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Abstract — This paper propose a low dynamics version of
FTF adaptive algorithm using a modified form of the
cost function, based on amn asymptotically unbiased
estimator of the mean square error. The reduced
dynamics of the modified algorithm’s parameters could
lead to facility for fixed-point implementation.
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I. INTRODUCTION

The Recursive Least Squares (RLS) adaptive
algorithm {1], [2] is one of the most popular adaptive
algorithms, mainly due to its fast convergence rate.
Nevertheless, there are some major drawbacks related
to the high computational complexity and the large
dynamic range of the algorithm’s variables.

The first inconvenient could be solved by using a
“fast” least squares (LS) algorithm, in sense that the
computational cost increases linearly with the number
of adjustable parameters. There are a variety of fast
LS algorithms with widely varying properties. The
most known are Recursive Least-Squares Lattice
(RLSL), QR-Decomposition based Least-Squares
Lattice (QRD-LSL) and Fast Transversal Filter (FTF)
algorithms [1], [2]. Of these, only the FTF algorithm
generates the adaptive filter weights. Unfortunately,
FTF algorithm suffers from the numerical instability
problem under a finite precision implementation {1}.
The second drawback concerning the large dynamics
of parameters could cause unwanted finite precision
effects. Especially in a fixed-point arithmetic context,
overflow or stalling phenomena could occur mainly
due to the inherent scaling operations. The “guiltiest”
parameter for that large dynamic range is the
algorithm cost function. In the case of any LS
adaptive algorithm the cost function produces a large
biased estimate of the mean square error. In this paper
we propose a version of FTF algorithm based on a
modified form of the cost function, using an
asymptotically unbiased estimator of the mean square
error (3], [4]. The reduced dynamics of the modified
algorithm’s parameters could lead to facility for fixed-
point implementation.

The organization of this paper is as follows. The
theoretical background of our problem is introduced
in the next section. The derivation of the low
dynamics FTF adaptive algorithm is performed in
section 11l. Some simulation results are presented in
section IV. Finally, the conclusion remarks are given
in section V.

II. THEORETICAL BACKGROUND

The LS cost function is defined as an estimate of the
mean square-erfor:
|2

J(n):i).""le(i)r=/'.J(n—l)+|e(n) (1

where 0 < 4 71 1 is the exponential weighting factor
and e(i) is the estimation error at time /. This estimate
of the cost function induces similar estimates for the
correlation matrix ®(n) and the cross-correlation
vector O(n):

®(n)= gl”"x(i)xH (i) = 20(n—1)+ x(n)x" (n)
@

8(n)= g'l;_"—'x(i)d' (1) = 46(n-1)= x(n)d" (n)
)

where x(i) is the tap-input vector and d(i) is the
desired response, both at time . The superscript H
denotes Hermitian transposition (transposition and
complex conjugation) and the superscript * denotes
the complex conjugation.

The expectations of these functions are

E{J(n)} = ]_)'_H-E{le(n)lz} )

1-4

1-4"
1-4

E{O(n)} =

R (5)
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where R is the correlaton matrix of input data. We
can see that J(n1) is a biased estimate of E{-e(n)|’} and
similarly ®(n) is a biased estimate of R. {t will result

E{J(n)}ln_m EITIZE{le(")lz} (6)

E{®(n)}

1
:l-).R N

n-—x

Some classes of applications {5] reguirc a high
memory algorithm. which means that the value of the
exponential weighting factor 4 is very close to unity.
In this case very large values for these parameters can
result, causing unwanted finite precision effects in a
practical implementation.

Taking into account the previous discussion we
propose an unbiased estimator of the matrix ®(n). So
that. we will modify the cost function from equation
(1 as follows:

J(n) ={l- i)zn:}."_' ie(i)lz =
i=l (8)

=AJ(n-1)+(1- /‘.)]e(n)|2

In this case
E{J(n) s(l—,{”)E{]e(n)iz} )

is an asymptotically unbiased estimator of the mean
square-error.

Following this idea we have to perform the same
maodification in equations (2) and (3) obtaining

O(n)=(1- ).)il/'_""x(i)xﬁ (Y=

(10)
= 2®(n-1)+(1- 2)x(n)x (n)
6(n)=l§/1""x(i)d ()= an
= A0(n —l)+(l—i)x(n)d. (n)
According.
E{(b(n)}s(l—).")R (12)

is an asymptotically unbiased estimator of the
correlation matrix.

