision, Recall, and F1-Score metrics
values in Table 7 where, for simplicity, because we use the same animal classes and
the same number of samples in the same order like in Table 6, we don't include
here the first two columns.

Table 7. Confusion matrix values for the proposed VGG-19 (V), InceptionV3 (I) ResNet-50 (R)

and MobileNetV2 (M) models.
Precision Recall F1-Score

V I R M V I R M V I R M
0.93 0.96 0.98 0.97 0.92 0.95 0.9 0.95 0.92 0.96 0.94 0.96
0.9 0.97 0.95 0.95 0.88 0.94 0.93 0.93 0.89 0.95 0.94 0.94
0.88 0.9 0.89 0.9 0.87 0.92 0.93 0.94 0.88 0.91 0.91 0.92
0.91 0.95 0.93 0.94 0.92 0.95 0.95 0.95 0.91 0.95 0.94 0.94
0.88 0.9 0.91 0.91 0.89 0.92 0.9 0.93 0.89 0.91 0.91 0.92
0.89 0.94 0.98 0.96 0.93 0.94 0.96 0.97 0.91 0.94 0.97 0.96
0.92 0.94 0.93 0.93 0.93 0.94 0.94 0.96 0.92 0.94 0.94 0.95
0.88 0.89 0.89 0.88 0.86 0.93 0.92 0.93 0.87 0.91 0.9 0.9
0.91 0.92 0.86 0.95 0.76 0.88 0.92 0.9 0.83 0.9 0.89 0.92
0.89 0.9 0.92 0.94 0.85 0.85 0.88 0.91 0.87 0.88 0.9 0.92
0.93 0.95 0.95 0.97 0.88 0.91 0.93 0.9 0.91 0.93 0.94 0.94
0.9 0.94 0.96 0.93 0.93 0.92 0.94 0.96 0.92 0.93 0.95 0.94
0.82 0.87 0.85 0.88 0.81 0.88 0.89 0.92 0.82 0.88 0.87 0.9
0.84 0.85 0.86 0.9 0.86 0.89 0.9 0.93 0.85 0.87 0.88 0.92
0.94 0.94 0.98 0.96 0.88 0.95 0.93 0.95 0.91 0.95 0.96 0.96
0.99 0.98 0.99 0.99 0.98 0.99 0.97 0.97 0.98 0.99 0.98 0.98
0.87 0.94 0.96 0.95 0.95 0.96 0.93 0.96 0.91 0.95 0.94 0.96
0.95 0.93 0.92 0.95 0.9 0.91 0.92 0.92 0.92 0.92 0.92 0.93
0.94 0.95 0.96 0.96 0.93 0.95 0.94 0.96 0.93 0.95 0.95 0.96
0.9 0.97 0.93 0.97 0.93 0.97 0.98 0.97 0.92 0.97 0.95 0.97
0.94 0.98 0.96 0.97 0.92 0.96 0.95 0.98 0.93 0.97 0.96 0.97
0.95 0.95 0.98 0.98 0.94 0.96 0.95 0.95 0.94 0.95 0.97 0.96
0.93 0.97 0.96 0.97 0.93 0.96 0.96 0.97 0.93 0.97 0.96 0.97
0.91 0.93 0.94 0.97 0.9 0.95 0.95 0.98 0.9 0.94 0.95 0.97
0.95 0.95 0.95 0.97 0.93 0.94 0.96 0.97 0.94 0.95 0.95 0.97
0.89 0.96 0.94 0.93 0.89 0.94 0.94 0.95 0.89 0.95 0.94 0.94
0.93 0.93 0.92 0.96 0.89 0.9 0.92 0.9 0.91 0.92 0.92 0.93
0.94 0.93 0.93 0.96 0.96 0.96 0.96 0.96 0.95 0.95 0.94 0.96
0.93 0.94 0.93 0.97 0.9 0.94 0.95 0.95 0.92 0.94 0.94 0.96
0.83 0.9 0.89 0.92 0.91 0.93 0.93 0.94 0.87 0.91 0.91 0.93
0.98 0.99 0.96 0.99 0.97 0.98 0.99 1 0.98 0.99 0.98 1
0.78 0.93 0.9 0.91 0.96 0.92 0.93 0.93 0.86 0.92 0.91 0.92
0.95 0.98 0.97 0.99 0.88 0.94 0.97 0.94 0.92 0.96 0.97 0.96
0.97 1 0.98 0.96 0.95 0.97 0.97 0.96 0.96 0.98 0.98 0.96

When compared with some of the existing related works seen in Table 8, our

solution has some advantages.

Table 8. Comparison between one of our 4 proposed CNN model architectures (MobileNetV2)

and other related works.

Model: [87] [88] [84] [86] [85]
One of our 4

proposed CNN [89]

BUPT

Experimental Setup and Results 76

model
architectures
(MobileNetV2)

Number
of Animal
Classes:

20 20 3 6 50 20 34 24

Overall
Test

Accuracy
[%]:

83.33 87.5 88.2 84.39 90.2 91.4 94.5 97.6

One of the main advantages is that the proposed system can identify animal

classes not only from images but also in real-time from videos or using a webcam.
The webcam animal class identification is very important because, even though
most of the videos can be in high-definition, a real-life scenario in which the
webcam operates can include shadows, dust, fog, and other weather conditions
which can make the detection and identification task more difficult. Another
advantage is that 2 new datasets are generated in real-time; one dataset containing
textual information with the class name, date and time interval when an animal was
present in the frame and another dataset containing animal images. An example of
these datasets is presented in Fig.3.25.

Fig. 3.25. Example of random animal images and their textual information generated in real-

time by our proposed DL-based system from videos as well as using a webcam.

BUPT

DIFFERENT DEEP LEARNING-BASED APPLICATIONS FOR DETECTING FRAUD AND
INCREASING SECURITY

77

It is important to mention that these images were never seen before by our

model and that they are automatically generated in real-time from videos or
webcam. The size of each image generated in this new image dataset is 1280×720
pixels, meaning that they can be very easily analyzed by anyone later or used for
further research, e.g. retraining a much more robust CNN model regarding animal
classification and identification. Both datasets can be very useful also in the science
of ecology, e.g. in order to monitor what animals are present the most, between
what time interval and in which area. Additionally, the proposed solution can be
used by ecology and biology scientists, veterinary professionals, animal or bird
experts, farmers or anyone else who is interested in protecting their own safety or
that of their domestic animals and crops.

BUPT

Constructing a Dual-Axis Solar Tracking Device using the Cast-Shadow Principle 78

4. POWERING A REAL-TIME DEEP LEARNING-
BASED SYSTEM USING SOLAR ENERGY

Following we will present three subchapters that will cover the entire
construction and testing of our dual-axis solar tracking equipment based on the
Cast-Shadow principle that was later also improved and successfully used as part of
a self-sufficient solar-powered real-time DL-based system.

4.1. Constructing a Dual-Axis Solar Tracking Device
using the Cast-Shadow Principle

In a world affected by continuous resource depletion, the need to appeal to
renewable energy solutions has become more and more justified. The Sun is one of
the most available sources for harvesting solar energy and can be exploited
successfully with the help of PV panels.

Solar tracking systems that rely on the PV effect are constantly expanding,
even in geographical areas that do not have a lot of sunlight at their maximum level
over a year period. Because of the affordable price and the existence of highly-
efficient solar cells [166] like the solar modules based on silicon, which deliver more
than 20% performance, PV panels have become an attractive choice, especially to
homeowners. The maximum energy output of solar cells with silicon is based on
current and voltage monitoring. Modifications in current-voltage charts via solar
module heating or variable intensity illumination may be important causes of
efficiency loss in solar generators, thus resolute energy cannot be produced when
the sunlight is constantly changing. In order to conserve energy savings, electronic
circuits became available on the market, being used for MPPT as well as to prevent
unproductive temporary modules from interrupting the production of active cells.
Solar panels have maximum efficiency under ideal conditions: e.g. when the
electrical power is generated by illumination near the Equator on a serene day as
well as when a square meter of the Earth’s surface receives more than 1kW of
power from the energy of the Sun. However, environmental conditions or
mismatches of electrical characteristics of PV panels can reduce the overall system
efficiency.

4.1.1. Position Optimization Method

Usually, a full daylight cycle is described by a 150-degree rotation of the
Sun around the horizon whereas a year period is outlined by a 46 degrees
movement of the star from the north to the south direction [167]. Static PV panels
are physically not able to capture the maximum potential of solar energy mainly
because of their generally fixed 45 degrees installation angle and while the Earth
travels around the Sun, certain regions of the solar panel become shaded and thus
provide a minor or no contribution to the power output of the solar system. Taking

BUPT

POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 79

into account that cells act as photodiodes as well as the obvious effect of the dark
areas on the panel, we employed a novel tracking mechanism based on the Cast-
Shadow principle for which we used monocrystalline solar cells.

Initially, monocrystalline PV cells were placed on a 4 mm thick
polycarbonate plate. The cells were serially linked, 10 units on each row, so that we
obtained two groups of 20 photocells which generate 10V. Once tied in a serial
manner, the two groups of PV cells have been tethered in a parallel connection,
resulting in a double amount of current produced by just one photocell. In the
corners of the solar panel, four protective wings were mounted in order to serve as
a screen for the PV cells placed at the extremities of the payload. As it is depicted in
Fig.4.1, we selected a group of 3 cells from each corner which later will have the
vital role of analyzing the light distribution in their respective locations.

Each of the 40 PV cells is capable of providing a voltage of 0.5V and a power
output of 0.3W. According to the formula in (4.1), the current value can be
effortlessly determined.

I = P / V (4.1)

When irradiated by sunlight, the associated current which traverses a solar

cell is I=0.6A. Shaded PV cells will drastically reduce energy production if they are
not effectively managed. Shading less than 3% of the solar panel surface may
reduce output efficiency by more than 15%, according to US National Renewable
Energy Laboratory [168]. The efficiency of a solar cell decreases with temperature
increase: 0.15-0.25% / 1° C for amorphous silicon, 0.35/1° C for monocrystalline
silicon and 0.5% / 1° C for polycrystalline silicon. The temperature of a
polycrystalline solar panel for instance, during summer, in plain areas reaches easily
50° C, resulting in a 12.5% reduction in power output compared to 25° C. This
reduction in efficiency is important; the conclusion is that high amounts of
sunlighting during summer does not produce the maximum current, except in cold
areas. We considered this research direction an opportunity to investigate how heat
generation from the sun rays can alter the efficiency of our solar cells.

Fig. 4.1. Electrical Connection Scheme for PV modules with the added bypass diodes.

With the help of an infrared thermometer and a multimeter, we measured

the voltage-temperature relation for monocrystalline solar cells and represented it
on the diagram in Fig.4.2.

BUPT

Position Optimization Method 80

Fig. 4.2. Heating Effect on Monocrystalline Solar Cells.

A number of 20 measurements have been carried over a sampling time t =

3 minutes to establish the average temperature of the solar panel for each data
point. Starting from an initial value of 11.75V at 38.5° C, considerable voltage drops
have been monitored until the temperature has reached a peak point of 56° C
where the multimeter has registered 10V. According to the degradation coefficient
of PV modules, the average efficiency loss is 10.85% for monocrystalline,
respectively 15.5% for polycrystalline cells. Due to rising temperatures resulting
directly from sunrays, overheating issues affect unavoidably the solar cells by
causing continuous voltage drops. Consequently, future investment in a hybrid PV
system given by the combination of a solar panel and a water-cooling mechanism
could prove favorable in enhancing the performance of PV cells by almost 50%
[169].

However, in the absence of any cooling solutions, shaded or defective cells
are circumvented by the current of illuminated solar cells. To avoid overheating
issues and ensure that PV modules operate reliably, bypass diodes, denoted with D2
earlier in Fig.4.1, can be supplemented. The function of this diode is to protect PV
cells if the light on the surface of a module is not uniform. On the other hand, the
blocking diodes, indicated with D1, are responsible for protecting each PV cell string
of reverse current from other PV cell strings located on the solar panel, usually
caused by shading on only one PV cells row. Bypass diodes are typically placed on
sub-strings of 20 PV cells. Since the PV cells are connected in series, power
differences cause also voltage differences. If the conduction of high current is
initiated by a shadowed cell, its voltage is actually negative. Instead of producing
energy, this solar cell will only consume it, thus becoming a reverse polarized diode
that dissipates power and which will cause itself to heat up. If the area, the
structure, and the environmental conditions do not allow proper heat dissipation, a
critical power point is reached called hot-spot, which interrupts the row of solar
cells. The exact point at which a PV cell becomes a consumer instead of being an
energy producer differs by types of cells and diodes. Despite successfully fulfilling
the PV cell protection function, bypass diodes are not effective in reducing
temperature increases in PV cells.

BUPT

POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 81

4.1.2. Performance Evaluation of Electrical Equipment

With reference to commercial solar panels, the key component that ensures

efficiency is the inverter that generates power compatible with the AC power grid. In
the case of solar panel networks, inverters are complex systems, which normally
have three functions: DC / DC conversion, DC / AC conversion, and Anti-Island
control. The inverter must be adjusted to the changing conditions in the solar cell
matrix. This is generally done using the MPPT algorithm, in other words, maintaining
the product voltage × the current at maximum values. Using MPPT, inverter circuits
can use the optimal combination of voltage and current, delivering power to a load
in an effective way. In this perspective, our new Cast-Shadow concept helps to
maintain the solar panel perpendicular to the Sun streams without using the MPPT
method.

The solar tracking device, as seen in Fig.4.3, is materialized from an Arduino
UNO board, two Stepper motors, a pair of specialized L298N circuits and an
Optocoupler, which will be further detailed in this section.

Fig. 4.3. Schematic Overview of the Solar Tracking System.

In order to achieve a low-cost solution, we aimed for the Arduino UNO, a

development board based on the architecture of the Atmega328 microcontroller.
Also, in order to design a mobile variant of a solar panel, we made use of 4 analog
inputs (A1-A4) for collecting sensor information from the solar cells, 8 digital
outputs (D4-D11) for commanding sequentially the Dual H-Bridges, 4 digital pins,
from which 2 of them (D2-D3) were assigned as inputs for the upper and lower
switch and the other pair (D12-D13) for a blocking circuit to reduce the power
consumption of the Stepper motors.

The Arduino microcontroller can be powered in two ways, either via a USB
connection from the computer or via a battery to which the positive terminal will be
connected to the Vin input and the minus terminal will be linked to the ground. The
board was designed to operate between 6V and 20V, but the recommended voltage

BUPT

Performance Evaluation of Electrical Equipment 82

range is between 7-12V. In our automation project, the Arduino UNO drains 350mA
during standby phases and 380mA while sending commands to the output circuits,
resulting in average power consumption of 0.15 Watt-hour (Wh)/day.

Stepper motors are brushless DC electric motors capable of divaricating a
360-degree rotation into a number of identical steps. In our work, we used a
unipolar EM-61 23LM-C352 stepper motor for horizontal operation and a bipolar
103G771-0240 stepper motor for executing vertical movements, recycled from old
printer models. The unipolar motor differs from the bipolar model by having a
common center tap per phase, which will be linked to the positive valence of the H-
Bridge circuit. In most cases, given one phase, the central tap for each winding has
the following arrangement: 3× phase-conductors and 6× conductors for a regular
two-phase stepper motor. These types of stepper motors offer a cheap solution for
precise angular movements. Bipolar stepper motors, on the other hand, have only
one winding per phase. Generally, Dual H-bridges are the circuits of choice to
change the current in the winding, which in turn reverts the magnetic pole causing
the stepper motor to move in one direction or another. Further technical information
for both stepper motors can be seen in Table 9.

In many of the studied related works, stepper motors are not the primary
engine of choice in order to move the solar panel in different directions. This is
mainly because other actuators such as DC motors can fulfill the same task for less
power consumption [170]. We followed this premise and carried out a series of
measurements on our stepper motors. In order to establish the current drain for
just one stepper motor, we disconnected the vertical motor from the solar panel
installation.

Table 9. Technical Data for Stepper Motors.

Parameter
Horizontal Stepper

Value
Vertical Stepper

Value

Nominal Voltage 4 V 1.53 V
Current Intensity 1.5 A 3 A

Resistance 3 Ω 1 Ω
No. of terminals 6 4

No. of steps/revolution 200 200

Weight 450 g 552 g

Angular resolution 1.8 ° 1.8 °

After careful measurements, we determined that a maximum value of 3A

was drained in the standby phase while the stepper motor is resting and keeps the
solar panel tightly fixed at the given position. At this point, we could only reduce the
supply voltage to 4V to obtain 2A while the stepper remained fully functional. The
average current of 1.5A is only visible during its duty cycle, therefore steppers
consume less current when they rotate the panel in a certain direction.
Consequently, the used stepper motors have a much higher power specification of
5W compared to DC motors with the 2.4W power rating, which results in an overall
efficiency decrease of the employed system. Despite this fact, we managed to cover
these disadvantages by improving both engine accuracy and energy consumption.

First of all, as can be seen in Fig.4.4, we constructed a gear train by fixing
gears on a frame so that the teeth of the wheels interact with each other.

BUPT

POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 83

Fig. 4.4. Mechanical System of PV Panel with enhanced Stepper Motors.

The mechanical advantage for a gear wheel is often defined as the ratio of

the number of driving gear teeth divided by the number of driven gear teeth (load).
That means the gear ratio known also as speed ratio is inversely proportional to the
pitch circle radius and the input gear’s number of teeth. In mathematical language
the formula can be written as in (4.2):

R = Nb / Na (4.2)

where Nb represents the number of teeth of the input cogwheel and Na signifies the
number of teeth from the output gear.

According to Table 9 seen earlier, both stepper motors have a standard
angular resolution of 1.8 degrees/step. We counted the number of teeth for the
larger and smaller-sized cogwheel and obtained Na=85, respectively Nb=21. By
using the above formula in (2), the resulted mechanical advantage was R=1/4,
which led us to an improved angular resolution of 1.8/4=0.45 degrees/step. In
respect to the vertical motor, by applying the same mathematical relation for the
values Na=85, Nb=25 we obtained R=1/3.4, thus resulting in a new angular
resolution of 1.8/3.4=0.52 degrees/step.

Secondly, our Stepper motors are improved to rest outside of their duty
cycle, hence remaining competitive in terms of reliability and power consumption.
Steppers are known for two major drawbacks: the lack of position feedback and
high energy drain during stationary periods. To compensate for these
disadvantages, as seen in Fig.4.4, we added four extra elements to the mechanical
structure of the solar panel: two switches (denoted with LS) and a pair of blocking
elements (denoted with B). The upper switch which engages with the vertical motor
has the role to restrict the elevation movements, while the lower switch restrains
the azimuth rotations of the horizontal motor. The lower switch also initiates the
rotating command of the solar panel in the original state it was in. From the electric
diagram presented earlier in Fig.4.3, we can see that the circuit is equipped with

BUPT

Performance Evaluation of Electrical Equipment 84

two resistors with a value of 1kΩ. If one of the two inputs (D2 and D3 from Fig.4.4)
activates one limiter, its value will change to HIGH (under-voltage) and thus will
stop one of the two-axis movements. If none of the limiters are validated, the two
inputs will have the value LOW, both being linked in this case to the ground point.

To initiate the braking on the toothed wheels of the stepper motors, a circuit
consisting of two resistors, two transistors, and two coils was used. While the 1kΩ
resistors are intended to limit the current to the transistors whenever a voltage is
applied, the electric junction opens, thus activating the coil which will release the
locking element on the cogwheel. In the opposite scenario, when the coil is not
under voltage, the stepper motor will be deactivated with the digital.Write() function
of the Arduino, which implements LOW values on all inputs of the Dual-H bridge
driver. In this manner, the stepper motor will maintain its current position due to
the blocking element feature and will not consume any power during the stationary
regime.
 The two stepper motors are driven by the L298N circuits by sequentially
commanding the diagonal of the two bridges. This type of circuit encompasses a
double bridge of transistors, of which a bridge feeds a motor winding and the other
bridge, the second winding. The Dual-H Bridge is provided with Schottky diode
outputs, designed to protect the IC from the auto-inductive voltages that can occur
at engine windings. The role of the onboard capacitors is for additional filtering of
voltages. When we measured the current draw from the L298N board, we obtained
400mA during standby phases and a maximum of 450mA while transmitting
impulses to the stepper motors. The overall power consumption of these
components is rated at 0.17Wh/day.
 Regarding the Optocoupler, the IC is called LTV 847 and has in its structure
a number of 4 Optocouplers, which in turn are made up of 2 components: a Light
Emitting Diode (LED) with the opening voltage of 1.2V and a phototransistor that
opens when it receives light from its corresponding LED. The role of the Optocoupler
is to galvanically isolate the input source from the output source. The collected
voltages from the 4 corner groups of PV cells don’t have a common connection
point, therefore we resorted to the Optocoupler. This is because we were able to
connect all 4 resistors of the phototransistors to the ground point of the PCB.
According to measurements, each of these 4 groups has a current consumption of
0.6mA. Therefore, the Optocoupler that is connected to the selected array of cells
shows a negligible power consumption, more exactly 0.95 mW, compared to the
total power discharged by the solar panel.
 The average current that is drained by the Optocoupler inputs is equal to
0.5mA as shown in Table 10, resulting in average power consumption of 0.02W,
while the outputs, which are rated at 2.2mA develop an average energy drain of
0.088W.

Table 10. Optocoupler – Arduino Pin Connections.

Crt. Nr.
Optocoupler - Arduino – Connections and Values

Inputs
Measured values

[V] Outputs
Measured values

[V]
1 A1-K1 0.567 A1 1.506
2 A2-K2 0.568 A2 1.332
3 A3-K3 0.561 A3 1.510
4 A4-K4 0.550 A4 1.384

To limit the current through the diodes, 1kΩ resistors have been mounted at

the input of the Optocoupler. In order to adjust the voltage values that are sent to

BUPT

POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 85

the analog inputs of the Arduino (A1-A4), variable resistors have been fixed in the
output circuit of the LTV 847.

In respect to the Fig.4.5, we can distinguish a high power drain range of
4.55 – 9.40W for active stepper motors during the entire day, and relatively low
power consumption, between 0.22 and 2.39W for inactive steppers.

Fig. 4.5. System Power Consumption of the Solar Tracking Device.

In other words, the solar tracking device consumes an average of 7.50

Wh/day with stepper motors under voltage and 0.98W while keeping the steppers
turned off between exact hour times. In this manner, we were able to decrease the
global power consumption of the portable solar panel by 86.93% per day. This
reduction in energy consumption was only possible by mounting an additional 2.4Ω
close to the Vin of the L298N Dual-H bridge and based on the careful observation
that the solar tracker only needs to update its position every hour per day. While
there may be gaps between the data points of the graph, usually electrical
components maintain a standby phase power consumption, as it is depicted in
Fig.4.6.

Fig. 4.6. Solar System Standby Power Consumption between Hour Times.

In this scenario, experiments have been carried out over an hour time with

a 5 minutes space between each measurement to demonstrate that deactivating
both stepper motors can drastically reduce the power consumption. In combination

BUPT

Algorithm Testing 86

with the braking method, steppers have to be programmed adequately to be under
voltage before the blocking element releases the cogwheel. This is an important
aspect of the approach because we avoid any risk of losing the current position of
the Stepper.

4.1.3. Algorithm Testing

The software code we developed on the Arduino platform eliminates the
requirement of sophisticated mathematical approaches presented in [92] where the
authors rely on geometrical formulas to calculate the theoretical altitude and
azimuth angles of the Sun’s position. A simplified model of the pseudocode which
was the basis for the implemented automation program can be visualized in Fig.4.7.

Fig. 4.7. Logical Flowchart for PV Panel Algorithm.

BUPT

POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 87

 In order to gain a better understanding of the working principle, each solar
cell group from the 4 corners will be designated as TR (Top Right), TL (Top Left), BR
(Bottom Right) and BL (Bottom Left) in linkage with their locations. We will also
consider the average voltages for each side as AVR (Average Voltage Right), AVL
(Average Voltage Left), AVT (Average Voltage Top) and AVD (Average Voltage
Down), while the total average value will be denoted as TAV.

 The solar tracker will generally have an initial eastward position before the
algorithm enters its normal routine. After the sun rises, incoming voltage values
received from the Optocoupler will be temporarily stored in newly declared variables
that require additional in-program calibration. At this point, with the support of
formulas from the math.h library of the Arduino IDE, average values will be
calculated for all sides of the solar panel. Although it is not mentioned, before the
algorithm checks each if condition to rotate the solar panel in the correct direction,
it usually verifies if the total average voltage of the 4 corners is equal or less than a
predefined number (for instance 8) and it also checks if the limit switches have the
required range. This process is repeated for both stepper motors and guarantees
that analog readings are always up-to-date. The direction in which the solar panel
moves is generally determined by the presence of shadow on one of the pairs of cell
groups. Whenever the algorithm detects a major difference between voltage
averages, it will rotate the panel towards the direction of the shaded area. At the
end of the day, when all voltages on the 4 corners become null, the solar tracker
will drive the engine horizontally to its initial position waiting for the Sun to rise
once again the next morning. However, altered values that may be delivered to the
Arduino microcontroller can modify the paths of the algorithm and by default disrupt
the orientation of the PV panel. In such circumstances, an error handling software is
the appropriate solution for preventing communication and calculation errors to
appear in the system.

A White-box testing strategy, which we developed in [18] counteracts the
intrusive behavior of these common types of software errors by injecting random
values that simulate gathered voltage readings from each group of 3 solar cells. The
designed testing algorithm implements different testing techniques to evaluate the
software functionality and features. Each part of the code will be tackled individually
and we attempt to show all the possible breakpoints as well as try to detect possible
fault errors using White-box testing techniques. The testing is based on the AUnit
[171] Arduino library which is a port of ArduinoUnit and Google Test programs.

The White-box testing routine will follow the program structure of the
algorithm under test as seen in Fig.4.8 and will implement a set of continuous tests
to check regularly on error handling errors. From this perspective, the algorithm will
require the user to choose the desired testing path. If the device is set in Field mode
we can read control data received from analog sensors. In the opposite case, Test
mode, we will only be able to receive control instructions from our Message Queuing
Telemetry Transport (MQTT) server [172]. This selection process is mainly
necessary in order to ensure that the data being used to control the stepper motors
is solely from one source. From here, the testing algorithm will fetch the incoming
injected inputs from an ESP8266 Wi-Fi module which sends data wirelessly, and
further proceeding with the calibration of the volatile entries. The first test that will
run in a continuous loop will verify each of the analog sensor readings in order to
make sure that they are within the specified range. Usually, large data packages,
which are a source of calculation errors, can be detected successfully by the test
program and isolated for further analysis.

BUPT

Algorithm Testing 88

Fig. 4.8. Logical Flowchart of Algorithm based on the White-box testing approach.

Although the values for the initial speed of the stepper motors are hard-

coded and there is little room for errors, in a setup where those values are selected
dynamically, they can cause an increased number of steps which leads to improper
displacement of the solar tracker. In some cases, serial communication may not
start fast enough. This will lead to data corruption and communication errors
whenever we are trying to receive or send data to the server. A continuous scan on
serial communication may warn the user if the connection to the server has failed.

There is also the possibility of declaring a long variable that holds the last
time we sent analog data to the server. We can use this variable to control the
frequency of data transmission to the server. Sending data continuously can lead to
over tasking while the server script that processed the received data can also cause

BUPT

POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 89

framing errors in the Serial Communication. In any other case, a last possible
breakpoint in the program is given by the function which receives data from the ESP
device. When using Serial Communication at higher speeds we have to run a test
that will ensure that the received values are valid integers and we can also check for
the length of the received data, since we are expecting a specific number of
characters from the ESP.

4.1.4. Experimental Results Regarding Position Optimization

The efficiency of solar energy conversion is the percentage of solar energy
that is converted into electricity. This is calculated by the ratio between the
maximum power (Pm - Maximum Power in W) at the outlet and the input light (E, in
W / m2) and the solar cell surface (Ac, in m2) as seen in formula (4.3):

E = Pm / (E × Ac) (4.3)

By convention, the efficiency of a solar cell is measured under standard test
conditions (STC), i.e. at a temperature of 25 ° C and an irradiance of 1000W / m2
with an air mass AM 1.5 spectra [173], which defines the solar radiation that
traversed the atmosphere. These conditions correspond to a sunny day with sunlight
on a 37 ° inclined surface facing the sun and when the sun is at an angle of 41.81 °
above the horizon. This is equivalent to sunlight at noon close to spring and autumn
equinoxes in the continental area of the United States [174], with the surface of the
cell directly targeted by the sun. Under these test conditions, a solar cell with an
efficiency of 20% and a surface area of 100 cm2 (0.01 m2) would produce a power
of 2W.

While our measurements for power consumption were made in August 2018
and the power generation of the solar panel was overlapping between 12:00 PM and
15:00 PM, in order to save energy, we decided to temporarily switch-off the solar
tracking device. However, September 2018 was the auspicious month for us
because air temperature would drop down to 25-28° C and solar irradiance would be
much closer to standard values. Measurements were focused mainly on voltage,
current, and power monitoring during a full-day cycle, with a clear atmosphere and
an average temperature of 27° C.

The last 6 columns from Table 11 illustrate the voltage and current values
registered by the multifunction tester in the following order: VSP (Voltage Static
Panel), VAP (Voltage Automated Panel), VSPC (Voltage Static Panel with Consumer),
VAPC (Voltage Automated Panel with Consumer), CSP (Current Static Panel with
consumer) and CAP (Current Automated Panel with consumer).
 The columns regarding VSP and VAP from the Table 11 are not pertinent for
the efficiency of the solar tracking device as the average open-circuit voltage
increase is located between 8.5% - 9% or above, depending on the environmental
conditions. However, after we mounted a 10Ω resistor in the output circuit to serve
as an energy consumer we could determine the following parameters: VSPC, VAPC,
CSP, and CAP.
 According to the collected values, the solar panel generated an average of
5.35 Wh/day in a static position and 8.22 Wh/day while it was tracking the Sun’s
trajectory resulting in a 53.64% power increase/day. To demonstrate the relevance
of our experimental research we continued the measurements for another 6 days to
reach a full week.

BUPT

Experimental Results Regarding Position Optimization 90

Table 11. Voltage and Current Monitoring for Static and Automated PV Panel.

Time
(Hour)

VSP
[V]

VAP
[V]

VSPC
[V]

VAPC
[V]

CSP
[A]

CAP
[A]

8:00 9.30 11.50 2.00 7.20 0.130 0.835

9:00 10.80 11.60 4.74 8.58 0.497 0.998

10:00 11.12 11.80 6.12 9.15 0.785 1.107

11:00 11.15 11.77 8.35 9.80 0.940 1.090

12:00 11.33 11.70 9.05 9.23 1.065 1.190
13:00 11.46 11.75 8.82 9.31 1.076 1.190
14:00 11.40 11.68 8.63 9.10 0.880 0.918

15:00 11.15 11.45 8.31 9.00 0.830 0.910

16:00 10.67 11.38 8.23 8.70 0.780 0.890

17:00 10.54 11.10 6.60 8.10 0.650 0.830

18:00 10.20 10.84 5.27 7.38 0.580 0.740
19:00 7.35 10.10 4.30 6.95 0.360 0.680

 As can be seen in Table 12, the third day was the most productive in terms
of generating voltage, current, and power for our energy production. We mention
that the Power of the Static panel with Consumer (PSC) and the Power of the
Automated panel with Consumer (PAC) were subsequently calculated.

Table 12. Voltage, Current and Power Monitoring for Static and Automated PV Panel (over one

week).
Test
Schedule

VSPC
[V]

VAPC
[V]

CSP
[A]

CAP
[A]

PSC
[W]

PAC
[W]

Day 1 5.93 7.97 0.561 0.746 3.32 5.94
Day 2 6.41 8.70 0.578 0.824 3.70 7.16
Day 3 6.70 8.54 0.714 0.948 4.78 8.09
Day 4 6.63 8.55 0.649 0.875 4.30 7.48
Day 5 4.66 7.72 0.479 0.834 2.32 6.43
Day 6 4.26 7.88 0.493 0.845 2.10 6.65
Day 7 4.45 7.55 0.552 0.895 2.45 6.75

 With reference to Fig.4.9, the performance gain of our solar tracking

solution covers voltage, with an average of 45.77%, current, with a mean value of
48.21% and lastly 53.62% more power generation compared to the fixed-tilted
solar panel during one week period.

A summarized analysis regarding system power consumption and energy
gains of our proposed dual-axis solar tracking device based on Cast-Shadow
principle versus state-of-the-art automated PV panels is illustrated in Table 13. We
present a comparison with other related works regarding the Wh/day consumption
before (red color) and after (orange color) optimization as well as the daily and
monthly energy improvements given by current (blue color), voltage (violet color)
and power (green color). According to the experimental data from Table 13, our
proposed solar tracking solution based on the Cast-Shadow principle outperforms
the works in [92-95, 170, 175, 176, 178] with regard to the power increase, the
work in [91] regarding the overall voltage increase as well as the work in [90] for all
targeted energy areas.

BUPT

POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 91

Fig. 4.9. Voltage, Current and Power Gain of Automated Panel (red color) over Static Variant

(blue color).

Additionally, it is important to mention that our solution outperforms also
the work in [177] regarding power gains for the dual-axis implementation, but due
to the multidirectional approach, their solution is more efficient.

Table 13. Energy Gain Analysis for Solar Tracking Devices.

Crt.
No.

