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Abstract-Our goal in this paper is to make a study about
optical coherent and incoberent systems frequency
response. We begin from the definition of an optical
system then we define transfer function for coherent and
incoherent systems. We find the response of this system
to a step indices stimulus, then we generalize for an
image and finally we make a comparison between two
different systems.

INTRODUCTION

Generally speaking optical systems can be scen as a
black box with an input and an output. at the input we
have object plane and at the output image plane which
is obtained from convolution between object image
and transfer function of optical systems (the black box
can contain one ore more optical elements). Here we
will have a diffraction element.

U )= [[hu=&v-nU, & mdédn ()

h(u,v;&,n) optical system impulse response
but system response to optical impulse is Fourier
transform (Fraunhoffer diffraction) of diffraction
clement aperture.

h(u,v) =

A 2z @
e HP(x,y)CXP{—J e+ wy)tdxdy

Next we will try to calculate Afu,v) for coherent and
incoherent case.

What do we understand by coherent and incoherent
illumination?

Coherent illumination is made by lasers.

Incoherent illumination is made by diffuse source like
sun or gaze lamp.

For coherent illumination the system is described by
amplitude convolution equation.

U= [[h(u=&v-nU, & mdédn )

For incoherent illumination the system is described by
intensity convolution equation.

1= [au-&v-nf 1,6 mdedn @

AMPLITUDE TRANSFER FUNCTIONS TYPICAL
FOR COHERENT CASE.

We define input and output frequency spectrum

G, ([0 /)
= HUU(x, yyexp{~j2z(fu+ f,v)}dvdu ®
G (fo 1))
= [JU.(x, pyexpl=j2m(fu + £,v)}dvdu ©

We define transfer function

H(/f..1,)
= j jh(u,v)exp{— j2r(fu+ f,v)}dvdu

We apply convolution to (3) and we obtain:

(7

Gl(vf;’./;r):H(f;’fy)Gu(f;’fy) (8)
This is the relation between image and object plane in
frequency.

But transfer function is Fourier Transform of impulse
response system. Then we will have;

H(f.. 1)) =
A 2
R [[PCx, yyexpt- Tz e i)

=(AAz)P(Az,f,, Az, ],) 9)
If we put AAz, =1 then
H(f,.1,)=P(Az,f.,22,1,) (10)
As a conclusion for coherent illumination Amplitude
Transfer Function is the aperture trough which the

light passes and the diffraction is made. For a square
aperture we will have:

P(x,y)= rect(—x—)rect(L)
2w 2w
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The transter function will be:

Az I Azt
) rect(—=

) = recy(

X )
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Next we will study optical coherent systems response
to a step indices stimulus for a square aperture. We
will study 2D and 3D case Fig. |
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400 400
Fig 1. first line present 2D case: second line present 3D case. first column present step indices stimulus:
second line present square aperture: third line present response
OPTICAL TRANSFER FUNCTION TYPICAL FOR  We define transfer function
INCOHERENT CASE H(f. 1)
We detine normalized frequency spectrum / and /[ - ”}h(m‘)‘h exp(—/27(f u+ f v)]dudv
GAf 1)) ” ‘h(u.v)"dudv
”1,,(11,v)exp[—er:(fru + f o) ]dudy (13)
=== - We apply convolution to (4) and we obtain:
”L,(u.v)dua'v G/ D =HU W IIG(fn 1) (14)
[} . . .
G(f.f) (n HOf L FL) optical transfer function
e Optical transfer function and optical amplitude
”[ (u,vyexp[—j2z(fu+ f \)]dudv function on their definition imply function A (optical
= M MR system impulse response) so there is a relation
Jj]l(u, vducdy between this two function. Optical transfer function is
, the normalized autocorrelation of amplitude transfer
(2 function.
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= dvdv (15 - 7
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HP(,\ <V )dxdy ’ ; v
T'his represent area of superposition of two aperwres |
. R } v
: Az AS T,
ot the same shape one at - the other at T’;“l T
- L
i r A f Fig 2 T £ (1)) tor incoherent case.
- — ~ —== divided at total area of the two _ .
2 2 When this area is normalized with wotal area 4w
apertures as in Fig. 2 have
Mathemauceal relanion of common area s f r
' 5 1y ~ H( o 1) = mrig=—=)iri(-—-)
o (Qw = Az |7 2w =4z p,b ARE (7,) (ﬁ,
A )=« : ‘ “t =
10 oo » :
7= - cutol! trequency lar coherent case
. 2u AT AZ
HEESPE R
1- 2- Next we will study  opucai ancoherent systems

response to a4 step indices sumulus for a iriangaia
aperture We will study 2D and 3D case Fig 5

50

100

150

200

250
50 100 150 200 250 50 100 150 200 250 50 100 150 20C 250

200 200

Fig 3. first line present 2D case: second line present 31D case; tirst column present step indices stimulus: second
line present triangle aperture: third line present response .
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CONCLUSION

Comparing response mn Fre 1 and Fig 3 we see a
great difference  between coherent  and
incoherent system response for a step indices. So for
optical coherent systems we have a response with
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oscillation at the end (Gibb phenomenon) and a phase
difference from the axe of symmetry. Optical
incoherent svstems do not have oscillation at the end
and phase difference. Finally to have a clear view we
will put an unage instcad of step indices stimulus and
well see how acts in the two cases. Fig.d
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Fig. 4 first line present coherent case. second line present incoherent case: first column present input image:
second line present square aperture and triangle aperture: third line present output image.

REFERENCES

A Papoulis  System and tiansfonn with applicavon n
optics McGraw Hill, New York 1968

JW Goodman Introduction to Fourter optics McGraw
Hill. New York 1968

3 t Hecht A, Jajac Optics Addison Weslay, Reading,

[

NA JOT4

4 M Born, £ Wolf Principle of Optics Pergamon New
York 1904

N Kego izuka Engineetng Optics Springer, Verlang
Berlin. Hailderberg 1985

o 1.0 Gaskill Linear System Founer transtorm and Optics

John Wiley and Sons New York 1978

L Boas Mathematical Methods In the Physical Scrence

Wiles New York 1966

& B E A Saleh, M C Teich Fundamentals of Photonics
John Wiles New York, NY | 1991

274

BUPT