Most of the expressions in the following section may
look familiar to readers acquainted with the theory of
least-squares  transversal filters. However, the
derivation that follows is developed according to the
new approach.
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[lI. LOW DYNAMICS FTF ADAPTIVE
ALGORITHM

Let us consider a forward linear predictor of order N
with the vector coefficients at time n denoted by
ay(n). The forward a posteriori prediction error

produced at the output is

el () = af (MxpL () (13)

where X, ;i) is the A+1-by-1 the tap-input vector,

with 1<isn.

The cost function is the sum of weighted forward a
posteriori prediction-error squares in the modified
form according to (8):

/ < 7 oaf
Syn)= (=250 e )
=

(14
. 2
=27 (n=1) (1= 2)[ef; (n)

The corresponding backward linear prediction-error
filter with the vector coefficients denoted by ¢y (n)
will produced the backward a posteriori prediction
error:

(15)

eb, (i) = el (mxy 1 ()

In this case, the cost function is the sum of weighted
backward a posteriori prediction-error squares:

S8 (n)=(1- ,1)2,1"-' Ie{,{, (z)|2 =

= 208 (n=1)+ (1= 2)fe )]

(16)

Let ®y_i(n) denote the N+l-by-N+1 correlation
matrix of the tap-input vector xp, (i), where
1<i<n, 8/ (n) denote the m-by-1 cross-correlation
vector between x(i) and xy(i~1), and Bb(n)

dencte the A-by-1 cross-correlation vector between
xx (1) and x(/-N). According to (10) and (11)
these parameters have the following forms:

O (n) = (1= 2)) A" xy (x4 () =

1=l
= AQp (n =D+ (1= A)x . (mxf_, (n)
a7
87 (m=(1-2)Y A"ix,, (i-1)x" (i) =
1=l (18)
=487 (n-1) + (1- A)x, (n - 1)x" (n)
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() = )ZA"")\ N@Ox' (- N)=

1=l

=80 (n-1)+(1-A)xy(mx" (1~ N)

(19)

In the case of forward linear prediction the normal
equation is:
Oy (n-1)w(n) =0/ (n) (20)

where w(n) is the tap-weight vector of the forward
linear predictor, or
/
JNmm
0

D . (n)ay (n) =[ @n

where JNmm is the minimum value of the sum of
weighted forward a posteriori prediction-error
squares.

Following the classical procedure it is easy to deduce
the following recursion for updating the tap-weight
vector of the predictor:

win)=w(n-1)+ky (n—l)a,c. (n) @2

where a.-,\’, (n) is the forward a priori prediction error:

af (n)=aff (n-V)xyu(n) @3
and k  (n—1) 1s the modified gain vector:
ky (n=1)=(1-2)®}/ (n-1)xy (n-1) 24

Taking these into account we may write the recursion
for updating the tap-weight vector of the prediction-
error filter:

(25)

0
ay(n)=ay (n—l)—{k;,, (n_l)}a,{, (n)

Finally, we get the following recursion for updating
the minimum value of the sum of weighted forward
prediction-error squares:

"(n)

(26)
In a similar manner we obtain a set of relations for the
backward prediction part of the algorithm:

0
Oy (n)ey (n)= [Jf/ ' (n)}

ngin (”) = A’J/Cmin (n—l)+(l - ’l)al{l (")e){)

@n
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g(n)=g(n-1)+ky (n)ay (n) (28)
ky (n)=(1-4)®3 (n)xy (n) (29
a,’{, (n)= cﬁ (n=1)xpn41(n) (30)

ey(n)=cy(n- l)—[kNO(n)Jak, (n) @3N

)
|
J[’:/mm( ) AJllzlmm( l) (l*i)a’\’ ) (n)
(32
where:
- Jﬁ min iS the minimum value of the sum of
weighted backward a posteriori prediction-error
squares;

- cy(n) is the tap-weight vector of the backward
prediction-error filter;

- g(n) is the tap-weight vector of the backward
predictor;

- ky(n) is the modified gain vector,

- af{, (n) is the backward a priori prediction error.

