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CHAPTER 1

Introduction: Aims and Scope

1.1. Aspects of “Structural Design Standards”

Structural Design Standards for bridges and structures influences greatly on the
design process, design calculations and structural details. This influence can be
observed even nowadays as the "Structural Eurocode" Standards are finalized.

Beside changes in the standards the design strategy has also changed significantly:

- In the field of modern steel structures the increase in the variety of prefabricated
components (e.g. hot-rolled and cold folded sections) brought significant

changes in the design theory, design techniques and quality management.

- The developing welding techniques and fabricating processes in the past

decades lead to structural details that differ from traditional solutions.
- The computational technology has been developed enormously in the past

decades. This development helped that the design and research methodology

can also go through an extensive transformation.

The Structural Eurocode Standards are the results of a long research and developing

activity. The structure of the Eurocode system is well known:

Ch.1-1
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EC-0 EN 1990 Eurocode : Basis of structural design

EC-1 EN 1991 Eurocode 1: Action on structures

EC-2 EN 1992 Eurocode 2: Design of concrete structures

EC-3 EN 1993 Eurocode 3: Design of steel structures

EC-4 EN 1994 Eurocode 4: Design of composite steel and concrete
structures

EC-5 EN 1995 Eurocode 5: Design of timber structures

EC-6 EN 1996 Eurocode 6: Design of masonry structures

EC-7 EN 1997 Eurocode 7: Geotechnical design

EC-8 EN 1998 Eurocode 8: Design of structures for earthquake
resistance

EC-9 EN 1999 Eurocode 9: Design of aluminium structures

In the rest of the thesis references to the section of the standard will be shortened, for
example EC3 means EN1993-1.1-2005.

| have used the following Structural Eurocode:
EN 1993-1-1 (2005) General rules and rules for buildings
prENV 1993-1-5 (1992) General rules. Supplementary rules for planar

plated structures without transverse loading
EN 1993-1-5 (2007)

EN 1993-2 (2007) Design of steel structures. Steel bridges
EN 1994-1-1 (2005) General rules and rules for buildings
EN 1994-2 (2006) Composite bridges

Out of the standards that are based on the limit-states principle EC 3 discusses
plated structures. EC 3 contains the design methodology and structural details of
planar plated structures. The design of planar plated steel structures is summarized
in Fig. 1.1. It can be seen in the figure that two sections of the "Generic Code Side"
deal with steel plated structures:

- EC-3-1.5 Planar plated structures without transverse loading: This class of

stiffened planar plates will be called "orthotropic steel plate" in the following
chapters.

Ch.1-2
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- EC-3-1.7 Planar plated structures with transverse loading: This class of
stiffened planar plates will be called "orthotropic steel deck" in the following
chapters.

Fig. 1.1. also shows that on the “Structural Code Side” only one section of EC-3-2
Steel Bridges deals detailing in detail with the structural. The title of this section is

"Annex G: Special Considerations for Structural Detailing of Orthotropic Decks".

Fig. 1.1 emphasizes strongly the currently used design practice that although the
calculation of the two types of planar plated structures are significantly different, at
the same time similar or the same structural details are used in the two types of

planar plated structures.

EC 3 EN 1993-1-1:2005 Desig of Steel Structures

o .

Generic Code Side Structural Code Side
EC 3-1-5 Planar plated structures / EC 3-2 Steel Bridges
Annex G: Special

othotropic steel plate Considerations for

structural detailing of
orthotropic decks

EC 3-1-7 Planar plated structures
with transverse loading

[ orthotropic steel deck l \

Fig. 1.1. Design of planar plated steel structures

1.2. Aspects of structural details

The most commonly used structural solution for bridges for orthotropic steel decks
with different holes and closed cross section stiffeners is that a large U-shaped hole
is cut into the top part of the web of the cross beams, which allows longitudinal U-
shaped stiffeners to pass through. These U-shaped holes in the web of the cross
beams reduce the cross section and thus cause weaknesses. Furthermore the

overall structural behaviour is also affected by these holes.

Ch.1-3
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Experimental results are available for orthotropic steel decks with U-shaped holes.
The experimental and theoretical work of KUNERT (1967) and KUNERT and
WAGNER (1968) must be mentioned, however in their study the longitudinal ribs
have small open sections that pass through the cross beams. Another important work
is due to FALKE (1983) (1984) who presented "an approximate method for
calculating the reduction in the effective stiffness of a cross beam due to the cutting
of a web". By performing experiments Falke also studied the collapse mechanism of
the cross beam. In his study NARUSE (1975) emphasized that both ends of the slit
shape under the ribs and the buckling strength of the web with large holes must be
investigated. He has based his recommendations on the observation of higher than
expected stress concentrations around the holes.

ITO, M. et al (1991) reported the "results of static loading tests on beams with U-
shaped holes in the top part of the web", then presented "an evaluation of the
bending and shearing stresses for such beams and the ultimate strength properties”.
They performed tests with simply supported beams loaded by a concentrated force,
as they have regarded the cross beams as beams with holes in the top part of the
web. Furthermore they designed the tests in such a way, that yielding will occur first
rather than buckling.

WOLCHUK, R. and OSTAPENKO, A (1992) "attempted to asses the unexplored
secondary local stresses in the rib walls, their relationship to the geometric
parameters at the rib — floor-beam intersection and their effect on the level of

combined stresses in the rib walls at the floor-beam cutouts".
1.3. Aspects of welding technology

Traditional structural details of steel plate girders with open cross-section stiffeners
are not suitable for robotic welding. One of the most problematic part is the
connection between the horizontal and vertical stiffeners. In the case of plates
stiffened with open cross-section, horizontal and vertical stiffeners the modern
welding technology requires the existence of a "gap" between the components,
however in the design continuous stiffeners are assumed. This kind of connections

has been investigated in a joint research project between the University of Osaka,

Ch.1-4

BUPT



Japan and the Budapest University of Technology and Economics (BME), Hungary
and the results have been summarized by IVANYI (2001).

In the framework of the joint research project static load tests of girders with different
stiffener-end-gaps have been conducted (OKURA et al, 1997). On the basis of these
experiments several numerical studies have been performed (OKURA et al, 1997;
DUNAI et al, 1998; NEZO et al, 1999; OKURA et al, 1999). First the influence of the
aspect ratio of web panels and the initial out-of-plane deflection of webs on the
ultimate behaviour of girders have been investigated (OKURA et al, 1997; DUNAI et
al, 1998). Later the focus has been on the effects of bending stiffness of the
horizontal stiffeners. The results has shown that the ultimate behaviour of girders with
large gaps become independent from the bending stiffness of the horizontal stiffeners
(NEZO et al, 1999). In the last stages of the research a variety of gap sizes have
been investigated to determine a limitation for the gap which would limit the reduction
of the ultimate strength (OKURA et al, 1999).

1.4. Aims and scope of the Thesis

In the case of bridges with orthotropic steel girders one of the most sensitive
structural component is the orthotropic deck, which is directly loaded by the wheels of
the vehicles. Due to this sensitivity the behaviour of the orthotropic deck dictates the

structural details of the other orthotropic plates such as stiffened web and flanges.

There is a completely different situation in the case of composite bridges, since the
wheels of vehicles load the reinforced concrete plate directly. The other parts of the
bridge are made out of steel and they are loaded only in their plane. The difference
between the othotropic bridge and a composite bridge implies that the structural
details must also be different.

Furthermore in the case of composite bridges different components must be
designed according to different rules. "EC 4 Composite Structures Part 2" gives
guidelines for the design of a composite bridge. The steel plate components (web
and flanges) must be designed according to "EC 3 Generic Code Side" and the

design of the structural details is described in "EC 3 Structural Code Side".

Ch.1-5
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In Hungary the number of composite bridges is increasing as there is a possibility to
use a new, simple and more easily fabricated structural detail for longitudinal
stiffeners. This detail has several benefits compared to the structural detail used for
orthotropic plates (Fig. 1.2). The new structural detail (“E” economic solution) has
been proposed by Dr. Istvan Szatmari (BME) and it has been utilised in several
bridge designs by UVATERV Co. with some minor modifications. In these bridges |

have designed the structural details of the steel parts.

cross girder

trapezoidal stiffener

orthotropic plate

Type R: Rigid Type S: Standard Type E: Economic

ATiARILA

Fig. 1.2. Connections of trapezoidal stiffeners and cross beams

Since 2005 the Engineering Journal of “American Institute of Steel Construction”
regularly publishes a column about steel research (Current Steel Structures
Research). This column is edited by Prof. REIDAR BJORHOVDE. The volume of the
second quarter in 2005 of the Engineering Journal presents my research in the
following format: (ENGINEERING JOURNAL/ SECOND QUARTER /2005 p.117).

“Design of a New Type of Orthotropic Plate: Miklos Ivanyi Jr. directs this study for
the company Uvaterv in Budapest, Hungary with the cooperation of Professor Miklos
Ivanyi of the Budapest University of Technology and Economics.

Ch.1-6
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In traditional orthotropic plates the trapezoidal longitudinal stiffener is welded to the
transverse girder web and to the bottom flange of the main girder, as shown in
Fig. 1.3.a. In a recently developed orthotropic plate the stiffeners and the transverse

girder web are not connected, as illustrated in Fig. 1.3.b.

y cross girder web welding

! bottom flange of ' longitudinal stiffener
the main girder

¢ frecedge ;woliing

/N

a) b)

Fig. 1.3. Traditional and new orthotropic deck details.

This approach provides for a significant reduction in the amount of flame cutting and
welding, but more importantly there is no longer a need to assess the fatigue
condition of the weld between the stiffener and the web. On the other hand, the
potential for local buckling of the free edge of the web near the trapezoidal stiffener
must be considered. Finite element analyses of the new and traditional plates have

been conducted, and a design guide is under development.”

The basis of my Doctoral Thesis is the study the new structural detail. During my
research work | have investigated the "Ultimate Limit State" of orthotropic steel
plates. The "Serviceability Limit State" and the "Fatigue Limit State" of orthotropic
plates (although they are also very important) are not in the scope of this Doctoral

Thesis. | have investigated the following problems:

- | have designed experiments to study the connection between a trapezoidal
stiffener and a cross beam (Fig. 1.2). As a comparison study three geometric
arrangements has been designed. In the first design the web of the cross beam
is fully welded to the trapezoidal stiffener. This arrangement is called rigid (R). It

must be emphasized that this geometric arrangement is not recommended and

Ch.1-7
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not used due to its fatigue-sensitivity considering the current welding
technology. The results performed with this geometric arrangement are used for
comparison with the other two geometric arrangements. The other two

geometric arrangements are the "standard" (S) and the economic (E).

- | have prepared 3D linear finite element models to study the elastic stiffness of

the three geometric arrangements (R,S,E).

- 1 have also prepared 3D non-linear finite element models to investigate the
behaviour of the three geometric arrangements (R,S,E) while the structural
details go under plastic deformations. Furthermore the failure mode of the

structural details could be observed.

- | have developed a design methodology for "orthotropic buckling" of
compressed plates which considers the joint behaviour of several cross
stiffeners and the structural detail (R,S,E). "Orthotropic buckling" means that the

longitudinal and transversal stiffeners buckle at the same time.

- Finally | have also studied the experimental, numerical and analytical results
with the emphasis on the economic (E) solution. In this study | have used the
experience that was gained during the design and construction of the composite

bridge over the floodplain of the Danube at Szekszard.

The Doctoral Thesis contains the following chapters:

Chapter 1: Introduction: Aims and Scope. The chapter summarizes the
conditions and aims of the research, it introduces the relevant aspects of the design
standards, structural detailing and welding technologies. The chapter describes the
new type of orthotropic plate with the new type of structural detail.

Chapter 2: Composite Bridges. This chapter reviews the different aspects of
the design of composite bridges. Sections 2.1 and 2.2 have been written using the
relevant sections of ESDEP "European Steel Design Education Programme" (1994)
(www.esdep.com). Some of the composite bridges designed by the UVATERV Co.
are also discussed in the chapter. The bridge over the floodplain of the Danube at

Szekszard utilizes the new structural detail (connection type E) at the bottom flange

Ch.1-8
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and at the web of the composite box girder. On the other hand the main bridge over
the Danube at Szekszard is an orthotropic steel bridge with the S type of connection
in the deck and the plates.

Chapter 3: Experimental Tests. The chapter contains all the details about the
design of the experiments, how the tests were performed and what kind of
measurements have been taken.

Chapter 4: Numerical Analysis. This chapter discusses the linear and non-
linear 3D finite element analysis of the structural details.

Chapter 5: Behaviour and Design of Plated Steel Structures. This chapter
deals with the behaviour and design of stiffened plates and plates without stiffening.
Sections 5.1-5.3 have been written using the relevant sections of ESDEP "European
Steel Design Education Programme” (1994) (www.esdep.com). The chapter shows
the design of the different connections (R, S, E) in an orthotropic plate according to
EC 3-1-5. The concept and application of "ideal" cross section is also discussed.

Chapter 6: Summary and Conclusion. The chapter summarizes the results and
draws conclusions.

The Doctoral Thesis is closed by a bibliography renference in the text.

Finally the Appendix contains the MathCAD program which was used in the

calculation of the load bearing capacity of an orthotropic plate with stiffening.

Ch.1-9
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CHAPTER 2

Composite Bridges

The advantages of composite bridges are outlined with emphasis on the use of this
bridge type for normal spans. The different types of cross-sections applied in the
technology are introduced, concentrating mainly on box and plate girders. Attention is
drawn to the many different construction and erection stages with different "active"

cross-sections and structural systems.
2.1. Introduction

Composite bridge construction has experienced considerable development since the
first solutions in the 1940's using simple parallel beam grids over short spans (from
20 to 25 metres), to its present usage in large framed or cable stayed bridges, or in
very important truss girders designed to meet the severe functional requirements of
high speed trains. It is now commonly used for medium and large works, and also in
cases of minor spans competing with prefabricated prestressed concrete systems,

where, for example, problems of quick erection or slenderness arise.

It is neither possible, in this general chapter, to describe or to catalogue the complete
range of actual solutions that composite construction offers for bridges, nor is it
possible to outline the general problems of details, construction procedures, choices
of analysis, etc. The chapter therefore concentrates on emphasising the advantages
that the composite structure offers, dealing mainly with the systems and construction

processes for medium span bridges. The chapter is completed with brief references

Ch.2-1
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to other methods that can be useful in more important cases that require wider

specialization and experience before they can be applied.

First an understanding of the nature of the inherent aspects of the bending of
composite systems and the rheological interaction of the deck's construction
materials is required. Starting from certain fundamental global considerations, an
understanding of the phenomena that principally determine the functional
performance, structural behaviour and execution problems of composite bridges can
then be reached. (DOWLING et al, 1988, JOHNSON, 1975, 1979, PETERSEN,
1982, BONDARIUC, BANCILA 1987)

Therefore, the chapter analyses questions related to:

- Regions of dominant positive bending moments (sagging), i.e. simply
supported decks or the central part of spans of continuous systems, with
some consideration given to the transverse characteristics and the
construction process.

- Regions of dominant negative bending moments (hogging), i.e. supports of
continuous and cantilever systems, and their interaction with transverse
shear and torsional effects, leading to the significant potential for double
composite action in these zones.

- Shear connection of the composite systems and its influence on the
analytical treatment, local effects at the beam ends, etc.

Fabrication and erection methods have a large influence on the detailed design of the
steel structures. The supporting steel members must be designed so that they do not
interfere with the placing of the concrete slab.

2.1.1. Composite bridges — principal types

The following general observations can be made concerning the principal types of

composite bridge decks:

Ch.2-2
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For short spans, 25 to 45m approximately, solutions using multiple plate
girders without any kind of transverse bracing are preferred with the
concrete deck slab performing the total function of transverse distribution
and stability (Fig. 2.1). The number of beams should be the least

compatible with the transverse distribution capability of the concrete slab.

+ 11 1T 16T yos

1 1

s Sam
=~ 2,510 3,5bm

)

|7 >~ 3.0to 4,5m ]

Fig. 2.1. Multiple plat girders

Twin plate girders with haunched slab can be a very attractive solution for
narrow bridges (Fig. 2.2).

045 - ¥
0,50m —

S
S T 0,30m

2,5 40m | 7.0 - 10,0m |
> >

12,0 - 18,0m

y

Fig. 2.2. Twin plate girders

For longer spans (50 to 100m) the system of widely spaced twin girders
(Fig. 2.3) joined with transverse composite beams, spaced at about 4 to 5
metres, is very suitable. Main and transverse girders can be plate girders

or, in cases with very long spans or very severe deflection limits, trusses.

Ch.2-3
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I 25,0-35.0m N
Support section | Midspan section = 1
. t
L ’(;-‘;A—A_A_,i L’?é_\[_r'/" | "‘7'_,— d
K X \1/ \(/
L A
= . 2
L, | L
L 15,0 -25,0m
<

Fig. 2.3. Twin girders for wide and long-span bridges
Box girders, preferably with trapezoidal semi-open cross-sections
(Fig. 2.4a-b), also provide adequate solutions for all of the above
mentioned cases, especially when curvatures exist in plan. Box girders

become almost obligatory if the curvatures are very sharp.

