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Abstract - This paper propose a low dynamics version of 
FTF adaptive algorithin using a modifled form of the 
cost function, based on an asymptotically unbiased 
estimator of the mcan square error. The reduced 
dynamics of the modified algorithm's parameters couid 
lead to facility for fîxed-point implenientation. 
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I. INTRODUCTION 

The Recursive Least Squares (RLS) adaptive 
algorithm [1], [2] is one of the most popular adaptive 
algorithms, mainly due to its fast convergence rate. 
Nevertheless, there are some major drawbacks related 
to the high computaţional complexity and the large 
dynamic range of the algorithm's variables. 
The first inconvenient could be solved by using a 
*Tast'' least squares (LS) algorithm, in sense that the 
computaţional cost increases linearly v îth the number 
of adjustable parameters. There are a variety of fast 
LS algorithms wiih widely varying properties. The 
most known are Recursive Least-Squares Lattice 
(RLSL), QR-Decomposition based Least-Squares 
Lattice (QRD-LSL) and Fast Transversal Filter (FTF) 
algorithms [I], [2]. Of these, only the FTF algorithm 
generates the adaptive filter weights. Unfortunately, 
FTF algorithm suffers from the numerical instability 
problem under a fmite precision implementation [1]. 
The second drawback conceming the large dynamics 
of parameters could cause unvvanted fmite precision 
effects. Especially in a fixed-point arithmetic context, 
overflow or stalling phenomena could occur mainly 
due to ihe inherent scaling operations. The "guiltiest" 
parameter for that large dynamic range is the 
algorithm cost function. In the case of any LS 
adaptive algorithm the cost function produces a large 
biased estimate of the mean square error. In this paper 
we propose a version of FTF algorithm based on a 
modified form of the cost function, using an 
asymptotically unbiased estimator of the mean square 
error [3], [4]. The reduced dynamics of the modified 
algorithm's parameters could lead to facility for fixed-
point implementation. 

The organization of this paper is as follows. The 
theoretical background of our problem is introduced 
in the next section. The derivation of the low 
dynamics FTF adaptive algorithm is performed in 
section III. Some simulation results are presented in 
section IV. Finally, the conclusion remarks are given 
in section V. 

II. THEORETICAL BACKGROUND 

Tlie LS cost function is defined as an estimate of the 
mean square-error: 

(1) 

where O < A T] 1 is the exponenţial weighting factor 
and e{i) is the estimation error at time /. This estimate 
of the cost function induces similar estimates for the 
correlation matrix (t>{n) and the cross-correlation 
vector G(/7): 

/=1 
(2) 

Q{n) = ( / ) = -1)- x{n)d' {n) 
i=\ 

(3) 

where x(/) is the tap-input vector and cl{i) is the 
desired response, both at time i. The superscript H 
denotes Hermitian transposition (transposition and 
complex conjugation) and the superscript * denotes 
the complex conjugation. 
The expectations of these functions are 

(4) 

\ - Ă 
R (5) 
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where R is ihe correlaiion mairix of input data Wc 
can see that J[n) is a bia^ed estimate of £{:e{/î)|*) and 
similarly is a biased estimate of R. It will result 

n-»co I _ 

(6) 

(7) 

/=i (8) 

In Ihis case 

(9) 

is an asymptotically unbiased estimator of tlie mean 
square-error. 
Following this idea we havc to perform ihe same 
modification in equations (2) and (3) obtaining 

/=! (ÎO) 

= + (n) 

(11) 

= / i e ( / î - l ) - r ( l > Â ) x ( n ) / [n) 

According. 

(12) 

fll. LOW DYNAMICS FTF ADAPTIVE 
ALGORITHM 

Let us consider a forward linear predictor of order N 
vvith the vector coefîicients at time n denoted by 
a v(/î). The forward a posteriori prediction error 
produced at the output is 

= (O (13) 

Some classes of appiications [5] requirc a high 
memor>' algorithm, which means that the value of the 
exponenţial weighting factor / is very close to unit>'. 
In this case very large values for these parameters can 
result, causing unwanted fmite precision effects in a 
practicai implementation. 
Taking into account the previous discussion we 
propose an unbiased estimator of the matrix <I>(n). So 
that we will modify' the cost function from equation 
(I) as follows: 

where is the ;V-^l-by-l the tap-input vector, 
w ith l < / S « . 
The cost function is the sum of weighted forward a 
posteriori prediction-error squares in the modified 
form according to (8): 

/=1 (14) 

The corresponding backward linear prediction-error 
filter with the vector coefficients denoted by 
will produced the backward a posteriori prediction 
error: 

(15) 

In this case, the cost function is the sum of weighted 
backward a posteriori prediction-error squares; 

= 4 ( 0 
;=1 (16) 

is an asymptotically unbiased estimator of the 
correlaiion matrix. 
Most of the expressions in the following section may 
look familiar to readers acquainted with the theory of 
least-squares transversal filters. However, the 
derivation that follows is developed according to the 
new approach. 