System
Components

System Power
Consumption

(Wh/day) per Day
[D]

System Energy Gains (%) per Day
[D] and Month [M]

Curre
nt

Volta
ge Power

[17]

Arduino UNO
+ Optocoupler

+ L298N +
Steppers

(Unipolar+Bip
olar)

Before
Optimizati

on

After
Optimi
zation 48,21

[D]
45,77
[D] 53,62 [D]

9 [D] 2 [D]

[92]

PC + Central
Processing
Module +
Sensor

Modules +
Motor Driver

circuits

Normal
Tracking

Daily
Adjust
ment

Not specified

Normal
Tracking

Daily
Adjust
ment

<= 52,8
[D]

<= 1,2
[D]

>= 23,6
[D]

>= 31,8
[D]

[94]

Arduino UNO
+ LDR’s +

Motor Drivers
+ Servo
Motors

Not specified

53,35
[D]

Not
specif
ied

52,69 [D]

[170]

Arduino UNO
Microcontrolle

r +
Servomotors

+ LDR’s

Not specified 13,44 [D]

[91]

Arduino UNO
+

Servomotors
+ LDR’s + SD

card +
Battery

Not
specif
ied

36,30
[D]

Not specified

[93]

Atmega328P
+ LDR’s +

Servomotors
+ Panel
Carrier

Not specified 42,81 [D]

BUPT

Experimental Results Regarding Position Optimization 92

[90]
Arduino UNO
+ LDR’s + DC

motors

16,59
[D]

40,66
[D]

35 [D]

[95]

MC68HC11A8
+ INA168 +

OPTO-DIAC +
AMIS -30543
Motor Drivers
+ NEMA 23
Steppers

Spring 33,6 [M]
Summer 43,6 [M]
Autumn 38,3 [M]

Winter 28,8 [M]

[175]

MATLAB
Simulation of
Solar Tracking
Design Model

Not specified

33,37 % [D]

[176]

Solar Panel +
LDR Sensors
+ DC motors
+ H-Bridges
+ Regulator

~ 4,07 [D] >= 24,78 % [D]

[177]

Sensor Matrix
Array + Dual
Comparator +

Inverter +
Microcontrolle

r + Driver
Circuit +
Stepper
Motors +

Monocrystallin
e Solar cells

Not specified

Dual
Axis
Solar

Tracker

32,34 %
[D]

Multidire
ctional
Solar

Tracker

63,96 %
[D]

[178]

Klipp & Zonen
Pyrheliometer
+ NI My RIO

+ MEMS dual-
axis tilt

sensor + DC
motor Driver

+ Linear
motors for

altitude and
azimuth

28 % [D]

A more critical discussion between the works is difficult to achieve due to

the following facts: a) each solar tracker is unique in regards to the system
components that can be mechanical parts (cogwheels dimensions, gearbox
arrangement) which influence the precision of the device, as well as electrical
components (ranging from microcontrollers, FPGA’s, ASICS to more complex
systems such as CPU architectures) that determine the accuracy and speed of the
implemented algorithms; b) many of the recent works primarily focus on the energy
efficiency without mentioning the power consumption of the implemented devices.
The effect of tracking on the PV performance can be measured by analyzing the
energy produced by the fixed and automated panel as well as the energy
consumption necessary for the tracking; c) the tracking strategies do not hold the
highest impact over power generation. A more critical factor is the quality of the
used PV cells, as certain categories are rated to provide more energy efficiency. In

BUPT

POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 93

our case, we focused on constructing a low-cost solar tracking device. Future
investment in a more professional equipment may lead to even greater
performance.

4.2. Software and Hardware Testing of a Dual-Axis
Solar Tracking Device

Having described the construction of the dual-axis solar tracking
equipment, this subchapter focuses on presenting software and hardware
testing methods applied to it. Despite there being, to the best of our knowledge,
no software or hardware testing methods applied to a solar tracking equipment
before in the literature, the detection of possible software or hardware errors
present during its operation was very important because: a) we later use the dual-
axis solar tracker in order to power a real-time DL-based system, as will be detailed
later in the next subchapter of this Ph.D. thesis and b) we anticipate an increase in
the availability as well as in the importance of the solar tracking equipments (e.g.
when powering DL-based systems).

4.2.1. White-Box Testing Applied to our Dual-Axis Solar
Tracker

With entry into the digital age, the need to use software testing strategies
for devices from the renewable energy field has become equally important as
hardware testing facilities. In order to obtain maximum coverage of possible
occurring defects, it is required to evaluate the functionality of the software code
that runs on a digital device. As mentioned earlier, solar tracking devices are
programmed PV panels which are able to direct the payload towards the Sun for
optimal solar radiation exposure and automated PV panels appear in two forms:
single-axis and dual-axis solar tracking devices [179], the second form being more
advantageous from the accuracy point of view. However, the complexity of the
algorithm which commands the direction of the Sun tracking device grants accesses
to intrusive errors that can hinder maximum solar energy gathering, thus affecting
the overall efficiency of the solar installation. Therefore, software-testing strategies
are a feasible and low-cost solution to this problem, allowing the programmer to
design test cases for the written code and verify it’s functionality in more critical
scenarios. Testing of software and hardware solutions are in high demand, as the
need for highly secure applications and systems is increasing. Being the most
challenging and dominating activity in the industry, the purpose of testing is to
provide quality assurance, verification, and validation, in order to ensure software
quality. White-box testing [180], [181], contrary to the Black-box testing which
relies on testing from an external or end-user type perspective, involves the testing
of internal coding and infrastructure of a software application by focusing mainly on
strengthening the security and the flow of inputs and outputs through it, resulting in
an improved design and usability of the AUT. White-box testing requires the tester
to have very good knowledge of the programming language in which the AUT was
written on as well as knowledge of how the system is implemented. This helps in
minimizing the costs by reducing testing time and also to minimize the errors.

BUPT

White-Box Testing Applied to our Dual-Axis Solar Tracker 94

Our White-box testing strategy covers multiple types of errors that can
occur on the control board, which is implemented using an Arduino Uno, as well as
to the components around it. Here, we can distinguish four main aspects of the
testing phases: first, we are injecting virtual random integer values to capture
analog faults of the solar tracking equipment; secondly, we are gaining direct
control of the stepper motors to receive feedback analog readings from each of
them; third, we are using the White-box testing strategy to verify the internal
structure of the ATmega328 microcontroller on the Arduino UNO, with regard to
memory errors and buffer overflows. As it is depicted in Fig.4.10, the secondary
microcontroller, which is called ESP8266, serves as a middleman between the
Arduino Uno platform and the Cloud setup because the DUT lacks inbuilt Wi-Fi
capabilities.

Fig. 4.10. Overview of our Implemented System and White-Box Testing Equipment for a Solar

Tracker Device.

The Cloud Server implementation is based on a MQTT [172] broker, which
together with the Node-RED [182] interface, is able to test the input and output
values flow. We are applying White-box testing in order to analyze the program
structure and attempt to find any bugs or programming errors. Some of the
common errors encountered during software programming of our solar tracking
device include functionality errors, communication faults, syntax errors, error
handling defects, control flow errors, and calculation errors. In this direction, we
minimized the use of buffers and arrays and instead opted to use individual objects
to reduce memory fragmentation and avoid buffer overflow errors. We have also
minimized the use of strings, which are notorious [183] for bad memory
management on the Arduino platform. The Arduino bootloader checks the firmware
while it is being uploaded using checksums for each data segment uploaded, thus
eliminating or minimizing the possibility of flash errors. Flash errors are detected
while uploading and as a result, the user is prompted to attempt the upload process
again. We have also implemented a functionality that enables the Arduino
microcontroller to report live analog values from the solar PV cells to the MQTT
broker. This data gives the user real-time feedback on the results regarding the
movement of the stepper motors and it can be gathered by the end-user for storage
visualization or further analysis.

BUPT

POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 95

4.2.2. White-Box Testing System Overview

Regarding the hardware implementation on which White-Box testing is
applied, the main control board for the project is the Arduino Uno, which controls
the position of the solar panel using stepper motors. It reads analog voltage values
from the solar panel and is able to detect which direction the Sun is moving in by
calculating the corner of the solar panel that is producing the highest amount of
electricity. This system works autonomously, but, in order to test all the possible
conditions, we had to implement another system because we could not test the
device effectively using only the Sun's movement which is very slow and does not
vary enough over short periods of time. For this, we introduced a secondary
microcontroller called NodeMCU ESP 12, which imitates the sensor values read from
the solar panel. Using the NodeMCU ESP 12, we can vary the sensor values within a
given range and observe the movement of the solar tracking device. This
microcontroller is linked to a web interface and an app, from which, simulated
sensor values can be easily sent, enabling us to achieve fast development and test
cycles. NodeMCU ESP 12 is a well-known Wi-Fi enabled microcontroller. Its main
function is to serve as a middleman between the Arduino Uno and the Internet
because the Arduino Uno lacks inbuilt Wi-Fi capabilities. We have chosen NodeMCU
ESP 12 because it is readily available and also compatible with our already existing
Arduino microcontroller (ideally it can act as both the main and secondary
microcontroller, eliminating the need for the Arduino Uno in future iterations of this
work). Data and control in our setup flows from the user (Web Interface/App) to the
Secondary microcontroller using the MQTT protocol [172]. The NodeMCU ESP 12
receives data from the web interface through the MQTT, processes this data and
sends it to the Arduino for execution. It communicates with the Arduino over serial
communication and a Universal Asynchronous Receiver Transmitter (UART), which is
a convenient choice for short distances and high-speed communications.

MQTT is a machine-to-machine (M2M)/“IoT” lightweight transport protocol
that is using the network bandwidth in an efficient way (with a 2 byte fixed header),
assuring the delivery of the message from the nodes to the server. It was
introduced by IBM in the year 1999 and recently standardized by the Organization
for the Advancement of Structured Information Standards (OASIS) [184]. Because
it is a message-oriented information exchange protocol based on publish/subscribe,
the connections usually involve two types of agents: an MQTT client and an MQTT
server, also known as a public broker. An MQTT client is considered to be any device
(e.g. sensors, mobiles) that exchange application messages through the MQTT and
can be either publisher (publishes application messages) or subscriber (requests for
the application messages), both of them being isolated (they do not have to be
aware of each other's existence or application). The public broker (Server), being a
device or program that interconnects the MQTT clients, it accepts and transmits this
application messages between them, being responsible for collecting and organizing
the data. MQTT is designed with all complexities in mind to simplify a client’s
implementation.

For the web interface, we have implemented the Node-RED [182] IoT
platform, which is specially tailored towards IoT and embedded systems
applications. It is built on Node.js and has support for integrating numerous
hardware devices, APIs and online services. We chose Node-RED because it has
inbuilt support for our MQTT protocol, it is lightweight and easy to implement and

BUPT

Wireless-Based Software Technique 96

because it provides a convenient data flow editor. The Node-RED Flow is configured
to send MQTT messages to our NodeMCU ESP 12 on a specified topic. The values to
be sent are controlled by sliders, as can be seen in Fig.4.11. It has also been
configured to receive a confirmation message from the NodeMCU ESP 12 once the
command has been executed.

The mobile application was developed using Ionic Framework, which is a
framework that enables hybrid app development, meaning one can build apps for
Android, iOS and Windows devices using the same code platform. Our app is a
wrapper around the Node-RED and acts as a browser, providing us access to the
Node-RED Dashboard. We developed our mobile application in two versions: an iOS
app as well as an Android app.

Fig. 4.11. GUI for controlling our Solar Panel.

A pivotal part of the project is the Cloud Server, which has a variety of

functions. It functions as the MQTT broker, which means it handles the
communication between different clients on the MQTT network and it also acts as
the host for our Node-RED flow (we start the MQTT broker, followed by the import
of the MQTT flows). The MQTT server was configured by installing Mosquitto, an
open-source message broker for MQTT that uses a publish and subscribe model in
order to be able to test the input and output values flow. Important to notice here is
that Node-RED has both publish (mqtt out) and subscribe (mqtt in) nodes. Arduino
IDE, a C++ type language, is used to program the nodes.

4.2.3. Wireless-Based Software Technique

In this section, we focus on the logical diagram description derived from the
White-box software code and the testing environment, which represents the
interaction between the Cloud Server Layer and Software Layer, illustrated in
Fig.4.12. The White-box testing algorithm includes the main program functions as
well as custom implemented testing functions.

BUPT

POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 97

Regarding the main program functions, our WBST approach is making use of
the Node-RED interface, which can be seen as a group of nodes through which data
flows. These nodes can modify, display or send data depending on their type.

Fig. 4.12. The flow of Data and Control.

The first 4 nodes in Fig.4.13, Left-Top (LT) Sensor, Right-Top (RT)

Sensor, Left-Down (LD) Sensor, and Right-Down (RD) Sensor are input
nodes. They are sliders that allow the user to input the value to be sent to the
microcontroller in order to test the cases in which the solar tracking device might
engage in a failure.

Fig. 4.13. Group of Nodes in the Node-RED Interface for our Solar Tracking Device.

The function nodes func1, func2, func3, and func4 are functions that set

input values to the global variables that are sent to the microcontroller. Normally,
these variables are collected voltage values from the solar cells which are further

BUPT

Wireless-Based Software Technique 98

processed on the Arduino UNO board. The gather function collects all the inputs
from the 4 global variables that were set by the 4 input sliders and combines them
into a single string that will be published to the MQTT broker.

The topic to which it publishes is “To-7344478”. This string is derived from
the Unique identification number of the NodeMCU ESP 12, which is shown as
“7344478”. There exists another communication node called “From-7344478”
which shows the connection status of the ESP8266 Wi-Fi module. The “Sensor
Data:” shows values from the LT, RT, LD and RD positions. The “Use random
values” node is relevant for realizing the experimental results because it provides
the option to insert input data either manually or automatically.
 The control flow of the White-box testing strategy is presented in Fig.4.14.

Fig. 4.14. White-Box Testing Strategy Execution Flow.

 The test strategy starts with a test environment initialization phase. Here,
we included the necessary libraries that provide useful functions and APIs that are
needed for our application. The Variables Allocation block is responsible for
specifying the password and name of our Wi-Fi connection. Another important
aspect is the IP address allocation constant, which has a stable value. Prior to
upgrading to a Cloud-based server solution, the field of the IP address required
constant rewriting in the software code of the ESP8266 board and the Node-RED
interface, each time we attempted to create experimental testing cases for the solar
tracking device. Also, important to mention is that in this step, we specify the
address of the MQTT broker. In our case, this will be our server, which acts as the
MQTT broker. The next block underneath the Variables Allocation specifies the topic
for MQTT communication. On an MQTT network, topics are used to decide who
receives a message. When a client is sending a message, it specifies the topic on
the broker to which that message will be published. When this message is published
successfully on the broker, only clients that are subscribed to that message will be
able to get the message. Our server has already been configured to listen to the
messages published by NodeMCU ESP 12.

BUPT

POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 99

 The last block of the Testing environment initialization specifies the serial
communication details. On the Arduino platform, any 2 pins can be configured to be
used for Universal Synchronous/Asynchronous Receiver Transmitter (USART)
communication. In our application, we have specified D5 and D6 to be used as serial
communication pins. As a general observation, on the Arduino platform, the setup
function is used for all the one-time initialization that needs to be made at the start
of our code like Pin configurations, Serial communication baud rate, Wi-Fi
Initialization, etc. The next block in the logical diagram designates a cyclical
instruction set, in other words, a programming structure that repeats itself
periodically. The considered block launches our serial communication at a baud rate
of 9600. The first serial communication (serial) is used to print debug messages to
the Arduino serial terminal. The second serial communication channel is used for
data exchange with the NodeMCU ESP 12. From here we are able to call a function
that configures our Wi-Fi. It provides the Wi-Fi Service Set Identifier (SSID) and
password to the chip so that it can connect to the specified Wi-Fi network. The
second block from the Starting Serial Communication also calls a function that
initializes the MQTT protocol by specifying the address of the broker, the topics to
subscribe to as well as the callback function that should be called when a message is
received from the MQTT broker.

The most important step in our software testing technique is enabling the
main loop function of the Arduino platform. The void loop function on the Arduino
Uno is the infinite loop which, keeps running as long as there is power. In the loop,
first, we check if our MQTT connection still exists. One example is the situation when
the connection to the broker is dropped because of network issues or the client may
have been rejected by the broker. If our connection still exists, we continue with the
current process, otherwise, we try to reconnect to the broker. This cyclical structure
contains two more entities, described as follows: a) an MQTT Broker Status
Verification which implements a small function in order to publish a message
periodically to the broker, informing the broker of its state. This enables us to know
if our commands sent from the Server were relayed to the Arduino successfully; b)
an MQTT Feedback Client Implementation (client loop), which waits for the
messages from the broker and passes received messages to our application.

We use MQTT_Connect to connect or reconnect to the MQTT broker. At the
very beginning of the MQTT_Connect function, we specify the address of the MQTT
broker and the port to be used for the connection. In this area, we also specify the
MQTT callback function, which is the function that we want to call every time we
receive a message from the broker. In our application, we want to forward every
message we receive from the broker to the Arduino through serial communication.
This callback function will, therefore, count the number of attempts to connect to
the broker.

Lastly, the logical diagram ends with the MQTT Callback Function
Implementation, which basically parses the data received from the broker into
integers and then calls a function UNO_Send() to transmit this data to the Arduino
over serial communication, together with publishing an acknowledgment message to
the broker. The received values on the Arduino Uno are therefore injected in the
device and processed in order to determine the respective outputs of the platform.
Reaching this point, the service routine will exit the flow execution process.

Regarding the testing functions, White-box testing is very efficient in finding
hidden errors and optimizing code base, but one disadvantage is that it does not
help us find unimplemented or missing issues. White-box testing can be used in Unit
testing [171], Integration testing and Regression testing. Some important types of

BUPT

Wireless-Based Software Technique 100

White-box testing include Control Flow Testing, Branch Testing, Data Flow Testing,
Basis Path Testing and Loop Testing [185].

As mentioned earlier, we are applying White-box testing to analyze the
program structure and attempt to find any bugs or programming errors. Some of
the common errors encountered during software programming include Functionality
errors, Communication errors, Syntax errors, Error Handling errors, Control Flow
and Calculation errors. We will not be exploring Syntax errors because we are
working with a compiled language (C++) and the programmer was informed of all
the Syntax errors at compile time. We will pay more attention to Communication,
Control Flow and Error Handling errors.

Communication errors are a type of errors that occur in communication
between software and end-user as well as within the software. We will give
particular attention to Communication errors within the software because we have 2
communication links: the first is between the Server and secondary microcontroller
(MQTT over TCP/IP), and the second is between the primary microcontroller
(Arduino Uno) and the secondary microcontroller (ESP8266). Error handling defects
arise when there is no proper structure in place to handle unexpected values or
actions in the program which could lead to hardware faults, circuit noise, etc.

Control Flow in a software decides what it will execute next or what action it
will take under certain conditions. Errors in Control Flow can lead to a buffer
overflow, unpredictable system states and a host of other problems. In our
firmware, we have identified the possible error points in the system using our
internal knowledge of the firmware structure and tested it using a unit testing
library for the Arduino platform called AUnit [171]. AUnit is a unit testing framework
that draws inspiration from the Google Test and Arduino Unit APIs. The following
presentation represents a brief description of the implementation of the testing
techniques on the ESP8266 firmware, which acts as a middleman between the
Arduino Uno and the MQTT server: the first test verifies that the SSID, password
and server addresses provided are valid. This test checks if the values are in the
alphanumeric range. A wrong SSID, password, or MQTT server address by the user
will lead to connection failure as the device will not be able to connect to the Wi-Fi
or to the MQTT broker address.

Another possible error point which we have tested is the MQTT Topic array.
This is the topic to which the MQTT client subscribes in order to receive messages
from the MQTT broker. This topic is unique for each instance of the device,
therefore, we have to generate them dynamically using the unique identification
number of the microcontroller. We read this unique identification number and use it
to generate a string which is then the topic of our incoming message; if there is an
error in this topic, we will not be able to receive any incoming messages from the
broker and our device will fail. Therefore knowing the expected length of the unique
identification number, we run a test that will ensure that the topic of the incoming
message is not longer than this length and that all the characters have
alphanumeric value. The most error-prone part here, are the incoming data values.
These are the values that are received from the MQTT broker and forwarded to the
Arduino Uno. The values could be corrupted as a result of communication errors or
unexpected user input. If we successfully forward a wrong value from the Arduino
Uno, this can lead to unexpected or random behavior of the stepper motors.
Therefore, we test to make sure that the values received are within a specified
range. It is not uncommon for internet communication to drop unexpectedly, or for
MQTT clients to disconnect from the broker. In a situation like this, the device needs
to be able to detect that the connection has been lost and attempt to reconnect. In

BUPT

POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 101

this case, we implement a control flow test to check the MQTT connection and
attempt to reconnect if the connection has been lost. Different routers allow
connections at different speeds, some take a longer time to authenticate before
internet access is allowed and therefore it is necessary to test that the device has
been successfully connected to the router before we proceed with execution of the
program. Failure to do this will lead to data loss as the device may attempt to send
data when a connection has not been established.

Additionally, the main test on the firmware for the Arduino Uno code is to
ensure that the data received via serial connection is valid. Serial communication is
prone to different types of errors, especially at high speeds (e.g. 115200 baud rate).
If we fail to verify the integrity of the received data, we may feed wrong values to
the stepper motor controls, which can lead to unpredictable or unintended
movements. Since these are unsigned analog values, our main test is to ensure that
they are not above 1024. For a more safety-critical system, we can apply
checksums to further validate the integrity of the firmware.

4.2.4. Experimental Setup and Results for White-Box Testing

In this section, we will present the experimental results regarding the basic
movements of the solar tracker as well as the coverage percentage of a certain
category of memory errors. Our testing equipment, which is depicted in Fig.4.10,
can be divided into two major parts: a) the infrastructure composed of physical
components such as the Arduino Uno, Dual H-Bridges circuits, stepper motors and
the solar panel; b) the abstract layer, given by the software testing code and cloud
server setup which were developed on the workstation platform and the specialized
network development board.

With regard to the basic movements of the solar tracker, we continue with
the description of the Cloud Server setup to finally shape the testing environment of
the proposed method. By isolating the Arduino Uno from the rest of the
components, we can construct a low-cost solution in order to collect the output
signals from the board. Our method strategy relies on the mounting of LEDs at each
digital output of the Arduino device. Pulse Width Modulation (PWM) signals usually
translate themselves in HIGH and LOW digital values (1’s and 0’s). However, this
testing artifice depends heavily on the observability factor of the test engineer,
therefore it is more convenient resorting on a professional device such as an
Oscilloscope to ease the signal gathering process. In this direction, we used a
Hantek6022BE PC-Oscilloscope. The only necessary requirement before beginning
with the actual experiments was the initial calibration of the two probes which came
equipped with a clipper. The experimental results presented in Table 14 are showing
the injected random unassigned integer values from the Cloud Server which are
further processed in the software code of the Arduino board.

Table 14. Input values flow obtained from simulating environmental solar changes induced by

artificial light.

Crt. Nr.
Manually Injected Random

Integer Values Oscilloscope Connections

A1 A2 A3 A4 Out1 Out2 Out3 Out4
1 1564 987 1703 983 Clipper Probe Clipper Probe
2 756 1588 984 2157 Clipper Probe Clipper Probe
3 1570 1574 984 986 Probe Clipper Probe Clipper
4 980 988 1588 2170 Clipper Probe Clipper Probe

BUPT

Experimental Setup and Results for White-Box Testing 102

This is resulting in sequential commands received by the motor drivers in

order to control the horizontal and vertical motor, in one direction or another. While
many of these output values proved to be similar for each motor driver, we decided
to reduce the number of possible scenarios to 6 test cases.

 The first test case involves injecting only one high value to a random
corner of the solar panel. The following values are collected from the solar tracking
device while it was tested during cloudy weather with normal light distribution. The
injected random unassigned integer values are adjusted accordantly to fit these
real-life scenarios. The inputs of the Optocoupler device require additional
calibration in order to obtain almost similar voltages (inputs of the Arduino board
can be seen in [186]). As seen in Table 14, the A1, A2, A3, and A4 represent the
injected random unassigned integer values in the system to test the behavior of the
solar tracker, thus the movement of the solar panel only begins at a value not lower
than 100, meaning that the average difference between the corners should be
approximately 50. Because the Oscilloscope only offered two channels for signal
viewing, we had to split the testing into multiple subcases given by the manner in
which we connected the probes to the outputs of the motor drivers. Both motor
drivers in Fig.4.10 are identical L298N circuits like the ones from our previous work
described earlier [17]. Regarding the stepper motors, there is one considerable
difference involving the horizontal motor having a median point in its windings. Each
pair of outputs Out1, Out2, respectively Out3 and Out4 are separated into two coils.
This is why, in the Output Configuration, we connected each probe at one winding to
receive the digital signals, and the two Clippers were linked to the same median
point (positive value) of the coil.

There are multiple methods of driving a stepper motor. To elaborate, we can
assume that each coil is activated once at a time. However, if we overlap coil
activation, we can get a more finely tuned step. So if we have 1 activated, then 1
and 2 activated, then 2 activated, we can see that the internal gear will have a step
to the left direction between coil 1 and coil 2. This is shown in Fig.4.15.

Fig. 4.15. Solar Panel Left and Right Rotation generated by pairing terminals from both

windings.

Because the exact test scenario can be obtained by injecting a certain value
for the bottom left corner, we will move on to the next test case. The second test
case implies injecting only one value for the Right Top Sensor to demonstrate the

BUPT

POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 103

rotation to the left of the solar panel. The third test case combines two injected
values and proves that no matter how many values we add to the first test scenario,
the rotation will still remain in the right direction. The fourth test case implies
inserting specific voltage values to the opposite side of the solar panel, in order to
verify its rotation action. With the first four test scenarios completed, we finished
the entire testing phase of the horizontal motor. The next two test cases are
dedicated to the vertical motor, which is also worthy to mention that when
compared to the horizontal stepper it doesn’t contain a common wire in each coil. In
Fig.4.16, we can observe a short phase delay between the two collected signals,
thus, this can be understood, since the vertical motor uses fewer steps for lowering
the solar panel down.

Fig. 4.16. Solar Panel Left and Right Rotation generated by pairing terminals from both

windings.

The resulted measurements show an inverted state of the second signal
compared to the previous case thus translating these impulses in a lifting operation
of the solar panel.

Control Flow errors are related to In Topic and Out Topic values, as seen in
Fig. 4.14. The Control Flow errors can be detected by using the assertion function of
the AUnit library [171] which is applied to the input strings that enter the Arduino
board. Usually, whenever there is a large data package exceeding 10 characters, the
test program will capture the altered string along with the program structure.
Calculation Errors may occur in real-time scenarios when negative voltages arise at
the analog inputs of the solar tracking device. Our WBST solves this issue by
implementing three assertion functions for testing if the input sensor string is a
value that fits in the required range from 0 to 1024. At whatever time, a series of
input data is outside of the specified range, the test program will detect the altered
information on the serial monitor. To avoid the intrusion of voltages with inverted
polarity, it is important to additionally check if the input string is an unsigned
integer number. Error handling faults generally arise from large data packages
exceeding a reference value of 10.000.
 If three of these data packets are detected, they will be captured by the test
program. To demonstrate the efficiency of the presented White-box testing strategy,
we resorted to 4 batches of test cases, as can be seen in Table 15.

Table 15. Coverage and Speed of Execution for our WBST.
Test Cases Detected Entries

Cover
age
[%]

Runti
me

Execu
tion
[m]

Name
Total
Num
ber

Control
Flow

Errors

Commun
ication
Errors

Calculation
Errors

Error
Handling

Faults

Batch
1

2277 395 2 568 736 74.70 240

Batch
2 1087 175 1 242 299 65.96 131

BUPT

Online Built-In Self-Test Architecture for Automated Testing of a Solar Tracking
Equipment

104

Batch
3

840 118 1 166 214 59.40 110

Batch
4 130 78 0 2 42 93.84 17

For these test cases, in order to trigger possible errors/faults, large amounts

of input data were injected in an automated manner. For the first batch consisting of
2.277 test cases, we achieved a fault coverage of 17.35% for Control Flow errors,
24.95% coverage for Calculation errors and 32.32% for Error handling faults; this
resulted in a total coverage percentage of 74.62% for all the considered error types.
Important to notice here is the improved coverage we were able to achieve (i.e.
93.84%) for a much smaller number of test cases (i.e. 130) in batch 4, which
resulted in a reduced total runtime execution for the considered tests. The average
speed of execution per test cycle was estimated between 4 and 5 seconds. It is
important to mention here that Batch 2 contained 174 error-free data entries while
Batch 3 included 137 data packages without faults. As expected, Communication
errors were rarely encountered due to the robust implementation of the proposed
WBST.

4.2.5. Online Built-In Self-Test Architecture for Automated
Testing of a Solar Tracking Equipment

Typically, a dual-axis solar tracker is composed of many electronic and
mechanical components such as simple IC, e.g. L298N, and complex ICs, such as
Microcontroller Units (MCUs), e.g. Arduino UNO, as well as DC-motors and Stepper
motors. These components, especially the electronic ones, are prone to errors
during their operation due to the fact that usually, they are functioning under
unfavorable weather conditions which may cause them to malfunction. By
comparison, this is not the case for software related errors found in a solar tracker.
The hardware malfunction can be caused by several types of errors such as single
bit-flip errors, stuck-at faults, delay faults, and bridging faults, to name only a few.

Considering these aspects, we aim to minimize the operation costs of our
dual-axis solar tracker [17], which in case of malfunction (e.g. L298N IC
overheating issues, stepper motors don’t receive proper stimuli) can result in high
financial losses by proposing an OBIST architecture. More specifically, we target the
automation components of our solar tracking system that is composed of an
Optocoupler, an Arduino UNO and two L298N ICs and which rely on an Idle State
Detector and two switch batches in order to enable or disable the online testing
procedure.

Regarding the proposed fault injection strategy and according to the
traditional fault injection methodology [187], we concluded that the most suitable
technique for our solar tracking device is the so-called physical-based fault injection
or Hardware Implemented Fault Injection (HWIFI).

The fault injection strategy is presented in Fig.4.17 and satisfies two
objectives in our test scenarios: first, we apply a variety of voltage values to the
inputs of the Optocoupler and the Arduino UNO and monitor the outputs of each
device with a multimeter; secondly, we move on to the parasitic signal injection to
check the output signals of the L298N circuits on the PC Oscilloscope.

BUPT

POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 105

Fig. 4.17. Fault Injection Strategy General Model applied to our Solar Tracker.

According to our previous study in [18] where we applied a White-box

testing procedure, we concluded that voltage variation does not affect the system’s
stability but rather establishes the verge at which the solar tracker starts to function
normally, usually at 2.1V. Eventually, the parasitic signal injection may be
overlapped with voltage variation to compensate stability testing of the proposed
solar tracking system. HWIFI is achieved best via contact (active probes) in order to
test the dependability of the proposed Sun tracking system and is effective at any
level of the hardware design, which includes the circuit chain: Optocoupler 
Arduino UNO  L298N. The HWIFI is a top-bottom approach, being extremely useful
to mark off the fault coverage domain, from regular parasitic signal insertion to
more complex scenarios such as the test vector injection. HWIFI ensures a very
easy encoding procedure that will establish the main pattern of a correct signal, as
shown in case A) from Fig.4.18.

Fig. 4.18. Case A: Arduino Output Signals 4 and 5. Case B: Code worded Signal (Blue) and

Cycle Time (Pink).

If we discard the initial trash value (last 6 bits from a previous Code worded
Signal) and the repeating sequence, we realize that the valid pattern is structured
from the Code worded Signal and the last Repeating Sequence composed of binary
1’s. Together they form a so-called cyclic sequence that is generated continuously in
order to inject stimulus to the L298N circuit coils. However, one motor driver circuit
receives four inputs and generates the same number of outputs. The general rule is
that each 2-signal pairs are equivalent in shape, so it is sufficient to analyze only
two signal channels on the Oscilloscope. While at first glance, the two generated
patterns might look the same, there is one major difference between them, as seen
in Fig.4.19 wherein the dual-channel, we can observe that the first output signal
(blue color) has the same pattern as the one in Fig.4.20.

BUPT

Online Built-In Self-Test Architecture for Automated Testing of a Solar Tracking
Equipment

106

Fig. 4.19. Top: L298N Output Signals 1 and 4. Bottom: L298N Output Signals 2 and 3.

If we look closer, we can see that the second signal (pink color) behaves in

a slightly different way, meaning that it generates the inverted pattern of the first
output. The rewritten data bits by using only the Code worded fragment and the
Repeating Sequence in both cases is illustrated in case B) from Fig.4.18.

Fig. 4.20. Arduino UNO Output Signals.

Regarding the outputs of the DUT, each pair of signals represent the outputs

of a singular L298N circuit from the two available in our solar tracking device. For
simplicity, we considered a scenario where we energize the horizontal motor that
executes a left rotation according to the output seen in Fig.4.19. In order to inject
parasitic signals over the correct waveforms, we used a Precision Waveform
Generator, also known as Voltage Controlled Oscillator (ICL8038), which is able to
generate three distinct output waveforms, namely sinusoidal, triangle and square

BUPT

POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 107

waveform signals. In order to obtain an improved performance model, which is even
more customizable, we started from the basic model design and modified its
structure. The basic model consists of the variable resistance VR1-potentiometer,
the R1-resistance, and the C1-capacitance which are involved in the following
formula (4.4) that determines the frequency output (f) of the circuit:

1 1 1

0.15

()C
f

VR R



 (4.4)

The first prototype being cheaper also proved less efficient during testing,

this being the reason for which we switched to an improved version where we used
more components in order to improve the signal-adjusting feature. By replacing the
C1 component with a variable capacitator, we are able to change the C1 slot by any
capacitator value that withstands a voltage of 25V, thus providing a variety of
frequency generation (1 Hz – 100 Hz for 1 µF; 100 Hz – 1 kHz for 0.1 µF; 1 kHz – 10
kHz for 0.01 µF; 10 kHz – 100 kHz for 0.001 µF). With a proper selector switch,
these capacitors do not require constant replacement. By choosing different
frequency ranges, we were able to detect faulty output signals of our two CUTs as
seen in Fig.4.21.

Fig. 4.21. Faulty Output Signals resulted from the Injection Process (Top: Arduino UNO and

Bottom: L298N Dual H Bridge).