Midspan | Support |
section l section !
(o, y4 Y777 7
| e
| |
! l
(o 1777 p] r 77X 773
TSI |
[ |

Fig. 2.4a. Twin box girders
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4-7 m 5-7 m
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6-10 m
Fig. 2.4b. Large box girders

For very large railway bridges, cross-sections formed by two large
composite lattice girders (Fig. 2.5) and used with or without bottom
concrete slabs, give very suitable solutions in terms of ease of

construction, economy, serviceability and durability.
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Fig. 2.5. Long span composite trusses
Other solutions are based on the use of lattice webs joined to top and

bottom concrete slabs (Fig. 2.6), or profiled steel sheet webs concreted to

concrete filled and prestressed steel tubes (Fig. 2.7).
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Fig. 2.7. Cross-section from le Viaduc de Maupre

2.1.2. Main advantages of composite bridges

By the appropriate combination of the two principal construction materials, structural
steel and concrete (reinforced or prestressed), more efficient bridge construction can
be achieved than is possible using the two materials independently. This advantage
is gained particularly when the work specification is demanding in relation to short
construction periods, functional conditions of high slenderness, the site topography,

road or services complexity, or complex layouts in plan or elevation.

In particular, the use of self-supporting steel systems allows, in the same way as for
steel bridge construction, the execution to proceed without shoring during the
concreting of the deck slab thereby giving rapid execution even with difficuit layouts,
(strong curvatures in plan, complex transverse sections, etc.). Later the deck slab is
used as an element of great inertia and resistance, which reduces the total amount of
steel required, especially in the compression zones where its use reduces the need

for additional stiffening and/or bracing.
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This advantage, which is clear in the sagging regions, can be extended to the
hogging regions through the correct use of prestressing methods, or to a lest extent,
with longitudinal reinforcement of the concrete slab, giving partial improvement to its
properties. Likewise, an intelligent additional steel-concrete combination in double

composite action could extend the global application of the composite solutions.

The resultant performance-structural-executional symbiosis of these two major
materials improves the whole to a much greater extent than the simple juxtaposition
of the two materials. The designer should carefully combine the steel and concrete in
proportions that optimise the bridge performance in all the above-mentioned

respects.

Essentially the principal advantages of composite bridges in comparison with others

of similar dimensions are:

In comparison with concrete systems:
- Smaller depths and self weights.
- Greater simplicity and easy of execution, especially when the conditions
are severe (high rises or plan curvature, etc.).
- Minimisation of environmental problems during execution.
- Favourable and simple use of continuous systems, including bottom

concrete slabs in support regions.

In comparison with steel systems:
- Increased stiffness and better functional response.
- Better maintenance and durability characteristics.
- Reduction of secondary bracing systems.

- Lower costs because of a reduction in the total steel required, especially in
continuous systems.
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2.2. Structural action

2.2.1. Positive “Bending Moment Regions”

Irrespective of the type of bridge considered, maximum efficiency is achieved by
adopting transverse cross-sections and execution processes that maximise the

potential of the composite system.

This consideration in the past yielded rise to the use of propped construction of the
partial steel section, or systems with pre-deformation (prestressed, precambered,
preflected). Alternatively, provisional continuity has been provided by temporary
restraint of joints in the steel section, the effect being transferred to the whole
composite system after the hardening of the siab. Today, this technique is no longer
necessary due to the adoption of limit state methods or non-linear elastic-plastic
analysis to establish the ultimate resistance of the cross-sections, together with
adequate control of serviceability and functional conditions. In this way the total
benefit of all the structural materials included in the section can be achieved without
complicating the process of execution, but by taking into consideration some special
aspects in the design of the section.

In current practice, by including a slightly larger top flange, a longitudinal web
stiffener, and by giving the steel member a precamber of approximately L/200 in the
workshop, ultimate and serviceability conditions for the non-propped steel beam can
be obtained which are similar to those of the propped solution. Construction problems
can thereby be reduced and/or sometimes solutions that are almost impossible to

achieve in any other way are feasible.

The elastic-plastic behaviour of cross-sections, with the consequent redistribution of
the internal stress pattern that allows the total usage of the materials in the uitimate
state, begins earlier for the unpropped beam than in the propped beam. In the
propped case it occurs much closer to the collapse, with a higher rate of transition to

the plastic state.
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The compact character of cross-sections which allows the development of a plastic
hinge can be established from the criteria defined in EUROCODE 4. These criteria
depend upon the steel quality and the compressed web regions. Given the variation
of the neutral axis depth in the elastic or elastic-plastic ranges, the position of the

neutral axis must be considered for the most unfavourable value that can occur.

In cases where, because of the large beam depth required, a compact section cannot
be economically used, it is better to adopt semi-compact (Class 3) or slender (Class
4) cross-sections with elastic calculation methods. The procedures for propping and
cambering, provisional restraints, preflection or prestressing, etc. could then be of

interest in order to obtain the most favourable solution.

When propped construction is used, the stability of the upper flanges of steel
members during the non-composite work must be carefully considered because of
the minimum sizes usually adopted. This aspect is especially important when decking

is placed parallel to the beams.

2.2.2. The behaviour of composite beams

2.2.2.1. Component behaviour

Since a composite beam is formed from three components, steel, concrete and
connection, it is necessary to review the behaviour of each before describing the

overall behaviour of the combination.

Under both tension and compression, steel behaves in a linearly elastic fashion until
first yield of the material occurs. Thereafter it deforms in a perfectly plastic manner
until strain hardening occurs. This behaviour is shown in Fig. 2.8a together with the
idealisation of steel behaviour which is assumed for design. In general, most of the
steel section is in tension for simple sagging bending and local buckling of slender
sections is not a problem. However, for continuous beams, significant parts of the

steel section are subject to compression and local buckling has to be considered.
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Fig. 2.8a. Mechanical properties of steel

The behaviour of concrete is more complex. Two situations have to be considered.
Concrete in compression follows a non-linear stress/strain curve. This behaviour is
shown in Fig. 2.8b together with the two idealisations used in design. The parabolic
stress block is often used in reinforced concrete design but the rectanguiar block is
normally assumed in composite beam design. The non-linear material behaviour
gives rise to an inelastic response in the structure. Concrete in tension cracks at very

low loads and it is normally assumed, in design, that concrete has no tensile strength.
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Fig. 2.8b. Mechanical properties of concrete
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The connection behaviour (see Fig. 2.8c) is sufficient, here, to say that it is also non-

linear. This behaviour adds to the complexity of design.

Iy

Load /

on / l..trength

connector

Deformation

capacity

.
N

Slip

Fig. 2.8c. Mechanical properties of shear connectors

2.2.2.2. Description of a simply supported composite beam

Composite beams are formed with a solid, composite or precast concrete slab

spanning between, and connected to, the steel sections.

The slab usually spans between parallel steel sections and its design is normally
dictated by this transverse action. Consequently the span, depth and concrete grade

are determined separately and are known prior to the beam design.

For non-composite construction, the steel sections alone are designed to carry the
load acting on the floor plus the self weight of the slab, as shown in Fig. 2.9. The
steel section is symmetric about its mid depth and has a neutral axis at this point.
The section strains around this neutral axis and both the outer fibre tensile and

compressive stresses are identical. The stresses (o) in tension (7) and in

compression (c) in the steel section may be evaluated using simple bending theory.

The concrete slab is not connected to the steel section and therefore behaves
independently (Fig. 2.9). As it is generally very weak in longitudinal bending it
deforms to the curvature of the steel section and has its own neutral axis. The bottom
surface of the concrete slab is free to slide over the top flange of the steel section
and considerable slip occurs between the two parts. The bending resistance of the

slab is often so small that it is ignored.
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Fig. 2.9. Non-composite beam

Stage 1 Fig. 2.10.
Alternatively, if the concrete slab is connected to the steel section, both act together
in carrying the service load as shown in Fig. 2.10. Slip between the slab and steel

section is now prevented and the connection resists a longitudinal shear force similar

in distribution to the vertical shear force shown.

Connectors
e
//
[oooarosaonoces, ~
Load /////7 a
t Deflected shape

Shear force

= T

Bending moment Section Strain Stress

Fig. 2.10. Composite beam -stage 1

The composite section is non-symmetric and shown a single neutral axis often close
to the top flange of the steel section. The tensile and compressive stresses at the

outer fibres are therefore dependent upon the overall moment of inertia (I) of the
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composite section and their distance from the single neutral axis. Assuming that the
loading causes elastic deformation the stresses generated in the section may be
determined using simple bending theory. The stresses for the service load condition
may be obtained (Fig. 2.10). The 1 value of the composite section is normally several
times that of the steel section. It can therefore be seen that, for a similar load, the
extreme fibre stresses generated in the composite section will be much smaller than

those generated in the non-composite beam.

This difference also has an effect on the stiffness of the beams. The stresses
developed in the slab as it spans transversely to the length of the beam are assumed
not to affect the longitudinal behaviour. They are generally ignored when designing
the composite beam. However, the span of the beam often dictates how much of the
slab may be assumed to help in the longitudinal bending action.. Here half the
transverse span, each side of the steel section, is assumed to be effective in carrying

the longitudinal compression.

The connection between the slab and steel section may be made in many ways. in
general it is formed using a series of discrete mechanical keys. This stage
corresponds to the service load situation in the sagging moment region of most

practical composite beams.

Stage 2 Fig. 2.11.

_ Connectors
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Load A JA

D Deflected shape -~

Shear force

- I ________ 2

Bending moment Section Strain Stress

Fig. 2.11. Composite beam —stage 2
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As the load increases the shear stress between the slab and steel section gives rise
to deformation in the connection. This deformation is known as 'slip' and contributes
to the overall deformation of the beam. Fig. 2.11 shows the effect of slip on the strain
and stress distribution. For many composite beams slip is very small and may be

neglected.

This stage corresponds to the service load stage for that class of composite beams

which has been designed as partially connected.

Stage 3 Fig. 2.12 and Fig. 2.13.

‘)//élip p Connectors
/

|

Load

D Deflected shape

Shear force

— T4

Bending moment Section Strain Stress

Fig. 2.12. Composite beam —stage 3

Eventually the load becomes sufficient to cause yield strains in one or more of the
materials.

Stage 3a

In the case of yield occurring in the steel, plasticity develops and the stress block
develops as it is shown in Fig. 2.12. It is normally assumed that, for the ultimate limit
state, the plastic stress block develops such that the whole steel section may
eventually reach yield as it is shown by the dotted line in Fig. 2.12.
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Stage 3b

Concrete is not a plastic material. If strains develop such as to cause overstress it is
potentially possible that explosive brittle failure of the slab would occur. This

behaviour would be similar to the brittle failure expected in an over-reinforced
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Fig. 2.13. Longitudinal shear connectors
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concrete beam. The volume of concrete in most practical slabs means that it is

unlikely that this situation could ever arise in practice.

With increase in stress within the concrete, induced by increasing strain, the stress
block changes from the triangular shape shown in Fig. 2.11 to the shape shown in
Fig. 2.12. For design this shape is difficult to represent in mathematical form and
approximations are used. For composite beams the most common approximation is
the rectangular stress block shown by the dashed line in Fig. 2.12 and in more detail
in Fig. 2.8b.

Stage 3c

The remaining components of the composite beam that may fail before the steel
yields or the concrete crushes are the connectors. As the load increases the shear
strain, and therefore the longitudinal shear force between the concrete slab and steel

section, increases in proportion.

Since the longitudinal shear force is directly proportional to the applied vertical shear
force, the force on the end connectors is the largest. For low loads the force acting on
a connector produces elastic deformations. This the slip between the slab and the
steel section will be greatest at the end of the beam. The longitudinal shear and
deformation of a typical composite beam, at this stage of loading, are shown in
Fig. 2.13a.

If the load is increased the longitudinal shear force increases, and the load on the
end stud may well cause plastic deformation. A typical load slip relationship for the
connectors is shown in Fig. 2.13. The ductility of the connectors means that the
connectors are able to deform plastically whilst maintaining resistance to longitudinal
shear force. Fig. 2.13b shows the situation when the two end connectors are
deforming plastically.

Increasing applied load will produce increasing longitudinal shear and connector
deformation. In consequence, connectors nearer to the beam centreline also begin

sequentially to deform’ plastically. Failure occurs once all of the connectors have
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reached their ultimate resistance as shown in Fig. 2.13c. This sequence of shear load

and connector straining is shown in an exaggerated manner in Fig. 2.13a, b, and c.

This failure pattern is dependent upon the connectors being able to deform
plastically. The end connector in Fig. 2.11 must be able to deform to a considerable
extent before the connector close to the beam centreline even reaches its ultimate
capacity.

It can be seen that the failure of the composite beam is dictated by the resistance of
its three main components. As the elastic interaction of these components is very

complex it is normal to design these sections assuming the stress distribution shown
in Fig. 2.8b.

Composite beams designed to fail when the steel yields, the concrete just reaches a
failing strain and all of the connectors deform plastically would appear to be the ideal

situation. There are however several reasons why this situation rarely occurs.

2.2.2.3. Practical load situations

It has been assumed so far that the loading on the beam is uniformly distributed and
gives rise to a parabolic bending moment diagram. This is a common situation but it

is also equally possible to find situations where concentrated loads act on beams.

In the case of uniform loading the maximum bending moment occurs at mid span.
This section is then termed the critical section in bending. The stress block at the
critical section is that described in Fig. 2.12. It results in a longitudinal shear
distribution to the shear connectors shown in Fig. 2.13c. It can be seen that the
longitudinal shear developed at the critical section must be resisted by the
connectors between this point and the end of the beam. It can be deduced that, if the
critical section is closer to the beam end, as would be the case for a single point load

close to the support, the number of connectors between this point and the support

needs to increase. 6{4 /JS
{0\l u, N
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In practice the number of connectors between each load point on a beam subject to
multiple point loads must be determined. This calculation often gives rise to variable

spacing of connectors along the span length.

Point loads may also give rise to high vertical shear force. Aithough some of the
vertical shear may be carried by the slab and beam flanges, it is common practice to
ignore that and assume all the vertical shear is carried by the web of the steel

section.

For continuous beams, there is a possibility of high shear and bending occurring

together. In this case the moment resistance of the section is reduced.

2.2.2.4. Creep and shrinkage

Concrete is subject to two phenomena, which alter the strain and therefore the

defiection of the composite beam.

During casting the wet concrete gradually hardens through the process of hydration.
This chemical reaction releases heat causing moisture evaporation, which in turn
causes the material to shrink. As the slab is connected to the steel section through
the shear connectors, the concrete shrinkage forces are transmitted into the steel
section. These forces cause the composite beam to deflect. For small spans this
deflection can be ignored, but for very large spans it may be significant and must be
taken into account.

Under stress, concrete tends to relax, i.e., to deform plastically under load even when
that load is not close to the ultimate. This phenomenon is known as creep and is of
importance in composite beams. The creep deformation in the concrete gives rise to
additional, time dependent, deflection which must be allowed for in the analysis of the
beam at the service load stage.
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2.2.2.5. Propped and unpropped composite beams

The geometry of most composite beams is often predetermined by the slab size, as
previously discussed, and by the capability of the steel section to carry the load of
wet concrete during construction. This construction limitation gives rise to two

composite beam types, the propped and the unpropped composite beam.

Consider first the case of the propped beam shown in Fig. 2.14. During construction
the steel section is supported on temporary props. It does not have to resist
significant bending moment and is therefore unstressed and does not deflect. Once
the concrete hardens the props are removed. Each of the component parts of the
beam then takes load from the dead weight of the materials. However, at this stage,
the beam is acting as a composite element and its stiffness and resistance are very
much higher than that of the steel section alone. The deformation due to dead loads
is, therefore, small. Any further live loading causes the beam to deflect. The total
stresses present in the beam can be found by summing the stresses due to dead and

live loads.

STTTTT S

Casting stage

L L
o
N

Props removed +

Live load applied

Fig. 2.14. Propped composite beams
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Consider now the unpropped beam shown in Fig. 2.15. During construction the steel
section is loaded with the dead weight of wet concrete. The steel section is stressed
and deforms. The concrete and the connectors remain largely unstressed, apart from
the shrinkage stresses developed within the hardened concrete. It can be seen, in
Fig. 2.15, that the wet concrete ponds, i.e. the top surface of the concrete remains
level and the bottom surface deforms to the deflected shape of the steel section. The
dead load due to the weight of wet concrete is a substantial proportion of the total

load and the stresses developed in the section are often high.

Concrete ponding

Casting stage + — F

Live load applied

Fig. 2.15. Unpropped composite beams

Additional live loads are carried by the composite section, which has almost the same
stiffness as that of the propped beam. The stresses present in the unpropped section
can therefore be obtained by summing the wet concrete stresses and the composite
stresses. This calculation leads to a different stress distribution in the section to that
present in the propped composite beam. However, the yield stresses developed in
the steel and concrete are the same in both cases and both unpropped and propped

composite beams carry the same ultimate load.
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The steel section of an unpropped composite beam often needs to be substantial so
that the weight of wet concrete can be carried. The section is, in fact, often

substantially larger than would be required if the beam had been propped.

The load deflection response of a steel section alone and of a composite beam, both
propped and unpropped, is shown in Fig. 2.16. The strains present and stresses
developed are shown in sequence with the section upon, which they act. In the
unpropped case the steel section alone takes the load of wet concrete and the strains
due to this wet concrete load are added to the strains caused by the subsequently
applied service loads. The resulting stresses are shown in the stress block. Whilst the
overall deflection of the unpropped beam may be larger than the propped beam at
the working load stage, that is often not important as the deflection occurring during

construction, which can be hidden by the finishes.
A

Moment

Deflection

Propped
-——-— Unpropped
—_———- Steel section alone

Fig. 2.16. Load deflection response for a steel section alone and a composite beam,

propped and unpropped

Despite the drawbacks discussed above, unpropped construction is often preferred
for the following reasons:

- The extra cost involved in providing props.