Let denote the yV+l-by-A^+1 correlation 

matrix of the tap-input vector where 

denote the w-by-1 cross-correlation 

vector between .r(/) and and 

denote the A-by-1 cross-correlation vector between 
X/̂  (/) and xO-N). According to (10) and (11) 
these parameters have the following forms: 

= (1 - (O = 
/=l 

= 'i^AZ+l (/7 - 1) + (1 - /l) Xyv.l (n) 
(17) 

,=] (18) 
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e*(«) = (1 - = 

= >19̂  (w -1) + (1 - A) x̂ v (n - N) 

In the case of tbrward linear prediction the normal 
equation is: 

(20) 

•̂ .Vmin 
O 

(21) 

and ky^'(n-l) is the modified gain vector: 

(24) 

Taking these into account we may write the recursion 
for updating the tap-weight vector of the prediction-
error filter: 

(«) = « A / ( « - ! ) -
O 

a l i n ) (25) 

Finally, we get the following recursion for updating 
the minimum value of the sum of weighted forward 
prediction-error squares: 

W = ^ ^ L i n + {n)e{; {n) 
(26) 

In a similar manner we obtain a set of relations for the 
backward prediction part of the algorithm: 

O 
(27) 

= (28) 

= (29) 

= (30) 

k : v H 
O 

(31) 

where >v(w) is the tap-weight vector of the forward 
linear predictor, or 

where J^j^^^ is tlie minimum value of the sum of 
weighted forward a posteriori prediction-error 
squares. 
Following the classical procedure it is easy to deduce 
the following recursion for updating the tap-weight 
vector of the predictor: 

w(/7) = w(A7-l) + k ^ ( / z - l ) 4 ' { / 7 ) (22) 

where a l f (n) is the forward a priori prediction error: 

= (23) 

^ L m = - O - O - W 
(32) 

where: 
"̂ A'min ^̂  ^^^ minimum value of the sum of 
weighted backward a posteriori prediction-error 
squares; 
Cf^(n) is the tap-weight vector of the backward 
prediction-error filter; 
g(/7) is the tap-weight vector of the backward 
predictor; 

is the modified gain vector; 

a ^ (n) is the backward a priori prediction error. 
The next step is to defme a modified extended gain 
vector: 

= (33) 

It can be demonstrated that the inverse of the 
correlation matrix may be expressed as follows: 

jO O 1 
» V 

(34) 
Using the previous relation we get the following 
recursion for the modified extended gain vector: 

VV+l (n) = 
O 4 (") 

j L M 
(35) 

Similarly, using an aJternative expression for the 
inverse of the correlation matrix: 

o 

o Oj - ^ L i n W 
(36) 

we get the second recursion for the modified extended 
gain vector: 

'w+l O Amni") 
(37) 
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The deflnition of thc modified gain vector from 
relaiion (29) may also be viewed as thc solution of a 
special case of the normal equations. It defines the 
tap-weighl vector of a transversal filter that contains .V 
taps and that operates of the input data X/v (n) to 
produce a Icast-squares estimate of a special desired 
response: 

= - . (38) 
j O, O < ; < n 

The estimation crror (modified conversion factor) is 
defined as follows: 

( " ) = 1 - ( I - ( « ) « V {«) (39) 

Taking into account the expression of the inverse of 
the correlation matrix from the standard recursive 
least-squares estimation problem [1]. {21 we get: 

1 
(40) 

faini 
a^i") 

(41) 

r.v ( « - ! ) = f M (42) 

for adaptive backward linear prediction: 

>'.v(«)= A (43) 

Taking these into account, the following recursions 
for updating the conversion factor can be obtained: 

j L M 

ei' 
( " ) - ( ! - ' I j - j r r 

(44) 

(45) 

(46) 

^Nmin f 

Finally, we ha\e to put together four distinct tasks 
(fonvard linear prediction, backward linear prediction, 
computation of the gain vector and estimation of the 
desired response) in order to obtain our modified FTF 
adaptive algorithm. 
First, let us define the normalized gain vector: 

M z l (48) 

According, some simplified recursions can be 
obtained: 

o 

Three useful interpretations of the conversion factor 
are known [1], [2]: 

for recursive ieast-squares estimation: 
«A'(") = a;V ( « - ! ) -

(49) 
O 

ei{n) (50) 

whcre e^j (n) is the a posteriori estimation error 
and af^(n) is the a priori estimation error, 
for adaptive fonvard linear prediction: 