4.2.6. Hardware BIST Components

As can be seen in Fig. 4.22, the proposed BIST architecture linked to our
circuit chain presented earlier in Fig.4.17, is divided into four layers involving: a) the
construction of a TPG unit which is an LFSR; b) 4 CUTs defined by the Optocoupler,
Arduino UNO, and two L298N ICs; c) a Results Gatherer which is a MISR; d) with
the help of a set of ADCs and DACs as well as a dedicated idle state detector, we
implemented the BIST architecture that provides an online testing service.

BUPT

Hardware BIST Components 108

Fig. 4.22. Proposed BIST Architecture.

Regarding the TPG (LFSR) implementation, because we target single bit-flips

and single stuck-at-faults, we will randomly inject a set of test vectors that will be
constructed from all generated cyclical sequences of an LFSR. The primitive
polynomial function 1+x+x3+x12+x16 [188] will ensure that the LFSR will be
statically deployed as seen in Fig.4.23.

Fig. 4.23. Proposed LFSR Configuration.

 We chose an LFSR with an internal EXOR gate because usually external
gates introduce an additional delay to the circuit, which in the case of a fast
generation of pseudo-random values is not desirable. A 16-rank LFSR will generate
all patterns equivalent to the numbers between 1 and 65.535 in a pseudo-random
order. We exclude an initial seed value of 0 0 0…0 because this particular case will
always provide a cyclical value of zero.

As a general rule Q[1] is X1, Q[2] is X2, Q[3] is X3, Q[4] is X4 and so forth.
The shifting of values is given by the following Boolean rules: Q[16]  Q[15],
Q[15]  Q[14], Q[14]  Q[13] XOR Q[16], … , Q[4]  Q[3] XOR Q[16], … ,
Q[2]  Q[1] XOR Q[16] and Q[1]  Q[16].

The MISR presented at the bottom part of Fig.4.22 is the most important
element for our testing objectives. The MISR can be considered the Results Gatherer
or the ORA for the DUT. This modified version of an LFSR will collect all stimulus
responses containing faulty signal injections from the CUTs and will store them in
the 16-bit register for future analysis.

ADCs are mainly used to transform an analog signal (e.g. sinusoidal
waveform) in a fixed-point binary number while DACs usually execute the reverse
function. Since the I/O pins of the Optocoupler and the inputs of the Arduino UNO
require analog signals, we used one LM741 amplifier together with multiple resistors
in order to process the information in purely binary or analog values.

BUPT

POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 109

As can be seen in Fig. 4.24, the four digital pins are connected at the input
of the resistors and by changing the input values, the operational amplifier, which is
powered at +12V and -12V, will convert the analog signals to binary digits. The
Optocoupler's opposite side will connect the ADC to the MISR's four digital pins. Our
ADC encapsulates four comparator circuits that are using LM741 operational
amplifiers.

Fig. 4.24. Example of an LM741 Operational Amplifier.

One of the circuits that requires signal translation is the Optocoupler since it

receives analog values from the solar panel lines L1 and output lines L2.
Consequently, the Arduino UNO will require a DAC on input lines L1, as depicted
earlier in Fig.4.22.
 The idle state detector is presented in Fig.4.25 and is connected to the
switches control panel, as depicted in Fig.4.26. Its hardware implementation
contains 2 EXOR gates, one OR gate, and one Inverter. Whenever the sensor
readings are all 0’s or 1’s, the idle state detector will automatically identify that the
system is idle, meaning that switches batch A will be deactivated and switches batch
B will be turned on. In any other case, when the values are completely different, the
system will be active, which leads to the deactivation of the switches batch B and
the returning to the normal operation data path (given by switches batch A).

Fig. 4.25. Idle State Detector Hardware Implementation.

 As seen in Fig. 4.25, the BC547 transistor is connected to the LED in series
and the circuit output is connected to the transistor's base. The transistor's collector

BUPT

Proposed OBIST Architecture 110

and emitter are involved in switching the Batches A and B on or off in the control
panel.

Fig. 4.26. Configurable OBIST Architecture Block Diagram.

The final integration of the above-mentioned hardware components is

presented in the next paragraphs.

4.2.7. Proposed OBIST Architecture

The proposed OBIST model represents the joining of the LFSR, CUTs and
MISR components into one compact architecture, as can be seen in Fig.4.26. This
architecture is divided into two stages: first, we construct a hardware Very Large
Scale Integration (VLSI) design in the Proteus environment; secondly, we develop a
C++ application that generates signatures based on input test vectors in an
exhaustive manner in order to validate the results obtained in the first stage of the
implementation.

The first part of our implementation details the hardware setup that was
utilized to validate the results obtained with the developed software code. We used
Proteus 8.6 Professional Edition as our testing environment because it allows easy
deployment of physical components (e.g. flip-flops, EXOR gates, transistors, etc.)
and facilitates the systematic monitoring of the experimental results. The initial
logical modules were constructed in the software implementation (described in the
next section) and together with their inherited properties, they are converted into a
hardware VLSI design model.
 The proposed software code implementation adopts a layered approach
where we declare for each virtual component a variable that defines the shifting
process of the test vectors. For instance, LFSR is an object that will inherit an input,
the 3 CUTs will depend on the input as well as the Enable line values and the MISR
will contain the input and the expected signature output. Each Enable line has the
role to authorize the shifting of the input signal directly to the output depending on
its present value. In the main body of the program we will declare a LFSR register
with an initial seed value of Q[16] = [1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1]
while the MISR register will have an initial value of M[16] = [0, 0, 0, 0, 0, 0, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0] so that it can store new signatures for each test cycle. The first

BUPT

POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 111

layer of the application is given by the Logical Module of the LFSR that generates
the next pattern according to the current value of the register Q[1].

Regarding the DUT layer, a logical module implementation is attached to the
original CUTs, which contain the circuit chain Optocoupler, Arduino UNO and two
L298N ICs. The microcontroller and motor drivers depend exclusively on the 4 pin
input variables In0, In1, In2, and In3 together with the Enable pins High or Low and
will return the value of the output as an array of Out0, Out1, Out2, and Out3. For
each test cycle, the CUTs will generate all test vectors that will enter the final layer
of the implementation.

The operation mode of the LTV-847 Optocoupler was summarized in Table
16 where the DAC and ADC perform binary-to-analog conversions as well as the
reverse function.

Table 16. LTV847 Optocoupler combined with DAC and ADC Components.
Optocoupler combined with DAC Optocoupler combined with ADC

Binary Input Configuration Output
Values

Input
Values

Binary Output Configuration

In[0
]

In[1
]

In[2
]

In[3
]

Analog
[V]

Analog
[V]

Out[0] Out[1] Out[2] Out[3]

0 0 0 0 0.1 0.1 d d d d
0 0 0 1 0.3 0.3 d d d d
0 0 1 0 0.6 0.6 d d d d
0 0 1 1 0.9 0.9 0 1 0 0
0 1 0 0 1.2 1.2 0 1 0 1
0 1 0 1 1.5 1.5 0 1 1 0
0 1 1 0 1.8 1.8 0 1 1 1
0 1 1 1 2.1 2.1 1 0 0 0
1 0 0 0 2.4 2.4 1 0 0 1
1 0 0 1 2.7 2.7 1 0 1 0
1 0 1 0 3.0 3.0 1 0 1 1
1 0 1 1 3.3 3.3 1 1 0 0
1 1 0 0 3.6 3.6 1 1 0 1
1 1 0 1 3.9 3.9 1 1 1 0
1 1 1 0 4.2 4.2 1 1 1 1
1 1 1 1 4.5 4.5 d d d d

It is important to mention that our solar tracker starts functioning only when

it receives a voltage value higher than 0.6V at the input of the Arduino UNO, this
being the reason why the output of the Optocoupler will be only taken into
consideration for the analog values greater than 0.6V and lower than 4.5V, the
reason for which we denoted the lower and higher voltage values with “d” in Table
16. The MISR logical module takes the current value, calculates a new vector based
on the CUTs outputs and stores it back in the MISR register, as can be seen in Table
17.

Table 17. MISR Output Signal Generation.

Crt.
Nr.

MISR Inputs MISR Output Sequence

1 In[15] In[15] = In[14] ^ Out[15]
2 In[14] In[14] = In[13] ^ Out[14]
3 In[13] In[13] = In[14] ^ Out[13]
4 In[12] In[12] = In[14] ^ Out[11]
5 In[11] In[11] = In[14] ^ Out[11]

BUPT

Experimental Setup and Results for OBIST 112

6 In[10] In[10] = In[14] ^ Out[10]
7 In[9] In[9] = In[14] ^ Out[9]
8 In[8] In[8] = In[14] ^ Out[8]
9 In[7] In[7] = In[14] ^ Out[7]
10 In[6] In[6] = In[14] ^ Out[6]
11 In[5] In[5] = In[14] ^ Out[5]
12 In[4] In[4] = In[14] ^ Out[4]
13 In[3] In[3] = In[14] ^ Out[3]
14 In[2] In[2] = In[14] ^ Out[2]
15 In[1] In[1] = In[14] ^ Out[1]

16 In[0]
In[0] = (In[0] ^ tmp) ^

Out[0]

The inputs of the MISR register are associated each with the outputs of the

DUT circuit: Out1, Out2, Out3, ..., Out16. Similarly to the LFSR logical module, we
will store the Q[15] in a temporal variable and will cycle through all the 65.535
iterations until exhausting all test vectors. The last two components, namely the
Arduino UNO and L298N motor drivers were implemented according to Table 18.

Table 18. Arduino UNO and L298N equations translated in C++ language.

L298N Integrated Circuits Arduino UNO

Motor Driver 1 Motor Driver 2 Microcontroller Unit

Inputs Outputs Inputs Outputs Inputs Outputs

In[4]
Out[4] = In[4] &&

EnA In[8]
Out[8] = In[8] &&

EnA In[12]
Out[12] = in[12]

^ in[13]

In[5]
Out[5] = In[5] &&

EnA In[9]
Out[9] = In[9] &&

EnA In[13]
Out[13] = in[13]

^ in[14]

In[6]
Out[6] = In[6] &&

EnB In[10]
Out[10] = In[10]

&& EnB In[14]
Out[14] = in[14]

^ in[15]

In[7] Out[7] = In[7] &&
EnB

In[11] Out[11] = In[11]
&& EnB

In[15] Out[15] = in[15]
^ in[12]

4.2.8. Experimental Setup and Results for OBIST

In order to validate the robustness of our proposed OBIST implementation,
we cloned the initial CUTs chain in our software simulation to obtain two devices,
one that generates correct patterns and another one that provides faulty responses.
The purpose of the proposed architecture is to compare the pseudo-random MISR
output signatures with the valid generated MISR signatures inside a dedicated block
called Signal/Signature Analyzer and which is depicted in Fig.4.27.
During the execution of the software implementation, we have evaluated the fault
coverage for two types of faults: random singular bit-flips as well as single stuck-at-
faults. The test chain of the CUTs contains a total of 16 bits, but in our experiments,
we are interested in targeting only 12 bits. These 12 bits are associated with the
following 3 CUTs: Optocoupler, Arduino UNO and one L298N circuit. In the case of
12 bits, the possible number of faults is 4.096. Thus, the entire chain of 16 bits can
be divided into two parts: one is the least significant part and the other is the most
significant part. We are able to evaluate the fault coverage by analyzing these two
parts.

BUPT

POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 113

Fig. 4.27. Test Mode Architecture for the proposed OBIST strategy.

Single bit-flip errors can be easily detected by applying the single parity

checking method. The single parity checking method is applied in our software
implementation by firstly performing an EXOR operation between all the 16 bits of
the test chain as well as by adding the extra parity bit in the least or most
significant position of the bits chain, as seen earlier in Fig.4.18. Secondly, in order
to determine if a single bit-flip has occurred during data transmission, we check the
Code worded Signal again by calculating the parity bit in the same manner as
mentioned earlier and comparing it to the initial extra parity bit.

The fault coverage for the single bit-flips, stuck-at-faults and the global
coverage are presented in Table 19 where FCBF represents the fault coverage for
single bit-flip errors detected, FCSaF represents the fault coverage for stuck-at-faults
detected and FCG represents the global fault coverage for both the single bit-flips
and single stuck-at-faults. Regarding single bit-flip errors, in our software
simulation, we applied the single parity checking method and succeeded to detect
93.93% of the targeted errors from a total number of 65.535 injected test patterns,
each with a different initial seed value during 5 test cases, as seen in Table 19. It is
known that stuck-at-faults can be easily detected, as they mostly occur due to
damaged logical gates, transistors or permanent circuit damage. The five test cases
regarding stuck-at-faults seen in Table 19 are performed by injecting 8, 12 and 16
bits in the test chain and based on the analysis of the Signal/Signature Analyzer, we
determined that the fault coverage is 100%.

Table 19. Fault Analysis of single bit-flip errors as well as single bit stuck-at-faults.

Crt.
Nr.

Initial
Seed
(HEX)

FCBF FCSaF FCG
Last 8 bits
(Mutant)

Random
12 bits

1 FFFF 93.95%

100% 96.96%
2 8FFF 93.93%
3 8CFF 93.92%
4 8C9F 93.91%
5 8C94 93.93%

In order to obtain the global fault coverage of our test chain, we extended

the initial test cases from 8 bits (the least significant and most significant part of the
test chain) to a total number of 12 bits representing the entire DUT. Thus, the
global fault coverage was evaluated for the total number of 12 bits and was
determined at 96.96%, proving that our OBIST solution is capable of detecting all
targeted errors regardless of the initial seed value.

BUPT

Efficient Implementation of a Self-Sufficient Solar-Powered Real-Time Deep
Learning-Based System

114

Because the aliasing usually happens when the flawed device's signature is
exactly the same as the perfect device's signature, the probability of aliasing
occurrence is calculated with the relation 2-16 = 0.0001 and results in the conclusion
that in our experiments aliasing appears in very rare cases.

4.3. Efficient Implementation of a Self-Sufficient
Solar-Powered Real-Time Deep Learning-Based System

As mentioned earlier, recent advancements in the field of AI, especially DL,
are happening especially thanks to the availability of huge amounts of data and
powerful hardware. During training and inference of a DNN, usually expensive and
power-hungry GPUs are used, resulting in a proportional growth of computational
and environmental costs, with some NLP models even increasing the carbon
footprint nearly five times the lifetime emissions of a car [9].

Because climate change is a very relevant problem in our society [10] and
considering goal number 7 (affordable and clean energy) and goal number 13
(climate action) of UN’s Sustainable Development Goals [189], efforts to develop
and use low-power embedded devices are made by many companies, an example,
in this case, being Nvidia’s Jetson TX2 embedded platform [190]. Consequently, in
order to reduce the carbon footprint and the electricity bills, efforts towards
renewable energy are made [48], with many researchers building solar tracking
systems [17, 191] in order to capture the sun’s energy with maximum efficiency.

Considering that the two domains of AI and renewable energy are of major
importance for the development of our society, our work introduces a self-sufficient
solar-powered real-time DL-based system that makes use of solar energy from the
sun with the help of an updated version of our solar tracker based on the Cast-
Shadow principle [17] and an Nvidia Jetson TX2 board that runs our real-time
animal class identification model [15] on videos or using a webcam and also
generates additional datasets containing images and textual information about the
animals present in front of the frame, in real-time. In order to justify our decision
for choosing an embedded platform instead of a laptop, in our experimental results,
we present a comparison between the two platforms, mainly in terms of power
consumption. Additionally, we also improve the energy efficiency of the proposed
real-time DL-based system by implementing a motion detection method based on
background subtraction with the help of Python and OpenCV [192].

A summarized view of the proposed solar-powered DL-based system can be
seen in Fig.4.28. It consists of our dual-axis solar tracker based on the Cast-Shadow
principle [17], a solar charge controller, an Ultra Cell accumulator with 12V 9
ampere-hour (Ah) acid plumb battery, two DC-to-DC inverters (first DC-to-DC
inverter converts 12V to around 5V necessary for the solar tracker to become
autonomous regarding energy needs and the second DC-to-DC inverter converts
12V to around 19V necessary for the Nvidia Jetson TX2 to run only on solar energy)
and an Nvidia Jetson TX2 embedded platform that uses and powers an external
Logitech C920 HD Pro webcam in order to identify animal classes in real-time [15].

BUPT

POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 115

Fig. 4.28. Summarized view of the proposed solar-powered real-time DL-based system.

4.3.1. Solar Panel Improvements

As seen earlier, our old dual-axis solar tracker based on the Cast-Shadow
principle [17] used a solar panel with 40 PV monocrystalline cells instead of LDRs
which are usually found in the literature. Twelve of these PV cells are used to control
4 low-cost circuits, namely 1× Optocoupler LTV 847, 1× Arduino328 Microcontroller,
2× L298N Dual-H Bridge circuits and 2× stepper motors which are used for the
dual-axis positioning of the solar tracker. Our solar panel makes use of 3 PV cells
from each corner to analyze light distribution, 2 bypass diodes to protect PV cells in
case of a sudden increase or decrease in voltage that may occur due to variable
light and 2 blocking diodes to protect solar panel’s PV cells from reverse current (i.e.
voltage from the load such as the Optocoupler or Arduino UNO).

In order for the real-time DL-based system to run inference completely on
solar energy, we considered using an updated version of our earlier proposed dual-
axis solar tracker that uses the Cast-Shadow principle [17] in order to optimize its
position for a more efficient solar energy gain, without the need of sensors. The
important changes that we made to update our solar tracker in order to use it for
the experimental results in this paper are:

1) The effective surface area of the panel used in the above described solar
tracker was increased from L1 × l1 = 36 × 35 = 1260 cm2 to an area of L2 × l2
= 43 × 36 = 1548 cm2 to accommodate 60 polycrystalline PV cells.

2) The method used to produce silicon polycrystalline solar cells is easier to
implement and less expensive as compared to monocrystalline counterparts,
resulting in a more cost-effective investment. Additionally, polycrystalline

BUPT

Deep Learning Models used for Inference 116

solar panels tend to be somewhat less tolerant of heat than monocrystalline
solar panels [193]. Due to their higher temperature coefficient, the overall
heat output will be less significant compared to monocrystalline solar
modules. As a consequence, our old monocrystalline PV solar cells were
replaced by PV polycrystalline cells that generate a maximum voltage of
0.55V and a maximum current of 0.60A per unit, resulting in a total voltage
of 17V and 1.5A generated by the improved solar panel.

4.3.2. Deep Learning Models used for Inference

In order to prove the efficiency of our solar-powered real-time DL-based
system, we decided to use our earlier proposed implementation regarding real-time
identification of animals found in domestic areas of Europe [15] which can also
generate 2 new datasets in real-time, one dataset containing textual information
(i.e. animal class name, date and time interval when the animal was present in front
of the webcam) and one dataset containing images of the animal classes present
and identified in videos or in front of a webcam. These newly generated datasets are
very useful, as they can provide insights about what animal classes are present at a
given date and time in a certain area and how they look like.

As mentioned earlier, our original DL models presented in [15] were trained
and tested on a home-made dataset with a total size of 4.06 GB consisting of
90.249 animal images (72.469 images for training, 8.994 images for validation and
8.786 images for testing) belonging to 34 classes on 4 state-of-the-art modified
CNN architectures (VGG-19, InceptionV3, ResNet-50, and MobileNetV2) using Keras
with Tensorflow backend, achieving high overall test accuracy (90.56% for the
proposed VGG-19 model, 93.41% for the proposed InceptionV3 model, 93.49% for
the proposed ResNet-50 model and 94.54% for the proposed MobileNetV2 model).

In order to successfully implement and test our Python implementation on
the Nvidia Jetson TX2 board, we needed to make some adjustments and
improvements in our initial code from [15] as follows:

1) First, because Keras saves its weights in a hierarchical data format (.hdf5) file
which slows the loading of the model on the Nvidia Jetson TX2, we have
created an optimized (converted it to a frozen graph base model; here the
value of all variables are embedded in the graph itself thus the protocol
buffers (.pb) file cannot be retrained) frozen file of our Keras model based on
Tensorflow. Keras does not include by itself any means to export a
TensorFlow graph as a .pb file, but we could do it using regular Tensorflow
utilities.

2) Second, because by default Tensorflow pre-allocates the whole GPU memory
[194] (which can cause “out of memory” errors) and because the Nvidia
Jetson TX2 GPU doesn’t have dedicated RAM and cannot use its full 8 GB
processing RAM (the reason for this is because Linux and other processes are
using most of the available RAM), we implemented a code to control the GPU
memory allocation and to define (choose a GPU memory ratio allocation from
0 to 1) the processing memory percentage usage of the GPU at running time.
By doing this, we can now control how much data we want to transfer to the
GPU that processes it and avoid any possible “out of memory” kind of
problems which otherwise would appear on the Nvidia Jetson TX2 due to its
lack of dedicated GPU memory. We can now choose a ratio from 0 to 1 to

BUPT

POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 117

decide the GPU usage from low to high by passing the arguments in the
command line.

3) Third, we implemented a code for testing a certain number of batch frames in
one shot. For this, we make use of a Numpy array. Numpy array is a fast
method for data manipulation that saves a matrix of numbers in stacks (e.g.
we can observe that when we read a frame in OpenCV it becomes numbers in
the Numpy array, meaning that if we have 900 frames, Numpy array size will
be 900, 224, 224). Then, we transferred that batch of frames to our model
for prediction by changing the number of frames (e.g. we can send 30 frames
one time like this: 30, 224, 224, so we have a remaining 870, 224, 224
arrays). We have tested it on the frozen graph. The frames are passed from 1
to 60. Fps batch testing is very useful in our tests because it helps find the
optimal number of fps our model can efficiently run inference on, e.g. when
all 900 frames from a 31-sec video are predicted in 31 sec or less than that, it
means that we can run it in real-time (when the identified class name is
predicted and shown on the webcam frame without being affected by
latency).

Forth, because we wanted to increase the security of animals and humans in
domestic areas, we also implemented an automated SMS alert system based on
Twilio API [195], as can be seen in Fig.4.29.

Fig. 4.29. Example of an automated SMS alert using Twilio API.

This is very helpful, especially in the cases when a wild animal is detected

on private property such as a house or a farming area (e.g. when, because of
hunger, a bear is coming near a flock of sheep or a fox is coming near a chicken
coop) because it generates and sends an SMS alert to the phone number of the
owner, informing him what animal class is detected in real-time through the
webcam and thus helping him to take the necessary actions to maintain security. In

BUPT

Motion Detection 118

order to save the SMS costs and not send an SMS alert every time (e.g. every
second) a wild animal is detected in the webcam frame, we wrote a function that
sends the SMS only if the wild animal is present in front of the frame for at least 3
seconds (to make sure that there are no SMS alerts sent by mistake due to some 1-
second short animal class misdetections in the webcam frame). Additionally, in case
the same wild animal class was detected multiple times in the last 5 minutes, this
SMS alert is sent only one time every 5 minutes (e.g. if a Bear is detected
continuously in the front of the webcam for 10 minutes, the SMS alert will be sent to
owner’s phone only two times).

4.3.3. Motion Detection

Because we wanted to lower the power consumption on both platforms
when running the DL models as much as possible, instead of buying a costly motion
detection sensor, we implemented a software motion detection method based on the
difference between pixel intensity of the frames, as seen in Fig.4.30.

Fig. 4.30. Summarized view of the proposed motion detection.

For our motion detection method seen in Fig.4.30, in order to speed-up the

inference processing time of a video or webcam frame, we reduced its size to
224×244 pixels and used several computer vision techniques using OpenCV as
follows:

BUPT

POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 119

1) We converted the frame color image to grayscale so that we can avoid some
effects of illumines. This also results in faster processing.

2) We applied the Gaussian Blur filter to remove any possible noise in the frame
image.

3) We computed the absolute difference (subtraction) between the current frame
(foreground) and the first frame (modeled background) in order to calculate if
their pixel values were close to zero, meaning that motion was not detected,
otherwise when pixel values are higher, motion is detected.

4) We applied a frame delta threshold (i.e. with a value of 25), resulting in a
black and white image (no other gray light color and mid-value in the image;
just black and white).

5) We applied dilation (morphological transformation) to the threshold frame in
order to join the broken parts of an object in the image.

6) After that, we applied contour detection on the image and measured the
available contour size. If the contour size is smaller then the given threshold,
then the pixels in the frame are very similar (as seen on the left side of
Fig.4.30) and frame image will not be passed to the inference process. If the
contour size is higher than the threshold, then it means that the current
frame is quite different from the previous frame (as seen on the right side of
Fig.4.30) and the image will be passed to our model for prediction.

There are some advantages of this vision-based motion approach over

motion sensors, e.g. regular motion sensors are having some drawback regarding
range and time and require extra acquisition costs whereas this vision-based motion
approach checks the difference between the previous and present frame in software
and if something changed in the image, then it takes it as motion and sends the
frame to the inference process. Another advantage is that, even though the
program will run all the time having the GPU at running state, the GPU memory
transfer will be zero because GPU is not computing anything when there is no
significant change in the present frame compared with the previous one; in this way
we protect the GPU to heat-up as well.

4.3.4. Experimental Setup and Results

We considered implementing the 4 DL model architectures both on an Acer
Predator Helios 300 PH317-51-78SZ laptop with an Intel Core i7-7700HQ, 16GB
DDR4 RAM memory and the Nvidia GTX 1060 GPU with 6GB GDDR5/X frame buffer,
8 Gbps memory speed and 1708 boost clock (MHz) as well as on a Nvidia Jetson
TX2 board [190] having the following configuration on the hardware side: CPU: ARM
Cortex-A57 (quad-core) @ 2GHz + Nvidia Denver2 (dual-core) @ 2GHz, GPU: 256-
core Pascal @ 1300MHz, Memory: 8GB 128-bit LPDDR4 @ 1866Mhz | 59.7 GB/s,
and Storage: 32GB eMMC 5.1. On the software side, on the Nvidia Jetson TX2
board, we used Nvidia JetPack SDK [196] with Linux Ubuntu18.04 LTS and
Tensorflow 1.14.0 (Keras is used from within the tensorflow.keras) for both
platforms. For the experimental results using webcam and motion detection, in the
case of the laptop, we use its internal webcam, whereas, in the case of the Nvidia
Jetson TX2 board, we used an external Logitech C920 HD Pro webcam. It is
important to mention that with the help of the command line interface nvpmodel
tool, we run all our Nvidia Jetson TX2 tests on the Max-P Core-All mode.

BUPT

Experimental Setup and Results 120

Following, we will show a comparison between the laptop containing the
Nvidia GTX 1060 GPU and Nvidia Jetson TX2 regarding inference speed testing and
also explain why frames batch testing is important when trying to run a DL model in
real-time on both platforms. Finally, we will present a power usage comparison with
and without the proposed motion detection on both platforms and motivate our
decision for why the Nvidia Jetson TX2 is our platform of choice when designing the
solar-powered real-time DL-based system.

The inference speed testing results for the Nvidia GTX 1060 GPU and Nvidia
Jetson TX2 are presented in Table 20 where a different number of frames were
tested on both platforms in order to evaluate the time it takes for each of the 4 DL
models to classify a certain number of frames in under a second, both on a video as
well as using a webcam.

Table 20. Inference Speed Testing between Nvidia GTX 1060 GPU and Nvidia Jetson TX2 on a
video as well as using a webcam for VGG-19 (V), InceptionV3 (I), ResNet-50 (R) and
MobileNetV2 (M) model architectures.

Number
of

Frames

Nvidia GTX 1060 GPU

Inference Time (Seconds)

Nvidia Jetson TX2

Inference Time (Seconds)

V I R M V I R M

1 0.020 0.033 0.027 0.021 0.135 0.114 0.083 0.047

2 0.029 0.030 0.066 0.021 0.223 0.145 0.115 0.062

4 0.054 0.043 0.056 0.044 0.368 0.190 0.187 0.305

8 0.106 0.065 0.080 0.056 0.503 0.289 0.332 0.385

16 0.190 0.106 0.142 0.109 0.682 0.478 0.599 0.525

24 0.304 0.158 0.227 0.177 1.107 0.682 0.898 1.059

Because the results were similar, we presented their average values only

once. As can be noticed in Table 20, the inference time of the Nvidia GTX 1060 GPU
is always under 1 second for all 4 DL model architectures, even with 24 fps (we also
tested the GTX 1060 GPU on up to 60 fps, but it is out of scope to present these
results). In comparison, when running the VGG-19 and MobileNetV2 DL models on
the Nvidia Jetson TX2 platform with 24 fps, we discovered that the inference time
takes more than 1 second, so we decided to run all of our Nvidia Jetson TX2
experiments presented in this paper with 16 fps for all DL architectures.

Regarding frames batch testing, we tested the effect of batch size on
computing time by forwarding not just one frame but an n number of frame batches
to our model for prediction. The frames batch testing is very important because it
helps choose the fps parameter that finishes the task in the shortest amount of time
with the highest number of frames (the higher the number of frames, the better the
prediction) and lowest energy consumption without worries of service interruption
when deploying later in a real-life scenario. Because of its 6GB dedicated RAM, we
found out that the Nvidia GTX 1060 GPU can make use of 100% GPU memory
utilization when running the InceptionV3 and ResNet-50 model architectures but
only of 80% GPU memory utilization (higher value than this resulted in “out of
memory” errors) when running the VGG-19 and MobileNetV2 model architectures in
real-time. Nevertheless, the laptop containing the Nvidia GTX 1060 GPU can help all
DL model architectures run the fastest prediction (when there is no latency between
the present frame and predicted animal class name on the frame) at different
(higher) fps and faster time values (fewer seconds) as compared with the Nvidia

BUPT

POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 121

Jetson TX2 which uses more than half of its memory for running the Linux
framework, and which is able to run the fps batch testing at only maximum 30% of
its memory utilization. The reason for this limitation is because with other ratio
values it resulted in “out of memory” related errors.

In order to show the power usage comparison between the two platforms by
maintaining a high inference accuracy (more fps = better accuracy), we decided to
run all the experimental results presented in this paper with 30 fps and GPU
memory ratio = 1 (for the InceptionV3 and ResNet-50) and 0.8 (for the VGG-19 and
MobileNetV2) on the laptop containing the Nvidia GTX 1060 GPU and with 16 fps
and GPU memory ratio = 0.3 for all 4 DL model architectures on the Nvidia Jetson
TX2.

Because the final goal is to run the inference in real-time on real-life
scenarios, we decided to run the experiments regarding power usage only using the
webcam and not also on a video like in the previously described experiments.

We calculated the power consumption for the Nvidia GTX 1060 GPU on our
Linux laptop by running the command “sudo powerstat” and for the Nvidia Jetson
TX2 board by using a convenient power measurement script [197] and also by using
the command e.g. “sudo ./tegrastats”.
 We run the experimental results for 5 hours (30 samples/values taken every
10 minutes) for each of the 4 DL models, both with and without motion detection for
both platforms and presented the results in Figs.4.31 and 4.32.

Fig. 4.31. Power usage comparison on the laptop (GTX 1060 GPU) running the proposed real-
time animal class identification implementation during a 5 hours test using the webcam
without and with motion detection method for VGG-19 (V), InceptionV3 (I), ResNet-50 (R) and
MobileNetV2 (M) architectures. The y-axis represents the Watts value and the x-axis
represents the total number of sample values taken every 10 minutes.

 Without using the proposed motion detection method, the maximum power
consumption of the laptop (Nvidia GTX 1060 GPU) was 24.79W when in idle state,
53.79W when running the VGG-19 model, 55.88W when running the InceptionV3
model, 55.36W when running the ResNet-50 model and 54.15W when running the
MobileNetV2 model. Also, the maximum power consumption of the Nvidia Jetson

BUPT

Experimental Setup and Results 122

TX2 without using the proposed motion detection method was 4.11W when in idle
state, 14.77W when running the VGG-19 model, 12.87W when running the
InceptionV3 model, 11.74W when running the ResNet-50 model and 10.47W when
running the MobileNetV2 model.

Fig. 4.32. Power usage comparison on the Nvidia Jetson TX2 board running the proposed real-
time animal class identification implementation during a 5 hours test using the webcam
without and with motion detection method for VGG-19 (V), InceptionV3 (I), ResNet-50 (R) and
MobileNetV2 (M) architectures. The y-axis represents the Watts value and the x-axis
represents the total number of sample values taken every 10 minutes.

With the proposed motion detection method, the power consumption is
lower for both platforms, justifying our decision to implement it. More exactly, the
maximum power consumption of the laptop (Nvidia GTX 1060 GPU) when using the
proposed motion detection method was 52.58W when running the VGG-19 model,
55.06W when running the InceptionV3 model, 54.35W when running the ResNet-50
model and 50.51W when running the MobileNetV2 model. Also, the maximum power
consumption of the Nvidia Jetson TX2 when using the proposed motion detection
method was 13.22W when running the VGG-19 model, 12.16W when running the
InceptionV3 model, 11.43W when running the ResNet-50 model and 9.49W when
running the MobileNetV2 model. It is important to mention that in the case of the
laptop we used the existent internal webcam, whereas for the Nvidia Jetson TX2 we
used the Logitech C920 HD Pro webcam having an input voltage range from +9V to
+15V DC and which was powered directly from the embedded board itself. Also, it
can be observed that for both platforms, the motion detection method reduces the
energy consumption by around 5%.
 Considering the experimental results from Figs.4.31 and 4.32 which show
that the laptop containing the Nvidia GTX 1060 GPU consumes around 5 times more
energy than the Nvidia Jetson TX2 and because we wanted to minimize the
investment in the improvement of our solar tracker (which otherwise, in the case of
laptop would have required a 5× increase in the number of solar cells and solar

BUPT

POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 123

panel size, as well as updating the entire circuitry), we decided to make the Nvidia
Jetson TX2 as the platform of choice for our solar-powered real-time DL-based
system. One of the main reasons for implementing an efficient solar-powered real-
time DL-based system is the consideration of recent efforts regarding climate
change [8-10, 49] as well to bring awareness to future researchers about the
possibility and necessity to use alternative sources of renewable and green energy
such as that from the sun when designing real-time DL-based systems.

As seen previously in Figs.4.31 and 4.32, the maximum power consumed by
the Nvidia Jetson TX2 was that of 14.77W without using motion detection and
13.22W when using motion detection for the VGG-19 model architecture during a 5
hours test. The architecture that had the lowest power consumption during the 5-
hour test was the MobileNetV2 model architecture, with 9.69W when not using
motion detection and 9.03W when using motion detection.