The next step is to define a modified extended gain
vector:

knai(n)=(1- )@Y, (7)xnai () (33)

It can be demonstrated that the inverse of the
correlation matrix may be expressed as follows:

(34)
Using the previous relation we get the following
recursion for the modified extended gain vector:

T % (n)
Ky (")—il_kN (n—l):| ( ) ( )J/Cmm( )

(35)
Similarly, using an alternative expression for the
inverse of the correlation matrix:

()| 0 et

b
L 0 0 JNmm( )

Cx (n)c{’:/l (n)

(36)
we get the second recursion for the modified extended
gain vector:

ey ()

ngmm ( )
(37

()= 4 0= )y o

0

BUPT



The definition of the modified gain vector from
relation (29) may also be viewed as the solution of a
special case of the normal equations. It defines the
tap-weight vector of a transversal filter that contains N
taps and that operates of the input data x, (n) to
produce a least-squares estimate of a special desired
response:

i=n

{

[,
dgi) =
0 4,0 O<i<n

(38)
The estimation error (modified conversion factor) is
defined as follows:

i (n)=1- (1= 1)k ()@ (mxn () (39
Taking into account the expression of the inverse of
the correlation matrix from the standard recursive
least-squares estimation problem {1]. {2] we get:

v ()= :
N T+ (1= 2) 27 %8 (n) @3} (n)xy (n)

(40)

Three useful interpretations ot the conversion factor
are known [1], [2}:
- for recursive least-squares estimation:

ey (n)

(41)
ay (ﬂ)

yx(n)=

where ey (1) is the a posteriont estimation error
and a;(n) is the a priori estimation error;
- for adaptive forward linear prediction:

J
ey (n
YN (n—l)=+(—)' (42)
ay(n)
- for adaptive backward linear prediction:
et (n
ru(n)=—=% () 43)
ay (n)

Taking these into account, the following recursions
for updating the conversion factor can be obtained:

efo )]
7,\'+|(")=}’N(”‘1)‘('“"~)—j—— (44)
Nmin ("
ebv n 2
ya-1(n)=ra(n)-(1- 3)%"—)% (45)
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J,{,min (n-1)

, = -1 46

peaaln) = Az (n=)ZETEE 0
A min n—l)

yint (n) = Ay (m) =R ((,,) “n

Nmin

Finally, we have to put together four distinct tasks
(forward lincar prediction, backward linear prediction,
computation of the gain vector and estimation of the
desired response) in order to obtain our modified FTF
adaptive algorithm.

First, let us define the normalized gain vector:

ky (n)
ky(n)= (48)
_N() 7;\’(")
According, some simplified recursions can be
obtained:
oo } (1- 2)af (n)
Ky, {n)=! PO AL ot S0 AP PP
—‘V+]( ) {_.lSN(n—l) .AJICmin(n—l) N( )
(49)
0 ; 0
(n)=ay(n-1)-| . , 5
ay (ﬂ) ay (ﬂ ) EN (n-l) e (n) ( )

2
ak’ (") = (T_—;'_)'J?\’min (" - 1)-IE.’\'+1,N-1-I (n) (51

7 (n)= Zg )
1= (1) Pyt (9 g v ()

(52)

* .
where k., v, (#) is the last element of the vector

Ky ()
Similarly, in the casc of backward prediction we get:

[EN (n)

0 J =Ky (7)== Dkp gy (n)ey (n-1)
(53)
en(n)=cn(n-1)- e’,{, (n)lik(;v} 54

In order to complete the algorithm it is necessary to
update the tap-weight vector of ihe adaptive filter as
follows:

ay (n)=d(n)-wil (n-1)xy (n) (55)

wy (n)=wy (n-1)+ay (n)ky (n)=

. (56)
=y (n=1)~ ek ()i (n)
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In this manner we obtain our Low-Dynamics FTF
(LD-FTF) adaptive algorithm. It is summarized
below.

LD-FTF adaptive algorithm

Predictions

af (n)=af} (n=1)xp (n)

et (m) =7y (n=D)af, (n)

Imin (1) = Ay (n=1) = (1= D)y (n)el” ()
Ko=)

1

rN”(n):AyN (n—l) Nmm( )

‘or

‘_‘;’\ol(")zlk (0 l)]+(—w (n-1)

LRV A= ’I‘J’Cmm( _‘)

0

ay(n)=ay(n- l)—[k.v (n- l)}’ﬁ (n)

‘]ll:/mm ( ])&N+I,N+l (")

_ YN+ (")
r(n) t=ad, (1) 7w+ (7) ks et ()

e () =7 (m)af, (n)