- The restricted working space available in propped areas.

- The adverse effect on speed of construction.
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2.2.2. Partial connection

In unpropped construction the size of the steel section is often determined by the
weight of wet concrete, and the size of the slab is determined independently by its
transverse span. If sufficient connectors are provided to transfer the maximum
longitudinal force in the steel section or concrete slab, the resistance of the
unpropped composite beam becomes very high. Indeed composite beams so formed
are often capable of carrying several times the required live load. To avoid providing

such excess resistance the partially connected composite member is used.

It has been assumed so far that the connection will carry all the shear force in the
beam up to the time when the steel section has fully yielded. However, because the
resistance of the unpropped beam is so high, it is often possible to reduce the
number of connectors. This reduction results in a beam where the failure mode would
be by connector failure prior to the steel having fully yielded or the concrete having
reached its crushing strength. (STARK, HOVE 1990)

Such beams require fewer connectors thereby reducing the overall construction cost.
They are, however, less stiff since fewer connectors allow more slip to occur between
the slab and steel section.

2.2.3. Continuous composite beams

Although simply supported beam design is most common there may be situations

where use of continuous beams is appropriate.

The mid span regions of continuous composite beams behave in the same way as
the simple span composite beam. However, the support regions display a
considerably different behaviour. This behaviour is shown diagrammatically in
Fig. 2.17.
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Fig. 2.17. Continuous composite beams

The concrete in the mid span region is generally in compression and the steel in
tension. Over the support this distribution reverses as the moment is now hogging.
The concrete cannot carry significant tensile strains and therefore cracks, leaving

only the embedded reinforcement as effective in resisting moment.

The steel section at the support then has to carry compressive strains throughout a
considerable proportion of its depth. Slender sections are prone to local buckling in
this region and any intervening column section may need to be strengthened to

absorb the compression across its web.

As well as local buckling it is possible that lateral-torsional buckling of the beam may
occur in these regions.

Ch.2-23

BUPT



2.2.4. Design aspects of the concrete flange in compression

2.2.4.1. Effective width

A typical form of composite construction consists of a slab connected to a series of

parallel steel members.

Mean bending stress
in concrete flange

—_N——

E " E/ \ Deformed
" 'JQ shape

L Midspan

(b} Effect of shear lag

Point load Uniform load
/
beH L 03 g]
b, 0,8 L
0,6
6’6
0.4 0.4
0,2 _0068
1.0
Support Midspan Support

(c) Variation of effective width

Fig. 2.18. Concrete flange

The construction is essentially a series of interconnected T-beams with wide, thin

flanges, as shown in Fig. 2.18a. In such a system "shear lag" may cause the flange
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width to be not fully effective in resisting compression (DOWLING, at. al, (1988)).
This phenomenon can be explained by reference to a simply supported member, part

of whose length is shown on plan in Fig. 2.18b.

The maximum axial force in the slab is at midspan, while the force at the ends is
zero. The change in longitudinal force is associated with shear in the plane of the
slab. The resulting deformation, shown in Fig. 2.18b is inconsistent with simple
bending theory, in which initially plane sections are assumed to remain plane after
bending. The edge regions of the slab are effectively less stiff, and a non-uniform
distribution of longitudinal bending stress is obtained across the section. Simple
theory gives an effective value for width, beg, such that the area GHJKG equals the
area ACDEFA.

The ratio bes/by depends not only on the relative dimensions of the system, but also
on the type of loading, the support conditions and the cross-section considered;
Fig. 2.18c shows the effect of the ratio of the beam spacing to span length, b,/L, and
the type of loading, on a simply supported span.

In most codes of practice very simple formulae are given for the calculation of
effective widths, although this may lead to some loss of economy. According to
EUROCODE 4, for simply supported beams, the effective width on each side of the
steel web should be taken as Iy/8, but not greater than half the distance to the next

adjacent web, nor greater than the projection of the cantilever slab for edge beams.

The length I, is the approximate distance between points of zero bending moment. It
is equal to the span for simply supported beams. A constant effective width may be

assumed over the whole of each span. This value may be taken as the midspan
value for a beam.

2.2.4.2. Maximum longitudinal shear in the concrete slab

In the concrete slab, a complex (three-dimensional) force distribution occurs in the
region of the connector. The reason for this behaviour is that bending moments and

vertical shear forces act parallel as well as perpendicular to the beam. It is difficult to
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find a physical design model for this complex stress distribution, and therefore, most

design rules are empirical. Two design criteria can be identified:

- Longitudinal shear in the concrete slab, along the shear planes indicated
in Fig. 2.19.

- Splitting of the concrete.
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Fig. 2.19. Planes of shear failure

It is possible to avoid these failure modes by providing sufficient transverse
reinforcement and choosing the correct distance between the connectors. In some
cases, satisfying these criteria may lead to an increase in concrete slab thickness or

resistance.

If the connectors are welded or shot fired through a continuous profiled steel sheet of
a composite slab, the cross-section of the steel sheet can also be considered as
transverse reinforcement.

2.2.5. Types and behaviour of shear connection

2.2.5.1 The forces applied to connectors

It has been assumed that the concrete and steel were fully connected together (full
connection). If there is no connection then the concrete slab and steel section slide

relative to one another and the bending stresses in the section are as shown in
Fig 2.20.
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Fig. 2.20. Strain, bending and shear stresses for no connection and full connection

Clearly, if longitudinal shear resistance is provided by some form of connection, so
that the stresses at the interface of the two materials are coincident, then the beam
acts as a fully composite section. If it is assumed that the fully connected composite

beam acts in an elastic way then the shear flow (shear force per unit length) between
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Beam section

Bending stress
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Bending stress

the concrete slab and the steel section may be calculated.

Fig. 2.20 also shows the elastic shear stress developed in the section for the

conditions of both full and zero connection.

It can be seen, that the longitudinal shear forces, that must be carried by the

connection, will vary depending upon the vertical shear present. Fig. 2.21a shows the
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distribution of longitudinal shear, along the interface between the steel section and
slab, for a beam that has a rigid full connection. It must be remembered, however,
that this applies only when the beam is assumed to be behaving in an elastic
manner. As the ultimate moment of resistance is reached, the steel section or
concrete slab will yield or crush and a plastic hinge will form at the critical section.
The bending stresses in the beam are as shown in the dashed lines in Fig. 2.20. the
distribution of longitudinal shear in the beam also changes and the connectors close
to the hinge are subject to higher loads. The dashed line, in Fig. 2.21a, shows the

plastic distribution of shear force along a uniformly loaded beam.
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------- q = 0,98 times the plastic failure load

Fig. 2.21. Connector loads for rigid and flexible connectors

In practice, connectors are never fully rigid, and there is always some slip between
the slab and the steel section. The flexibility of the connectors allows more ductility
and a variation in the distribution of longitudinal shear between slab and steel
section. The longitudinal shear force present in a composite beam with flexible
connection it is shown in Fig. 2.21b (YAM, CHAPMAN, 1968).
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The major force resisted by the concrete is one of bearing against the leading edge
of the connector. It has already been mentioned that the concrete in this region is
likely to crush allowing bending deformation to occur in the connector. The bearing
resistance of the concrete in this region is dependent upon its volume as well as
strength and stiffness. In fact, where there is sufficient concrete around the
connector, the bearing stress may reach several times the unconfined crushing
strength of the concrete (ARIBERT, ABDEL, 1985, ARIBERT, 1990).

There is also likely to be direct tension in the connector. The different bending
stiffnesses of the slab and the steel section, coupled with the deformed shape of the
connectors, gives rise to the tendency for the slab to separate from the steel section.

It is, therefore, usual for connectors to be designed to resist this tensile force.

In most composite beams the connectors are spaced along the steel section and,
therefore, provide a resistance to longitudinal shear only locally to the top flange. The
longitudinal shear force must, therefore, be transferred from the narrow steel section
into the much wider slab. This transfer is normally achieved using bar reinforcement
that runs transverse to the beam line. These bars are normally placed below the
head of the stud and extend into the slab.

2.2.5.2 Basic forms of connection

Early forms of shear connector were shop welded, using conventional arc welding.
The most common types are the hoop connector and T connector which serve to
show the complexity of the forming and welding operation necessary. The popularity
of composite beam construction has led manufacturers to develop very simple forms
of shear connector (ANDRA, 1990).

Despite the plethora of connection types available, the shear stud connector has now
become the primary method of connection for composite beams. The stud can be
forge welded to the steel section in one operation, using micro-chip controlled
welding equipment. These machines, operating at current settings of up to 2000

Amps allow operators to weld approximately 1000 studs per day. The most advanced
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machines allow studs to be welded through galvanised steel sheeting. This ability has
enabled the economic advantages of composite floor decks to be fully exploited.
Fig. 2.22 shows a typical shear stud before and after welding and the sequence of
weld current required (ANSI/AWS,1985).
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Fig. 2.22. Stud connector welding

Such complex welding technology does have disadvantages when used on
construction sites. The weld relies on the two surfaces being clean, free of mill-scale
and, above all, dry. These conditions are often difficult to achieve especially when the
studs are welded through a galvanised steel sheet; in this case, the weld current is
maintained for a sufficient period to burn away the zinc galvanising, which would
otherwise cause imperfect welds. Welding 22mm, rather than the more common
19mm studs, through deck also demands care. An alternative to through deck
welding is to punch holes in the steel deck and then weld the studs directly to the
steel section. A more reliable weld is obtained in this way but the construction

process is made more complex.
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The designer may also obtain stud resistance values from tests. Full beam tests are
expensive and a model test known as the "push-out" test is often used. This test is
shown in Fig. 2.23, together with a typical graphs of load against slip from the test.
The resistance is, of course, dependent upon the concrete cube strength and is also

reduced if the concrete is made from lightweight aggregate.

hid

(@) (b) (b)

Load
(kN/stud)
150 4

.
L

2 4 6 8 10 12 14 Slip (mm)

Fig. 2.23. Push-out test and load slip curves

Shear studs carry very high loads and are normally made from drawn steel rod. Most
codes quote steel properties for stud shear connectors; in addition to a high yield
value the studs must be ductile and a minimum elongation is often specified. The
necessity for ductility has already been explained (DOWLING et al, 1988).
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2.3. Aspects of the structural design and details
2.3.1. Introduction

In recent years the development of network of motorways and highways of Hungary
is flourishing. There are several construction sites throughout the country (KOVACS,
2002, IVANYI, IVANYI Jr, 2005, IVANYI Jr. 2004, IVANYI Jr. 2005). This section
introduces some bridges connected with these road constructions. Some of these
bridges have already been finished and other bridges exist only in the planning
phase. The structures are composite bridges. This structural system of the bridges is
partly dictated by the requirement of the commission and partly by economic reasons
as these composite bridges provide the most competetive solution for short and
middle span. It must be noted that during the design of the bridges discussed in this
section the UT 2-3.401, UT 2-3.413, UT 2-3.414. Standard was used and not
Eurocode.

2.3.2. The bridge at Oszlar over the river Tisza

The highway road (M3) towards Ukraina crosses the river Tisza at Oszlar. The width
of the road is 26.50m which requires two bridges placed next to each other. One
bridge has three parts. The superstructure over the flood area is precasted,
prestressed reinforced concrete beam. The arrangement of the spans is symmetrical
on both banks and the distribution of the spans is: 24.00+24.20+23.95m.

The middle section of the bridge over the river bed has also three spans:
72.00+112.00+72.00m. The structural system of the bridge is composite with steel
haunched main girders. The width of the deck is 12.35+0.87+12.35=25.57m, which
supports in both directions a two lane road with a safety lane. The distance between
the main girders is 6400mm. The height of the web plate is 2565mm at the end cross
girders, 5600mm at the middle supports and 3000mm along the span. The thickness
of the web plate is 16mm which increases to 20mm around the middle supports. The
width of the upper flange is 800mm and the thickness varies between 30-100mm.
However the width of the bottom flange is 1200mm and the width changes between
30-150mm.
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The web plate is stiffened by closed-section trapezoidal stiffeners in the longitudinal
direction, while there are cross-girders at every 4000mm. The concrete deck slab has
varying depth and it is connected to the main girders by shear connectors. These

features are shown in Fig. 2.24, Fig. 2.25.
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Fig. 2.24. The elevation drawing of the main bridge at Oszlar over the river Tisza

Fig. 2.25. The cross section drawing of the main bridge over the river Tisza

The fabricated units of the main girder has been assembled in the factory to try their
fitting, then they have been transported to the on-site workshop by trucks. The pieces
have been reassembied and painted on site. The finished superstructure has been
lifted to its final position by floating barrages. The self weight of one bridge is
approximately 1050 tons. The most important aspect of this bridge design is that in
Hungary probably this is the first bridge structure where on-site welding was used for
100-150mm flanges. These features are shown in Fig. 2.26-2.44. Figure 2.30-2.33
show the stiffeners of the plates and show the economic (E) structural detail for the
longitudinal and transversal stiffeners.
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Fig. 2.26. Main girder
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Fig. 2.27. Middle of the main girder
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Fig. 2.28. Main girder around the support

.

e

Fig. 2.29. Welding of the bottom flange
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Fig. 2.31. Stiffeners from inside
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Fig. 2.33. Constructed bridge on site
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Fig. 2.35. Putting the bridge in place
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Fig. 2.36. Positioning the bridge

Fig. 2.37. Next stage in positioning
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Fig. 2.38. Same stage in positioning

Fig. 2.39. Lifting the bridge
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Fig. 2.41. First stage of the concrete slab
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Fig. 2.44. The finished bridge
2.3.3. The bridge at Szekszard over the Danube

In the southern part of Hungary the connection between the east and the west part of
the country is partly ensured by the new M9 road which can be developed into a
highway. The road has a single lane in both directions and its width is 12.00m. A part
of the development project is the bridge at Szekszard over the Danube. The total
length of the bridge is 916m which is divided into two bridges over the floodplain
(196.5m) and a bridge over the river bed (520m).

The structure of the bridge over the river bed is orthotropic box girders with inclined
webs. The two brides over the floodplain follows the structure of the bridge over the
river bed and they are composite box girders (SZATMARI, FARKAS, 2003). The
distance between the supports for the floodplain bridges is three times 65.50m. The
width of the bridge is 14.00m which has two, 3.75m wide lanes with safety lanes. On

one side there is sidewalk and a bicycle road. This feature is shown in Fig. 2.45.
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Fig.2.45. The elevation drawing of the floodplain bridge at Szekszard over the

Danube

The box girder has inclined webs which are 5500mm apart at the bottom plate while
they are 7500mm apart at the top plate. The width of the web is 12mm which
increases to 16 and 20mm at the supports. The width of the bottom plate changes
between 12 and 30mm. The web and bottom plate is stiffened by closed section
trapezoidal stiffeners and there are cross girders at every 3640mm. This feature is
shown in Fig. 2.46.

Fig. 2.46. The cross section of the floodplain bridge at Szekszard over the Danube

The concrete deck slab has varying depth and it is connected to the box girders by
shear connectors.

The prefabricated units of the structure is assembled on site on temporary supports,
then the monolitic concrete slab is casted. The important feature of the bridge is that

the stiffeners of the web and the bottom plates are not connected to the cross girders
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as it is expected in the classical bridge design. These features are shown in
Fig. 2.47- 2.57. The correctness of this arrangement was veryfied on the structure by

experiments.

5

Fig. 2.47. First stages in the construction of the box girder

Fig. 2.50 and 2.51 show the structural details (connection type E) of the longitudinal

and transversal stiffeners on the web and on the bottom flange.
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Fig. 2.49. Finished section of the box girder
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Fig. 2.51. Stiffeners of the box girder

Ch.2-47

BUPT



Ch.2-48

BUPT



Fig. 2.54. Before pouring the concrete

Fig. 2.55. Finished bridge

Ch.2-49

BUPT



4

- - Tee ’ - _ R
v e ‘xi*’&&* et = ol 3
: L L. - LN A A% Tk )
s ” - . ».~‘ ‘,. B . 2 3.:.;_“?' _‘f “ . A"‘;,(-.'aa N
RTIN R LY R 3 - AT, ).,_x‘-}‘; L -
« - FAC T L e dia
L . e o -
i . .

Fig. 2.56. View of the full bridge
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Fig. 2.57. Another view of the full bridge
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2.3.4. The bridge over the Eastern Main Chanel

The M35 road towards Debrecen, which is a part of the M3 highway, joins the
eastern regions to the heart of the country. The highway crosses the Eastern Main

Channel before Debrecen with the finished bridge described in this section.

The width of the road is 28.73m that in both directions has 2 lanes with a safety lane.
The distances between supports are 44.00+60.00+44.00m. The 60.00m middle span
will be passable by ships, while on top of the the two embankments service roads
and wildroads are planned. The angle between the axis of the road and the line of

the supports is 70 degrees. This feature is shown in Fig. 2.58.
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Fig. 2.58. The elevation drawing of the bridge over the Eastern Main Channel

The distance between the open main girders is 7300mm. The height of the web plate
is 2100mm at the end cross girders, 3000mm at the supports and 2100mm along the
span. The thickness of the web plate is 12mm, which increases to 20mm around the
supports. The width of the top plate is 600mm and the thickness is 20-60mm. The
width of the bottom plate is 800mm while the thickness varies between 30-100mm.