In order to make our Nvidia Jetson TX2 board also autonomous from the
energy needs point of view when running inference using the 4 DL model
architectures [15] in real-time, instead of using a traditional power plug, we decided
to connect it to our previous proposed solar tracking device that uses the Cast-
Shadow principle [17] which we updated and described earlier. A diagram block of
the summarized autonomous solar-powered real-time DL-based system can be seen
in Fig.4.33 below.

Fig. 4.33. Connection diagram of the proposed autonomous solar-powered real-time DL-based

system.

Our improved solar panel comes equipped with 60 polycrystalline cells that
are able to provide a maximum output voltage of around 17V, as can be seen in
Table 21. The increase from 40 to 60 in the number of PV solar cells is justified by
the fact that it reduces the risk of voltage drops below 12V in order to keep the
battery charged continuously even under extreme weather conditions (e.g. cloudy
days).

Table 21. Energy generated by our solar tracker when the Nvidia Jetson TX2 is running the
VGG-19 (V), InceptionV3 (I), ResNet-50 (R) and MobileNetV2 (M) model architectures in real-
time using the external webcam with motion detection during a 5 hours test time.

Energy Generation of our Solar Tracker
Test Time

(Hour) V I R M

BUPT

Experimental Setup and Results 124

 Voltage Gain [V]
9:00 17.3 16.98 16.67 16.35
10:00 16.03 16.3 16.59 17.06
11:00 17.14 17.06 16.99 16.91
12:00 16.83 16.64 16.46 16.29
13:00 16.1 16.08 16.07 16.05

Avg. Value 16.68 16.61 16.55 16.53
 Current Gain [A]

9:00 1.34 1.36 1.37 1.39
10:00 1.4 1.22 1.04 0.86
11:00 0.67 0.67 0.66 0.66
12:00 0.66 0.64 0.64 0.75
13:00 0.66 0.65 0.65 0.69

Avg. Value 0.94 0.90 0.87 0.87
 Power Gain [W]

9:00 23.18 23.09 22.83 22.72
10:00 22.44 19.88 17.25 14.67
11:00 11.48 11.43 11.21 11.16
12:00 11.10 10.64 10.53 12.21
13:00 10.62 10.45 10.44 11.07

Avg. Value 15.76 15.09 14.45 14.36

According to the schematic presented in Fig.4.33, we linked the output of
the PV solar panel to the dedicated solar module input of the solar charge controller
in order to obtain the parameter readings (voltage and current) from our solar
tracking device (generator) and storage component (accumulator). The solar charge
controller is a robust all-in-one control system that provides three input-output
ports: one dedicated to solar modules, one dedicated to feeding the battery from
the PV panel with collected voltage, and one output module for connecting a current
load. Since our main objective is to store solar energy in the accumulator, we only
use two of the available ports.

A few notable features of the solar charge controller are microcontroller unit
control, built-in timer, settable voltage and full protection from overvoltage,
overcurrent, etc. The Ultra Cell accumulator is a 12V, 9Ah acid-plumb battery that is
generally used nowadays in UPS systems to provide energy for desktop systems in
case of local power outages. Due to its chemical composition and charging current
of around 1A, the charging and discharging time can be analyzed both theoretically
as well as in real-time scenarios. The main formula that is generally used in
charging time calculus is given by the following equation (4.5a):

T=Ah/A (4.5a)

where T represents the charging time, Ah depicts the Ampere hour rating of the
battery and A denotes the charging current in Amperes. In our experimental results,
first, we calculated the charging current for the 9Ah battery in theory as well as in
practice:

1) As we know, in theory, the charging current should be 10% of the battery's
Ah rating. Therefore, charging current for a 9Ah Battery = 9 Ah × (10/100)
= 0.9 Amperes. However, due to some possible current losses that can
appear on the battery, instead of exactly 0.9 Amperes, we consider only a
value between 0.9 and 1.1 Amperes for the charging purpose. Supposing we

BUPT

POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 125

take 1 Amp for charging purposes, so charging current for 9Ah Battery =
9/1 = 9 Hrs, a situation that usually occurs only in theory

2) As we know, in practice, it has been noted that 40% of losses occur in the
case of battery charging. Consequently, the formula will be: 9 × (40/100) =
3.6 resulting in 9Ah x 40% of losses. Therefore, 9 + 3.6 = 12.6Ah resulting
in 9Ah + Losses. According to formula (4.5b), we will now substitute the
new values and obtain:

12.6/1=12.6Hrs (4.5b)

Therefore, because the accumulator requires 1A charging current, its 9Ah

capacity takes almost 13 Hrs to fully charge with solar energy from the solar
tracker. However, because our solar-powered real-time DL-based system does not
drain any solar energy during the night time, this does not influence our
experimental outcomes. Consequently, the total discharging time of the accumulator
can be determined by considering the 40% losses and by applying the following
formula (4.5c):

12.6/0.6=21Hrs (4.5c)

Since our accumulator is limited to a 12V storage capacity, as can be seen

in Fig.4.33, we used two voltage inverters. The first DC-to-DC inverter was
interconnected in parallel so that the battery's output voltage would be increased to
around 19V as can be seen in Table 22, in order to satisfy the Nvidia Jetson TX2
board's (consumer) supply voltage requirements in a real-life scenario.

Table 22. Energy stored by our accumulator using the solar tracker when the Nvidia Jetson
TX2 is running the VGG-19 (V), InceptionV3 (I), ResNet-50 (R) and MobileNetV2 (M) model
architectures in real-time using the external webcam with motion detection during a 5 hours
test time.

Energy Storage of our Solar Tracker
Test Time

(Hour) V I R M

 Voltage [V]
9:00 12.8 12.74 12.7 12.66
10:00 12.6 12.66 12.71 12.75
11:00 12.8 12.8 12.79 12.78
12:00 12.78 12.76 12.75 12.74
13:00 12.73 12.76 12.8 12.87

Avg. Value 12.74 12.74 12.75 12.76
 Charging Current [A]

9:00 0.84 0.87 0.89 0.92
10:00 0.94 0.86 0.78 0.65
11:00 0.9 0.87 0.84 0.82
12:00 0.92 0.85 0.8 0.79
13:00 0.88 0.83 0.81 0.8

Avg. Value 0.89 0.85 0.82 0.79
 Power [W]

9:00 10.75 11.08 11.30 11.64
10:00 11.84 10.88 9.91 8.28
11:00 11.52 11.13 10.74 10.47
12:00 11.75 10.84 10.2 10.06

BUPT

Experimental Setup and Results 126

13:00 11.20 10.59 10.36 10.29
Avg. Value 11.41 10.90 10.50 10.14

Voltage Readings for DC-to-DC Inverter (12V to 19V)
 Voltage Output [V]

9:00 19.20 19.15 19.16 19.18
10:00 19.17 19.14 19.12 19.10
11:00 19.09 19.10 19.11 19.05
12:00 19.02 19.04 19.05 19.06
13:00 19.03 19.02 19.07 19.00

Avg. Value 19.10 19.09 19.10 19.07

The second DC-to-DC inverter was connected between the energy storage
element and the back of our solar panel in order to power the automation
equipment (1× Arduino UNO, 1× Optocoupler, 2× L298N, 2× stepper motors)
directly from the accumulator. Due to the implemented mechanical blocking
elements, when in idle state, our solar tracking device consumes less energy
(0.32W) with the Arduino UNO and L298N ICs and reaches 2W power consumption
[17] when it updates its position to optimize sun ray exposure (a process which
usually takes up to 5 seconds).

This 2W power consumption can be successfully covered by the
accumulator’s solar energy provision, proving that our entire solar-powered real-
time DL-based system can run 100% using renewable and green energy from the
sun. Finally, we linked the output of the first DC-to-DC inverter to the input of the
Nvidia Jetson TX2 board with the help of a dedicated DC adapter, as seen in
Fig.4.33 as well.

The experimental cases were carried out with our previously described setup
over a 5 hours time span for each of our previously trained architectures (VGG-19,
InceptionV3, ResNet-50, and MobileNetV2) [15] during 4 days test time. Our results
show that the output voltage and current values of our solar panel are always
maintained at an optimum level despite changing weather conditions (e.g. partial
clouds in the afternoon).

Also, regarding the energy requirement of the Nvidia Jetson TX2 with the
external webcam using the implemented motion detection method during a 5 hours
test, we present the results in Table 23.

Table 23. Energy requirements for the Nvidia Jetson TX2 when running the VGG-19 (V),
InceptionV3 (I), ResNet-50 (R) and MobileNetV2 (M) model architectures in real-time using the
external webcam with motion detection during a 5 hours test time.

Energy Requirement of the Nvidia Jetson TX2 with External
Webcam and using Motion Detection

Test Time
(Hour)

V I R M

 Voltage Draw [V]
9:00 19.1 19.1 19.1 19.09
10:00 19.08 19.08 19.08 19.07
11:00 19.07 19.07 19.07 19.06
12:00 19.07 19.08 19.07 19.08
13:00 19.07 19.07 19.06 19.05

Avg. Value 19.07 19.07 19.07 19.07
 Current Draw [A]

9:00 0.58 0.55 0.51 0.46
10:00 0.52 0.51 0.49 0.46
11:00 0.56 0.62 0.52 0.47

BUPT

POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 127

12:00 0.42 0.56 0.53 0.47
13:00 0.66 0.54 0.52 0.47

Avg. Value 0.54 0.55 0.51 0.46
 Power Consumption [W]

9:00 11.07 10.50 9.74 8.78
10:00 9.92 9.73 9.34 8.77
11:00 10.67 11.82 9.91 8.95
12:00 8 10.68 10.1 8.96
13:00 12.58 10.29 9.91 8.95

Avg. Value 10.44 10.60 9.8 8.88

These results prove that a real-time DL-based system can easily take
advantage of renewable and green energy sources such as solar energy from a solar
tracking device in order to become self-sustaining from the energy needs point of
view. More exactly, we can observe that the improved solar tracker generates in
average around 15 Wh, the accumulator stores around 11 Wh and the Nvidia Jetson
TX2 board consumes not more than around 10 Wh when running all 4 DL models
with the motion detection method in real-time.

The experimental cases were considered relevant for our work due to the
fact that the DL-based system can run autonomously using free energy from the
portable solar tracker, thus eliminating the need of connecting it to an AC network.
In order to check the working conditions and take full control of the Nvidia Jetson
TX2 board when connected to our solar tracker, we made use of a 7-inch portable
monitor that was connected with the help of an HDMI as well as a micro-to-USB
cable to the Nvidia Jetson TX2 board, as can be seen on the right side of Fig.4.28.

BUPT

Experimental Setup and Results 128

5. ENVIRONMENTALLY-FRIENDLY METRICS
FOR DEEP LEARNING

With unprecedented growth in the number of platforms, e.g. CPUs, GPUs
and FPGAs as well as in the number of DL algorithms, architectures, and
frameworks such as Tensorflow and PyTorch, the need for a fair comparison
between DL-based systems when performing training or inference by using
appropriate metrics is crucial.

Until recently, it was difficult to fairly compare DL models due to the
inexistent standard evaluation criteria. In the last years, efforts to deliver efficient
tools for benchmarking DL implementations were made by various researchers from
both academia and industry, an example in this direction being the MLPerf
Benchmark [198] introduced initially (in 2018) only for training but very recently (in
November 2019) also regarding inference [199] and being supported by a group of
40 organizations like e.g. Google and Microsoft. Regarding training, when measuring
the performance of DL implementations, there were many types of metrics used in
prior DL benchmarks, i.e. throughput (samples per second), but recently Time-To-
Accuracy (TTA), an end-to-end training time to a specified validation accuracy level,
is the accepted metric in the DL community, standardized initially by DAWNBench
[200] and being also the main metric used in MLPerf. A consequence of this race
towards occupying the first place in a Benchmark with the TTA as a metric for
training is that the state-of-the-art DL models consume an enormous amount of
energy, affecting the climate change and limiting the AI innovation, with a report
from Allen Institute for AI [8] arguing that energy efficiency should be considered a
more common evaluation criterion for AI papers, at least as important as accuracy
and that the focus on a single metric is detrimental to our society, economy, and
environment. In response to vast increases in computational capacity and energy
needs, with Nvidia’s recent NLP oriented Megatron Project, especially GPT-2 8B, a
large and powerful Transformer-based language model that required 512 GPUs for
training 8.3 Billion parameters [7], the massive impact which training such DL
models have on the environment should be taken very seriously into consideration,
with recent work in [9] even concluding that there is a very significant carbon
footprint to DL.

Despite there being many available DL benchmarks [198, 199, 201, 202]
that consider various metrics like time, cost, utilization, memory footprint,
throughput, timing breakdown, strong scaling and communication as well as latency
and load balancing, only MLPerf Benchmark is having energy as a metric for training
(planning to improve the metric regarding measuring power in the inference
benchmark only in a future update), with Deep500 [201], a benchmark introduced
in 2019, planning to adopt energy as a metric only in the near future as well.
Although training of DL models has considerable costs, with hardware (e.g. large
mini-batch training [203] and reduced precision [204]), software (e.g. cuDNN
[161]) and statistical (e.g. Adam Optimizer [205]) optimizations being proposed in
the past for improving the computational performance of DL, a critical workload is
and will always be the inference process. A reason for this is because the training of
DL models is usually done once, whereas during the inference process because the

BUPT

ENVIRONMENTALLY-FRIENDLY METRICS FOR DEEP LEARNING 129

DL models are moved from the research side to the practical side, they are required
in some cases (i.e. at Facebook) to serve around 200 trillion queries and perform
more than 6 billion translations every day [206]. The growing computational
demands of inference are pushing more than 100 companies to produce and
optimize chips for inference; by comparison, only 20 companies are targeting
training [199].

Considering these aspects, we strongly believe in the necessity of
incorporating in the next generation DL benchmarks the ability to take into account
the energy consumption that a DL system has when training or running inference.
Furthermore, we think that it should be taken into account also the autonomy of
such a system, i.e. its ability to work independently of a traditional power grid
source and instead is able to use 100% green energy such as solar energy. For a
more scalable and sustainable future, especially considering the emerging focus of
Green AI [8], we propose four DL metrics, two for inference called APC and APEC
and two for training called TTCAPC and TTCAPEC.

5.1. The Proposed Deep Learning Metrics for Inference
and Training

The current most well-known DL metrics such as accuracy, F1-Score, and
others fail in evaluating the performance of a DL-based system with regard to its
impact on the environment due to the energy consumption when running inference
(e.g. when two DL-based systems have the exact same accuracy but one of them
will consume 10× more energy than the other, the existent DL metrics would
consider them equal).

To solve the problem of lacking in accountability in energy consumption and
costs, in this section, we will propose two new metrics: APC to tackle the problem of
energy consumption and APEC to tackle the problem of energy cost. With regard to
the APEC metric, we believe that this metric will encourage future researchers to
use only green (e.g. solar) energy when running inference with their DL-based
system [16].

We want the APC and APEC metrics to comply with the following important
properties: Output range from 0 to 1; 100% accuracy and 0 energy
consumption/cost imply the value of the metric is 1; 0% accuracy implies the metric
is 0 regardless of energy consumption/cost; The value of the metric increases with
accuracy and decreases with energy consumption/cost; Consumption/cost from
inaccurate inferences are weighted more heavily. We consider these to be the most
important requisites for a combination of two measures into one metric. Since it is a
metric, it is desirable that it ranges from 0 to 1, so that it can be expressed in terms
of percentage and give some sense of how close or distant the value of the metric is
from the ideal (i.e. 1) result. When combining two measures into a single metric it is
important to consider how we want each measure to influence the metric. Since
lower consumption is desirable, consumption should lower the final metric, and
since higher accuracy is desirable, accuracy should increase the final metric. We also
want it to convey some common-sense properties: If the DL-based system running
inference has 0% accuracy it doesn’t matter how much or little it costs because we
won’t use it, and an inaccurate inference is a complete waste of energy by itself, so
it makes sense to penalize its cost more heavily.

BUPT

Weighted Consumption/Cost 130

5.1.1. Weighted Consumption/Cost

With the previous properties in mind, we define a common function
presented in equation (5.1) for both metrics. It is a prerequisite in order to be able
to create the final APC and APEC metrics.

 (5.1)

This is a function to weight energy consumption/cost differently
between accurate inferences and inaccurate ones, where c is the energy
consumption/cost of a system, which could be measured per inference or per unit of

time, acc is the accuracy of the model and is a parameter (ranges from 0 to 0.5)

that controls how much weight is assigned to accurate inferences (i.e if = 0 the

weight assigned to accurate inferences is 0; if = 0.5, the weight assigned is the
same in all cases / for accurate as well as inaccurate inferences).

The function has the following properties:
 If the system a has a higher energy consumption/cost than system

b and both have the same accuracy the weighted consumption/cost
of b is lower or the same;

 If the system a has better accuracy than system b and both
consume/cost the same the weighted consumption/cost of a is lower
or the same;

 If energy consumption/cost of a system is 0 the weighted
consumption/cost is 0;

 Consumption/cost from inaccurate inferences is weighted more
heavily.

Inaccurate inferences as weighted by , since ;

BUPT

ENVIRONMENTALLY-FRIENDLY METRICS FOR DEEP LEARNING 131

5.1.2. Accuracy Per Consumption (APC) Inference Metric

Following, we will present the APC metric. This metric is a function that
takes into account not only the accuracy of a system (acc) but also the energy
consumption of the system (c), as can be seen in equation (5.2):

 (5.2)

where c stands for the energy consumption of the system and it’s measured in Wh

and acc stands for accuracy; is the parameter for the function, the default

value is 0.1; is a parameter (ranges from 0 to infinity) that controls the influence
of the cost in the final result: higher values will lower more heavily the value of the
metric regarding the cost. The default value is 1. It is important to mention here

that, as a rule of thumb, our recommendation is to use a value for in the ballpark

of where is the average cost of the systems to evaluate. This average
cost is among different systems that perform the same task, not each individual
cost average from a system to measure. For example, if the commonly used
methods to solve a task have an average cost of B, then, when measuring the APC

for these systems, in order to compare them to our own, we would use as the
value 1/B.

In the APC metric “c” means consumption and is proposed to be a
measure of the energy consumption of a single inference in a system, having its
value always greater than 0. The APC metric’s properties are the following:

 Ranges from 0 to 1;

 100% accuracy and 0 energy consumption imply the APC is 1;

 0% accuracy implies an APC of 0 regardless of energy consumption;

 APC increases with accuracy and decreases with energy
consumption; The nominator increases with accuracy (since it's
accuracy itself) and the denominator decreases with accuracy (or
stays constant) and increases with consumption, therefore the
premise is valid.

BUPT

Accuracy Per Consumption (APC) Inference Metric 132

 Consumption from inaccurate inferences is weighted more heavily,
as can be seen earlier regarding the proof for WCα.

In order to see how accuracy and consumption affect the APC value, we plot
APC over the consumption for different values of accuracy. In Fig.5.1 we can see
most of the properties demonstrated in this section.

Fig. 5.1. How different values of α and β affect the APC metric.

Where is 0, the consumption is not measured for correct inferences which
imply that a model with 100% accuracy will not be penalized by its consumption
(e.g. the constant pink colored line that is seen on the top-left side of Fig.5.1) as

compared to where is 0.25 and 0.5.

Similarly, in order to show how different values of affect the APC metric,

some variations in are presented on the right side of Fig. 5.1 where is 10, 100,

and 1000. We can see how the higher the the heavier the impact of the energy
consumption is in the value of the APC metric.

BUPT

ENVIRONMENTALLY-FRIENDLY METRICS FOR DEEP LEARNING 133

5.1.3. Accuracy Per Energy Cost (APEC) Inference Metric

Following, we will present the APEC metric. The function presented in

equation (5.3) for this metric is in appearance the same as the APC function.

 (5.3)

However, in practice, the two metrics are fundamentally different. Here, the

main difference lays in the meaning of the input “c”. In APEC, “c” means cost and is
proposed to be a measure of the energy cost of a single inference in a system,
therefore, it is measured in different units and in different ranges. In Germany, for
example, 1 kWh of energy costs 30.5 cents EUR [207]. Therefore, if our system
pays 100Wh of energy for each inference, the cost “c” of our system will be 3.05
(cents EUR). However, it is possible to set up a system in which one doesn’t pay for
the energy, for example, if the energy it consumes is a renewable type of energy
such as the green energy, e.g. solar energy that comes from the sun with the help
of a solar tracker [16]. In these kinds of systems, the cost of electricity would be 0,
and the APEC of these systems would be the same as the accuracy. Only in these
cases would it be theoretically possible to obtain 100% APEC.

The APEC metric’s properties are all the same as the APC metric’s properties
presented earlier. The only difference is the meaning of c, which here means cost,

thus the impact that different values for and have on the APEC metric is similar
to the APC metric, as seen earlier in Fig.5.1.

5.1.4. Time To Closest Accuracy Per Measured Energy
(TTCAPME) Training Metric

Following, we will define a metric called Time to closest Accuracy Per
Measured Energy (TTCAPME) that takes into account the energy consumption/cost
of a model, its accuracy, and the time it takes to train it up to that point. We also
want to be able to compare with this metric for the same problem both different
models and different systems.

For this, we define a delta in accuracy () and another one in energy

consumption/cost () for each problem, such that variations within that delta are

considered negligible. For example, if the accuracy delta () is 0.01 and the energy

delta () is 0.1, then a model with 0.924 accuracy and 1.12 energy
consumption/cost and a model with 0.921 accuracy and 1.18 energy
consumption/cost would be considered equally good.

Having defined both deltas, the grid is formed by the intervals of accuracy
and energy consumption/cost, and the value in each element of the grid is the
Accuracy Per Measured Energy (APME) of the lowest value in that element of the
grid, e.g. the element on the accuracy interval (0.25, 0.26) and energy interval
(1.5, 1.6) would be APME (1.5, 0.25). APME is a function that increases with
accuracy and decreases with energy consumption/cost. An example of this type of
grid can be seen in Fig.5.2 where redder colors represent higher values of APC.

BUPT

Time To Closest Accuracy Per Measured Energy (TTCAPME) Training Metric 134

Fig. 5.2. APC Grid with energy delta () = 1 and accuracy delta () = 0.01. Redder colors

represent higher values of APC.

The grid maps accuracies and energies to the “closest” APC values. This
metric compares training times of models within the same grid interval, considering
better the model that takes less time to fall into that interval.

For models on different APME values, we consider better the one with higher
APME value. Then, the metric effectively maps the ternary of values (accuracy,
energy consumption/cost, training time) to the ordered pair of values (“closest”
APC, training time), and offers us a way to compare between these outputs.

Ordinality: In order to be able to compare between values of our metric’s
outputs, we need the mathematical tools to define <, =, >.

Definition 1.1: Let be real numbers between 0 and 1 and real
positive numbers. Then we define the relationships between the ordered pairs

 as follows:

If then if and only if , if and only

if and if and only if

If then , and if then regardless

of
We will prove that the set of ordered pairs with the previously defined

ordinality is well-ordered.
Trichotomy: Since we defined the relations case by case, for two pairs only

one and exactly one of the relations is true.
Transitivity: We want to prove that if v, w, and z are ordered pairs with the

previously defined ordinality and v < w and w < z then v < z:

, then either or and

 , then either or and

BUPT

ENVIRONMENTALLY-FRIENDLY METRICS FOR DEEP LEARNING 135

If then therefore

If and then therefore

If and and and then and

therefore
Well-foundedness: We want to prove that every nonempty set of ordered

pairs has a least element, that is, it has an element x such that there is no other
element y in the subset where x > y. This is easy to prove: from a set of ordered
pairs we can find the elements that have the least value in the first component.
Then, from these elements, we find the one with greater second component value,
and that is the least element.

Parameters Properties: As mentioned earlier, this metric has two

parameters, energy delta () and accuracy delta (). Accuracy delta () reflects
inversely how important accuracy is for the model. High values for this parameter
will mean that a larger range of accuracies will be grouped together as if they were
the same value, therefore making smaller improvements in accuracy is not relevant.
Low values for these parameters will tend to keep different accuracies separated,
which will consider better models those with slightly better accuracies than others.

Following, because the training metric TTCAPME requires a function that
increases with accuracy and decreases with energy consumption/cost, for simplicity,
we will define two training metrics by using either APC or APEC as this function.

5.1.5. Time to closest Accuracy Per Consumption (TTCAPC)
Training Metric

The objective of this metric is to combine training time and the APC
inference metric in an intuitive way. The formula for TTCAPC is presented in (5.4):

 (5.4)

where trainingTime is the training time in seconds for the system, c is the energy
consumption per unit of time (Wh) of the system, acc is the accuracy of the
system and rounded is a function that maps values into a grid of values separated
by δ, where δ is a positive real value. Some rounded examples:
rounded0.1 (1.14) = 1.1; rounded0.1 (1.08) = 1; rounded0.1 (0.8) = 0.8;
rounded0.5 (1.14) = 1; rounded0.5 (1.08) = 1; rounded0.5 (0.8) = 0.5.

This will mean that higher accuracies will be celebrated and higher net
energy consumptions and higher training times will be penalized.

5.1.6. Time to closest Accuracy Per Energy Cost (TTCAPEC)
Training Metric

The objective of this metric is to combine training time and the APEC
inference metric. The formula for TTCAPEC is presented in (5.5) and appears the
same as the one presented earlier in (5.4) for the TTCAPC, but here the meaning of
c is different, meaning the energy cost of the system.

BUPT

Experimental Setup and Results Regarding APC, APEC, TTCAPC, and TTCAPEC
Metrics

136

 (5.5)

Similar to TTCAPC, this will mean that higher accuracies will be celebrated,
but higher energy costs and training times will be penalized.

5.1.7. Experimental Setup and Results Regarding APC, APEC,
TTCAPC, and TTCAPEC Metrics

In order to realize the experiments with the above-defined metrics, we
needed to measure and extract two types of data: the accuracy of the DL models
and the energy consumption of the system they run training and inference on.

For this tasks, regarding the inference, we made use of one of our
previously trained DL models from the work in [15], namely the MobileNetV2 as well
as of the systems (i.e. Nvidia Jetson TX2 and a laptop containing an Nvidia GTX
1060 GPU) on which this DL model was running inference in real-time [16].
Regarding the training, in this case, we make use of all four DL models from [15]. It
is important to mention that regarding the training time (seconds) for the Nvidia
Jetson TX2, the values are simulated. For the environment used to perform the
calculations of the proposed metrics, we decided to use the Python programming
language due to its simplicity and availability.

We naturally want to measure the APC for different values of accuracy and
power consumption, this being the reason why we run the tests on two different
platforms mentioned earlier, in order to see how they stand against each other.

For this, first, we run experiments for 2 hours on both the laptop containing
the Nvidia GTX 1060 GPU as well as on the Nvidia Jetson TX2 platform and feed
their power consumption values into the APC equation presented earlier in (5.2),
where “c” in this case stands for the power consumption of the system running the
MobileNetV2 DL model in real-time using motion detection [16]. Because both
platforms run Linux Ubuntu, these power consumption values are taken 12 times
(one power consumption value every 10 minutes) with the help of “sudo powerstat”
for the laptop containing the Nvidia GTX 1060 GPU and with the help of a power
measurement script [197] as well as “sudo ./tegrastats” for the Nvidia Jetson TX2
platform.

Secondly, we noted the accuracy values also every 10 minutes for a total of
12 times (2 hours), but in this case, instead of measuring the inference accuracy for
both platforms, we presented them only once, since presenting them for both
doesn’t influence our experimental results at all. Because of the weather, lighting
and image quality conditions, to name only a few, it resulted in many different
accuracy values, as seen in Table 24.

Table 24. APC with alpha=0.1 and beta=0.1 for our MobileNetV2 DL model [15, 16] running
inference in real-time for 2 hours, with 12 samples taken every 10 minutes.

Power Consumption
[W] Inference

Accuracy
[%]

APC [%]

Laptop
Nvidia
Jetson

TX2
Laptop

Nvidia
Jetson

TX2

BUPT

ENVIRONMENTALLY-FRIENDLY METRICS FOR DEEP LEARNING 137

50.07 8.85 99.7 65.84 91.39
50.51 9.01 92.11 49.42 79.81
47.16 9.01 91.32 49.63 78.69
49.11 9.07 94.54 54.57 83.27
49.6 6.94 50.25 13.51 36.4
49.12 8.96 25.57 5.34 15.13
49.15 9.19 80.69 34.39 64.46
48.51 9.11 47.31 12.49 31.06
47.9 9.23 60.14 18.8 42.25
47.03 9.05 85.86 41.5 71.21
48.15 9.15 99.42 65.98 90.68
46.01 9.3 98.31 64.25 88.79

This situation was very helpful in our experiment because it can be easily

seen how well our metrics perform beside only with big differences in power
consumption values. We used alpha=0.1 as the default and beta=0.1 since the
average consumption is close to 10 and the inverse of this number is 0.1.
 As we can see, the APC metric succeeds in unifying the two metrics of
accuracy and energy consumption into one, and therefore it is a better metric in the
cases where both accuracy and energy consumption are required to be taken into
account in the final result.

We also want to measure the APEC of our DL models in order to see how
they stand against each other and more importantly to see the difference between
the two types of energy: green energy (solar power) and traditional energy grid.

For simplicity and because it is out of the scope of this chapter to
experiment with data regarding electricity costs for all the countries in the world, we
will just take Germany as an example. According to “Strom Report” (based on
Eurostat data) [207], German retail consumers paid 0.00305 Euro cents for a Wh of
electricity in 2017. We will use that value to calculate the cost of energy by plugging
it in the equation presented in (5.3), where “c” in this case stands for the energy
cost. In Table 25 we can see these results.

Table 25. APEC with alpha=0.1 and beta=50 for our MobileNetV2 DL model [15, 16] running
inference in real-time for 2 hours with regular (paid) energy as well as with solar (free)
energy.

Power Cost [Cents
EUR] Inferenc

e
Accurac
y [%]

APEC [%] APEC
Green

(Solar)-
Powered

[%]
Laptop

Nvidia
Jetson

TX2

Lapto
p

Nvidia
Jetson TX2

0.1527 0.0269 99.7 55.87 87.56 99.7
0.1540 0.0274 92.11 39.74 74.58 92.11
0.1438 0.0274 91.32 40.03 73.36 91.32
0.1497 0.0276 94.54 44.65 78.37 94.54
0.1512 0.0211 50.25 9.77 31.80 50.25
0.1498 0.0273 25.57 3.77 12.46 25.57
0.1499 0.0280 80.69 26.43 58.31 80.69
0.1479 0.0277 47.31 9.01 26.31 47.31
0.1460 0.0281 60.14 13.82 36.54 60.14
0.1434 0.0276 85.86 32.64 65.36 85.86
0.1468 0.0279 99.42 56.08 86.69 99.42
0.1403 0.0283 98.31 54.36 84.50 98.31

BUPT

Experimental Setup and Results Regarding APC, APEC, TTCAPC, and TTCAPEC
Metrics

138

We used alpha=0.1 as the default and beta=50 since the average cost is
close to 0.03 and the inverse of this number is rounded up to 50.
 As we see in Table 25, the difference is remarkable between using green
energy (solar power) or not. In the cases where we use solar energy to power our
DL-based systems, the APEC is in every case around 20% higher for the Nvidia
Jetson TX2 platform and around 50% higher for the laptop containing the Nvidia
GTX 1060 GPU in terms of absolute values. As can be observed, the APEC metric
succeeds in taking into account the availability of the energy by unifying the two
metrics of accuracy and energy cost into one. In this way, the APEC metric is
superior in cases where not only the accuracy but also the energy cost matter in the
final result.

Regarding the results presented in Table 26, for the models trained on
different systems, we can see that if we choose an accuracy delta of 0.1 and energy
delta of 1, the APC is different for each of them, therefore, this means that the best
system is the one with the higher APC and training time is not considered.

Table 26. TTCAPC with Accuracy delta = 0.1, Energy delta = 1, beta = 0.1, alpha=0.1 for four
different DL models (V-VGG-19, I-InceptionV3, R-ResNet-50, M-MobileNetV2) in two different
hardware platforms.

Laptop Nvidia Jetson TX2

V I R M V I R M

Accuracy 90.5
6

93.41 93.49 94.54 90.56 93.41 93.49 94.54

Energy
Consumptio

n (Wh)

49.9
525

53.05
23

50.26
38

48.45
08 11.6138

10.333
8

9.979
2 8.9069

Rounded
Accuracy

90.5
5 93.45 93.45 94.55 90.55 93.45 93.45 94.55

Rounded
Energy

Consumptio
n

48.5 53.5 50.5 48.5 8.5 10.5 9.5 8.5

Closest APC
47.7
21

50.50
3

51.83
9

54.87
9 78.243 80.084

81.19
0 83.918

Train
seconds

20.2
73

38.85
3

21.39
6

38.84
7

20.273 38.853 21.39
6

38.847

However, in Table 27, with the same models but with larger deltas we see

that two models result in the same APC, and therefore the deciding factor is the
training time.

Table 27. TTCAPC with Accuracy delta = 5, Energy delta = 10, beta = 0.1 for four different DL
models (V-VGG-19, I-InceptionV3, R-ResNet-50, M-MobileNetV2) in two different hardware
platforms.

 Laptop Nvidia Jetson TX2

BUPT

ENVIRONMENTALLY-FRIENDLY METRICS FOR DEEP LEARNING 139

V I R M V I R M

Accuracy 90.56 93.41 93.49 94.54 90.56 93.41 93.49 94.54

Energy
Consumpti
on (Wh)

49.95
25

53.05
23

50.26
38

48.45
08

11.613
8

10.333
8

9.979
2

8.9069

Rounded
Accuracy

92.5

Rounded
Energy

Consumpti
on

45 55 45 15 5

Closest
APC

52.74
4

48.146 52.74
4

73.926 85.352

Train
seconds

20.27
3

38.85
3

21.39
6

38.84
7 20.273 38.853

21.39
6 38.847

Regarding the experiments for the TTCAPEC metric, we use the same

country (Germany) and price for electricity (0.00305 Euro cents for a Wh) [207] as
mentioned earlier regarding the experiments with the APEC metric.