T oan (1) = 2% i (n=1)+ (1= 1)@}, (n)ed; (n)
EFENO(’I)} =Ky, (7)== Dky .y (n)ey (n-1)
L

K ]
0

w41
Filtering

a (n)=d (n)-wi} (n=1)xy ()
en (n)=yy (n)ay (n)

wy(n)=wy (n-1)+ey (n)ky (n)

The initialization of the algorithm, i.e. 1<n< N +1
period, is quite complex and requires a lot of paper
space in order to be deduced. The most common
initialization is for the case when the initial condition
is zero. At time n = N, initialization of both the gain
vector and the adaptive filter is completed. However,
the forward and backward prediction-error filters are
both one unit longer. So, their initialization is
completed at time n = N + 1. We have introduced our
modifications into the standard initialization

procedure presented in {1] and [2] and we obtain the
algorithm as follows.

Initialization of LD-FTF adaptive algorithm

a9(1)=co(1) =1, ko (1) =0, o (1)=1
a0
x*(1)

T mn (1) = (1= 4)|x (1)

wi(1)=

’2, x(1)=20

Jor n=2:N+1

a,{_z (n)= a:_z (n=1)xp-1 (n)
(8,5 (n-1)

2,1 (n) = (Z,{_-, ( )

X))
&)1 (n)=7m-2(n-1)a;_; (n)
Y v (1) = 2y (1)
T} 2min ()= I e (1) + (1= 2, (n) €5 ()
I pin (7))
I 2umin ()

3 et
kn_.(n)z[ LA O e = P

K, (n_l)J /{J,{me (n—l)

Yn-2 (n_l)

Vo1 (n)=

ifn=N~l

¢, (n)= [-X(l)n—l E")E;—l (”)]
72 i ()= (1= 2) ey () (1)
end

@yt (1) = dln)= il (1= 1,y ()
en—l( ynl")anl()

ifn=N+l

par(n)=w, (- 1)k, (n)es_ (n)
else
w,,_l(n—l)
-] |
LX)
end
end
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IV. SIMULATION RESULTS

For the experimental results we consider a “‘system
identification” configuration. In this class of
applications dealing with system identification, an
adaptive filter is used to provide a linear model that
represents the best fit (in some sense) to an unknown
system. The adaptive filter and the unknown system
arc driven by the same input. The unknown system
output supplies the desired response for the adaptive
filter. These two signals are used to compute the
estimation error, in order to adjust the filter
coeficicnts.

In our experiments we compare the classical FTF
algorithm and the proposed LD-FTF algorithm. The
input signal is a random sequence with an uniform
distribution on the interval (—1;1). The length of the
adaptive filter is & = 5. The results are presented in
Fig. 1 and Fig. 2. using an exponential weighting
factor 4 = 0.999.

df

|
I 30 000

.
0w I 0 & &8 W
Nuimzer of derairrs
Fig.1. Convergence rate for FTF and LD-FTF
adaptive algorithms

AT 0 &0 W & W M W X

Fig.2. Evolution of adaptive filter coefTicients for FTF
and LD-ITF adaptive algorithms
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It can be noticed that the performances of both
adaptive algorithms are the same. Hence, the LD-FTF
algorithm keeps the fast rate of convergence and
specific to the family of fast LS algorithms.
Moreover, the reduced dynamics of the modified
algorithm’s parameters could lead to facility for fixed-
point implementation.

V. CONCLUSIONS AND PERSPECTIVES

In this paper we have proposed a modified version of
the FTF adaptive algorithm, named LD-FTF, with low
dynamics of the parameters, as a result of a different
approach of the least squares estimation problem.

The basic idea was to use a modified form for the
algorithm’s cost functions in order to obtain
asymplotically unbiased estimators for the mean
square errors. In this manner we reduce the dynamic
range of the algorithm parameters, preventing the
unwanted overflow or stalling phenomena which may
appr 8 Waen SUCH @ algorithm is imnlementad using
fixed-point arithmetic.

The simulation results prove that LD-FTF adaptive
algorithm keeps the fast rate of convergence specific
to the family of fast LS algorithms.

This paper represents only the first step of our
research. Future work will focus on fixed-point DSP
implementation of this algorithm. Also, a careiul
analysis of numerical stability of LD-FTF algorithm
could be con-ide-ed in pe spective.
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