The web and bottom plate is stiffened by closed section trapezoidal stiffeners and
there are cross girders at every 3000mm. The concrete deck slab has varying depth
and it is connected to the girders by shear connectors. The cross-slope of the deck is
3.5%. This feature is shown in Fig. 2.59.
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Fig.2.59. The cross section of the bridge over the Eastern Main Channel

This bridge is similar to the bridge at Szekszard over the Danube where the stiffeners
of the web and the bottom plates are not connected to the cross girders. This bridge
design unites all the advantages of the experience gained during the construction of
the previously described bridges.

2.3.5. The bridge over the river Mura

The M7 highway ensures the road connection to Croatia. Croatia has made large
scale road infrastructure development, which has already reached the borders of the
two countries. This also means that now Hungary must make the investment to
connect the two highways. Furthermore, it also makes a constraint on the design of
the bridge, since the line of the road is fixed.

This composite bridge has six supports where the total length of the bridge is 216m.
Under the concrete deck slab there are two main box girders. A box girder has
parallel, vertical web plates. The height of the web plate is 2000mm, its thickness is
12mm upto 20mm around the supports. The web plates, the top and bottom plates
are stiffened by trapezoidal longitudinal stiffeners and at every 4000mm there are
400mm high cross girders. The two main box girders are identical, which helps the
manufacturing of the structure. The angle between the axis of the road and the line of

the supports is 70 degrees. These features are shown in Fig. 2.60, Fig. 2.61.
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Fig.2.61. The cross section of the bridge over the river Mura

The components of the structure are assembled on top of the embankment and the
structure is sliding into position with the help of hydraulic jacks. For this construction

process special temporary supports have been constructed.

2.4. Conclusion

The system of composite bridges is used for new road and railway bridges in
Hungary. Considering the different aspects of design and fabrication a new type of
connection (E, economic) for the stiffeners has been developed and it has been used
in the bridges designed by the UVATERV Co with some minor modifications (IVANY!
Jr, 2004).
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CHAPTER 3

Experimental Test Program

I will study the effect of the different structural details between the trapezoidal

stiffener and the open cross section cross girder. Three models will be investigated:

- a continuous welded connection (R-rigid type)

- a standard connection (S type)

- a new type of connection, proposed in this thesis (E-economic type).
(IVANYI, Jr., BANCILA 2006, IVANY]I, Jr. et al 2006/a, 2006/b, 2006/c)

It should be emphasized again, that the rigid (R) type of structural detail is never
used in practice due to fatigue sensitivity. The rigid type of connection only serves as
a basis for the comparison with the other two (S and E) type of solutions and only the

ultimate limit state solution of the rigid type of connection is used.

The experiments were conducted in the Structural Laboratory of Pollack Mihaly
Faculty of Engineering, University of Pécs. The machine in this laboratory is enabled
me to perform half scale experiments. The structures for the experiments were
constructed by the KOZGEP Company.

3.1. Test specimens

Nine welded, simply supported beams were tested. The beams were classified as

follows: type R (rigid), type S (standard) and type E (economic). Each beam was
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assembled from steel plates, as shown in Fig. 3.1. The dimensions of the U-shaped
holes around the trapezoidal stiffener were determined so they would permit the
passage of U-shaped stiffeners with the standard size of 153/75x100 mm. The depth
of the slit is 20 mm. The form of the U-shaped hole was kept as simple as possible
(Fig. 3.2, Fig. 3.3, Fig. 3.4). It must be noted that due to easier fabrication the quarter
circle hole in the web of the cross girder at the corner of the trapezoidal stiffener is
not cut out. The experimental specimens were prepared for the study of the ultimate
limit state thus this modification is acceptable. On the other hand the numerical

models contain this cut out hole in the web of the cross girder.

The problem of the effective width of the stiffened plates for the steel deck is beyond
the scope of this test since this study is intended to evaluate the normal and shear

stresses for a web with holes.
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Fig. 3.1. Test specimens
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Fig. 3.3. “S” Standard joint fabrication drawing
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Fig. 3.4. “E” Economic joint fabrication drawing
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3.2. Test procedures

The other parts of the beam specimens were reinforced by cover plates and vertical

stiffeners. Fig. 3.5 shows the loading systems: sagging moment (M+), hogging

moment (M-), shear force (V). Fig. 3.6 shows the geometrical arrangement with the

loading beam and annex beams (Fig. 3.7, Fig. 3.8).

M(+) Sagging moment (1)

.\ support

load load
|
- ¥ :
T J
. NN . | g .
| HEB240 | &gﬁ; HEB240
' |
I S 1 [ -
T | \ L
! \ support \test specimen
- i 9
M(-) Hogging moment (2) load load
l
= N4
|
} HEB240 | HEB240
| H 7 i i
' | P\ \ L
| \ support | \test specimen
V Shear force (3)
load

P—

i\ support

% HEB240
i

| N [\

HEB240

; \ support

\ test specimeni\ support

Fig. 3.5. The loading system

The notation used in the experiments:

- TR : Trapezoidal stiffener.

_._-[_._.____. Hj r(h_._-_. =

- R-S-E : different connection type between the stiffener and the cross girder.
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1 : sagging moment,
2 : hogging moment,

1-2-3 : type of internal force in the structure.
3 : shear force.
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Fig. 3.6. Geometric arrangement
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3.2.1. Load equipment

The test procedures were in the laboratory of Department of Structural Engineering
Pollack Mihaly Facuity of Engineering, University of Pécs. Fig. 3.9 shows the loading

equipment.

Fig. 3.9. Loading equipment

3.2.2. Preparation for the experiments

Special annex beams have been attached to the experimental structure to be able to
produce the required internal forces. The connection between the parts has been

made with high strength bolts. To reduce the deformation of the connections the bolts
are tensioned to the required level.

A special track has also been constructed to be able to roll the experimental pieces
under the machine. In this way the experiments could be conducted without any
power lifting machine or crane. This track structure is shown in Fig. 3.10. This track

can be easily disassembled and therefore it was not present in the experiments
during the loading stage.
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Fig. 3.10. Special track for the specimens

3.2.3. Measurement procedures

A rosette strain gage and several single strain gages around the U-shaped holes
were placed to obtain the web buckling behavior. The single strain gages were
placed in such a way as to obtain primarily bending stresses. The locations of the
strain gages in the vicinity of the U-shaped hole, but closest to the loading point are
shown in Fig. 3.11 and Fig. 3.12. The rosette strain gage was placed to obtain

principal stresses of the web section.
The vertical displacements were measured at the middle of the specimens by using

deformation gages. All data of strains, displacements and loads were measured at

each of the loading stages simultaneously.
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Fig. 3.11. Geometric arrangement of strain gauges
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Fig. 3.12. Arrangement of the strain gauges

Special measurement of strains was used when the specimen was loaded by shear
forces. The measurements were performed between point A and D (Fig. 3.13). This

measurement result in a so called “push out” test.

F 3F
| '
C B
Dl / \ |A
a a a \

Fig. 3.13. Relative displacement measurement point “A” and “D”
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3.3. Test for mechanical properties of the steel material of test girders

The mechanical properties of the steel material have been determined by standard

tensile tests, see Fig. 3.14.

Fig. 3.14. Standard tensile test

The results of the tensile material test can be seen in Fig. 3.15 - Fig. 3.22.
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Specimen 1 to 1

50

40t

301

207

Load (kN)

10t

\

Specimen #
1

10 20 30
Extension (mm)

" : Tensile extension at Tensile strain at
Maxm(l:;; Load * Maximum Load Maximum Load
{mm) (mm/mm)
1 49,662 23.41 0.23
Load at Yield (Zero Tensile extension at Tensile strain at Yield
Stope) Yield (Zero Stope) (Zero Slope)
(kN) {mm) {mm/mm)
1 49,662 23,415 0,234
ﬁn(a:“‘::;mh Start Date End Date

100,000 2005.10.06. 15:48:08 2005.10.06. 16:07:08

Specimen label

1 13-as probatest

A=1.0cm2

fy=39,0 kN/cm2

fu=49,66 kN/cm2

Fig. 3.15. Load-extension curve
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Specimen 1 to 1

50
401
Z 30t /
ot
©
S 20t
S8 20
|
10t
0 N .
-10 0 10 20 30 40
Extension (mm)
Tensile extension at Tensile strain at
MIT:'T) Load Maximum Load Maximum Load
" (mm) (mm/mm)
1 48.411 27.02 0.27
Load at Vield {Zero Tensile extension at Tensile strain at Yield
Stope) Yeld (Zero Stope) {Zero Slope)
{kN) {mm) {mm/mm)
1 48.411 27,016 0,270
HFinal length- Start Date End Date

(mm})
100,000 2005.10.13. 15:36:28

Specimen labsl

1 14-es probatest

A=1,0cm2

ty=40,0 kN/cm2

fu=48,4 kN/cm2

2005.10.13. 15:48:38

Fig. 3.16. Load-extension curve

Ch.3-16

Specimen #
1

BUPT



Specimen 1 to 1

50
40t
3 301
ey s
©
S 20
8
101
7/
0 + + + + + -+ +
[ 10 20 30 40
Extension (mm)
. Tensile extension at Tensile strain at
Max"?"(';'") Load Maximum toad Maximum Load
(mm) (mm/mm)
1 48.168 21.86 0.22
Load at Yield (Zero Tensile extension at Tensile strain at Yield
Slope) Yield (Zero Slope) (2ero Slops)
(&N} {mm) (mm/mm)
1 48,168 21,856 0.219
Start Date End Date Specimen labet

1 2005.10.13. 15:58:03 2005.10.13. 16:09:48 15-0s probatest

A=1,0 kN/cm2

fy=38,5 kN/cm2 fu=48,17 kN/cm2

Fig. 3.17. Load-extension curve
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Specimen 1 to 1

70
60T
50T
— b
Z s}
> Specimen #
® 1
S 301
-t
20t [/
101
0 + + + + + + +
0 10 20 30 40
Extension (mm)
Tensile extension at Tensile strain at.
MIT&") Lnad . . Maximum toad Maximum Load
{mm) . {mm/mm)
1 67.550 24.54 0.25
Load at Yield (Zero Tenslie extension at Tensile strain at Yield
Slope) Yeld {Zero Slopa) (Zera Stope)
(kN) (mm) {mm/mm)
1 67,550 24,540 0,245
H“?,'n"'m") th Stant Date End Date
1 100,000 2005.10.06. 16:22:21 2005.10.06. 16:33:54
Specimen label

1 16-0s prébatest

A=1,2 cm2

fy=41 66 kN/ecm2 fU=56,29 kN/cm2

Fig. 3.18. Load-extension curve

Ch.3-18

BUPT



Specimen 1 to 1

70
601
) 50t ‘
€ |
5 |
S 3071
- L
20t /,
10¢
0 + + + + + -+
1] 10 20 30
Extension (mm)
Tensile extension at Tensile strain at
Maxirr(n:;; Load Maximum Load Maximum Load
{mm) (mm/mm)
1 67.692 24.69 0.25
Load at Yield {Zero Tensile extension at Tensile strain at Yield
Slope) Yield (Zero Slope) (Zero Slope)
(kN) {mm) {mm/mm)
1 67,673 22,854 0.229
Start Date End Date Specimen label

1 2005.10.13. 16:20:14 2005.10.13. 16:30:29 17-es probatest

A=12cm2

fy=41,5 kN/cm2 fu=56.41 kN/cm2

Fig. 3.19. Load-extension curve
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Specimen 1 to 1

70
60
50
Z v}
®
< 301
-
201
101
1) +
0 10 20
Extension (mm)
: Tensile extengion at Tensile strain at
"""'"(‘k“:‘) Load - Maximum Load Maximum {oad
. {mm) . {mm/imm)
1 68.818 21.26 0.21
Load at Yield (Zero Tensile extensiorn at - Tensife strain at Yield
“Slope) Yield (Zero Slopa) {Zera Stope)
{kN) L {mm) {mmimm)
1 68,818 21,263 0,213
- Stast Date, . End Date Specimen label

1 2005.10.13. 16:37:06 2005.10.13. 16:46:59 18-as prébatest

A=1 2 cm2

ty=43.75 kN/cm2 fu=57,35 kN/cm2

Fig. 3.20. Load-extension curve
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Specimen 1 to 1

50

401

Specimen #
1

Load (kN)

-10 + + + + + + +
0 10 20 30 40
Extension (mm)
. Tensile strain at Load at Yield (Zero
Maxln;,?;?) Load Maximum Load Slope)
(mmi/mm) (kN)
1 47,576 0.28 47,222
Tensile extension at Tensile extension at Tensile strain at Yield
Maximum Load Yield (Zero Slope) {Zero Slope)
(mm) {mm) {mm/mm)
1 27,52 25,704 0,262
Start Date - End Date Specimen label

1 2005.10.15. 11:56:52 2005.10.15. 12:08:27 Mérdbélyeg 1.

A=1.0cm2

fy=38,5 kN/em2 fu=47,58kN/cm2

Fig. 3.21. Load-extension curve
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Specimen 1 to 1

Load (kN)

Specimen #
1

-10 ~ -+ * + * +
0 10 20 30

Extension (mm)

Tonsile strain at Load at Yield (Zero
m"'('::; Load Maximum Load Slope)
{mm/mm) - {kN)
1 66.871 0.22 66.871
Tensile extension at Tensile extansian at . Tensite strain at Yield
Maximum Load Yield (Zero Siope) . (Zero Stope)
{(mm) {mm) {mm/mm)
1 21,97 21,975 0.220
Start Date End Date } Specimen label

1 2005.10.15. 12:56:20 2005.10.15. 13:06:29 Mérdbélyeg 2. - 20

A=12cm2

fy=42.08 kN/cm2 fu=55,73 kN/cm2

Fig. 3.22. Load-extension curve
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The results of the experiments for mechanical properties of steel material are

summarized by Table 3.1.

Young's modulus:

Poisson ratio:

A fy fu
[cm?] [kN/cm?] | [kN/cm?3]
13 1,0 39,00 49,66
14 1,0 40,00 48,40
15 1,0 38,50 48,17
16 1,2 41,66 56,29
17 1,2 41,50 56,41
18 1,2 43,75 57,35
M1-19 1,0 38,50 47,58
M2-20 1,2 42,08 55,73
average 40,62 52,44
Table 3.1.

E=210000 N/mm?

v=0,3
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3.4.

3.4.1. Effect of sagging moment

Fig. 3.23-Fig.3.25 show the experimental test results for the effect

moment. (R-1, S-1,E-1)

Specimen 1to 5

O .
-100-
-200~

-300*

Load (kN)

-400 ¢
-500 -

-600 - ' :
-50 -40

Specimen label

TR1-1
TR1-1
TR1-1
TR1-1
TR1-1

NHEWN =

Load at Maximum Time

(kN)
-212,571
-209,914
-302,167

-0,943
-335,067
End Date

NHEWN

2006.01.20. 15:14:40
2006.01.20. 15:28:14
2006.01.20. 15:33:16
2006.01.20. 15:47:37
2006.01.20. 17:36:39

DB WON -

-30 -20

Extension (mm)

Maximum Load
(kN)

0,137
0,243
-208,330

0,242

0,236

Maximum Time

(sec)

601,91

6424,40 )
Time at Maximum Load
(sec)

0,20
9,10
0,00
20,10
36,40

Experimental behaviour of orthotropic plates

-10 0]

Extension at Maximum

Load

_ (mm)
0,01
-0,05
-5,01
0,17
-0,30

Start Date

2006.01.20. 15:04:38

12006.01.20. 15:18:09

2006.01.20. 15:29:14
2006.01.20. 15:45:25

12006.01.20. 15:49:35

Load at Maximum
Extension
(kN)

0,137
0,227
-208,330
0,221
0,212

Fig. 3.23. Load-extension curve for TR R-1
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N =

-—

-—

Load (kN)

Specimen 1 to 2

0 — — — —
-100-
-200:
i Speéihen #
-300-
N 1
2
-400 -
-500*
-600- - ‘ —
-40 -30 -20 -10 0
Extension (mm)
Specimen label Load at Maximum Time Maximum Time
(kN) (sec)
TR2-1 -219,759 669,98
TR2-1 -321,422 5087,55
Start Date End Date Time at Maximum Load
(sec)
2006.02.03. 08:30:55  2006.02.03. 08:42:05 0,10
2006.02.03. 08:42:31 2006.02.03. 10:07:19 0,10
Load at Maximum Time at Maximum Loading span
Extension Extension (mm)
(kN) (sec)
0,005 0,1 500,0
0,223 0,0 500,0
Support span Minimum Load Extension at Minimum
(mm) (kN) Load
(mm)
1500,0 -219,759 -5,587
1500,0 -542,403 -37,766

Fig. 3.24. Load-extension curve for TR S-1
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—h

-—

Load (kN)

TR3-1

‘Specunen #
: -1
2

-30

Specimen label

TR3-1
TR3-1

Load at Maximum Time Extension at Maximum

(kN)

221,392
274234

Start Date

—+

-20

Extension (mm)

524238

‘Minimum Load

(kN)

-221,392

Time
(mm)
-5,106

40017

‘ EndMDate -

-10 0

. Extension at Minimum
Load
(mm)
-5,106
_..m3421

Load at Minimum
Extension

o kN

o -221,392
274,267

~ Maximum Time
__(sec)

-—

2006.02.03. 12:01:05  2006.02.03. 12:11:17_

! :11: 612,53
£ 2006.02.03. 12:11:32  2006.02.03. 13:31:38

 4806,11

Time at Minimum

Extension

_ (sec)

612,53
...480575

" Time at Minimum Load
(sec)

61253
4109,30

Fig. 3.25. Load-extension curve for TR E-1
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Fig. 3.26. shows the load-displacement curves for specimens R-1, S-1 and E-1.
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Fig. 3.26. Load-displacement curves at sagging moment (M+)
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The specimens have been loaded by a sagging moment, which causes compression
in the plate that is stiffened by the trapezoidal stiffener. The load carrying capacity
under the sagging moment does not change significantly for the different
arrangements of the connection between the trapezoidal stiffener and the web of the
cross girder. The failure mode (Fig. 3.27, Fig. 3.28 and Fig. 3.29) was similar for all
three specimens, specifically the stiffened plate buckled out of the plane between the

two points where the trapezoidal stiffener is attached to the stiffened plate.