Similarly to the results regarding TTCAPC presented in Table 26, on Table 28
we can see that for the models we trained on different systems, if we choose an
accuracy delta of 0.1 and energy delta of 0.001, the APEC is different for each of
them, therefore the best system is the one with the best APEC and training time is
not considered.

Table 28. TTCAPEC with Accuracy delta = 0.1, Energy delta = 0.001, beta = 50, alpha=0.1 for
four different DL models (V-VGG-19, I-InceptionV3, R-ResNet-50, M-MobileNetV2) in two
different hardware platforms.

Laptop Nvidia Jetson TX2

V I R M V I R M

Accurac
y

90.56 93.41 93.49 94.54 90.56 93.41 93.49 94.54

Energy
Cost

(cents)
0.1524 0.1618 0.1533 0.1478 0.0354 0.0315 0.0304 0.0272

Rounded
Energy

Cost
0.1525 0.1615 0.1535 0.14775 0.0355 0.0315 0.0305 0.0275

Rounded
Accurac

y
90.55 93.45 94.55 90.55 93.45 94.55

BUPT

Experimental Setup and Results Regarding APC, APEC, TTCAPC, and TTCAPEC
Metrics

140

Closest
APEC 37.557 40.924 42.096 45.000 68.161 74.739 75.217 78.468

Closest
APEC
Green
(Solar)

Powered

90.55 93.45 94.55 90.55 93.45 94.55

Train
seconds

20.273 38.853 21.396 38.847 20.273 38.853 21.396 38.847

However, as seen in Table 29, with the same models but with larger deltas,

all models result in the same APEC, and therefore the deciding factor is the training
time.

Table 29. TTCAPEC with Accuracy delta = 5, Energy delta = 0.1, beta = 50 for four different
DL models (V-VGG-19, I-InceptionV3, R-ResNet-50, M-MobileNetV2) in two different hardware
platforms.

Laptop Nvidia Jetson TX2

V I R M V I R M

Accuracy 90.56 93.41 93.49 94.54 90.56 93.41 93.49 94.54

Energy
Cost

(cents)
0.1524 0.1618 0.1533 0.1478 0.0354 0.0315 0.0304 0.0272

Rounded
Energy

Cost
0.15 0.05

Rounded
Accuracy

92.5

Closest
APEC

40.997 65.198

Closest
APEC
Green
(Solar)

Powered

92.5

Train
seconds

20.273 38.853 21.396 38.847 20.273 38.853 21.396 38.847

 It is important to mention that despite using the term accuracy in our APC
and APEC metrics, both metrics can work well also by using another metric in place
of accuracy (as long as it ranges from 0 to 1, meaning that 0 represents a negative
score and 1 represents a positive one), such as the ones used by MLPerf Benchmark

BUPT

ENVIRONMENTALLY-FRIENDLY METRICS FOR DEEP LEARNING 141

[198, 199]. Also, the metrics proposed in this paper can work for any DL-based
system; all that is needed is to have the training time, the consumption, the cost,
and the accuracy measured.

5.2. Deep Learning-Based Computer Vision Application
with Multiple Built-In Data Science-Oriented Capabilities

As mentioned earlier, data is at the core of every DL application. Because
the ML lifecycle consists of four stages such as data management, model learning,
model verification and model deployment [208], in order to collect, analyze,
interpret and make use of this data, e.g. training accurate models for real-life
scenarios, in recent years, new specializations were introduced in universities
around the world such as ML and Data Science, to name only a few. Additionally,
also new career positions were created recently such as ML Engineer and Data
Scientist, being some of the top paid positions in the industry [6].
 Regarding Computer Vision applications for image classification tasks, a
major bottleneck before training the necessary DL models is considered to be the
data collection which consists mainly of data acquisition, data labeling and
improvement of the existing data in order to train very accurate DL models [209].
Another bottleneck is that, because the amount of data needed to train a DL model
is usually required to be very large in size and because most of this important data
is not released to the general public but is instead proprietary, the need of an
original dataset for a particular DL project can be very crucial. In general, data can
be acquired either by: a) buying it from marketplaces or companies such as Quandl
[210] and URSA [211]; b) searching it for free on platforms like Kaggle [212]; c)
crawling it from internet resources with the help of search engine crawlers [213]; d)
paying to a 24/7 workforce on Amazon Mechanical Turk [214] like the creators of
the ImageNet dataset did to have all of their images labeled [29]; e) creating it
manually for free (e.g. when the user takes all the photos and labels them himself),
which can be impossible most of the time because of a low-budget, a low-quality
camera, time constraints, etc. Also, the importance of image deduplication can be
seen in the fields of Computer Vision and DL where a high number of duplicates can
create biases in the evaluation of a DL model, such as in the case of CIFAR-10 and
CIFAR-100 datasets [215]. It is recommended that before training a DL
classification model, one should always check and make sure that there are no
duplicate images found in the dataset. Finding duplicate images manually can be
very hard for a human user and a time-consuming process, this being the reason
why a software solution to execute such a task is crucial. Some of the drawbacks of
existent solutions are that they usually require the user to buy the image
deduplication software or pay monthly for a cloud solution, they are big in size or
are hard to install and use.

Despite all of these options, especially in the case of scraping the images
from the internet, once stored they can still be unorganized or of a lower quality
than expected, with images needed to be sorted out each in their respective class
folder in order for the user (e.g. data scientist) to be able later to analyze and use
this data for training a performant DL model. This kind of sorting task can take a
tremendous amount of time even for a team, from several days or weeks to even
months [216]. Another difficult task is that once the data is cleaned, organized and
ready to be trained from scratch or using transfer learning, because of the variety of
DL architectures, each with different sizes and training time needed until reaching

BUPT

The Proposed Deep Learning-Based Computer Vision Application 142

convergence [217], it can be very difficult to know from the beginning which DL
architecture fits the best a given dataset and will, at the end of the training, result
in a DL model that has high accuracy. Because energy consumption in DL started to
become a very debated aspect in recent months, especially regarding climate
change [8, 10, 16, 20, 50], the necessity of evaluating the performance of DL
models also by their energy consumption and cost is very crucial.

Considering these aspects, our work introduces a DL-based Computer Vision
application that has multiple unique built-in Data Science-oriented capabilities which
give the user the ability to train a DL image classification model without any
programming skills. It also automatically searches for images on the internet, sort
these images each in their individual class folder and is able to remove duplicate
images as well as to apply data augmentation in a very intuitive and user-friendly
way. Additionally, it gives the user an option to evaluate the performance of a DL
model and hardware platform not only by considering its accuracy but also its power
consumption and cost by using the environmentally-friendly metrics APC, APEC,
TTCAPC, and TTCAPEC [20].

5.2.1. The Proposed Deep Learning-Based Computer Vision
Application

The proposed DL-based Computer Vision application is summarized in Fig.
5.3 and is built using the Python programming language. It is composed of the most
common features needed in the Computer Vision field and facilitate them in the
form of a GUI, without requiring the user to have any knowledge about coding or DL
in order to be able to fully use it.

Fig. 5.3. Summarized view of the proposed Computer Vision application that incorporates
features such as an automatic Image Crawler and Image Sorter assisted by inference
classification, an Image Deduplicator, a DL Model Trainer with Data Augmentation capabilities
as well as calculators regarding Accuracy, APC, APEC, TTCAPC, and TTCAPEC.

Regarding the system, the compilation dependencies and installation
requirements of the proposed application are Python 3, Windows 10 (or later
version) or Linux (Ubuntu 12 or later version). Regarding the Python libraries, we
use PyQt5 for creating the GUI, HDF5 for loading DL model files, Tensorflow for
training and inference, OpenCV for image processing, Numpy for data processing,
Shutil for copying images in the system, TQDM for showing the terminal progress
bar, Imagededup [137] for deduplication of images, Icrawler [213] for crawling the
images and fman build system (fbs) for creating installers.

There are certain conventions that are common in all the features of the
proposed application:

BUPT

ENVIRONMENTALLY-FRIENDLY METRICS FOR DEEP LEARNING 143

1. Model files: These are .h5 files that contain the architecture of a Keras model
and the weights of its parameters. These are used to load (and save) a
previously trained model in order to be able to use it.

2. Model class files: These are extensionless files that contain the labels of each
of the classes of a DL model. It contains n lines, where n is the number of
classes in the model, and the line i contains the label corresponding to the ith
element of the output of the DL model.

3. Preprocessing function: In this convention, a preprocessing function is a
function that takes as input the path to an image and a shape, loads the
image from the input path, converts the image to an array and fits it to the
input of the model.

4. Images folders structures: We use two different folder structures:
unclassified structures and classified structures. The unclassified images
folders structure is the simplest one, consisting of just one folder containing
images, presumably to be classified or deduplicated. The classified images
folders structure consists of a folder which in turn contains subfolders. Each
subfolder represents a class of images, is named the same as the label for
that class, and contains images tagged or classified belonging to that class.
Following, we will present all the built-in features: Automatic web crawler

assisted by inference classification, Images deduplication, Images Sorter assisted by
inference classification, DL Model Trainer with Data Augmentation capabilities,
Accuracy calculator as well as the APC, APEC, TTCAPC and TTCAPEC [20]
calculators.

Regarding the image crawler assisted by inference classification, the
purpose of this feature is to collect images related to a keyword (representing a
class) from the web and by using a classification algorithm, to make sure that the
images are indeed belonging to this class. During the inference process needed for
cleaning the images, a preprocessing is happening in the background, which,
depending on the pretrained or custom DL model that is chosen, will resize the
images, making them have the correct input shape (e.g. 28×28×1 for MNIST and
224×224×3 for ImageNet) for the DL model.

A summarized view of the implemented Image Crawler feature can be seen
in Fig.5.4 and is composed of the following elements: ‘Model’ - a combo box
containing all the existent pretrained in-built DL models such as “mnist” or
“resnet50” as well as the ‘Custom’ option which gives the user the possibility to load
his own previously trained DL model; Confidence Slider (‘Confidence required’) - a
slider to select the minimum accuracy value to be used when classifying the images
and which ranges from 0 to 99; Image Class Selector (‘Select a class of images’) - a
combo box containing the labels of all the classes from the pretrained built-in
selected DL model (e.g. 10 classes for when the “mnist” model is selected and 1000
classes when the “resnet50” model is selected). Additionally, the box contains an
autocomplete search function as well; Images Amount (‘Max amount to get’) - a
slider to select the number of images that should be crawled from the internet,
ranging from 1 to 999 and ‘Destination Folder’ - a browser to select the path for the
final location of the obtained images.

BUPT

The Proposed Deep Learning-Based Computer Vision Application 144

Fig. 5.4. Summarized view of the proposed Image Crawler feature assisted by inference
classification.

The options under ‘Custom Model Configuration’ only apply when the DL
model selected is “Custom” and is not built-in in the proposed Computer Vision
application, e.g. when it was trained by the user itself. These options are: ‘Model
File’ - a browser to select the .h5 file the user wishes to use for inference and Model
Classes - a browser to select the extensionless file containing the name of each
output class on which the selected DL model (.h5 file) was trained on. Finally, this
feature’s GUI interface has a button (‘Add Images!’) that begins the web crawling
process. With the help of this feature, images are automatically crawled by the
crawler and downloaded to a temporal folder location. After that, each image is
classified with the selected DL model, and if the classification coincides with the
selected class and the confidence is higher than the selected threshold, the image is
moved to the ‘Destination folder’, where each image will be saved in its own class
folder. This feature automatizes the population of image classification datasets by
providing a reliable way of confirming that the downloaded images are clean and
correctly organized.

Regarding images deduplication, the purpose of this feature is to remove
duplicate images found in a certain folder. For this, we incorporated the
Imagededup techniques found in [137]. A summarized view of the implemented
Images Deduplication feature can be seen in Fig.5.5.

Fig. 5.5. Summarized view of the proposed Image Deduplication feature.

BUPT

ENVIRONMENTALLY-FRIENDLY METRICS FOR DEEP LEARNING 145

 This feature is composed of the following elements: ‘Images folder’ - a
browser to select the location of the folder containing the images that need to be
analyzed for duplicate images; ‘Destination folder’ - a browser to select the location
of the folder where the deduplicated images will be stored; ‘Duplicates Folder’ - a
browser to select the location of the folder where the found duplicate images will be
stored. Each duplicate image found will be stored in a subfolder. Regarding
advanced settings, it is composed of: Hashing method selector (‘Select a hashing
method’) - a combo box containing 4 hashing methods that can be used for
deduplication (Perceptual Hashing (default), Difference Hashing, Wavelet Hashing,
and Average Hashing) as well as a ‘Max Distance Threshold’ - the maximum
distance by which two images will be considered to be the same (default value is
10). Finally, this interface has a button (‘Deduplicate!’) that begins the deduplication
process according to the selected parameters.

Following, we will shortly describe the types of hashes we are using in the
images deduplication feature: a) Average Hash: the Average Hash algorithm first
converts the input image to grayscale and then scales it down. In our case, as we
want to generate a 64-bit hash, the image is scaled down. Next, the average of all
gray values of the image is calculated and then the pixels are examined one by one
from left to right. If the gray value is larger than the average, a 1 value is added to
the hash, otherwise a 0 value; b) Difference Hash: Similar to the Average Hash
algorithm, the Difference Hash algorithm initially generates a grayscale image from
the input image. Here, from each row, the pixels are examined serially from left to
right and compared to their neighbor to the right, resulting in a hash; c)
Perceptual Hash: After gray scaling, it applies the discrete cosine transform to
rows and as well as to columns. Next, we calculate the median of the gray values in
this image and generate, analogous to the Median Hash algorithm, a hash value
from the image; d) Wavelet Hash: Analogous to the Average Hash algorithm, the
Wavelet Hash algorithm also generates a gray value image. Next, a two-dimensional
wavelet transform is applied to the image. In our case, we use the default wavelet
function called the Haar Wavelet. Next, each pixel is compared to the median and
the hash is calculated. Regarding this deduplication feature, first, the hasher
generates hashes for each of the images found in the images folder. With these
hashes, the distances between hashes (images) are then calculated and if they are
lower than the maximum distance threshold (e.g. 10), then they are considered
duplicates. Secondly, for each group of duplicates, the first image is selected as
“original” and a folder is created in the duplicates folder with the name of the
“original” folder. Then all duplicates of this image are stored on that folder. This
feature successfully integrates the image deduplication technique [137] and
provides a simple and quick way to utilize it.
 Regarding the image sorter assisted by inference classification, this feature
helps a user to sort an unsorted array of images by making use of DL models. A
summarized view of the implemented Images Sorter feature assisted by inference
classification can be seen in Fig.5.6 and is composed of elements similar to the ones
presented earlier for the Image Crawler feature, but in this case with the function of
selecting the path to the folders from which and where images should be sorted.

BUPT

The Proposed Deep Learning-Based Computer Vision Application 146

Fig. 5.6. Summarized view of the proposed Image Sorter feature assisted by inference
classification.

In the destination folder, a new folder is created for each possible class, with
the name extracted from the extensionless file that contains all the names of the
classes, plus a folder named ‘Undetermined’. Then, each image from the ‘Images
Folder’ is automatically preprocessed, feed as input to the selected DL model and
saved in the corresponding class folder. The highest value from the output
determines the predicted class of the image: if this value is less than the minimum
‘Confidence required’, value, then the image will be copied and placed in the
‘Undetermined’ folder, otherwise, the image will be copied to the folder
corresponding to the class of the highest value from the output. We took the
decision of copying the files instead of moving them, for data security and backup
reasons. This feature heavily reduces the amount of time required to sort through
an unclassified dataset of images by not only doing it automatically but also
removing the need to set up coding environments or even write a single line of
code.

Regarding the model trainer with data augmentation capabilities, this
feature gives the user a simple GUI to select different parameters in order to train
and save a DL image classifier model. A summarized view of the implemented DL
Model Trainer feature assisted by inference classification can be seen in Fig.5.7.

Fig. 5.7. Summarized view of the proposed DL Model Trainer feature.

BUPT

ENVIRONMENTALLY-FRIENDLY METRICS FOR DEEP LEARNING 147

This feature is composed of the following elements: ‘Model’ – as described
earlier for the Image Crawler feature; ‘Sorted images folder’ - a browser to select
the folder that contains the classified folder structure with the images to be trained
on; ‘Number of training batches’ - an integer input, to specify the number of
batches to train and ‘Size of batches’ - an integer input, to specify the number of
images per batch. Regarding the custom options, they are the same as mentioned
earlier regarding the Image Crawler feature. Next, this interface has a button (‘Train
model’) that, when clicked on, prompts a new window for the user to be able to
visualize in a very user-friendly way all the image transformations that can be
applied to the training dataset in a random way during training. More exactly, as
can be seen in Fig.5.8, the user can input the following parameters for data
augmentation: Horizontal Flip - if checked the augmentation will randomly flip or not
images horizontally; Vertical Flip - if checked the augmentation will randomly flip or
not images horizontally; Max Width Shift - Slider (%), maximum percentage (value
between 0 and 100) of the image width that it can be shifted left or right; Max
Height Shift - Slider (%), maximum percentage (value between 0 and 100) of the
image height that it can be shifted up or down; Max Angle Shift - Slider (degrees °),
the maximum amount of degrees (value between 0 and 90) that an image might be
rotated and Max Shear Shift - Slider (%), maximum shear value (value between 0
and 100) for image shearing.

Fig. 5.8. Summarized view of the proposed Data Augmentation feature.

The data augmentation feature allows the user to visualize the maximum

possible changes that can be made to an image in real-time, without the need of
guessing the right parameters. Following, a training generator is defined with the
selected parameters; The generator randomly takes images from the folder
structure and fills batches of the selected size, for the number of batches that are
selected. These batches are yielded as they are being generated. Regarding the
training, first, the selected DL model is loaded, its output layer is removed, the

BUPT

The Proposed Deep Learning-Based Computer Vision Application 148

previous layers are frozen and a new output layer with the size of the number of
classes in the folder structure is added. The model is then compiled with the Adam
optimizer [205] and the categorical cross-entropy as the loss function. Finally, the
generator is fed to the model to be fitted. Once the training is done, the total
training time is shown to the user and a model file (.h5) is created on a prompted
input location. This feature achieves the possibility of training a custom DL model on
custom classes just by separating images in different folders. There is no knowledge
needed about DL and this feature can later also be easily used by the Image Sorting
feature described earlier in order to sort future new unsorted images.

Regarding the accuracy calculator, this section of the application GUI gives a
user the option to compute the accuracy of a DL model on the given dataset in the
classified images folder structure. A summarized view of the implemented Accuracy
Calculator feature can be seen in Fig.5.9 and is composed of the following elements:
‘Model’ - as described earlier for the Image Crawler feature; ‘Test images folder’ - a
browser to select the folder that contains the classified folder structure to measure
the accuracy of a DL classification model; ‘Size of batches’ - an integer input, to
specify the number of images per batch. The custom options are the same as
mentioned earlier regarding the Image Crawler feature. Finally, this interface has a
button (‘Calculate Accuracy’) that starts the accuracy evaluation process.

Fig. 5.9. Summarized view of the proposed Accuracy Calculator feature.

 After loading the DL model and the list of classes, it searches for the classes
as subfolders names in the classified images folder structure. Then, for each class
(or subfolder) it creates batches of the selected batch size, feeds them to the DL
model and counts the number of accurate results as well as the number of images.
With these results, it calculates the total accuracy of the DL model and shows it to
the user directly in the application GUI. This feature provides a simple and intuitive
GUI to measure the accuracy of any DL image classification model.
 Regarding the APC calculator, this GUI feature makes use of our APC metric
[20] and which is a function that takes into account not only the accuracy of a
system but also its energy consumption. The application GUI gives a user the option
to define the values for α and β as well as to specify and calculate the accuracy and
energy consumption of a DL model. A summarized view of the implemented APC
Calculator feature can be seen in Fig.5.10 and is composed of the following
elements: ‘Model test accuracy (%)’ - this widget gives a user the option to input
the accuracy or to use the previously described Accuracy Calculator feature to

BUPT

ENVIRONMENTALLY-FRIENDLY METRICS FOR DEEP LEARNING 149

measure the accuracy of a DL model and ‘Energy Consumption (Wh)’ - float input to
specify the power consumption of a user’s DL model.

Fig. 5.10. Summarized view of the proposed APC Calculator feature.

 Regarding the advanced options, it has: Alpha () - float input to specify the

desired value of (default 0.2) and Beta) - float input to specify the desired

value of (default 1). For simplicity, a table is shown with the following columns:
Accuracy, Energy Consumption, Alpha, Beta, and APC. Whenever a value is
changed, the table is automatically updated as well. Finally, the application GUI has
a button (‘Calculate APC’) to begin the calculation of the APC metric. The function
itself is an implementation on Numpy of our previously defined APC metric [20] and
takes as input parameters the values defined in the application GUI. The
implemented feature brings this new APC metric to any user by allowing them to
easily calculate the APC and know the performance of their DL model with regards
to not only the accuracy but also to the impact it has on the environment (higher
energy consumption = higher negative impact on nature). However, the drawback
of the current version of this APC calculator feature in the proposed application GUI
is that the user has to measure the energy consumption of the system manually.
 Regarding the APEC calculator, the APEC feature is presented in Fig.5.11

and lets a user define the values for and , specify or calculate the accuracy of a
DL model, specify the energy consumption of the DL model and specify the cost of
Wh, and calculates the resulting APEC.

The APEC feature of the proposed Computer Vision application is composed
of the following elements: ‘Model test accuracy (%)’ – works similar to the APC
widget described earlier; ‘Energy Consumption (Wh)’ - works also similar to the APC
widget described earlier and Wh Cost - float input to specify the cost in EUR cents of

a Wh. Regarding the advanced options, we have: Alpha () - float input to specify

the desired value of (default 0.2) and Beta - float input to specify the desired

value of (default 1). A similar table like the one for APC Calculator is shown also
here, with the following columns: Accuracy, Energy Cost, Alpha, Beta, and APEC.
Whenever a value is changed, the table is automatically updated here as well.
Finally, the application GUI has a button (‘Calculate APEC’) to begin the calculation
of the APEC metric. The function itself is an implementation on Numpy of our
previously defined APEC metric [20] and takes as input parameters the values
defined in the application GUI.

BUPT

The Proposed Deep Learning-Based Computer Vision Application 150

Fig. 5.11. Summarized view of the proposed APEC Calculator feature.

The implemented feature brings this new APEC metric to any user by

allowing them to easily calculate the APEC and evaluate the performance of their DL
model with regards to the impact it has on the environment (higher energy
consumption = higher cost = negative impact on nature). However, the drawback of
the current version of this APEC calculator feature is that the user has to measure
the energy consumption of the system and calculate its Wh cost manually.

Regarding the TTCAPC calculator, the objective of the TTAPC metric [20] is
to combine training time and the APC inference metric in an intuitive way. The
TTCAPC feature is presented in Fig.5.12 and is composed of the following elements:
‘Model test accuracy (%)’ and ‘Energy Consumption (Wh)’, both working similar to
the APEC widget described earlier; ‘Accuracy Delta’ – float input to specify the
granularity of the accuracy axis; ‘Energy Delta’ – float to specify the granularity of
the energy axis. Regarding the advanced options, they are the same as the ones
presented earlier regarding the APEC feature.

Fig. 5.12. Summarized view of the proposed TTCAPC Calculator feature.

A similar table like the one for APEC Calculator is shown also here, with the

following columns: Accuracy, Energy Consumption, Alpha, Beta, Accuracy Delta,
Energy Delta, Rounded Accuracy, Rounded Energy, Training Time and Closest APC.
Whenever a value is changed, the table is automatically updated here as well.

BUPT

ENVIRONMENTALLY-FRIENDLY METRICS FOR DEEP LEARNING 151

Finally, the application GUI has a button (‘Calculate TTCAPC’) to begin the
calculation of the TTCAPC metric.

Regarding the TTCAPEC calculator, the objective of the TTCAPEC metric [20]
is to combine training time and the APEC inference metric. The TTCAPEC feature is
presented in Fig.5.13 and is composed of the same elements like the TTCAPC
feature presented earlier and one additional element called ‘Energy Cost (EUR cents
per Wh)’ which is similar to the one presented earlier regarding the APEC metric
calculator and where the user can specify the cost in EUR cents of a Wh.

Fig. 5.13. Summarized view of the proposed TTCAPEC Calculator feature.

A similar table like the one for TTCAPC Calculator is shown also here, with

the following columns: Accuracy, Energy Cost, Alpha, Beta, Accuracy Delta, Energy
Delta, Rounded Accuracy, Rounded Energy, Training Time and Closest APEC. Finally,
the application GUI has a button (‘Calculate TTCAPEC’) to begin the calculation of
the TTCAPEC metric.

5.2.2. Experimental Setup and Results

Following, we will show the experimental results regarding all the
implemented features in comparison with existing alternatives found in the literature
and industry. We run our experiments on a Desktop PC with the following
configuration: on the hardware side we use an Intel(R) Core(TM) i7-7800X CPU @
3.50GHz, 6 Core(s), 12 Logical Processor(s) with 32 GB RAM and an Nvidia GTX
1080 Ti as the GPU; on the software side we use Microsoft Windows 10 Pro as the
operating system with CUDA 9.0, CuDNN 7.6.0 and Tensorflow 1.10.0 using the
Keras 2.2.4 framework.
 As can be seen in Table 30, our proposed Image Crawler feature
outperforms existent solutions and improves upon them.

Table 30. Comparison between existent and the proposed Image Crawling solution.

Features Existent Solutions
[213]

Proposed
Solution

Image Crawler Yes Yes

BUPT

Experimental Setup and Results 152

Built-In DL Models No Yes
Custom DL models No Yes

Cleans Dataset
automatically?

No Yes

Speed Test (sec)
Crawling 97 Images 23 23
Cleaning 97 Images 47 10

Even though the crawling took the same amount of time, this is not the case

regarding the cleaning part, where, because this feature is not available in any of
the existent solutions, this needed to be done manually and took 47 seconds for a
folder containing 97 images as compared to only 10 seconds for our proposed
solution which executed the task automatically. A comparison between “dirty”
images and clean images can be seen in Fig.5.14 where, for simplicity, we searched
for 97 pictures of “cucumber”, which is one class from the total of 1000 classes
found in the ImageNet dataset.

Fig. 5.14. Summarized view of comparison between existent and the proposed image crawling
solution. The pictures marked with a red rectangle are some examples of “dirty” images found
in existent solutions. By comparison, the proposed image crawling feature assisted by DL
inference contains only clean images.

It can be easily observed how the existent solutions provide images that
don’t represent an actual cucumber, but products (e.g. shampoos) that are made
out of it. After automatically cleaning these images with a confidence rate of 50%
with the proposed feature, only 64 clean images remained in the folder.

BUPT

ENVIRONMENTALLY-FRIENDLY METRICS FOR DEEP LEARNING 153

For the experiments seen in Table 31, we tested the speed time of the
proposed built-in image deduplication feature that uses the Imagededup python
package [137]. We run these experiments on finding only exact duplicates on the
same number of images with a maximum distance threshold of 10 for all four
hashing methods. As can be seen, the average speed is about 16 seconds for finding
duplicates in a folder containing 1.226 images, with Difference Hashing being the
fastest hashing method from all four.

Table 31. Speed Results for the 4 hashing methods of the proposed Image Deduplication
feature.

Nr. of
Images Hashing Method Speed Time (sec)

1.226

Perceptual Hashing 16
Difference Hashing 15
Wavelet Hashing 17
Average Hashing 16

For our experiments regarding the sorting of images with the proposed

images sorter feature, we used both the MNIST as well as the ImageNet pre-trained
models with a confidence rate of 50% and presented the results in Table 32.

Table 32. Speed Time for the proposed Images Sorting feature.

DL Model Nr. of
Classes

Nr. of
Images

Undetermin
ed Images

Speed
Time
(sec)

MNIST 10 70.000 69 307
ImageNet 1000 456.567 135.789 40.817

Custom [15] 34 2.380 34 223

Regarding MNIST experiments, we converted the MNIST dataset consisting
of 70.000 images of 28×28 pixels to PNG format by using the script in [218] and
mixed all these images in a folder. After that, we run our image sorter feature on
them and succeeded to have only 0.09% of undetermined images, with a total
speed time of around 6 minutes. Regarding ImageNet, we used the ImageNet Large
Scale Visual Recognition Challenge 2013 (ILSVRC2013) dataset containing 456.567
images belonging to 1000 classes with a confidence rate of 50%. Here we
successfully sorted all images in around 11 hours and 20 minutes, more exactly in
40.817 seconds, with 29.74% (135.789) undetermined images. Regarding the
custom model, we used one of our previously trained DL models (ResNet-50) that
can classify 34 animal classes [15] on a number of 2.380 images of 256×Ratio
pixels (70 images for each of the 34 animal classes) with a confidence rate of 50%.
Here we succeeded to have 1.42% undetermined images, with a total speed time of
almost 4 minutes. The percentage of the undetermined images for all cases can be
improved by modifying the confidence rate, but it is out of this work’s scope to
experiment with different confidence values.

The time that a DL prediction task takes depends on a few variables, mainly
the processing power of the machine used to run the model, the framework used to
call the inference of the model and the model itself. Since processing power keeps
changing and varies greatly over different machines, and all the frameworks are
optimized complexity wise and keep evolving, we find that among these three, the
most important to measure is therefore the model itself used in the prediction.

BUPT

Experimental Setup and Results 154

Models vary greatly in their architecture, but all DL models can be mostly
decomposed as a series of floating points operations (FLOPs). Because, generally,
more FLOPs equal more processing needed and therefore more time spent in the
whole operation, we measured the time complexity of the built-in ImageNet
(‘resnet50’) and MNIST (‘mnist’) models in FLOPS and achieved 3.800 MFLOPS or
3.8 GFLOPS regarding ImageNet and 9 MFLOPS or 0.009 GFLOPS regarding MNIST.

For the experiments regarding the DL model training feature, because we
want to evaluate the application on a real-world problem, we will attempt to show
that this feature could be very useful for doctors or medical professionals in the aid
of detecting diseases from imaging data (e.g. respiratory diseases detection with x-
ray images). In order to prove this, we will attempt to automatically sort between
the images of sick patients versus healthy patients regarding, firstly, pneumonia
[64], and secondly, COVID-19 [65], all within our application and doing it only with
the training feature that the application provides. For this, first, in order to classify
between x-ray images of patients with pneumonia versus x-ray images of healthy
patients, we made use of transfer learning and trained a ‘resnet50’ architecture for
around 2 hours without data augmentation on pneumonia [64] dataset containing
5.200 train images by selecting 10 as the value for the number of training batches
and 10 as the value for the size of batches (amount of images per batch) and
achieved 98.54% train accuracy after 10 epochs. Secondly, in order to classify
between x-ray images of patients with COVID-19 versus x-ray images of negative
patients, we again made use of transfer learning and trained a ‘resnet50’
architecture for around 1 hour without data augmentation on the COVID-19 [65]
dataset containing 107 train images by selecting the same values for the number
and size of training batches as the pneumonia model mentioned above and achieved
100% train accuracy after 100 epochs.

For the experiments regarding the accuracy calculator feature, we used the
two custom DL models trained earlier to classify x-ray images of patients with
pneumonia versus x-ray images of healthy patients and between x-ray images of
patients with COVID-19 versus x-ray images of negative patients, with 20 as the
size of batches (20 images per batch). The evaluation took in both cases around 50
seconds with a test accuracy of 93.75% regarding the pneumonia model on 620
test images and 91% regarding the COVID-19 model on 11 test images, proving
that the proposed Computer Vision application can easily be used by any medical
personal with very basic computer knowledge in order to train and test a DL
classification model for medical work purposes.

Regarding the simulated experiments with the proposed APC [20] calculator
feature, we presented the results for different model test accuracy (%) and energy
consumption (Wh) values in Table 33. We run all the experiments with 0.2 as the
alpha value and with 1.0 as the beta value.

Table 33. Summarized Results of the proposed APC Calculator feature.

Energy
Consumption

(Wh)

DL Model
Test

Accuracy
(%)

APC (%)

10 99.0 32.14
2 99.0 69.91
1 99.7 82.91
10 99.7 32.96
50 99.7 8.96

BUPT

ENVIRONMENTALLY-FRIENDLY METRICS FOR DEEP LEARNING 155

10 94.5 27.47
50 50.0 1.61
1 50.0 31.25
10 50.0 7.14
10 40.0 5.12
1 40.0 23.8
1 100 83.33

It is important to mention that our recommendation for a correct

comparison between 2 DL models, is that it is always necessary that they are both
tested with the same alpha and beta values. As can be seen in Table 33 where we
experimented with random energy consumption and test accuracy values, our APC
Calculator feature is evaluating the performance of a DL model by considering not
only the accuracy but also the power consumption. Therefore, DL models that
consume around 50 Wh (e.g. when running inference on a laptop) instead of 10 Wh
(e.g. when running inference on a low-cost embedded platform such as the Nvidia
Jetson TX2) [16], are penalized more severely by the APC metric.
 Regarding the simulated experiments with the proposed APEC [20]
calculator feature, we presented the results for different model test accuracy (%)
and energy cost in Table 34. We run all the experiments with 0.2 as the alpha value
and with 1.0 as the beta value.

Table 34. Summarized Results of the proposed APEC Calculator feature.

Energy
Consumption

[Wh]

Power Cost
[cents EUR]

DL Model Test
Accuracy [%] APEC [%]

APEC Green
Energy [%]

10 0.03050 99.0 98.37 99.0
2 0.0061 99.0 98.87 99.0
1 0.00305 99.7 99.63 99.7
10 0.03050 99.7 99.08 99.7
50 0.1525 99.7 96.71 99.7
10 0.03050 94.5 93.8 94.5
50 0.1525 50.0 45.8 50.0
1 0.00305 50.0 49.9 50.0
10 0.03050 50.0 49.1 50.0
10 0.03050 40.0 39.18 40.0
1 0.00305 40.0 39.91 40.0
1 0.00305 100 99.93 100

For simplicity, regarding electricity costs, we took Germany as an example.