4 ( " ) = ^ - ^ L i n ( " - ( " ) (51) 

r.v+i («) (52) 

where /̂ f+j («) is the last element of the vector 

k.v^l (") • 
Similarly, in the casc of backward prediction we get: 

O = k V,, - (1 - (^)c// ( " - 1 ) 

(53) 

o 
(54) 

In order to complete the algorithm it is necessary to 
update the tap-weight vector of ihe adaptive filter as 
follows: 

= (55) 

(56) 
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In this manner we obtain our Low-Dynamics FTF 
(LD-FTF) adaptive algorithm. It is summarized 
below. 

LD-FTF adaptive algorithm 

Predictions 

,n,n (") = (« ' O ^ (l " (") 

« A ' = ( " - ' ) -
O 

eU") 

r^+l (n) 

L O 

procedare presented in f l ] and [2] and wc obtain the 
algorithm as follows. 

Initialization of LD-FTF adaptive algorithm 

a o ( i ) = co(i) = i , k o ( i ) = o , r o ( i ) = i 

forn = 2\N'+\ 

j 

JU.^ ( " ) = J L ( " ) + ( ' - '-Wn-l {n) 

if 

Filtering 

es («) = YN (w)a,v (" ) 

w.v («) = w;̂ , (rt - 1 ) + e'fj ( n ) k ^ («) 

The initialization of the algorithm, i.e. l < n < N + l 
period, is quite complex and requires a lot of paper 
space in order to be deduced. The most common 
initialization is for the case when the iniţial condition 
is zero. At time n = N, initialization of both the gain 
vector and the adaptive filter is completed. However, 
the forward and backward prediction-error filters are 
both one unit longer. So, their initialization is 
completed at time « = yv + I. We have introduced our 
modifications into the standard initialization 

Xn 

ifn = N-r\ 

c„-i(«) = 

O 1 

1 

end 

ifn = m\ 

(«) = w (n - l)+ k„_, (n) 

else 

(n -1)' 

^•(1) J 

end 

end 
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IV. SIMULATION RESL'LTS 

For the experimental results vvc consider a stern 
ideniiflcation" configurat ion. In ihis class of 
applications dealing wiih system Identification, an 
adaptive filter is used to provide a linear model that 
represents the bcst fit (in some sense) to an unknown 
systeni. The adaptive filter and the unknown system 
are driven by ihe same input. The unknown system 
output suppiies the desired rcsponse for the adaptive 
filter. These two signals are used to compute the 
estimation error, in order to adjust the filter 
coelTicicnts. 
In our experiments we compiue the classical FTF 
algorithm and the proposed LD-FTF algorithm. The 
input signal is a random sequence with an uniform 
distribution on the inter\ al (-1;! ). TTie length of the 
adaptive filter is A' = 5. The results are presented in 
Fig. 1 and Fig. 2, using an exponenţial weighting 
factor /(= 0.999. 

3 100 2D0 3D3 400 500 600 7CC 600 9DD 100C' 

LD-FTF 

O -.DO 30C 3QC 40D SOC 530 700 3GlI 900 1000 
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Fig.l. Convergence rate for FTF and LD-FTF 
adaptive algorithms 
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Fig.2. Evolution of adaptive filter coefficients for FTF 
and LD-FTF adaptive algorithms 

It can be noticed that the performances of both 
adaptive algoritlims are the same. Hence, the LD-FTF 
algorithm keeps the fast rate of convergence and 
specitlc to the family of fast LS algorithms. 
Moreover, the reduced dynamics of the modified 
algorithm's parameters could lead to facility for fixed-
point implementation. 

V. CONCLUSIONS AND PERSPECTIVES 

In this paper we have proposed a modified version of 
the FTF adaptive algorithm, named LD-FTF, with low 
dynamics of the parameters, as a result of a different 
approach of the least squares estimation problem. 
The basic idea was to use a modified form for the 
algorithm's cost functions in order to obtain 
asymptotically unbiased estimators for the mean 
square errors. In this manner we reduce the dynamic 
range of the algorithm parameters, preventing the 
unvvanted overfiow or stalling phenomena which may 
appear when such an algorithm is implemented using 
fixed-point arithmetic. 
The simulation results prove that LD-FTF adaptive 
algorithm keeps the fast rate of convergence specific 
to the family of fast LS algorithms. 
This paper represents only the first step of our 
research. Future work will focus on fixed-point DSP 
implementation of tliis algorithm. Also, a careful 
analysis of numerical stability of LD-FTF algorithm 
could be considered in perspective. 
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