Fig. 3.27b. Type R test after sagging moment (M+)

Ch.3-28

BUPT



Fig. 3.28a. Type S test after sagging moment (M+)

—

Fig. 3.28b. Type S test after sagging moment (M+)

Fig. 3.29b. Type E test after sagging moment (M+)
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3.4.2. Effect of hogging moment

Fig. 3.30-Fig. 3.32 show the experimental test results for the effect of hogging
moment. (R-2, S-2, E-2)

N =

—

N -

—

Load (kN)

-100+
-200-
-300-

-400"

-30

Specimen label

(kN)
TR1-2  -185,862
TR1-2 422,982
Load at Maximum Time ' Extension at Maximum
(kN) Time

-185,862 5,028
-344,657 -32,566
Start Date " End Date

2006.02.03. 15:09:02

2006.02.03. 15:19:23

Time at Minimum Load
(sec)

603,25
1832,60

TR1-2

Extension (mm)

Minimum Load

2006.02.03. 15:19:05

2006.02.03.16:24:35

Time at Minimum
Extension
(sec)
603,20
3911,60

. (mm)

Tépecimén #
o
2

Extension at Minimum

Load
5,028 ”
15243

Load at Minimum
Extension
. {kN)
-185,837
-344678

Maximum Time
. (sec)
603,25
.3911,80

Fig. 3.30. Load-extension curve for TR R-2
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Load (kN)

N =

-—

TR 2 -2

0 [ J— — — —
-100°
-200-  Specimen #
i ’ 1
‘ 2
-300+
-400 -
-30 -20 -10 0
Extension (mm)
Specimen label Minimum Load Extension at Minimum
(kN) Load
(mm)
TR2-2 -180,316 -5,017
~ TR2-2 -404,243 -13,032
Load at Maximum Time Extension at Maximum Load at Minimum
(kN) Time Extension
(mm) (kN)
-180,316 -5,017 -180,303
~-275,368 32,560 275,368
Start Date End Date Maximum Time
(sec)
2006.02.04. 08:50:00  2006.02.04. 09:00:02 601,83
12006.02.04. 09:00:18 ~ 2006.02.04. 10:05:29 3910,93

Fig. 3.31. Load-extension curve for TR S-2
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TR3-2

0r———— =
I
1
-100}
z N
X -200- ‘Specimen #
he) : 1
s 2
-300+ ~
-400- R
-30 ) -20 -10 | 0
Extension (mm)
Specimen label MinimumLoad  Extension at Minimum
(kN) Load
i (mm)
1 TR3-2 -142,636 5,013
2 TR3-2 -404,934 . 13423
Load at Maximum Time Extension at Maximum  Load at Minimum
(kN) Time Extension
o (mm) N
1 -142,636 5,013 1425719
2 257771 32858 257771
Start Date '~ EndDate Maximum Time
_ . . . (sec)
1 2006.02.04. 11:32:52  2006.02.04.11:42:54 60169
2 2006.02.04.11:43:09  2006.02.04 124820 391077

Fig. 3.32. Load-extension curve for TR E-2

Fig. 3.33 shows the load-displacement curves for specimens R-2, S-2 and E-2. In

these cases the hogging moment causes tension in the stiffened plate.

The shape of the load—deflection curves and the load carrying capacity are similar,
however the softening part of curve R-2 is higher than the softening part of curves
S-2 and E-2. On the other hand the failure mode of the specimens is quite different
(Fig. 3.34. Fig. 3.35 and Fig. 3.36).
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Fig. 3.33. Load-displacement curves at hogging moment (M-)
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In the case of specimen R-2 the web and the flange of the cross—girder near to the
trapezoidal stiffener have buckled out together. However the trapezoidal stiffener and
the plate between the two points where the trapezoidal stiffener is attached to the
plate are unbuckled. In the case of specimen S-2 the web of the cross girder has

buckled between the top edge of the hole and the flange of the cross girder.

Moreover, the part of the flange has also buckled out in the region of the buckled
web. In the case of specimen E-2 the web of the cross girder has also buckled, but
In a larger region, between the stiffened plate and the flange of the cross girder.

Similarly to the previous case the flange of the cross girder has also buckled.

Fig. 3.34b. Type R test after hogging moment (M-)

Ch.3-34

BUPT



Fig. 3.36b. Type E test after hogging moment (M-)
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3.4.3. Effect of shear loading

Fig. 3.37- Fig. 3.39 show the experimental tests results for effect of shear ioading.

TR1-3
e .
~100-
-200
X _300- £ 'Specimen #
B : 1
S -400+ 2
-500- -
-600% )
-40 30 -20 -10 0
Extension (mm)
Specimen label Minimum Load  Extension at Minimum
(kN) Load
1 TR1-3 -307,876 -5,004
2 TR1-3 623494 ~  -35532
Load at Maximum Time , Extension at Maximum  Load at Minimum
(kN) Time Extension ‘
o - (mm) (kN
1 -307,876 5,004 -307,847
2 -623,458 35534 . ..-623,461
Start Date End Date ‘Maximum Time
1 2006.02.04. 15:34:08  2006.02.04. 15:44:10 601,25
2 2006.02.04. 15:44:24  2006.02.04. 16:55:32 ~  4268,01

Fig. 3.37. Load-extension curve for TR R-3
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N =

-—

Load (kN)

0 S , B}
-100-
-200+
-300-
-400 , - ‘
-30 -20 -10 0
Extension (mm)
Specimen label Minimum Load Extension at Minimum
(kN) Load
, (mm)
TR2-3 -163,902 -4,007
_ TR2-3 L -392,586 -18,535
Load at Maximum Time Extension at Maximum Load at Minimum
(kN) Time Extension
, (mm) (kN)
-163,902 -4,007 -163,837
-294,571 -27,131 -294,571
Start Date End Date Maximum Time
, (sec)
2006.02.04. 18:48:18  2006.02.04. 18:56:19 481,03
2006.02.04. 19:02:50  2006.02.04. 19:57:09 3259,36

Fig. 3.38. Load-extension curve for TR S-3
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TR3-3

0— —
-50: i
2 -100-
R l ‘Specimen #
o | 1
8 -150+ >
_J ) - .
-200-
-2%0- . - - 7
-30 -20 -10 0
Extension (mm)
Specimen label Minimum Load Extension at Minimum
(kN) Load
3 (mm)
1 TR3-3 -173,163 4023
2 TR3-3 -256,990 14200
Load at Maximum Time Extension at Maximum  Load at Minimum
(kN) Time Extension
, ) (mm) ~(kN)
1 -173,163 4,023 -173,127
2 -167,095 _..=30,104 ooooteraxn
Start Date End Date’ Maximum Time
. o e __(sec)
1 2006.02.05. 08:40:46  2006.02.05.08:48:49 48312 .
2 2006.02.05. 08:49.06  2006.02.05.09:49:23 361607

Fig. 3.39. Load-extension curve for TR E-3

Fig. 3.40 shows the load—deflection curves for specimens R-3, S-3 and E-3. The

loading for these specimens was shear force. The load—deflection curves are

significantly different. In the case of specimen R-3 there is no softening in the curve

even for large displacements. The curves for specimens S-3 and E-3 exhibit

softening behavior, but there are significant differences between these softening

behaviors.
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The failure modes for these specimens are also different (Fig. 3.41, Fig. 3.42 and

Fig. 3.43). In the case of specimen R-3 diagonal buckled waves appear in the web,
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Fig. 3.40. Load-displacement curves at shear force (V)
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however they are not significant at the ultimate failure state. In the case of specimen
S-3 apparent compressed and tensioned zones are formed at two ends of the hole.
In the compressed zone the diagonal waves are more significant than in the case of

specimen R-3.

Furthermore in the tensioned zone as a result of the large tension force the web plate
is fractured. The failure mode for specimen E-3 is similar to the failure mode for
specimen S-3. However the tension is so high at one end of the hole that the weld

between the web of the cross girder and the stiffened plate is also fractured.

Fig. 3.41a. Type R test after shear force (V)

Fig. 3.41b. Type R test after shear force (V)
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Fig. 3.43a Type E test after shear force (V)

P

Fig. 3.43b Type E test after shear force (V)
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3.5. The results of strain measurements

In Fig. 3.11 the geometric arrangements of the strain gauges is shown. The strain
gauges were connected to a device (Spider) to collect the measurements. Fig. 3.44-
Fig. 3.52 shows the measured values in relation to loading. In the figures the
uncertainties are still visible, which are mostly specific to the plastic state. During the
experiments the strain was measured directly, however in the figures — to be able to
display in a more meaningful way — the strain multiplied by the Young's modulus is
shown. This value can be called as stress, but after yielding this can be called only

“formally" as stress.
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Fig. 3.44. TR R-1 Load - Stress curves
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Fig. 3.46. TR E-1 Load - Stress curves
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Fig. 3.47. TR R-2 Load - Stress curves
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Fig. 3.48. TR S-2 Load - Stress curves
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Fig. 3.49. TR E-2 Load - Stress curves
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Fig. 3.50. TR R-3 Load - Stress curves
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Fig. 3.51. TR S-3 Load - Stress curves
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Fig. 3.52. TR E-3 Load - Stress curves
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3.6. Elastic behaviour of web with U-shaped holes

3.6.1. Bending stress

The bending stress distributions of the web cross section are shown in Fig. 3.53-
Fig. 3.55 for specimens respectively. Strain gauges 1 — 4 provide the stress
throughthe measured strain at the middle of the U-shaped hole at the load level
F=200kN. Strain gauges 6 and 7 provide the stress at the edge of the U-shape hole
at the load level F=200kN. The stresses can be determined from the measurement of
strain gauge 8 at the point where the U-shape hole starts in the web of the cross
girder. The rosette of strain gauges 9 — 11 at the corner of the U-shape hole as
shown in Fig. 3.11.

ALl F=200kN
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Fig. 3.53. Effect of sagging moment for the distribution of stresses
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Fig. 3.54. Effect of hogging moment for the distribution of stresses
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Fig. 3.55. Effect of shear loading for the distribution of stresses
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3.6.2. Vierendeel behaviour

Beams with U-shaped holes in the web as used in this test are predicted to behave

differently from standard beams without openings in the web.

This different behaviour is explained as follows in Fig. 3.56, ITO M. et al (1991). The
bending moment M=Rx, where R-reactions, x-distance from the support, and the
shearing force V=V +V; are assumed to act on the section of the center part for
beams with U-shaped holes, where Vi and V- - the shearing forces acting upon the
T-shaped sections that correspond to the section under the U-shaped holes and the
upper flange, respectively. The V1 and V; values are assumed to be distributed

according to ratios of the moments of inertia of the T-shaped sections and the upper

flanges.
hre_..1 el2
Q@ . {P @ 1 va =
- T - L.
2\ S VI
) QD hﬂ ,
9°E.0 \JN é}
Ny 1 :?- c/2::—4
Vv ) V= Vi+V2 ® (@
N +] Z"’blﬂ
+ N = Witz =7+ ==\
OO M AM =Va(c2) @® M AM =Vie?)
(3) (4)
LA fdw
T-@ M  AMi

Fig. 3.56. Vierendeel action of U-shape holes, ITO M. et al (1991)

The V4 and V, values are calculated as follows:

- 4 _ 4
Vi=—m0————— Vy=

3’ 3’
Tec IcYe
1+[1c19) 1+[1eICJ
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where I and I — the moments of inertia of the T-shaped sections and the upper
flange sections and ¢ and e — the upper and bottom widths of the U-shaped holes

Fig. 3.56, respectively.

In Fig. 3.56, the additional moments AM1=V(C/2) and AM,=V;(e/2) produced at the
sections 1-1 and the sections 2-2 by each of the shearing forces are shown in
Fig. 3.56.

The tensile and compressive forces act on the sections of the right and left sides
under the U-shaped holes. Such actions produce additional moments because of
these shearing forces, which are called the Vierendeel action [e.g., BOWER(1966)
and REDWOOD (1969)].

Overall, the theoretical values shown good agreement with the experimental values.
Where they do diverge, it seems that the differences between the theoretical values
and the experimental values were caused by the stress concentrations. Apparently,
Vierendeel analysis is not limited to beam with circular or rectangular holes in the
center part of the web, but may also be applied to beams with U-shaped holes in the

top part of the web.

The magnitudes and directions of the principal stresses for the different specimens
are shown in Fig. 3.53, — 3.55. The stress concentrations are considerably greater at
the corner section of both sides of the right and left corners under the U-shaped

holes.

3.6.3. Shearing stress

Assuming that the bending moments M; and M,, and the shearing forces V=V +V,
act between the center section of the U-shaped holes, as shown in Fig. 3.57a, ITO
M. et al (1991), the arm length z of the resisting moments is z=I,/w., where |, — the
moment of inertia in reference to the neutral axis, and w, — the geometrical moment

of area for the upper flange in reference to the neutral axis.
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Mi/z

Fig. 3.57. Longitudinal searing force, ITO M. et al (1991)

If it is now assumed that the axis force My/z acts at the center of the upper flange,

since the thickness of the upper flange is small, the longitudinal shearing force Vy
shown in Fig. 3.57b is obtained as follows:

4de
Vi = V.
H 2Z—tu !

Therefore, the longitudinal shearing stresses Tv is obtained as Tv=Vu/(e tv), where e

and t, — the upper width of the U-shaped holes and the web thickness, respectively.

It appears that the longitudinal shearing stresses acting on the web sections between
the U-shaped holes can be predicted by ITO et al (1991).
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3.7. Ultimate strength of test girders

3.7.1. Yielding of U-shaped sections

Fig. 3.26, Fig. 3.33, Fig. 3.40 show the load-deflection curves for the different
specimens. The deflections of the beams with respect to the center part of the U-
shaped holes in the vicinity of the loading point are shown as the abscissa. In these
figures, the initial yield loads Py, when the experimental values showed that the
corner edge of the U-shaped holes yielded first, are obtained. Further, the yield load
Py, at which it was predicted that both the web and the flange sections would yield

completely, are obtained.

In general, the full plastic states of the experiment were predicted from the load-
deflection curves or the moment-curvature curves. However, in such cases, it is
difficult to determine exactly the full plastic state of the steel beams, because steel
beams have strain-hardening properties and the yield stresses are different in

different parts of the cross section.

The complete yield state of the U-shaped sections of this experiment is defined as
the yield load Py, obtained from the elastic curves in the foregoing load-deflection
curves (Fig. 3.26, Fig. 3.33 and Fig. 3.40).

Table 3.2 shows each test load for all specimens. From Table 3.2 it can be seen that
yielding, rather than buckling, has taken precedence. The maximum loads Pmax in
Table 3.2 show the loads obtained when the peak load in the load-deflection curve is
reached, which occurs when buckling of the compression flange at the U-shaped

holes in the vicinity of the loading points is observed.

The initial yield loads Py; are smaller than Py, P, and Pmay in Table 3.2 because the
corner edges of the U-shaped holes carry both additional moments by Vierendeel
action and the longitudinal shearing forces Vy in addition to the usual bending
moment and shearing force. Therefore, it seems that this local yielding of the corner
edges is not directly related to the ultimate strength of the beams. Accordingly, it is

not necessary to consider this local yielding in the design of such beams.
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Specimens | Loading Initial yield Yield load Buckling load | Maximum load
load Py, [kN] P, (KN] Per [kN] Prmax [kN]
TR R-1 Sagging 381,0 420,1 580,1 595,0
TR S-1 moment 310,0 400,5 530,2 542,4
TRE-1 2451 385,0 510,5 524,2
TRR-2 Hogging 310,0 405,0 410,0 4229
TR S-2 moment 255,2 375,0 390,0 404,2
TRE-2 220,7 330,6 370,1 404,9
TRR-3 Shear 450,3 475,2 508,0 623,5*
TR S-3 load 2724 317,1 315,4 392,6
TRE-3 186,2 210,7 196,2 256,9

* Load limit of the loading system has been reached

Table 3.2. Experimental beam load

3.7.2. Ultimate strength

In general, the ultimate strength analysis method (BOWER (1966), REDWOOD
(1969)), taking account of Vierendeel action, as applied to rolled beams or welded
beams with circular or rectangular holes in the center part of the web also
appropriate for these beams.