As mentioned earlier, according to “Strom Report” (based on Eurostat data) [207],
German retail consumers paid 0.00305 Euro cents for a Wh of electricity in 2017.
We used this value to calculate the cost of energy. As can be seen, the APEC metric
favors lower power consumption and cost, favoring the use of green energy (free
and clean energy).
 Regarding the experiments with the proposed TTCAPC [20] calculator
feature, we simulated a custom DL model on two platforms and presented the
results in Table 35.

BUPT

Experimental Setup and Results 156

Table 35. TTCAPC with Accuracy delta = 0.1, Energy delta = 1, beta = 0.1, alpha = 0.1.

 Desktop PC Nvidia Jetson
TX2

Accuracy 97.92
Energy Consumption

(Wh)
50 10

Rounded Accuracy 97.95
Rounded Energy

Consumption
50.5 10.5

Closest APC 61.28 87.11
Train seconds 60

As can be seen, even though the accuracy and training time is the same for

both platforms, the TTCAPC feature favors the platform which has less power
consumption.

Regarding the experiments with the proposed TTCAPEC [20] calculator
feature, we simulated with the same DL model values used also in the experiments
regarding the TTCAPC calculator earlier and presented the results in Table 36.

Table 36. TTCAPEC with Accuracy delta = 0.1, Energy delta = 1, beta = 0.1, alpha = 0.1.

 Desktop PC
Nvidia Jetson

TX2

Accuracy 97.92
Energy Cost (cents) 0.1525 0.0305

Rounded Energy Cost 0.1525 0.0305
Rounded Accuracy 97.95

Closest APEC 51.46 82.96
Closest APEC Green

(Solar) Powered
97.95

Train seconds 60

As can be also seen in this case, the TTCAPEC feature favors the lower
power consumption of a system because it results in a lower cost. Additionally and
more importantly, it favors DL-based systems that are powered by green energy,
because they have 0 electricity costs and no negative impact on our environment.

BUPT

Affordable Flying Probe-Inspired In-Circuit-Tester for Printed Circuit Boards
Evaluation with Application in Test Engineering Education

157

6. AFFORDABLE FLYING PROBE-INSPIRED IN-
CIRCUIT-TESTER FOR PRINTED CIRCUIT

BOARDS EVALUATION WITH APPLICATION
IN TEST ENGINEERING EDUCATION

Education is considered one of the most important factors that drive our
society into new horizons, bringing new understandings of our reality and thus
resulting in new and better technologies. Recent efforts in bringing affordable and
equal access to education are seen also on the UN agenda, one example being the
UN’s Sustainable Development Goals [189]. Regarding test engineering education, a
major issue found in many of the technical schools and universities around the globe
is the huge amount of technical books available but without giving the students also
a chance to have a hands-on experience with real parameter values of a PCB.
Concerning FPTs, this situation is usually the result of expensive ICT versions found
in the industry [12], which is the leading factor for the lack of proper testing
equipment in engineering laboratories.

One of the main concepts that help students be familiarized with the
important and delicate process of evaluating the performance of PCB testing
measurements is called testability. Testability is the property of a PCB to enable the
test engineer to easily define the electronic board checking procedure at the desired
level. Generally, it is given by a) mechanical parameters (the shape of the
populated PCB and the test adapter design); and b) electrical parameters (access to
the test samples, test methods and electrical isolation possibilities of surrounding
components). ICT enables a very fast testing procedure where access can be made
simultaneously on all test fields. However, this type of testing is demanding and
requires a suitable electronic board design with test pads.

Despite the fact that FPTs are able to perform high-speed testing with
flawless accuracy for each tested board, incorporating the latest technologies such
as Boundary Scan, ICT and even Optical Inspection [219], these features require
additional expensive hardware such as optical sensors and encoders as well as
forcing the test engineer to reconstruct the fixture every time a new board under
test is used, resulting in high costs and time consumption.

Considering these aspects, in this work, we propose an efficient FPICT that
has educational purposes and which is based on an Arduino MEGA2560
microcontroller, three ULN2003A motor drivers with their associated 28BYJ-48
Steppers as well as three Mechanical Endstop Limit Switches (MELS). Our education-
oriented FPICT is designed in a way to leverage the difficulties students have when
trying to learn new concepts in the domain of test engineering.

6.1. Hardware Components of the Proposed FPICT

Our FPICT is summarized in Fig.6.1 and resembles the characteristics of a
Flying Probe design and the operation features of a CMM. CMMs typically specify the

BUPT

Mechanical Components 158

position of a probe from a reference position in a three-dimensional Cartesian
coordinate system in terms of its displacement. Inspired by its simple yet efficient
design, we constructed our own tridimensional platform (axis X, Y, and Z) motorized
by Steppers which are controlled directly from an Arduino Mega 2560 mainboard. In
this section, we provide a detailed overview of our proposed FPICT system, which
can be divided into mechanical and electrical components.

Fig. 6.1. Left: FPICT Mechanical Structure with Axis Array (a, b) and MELS Placement (c, d).
Right: Complete experimental setup for the proposed FPICT.

6.1.1. Mechanical Components

The device was fixed on a parquet board that was cut according to the
following sizes: Length (L) = 430 mm; Width (l) = 200 mm, resulting in a total
space of A = L × l = 430 × 200 = 86.000 mm2 allocated for testing. The main
platform, from where the three axes (X, Y, and Z) gather their reference points was
mounted on two 190 mm long metal rods. According to Fig.6.1, our initial variant is
built around three main axes that we will describe in the following lines:
 X-Axis – is located at the inferior part of the main platform with the Stepper

motor being fixed on the parquet board a). The translation from one direction to
another is realized via a smaller cogwheel that interacts with a 130 mm long
rack. This allows complete translation freedom equal to the length of the entire
rack until it reaches the first MELS illustrated in the bottom part of scenario c).

 Y-Axis – is mounted on top of the main platform and contains two metal rods
(both 120 mm long), one of them being a screw that interacts with the Stepper
motor on the other end, as seen in scenario a). Since the stepper motor rotates
the screw in two distinct directions, the secondary platform (formed of a thick
Plexiglas) will be translated according to the straight drill rule, acting like a nut
on the screw. However, due to mechanical constraints, the translation freedom
of the Y-axis was reduced to 50 mm until it reaches the second MELS presented
in the top part of scenario c).

 Z-Axis – viewed as the most complex to build of the three-axis, adopts a two-
layered Plexiglas structure and is mounted directly on the previous axis system.
Composed of a 60 mm hexagonal nut and combined with a screw, it functions
exactly on the same principle as the previously described Y-axis. The translation
limit is set to ~ 20 mm, which is sufficient for the probe (nail) to touch the
contact of the PCB.

BUPT

Affordable Flying Probe-Inspired In-Circuit-Tester for Printed Circuit Boards
Evaluation with Application in Test Engineering Education

159

6.1.2. Electrical Components

Each of the three Cartesian axes (X, Y, Z) described above is controlled by

electrical equipment consisting of a main Arduino MEGA2560 microcontroller, 3
ULN2003A motor drivers, 3 28BYJ-48 Steppers and their MELS. We will detail each
of the individual parts and further argue why the chosen setup is effective from the
power consumption and cost perspectives.

Arduino Mega is an ATmega2560-based microcontroller board with 54 digital
input/output pins (14 of which can be used as PWM outputs), 16 analog inputs, 4
UARTs (hardware serial ports), 16 MHz crystal oscillator, USB connection, energy
jack, ICSP header, and a reset button. With all the listed characteristics and notably
because of the large number of digital pins, it provides an optimal solution for
complex projects. The board can operate on an external energy supply of 6V to 20V.
However, if supplied with less than 7V, the 5V connector will provide less voltage
while the board could become volatile. When using more than 12V, the voltage
controller can overheat and damage the board. Therefore, the suggested range is
between 7V and 12V. According to around 8 hours of measurements at the USB
plug with a flowing current of 52-54 mA, the average usage of the Arduino Mega
2560 is rated at 0,27W. For our project, we use a total number of 15 digital
inputs/outputs to assign pins 22-25 to the X-axis, pins 26-29 to the Y-axis, pins 30-
33 to the Z-axis and pins 46-48 to receive feedback from the MELS.
 ULN2003 is part of the well-known ULN200X IC series and represents a
relay driver IC made up of an array of Darlington transistors. It consists of seven
open pairs of Darlington collectors with prevalent emitters. In addition, ULN2003A
has the ability to simultaneously handle seven different relays. A single pair of
Darlington is made up of two bipolar transistors and operates between 500mA and
600mA current. ULN2003 operates on 5V using TTL and CMOS technologies. Its pin
configuration provides an accessible design so that the input pins are on the left side
of the IC while the output pins are placed on the opposite side. The chosen IC has a
broad variety of applications being frequently used as relay drivers to drive different
load types. ULN2003A can also be used to drive various engines (DC motors,
Steppers), logic buffers, lamp, and line drivers LED displays and motor driver
circuits.
 The chosen 28BYHYJ-48 Steppers are lightweight engines that are generally
incorporated into DVD drives, movement cameras, and other devices that require
high accuracy for a set of specific functions. The engine has a 4-coil unipolar mount
and each coil is rated at +5V, making it extremely simple to manage them with any
traditional microcontroller. These motor types have a 5.625 ° /64 step angle, which
means that the motor will have to take 64 steps to complete one rotation and cover
a 5.625 ° level for each step. Usually, these stepper motors consume high current,
thus requiring an IC driver like the ULN2003 that was listed earlier. As can be seen
in Fig.6.1, the engine of a stepper motor has four coils: one end of the coil is tied to
+ 5V (Red) and the other ends (Orange, Pink, Yellow, and Blue) are grouped
together and linked to the header connector of the ULN2003A. The operational
voltage is rated at 5V and hence it provides sufficient torque for moving the testing
probe around the DUT. Only when the coils are energized (grounded) in a logical
sequence the stepper motor is able to rotate in a certain direction. The logical
sequence can be implemented either by using a microcontroller or a dedicated
digital circuit. These types of stepper motors can be used in a variety of applications

BUPT

Sensorless-Based Test Point Tracking 160

such as CNC machines, security cameras, DVD players, car side mirror tilt systems
and precise control machines such as our FPICT.
 A limit switch is known as an electromechanical element that contains an
actuator that is mechanically connected to a set of contacts (terminals). During the
test of a PCB, whenever the actuator interacts with a foreign object (e.g. metal
object obstacle), the MELS device is triggered and starts sending a signal to the
contacts (terminals) to decide if the electrical connection should be on or off
(therefore, limit switches are practical and low-cost devices that allow the user to
activate or deactivate a certain process when the MELS was stimulated by an
external factor with the help of a lever-type of switch). The lever switch is wired up
so that it can pull the signal to LOW when it is activated. The micro board also has
an LED that will light up when the switch is activated. In our case, the MELS is used
to detect endpoints for all three axes of the FPICT. Usually, MELS can be used
together with RepRap Arduino Mega Pololu Shield (RAMPS) boards but can also be
combined with other microcontrollers such as the AtMega2560. The maximum
working voltage is rated at 200V while the current can go up to as much as 2A. The
MELS serves as a reference point from which the FPICT setup will start inspecting
the DUT.

6.2. Sensorless-Based Test Point Tracking

The proposed FPICT process is divided into several stages that are
correlated with Fig.6.2.

Fig. 6.2. Flying Probe Sensorless Tracking Procedure Based on Configurable Data Files.

BUPT

Affordable Flying Probe-Inspired In-Circuit-Tester for Printed Circuit Boards
Evaluation with Application in Test Engineering Education

161

It is worth mentioning that the FPICT procedure undergoes a number of
preliminary preparations known as modules (Axis Calibration, Distance to Steps
Conversion, Variables Initialization, Coordinates and Parameters Definition, and
Main Program Launch) before launching the main test program.

The Axis Calibration module sets the initial coordinates (0,0,0) of the
Cartesian landmark that the device sketches spatially. Any mechanical imperfection
of the constructed X, Y, Z-axes may influence the accuracy of the measurements
made according to the values in the Coordinates and Parameters Definition module.

Regarding the Distance to Steps Conversion module, the conversion is made
in a unique way for each of the variables declared for testing the voltage and
current. It is important to note that the voltage measurement procedure differs from
the one performed for the current, in that the mobile probe is connected to a single
analog input A0 of the Arduino Mega board and the voltage value is obtained by
measuring the test point which is always connected to the ground point. In this
case, the test program requires only three local variables denoted by Dist_X_mm,
Dist_Y_mm and Dist_Z_mm, representing the distance of each axis to the origin of
the Cartesian system. In the case of current measurement, at least two test points
from where the values are collected through the main program are required. As a
result, a set of variables noted with Dist_X1_mm, Dist_X2_mm, Dist_Y1_mm,
Dist_Y2_mm, and Dist_Z_mm are declared, where the pair (X1, Y1) designates the
first coordinates target point, the pair (X2, Y2) refers to the second test point and Z
is the same because the height from which the probe drops stays always constant
throughout the test. Because we use Stepper motors to move the axes, the test
program will have to translate the values of distances in steps according to the
following formula (6.1):

DistXStep DistXmm StepsPerMM  (6.1)

where DistXStep represents the number of steps obtained by multiplying the
Cartesian distance DistXmm by the value of the distance in millimeters executed by
a single step of the StepsPerMM engine (variables to which we will return to with
further explanation in this section). Additionally, because the Arduino Mega board
has a built-in ADC, implicit conversion of the parameters entered by the user in the
same module is performed. The ADC on the Arduino is a 10-bit ADC, which means
that it has the ability to detect 1.024 (210) discrete analog levels. Some
microcontrollers have 8-bit ADCs (28 = 256 discrete levels), and others have 16-bit
ADCs (216 = 65.536 discrete levels). Thus, the converter generates a ratiometric
value because the ADC assumes that 5V is 1.023 discrete levels and any value less
than 5V (1.023 discrete levels) will be a ratio between 5V and 1.023 discrete levels.
The result of the ADC in our case will be retained in a variable that appears in the
relation (6.2):

1023

5

ExpectedVoltage
CountExpectedVoltage




 (6.2)

where CountExpectedVoltage will count the measurements with the expected results
from the tests performed.

Regarding Variables Initialization, this module covers two types of variables
used: global and local. Due to the size and complexity of our code, we will list the

BUPT

Sensorless-Based Test Point Tracking 162

most important variables. The global variables can be called anywhere in the code
and allow a flexible modification by the domain expert:

 STEPS_PER_REVOLUTION – shows the total amount of motor steps for one

complete rotation (360 degrees). According to the Stepper user manual, the
recommended value is 2048

 MOTOR_SPEED1 – the value of the speed set for the first Stepper motor
corresponding to the X-axis, with a default value of 15

 MOTOR_SPEED2 – the value of the speed set for the second Stepper motor
corresponding to the Y-axis, with a default value of 15

 MOTOR_SPEED3 – the value of the speed set for the third Stepper motor
corresponding to the Z-axis, with a default value of 13

 MM_PER_STEP – the value in millimeters associated with a step executed by the
Stepper motor. In order to determine this value, a trial and error experiment
was used which resulted in 0.10 mm / step

 TOTAL_CURRENT_PARAMS – the total number of parameters associated with the
current measurement, with a set value of 4

 RES_CUR_MEASURE (RESCURMEASURE) – the resistance expected in Ohms
between the two test points (X1, Y1) and (X2, Y2) for measuring the current

 STEPS_PER_MM – is a set value that approximates the number of steps
performed per millimeter. The value found (determined by trial and error) was
100

Local variables are the elements that underlie data processing such as the
considered distances and the parameters targeted for verification. Dist_X1_mm,
Dist_Y1_mm, Dist_X2_mm, Dist_Y2_mm, Dist_Z_mm are the distances from the
reference point to the two test points associated with the measurement of the
current, respectively Dist_X1_step, Dist_Y1_step, Dist_X2_step, Dist_Y2_step, the
steps corresponding to the aforementioned distances. Variables volExpectedL and
volExpectedH are float-type variables for setting a sensitive threshold for voltage
measurements, while CountExpectedL and CountExpectedH will monitor the number
of parameters outside the range of allowed values for each test. Additionally,
curExpectedL and curExpectedH achieve the same minimum and maximum
threshold but only for current measurement.
 Regarding Coordinates and Parameters Definition, the set of variables and
parameters stated above will continue to be composed in the form of configurable
structures that are visible to the average user. For an easier understanding, all the
data that is needed to test the voltage and current were organized in cells, as can
be seen in Table 37.

Table 37. Example of the configuration structure for measuring voltage and current on the
selected test points.

Parameter
Number

Cartesian Coordinates (mm)

Current

Voltage Measuring Voltage Measuring

DIST X1 DIST Y1 DIST X2 DIST Y2 DIST Z

1 16.80 11.40 14

2 19.99 8 14

3 19.96 8 14

4 37.03 18.80 14

5 38 18.95 14

BUPT

Affordable Flying Probe-Inspired In-Circuit-Tester for Printed Circuit Boards
Evaluation with Application in Test Engineering Education

163

Parameter Description
Assigned
Pins (for
Voltage)

Targeted Microchip
Low
[V]

High
[V]

Low
[mA]

High
[mA] (for

Voltage)
(for

Current)
1 7 AtMega328 ... 4.5 5

2 20 AtMega328 ... 4.5 5

3 21 AtMega328 ... 4.5 5
4 31 AtMega16u2 ... 4 5

5 32 AtMega16u2 ... 4 5

The verification can be performed for various areas on the test board, which
in our case is an Arduino UNO with two microchips of interest: Atmega328 and
Atmega16u2. Both micro-devices must be powered at a voltage not exceeding 5V
and generally not falling below 4V. Each deviation from the range of values
considered critical (less than 4V and greater than 5V) according to the specialized
catalog, can lead to a decrease of the performance (if it falls below 4V) or even to
the failure of the board (if it exceeds 5V value). Additionally, the user will be able to
enter the data needed to test the current parameters in the cells where the free
space is represented by dots.

Regarding the Main Program Launch, this module can be started directly
from the Serial Monitor window in the Arduino IDE Suite Interface. Following the
configuration of the preliminary values (Cartesian distances as well as the values of
the voltage and current parameters), the main algorithm will move the calibrated
probe from the considered reference point to the first test point. An example of a
compact execution line for a voltage parameter during testing (which is very
efficient also regarding memory) is presented in Fig.6.3.

Fig. 6.3. The configuration file structure of an execution line for a voltage parameter.

 Once the test point is reached, the probe will collect the voltage value
through the analog input A0 which is converted according to formula (6.2) into the
binary system. Then, it is compared with the LowVoltage minimum value and the
HighVoltage maximum value, in order to decide if the parameter is within the
imposed limits (between 4 and 5V). Once the first value is measured, the moving
probe will move to the reference point to continue the measurement for the next
number of nodes. The same procedure is repeated for all the test points in Table 37,
up to the last value, in order to generate a complete report with the situation of
each node (test point) separately.

2 1
1000

voltage voltage
curmA

RESCURMEASURE


 

 (6.3)

According to formula (6.3) presented above, the mobile probe will have to
collect the values of the voltages from the ends of the resistor and to divide their
difference by the global variable declared earlier regarding the Variables
Initialization module, namely RES_CUR_MEASURE (RESCURMEASURE). The

BUPT

Experimental Setup and Results 164

determined value of the current will be compared with the two values in the
tolerance field, in order to check if it is within the limits imposed by the user.

6.3. Experimental Setup and Results

The most fundamental resources needed when designing an effective FPT
are probe positioning, measurements, test tools, development tools and time. These
resources are taken into account also by our final prototype seen on the right side of
Fig.6.1 and were obtained by analyzing the experimental dataset summarized in
Table 38.

Table 38. Single Point, Multiple Point, and Measurement Testing Results.

Test Type
No. of Test
Samples

(Parameters)

Precision
Testing

(%)

Average
time per
test cycle

[s]

System Power
Consumption

[W]

Idle Active

Single Point
Testing 500 100 10.35

0.360

3.895

Multiple Point
Testing 500 91.40 62.69 3.850

Measurement
Testing

1000 95.70 1.53 4.027

 The entire input dataset was determined by consulting the specialist catalog
of the Arduino board for the optimal operating sizes (voltage and current). The
Cartesian coordinates were measured using a digital caliper with the precision of
hundreds of millimeters from the chosen reference point. In terms of power
consumption, measurements were made with the multimeter, both with the laptop
connected via USB to the Arduino Mega as well as just with the proposed FPICT
alone (without a laptop). In the idle state, with the laptop connected, our FPICT
device consumed 72mA at a 5V power supply voltage, resulting in power
consumption of 0.36 W for all test scenarios. In the active state, with the X, Y, Z-
axes in motion and the laptop connected, the current consumption increased to
686mA at the same supply voltage, thus achieving a power consumption of 3.43W.
The average values for all test types are shown in Table 38.

The success of testing a parameter (voltage or current) is in principle given
by the positioning accuracy of the mobile pin and the ability of the FPT probe to
correctly read the value of the voltage or current on the already reached pin. As can
be seen from Table 38, the positioning accuracy when checking a single test point
shows that our FPICT is capable of reaching maximum accuracy (100%), whereas,
in the case of checking several nodes on the test board, the accuracy decreases in
some proportion (91.40%), either from mechanical impediments that need to be
revised or from the inability of the probe to take the voltage value correctly from
the tested pin. The average accuracy obtained for all measurements was 95.70%, a
relatively good percentage for a device built from low-cost components. The
average time per test cycle (s) noted in Table 38 was determined for single test
points and the entire test set composed of 5 parameters. Thus, 10.35 seconds were
obtained for a fixed test point, with coordinates set from repeated tests and an
average of about 1 minute for all 5 test points, each with different coordinates and

BUPT

Affordable Flying Probe-Inspired In-Circuit-Tester for Printed Circuit Boards
Evaluation with Application in Test Engineering Education

165

distances from the reference point. The measurement time of the probe was
estimated to be around one and a half seconds (1.53s).

BUPT

Throughput Improvement Solutions for SHA-256 166

7. TECHNOLOGICAL SOLUTIONS FOR
THROUGHPUT IMPROVEMENT OF A SECURE

HASH ALGORITHM-256 ENGINE

In this chapter, we will present our work published in [23] which describes a
set of techniques for improving the performance of a SHA-256 hardware
implementation. The proposed solution reduces the latency incurred for updating the
intermediate hash values and relies on using combinational tree structures of CSAs
interconnected in a Wallace tree manner for multi-operand addition. Furthermore,
the chapter investigates the throughout improvement provided by a combined
implementation of architecture’s binary adders with the round functions used by the
hash computation process. The proposed acceleration techniques can be adapted to
the other members of the SHA-2 family of algorithms. The architecture represents a
case study for hardware optimization based on different combinational structures for
binary addition and the effect of the carry propagate layer on the overall
performance. The synthesis results of the proposed designs are provided as support
for the performance analysis presented in this work.

7.1. Throughput Improvement Solutions for SHA-256

The hardware implementations of the SHA-2 hash functions, in general, and
of the SHA-256 algorithm, in particular, are benefiting of higher throughput and of a
comparatively more secure computing platform when compared to their software
counterparts. The literature contains references of dedicated hardware architectures
for offloading the computational-intensive operations of hash calculation in order to
obtain higher throughput [220], [221]. The effect of hash computation over the
system’s throughput is, in particular, relevant for the case of servers offering
services based around IPSec and SSL/TLS, for which the hash calculation latencies
become a limiting factor in servicing all received requests. In this context,
constructing a customized hashing accelerator relieves the CPU in such a server
from computing hashes, allowing it to attend other tasks and thus, optimizing the
clock cycles usage.

Another reason for implementing the hash computation in hardware relates
to security. Software implementations of a hash function, running on a general-
purpose processor, oftentimes lack the physical protection found in hardware
implementations due to the relative ease with which an attacker is capable of
inspecting and even modify the software implementation. Moreover, the intrusion
can even be set up concurrently with the system’s utilization, while the
cryptographic application is operational, this being achieved by using debugging
software. In the same class of attacks against software implementations of
cryptographic functions can be mentioned the timing attacks and the cache attacks
customized for breaking the security of other cryptographic services as well [222].

The SHA-256 architecture constructed in this chapter is an iterative design,
instantiating one round of the message scheduler and one round of the data

BUPT

Technological solutions for throughput improvement of a Secure Hash Algorithm-
256 Engine

167

compression stage in hardware. The reason for including a single iteration in
hardware was to provide a rigorous comparison framework for other acceleration
techniques, presented in the literature.

The message padding and parsing steps can be implemented either in
hardware or in software and are not considered. The basic design is depicted in Fig.
7.1. The first architectural optimization that can be applied to a hardware realization
of SHA-256 and the first design decision in our proposed architecture targets the
message scheduler. Similar to other hardware designs for SHA-256 found in the
literature, the architecture proposed in this chapter stores, at any given moment,
only 16 words of the message scheduler, instead of providing storage space for all
64 words. This reduction in storage requirements can be realized because the
relation used for calculating the next word of the message scheduler makes use of 4
words, all 4 being calculated no later than 16 iterations ahead [66].

Fig. 7.1. The basic architecture for SHA-256.

Moreover, because the first 16 words of the message scheduler are the very

16 words of the 512-bit input block, the hardware design for the message scheduler
stores the input block into the 16 words, at the beginning of a block processing.

After delivering the word 0W , the message scheduler calculates the next one and
shifts the least significant 15 words to the left in order to append the newly
calculated value.
 The message scheduler consists of the modules in the top part of Fig.7.1 in
which, for clarity, some of the 16 registers storing the message scheduler words
were omitted. In Fig.7.1, the “COUNTER” unit is a 6-bit iteration counter keeping
track of the current algorithm’s round. By means of the multiplexing layer connected
on the inputs of the message scheduler registers, either the initial 512-bit block or
the shifted content is delivered. The word generated by the scheduler each iteration
is stored in the least significant position and its calculation delimits the critical path
for the message scheduler. The middle register layer of Fig.7.1 is made up of the 8
registers storing the working variables, each having the associated variable
symbolized next to its output.

BUPT

Throughput Improvement Solutions for SHA-256 168

One advantage of the SHA-256’s hardware realizations over software is the
straightforward use of concurrent processing. To this avail, the message scheduler
and the data compression stages can be run in parallel because they both are
iterated 64 times. The first iteration of the data compression stage makes use of the
first word of the message scheduler. By the time the scheduler delivers the first
word it has already stored the first 16 words and, concurrently with the first
iteration of the data compression loop, the scheduler starts calculating the 17th one.
It is for this reason that both register sets, storing the message scheduler words
and the 8 working variables, are controlled by the same loading signal.

The current word of the message scheduler to be used by the data
compression engine is in the most significant position, as depicted in Fig.7.1 and
because of the content shifting of the scheduler’s data words, by the time the last
data compression iteration is executed, the scheduler will have generated 15

additional words, besides the last one, 63W . These 15 words will not be used by the
hash computation. The computation of these words can be avoided; however, it
would require additional hardware investment in selecting the current data to be
delivered to the hash computation stage. Additional investment would be needed for
disabling the load signal for the message scheduling unit. For an increased
throughput architecture, the decision to have a common control line for loading the
registers of the message scheduler and those storing the working variables, and

being able to directly deliver word 0W to the data compression unit is preferred, to
the expense of computing 15 unused words.

The content of the 8 registers storing the working variables is updated either
with the current hash value or with the new values generated by the data
compression round. The multiplexors selecting the input of the working variable
registers use the same selection line as those selecting the input for the scheduler
registers because the two sets of registers are initially updated from alternate
sources and they are initially updated at the same moment, at the beginning of the
64 iterations. The critical path of the hash engine in Fig.7.1 contains the
components used for calculating the next value for working variable a and includes

the modules evaluating the 4 round functions (
{256}
0 ,

{256}
1 , Ch and Maj), which

operate in parallel, followed by the 7-operand, modulo 232 adder calculating the next
value for a and followed by the multiplexer delivering the new value to the
corresponding working variable register.

The final storage layer is made up of the 8 registers keeping the current
hash value. The 8 registers are updated at the end of the 64 data compression
iterations by adding the value of the working variables to their current content.
Eight modulo 232 adders are required for this operation. In addition, the hash value
update demands one supplementary clock cycle, thus directly affecting the latency
and the throughput of the SHA-256 unit.

The first throughput acceleration technique proposed in this chapter for the
SHA-256 architecture reduces the number of cycles used for processing a 512-bit
block by eliminating the previously mentioned hash update operation, performed at
the end of data compression’s loop. To achieve this, the last of the 64 iterations will
have to update not only the working variables but the hash registers as well. In
consequence, the final round of the data compression phase will have to additionally
include the current hash value among the operands added together, in order to be
able to generate the next hash value.

BUPT

Technological solutions for throughput improvement of a Secure Hash Algorithm-
256 Engine

169

In addition to this computation strategy, the current hash value does not
need to be loaded into the working variable registers at the start of a new block’s
processing. This is because the working variables were already updated with the
same data as the hash registers in the last round of data compression’s stage.
However, this observation does not facilitate a further reduction of clock cycles
because, typically, the loading of the new 512-bit block is performed concurrently
with the update of the hash registers.

The manner in which the proposed architecture is updating the working
variable registers and the hash registers is depicted in Fig.7.2, in which only the
modules pertaining to the data compression phase were included. The message
scheduler remains unmodified as in Fig.7.1, together with the control signals
commanding the scheduler’s operation.

Fig. 7.2. Proposed architecture for SHA-256 hash calculation.

 Because the addition of the current hash value is performed only in the last
iteration, the content of the hash registers is enabled only once by means of an
AND-gate layer, commanded by the gating signal update_hash, in Fig.7.2. The
gating signal is, in fact, the signal enabling loading of the new hash value into the
hash registers after the data compression finished. The critical path for this new
design follows the signals’ propagation through the 4 round functions, followed by
the 8-operand modulo 232 adder. The multi-operand adder architecture used
throughout this article is a CSA based tree structure, organized in a Wallace manner
[57] that generates the non-redundant sum by a final CPA.

Because the addition of the operands is performed, for SHA-256, modulo
232, all CSAs are on 32 bits and, since the carry vector is one position more
significant than the sum vector, the most significant carry generated by a CSA level
is omitted. As a result, the CPA module is also on 32 bits. However, due to the
manner in which latency is propagated through the Full Adder Cells (FACs) of a CSA,
the critical path of a CSA tree structure is considerably reduced only if a fast adder
is used for CPA, avoiding serial propagation of the carry [223]. Because of this, a
fast 32-bit Kogge-Stone [224] adder is used for the CPA level throughout this
chapter. The replacement of the 7-operand adder in Fig.7.1 by the 8-operand
addition structure from Fig.7.2 affects the adder’s critical path only marginally, as
the experimental results reveal.

BUPT

Throughput Improvement Solutions for SHA-256 170

The technological factor has an important influence on the synthesis result.
With respect to this aspect, another latency incurring element in the architecture of
Fig. 7.2 is the fan-out of the gating signal controlling the AND-gate layer. The fan-
out of the update_hash signal is large due to its controlling the hash registers’ load
line and the gating layer. The large fan-out has an adverse effect on the critical
path, in that, depending on the standard cell library used for synthesis, the
update_hash signal’s distribution tree can have a delay larger than the latency of
the structures operating the 4 functions and the 8-operand adder together.

Further investigations evaluated alternative multi-operand addition
structures and the effect of ordering addition’s operands over the critical path. More
precisely, in order to further improve the performance of the hash core, we

investigated the possibility to implement the
{256}
0 ,

{256}
1 , Ch and Maj functions in a

combined manner with the multi-operand adders present in the architecture. The 4
functions are part of the critical path and reducing their number of logic levels
improves the overall latency.

Fusing any of the 4 functions with the 32-bit CSAs is limited in outcome by
the relatively simple structure of the FACs. However, considering the delay
balancing technique introduced in [144], the fused implementation of the 4
functions with the CPA has a larger potential for latency improvement. Fig.7.3
illustrates a detail of the fused design combining variable a, in redundant form, with

hash word 0
iH , also in redundant form, with the hash word 1

iH , the working variable

b and with the working variable c. The fused module calculates
{256}
0 and Maj

functions together with the next working variable b.

Fig. 7.3. Detail of the fused architecture.

 Regarding the delay balancing implementation used in our proposal, it is
applied for both working variables a and e, whereas Fig.7.3 illustrates this approach

BUPT

Technological solutions for throughput improvement of a Secure Hash Algorithm-
256 Engine

171

only for a. The method requires doubling the registers storing the two variables into

sum-carry pairs of registers. The corresponding hash value registers, 0
iH and 4

iH ,
need to be doubled as well in order to preserve the critical path reduction
(otherwise, if the hash registers would not be doubled, dedicated CPAs would be
needed for generating the non-redundant hash words which would defeat the
purpose of delay balancing). As a result of using two registers for storing the

redundant form of the hash word 0
iH , the multi-operand adder with 8 inputs from

Fig.7.2 is replaced by a 9-operand redundant adder which will store the sum in the
register pair (a_c, a_s), for a’s carry and sum vectors. Another consequence of

storing 0
iH in redundant form is that it requires a CPA for calculating the word of the

final digest, adder that is visible in Fig.7.3 as well.

Concerning the fused implementation, the sigma functions,
{256}
0 and

{256}
1 ,

are composed of three rotations of the input words, each, followed by Exclusive-OR
(EXOR) on the rotated vectors. The functions inputs are generated by the engine’s
CPAs and for achieving a combined implementation, the functions evaluation will be
embedded in the CPAs. More precisely, for a Kogge-Stone adder, the carry bits are
calculated by a tree structure and they are EXOR-ed with the half sum bits (EXOR
result of input operands). Because the sigma functions employ the same EXOR
operator, their results can be speeded up by balancing the EXOR tree. This solution
removes one level of EXOR gates compared to the unfused approach. The Maj and
Ch functions can be expressed in terms of the faster AND/OR primitives as:

Maj(a,b,c)=a AND (b OR c) OR (b AND c) and Ch(e,f,g)=(e AND f) OR (e AND g).