In this study, BOWER's (1966) method is applied to test beams with U-shaped holes
in the top part of the web. In this analysis the stress distribution at the ultimate load
was assumed to be as shown in Fig. 3.58. In this case, it is assumed that the
additional moment caused by Vierendeel action acts on the T-shaped section under
the U-shaped holes and that the shearing stress is carried uniformly by the web. The

combined stress of the bending stress and the shearing stress satisfy Von Mises’
yield condition.
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For the assumed stress distribution as shown in Fig. 3.58 the equilibrium equations
(1)-(4) for the applied bending moment M and the shearing force V are able to predict
behaviour as well as the solution of BOWER (1968), i.e.

_ } bt fl fy.t | = fy.t
5 l j:?A =%= ) = 0

= | T
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Fig. 3.58. Assumed stress distribution at Ultimate Ioad, BOWER (1968)
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where k,H;<H ~hy. fyr and fyp — the yield stress of the upper and the bottom

flange, respectively, and oy — the yield stress of the web. H; and H; — the distance

from the neutral axis to the top surface of the upper flange and the bottom surface of
the bottom flange, respectively, koH1 — the depth of the web after yielding in bending
and shearing, and ksH4 — the depth of the bottom flange reversed by Vierendeel

action.
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The interaction diagrams for each test beam obtained by using Eq. 3.1 — Eq. 3.4 are
shown in Fig.3.59. The M and V of the ordinate and the abscissa are
nondimensionalized by the full plastic moment M, of the net section without holes
Awfy,w

—5

and by the full shearing force ¥, = respectively. They were used for the

ordinate and the abscissa.
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Fig. 3.59. Theoretical and experimental ultimate loads

3.8. Conclusions

The ultimate strength of test specimens with trapezoidal stiffeners was
experimentally investigated. The specimens were constructed from three
components, the stiffened plate, the trapezoidal stiffener and the cross girder. In the
experiments three arrangements were considered where the hole around the
trapezoidal stiffener had three different shapes providing different connection
between the trapezoidal stiffener and the web of the cross girder. Specifically when
the components are fully welded to each other then the connection is rigid (R). When
there is a hole in the web of the cross girder around the flange of the trapezoidal

stiffener the connection is considered as standard (S). Finally when the trapezoidal
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stiffener is fully cut around in the web of the cross girder the connection is

economical (E).

With the aid of these experiments it was possible to determine the behavior of the

components under sagging and hogging moment and shear force.

The experiments investigated the elastic and the plastic behavior of the specimens;
they determined the load carrying capacity and the failure mode (IVANYI, Jr.,
BANCILA, 2006, IVANYI, Jr., et al., 2006/a, IVANYI, Jr., et al 2006/b, IVANY], Jr., et
al, 2006/c).
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CHAPTER 4

Numerical Analysis

In this chapter the different structural details for the stiffener of an orthotropic plate
will be investigated numerically (IVANYI, Jr., et al 2006). Furthermore the effect of the
different structural detail of the stiffener on the ultimate limit state of the orthotropic
plate will be studied. Three arrangements are considered: rigid (R), standard (S) and
the suggested economic (E). (I note here again, that the rigid structural detail is not
used in practice due to fatigue problems, therefore it is used here only as a

comparison.)

Two types of numerical analysis are discussed in this chapter. First a linear 3D finite
element analysis which will help in the creation of the design formulas. Second a
non-linear 3D finite element analysis is carried out which will help to analyse the
different phenomenon (significant plastic deformations, plate buckling and material
failure) that were experienced during the experiments. (IVANYI, Jr., IVANYI, P, 2007)

4.1 Linear 3D finite element analysis

In the frame of this program a linear 3D finite element model has been analysed to
study the different structural details and connection between the longitudinal,
trapezoidal stiffener and the cross girder with open cross section in an orthotropic
plate. The aim of the analysis was to obtain enough information, which can be utilized

in the determination of the "initial" stiffnesses. First of all the investigation the effect of
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the different structural details of the stiffener of the orthotropic plate on the local and

global behaviour of the plates has been investigated.

For the analysis the LUSAS (2000) finite element program has been used. LUSAS is
a commercially available general finite element program, which has some specialised
modules for civil engineers. For example one module can help the designer in
combining the different load cases since the program can automatically do the load

combination.
4.1.1 The finite element model

It was decided from the beginning that a full model will be created. It means that no
symmetry condition will be used. The main reason for this decision is that the model
has to be analysed under not only moment loading but shear loading. Fig. 4.1 shows
the schematic layout of the model under sagging moment, Fig. 4.2 shows the layout
of the model under hogging moment and Fig. 4.3 shows the model in the case of

shear loading. These models correspond directly to the experimental setup of the
different structural details.

250kN 250kN

' |
\/

R
Fig. 4.1. Schematic layout of the model under sagging moment

250kN 250kN

| |

Fig. 4.2. Schematic layout of the model under hogging moment

Ch.4-2

BUPT



[ 256N RIEAI N

L] J/r—\\ R
AN\ w?@w

Fig. 4.3. Schematic layout of the model in the case of shear loading

Fig. 4.1 - 4.3 show that the models are simple supported beams. It means that the
left hand side boundary condition (point L) restricts the displacements in all
directions, X, Y and Z but allows rotations. The boundary condition on the right hand
side (point R) models a rolling condition as it allows the displacements in the X
direction, but restricts displacements in the Y and Z directions. The rotations at point

L are also free to develop.

Since these analysis will be used in the determination of the "initial" stiffnesses of the
different structural details a linear, elastic material model is used with standard steel

properties:

Young modulus: 210 000 000 kN/m?,

Poisson's ratio: 0.3.

The loading conditions can also be seen in Fig. 4.1 - 4.3 for the different experimental
setups.

Since the finite element mesh represents the full structure the mesh has to be
designed carefully. It means that most of the elements must be concentrated around
the area of interest. Naturally the area of interest is the trapezoidal stiffener and its
surroundings, which is the middle of the structure. The annex beams connect to the
middle section "rigidly" as there is a very strong plate between the middle section and
the annex beams as it was discussed in Chapter 3. This also means that the number
of finite elements in the annex beams can be very few. The meshes were generated
automatically by the program.
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Another important decision is that mainly quadrilateral elements must be used in the
finite element meshes for precision. The LUSAS program can only generate a
quadrilateral dominant mesh, where most the of the elements are quadrilaterals,
however there are some triangles in the mesh’ as well. The name of the quadrilateral
element in the LUSAS program is QSI4, which is a flat thin shell element. The
element takes into account both membrane and flexural deformations and as

required by thin plate theory, transverse shearing deformations are excluded.

Fig. 4.4 shows the full finite element mesh of the model for the rigid (R) type of
connection and Fig. 4.5 shows a magnified view of the same mesh. Fig. 4.6 and 4.7
shows the finite element mesh of the model for the standard (S) type of connection.
(It must be noted that in the experimental specimens no hole is cut out from the web
of the cross girder at the corner of the trapezoidal specimen where it connects to the
plate. On the other hand this hole is present in the numerical models.) Finally

Fig. 4.8. and 4.9 show the finite element mesh of the model for the economic (E) type
of connection.

’’’’’’

Fig. 4.4. Overview of the finite element mesh (rigid, R connection)

Fig. 4.5. Finite element mesh around the trapezoidal stiffener (rigid, R connection)
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Fig. 4.6. Overview of the finite element mesh
(standard, S connection)

Fig. 4.7. Finite element mesh around the trapezoidal stiffener
(standard, S connection)

NN
B2

h
i
}
{
)
I
|
—_—
t
|
t
i
i
|

Fig. 4.9. Finite element mesh around the trapezoidal stiffener

(economic, E connection)
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The number of elements in the meshes is shown in Table 4.1.

Type of connection Number of elements
Rigid 4729
Standard 4700
Economic 4631

Table 4.1. Number of elements in the meshes

4.1.2. Results of the linear 3D finite element analysis for the shear load

Fig. 4.10 shows the magnified displacements of the finite element mesh with rigid (R)
connection when shear loading is applied on the model. Fig.4.11 shows the

magnified displacements for the standard (S) connection and Fig. 4.12 shows the

magnified displacements for the economic (E) connection under shear loading.

-

e o e T

Fig. 4.10. Displacement of the finite element mesh under shear loading

(rigid, R connection)

Fig. 4.11. Displacement of the finite element mesh under shear loading
(standard, S connection)

Fig. 4.12. Displacement of the finite element mesh under shear loading

(economic, E connection)
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In Fig. 4.12 the contact between the trapezoidal stiffener and web of the cross girder

is artificial, it only occurs because the displacements are magnified.

The results of the analysis of the models under shear loading will be used in the
determination of the static properties of the cross girders. | assume — based on the
experimental results — that the different (R, S, E) connections between the orthotropic
plate and the cross girder can be modelled as an elastic connection. It is assumed
that there is an elastic layer between the two structural parts and its physical

properties can be expressed by ¢.

The & parameter of the elastic connection for the different structural details between

the orthotropic plate and the cross girder can be determined from the results when
the model is under shear loading. During the loading — due to the geometric and
loading arrangement of the model — large shear forces will develop in the studied
area of the structure. The bending moments can be neglected in the same area, thus
with respect to the elastic “layer” connection this behaves as a "push-out test".

Fig. 4.13 shows the shear forces and bending moments in the model.

To determine the & parameter of the elastic connection the relative displacement

between points A and D must be determined as shown in Fig. 4.13. The determined

deformation state will be discussed in Chapter 5 along with the experimental results.
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Fig. 4.13. Shear forces and bending moments in the model
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4.1.3. Results of the linear 3D finite element analysis for the sagging moment

The magnified displacements of the finite element meshes under sagging moment
are shown in Fig. 4.14 for the rigid (R) connection, in Fig. 4.15 for the standard (S)
connection and in Fig. 4.16 for the economic (E) connection.

Fig. 4.14. Displacement of the finite element mesh under sagging moment

(rigid, R connection)

jasuarvsg

Fig. 4.15. Displacement of the finite element mesh under sagging moment

(standard, S connection)

R

Fig. 4.16. Displacement of the finite element mesh under sagging moment

(economic, E connection)
4.1.4. Results of the linear 3D finite element analysis for the hogging moment
The magnified displacements of the finite element meshes under hogging moment

are shown in Fig. 4.17 for the rigid (R) connection, in Fig 4.18 for the standard (S)
connection and in Fig. 4.19 for the economic (E) connection.
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Fig. 4.17. Displacement of the finite element mesh under hogging moment

(rigid, R connection)
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Fig. 4.18. Displacement of the finite element mesh under hogging moment

(standard, S connection)

Fig. 4.19. Displacement of the finite element mesh under hogging moment

(economic, E connection)

4.2 Non-inear 3D finite element analysis

In the program a couple of non-linear 3D finite element analysis has also been
performed. The purpose of these tests to study the effect of the different structural
details of the connection between the trapezoidal stiffener and the cross girder on the
regional area. Similarly to the linear tests all three structural details, rigid (R),
standard (S) and economic (E) have been investigated. Considering the results of the

experiments the aim was to perform a non-linear 3D FE analysis under shear
loading.

For the non-linear finite element calculation the LS-DYNA (2001) package has been
utilised. LS-DYNA has some special features which are required during the non-

linear calculation. LS-DYNA can perform an explicit finite element analysis. In this
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case no global stiffness matrix must be assembled and the load is applied to the
structure in an increasing manner as time passes. Basically a pseudo dynamic
analysis will be performed where it is possible to study the path to the ultimate state
but we are more interested in the final state, in a "static" solution. However,
performing a "static" analysis in this helps to account for geometric and material non-

linearities.

Another important feature of the LS-DYNA program has, that it can handle material
failure. Unfortunately not many finite element packages can model material failure
and even the methodology of LS-DYNA is not perfect. In LS-DYNA material failure is
modelled in such a way, that when in an element the plastic strain reaches a
specified limit then the element ceases to exist. The element is taken out of the
model. The consequence of this element removal, however is that there is no mass
and energy conservation in the model. Some discussion about this kind of material
modelling can be found in a paper by IVANYI, P., et al (2006). The experience of
Ivanyi is that with this type of material failure modelling the failure mechanism can be
modelled quite well, however the forces and displacements may not match with the
experimental results.

It is also important to note that in the finite element analysis "real" material properties
have been used. These material properties have been determined by experiments.
Details about these experiments can be found in Chapter 3. Fig. 4.20 shows the
strain-stress relations for the steel material that was used in the experimental
specimens for the numerical simulations.

— .

e

Fig. 4.20. Stress-strain relation for the steel material
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Unfortunately the finite element mesh had to be built from scratch for the LS-DYNA
program. In this case only quadrilateral elements are used in the mesh and the
program has some constraints on the quality of the elements. The number of

elements in the finite element meshes are shown in Table 4.2.

Type of connection Number of elements
Rigid (R) 1887
Standard (S) 1937
Economic (E) 1767

Table 4.2. Number of elements in the meshes

The selected quadrilateral element is SHELL 163. SHELL 163 is a 4-node shell
element with bending and membrane capabilities. The element has 12 degrees of
freedom at each node: translations, accelerations, and velocities in the nodal x, v,

and z directions and rotations about the nodal x, y, and z-axes.

Fig. 4.21 shows the plates in the finite element model. There is another important
difference compared to the linear elastic analysis, that the loading has been applied
on the structure through rigid plates. These plates can be seen in Fig. 4.21, in the
upper flange. These plates are modelled as rigid as it is assumed that they will not
deform. The main reason to use them is that in this way the load can be applied as a
concentrated load on the rigid plates. The use of these plates is also realistic as they
model the real loading device. Furthermore in this way the amount of computation
time can be reduced. The calculation of rigid elements is very short compared to an
elastic or plastic element.

Fig. 4.22 — Fig. 4.24 show the side view of the finite element mesh for all three
connection types, rigid, standard, economic. The finite element mesh around the

trapezoidal stiffener can be seen in Fig. 4.25 - Fig. 4.27.

The execution of one these finite element models is approximately 6 hours.
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Fig. 4.21. Geometry of the finite element model in the case of the economic

connection

|| R
L1 —
L

Fig. 4.22. Overview of the finite element mesh (rigid (R) connection)

\

1

Fig. 4.23. Overview of the finite element mesh (standard (S) connection)
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Fig. 4.24. Overview of the finite element mesh (economic (E) connection)
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Fig. 4.26. Finite element mesh around the trapezoidal stiffener
(standard (S) connection)

Fig. 4.27. Finite element mesh around the trapezoidal stiffener

(economic (E) connection)
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4.2.1 The imperfections according to EC 3 Part 1.5

The assumed elastic “layer” connection between the two parts of the structural cross
section is an important part of the static model. To determine the properties of the
elastic connection the load case with shear loading must be considered, therefore

these analysis will focus on them.

The full analysis with attention to every detail requires significant computation power
therefore only "limited" versions of the analysis were performed. | tried to perform
analysis, which have few number of elements but at the same time they can provide

information about the local behaviour of the structural details of the connections.

4.2.2 Comparison of the experimental and numerical tests

The load carrying capacity is very high in the case of the rigid connection between
the trapezoidal stiffener and the cross girder in the orthotropic plate (see Chapter 3).
The web of the cross section that is close to the trapezoidal stiffener buckles, as
shown in Fig. 4.28 — Fig. 4.36. The full diagonal buckling cannot form since the
trapezoidal stiffener has a strong supporting effect. The numerical results show very
similar behaviour.

In the case of the standard, (S) connection the load carrying capacity is significantly
lower than the load carrying capacity of the rigid (R) connection type (see Chapter 3).
The web of the cross girder buckles around the cut-out holes at the top of the
trapezoidal stiffener. Later on the there is a material failure on the tensioned side, as
shown in Fig. 4.28 — Fig. 4.36.

Ch.4-14

BUPT



Fig. 4.28. Arrangement of the rigid (R) test

Fig. 4.30. FEM analysis of R speciment
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Fig. 4.31. Arrangement of the standard (S) test

Fig. 4.32. (S) speciment

Fig. 4.33. FEM analysis of S speciment

Ch.4-16

BUPT



Fig. 4.36. FEM analysis of E speciment
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In the case of the economic, E connection a reduced load carrying capacity can be
observed. (It is important to note, that the stiffness of the connection does not exhibit
this large reduction.) The web of the cross girder buckles in a larger area due to the
hole, however the buckling shape is very similar to the buckling shape which occured
in the case of the standard, S connection type. In the case of the economic, E

connection the tensioned part of the structure also fails later on.

In the design of the standard (S) connection the information that can be gained from
the experimental and numerical analysis can also be utilised, that the behaviour of
the ridid (R) and standard (S) connections differ significantly. This observation is very
important since in the traditional design process this difference is not considered. (It
can be noted that there are also differences between the standard (S) and economic
(E) connections, but the differences are not that significant.)

4.3 Conclusions

Different structural details of the stiffeners of orthotropic plates have been
investigated by numerical analysis in this chapter. The linear 3D finite element
analysis helps to analyze the different structural details as elastic connections. In the
case of the non-linear 3D finite element analysis only the effect of the shear forces
have been investigated. These simulations help to study the local behaviour of the
connections after the elastic range, during buckling and failure. The reason to
perform only the analysis with shear forces as the calculation requires significant
computational power. (IVANYI, et al 2006/b, IVANYI, Jr., IVANYI, P., 2007)
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CHAPTER S

Behaviour and Design of Plated Steel Structures

This chapter introduces the uses of plates and plated assemblies in steel structures.
It describes the basic behaviour of plate panels subject to in-plane or out-of-plane
loading, highlighting the importance of geometry and boundary conditions. Basic
buckling modes and mode interaction are presented. It introduces the concept of
effective width and describes the influence of imperfections on the behaviour of

practical plates. It also gives an introduction to the behaviour of stiffened plates.

The load distribution for unstiffened plate structures loaded in-plane is discussed.
The critical buckling loads are derived using linear elastic theory. The effective width
method for determining the ultimate resistance of the plate is explained as are the
requirements for adequate finite element modelling of a plate element. Out-of-plane
loading is also considered and its influence on the plate stability discussed. The
requirements for finite element models of stiffened plates are outlined using those for

unstiffened plates as a basis.

5.1. Introduction to plate behaviour and design

5.1.1. Introduction

Plates are very important elements in steel structures. They can be assembled into

complete members by the basic rolling process (as hot rolled sections), by folding (as

cold formed sections) and by welding. The efficiency of such sections is due to their
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use of the high in-plane stiffness of one plate element to support the edge of its

neighbour, thus controlling the out-of-plane behaviour of the latter.

The size of plates in steel structures varies from about 0,6mm thickness and 70mm
width in a corrugated steel sheet, to about 100mm thick and 3m width in a large
industrial or offshore structure. Whatever the scale of construction the plate panel will
have a thickness t that is much smaller than the width b, or length a. As will be seen
later, the most important geometric parameter for plates is b/t and this will vary, in an
efficient plate structure, within the range 30 to 250.

TIMOSHENKO-WINOWSY-KRIEGER (1959), BLEICH (1952), SZILARD (1974),
WOLMIR (1962), DUBAS, GHERI (1986), BRUSH, ALMROTH (1975), PETERSEN
(1982)

5.1.2. Basic behaviour of a plate panel

Understanding of plate structures has to begin with an understanding of the modes of

behaviour of a single plate panel.
5.1.2.1. Geometric and boundary conditions

The important geometric parameters are thickness t, width b (usually measured
transverse to the direction of the greater direct stress) and length a, see Fig. 5.1. The
ratio b/t, often called the plate slenderness, influences the local buckling of the plate

panel; the aspect ratio a/b may also influence buckling patterns and may have a
significant influence on strength.

In addition to the geometric proportions of the plate, its strength is governed by its
boundary conditions. Fig. 5.1 shows how response to different types of actions is
influenced by different boundary conditions. Response to in-plane actions that do not
cause buckling of the plate is only influenced by in-plane, plane stress, boundary
conditions, Fig. 5.1b Initially, response to out-of-plane action is only influenced by the
boundary conditions for transverse movement and edge moments, Fig. 5.1c.

However, at higher actions, responses to both types of action conditions are
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influenced by all four boundary conditions. Out-of-plane conditions influence the local
buckling, see Fig. 5.1d; in-plane conditions influence the membrane action effects

that develop at large displacements (>t) under lateral actions, see Fig. 5.1e.

k.
(

{a) Single plate panel

/'/"/',// ’ ,/1 ke //,’/'/ .
(b) In-plane action, {c) Out-of-plane action, @
pre-buckling small displacements

{d) In-plane action, (e) Out-of-plane action, ;;

post-buckling large displacements

Fig. 5.1. Significant boundary conditions for plate panels

5.1.2.2. In-plane Actions

As shown in Fig. 5.2a, the basic types of in-plane actions to the edge of a plate panel
are the distributed action that can be applied to a full side, the patch action or point
action that can be applied locally.
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Point loading

Patch loading /

Pyl 7
( I {(a) Basic types

VR AR AV AV A A & 4

Distnibuted loading

Suff

_— Stress distribut on

{b) Umiform applied
displacements

W In-plane boundary
M displacements

{c) Uniform applied
stress

Fig. 5.2. Types of in-plane action

When the plate buckles, it is particularly important to differentiate between applied
displacements, see Fig. 5.2b and applied stresses, see Fig. 5.2c. The former permits
a redistribution of stress within the panel; the more flexible central region sheds
stresses to the edges giving a valuable post buckling resistance. The latter, rarer

case leads to an earlier collapse of the central region of the plate with in-plane
deformation of the loaded edges.

5.1.2.3. Out-of-plane Actions

Out-of-plane loading may be:

- Uniform over the entire panel, see for example Fig. 5.3a, the base of a
water tank.
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- Varying over the entire panel, see for example Fig. 5.3b, the side of a
water tank.

- A local patch over part of the panel, see for example Fig. 5.3c, a wheel
load on a bridge deck.

-

e
ﬁ)m W4

{a) Uniformly distributed loading

A

{b) Vanable distributed loading

{c) Patch loading

Fig. 5.3. Types of out-of-plane actions

5.1.2.4. Determination of plate panel actions

In some cases, for example in Fig. 5.4a, the distribution of edge actions on the
panels of a plated structure are self-evident. In other cases the in-plane flexibilities of
the panels lead to distributions of stresses that cannot be predicted from simple
theory. In the box girder shown in Fig. 5.4b, the in-plane shear flexibility of the
flanges leads to in-plane deformation of the top flange. Where these are interrupted,
for example at the change in direction of the shear at the central diaphragm, the
resulting change in shear deformation leads to a non-linear distribution of direct

stress across the top flange; this is called shear lag.
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(3) Box column

ib) Box girder at mremal
support

Fig. 5.4. Effect of shear lag on distribution of stresses in plated structures

In members made up of plate elements, such as the box girder shown in Fig. 5.5,
many of the plate components are subjected to more than one component of in-plane
action effect. Only panel A does not have shear coincident with the longitudinal

compression.

-
== 5
P e N
/;-—B

A
Compression Compression & shear

-—

—
= =
/' C / D

Compiession & shear Tension & shear

Fig. 5.5 Examples of components of action on plate panels in a box girder
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If the cross-girder system EFG was a means of introducing additional actions into the
box, there would also be transverse direct stresses arising from the interaction

between the plate and the stiffeners.

5.1.2.5. Variations in buckled mode

i) Aspect ratio a/b

In a long plate panel, as shown in Fig. 5.6, the greatest initial inhibition to buckling is
the transverse flexural stiffness of the plate between unloaded edges. (As the plate
moves more into the post-buckled regime, transverse membrane action effects
become significant as the plate deforms into a non-developable shape, i.e. a shape

that cannot be formed just by bending).

m = Number of half waves

10
M=y 7 [ 3 3 |5
8 4 L Y T WO IR ¥
L] . ) A )
7 ‘ ‘n “‘ ‘L \“
6 N b .
- -

K : \ - ‘\.‘ ~y - ‘-_-a“ _‘1
2 T - Y . g
a4 >
3 .

2 y
1 - —
0]

oo

Fig. 5.6. Variations in buckled mode with aspect ratio for a plate panel in longitudinal

compression
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As with any instability of a continuous medium, more than one buckled mode is
possible, in this instance, with one half wave transversely and in half waves
longitudinally. As the aspect ratio increases the critical mode changes, tending
towards the situation where the half wave length a/m=b. The behaviour of a long
plate panel can therefore be modelled accurately by considering a simply-supported,

square panel.

ii) Bending conditions

As shown in Fig. 5.7, boundary conditions influence both the buckled shapes and the
critical stresses of elastic plates. The greatest influence is the presence or absence
of simple supports, for example the removal of simple support to one edge between
case 1 and case 4 reduces the buckling stress by a factor of 4.0/0.425 or 9.4. By
contrast introducing rotational restraint to one edge between case 1 and case 2

increases the buckling stress by 1.35.

s - k n Et
o 12(l+ )b
Case Description of support at the unloaded edges k
1 Both edges simply O Y t ° 400
supported A
<« b >
2 One edge simply 1 yt — 542
supported. the ! A
other fixed
b >
3 Both edges fixed L yt | 697
supported I A L
< >
4 One edge simply o yt 0.425
supported, the A
other free
< b >
5  One edge fixed L yt 1277
the other free I A
< b >

Fig. 5.7. Coefficients for plate buckling in compression for various boundary

conditions
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ili) Interaction of modes

Where there is more than one action component, there will be more than one mode
and therefore there may be interaction between the modes. Thus in Fig. 5.8bi the
presence of low transverse compression does not change the mode of buckling.
However, as shown in Fig. 5.8bii, high transverse compression will cause the panel
to deform into a single half wave. (In some circumstances this forcing into a higher
mode may increase strength; for example, in case 5.8bii, predeformation/transverse
compression may increase strength in longitudinal compression.) Shear buckling as
shown in Fig. 5.8c is basically an interaction between the diagonal, destabilising

compression and the stabilising tension on the other diagonal.

(bi) Biaxial compression,
longitudinal compression
predominating

(bu) Biaxial compression,
transverse compression
predominating

(c) Shear

Fig. 5.8. Buckling modes for plate panels

Where buckled modes under the different action effects are similar, the buckling

stresses under the combined actions are less than the addition of individual action
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effects. Fig 5.9 shows the buckling interactions under combined compression, and

uniaxial compression and shear.

8 - »
Lal e - I

Fig. 5.9. Interaction of buckling modes for square plate panel
5.1.2.6. Grillage analogy for plate buckling

One helpful way to consider the buckling behaviour of a plate is as the grillage shown
in Fig. 5.10. A series of longitudinal columns carry the longitudinal actions. When
they buckle, those nearer the edge have greater restraint than those near the centre
from the transverse flexural members. They therefore have greater post buckling
stiffness and carry a greater proportion of the action. As the grillage moves more into

the post buckling regime, the transverse buckling restraint is augmented by
transverse membrane action.

Fig. 5.10. Grid model of plate in compression
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5.1.2.7 Post buckling behaviour and effective widths

Fig. 5.11a, 5.11b and 5.11c describes in more detail the changing distribution of
stresses as a plate buckles following the equilibrium path shown in Fig. 5.11d. As the
plate initially buckles the stresses redistribute to the stiffer edges. As the buckling
continues this redistribution becomes more extreme (the middle strip of slender
plates may go into tension before the plate fails). Also transverse membrane stresses
build up. These are self equilibrating unless the plate has clamped in-plane edges;
tension at the mid panel, which restrains the buckling is resisted by compression at

the edges, which are restrained from out-of-plane movement.

143,220\

NG (WINTER)

PZ P -

{c) ~ost-buckling
P>P

Fig. 5.11. Buckling behaviour of square plate in compression with simply supported

edges, free to pull in but held straight
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An examination of the non-linear longitudinal stresses in Fig. 5.11a and 5.11c show
that it is possible to replace these stresses by rectangular stress blocks that have the
same peak stress and same action effect. This effective width of plate (comprising
be#/2 On each side) proves to be a very effective design concept. Fig. 5.11e shows

how effective width varies with slenderness (A\p is a measure of plate slenderness

that is independent of yield stress; A, = 1,0 corresponds to values of b/t of 57, 53 and

46 for f, of 235N/mm?, 275N/mm? and 355N/mm? respectively).

Fig. 5.12 shows how effective widths of plate elements may be combined to give an

effective cross-section of a member.

I L T]

(a) Effective section (shaded) for typical members
in axial compression

{b) Effective section (shaded) for typical
plate girder under sagging moment

Fig. 5.12. The application of effective width of plate panels to determine effective

cross-sections
5.1.2.8 The influences of imperfections on the behaviour of actual plates
As with all steel structures, plate panels contain residual stresses from manufacture

and subsequent welding into plate assemblies, and are not perfectly flat. The

previous discussions about plate panel behaviour all relate to an ideal, perfect plate.
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As it is shown in Fig. 5.13 these imperfections modify the behaviour of actual plates.
For a slender plate the behaviour is asymptotic to that of the perfect plate and there
is little reduction in strength. For plates of intermediate slenderness (which frequently

occur in practice), an actual imperfect plate will have a considerably lower strength

than that predicted for the perfect plate.

1.0

h

Ideal plate
‘\

Imperfect plate

v

V;)i < {a) Slender plate

Fig. 5.13. The influence of imperfections on the behaviour of plates of different

Fig. 5.14 summarises the strength of actual plates of varying slenderness. It shows

the reduction in strength due to imperfections and the post buckling strength of

slender plates.

Rigid plastic

_——" collapse mechanism

Ideal
elastic
plate

Strength ot

< perfect
plate

Imperfect plate Strength of

imperfect plate

.
»
w

| (b) Intermediate
slender plates

slenderness in compression
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v Crnitical buckling
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o Yeelding
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1-0,22/%, (WINTER)
Reductions due
Post-buckling
strength

to imperfection

ppT— I >
71,0 2,0 3,01,
Stocky Slender
" S—
plates plates
Intermediate
slender
plates

Fig. 5.14. Relationship between plate slenderness and strength in compression

5.1.2.9. Elastic behaviour of plates under lateral actions

Fig. 5.15 contrasts the behaviour of a similar plate with different boundary conditions.

The elastic behaviour of laterally loaded plates is considerably influenced by its
support conditions (Fig. 5.15a). If the plate is resting on simple supports as in
Fig. 5.15b, it will deflect into a shape approximating a saucer and the corner regions
will lift off their supports. If it is attached to the supports, as in Fig. 5.15c¢, for example
by welding, this lift off is prevented and the plate stiffness and action capacity
increases. If the edges are encastre as in Fig. 5.15d, both stiffness and strength are

increased by the boundary restraining moments.
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Pressure p

{a) Plate under
umiform lateral
pressure p.

IENEERENERENN

+

{b) Simply supported
edges, corners
fiee to lift.

(c) Simply supported
edges, corners
held down.

{d) Encastre ‘edges.

{e) Simply supported
edges, corners held
down, large
displacement, edges

held straight.

Fig. 5.15. Elastic behaviour of square plate under lateral actions with different

boundary conditions

Slender plates may well deflect elastically into a large displacement regime (typically

where 0 > t). In such cases the flexural response is significantly enhanced by the

membrane action of the plate. This membrane action is at its most effective if the
edges are fully clamped. Even if they are only held partially straight by their own in-
plane stiffness, the increase in stiffness and strength is most noticeable at large
deflections.

Fig. 5.16 shows the modes of behaviour that occur if the plates are subject to
sufficient load for full yield line patterns to develop. The greater number of yield lines

as the boundary conditions improve is a qualitative measure of the increase in
resistance.
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Pressure p

(a) Plate under
s uniform lateral
1 pressure. p.

(b) Simply supported

edges.corners
free to lift
(c) Simply ~upp~rt~d
edges.corners
held down.

25 ; : >  (d) Encastré edges.

Fig. 5.16. Yield line patterns for square plates under lateral loading with various

boundary conditions

5.1.3. Behaviour of stiffened plate

Many aspects of stiffened plate behaviour can be deduced from a simple extension of
the basic concepts of behaviour of unstiffened plate panels. However, in making
these extrapolations it should be recognised that:

- "Smearing” the stiffeners over the width of the plate can only model overall
behaviour.

- Stiffeners are usually eccentric to the plate. Flexural behaviour of the
equivalent tee section induces local direct stresses in the plate panels.

- Local effects on plate panels and individual stiffeners need to be
considered separately.

- The discrete nature of the stiffening introduces the possibility of local
modes of buckling. For example, the stiffened flange shown in Fig. 5.17a

shows several modes of buckling. Examples are:
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(i) plate panel buckling under overall compression plus any local

compression arising from the combined action of the plate panel with its
attached stiffening, Fig. 5.17b.

(if) stiffened panel buckling between transverse stiffeners, Fig. 5.17c. This

occurs if the latter have sufficient rigidity to prevent overall buckling. Plate
action is not very significant because the only transverse member is the
plate itself. This form of buckling is best modelled by considering the
stiffened panel as a series of tee sections buckling as columns. It should
be noted that this section is monosymmetric and will exhibit different
behaviour if the plate or the stiffener tip is in greater compression.

(iii) overall or orthotropic bucking, Fig. 5.17d. This occurs when the cross

girders are flexible. It is best modelled by considering the plate assembly
as an orthotropic plate.

(In this Doctoral Thesis | have created such a design process which can take into
account the stiffness of the cross girders. The calculations were perfromed according
to EC 3-1-5 and the stiffness of the cross girders were calculated according to the

concept of the "ideal" cross section.)

{bi Plate buckling
(c) Suffened panel

buckling

(d) Osthotropic buckiing

Fig. 5.17. Buckling modes for stiffened plates in compression
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5.2. Behaviour and design of unstiffened plate

5.2.1. Introduction

Thin-walled members, composed of thin plate panels welded together, are
increasingly important in modern steel construction. In this way, by appropriate
selection of steel quality, geometry, etc., cross-sections can be produced that best fit

the requirements for strength and serviceability, thus saving steel.

Recent developments in fabrication and welding procedures allow the automatic
production of such elements as plate girders with thin-walled webs, box girders, thin-
walled columns, etc. (Fig. 5.18a); these can be subsequently transported to the

construction site as prefabricated elements.