The negation of e is constructed by negating the half sum bits and EXOR-ing the
result with the carry bits inside the Kogge-Stone CPA, for a rapid output generation.
A final approach towards throughput improvement is to reorder the multi-operand
adders’ inputs in order to connect the signals generated at a later time on positions
affected by smaller latencies. By means of synthesis results, the latest operands are
identified and are correspondingly connected to the minimum delay inputs of the
adder tree.

7.2. Experimental Results

All presented designs were modeled in Verilog and synthesized using the
Design Compiler with the IIT Standard Cell Library for TSMC 0.18µm [225]. The
synthesis results are presented in Table 39 for the basic architecture, together with
the proposed and fused designs. The basic architecture uses as little of the
throughput enhancing techniques as possible to prove that the analyzed techniques
can be applied in conjunction with most of the other existing acceleration methods.

Table 39. SHA-256 Architectures Comparison.

Architecture
Max Frequency

[MHz]
Area

[µm2]
Throughput

(Mbps)

Basic 326.80 480625 1287.08

Proposed 357.14 529690 1428.57

Fused 380.23 562704 1520.91

BUPT

Experimental Results 172

 The basic architecture of Fig. 7.1 uses a multi-operand CSA adder tree, a
Ripple Carry Adder for the final CPA layer and process a 512-bit block in 65 cycles.
Although it requires the smallest area, the basic design is also the slowest one. The
proposed design refers to the architecture described in Fig. 7.2. It makes use of the
hash registers gating technique, uses 8-operand and 7-operand adders for
generating variables a and e, respectively and requires only 64 iterations for a 512-
bit block processing. The 10% performance improvement is obtained at the expense
of increased area. Finally, the fused architecture takes advantage of the combined
implementation of the 4 SHA-256 round functions with the existing CPAs yielding a
performance increase of about 18% at the expense of a larger area overhead.

BUPT

CONCLUSIONS AND FUTURE WORK 173

8. CONCLUSIONS AND FUTURE WORK

The AI revolution is happening and thanks to DL, better applications that
surpass the human accuracy level are implemented day by day in many domains
and industries. However, DL not only that it requires a high power consumption that
results in high costs, but it also contributes to the carbon footprint, having a
negative impact on our environment. To address these problems, we present
solutions for powering and evaluating DL-based systems based on green energy.

This Ph.D. thesis focuses on eliminating the energy cost by not only building
a dual-axis solar tracker in order to power a real-time DL-based system using solar
energy but also on proposing environmentally-friendly metrics regarding inference
and training.

Chapter 3 presents different DL applications that solve different problems
related to fraud and security.

The first application created is, to the best of our knowledge, the first
application that successfully detects receipt fraud, a common problem that occurs in
many hypermarkets/supermarkets around the world. We implemented an OCR
algorithm composed of image processing techniques and two CNN models into a
smartphone application that helps the customers (in case of a wrong product price
on the bill) as well as the supermarket employees (in case of different prices for
products at the shelf compared to the prices stored in their computer system) to
have (customer pays the correct price) and offer (ability to immediately update the
correct price at the shelf) a better shopping experience. Experimental results show
that the proposed CNN models have 99.96% test accuracy in identifying product
prices and 99.35% test accuracy in identifying receipt prices, proving that our
application can be used successfully in discovering wrong prices between a price tag
belonging to a product seen at the shelf and the price paid after receiving the bill
from the cashier. As future work, we plan to improve our CNN models to recognize
also prices with multiple font types, from different hypermarkets/supermarkets that
may use a different position of the two decimals in their prices. Additionally, to be
able to detect characters representing the product name or identify the prices not
only from images but also in real-time from videos. Finally, we plan to create a real-
time application that is able to calculate special offers and indicate if buying in bulk
is cheaper then buying a single piece of a particular product [150], [151].

The second application introduced a novel approach for identifying and
classifying the Romanian traditional motifs found on 4 different categories (clothes,
ceramics, carpets, and painted eggs) by training a CNN model on a modified
ResNet-50 architecture. We also implemented a system that can detect and identify
through a webcam if the object in front of it contains a learned motif. In the
experimental results, we show that 5 categories from which 4 containing Romanian
traditional motifs (e.g. carpets, ceramics, clothes, painted eggs) are being detected
and identified with high accuracy and reduced processing time. We obtain an overall
accuracy of 99.4% and proved that with the implemented Grad-CAM technique, the
proposed CNN model brings more interpretability, transparency, and trust. As future
work, we intend to implement our model on the cloud and develop a mobile
application in order to detect and identify the Romanian traditional motifs with the
help of a smartphone in real-time. Additionally, to create an IA Dataset which

BUPT

Experimental Results 174

contains all Romanian traditional clothes organized by the regions in Romania they
originate from.

The third application presents a method for identifying 34 animal classes
corresponding to the most conventional animals found in the domestic areas of
Europe by using four types of CNNs, namely VGG-19, InceptionV3, ResNet-50, and
MobileNetV2. We also built a system capable of classifying all these 34 animal
classes from images as well as in real-time from videos or a webcam. Additionally,
our system is capable to automatically generate two new datasets, one dataset
containing textual information (i.e. animal class name, date and time interval when
the animal was present in the frame) and one dataset containing images of the
animal classes present and identified in videos or in front of a webcam. Our
experimental results show a high overall test accuracy for all 4 proposed
architectures (90.56% for VGG-19 model, 93.41% for InceptionV3 model, 93.49%
for ResNet-50 model and 94.54% for MobileNetV2 model), proving that such
systems enable an unobtrusive method for gathering a rich collection of information
about the vast numbers of animal classes that are being identified such as providing
insights about what animal classes are present at a given date and time in a certain
area and how they look, resulting in valuable datasets especially for researchers in
the area of ecology.

Chapter 4 presents the construction, testing, and deployment of our solar
tracker in order to make use of renewable and clean energy when powering a real-
time DL-based system that can identify animal classes, store their textual
information as well as their pictures in real-time without having to pay for electricity
bills.

Regarding the construction part, we proposed a novel approach in the field
of renewable energies by designing an efficient solar tracking device composed of an
Arduino UNO board, two stepper motors, a pair of specialized L298N circuits and an
optocoupler. We present a sensorless energy-saving solution based on the Cast-
Shadow principle and a low-cost blocking mechanism for the stepper motors to
reduce the overall power consumption of the system by 86.93%. Additionally, the
experimental results of our autonomous solar tracker show a 45.77% voltage,
48.21% current and 53.62% power increase over the static PV panel by using
monocrystalline solar cells.

Regarding the testing part, first, we presented a novel technique in testing
the software code of a solar tracking device by using a White-box testing approach
that makes use of a Wi-Fi module. We succeed in verifying if the wireless data
transfers controlling the movements of the solar tracking device are in
correspondence with the software code run on the Arduino Uno. In order to find out
all the loopholes and possible breakpoints in our solar tracker software, we
investigated Communication and Calculation Errors, Control Flow and Error handling
faults by implementing unit testing techniques as well as custom code. Experimental
results show that the proposed White-box testing strategy achieves a total coverage
of 70.12% for all targeted errors from a total number of 4334 test cases organized
in 4 batches and proves to be efficient from the fault coverage as well as the cost
point of view.

Secondly, we proposed an OBIST architecture that uses an LFSR as a TPG
and a MISR as a result gatherer for testing our solar tracking equipment composed
of an Optocoupler, an Arduino UNO and two L298N Dual-H Bridges ICs. Due to the
proposed fault injection strategy, we concluded that all 4 CUTs are prone to
hardware faults and thus we implemented software as well as hardware solutions for
the proposed OBIST. Experimental results show that the software implementation is

BUPT

CONCLUSIONS AND FUTURE WORK 175

efficient in injecting test vectors and collecting the outputted signatures of the MISR
device. In addition, we constructed a valid signature database for 3 of the CUTs and
compared the MISR valid output signatures with its previous generated pseudo-
random output values, resulting in 93.93% coverage for single bit-flip errors (last 8
bits, mutant) and 100% coverage for single stuck-at-faults (for 8, 12 and 16
random bits). Finally, the proposed OBIST achieves a total global coverage of
96.96% for the targeted errors, resulting in an efficient architecture regarding
coverage and cost points of view.

Regarding deployment, we presented, to the best of our knowledge, the first
solar-powered real-time DL-based system in the literature that is self-sustaining
from the energy point of view, can run inference using 100% solar energy and
which is composed of a dual-axis solar tracking device based on Cast-Shadow
principle [17] and a low-power embedded platform called Nvidia Jetson TX2. In
order to justify the minimal improvement costs of the solar panel as well as the
choice of this embedded platform, experimental results, especially regarding the
energy consumption while running 4 DL model architectures (VGG-19, InceptionV3,
ResNet-50, and MobileNetV2) in real-time [15] are made also on a laptop containing
the Nvidia GTX 1060 (6GB) GPU. Additionally, in order to reduce the power
consumption of the entire solar-powered real-time DL-based system, we also
implemented a motion detection method that triggers the inference process only
when there is movement in the frame. Details about the construction of the entire
solar-powered real-time DL-based system as well as calculations regarding the time
needed for our accumulator to be charged with solar energy as well as discharged
by the Nvidia Jetson TX2 when running the 4 DL models are also taken into
consideration. Experimental results show that the Nvidia Jetson TX2 platform is a
very good choice when designing an efficient solar-powered real-time DL-based
system, consuming only around 10 Wh of power as compared to around 50 Wh
consumed by a laptop.

As future work, we plan to run similar experiments also on other low-power
platforms such as the Nvidia Jetson Nano Developer Kit, Google Coral, Raspberry Pi
4 Model B (4GB) and also on FPGAs, in order to show that real-time DL-based
systems can run inference 100% on solar energy using even less energy than we
demonstrated. Additionally to inference, we also want to train a few other state-of-
the-art DL model architectures using 100% solar energy from our solar tracker on
the above-mentioned platforms, with the intent to encourage new researchers to
investigate the combination of green energy and AI, eventually proposing new green
energy-based DL metrics. We believe that a “green” approach can lead researchers
to a better understanding of how to evaluate the performance of DL-based systems
and will also result in a more friendly and respectful attitude towards nature and life
on this planet.

In Chapter 5, first, we introduce four metrics, two for inference called APC
and APEC and two for training called TTCAPC and TTCAPEC for evaluating the
performance of DL models and systems not only regarding their accuracy but also
their energy consumption and cost. In our experimental results, we succeeded to
prove that all four metrics are efficient, showing, to the best of our knowledge, for
the first time in literature, that by using high accuracy together with low power
consumption, especially green energy (e.g. solar energy) during training and
inference, a DL model or system is evaluated as being much more performant than
one that, despite having same accuracy, consumes more energy and uses a
traditional power grid (paid electricity). We believe that these metrics will encourage
future researchers to develop and use greener energy-based systems and that they

BUPT

Experimental Results 176

will evaluate their performance only based on how “green” they are and how less
negative impact they have on our planet.

Secondly, we present a Computer Vision application that succeeds in
bringing common DL features needed by a user (e.g. data scientist) when
performing image classification related tasks into one easy to use and user-friendly
GUI. From automatically gathering images and classifying them each in their
respective class folder in a matter of minutes, to removing duplicates, sorting
images, training and evaluating a DL model in a matter of minutes, all these
features are integrated in a sensible and intuitive manner that requires no
knowledge of programming and DL. Experimental results show that the proposed
application has many unique advantages and also outperforms similar existent
solutions. Additionally, this is the first Computer Vision application that incorporates
the APC, APEC, TTCAPC and TTCAPEC metrics [20], which can be easily used to
calculate and evaluate the performance of DL models and systems based not only
on their accuracy but also on their energy consumption and cost, encouraging new
generations of researchers to make use only of green energy when powering their
DL-based systems [16].

In Chapter 6, we propose a low-cost and portable FPICT device that was
able to reach 100% precision in single-point testing, 91.40% precision in multiple-
point testing and overall precision of 95.70% for the entire measurement testing.
We believe that, due to the simplicity of our proposed FPICT and user-friendliness as
compared to the ones found in the industry, students will find learning and
practicing the testing of PCBs to be more fun and interesting experience. The
proposed FPICT has several advantages, mainly that it is very easy to learn and use,
especially because of the C written configuration files (e.g. which can be easily
modified by the students in a laboratory), it has a friendly user interface and can be
also quickly connected to any existent computing platform that has a USB port
(Desktop PCs, laptops, tablets). Also, the proposed FPICT provides students easy
access to study and experiment with the inner workings of an FPT when operating
on a real PCB board, which otherwise would have been almost impossible, given the
fact that the FPTs found in the industry are very expensive (i.e. thousands of dollars
[12] compared to our FPICT which costs around 25 dollars and require no extra
costly licenses).

As future work, we plan to combine the proposed FPICT with other testing
methods such as Boundary Scan in order to test the entire circuitry of the proposed
solar tracking equipment based on Cast-Shadow principle and to show the different
types of errors that can occur.

Chapter 7 presents several acceleration techniques for improving the
throughput of an SHA-256 engine. The first acceleration technique eliminates the
clock cycle used for hash value update and allows delivering a higher throughput
due to the marginal performance loss associated with using an 8-operand adder
instead of a 7-operand one. The second technique for improving performance
implements the CPAs of the multi-operand adders in a fused manner to speed up
the generation of the round functions. The proposed, fused design further increases
the hash engine’s performance while the synthesis driven approach for arranging
the operands’ order in the CSA tree further reduces the critical path. In addition to
their performance improvements, the presented techniques can be applied in
conjunction with other methods presented in the literature, such as loop unrolling,
data precomputation in the previous round, to name only a few.

BUPT

CONCLUSIONS AND FUTURE WORK 177

As future work, we plan to combine these techniques with other encryption
algorithms in order to increase the security of DL-based systems that store sensitive
and confidential data such as that belonging to pneumonia or COVID-19 patients.

8.1. Publications

To this date, I have the following publications submitted, accepted and
presented at international conferences, relevant to the domain of Computers and
Information Technology:

8.1.1. Book Chapters at International Publishers

1. Sorin Liviu Jurj, Flavius Opritoiu, Mircea Vladutiu “Environmentally-
Friendly Metrics for Evaluating the Performance of Deep Learning Models
and Systems”, 17th International Symposium on Neural Networks (ISNN
2020), Cairo, Egypt, 2020. To appear. ISI indexed.

2. Sorin Liviu Jurj, Raul Rotar, Flavius Opritoiu, Mircea Vladutiu, “Efficient
Implementation of a Self-Sufficient Solar-Powered Real-Time Deep
Learning-Based System”. In: Iliadis L., Angelov P., Jayne C., Pimenidis
E. (eds) Proceedings of the 21st EANN (Engineering Applications of
Neural Networks) 2020 Conference. EANN 2020. Proceedings of the
International Neural Networks Society, vol 2. Springer, Cham, pp. 99-
118, doi: 10.1007/978-3-030-48791-1_7. ISI indexed.

3. Sorin Liviu Jurj, Flavius Opritoiu, Mircea Vladutiu „Deep Learning-

Based Computer Vision Application with Multiple Built-In Data Science-
Oriented Capabilities”. In: Iliadis L., Angelov P., Jayne C., Pimenidis E.
(eds) Proceedings of the 21st EANN (Engineering Applications of Neural
Networks) 2020 Conference. EANN 2020. Proceedings of the
International Neural Networks Society, vol 2. Springer, Cham, pp. 47-
69, doi: 10.1007/978-3-030-48791-1_4. ISI indexed.

8.1.2. International Conferences

1. Sorin Liviu Jurj, Raul Rotar, Flavius Opritoiu, Mircea Vladutiu „Online

Built-In Self-Test Architecture for Automated Testing of a Solar Tracking
Equipment”, 2020 20th International Conference on Environment and
Electrical Engineering (EEEIC), Madrid, Spain, 2020. To appear. ISI
indexed.

2. Sorin Liviu Jurj, Raul Rotar, Flavius Opritoiu, Mircea Vladutiu

„Affordable Flying Probe-Inspired In-Circuit-Tester for Printed Circuit
Boards Evaluation with Application in Test Engineering Education”, 2020
20th International Conference on Environment and Electrical
Engineering (EEEIC), Madrid, Spain, 2020. To appear. ISI indexed.

BUPT

International Conferences 178

3. Sorin Liviu Jurj, Flavius Opritoiu, Mircea Vladutiu “Real-time
identification of animals found in domestic areas of Europe”, In: Proc.
SPIE 11433, Twelfth International Conference on Machine Vision (ICMV
2019), 1143313 (31 January 2020). doi: 10.1117/12.2556376. ISI
indexed.

4. Sorin Liviu Jurj, Allen-Jasmin Farcas, Flavius Opritoiu, Mircea Vladutiu
„Mobile Application for Receipt Fraud Detection Based on Optical
Character Recognition”, Proc. SPIE 11433, Twelfth International
Conference on Machine Vision (ICMV 2019), 1143313 (31 January
2020). ISI indexed.

5. Sorin Liviu Jurj, Flavius Opritoiu, Mircea Vladutiu „Identification of

Traditional Motifs using Convolutional Neural Networks”, 2018 IEEE 24th
International Symposium for Design and Technology in Electronic
Packaging (SIITME), Iasi, Romania, pp. 191-196, 2018. ISI indexed.

6. Sorin Liviu Jurj, Raul Rotar, Flavius Opritoiu, Mircea Vladutiu, "White-

Box Testing Strategy for a Solar Tracking Device using NodeMCU Lua
ESP8266 Wi-Fi Network Development Board Module", 2018 IEEE 24th
International Symposium for Design and Technology in Electronic
Packaging (SIITME), pp. 53-60, 2018. ISI indexed.

7. Raul Rotar, Sorin Liviu Jurj, Flavius Opritoiu, Mircea Vladutiu, “Position

Optimization Method for a Solar Tracking Device Using the Cast-Shadow
Principle”, 2018 IEEE 24th International Symposium for Design and
Technology in Electronic Packaging (SIITME), pp. 61-70, (2018). ISI
indexed.

8. Flavius Opritoiu, Sorin Liviu Jurj, Mircea Vladutiu „Technological

solutions for throughput improvement of a Secure Hash Algorithm-256
Engine”, 2017 IEEE 23rd International Symposium for Design and
Technology in Electronic Packaging (SIITME), Constanta, Romania, pp.
159-164, 2017. ISI indexed.

BUPT

CONCLUSIONS AND FUTURE WORK 179

BIBLIOGRAPHY

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning” Nature, vol. 521, no. 7553,
pp. 436–444, 2015

[2] C. Chen, A. Seff, A. Kornhauser, J. Xiao “DeepDriving: Learning affordance for
direct perception in autonomous driving” Proc. 2015 IEEE International Conference
on Computer Vision (ICCV 2015), pp. 2722-2730, Dec. 2015

[3] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S.
Thrun, “Dermatologist-level classification of skin cancer with deep neural networks”
Nature, vol. 542, no. 7639, pp. 115–118, Jan. 2017

[4] Pranav Rajpurkar, Awni Y. Hannun, Masoumeh Haghpanahi, Codie Bourn,
Andrew Y. Ng “Cardiologist-Level Arrhythmia Detection with Convolutional Neural
Networks” Computing Research Repository (CoRR), abs/1707.01836, July 2017

[5] Gabriele Angeletti, Barbara Caputo, Tatiana Tommasi “Adaptive Deep Learning
through Visual Domain Localization”, arXiv:1802.08833, Feb. 2018

[6] Soni, N., et al.: Impact of Artificial Intelligence on Businesses: from Research,
Innovation, Market Deployment to Future Shifts in Business Models. In:
arXiv:1905.02092v1, May, (2019)

[7] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared
Casper, Bryan Catanzaro "Megatron-LM: Training Multi-Billion Parameter Language
Models Using Model Parallelism", arXiv:1909.08053v4, March 2020.

[8] Schwartz, R., Dodge, J., Smith, N.A., Etzioni, O.: Green AI. In:
arXiv:1907.10597v3, August, (2019).

[9] Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for
deep learning in NLP. In: arXiv:1906.02243, (2019)

[10] Schmidt, V., Luccioni, A., Mukkavilli, S.K., Balasooriya, N., Sankaran, K.,
Chayes, J., Bengio, Y.: Visualizing the consequences of climate change using cycle-
consistent adversarial networks. In: arXiv:1905.03709, (2019)

[11] Mohammad Sadegh Norouzzadeh et al. “Automatically identifying, counting,
and describing wild animals in camera-trap images with deep learning” Proceedings
of the National Academy of Sciences of the United States of America (PNAS), Vol.
115, Nr. 25, pp. 6315-6512, June 2018

[12] Huntron Workstation Tracker and Prober. [Online]. Available:
http://shop.huntron.com/Workstation-License--Tracker-and-Prober_p_22.html

BUPT

BIBLIOGRAPHY 180

[13] Sorin Liviu Jurj, Flavius Opritoiu, Mircea Vladutiu „Identification of Traditional
Motifs using Convolutional Neural Networks”, 2018 IEEE 24th International
Symposium for Design and Technology in Electronic Packaging (SIITME), Iasi,
Romania, pp. 191-196, 2018

[14] Sorin Liviu Jurj, Allen-Jasmin Farcas, Flavius Opritoiu, Mircea Vladutiu „Mobile
Application for Receipt Fraud Detection Based on Optical Character Recognition”,
Proc. SPIE 11433, Twelfth International Conference on Machine Vision (ICMV 2019),
1143313 (31 January 2020);

[15] Jurj, S.L., Opritoiu, F., Vladutiu, M.: Real-time identification of animals found in
domestic areas of Europe. In: Proc. SPIE 11433, Twelfth International Conference
on Machine Vision (ICMV 2019), 1143313 (31 January 2020). doi:
10.1117/12.2556376.

[16] Jurj S.L., Rotar R., Opritoiu F., Vladutiu M. (2020) Efficient Implementation of a
Self-sufficient Solar-Powered Real-Time Deep Learning-Based System. In: Iliadis L.,
Angelov P., Jayne C., Pimenidis E. (eds) Proceedings of the 21st EANN (Engineering
Applications of Neural Networks) 2020 Conference. EANN 2020. Proceedings of the
International Neural Networks Society, vol 2. Springer, Cham, pp. 99-118, doi:
10.1007/978-3-030-48791-1_7.

[17] Raul Rotar, Sorin Liviu Jurj, Flavius Opritoiu, Mircea Vladutiu, “Position
Optimization Method for a Solar Tracking Device Using the Cast-Shadow Principle”,
2018 IEEE 24th International Symposium for Design and Technology in Electronic
Packaging (SIITME), pp. 61-70, (2018)

[18] Sorin Liviu Jurj, Raul Rotar, Flavius Opritoiu, Mircea Vladutiu, "White-Box
Testing Strategy for a Solar Tracking Device using NodeMCU Lua ESP8266 Wi-Fi
Network Development Board Module", 2018 IEEE 24th International Symposium for
Design and Technology in Electronic Packaging (SIITME), pp. 53-60, 2018

[19] Sorin Liviu Jurj, Raul Rotar, Flavius Opritoiu, Mircea Vladutiu „Online Built-In
Self-Test Architecture for Automated Testing of a Solar Tracking Equipment”, 2020
20th International Conference on Environment and Electrical Engineering (EEEIC),
Madrid, Spain, 2020. To appear.

[20] Jurj, S.L., Opritoiu, F., Vladutiu, M.: Environmentally-Friendly Metrics for
Evaluating the Performance of Deep Learning Models and Systems. To appear.

[21] Jurj S.L., Opritoiu F., Vladutiu M. (2020) Deep Learning-Based Computer Vision
Application with Multiple Built-In Data Science-Oriented Capabilities. In: Iliadis L.,
Angelov P., Jayne C., Pimenidis E. (eds) Proceedings of the 21st EANN (Engineering
Applications of Neural Networks) 2020 Conference. EANN 2020. Proceedings of the
International Neural Networks Society, vol 2. Springer, Cham, pp. 47-69, doi:
10.1007/978-3-030-48791-1_4.

[22] Sorin Liviu Jurj, Raul Rotar, Flavius Opritoiu, Mircea Vladutiu „Affordable Flying
Probe-Inspired In-Circuit-Tester for Printed Circuit Boards Evaluation with

BUPT

CONCLUSIONS AND FUTURE WORK 181

Application in Test Engineering Education”, 2020 20th International Conference on
Environment and Electrical Engineering (EEEIC), Madrid, Spain, 2020. To appear.

[23] Flavius Opritoiu, Sorin Liviu Jurj, Mircea Vladutiu „Technological solutions for
throughput improvement of a Secure Hash Algorithm-256 Engine”, 2017 IEEE 23rd
International Symposium for Design and Technology in Electronic Packaging
(SIITME), Constanta, Romania, pp. 159-164, 2017

[24] A. M. Turing, “Computing machinery and intelligence,” Mind, vol. 59, no. 236,
pp. 433–460, 1950

[25] Vernor Vinge “The Coming Technological Singularity: How to Survive in the
Post-Human Era” Whole Earth Review (Winter Issue), 1993

[26] Abien Fred Agarap “Deep Learning using Rectified Linear Units (ReLU)” arXiv
preprint arXiv:1803.08375, 22 March 2018

[27] Kaiming He, Xiangyu Zhang, et al. “Deep residual learning for image
recognition” arXiv preprint arXiv:1512.03385, 2015

[28] Terence Parr, Jeremy Howard “The Matrix Calculus You Need For Deep
Learning” arXiv:1802.01528, Feb. 2018

[29] J. Deng, W. Dong, R. Socher, L. Li, Kai Li and Li Fei-Fei, "ImageNet: A large-
scale hierarchical image database" 2009 IEEE Conference on Computer Vision and
Pattern Recognition, Miami, FL, 2009, pp. 248-255. [Online] Available:
http://www.image-net.org/

[30] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale
Visual Recognition Challenge” International Journal of Computer Vision (IJCV), vol.
115, no. 3, pp. 211–252, 2015

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton “Imagenet classification with
deep convolutional neural networks” in Proceedings of the 25th International
Conference on Neural Information Processing Systems (NIPS) 2012 USA, Curran
Associates Inc., pp. 1097–1105, 2012

[32] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao, Y. Wang, H.
Yang, and W. J. Dally, “ESE: efficient speech recognition engine with compressed
LSTM on FPGA” Computing Research Repository (CoRR), vol. abs/1612.00694, 2016

[33] Silver, D. et al. “Mastering the game of Go with deep neural networks and tree
search” Nature 529, pp. 484–489, 2016

[34] David Silver, et al. “Mastering the game of Go without human knowledge”
Nature 550, pp. 354–359, 19 October 2017

[35] Dominik Scherer, Andreas Müller, and Sven Behnke “Evaluation of pooling
operations in convolutional architectures for object recognition” In Proceedings of
the 20th international conference on Artificial neural networks: Part III (ICANN'10),

BUPT

BIBLIOGRAPHY 182

Konstantinos Diamantaras, Wlodek Duch, and Lazaros S. Iliadis (Eds.). Springer-
Verlag, Berlin, Heidelberg, pp. 92-101, 2010

[36] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov “Dropout: A simple way to prevent neural networks from overfitting”
Journal of Machine Learning Research, pp. 1929–1958, 2014

[37] Sergey Ioffe, Christian Szegedy “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”, arXiv:1502.03167, 2015

[38] Karen Simonyan and Andrew Zisserman “Very Deep Convolutional Networks for
Large-scale Image Recognition” arXiv:1409.1556v6, 2015

[39] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich “Going
Deeper with Convolutions”, arXiv:1409.4842v1, 2014

[40] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens,
Zbigniew Wojna “Rethinking the Inception Architecture for Computer Vision”,
arXiv:1512.00567v3, 2015

[41] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,
James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, Piotr Dollár
Microsoft “COCO: Common Objects in Context” arXiv:1405.0312, 2014

[42] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam “MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications”, arXiv:1704.04861v1,
2017

[43] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh
Chen “MobileNetV2: Inverted Residuals and Linear Bottlenecks”,
arXiv:1801.04381v4, 2019

[44] Y. LeCun, C. Cortes “The MNIST database of handwritten digits”. [Online]
Available: http://yann.lecun.com/exdb/mnist

[45] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin et al., “Tensorflow: Largescale machine learning on
heterogeneous systems” vol. 1, 2015. [Online] Available:
https://www.tensorflow.org/

[46] Chollet François et. al “Keras”. [Online] Available: https://keras.io/

[47] International Energy Outlook 2017 (IEO2017), US Energy Information
Administration (EIA). [Online] Available:
https://www.eia.gov/outlooks/archive/ieo17/pdf/0484(2017).pdf, 2017

[48] Yan, J., Yang, Y., Elia Campana, P., He, J.: City-level analysis of subsidy-free
solar photovoltaic electricity price, profits and grid parity in China. Nat. Energy(4),
709–717, (2019).

BUPT

CONCLUSIONS AND FUTURE WORK 183

[49] Ram M., et al. Global Energy System based on 100% Renewable Energy –
Power, Heat, Transport and Desalination Sectors. Study by Lappeenranta University
of Technology and Energy Watch Group, Lappeenranta, Berlin, March 2019.
[Online]. Available: http://energywatchgroup.org/wp-
content/uploads/EWG_LUT_100RE_All_Sectors_Global_Report_2019.pdf

[50] Rolnick, D., et al.: Tackling Climate Change with Machine Learning. In:
arXiv:1906.05433v2, November (2019).

[51] What Is Green Power?. [Online]. Available:
https://www.epa.gov/greenpower/what-green-power

[52] Aneesh Kulkarni, Tushar Kshirsagar, Akash Laturia, P.H. Ghare “An Intelligent
Solar Tracker for Photovoltaic Panels” 2013 Texas Instruments India Educators'
Conference, pp. 390 – 393, 2013

[53] Deepthi. S, Ponni. A, Ranjitha. R, R. Dhanabal “Comparison of Efficiencies of
Single-Axis Tracking System and Dual-Axis Tracking System with Fixed Mount”
International Journal of Engineering Science and Innovative Technology (IJESIT),
Vol. 2, Issue 2, ISSN: 2319-5967, 2013

[54] Hamid Allamehzadeh “Solar Energy Overview and Maximizing Power Output of
a Solar Array Using Sun Trackers” IEEE Conference on Technologies for
Sustainability (SusTech), pp. 14 – 19, 2016

[55] A. K. Suria, R. Mohamad Idris “Dual-axis solar tracker based on predictive
control algorithms” IEEE Conference on Energy Conversion (CENCON), pp. 238 –
243, 2015

[56] Kyle Williams, Amer Qouneh “Internet of Things: Solar array tracker” IEEE 60th
International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1057 –
1060, 2017

[57] Mircea Vladutiu, „Computer Arithmetic: Algorithms and Hardware
Implementations” Springer Publishing Company, Incorporated, 2012

[58] Patare Snehal Dilip, Geethu Remadevi Somanathan, Ramesh Bhakthavatchalu
“Reseeding LFSR for Test Pattern Generation”, 2019 International Conference on
Communication and Signal Processing (ICCSP), pp. 0921-0925, India, 2019

[59] P. Nigh, "Scan-based testing: the only practical solution for testing
ASIC/consumer products," Proceedings. International Test Conference, Baltimore,
MD, USA, 2002, pp. 1198-.

[60] Lubaszewski M., Huertas J.L. (2004) Test and Design-for-Test of Mixed-Signal
Integrated Circuits. In: Reis R. (eds) Information Technology. IFIP International
Federation for Information Processing, vol 157. Springer, Boston, MA

[61] Dávid Honfi & Zoltán Micskei "Classifying generated white-box tests: an
exploratory study", Software Quality Journal, vol. 27, pp.1339–1380, 2019

BUPT

BIBLIOGRAPHY 184

[62] H. Michail, A. Kakarountas, A. Milidonis, and C. Goutis, "A Top-Down Design
Methodology for Ultrahigh-Performance Hashing Cores," IEEE Transactions on
Dependable and Secure Computing, vol. 6, pp. 255-268, 2009

[63] N. Ferguson, B. Schneier, and T. Kohno, Cryptography Engineering: Design
Principles and Practical Applications: Wiley Publishing, 2010

[64] Chest X-Ray Images (Pneumonia),
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia/, last accessed
2020/04/07.

[65] Cohen, J.P., Morrison, P., Dao, L.: COVID-19 Image Data Collection,
arXiv:2003.11597, (2020), https://github.com/ieee8023/covid-chestxray-dataset,
last accessed 2020/04/07.

[66] National Institute of Standards and Technology, "FIPS 180-4, Secure Hash
Standard, Federal Information Processing Standard (FIPS), Publication 180-4," 2015

[67] “Carrefour Pay”. [Online] Available:
https://itunes.apple.com/ro/app/carrefourpay/id1149276582

[68] S. A. Sabab, S. S. Islam, M. J. Rana, and M. Hossain “eExpense: A Smart
Approach to Track Everyday Expense”, 2018 4th International Conference on
Electrical Engineering and Information & Communication Technology (iCEEiCT), pp.
136-141, 2018

[69] “Tesseract Open Source OCR Engine”. [Online] Available:
https://github.com/tesseract-ocr/tesseract

[70] Helinski, M., Kmieciak, M., Parkola, T. “Report on the comparison of Tesseract
and ABBYY FineReader OCR engines”, IMPACT technical report, 2012. [Online]
Available: https://www.digitisation.eu/download/website-files/IMPACT_D-
EXT2_Pilot_report_PSNC.pdf

[71] F. De Sousa Ribeiro et al. “An End-to-End Deep Neural Architecture for Optical
Character Verification and Recognition in Retail Food Packaging”, 2018 25th IEEE
International Conference on Image Processing (ICIP), Athens, pp. 2376-2380, 2018

[72] Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu Lin, Yunxin Liu, Xuanzhe
Liu “A First Look at Deep Learning Apps on Smartphones”, arXiv:1812.05448v2,
2019

[73] Hui Li, Peng Wang, Chunhua Shen “Toward End-to-End Car License Plate
Detection and Recognition With Deep Neural Networks”, IEEE Transactions on
Intelligent Transportation Systems, Vol. 20, Issue 3, pp.1126-1136, 2019

[74] R. R. Palekar, S. U. Parab, D. P. Parikh and V. N. Kamble “Real time license
plate detection using OpenCV and Tesseract”, 2017 International Conference on
Communication and Signal Processing (ICCSP), pp. 2111-2115, 2017

BUPT

CONCLUSIONS AND FUTURE WORK 185

[75] N. Somyat and S. Nakariyakul “Thai Lottery Number Reader App for Blind
Lottery Ticket Sellers”, 2018 10th International Conference on Knowledge and
Smart Technology (KST), pp. 139-143, 2018

[76] Brian Lao, Karthik A Jagadeesh “Convolutional Neural Networks for Fashion
Classification and Object Detection”, 2015

[77] Li Z., Sun Y., Wang F., Liu Q. (2015) Convolutional Neural Networks for Clothes
Categories. In: Zha H., Chen X., Wang L., Miao Q. (eds) Computer Vision. CCCV
2015. Communications in Computer and Information Science, vol 547. Springer,
Berlin, Heidelberg, 2015

[78] Evgeny Smirnov, Anton Kulinkin, Karina Ivanova, Michael Pogrebnyak “Deep
Learning for Fast and Accurate Fashion Item Detection” 2016 ACM, ML4Fashion ’16
August 13, 2016, San Francisco, CA, USA, 2016

[79] Eshwar S G, Gautham Ganesh Prabhu J, A V Rishikesh, Charan N A, Umadevi V
“Apparel classification using Convolutional Neural Networks” 2016 International
Conference on ICT in Business Industry & Government (ICTBIG), pp. 1-5, 2016

[80] S. M. Sofiqul Islam, Emon Kumar Dey, Md. Nurul Ahad Tawhid, B. M. Mainul
Hossain “A CNN Based Approach for Garments Texture Design Classification”
Advances in Technology Innovation, vol. 2, no. 4, pp. 119-125, 2017

[81] Kevin Matzen, Kavita Bala, Noah Snavely “StreetStyle: Exploring world-wide
clothing styles from millions of photos” arXiv:1706.01869, 2017

[82] “iNaturalist”. [Online] Available: https://www.inaturalist.org/

[83] “Merlin Photo ID”. [Online] Available: http://merlin.allaboutbirds.org/

[84] H. Nguyen et al., “Animal Recognition and Identification with Deep
Convolutional Neural Networks for Automated Wildlife Monitoring”, 2017 IEEE
International Conference on Data Science and Advanced Analytics (DSAA), Tokyo,
pp. 40-49, 2017

[85] Gyanendra K. Verma and Pragya Gupta “Wild Animal Detection Using Deep
Convolutional Neural Network”, Advances in Intelligent Systems and Computing, pp.
327–338, 2018

[86] Manohar, N & Kumar, Y H & Rani, Radhika & Hemantha Kumar, G.
“Convolutional Neural Network with SVM for Classification of Animal Images”, In
Sridhar V., Padma M., Rao K. (eds) Emerging Research in Electronics, Computer
Science and Technology. Lecture Notes in Electrical Engineering, Springer,
Singapore, vol. 545, pp 527-537, 2019

[87] Manohar N., Sharath Kumar Y.H., Kumar G.H., Rani R. “Deep Learning
Approach for Classification of Animal Videos”. In: Nagabhushan P., Guru D., Shekar
B., Kumar Y. (eds) Data Analytics and Learning. Lecture Notes in Networks and
Systems, vol 43. Springer, Singapore, pp. 421-431, 2019

BUPT

BIBLIOGRAPHY 186

[88] Zhongqi Miao et al. “A comparison of visual features used by humans and
machines to classify wildlife”, Cold Spring Harbor Laboratory, Oct. 2018

[89] Michael A Tabak et al. “Machine learning to classify animal species in camera
trap images: applications in ecology”, Methods in Ecology and Evolution, pp. 1-6,
2018

[90] Falah I. Mustafa , A.Salam Al-Ammri, Farouk F. Ahmad “Simple Design and
Implementation of Solar tracking System Two Axis with Four Sensors for Baghdad
city” 9th International Renewable Energy Congress (IREC), pp. 1 – 5, 2018

[91] Sidharth Makhija, Aishwarya Khatwani, Mohd. Faisal Khan, Vrinda Goel, M.
Mani Roja “Design and Implementation of an Automated Dual-Axis Solar Tracker
with Data-Logging” International Conference on Inventive Systems and Control
(ICISC), pp. 1 – 4, 2017

[92] Yingxue Yao, Yeguang Hu, Shengdong Gao, Gang Yang, Jinguang Du "A
multipurpose dual-axis solar tracker with two tracking strategies", Renewable
Energy 72, pp. 88 –98, 2014

[93] Mohammed Saifuddin Munna, Mohammad Ariful Islam Bhuyan, Kazi Mustafizur
Rahman, Md. Ashiqul Hoque "Design, implementation and performance analysis of a
dual-axis autonomous solar tracker", 3rd International Conference on Green Energy
and Technology (ICGET), pp. 1 –5, 2015

[94] Arifur Rahman Sagar, Sadik Al Saim, A.S.M. Ittehad and Hasan U. Zaman "A
Novel Design of A Bi-level Automatic Solar Tracker Using Rotations Around
Orthogonal Axes", 8th International Conference on Computing, Communication and
Networking Technologies (ICCCNT), pp. 1 – 6, 2017

[95] Hassan Fathabadi "Novel Online Sensorless Dual-Axis Sun Tracker",
IEEE/ASME Transactions on Mechatronics, pp. 1-1. 10.1109/TMECH.2016.2611564,
2016

[96] Samah Laamami, Mouna Benhamed, Lassaad Sbita “Artificial neural network-
based fault detection and classification for photovoltaic system” 2017 International
Conference on Green Energy Conversion Systems (GECS), pp. 1-7, 2017

[97] Zhehan Yi, Amir H. Etemadi “Line-to-Line Fault Detection for Photovoltaic
Arrays Based on Multiresolution Signal Decomposition and Two-Stage Support
Vector Machine” IEEE Transactions on Industrial Electronics, Vol. 64, Issue 11, pp.
8546 – 8556, 2017

[98] B. Pradeep Kumar, G. Saravana Ilango, M. Jaya Bharata Reddy, Nagamani
Chilakapati “Online Fault Detection and Diagnosis in Photovoltaic Systems Using
Wavelet Packets” IEEE Journal of Photovoltaics,Vol. 8, Issue 1, pp. 257 – 265, 2018

[99] Faizan Khan, M. Yasin Ali, V.K.Sood, Faruk Bhuiyan, Phillip Insull, Faraz Ahmad
“Simulation of Microgrid System with Distributed Generation” 2017 IEEE Electrical
Power and Energy Conference (EPEC), 2017

BUPT

CONCLUSIONS AND FUTURE WORK 187

[100] Mahmoud Dhimish, Violeta Holmes, Bruce Mehrdadi, Mark Dales
“Simultaneous fault detection algorithm for grid-connected photovoltaic plants”
Institution of Engineering and Technology (IET) Renewable Power Generation, Vol.
11, Issue 12, pp. 1565 – 1575, 2017

[101] Q. Liyan, B. Shi, Z. Xin, W. Ge, “Design of generic embedded memory built in
self test circuit”, 2009 9th International Conference on Electronic Measurement &
Instruments, 2009, pp. 2-244-2-247.

[102] P. Moorthy, S. Saranya Bharathy, “An efficient test pattern generator for high
fault coverage in built-in-self-test applications”, 2013 Fourth International
Conference on Computing, Communications and Networking Technologies (ICCCNT),
2013, pp. 1-4.

[103] Rungsuptaweekoon, K., Visoottiviseth, V., Takano, R.: Evaluating the power
efficiency of deep learning inference on embedded GPU systems. In: 2017 2nd
International Conference on Information Technology (INCIT), pp. 1–5, IEEE,
Nakhonpathom, Thailand, (2017).

[104] Yudin, D., Slavioglo, D.: Usage of fully convolutional network with clustering
for traffic light detection. In: 2018 7th Mediterranean Conference on Embedded
Computing (MECO), pp. 1–6, IEEE, Budva, Montenegro, (2018).

[105] Shihadeh, J., Ansari, A., Ozunfunmi, T.: Deep learning based image
classification for remote medical diagnosis. In: 2018 IEEE Global Humanitarian
Technology Conference (GHTC), pp. 1–8. IEEE, San Jose, CA, USA, (2018).

[106] Yin, X., Chen, L., Zhang, X., Gao, Z.: Object detection implementation and
optimization on embedded GPU system. In: 2018 IEEE International Symposium on
Broadband Multimedia Systems and Broadcasting (BMSB), pp. 1–5. IEEE, Valencia,
Spain, (2018).

[107] Arechiga, A.P., Michaels, A.J., Black, J.T.: Onboard image processing for small
satellites. In: NAECON 2018 - IEEE National Aerospace and Electronics Conference,
pp. 234–240, IEEE, Dayton, OH, USA, (2018).

[108] Vandersteegen, M., Van Beeck, K., Goedemé, T.: Super accurate low latency
object detection on a surveillance UAV. In: arXiv:1904.02024v1, (2019).

[109] Špaňhel, J., Sochor, J., Makarov, A.: Detection of traffic violations of road
users based on convolutional neural networks. In: 2018 14th Symposium on Neural
Networks and Applications (NEUREL), pp. 1–6, IEEE, Belgrade, Serbia, (2018).

[110] Yuan, L., Lu, F.: Real-time ear detection based on embedded systems. In:
2018 International Conference on Machine Learning and Cybernetics (ICMLC), pp.
115–120. IEEE, Chengdu, China, (2018).

[111] Liu, S., Li, X., Gao, M., Cai, Y., Nian, R., Li, P., Yan, T., Lendasse, A.:
Embedded online fish detection and tracking system via YOLOv3 and parallel
correlation filter. In: OCEANS 2018 MTS/IEEE Charleston, pp. 1–6, IEEE, Charleston,
SC, USA, (2018).

BUPT

BIBLIOGRAPHY 188

[112] Saypadith, S., Aramvith, S.: Real-time multiple face recognition using deep
learning on embedded gpu system. In: 2018 Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference (APSIPA ASC), pp. 1318–
1324, IEEE, Honolulu, HI, USA, (2018).

[113] Zhang, W., Sun, H., Zhao, D., Xu, L., Liu, X., Zhou, J., Ning, H., Guo, Y.,
Yang, S.: A streaming cloud platform for real-time video processing on embedded
devices. In: IEEE Transactions on Cloud Computing, pp. 1–1. IEEE, (2019).

[114] Goyal, M., Reeves, N.D., Rajbhandari, S., Yap, M.H.: Robust Methods for
Real-Time Diabetic Foot Ulcer Detection and Localization on Mobile Devices. IEEE J.
Biomed Health Inf.(23), pp. 1730–1741, (2019).

[115] Modasshir, M., Li, A.Q., Rekleitis, I.: Deep neural networks: a comparison on
different computing platforms. In: 2018 15th Conference on Computer and Robot
Vision (CRV), pp. 383–389, IEEE, Toronto, ON, Canada, (2018).

[116] Vaidya, B., Paunwala, C.: Comparative analysis of motion based and feature
based algorithms for object detection and tracking. In: 2017 International
Conference on Soft Computing and its Engineering Applications (icSoftComp), pp. 1–
7, IEEE, Changa, India, (2017).

[117] Zivkovic, Z.: Improved adaptive Gaussian mixture model for background
subtraction. In: Proceedings of the 17th International Conference on Pattern
Recognition (ICPR), pp. 28–31, IEEE, Cambridge, UK, (2004).

[118] Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-
time tracking. In: Proceedings 1999 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (Cat. No PR00149), pp. 246–252, IEEE,
Fort Collins, CO, USA, (1999).

[119] Moon, S., Lee, J., Nam, D., Yoo, W., Kim, W.: A comparative study on
preprocessing methods for object tracking in sports events. In: 2018 20th
International Conference on Advanced Communication Technology (ICACT), pp.
460–462, IEEE, Chuncheon-si Gangwon-do, Korea (South), Korea (South), (2018).

[120] Godbehere, A.B., Matsukawa, A., Goldberg, K.: Visual tracking of human
visitors under variable-lighting conditions for a responsive audio art installation. In:
2012 American Control Conference (ACC), pp. 4305–4312, IEEE, Montreal, QC,
Canada, (2012).

[121] Kaewtrakulpong, P., Bowden, R.: An improved adaptive background mixture
model for realtime tracking with shadow detection. In: Remagnino, P., Jones, G.A.,
Paragios, N., Regazzoni, C.S. (eds.) Video-Based Surveillance Systems, pp. 135–
144, Springer, Boston, MA, (2002).

[122] Cai, E., Juan, D., Stamoulis, D., Marculescu, D.: NeuralPower: Predict and
Deploy Energy-Efficient Convolutional Neural Networks. In: arXiv:1710.05420,
(2017).

BUPT

CONCLUSIONS AND FUTURE WORK 189

[123] Rodrigues, C.F., Riley, G., Luján, M.: SyNERGY: An energy measurement and
prediction framework for Convolutional Neural Networks on Jetson TX1. In: The 24th
Int'l Conf on Parallel and Distributed Processing Techniques and Applications
(PDPTA'18), CSREA Press, pp. 375-382, Las Vegas (2018).

[124] Bhat, G., Bagewadi, K., Lee, H.G., Ogras, U.Y.: REAP: Runtime Energy-
Accuracy Optimization for Energy Harvesting IoT Devices. In: 2019 56th ACM/IEEE
Design Automation Conference (DAC), pp. 1-6, Las Vegas, NV, USA (2019).

[125] Milosevic, J., Pena, D., Forembsky, A., Moloney, D., Malek, M.: It All Matters:
Reporting Accuracy, Inference Time and Power Consumption for Face Emotion
Recognition on Embedded Systems. In: arXiv:1807.00046, June (2018).

[126] Qasaimeh, M., Denolf, K., Lo, J., Vissers, K., Zambreno, J., Jones, P.:
Comparing Energy Efficiency of CPU, GPU and FPGA Implementations for Vision
Kernels. In: arXiv:1906.11879, May (2019).

[127] Gauen K., Rangan, R., Mohan, A., Lu, Y., Liu, W., Berg, C.A.: Low-Power
Image Recognition Challenge. In: 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 99-104. (2017). doi:
10.1109/ASPDAC.2017.7858303.

[128] Canziani, A., Paszke, A., Culurciello, E.: An Analysis of Deep Neural Network
Models for Practical Applications. In: arXiv:1605.07678v4, (2017).

[129] Bianco, S., Cadene, R., Celona, L., Napoletano, P.: Benchmark Analysis of
Representative Deep Neural Network Architectures. In: arXiv:1810.00736v2,
(2018). doi: 10.1109/ACCESS.2018.2877890.

[130] García-Martín E., Lavesson N., Grahn H., Casalicchio E., Boeva V.: How to
Measure Energy Consumption in Machine Learning Algorithms. In: Alzate C. et al.
(eds) ECML PKDD 2018 Workshops. ECML PKDD 2018. Lecture Notes in Computer
Science, vol 11329. Springer, Cham. doi: 10.1007/978-3-030-13453-2_20.

[131] García-Martín, E., Rodrigues, C.F., Riley, G., Grahn, G.: Estimation of energy
consumption in machine learning. Journal of Parallel and Distributed
Computing(134), 75-88 (2019). doi: 10.1016/j.jpdc.2019.07.007.

[132] Verma, S., Wu, Q., Hanindhito, B., Jha, G., John, E., Radhakrishnan, R., John,
L.K.: Metrics for Machine Learning Workload Benchmarking. In: International
Workshop on Performance Analysis of Machine Learning Systems (FastPath) in
conjunction with ISPASS, March (2019).

[133] Hezel, Nico; Barthel, Kai-Uwe: Dynamic Construction and Manipulation of
Hierarchical Quartic Image Graphs. In: ICMR '18 Proceedings of the 2018 ACM on
International Conference on Multimedia Retrieval , pp. 513-516, New York, 2018

[134] “Image Sorter”. https://visual-computing.com/project/imagesorter/, last
accessed 2019/12/05.

BUPT

BIBLIOGRAPHY 190

[135] Meg Pirrung, Nathan Hilliard, Artëm Yankov, Nancy O'Brien, Paul Weidert,
Courtney D Corley, Nathan O Hodas “Sharkzor: Interactive Deep Learning for Image
Triage, Sort, and Summary”, arXiv:1802.05316, 2018

[136] “Apple Photos”.
https://www.apple.com/ios/photos/pdf/Photos_Tech_Brief_Sept_2019.pdf, last
accessed 2019/12/05.

[137] Tanuj Jain, Christopher Lennan, Zubin John, Dat Tran “Image Deduplicator
(Imagededup)”. https://idealo.github.io/imagededup/, last accessed 2019/12/07.

[138] Livia Faes et al. “Automated deep learning design for medical image
classification by health-care professionals with no coding experience: a feasibility
study”, The Lancet Digital Health, Volume 1, Issue 5, pp. e232-e242, 2019

[139] Christopher Lennan, Malgorzata Adamczyk, Gunar Maiwald, Dat Tran “Image
ATM”. https://github.com/idealo/imageatm/, last accessed 2020/01/27.

[140] P. Radev and M. Shirvaikar “Enhancement of flying probe tester systems with
automated optical inspection”, 2006 Proceeding of the Thirty-Eighth Southeastern
Symposium on System Theory, Cookeville, TN, pp. 367-371, 2006

[141] Y. Hiratsuka, et al. Shin “A design method for minimum cost path of flying
probe in-circuit testers”, Proceedings of SICE Annual Conference 2010, Taipei, pp.
2933-2936, 2010.

[142] S. C. Tan and S. T. W. Kit, "Fast retrievals of test-pad coordinates from photo
images of printed circuit boards," 2016 International Conference on Advanced
Mechatronic Systems (ICAMechS), Melbourne, VIC, pp. 464-467, 2016

[143] Soh Ying Seah, et al. “Combining ATE and flying probe in-circuit test
strategies for load board verification and test”, 2009 IEEE Instrumentation and
Measurement Technology Conference, Singapore, pp. 1380-1385, 2009.

[144] L. Dadda, M. Macchetti, and J. Owen, "The design of a high speed ASIC unit
for the hash function SHA-256 (384, 512)," in Design, Automation and Test in
Europe Conference and Exhibition, 2004. Proceedings, Vol.3, pp. 70-75, 2004

[145] R. Lien, T. Grembowski, and K. Gaj, "A 1 Gbit/s Partially Unrolled Architecture
of Hash Functions SHA-1 and SHA-512," in Topics in Cryptology – CT-RSA 2004:
The Cryptographers’ Track at the RSA Conference 2004, San Francisco, CA, USA,
February 23-27, 2004, Proceedings, T. Okamoto, Ed., ed Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 324-338, 2004

[146] Karez Abdulwahhab Hamad, Mehmet Kaya “A Detailed Analysis of Optical
Character Recognition Technology”, International Journal of Applied Mathematics
Electronics and Computers, pp. 244-249, 2016

[147] “ABBYY”. [Online] Available: https://www.abbyy.com/

[148] “Caffe2”. [Online] Available: https://caffe2.ai/

BUPT

CONCLUSIONS AND FUTURE WORK 191

[149] M. Basu “Gaussian-Based Edge-Detection Methods-A Survey” IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 32, no. 3, pp. 252-260, Aug. 2002

[150] “Now it's illegal to write down prices in a Tesco supermarket”. [Online]
Available: https://www.theguardian.com/money/blog/2011/sep/16/tesco-shopping-
supermarket-prices-check-writing

[151] “Supermarket price labelling: Your photos”. [Online] Available:
https://www.bbc.com/news/business-32394711

[152] “Kivy”. [Online] Available: https://kivy.org/

[153] “Buildozer - Generic Python packager for Android and iOS”. [Online]
Available: https://github.com/kivy/buildozer

[154] Goutte C., Gaussier E. “A Probabilistic Interpretation of Precision, Recall and
F-Score, with Implication for Evaluation.” In: Losada D.E., Fernández-Luna J.M.
(eds) Advances in Information Retrieval (ECIR). Lecture Notes in Computer Science,
vol 3408. Springer, Berlin, Heidelberg, 2005

[155] Available [Online]:
https://www.facebook.com/LaBlouseRoumaine10/posts/1303317489786582

[156] Bihor Couture. [Online] Available: http://www.bihorcouture.com/

[157] Ramprasaath R. Selvaraju; Michael Cogswell; Abhishek Das; Ramakrishna
Vedantam; Devi Parikh; Dhruv Batra “Grad-CAM: Visual Explanations from Deep
Networks via Gradient-Based Localization” 2017 IEEE International Conference on
Computer Vision (ICCV), pp. 618-626, Oct. 2017

[158] Zachary C. Lipton “The Mythos of Model Interpretability” arXiv:1606.03490,
2017

[159] Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin “Why Should I Trust You?:
Explaining the Predictions of Any Classifier” arXiv:1602.04938, 2016

[160] CUDA Nvidia. Compute unified device architecture programming guide, 2007

[161] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer “cudnn: Efficient primitives for deep
learning” arXiv preprint arXiv:1410.0759, 2014

[162] Lukas Bossard, Matthias Dantone, Christian Leistner, Christian Wengert, Till
Quack, Luc Van Gool “Apparel classification with style” Asian Conference on
Computer Vision, Springer Berlin Heidelberg, pp. 321-335, 2012

[163] Zhi Li, Yubao Sun, Feng Wang, and Qingshan Liu “Convolutional Neural
Networks for Clothes Categories” CCF Chinese Conference on Computer Vision, pp.
120-129, 2015

BUPT

BIBLIOGRAPHY 192

[164] Wolfgang Fiedler “New technologies for monitoring bird migration and
behaviour”, Ringing & Migration, Vol. 24, Issue 3, pp. 175-179, 2009

[165] “AI for Earth”. [Online] Available: https://www.microsoft.com/en-us/ai/ai-for-
earth

[166] R. V. Zaitsev, M. V. Kirichenko, G. S. Khrypunov, R. P. Migushchenko, L. V.
Zaitseva “Hybrid solar generating module” IEEE International Young Scientists
Forum on Applied Physics and Engineering (YSF), pp. 112 – 115, 2017

[167] Vukica M. Jovanovic, Orlando Ayala, Michael Seek, Sylvain Marsillac "Single
axis solar tracker actuator location analysis", SoutheastCon, pp. 1– 5, 2016

[168] L. Bird, M. Milligan, and D. Lew “Integrating Variable Renewable Energy:
Challenges and Solutions” Technical Report, pp. 1-10, September 2013

[169] K.A.Moharram et al. "Enhancing the performance of photovoltaic panels by
water cooling", Ain Shams Engineering Journal, Vol. 4, Issue 4, pp. 869-877,
December 2013

[170] Tarlochan Kaur, Shraiya Mahajan, Shilpa Verma Priyanka, Jaimala Gambhir
"Arduino based Low Cost Active Dual Axis Solar Tracker", 1st IEEE International
Conference on Power Electronics, Intelligent Control and Energy Systems
(ICPEICES), pp. 1 – 5, 2016

[171] “AUnit”. Available [Online]: https://github.com/bxparks/AUnit

[172] Jasenka Dizdarevic, Francisco Carpio, Admela Jukan, Xavi Masip-Bruin
“Survey of Communication Protocols for Internet-of-Things and Related Challenges
of Fog and Cloud Computing Integration”, arXiv:1804.01747, April 2018

[173] C. Riordan, R. Hulstron “What is an air mass 1.5 spectrum? (solar cell
performance calculations)” IEEE Conference on Photovoltaic Specialists, vol.2, pp.
1085-1088, 1990

[174] Barry W. Williams “Principles Elements of Power Electronics”, University of
Strathclyde Glasgow, pp. 987, 2006

[175] S.V. Mitrofanov, D.K. Baykasenov, M.A. Suleev "Simulation Model of
Autonomous Solar Power Plant with Dual-Axis Solar Tracker", 2018 International
Ural Conference on Green Energy (UralCon), Chelyabinsk, pp. 90-96, 2018

[176] Aditya Sawant, Deepak Bondre, Apurav Joshi, Prasad Tambavekar, Apurv
Deshmukh "Design and Analysis of Automated Dual Axis Solar Tracker Based on
Light Sensors", 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile,
Analytics and Cloud) (I-SMAC), pp. 454-459, 2018

[177] Nursadul Mamun, Nahidul Hoque Samrat, Nur Mohamma, Md. Jahirul Islam,
Abdullah-Al-Mamun, Md. Habibur Rahaman Prince, Ridwan Adib, Md. Iftakherahmed

BUPT

CONCLUSIONS AND FUTURE WORK 193

“Multi-directional solar tracker using low cost photo sensor matrix” International
Conference on Informatics, Electronics & Vision (ICIEV), pp. 1 – 5, 2014

[178] Szilárd Bulárka, Aurel Gontean "Hybrid-loop controlled solar tracker for hybrid
solar energy harvester", 2017 25th Telecommunication Forum (TELFOR), Belgrade,
pp. 1-4, 2017

[179] Shashwati Ray, Abhishek Kumar Tripathi “Design and Development of Tilted
Single Axis and Azimuth-Altitude Dual Axis Solar Tracking Systems”, IEEE
International Conference on Power Electronics, Intelligent Control and Energy
Systems (ICPEICES), pp. 1-6, 2016

[180] Manish Kumar, Santosh Kumar Singh, Dr. R. K. Dwivedi “A Comparative
Study of Black Box Testing and White Box Testing Techniques” International Journal
of Advance Research in Computer Science and Management Studies (IJARCSMS),
Volume 3, Issue 10, October 2015, pp. 32–44

[181] Muhammad Nouman, Usman Pervez, Osman Hasan, Kashif Saghar “Software
testing: A survey and tutorial on white and black-box testing of C/C++ programs”,
IEEE Region 10 Symposium (TENSYMP), May 2016, pp. 225-230

[182] “Node-RED - Flow-based programming for the Internet of Things”. Available
[Online]: https://nodered.org/

[183] David R. Brooks, “Arduino-Based Dataloggers: Hardware and Software”,
Institute for Earth Science Research and Education, Vol. 1.3, pp. 29-31, February
2016

[184] “MQTT becomes OASIS Standard”. Available [Online]: https://www.oasis-
open.org/news/announcements/mqtt-version-3-1-1-becomes-an-oasis-standard

[185] Nidhi Gupta “Different Approaches to White Box Testing to Find Bug”
International Journal of Advanced Research in Computer Science & Technology
(IJARCST), Vol. 2, Issue 3, 2014

[186] “Arduino UNO Schematic”. Available [Online]:
https://www.arduino.cc/en/uploads/Main/arduino-uno-schematic.pdf

[187] N. Song, J. Qin, X. Pan, Y. Deng, “Fault injection methodology and tools,”
Proceedings of 2011 International Conference on Electronics and Optoelectronics,
Vol. 1, 2011, pp. 47-50

[188] M. A. Mioc, “Simulation study of using shift registers based on 16-th Degree
Primitive Polynomials”, In Proceedings of INASE Conference 2015, Wien, March 15-
17, New Developments in Pure and Applied Mathematics, 2015, pp. 363-369.
[Online]. Available:
http://www.inase.org/library/2015/vienna/bypaper/MAPUR/MAPUR-58.pdf.

[189] UN Sustainable Development Goals,
https://www.un.org/sustainabledevelopment/sustainable-development-goals/, last
accessed 2020/05/27.

BUPT

BIBLIOGRAPHY 194

[190] Nvidia Jetson TX2, https://www.nvidia.com/en-us/autonomous-
machines/embedded-systems/jetson-tx2/, last accessed 2019/12/01.

[191] Carballo, J.A., Bonilla, J., Berenguel, M., Fernandez-Reche, J., García, G.:
New approach for solar tracking systems based on computer vision, low cost
hardware and deep learning. In: arXiv:1809.07048v1, (2018).

[192] Bradski, G.: The OpenCV library. In: Dr. Dobb's J. Softw. Tools(120), pp.
122–125, (2000).

[193] Berthod, C., Kristensen, S.T., Strandberg, R., Odden, J.O., Nie, S., Hameiri,
Z., Sætre, T.O.: Temperature sensitivity of multicrystalline silicon solar cells. IEEE J.
Photovolt. (9), pp. 957–964, (2019).

[194] Tensorflow Protobuf,
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/protobuf/con
fig.proto/, last accessed 2020/05/27.

[195] Twilio Programmable SMS, https://www.twilio.com/docs/sms/send-messages,
last accessed 2020/05/27.

[196] JetPack, https://developer.nvidia.com/embedded/jetpack/, last accessed
2020/05/27.

[197] Convenient Power Measurement Script on the Jetson TX2/Tegra X2,
https://embeddeddl.wordpress.com/2018/04/25/convenient-power-measurements-
on-the-jetson-tx2-tegra-x2-board/, last accessed 2020/05/27.

[198] Mattson, P., et al.: MLPerf Training Benchmark. In: arXiv:1910.01500v2,
October (2019).

[199] Reddi, V.J., et al.: MLPerf Inference Benchmark. In: arXiv:1911.02549,
November (2019).

[200] Coleman, C., Narayanan, D., Kang, D., Zhao, T., Zhang, J., Nardi, L., Bailis,
P., Olukotun, K., Ré, C., Zaharia, M.: DAWNBench: An End-to-End Deep Learning
Benchmark and Competition. In: ML Systems Workshop @ NIPS, (2017).

[201] Ben-Nun, T., Besta, M., Huber, S., Ziogas, A.N., Peter, D., Hoefler, T.: A
Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep
Learning. In: arXiv:1901.10183v2, June, (2019).

[202] Zhu, H., Akrout, M., Zheng, B., Pelegris, A., Phanishayee, A., Schroeder, B.,
Pekhimenko, G.: TBD: Benchmarking and Analyzing Deep Neural Network Training.
In: arXiv:1803.06905v2, April (2018).

[203] Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A.,
Tulloch, A., Jia, Y., He, K.: Accurate, Large Minibatch SGD: Training ImageNet in 1
Hour. In: arXiv:1706.02677v2, April, (2018).

BUPT

CONCLUSIONS AND FUTURE WORK 195

[204] Han, S., Mao, H., Dally, W.J.: Deep Compression: Compressing Deep Neural
Networks with Pruning, Trained Quantization and Huffman Coding. In:
arXiv:1510.00149v5, February, (2016).

[205] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. In:
arXiv:1412.6980v9, January, (2017).

[206] Accelerating Facebook’s infrastructure with application-specific hardware,
https://engineering.fb.com/data-center-engineering/accelerating-infrastructure/,
last accessed 2020/05/27.

[207] Strom-Report, https://1-stromvergleich.com/electricity-prices-europe/, last
accessed 2019/11/30.

[208] Ashmore, R., Calinescu, R., Paterson, C.: Assuring the Machine Learning
Lifecycle: Desiderata, Methods, and Challenges. In: arXiv:1905.04223, May, (2019)

[209] Roh, Y., Heo, G., Whang, S.E.: A Survey on Data Collection for Machine
Learning: a Big Data -- AI Integration Perspective. In: arXiv:1811.03402v2, August,
(2019)

[210] Quandl, https://www.quandl.com/, last accessed 2020/02/29.

[211] URSA, https://www.ursaspace.com/, last accessed 2020/02/29.

[212] Kaggle, https://www.kaggle.com/datasets, last accessed 2020/02/29.

[213] Icrawler, https://pypi.org/project/icrawler/, last accessed 2020/02/29.

[214] Amazon Mechanical Turk, https://www.mturk.com/, last accessed
2020/02/29.

[215] Barz, B., Denzler, J.: Do we train on test data? Purging CIFAR of near-
duplicates. In: arXiv:1902.00423, February (2019)

[216] Swanson, A., et al.: Snapshot Serengeti, high-frequency annotated camera
trap images of 40 mammalian species in an African savanna. In: Sci Data 2, 150026
(2015), doi:10.1038/sdata.2015.26

[217] Nakkiran, P., et al.: Deep Double Descent: Where Bigger Models and More
Data Hurt. In: arXiv:1912.02292, December, (2019)

[218] MNIST converted to PNG format, https://github.com/myleott/mnist_png, last
accessed 2020/02/29.

[219] T. Nguyen and N. Rezvani “Printed Circuit Board Assembly Test Process and
Design for Testability”, 9th International Symposium on Quality Electronic Design
(ISQED), San Jose, CA, pp. 594-599, 2008

[220] Y. Niu, L. Wu, L. Wang, X. Zhang, and J. Xu, "A Configurable IPSec Processor
for High Performance In-Line Security Network Processor," in Computational

BUPT

BIBLIOGRAPHY 196

Intelligence and Security (CIS), 2011 Seventh International Conference on, pp. 674-
678, 2011

[221] A. Thiruneelakandan and T. Thirumurugan, "An approach towards improved
cyber security by hardware acceleration of OpenSSL cryptographic functions," 2011
International Conference in Electronics, Communication and Computing
Technologies (ICECCT), pp. 13-16, 2011

[222] Y. Yarom, D. Genkin, and N. Heninger, "CacheBleed: A Timing Attack on
OpenSSL Constant Time RSA," in Cryptographic Hardware and Embedded Systems –
CHES 2016: 18th International Conference, Santa Barbara, CA, USA, August 17-19,
2016, Proceedings, B. Gierlichs and Y. A. Poschmann, Eds., ed Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 346-367, 2016

[223] R. Zimmermann, "Binary Adder Architectures for Cell-Based VLSI and Their
Synthesis," Ph.D. Thesis, Swiss Federal Institute of Technology, Zurich, 1997.

[224] S. Roy, M. Choudhury, R. Puri, and D. Z. Pan, "Polynomial Time Algorithm for
Area and Power Efficient Adder Synthesis in High-Performance Designs," IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 35,
pp. 820-831, 2016.

[225] J. E. Stine, J. Grad, I. Castellanos, J. Blank, V. Dave, M. Prakash, et al., "A
Framework for High-Level Synthesis of System-on-Chip Designs," presented at the
Proceedings of the 2005 IEEE International Conference on Microelectronic Systems
Education, 2005.

BUPT

		2020-11-27T15:08:14+0200
	Computerul meu
	DORIN LELEA
	Atest integritatea acestui document