{(a)

[3 C C E
D D
3 c C (e
& A A s

{b)
Fig. 5.18. Typical sections (a) examples, (b) in-plane stress conditions for box girder

subpanels

Due to their relatively small thickness, such plate panels are basically not intended to
carry actions normal to their plane. However, their behaviour under in-plane actions
is of specific interest (Fig. 5.18b). Two kinds of in-plane actions are distinguished:
- those transferred from adjacent panels, such as compression or shear.
- those resulting from locally applied forces (patch loading) which generate
zones of highly concentrated local stress in the plate.
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The behaviour under patch action is a specific problem on plate girders This
subchapter deals with the more general behaviour of unstiffened panels subjected to
in-plane actions (compression or shear) which is governed by plate buckling. It also

discusses the effects of out-of-plane actions on the stability of these panels.
5.2.2. Unstiffened plates under in-plane loading
5.2.2.1 Load distribution

5.2.2.1.1. Distribution resulting from membrane theory
The stress distribution in plates that react to in-plane loading with membrane stresses
may be determined, in the elastic field, by solving the plane stress elastostatic

problem governed by Navier's equations.

5.2.2.1.2 Distribution resulting from linear elastic theory using Bernouilli's
hypothesis

For slender plated structures, where the plates are stressed as membranes, the
application of Airy's stress function is not necessary due to the hypothesis of plane

strain distributions, which may be used in the elastic as well as in the plastic range,

(see Fig. 5.19).

Stresses

Elasuc
Strains

Stresses

#4

§"’ §
X/

Plastc

Stiains

Fig. 5.19. Plane stress distribution
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However, for wide flanges of plated structures, the application of Airy's stress
function leads to significant deviations from the plane strain hypothesis, due to the
shear lag effect, (Fig. 5.20). Shear lag may be taken into account by taking a reduced

flange width.

Fig. 5.20. Effective width due to shear lag

5.2.2.1.3. Distribution resulting from finite element methods

When using finite element methods for the determination of the stress distribution,
the plate can be modelled as a perfectly flat arrangement of plate sub-elements.
Attention must be given to the load introduction at the plate edges so that shear lag
effects will be taken into account. The results of this analysis can be used for the
buckling verification.

5.2.2.2. Stability of unstiffened plates

5.2.2.2.1 Linear buckling theory

The buckling of plate panels was investigated for the first time by BRYAN in 1891, in
connection with the design of a ship hull (BRYAN, 1891). The assumptions for the
plate under consideration (Fig. 5.21a), are those of thin plate theory Kirchhoff's

theory, see (SZILARD, (1974), BRUSH, et al (1975), WOLMIR, (1962),
TIMOSHENKO, et al (1959)):

a) The material is linear elastic, homogeneous and isotropic.

b) The plate is perfectly plane and stress free.
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f)
9)

h)

The thickness "t" of the plate is small compared to its other dimensions.
The in-plane actions pass through its middle plane.

The transverse displacements w are small compared to the thickness of
the plate.

The slopes of the deflected middle surfaces are small compared to unity.
The deformations are such that straight lines, initially normal to the middle
plane, remain straight lines and normal to the deflected middle surface.
The stresses normal to the thickness of the plate are of a negligible order

of magnitude.

» w

(b) Load/lateral deflection curve

[8)

-5 b/t

(c) Plate buckling curve

Fig. 5.21. Linear buckling theory-notation

Due to assumption (e) the rotations of the middle surface are small and their squares

can be neglected in the strain displacement relationships for the stretching of the

middle surface.
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An important consequence of this assumption is that there is no stretching of the
middle surface due to bending, and the differential equations governing the
deformation of the plate are linear and uncoupled. This theory, in which the equations

are linear, is referred to as linear buckling theory.

Of particular interest is the application of the linear buckling theory to rectangular
plates, subjected to constant edge loading (Fig. 5.21a). The load lateral deflection
curve is given by Fig. 5.21b. In this case the critical action, which corresponds to the
Euler buckling load of a compressed strut, may be written as:

JcrzksUE or Z'C,-=kt0'E, (5.1)

zrzE

12(1—#1?)

and ks, k; are dimensionless buckling coefficients.

where o - = (5.2)

2 ’

Only the form of the buckling surface may be determined by this theory but not the

magnitude of the buckling amplitude. The relationship between the critical stress o,
and the slenderness of the panel A = bft, is given by the buckling curve. This curve,

shown in Fig. 5.21c, has a hyperbolic shape and is analogous to the Euler hyperbola
for struts.

The buckling coefficients, "k", may be determined either analytically or numerically,
using the energy method, the method of transfer matrices, etc. Values of ks and k; for
various actions and support conditions are shown in Fig. 5.22 as a function of the

aspect ratio of the plate ¢ =a/b. The curves for ks have o "garland" form. Each

garland corresponds to a buckling mode with a certain number of waves. For a plate
subjected to uniform compression, as shown in Fig. 5.22. Obviously, the buckling
mode that gives the smallest value of k is the decisive one. For practical reasons a
single value of ks is chosen for plates subjected to normal stresses. This is the
smallest value for the garland curves independent of the value of the aspect ratio. In
the example given in Fig. 5.22 ks is equal to 4 for a plate which is simply supported
on all four sides and subjected to uniform compression.
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Fig. 5.22a-b. Buckling coefficients k, for kompession and buckling modes
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Fig 56.22c¢-d. Buckling coefficients k- for shear
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Combination of stresses oy, 0yand 7

For practical design situations some further approximations are necessary. They are

illustrated by the example of a plate girder, shown in Fig.5.23.
I

A N N

et |
=======c=<
1< o A

(b) Unsuffened subpanel

Fig. 5.23. Separation of unstiffened subpanels for a plate girder

The normal and shear stresses, o, and T respectively, at the opposite edges of a

subpanel are not equal, since the bending moments M and the shear forces V vary
along the panel. However, M and V are considered as constants for each subpanel
and equal to the largest value at an edge (or equal to the value at some distance
from it). This conservative assumption leads to equal stresses at the opposite edges
for which the charts of ks and k; apply. The verification is usually performed for two
subpanels; one with the largest value of o, and one with the largest value of t. In
most cases, as in Fig. 5.23 each subpanel is subjected to a combination of normal

and shear stresses. A direct determination of the buckling coefficient for a given

combination of stresses is possible; but it requires considerable numerical effort. For
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practical situations an equivalent buckling stress o.°? is found by an interaction
formula after the critical stresses o°® and T° , for independent action of s and t

have been determined. The interaction curve for a plate subjected to normal and

shear stresses, ox and T respectively, varies between a circle and a parabola

(CHWALLA (1944)), depending on the value of the ratio g of the normal stresses at
the edges (Fig. 5.24)

Circle

Parabola

{a) Interaction curves

t -
~ 3 fag
- — - - T

{b) Stress conditions

Fig. 5.24. Consideration of plate under combined shear and direct in plane stresses

5.2.2.2.2 Ultimate resistance of an unstiffened plate
General

The linear buckling theory described in the previous section is based on assumptions
from (a) to (h) in 5.2.2.2.1, that are never fulfilled in real structures. The
consequences for the buckling behaviour when each of these assumptions is
removed is now discussed.
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The first assumption of unlimited linear elastic behaviour of the material is obviously
not valid for steel. If the material is considered to behave as linear elastic-ideal

plastic, the buckling curve must be cut off at the level of the yield stress oy

(Fig. 5.25b).
v " Gy‘-\

4 » = » b/t

Assumed curves : linear theory

b/t

(a) c-¢ for steel (b) Buckhng curves

'Real’ curves

Fig. 5.25. o-& diagrams for steel and corresponding buckling curves

When the non-linear behaviour of steel between the proportionality limit o, and the
yield stress o, is taken into account, the buckling curve will be further reduced
(Fig. 5.25b). When strain hardening is considered, values of o larger than oy, as

experimentally observed for very stocky panels, are possible. In conclusion, it may be
stated that the removal of the assumption of linear elastic behaviour of steel results in

a reduction of the ultimate stresses for stocky panels.

The second and fourth assumptions of a plate without geometrical imperfections and
residual stresses, under symmetric actions in its middle plane, are also never fulfilled
in real structures. If the assumption of small displacements is still retained, the
analysis of a plate with imperfections requires a second order analysis. This analysis
has no bifurcation point since for each level of stress the corresponding
displacements w may be determined. The equilibrium path (Fig.5.26a) tends
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asymptotically to the value of o for increasing displacements, as is found from the

second order theory.

va
— o

{b) Buckling curves for linear theory with plasticity

Fig. 5.26. Action-deflection curve for a plate with imperfections and buckling curve for

linear theory with plasticity

However the ultimate stress is generally lower than o since the combined stress
due to the buckling and the membrane stress is limited by the yield stress. This
limitation becomes relevant for plates with geometrical imperfections, in the region of
moderate slenderness, since the value of the buckling stress is not small (Fig. 5.26b).
For plates with residual stresses the reduction of the ultimate stress is primarily due
to the small value of g, (Fig. 5.25b) at which the material behaviour becomes non-
linear. In conclusion it may be stated that imperfections due to geometry, residual

stresses and eccentricities of loading lead to a reduction of the ultimate stress,

especially in the range of moderate slenderness.
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The assumption of small displacements (e) in 5.2.2.2.1. is not valid for stresses in the
vicinity of o as shown in Fig. 5.26a. When large displacements are considered the
equation are known as the von Karman equations (TIMOSHENKO, at. al (1959)).
They constitute the basis of the (geometrically) non-linear buckling theory. For a plate

without imperfections the equilibrium path still has a bifurcation point at o, but,

unlike the linear buckling theory, the equilibrium for stresses o > o is still stable

(Fig. 5.27).

The equilibrium path for plates with imperfections tends asymptotically to the same
curve. The ultimate stress may be determined by limiting the stresses to the yield
stress. It may be observed that plates possess a considerable post-critical carrying
resistance. This post-critical behaviour is more pronounced the more slender the

plate, i.e. the smaller the value of g;.

Ser 4

2.0

1.0 A

wit
0

Fig. 5.27. Action-deflection curves of plates with imperfections for (geometrically)

non-linear buckling theory

Buckling curve

For the reasons outlined above, it is evident that the Euler buckling curve for linear
buckling theory (Fig. 5.22c) may not be used for design. A lot of experimental and
theoretical investigations have been performed in order to define a buckling curve
that best represents the true behaviour of plate panels. For relevant literature
reterence should be made to Dubas and Gehri (DUBAS, at. al (1986)). For design
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purposes it is advantageous to express the buckling curve in a dimensionless form as
described below.

The slenderness of a panel may be written according to Eq. 5.1 and Eq. 5.2 as:

1212
z,,:[?) #:4%. (5.3)

If a reference slenderness given by:

_ . |E
Ay=x ‘/; (5.4)

is introduced, the relative slenderness becomes:

— A o
A1, =L = /_y , 5.5
p Ay Ccr (5.5)

The ultimate stress is also expressed in a dimensionless form by introducing a

reduction factor:

=9u (5.6)

Dimensionless curves for normal and for shear stresses as proposed by Eurocode 3
(EUROCODE 3 (1992)) are illustrated in Fig. 5.28.

___- - lwear theory

(E1}

Fig. 5.28. Buckling curves (a) normal and (b) shear stresses
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These buckling curves have higher values for large slendernesses than those of the
Euler curve due to post critical behaviour and are limited to the yield stress. For
intermediate slendernesses, however, they have smaller values than those of Euler

due to the effects of geometrical imperfections and residual stresses.

Although the linear buckling theory is not able to describe accurately the behaviour of

a plate panel, its importance should not be ignored. In fact this theory, as in the case

of struts, yields the value of an important parameter, namely E, that is used for the

determination of the uitimate stress.

Effective width method
This method has been developed for the design of thin walled sections subjected to
uniaxial normal stresses. It will be illustrated for a simply-supported plate subjected to

uniform compression (Fig. 5.29a).

Assumed

b
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Fig. 5.29. Definition of the effective width for a plate supported on one side
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The stress distribution which is initially uniform, becomes non-uniform after buckling,
since the central parts of the panel are not able to carry more stresses due to the
bowing effect. The stress at the stiff edges (towards which the redistribution takes
place) may reach the yield stress. The method is based on the assumption that the
non-uniform stress distribution over the entire panel width may be substituted by a
uniform one over a reduced "effective” width. This width is determined by equating
the resultant forces:

boy =beoy, (5.7)

and accordingly

by =240 _pp, (5.8)
Oy

which shows that the value of the effective width depends on the buckling curve
adopted. For uniform compression the effective width is equally distributed along the
two edges (Fig. 5.29a). For non-uniform compression and other support conditions it
is distributed according to rules given in the various regulations. Some examples of

the distribution are shown in Fig. 5.29b. The effective width may also be determined

for values of o < o,. In such cases Eq. 5.8 is still valid, but E which is needed for

the determination of the reduction factor k, is not given by Eq. 5.5 but by the

relationship
Ap =[] 5.9
p Ocr (5-9)

The design of thin walled cross-sections is performed according to the following

procedure:

- For given actions conditions the stress distribution at the cross-section is

determined. At each subpanel the critical stress o, the relative
slenderness 7; and the effective width be are determined according to

Eq. 5.1, Eq.5.5 and Egq. 5.8, respectively. The effective width is then
distributed along the panel as illustrated by the examples in Fig. 5.29b.
The verifications are finally based on the characteristic Ae, le, and We of

the effective cross-section. For the cross- section of Fig. 5.30b, which is
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subjected to normal forces and bending moments, the verification is

expressed as:

N M+ Ne Oy
= — S —, 510

where e is the shift in the centroid of the cross-section to the tension side and v, the

partial safety factor of resistance.

Non-effective
l zone
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Fig. 5.30. Determination of the effective cross-section

Finite element methods

When using finite element methods to determine the ultimate resistance of an

unstiffened plate one must consider the following aspects:

- The modelling of the plate panel should include the boundary conditions
as accurately as possible with respect to the conditions of the real
structure, see Fig. 5.31. For a conservative solution, hinged conditions can
be used along the edges.

- Thin shell elements should be used in an appropriate mesh to make
yielding and large curvatures (large out-of-plane displacements) possible.

- The plate should be assumed to have an initial imperfection similar in
shape to the final collapse mode.
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Structure

______

FEM model

Fig. 5.31. FEM modeling from the real structure

The first order Euler buckling mode can be used as a first approximation to this
shape. In addition, a disturbance to the first order Euler buckling mode can be added
to avoid snap-through problems while running the programme, see Fig. 5.32. The

amplitude of the initial imperfect shape should relate to the tolerances for flatness.

w, is the amplitude of the Euler buckiing mode
The size 15 related to the tolerances for fabrication.

we, is the amplitude of the disturbance.
w, = 5 -10% of w ,

o
1]

w, +w, jare the initial

W, - v }imperfections

A
' -
i

Fig. 5.32. Initial imperfections for FEM model
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The program used must be able to take a true stress-strain relationship into account,
see Fig. 5.33 and if necessary an initial stress pattern. The latter can also be included
in the initial shape.

The computer model must use a loading which is equal to the design loading
multiplied by an action factor. This factor should be increased incrementally from zero
up to the desired action level (load factor = 1). If the structure is still stable at the load
factor = 1, the calculation process can be continued up to collapse or even beyond
collapse into the region of unstable behaviour (Fig. 5.34). In order to calculate the
unstable response, the program must be able to use more refined incremental and
iterative methods to reach convergence in equilibrium.

G c

or

—» ¢ » €

Fig. 5.33. Material model for FEM model
F
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Fig. 5.34. In-plane action — out-of-plane displacement characteristic
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5.2.3. Unstiffened plates under out-of-plane actions
5.2.3.1. Action distribution

5.2.3.1.1. Distribution resulting from plate theory

If the plate deformations are small compared to the thickness of the plate, the middle
plane of the plate can be regarded as a neutral plane without membrane stresses.
This assumption is similar to beam bending theory. The actions are held in
equilibrium only by bending moments and shear forces. The stresses in an isotropic
plate can be calculated in the elastic range by solving a fourth order partial differential
equation, which describes equilibrium between actions and plate reactions normal to
the middle plane of the plate.

An approximation may be obtained by modelling the plate as a grid and neglecting

the twisting moments.

Plates in bending may react in the plastic range with a pattern of yield lines which, by
analogy to the plastic hinge mechanism for beams, may form a plastic mechanism in
the limit state (Fig. 5.35). The position of the yield lines may be determined by

- . . N
minimum energy considerations.

Section A - A

Fig. 5.35. Yield mechanism in a plate
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If the plate deformations are of the order of the plate thickness or even larger, the
membrane stresses in the plate can no longer be neglected in determining the plate

reactions.

The membrane stresses occur if the middle surface of the plate is deformed to a
curved shape. The deformed shape can be generated only by tension, compression

and shear stains in the middle surface.

This behaviour can be illustrated by the deformed circular plate shown in Fig. 5.36b.
It is assumed that the line a ¢ b (diameter d) does not change during deformation, so
that a’, ¢, b’ is equal to the diameter d. The points which lie on the edge "akb" are

now on a’, k', b’ , which must be on a smaller radius compared with the original one.

(a) a

{b)

(c)

Fig. 5.36. Model to show membrane action in a circular plate under out-of-plane

actions
Therefore the distance akb becomes shorter, which means that membrane stresses

exist in the ring fibres of the plate. The distribution of membrane stresses can be

visualised if the deformed shape is frozen.

Ch.5-36

BUPT



It can only be flattened out if it is cut into a number of radial cuts, Fig. 5.36c, the gaps
representing the effects of membrane stresses; this explains why curved surfaces are
much stiffer than flat surfaces and are very suitable for constructing elements such as

cupolas for roofs, etc.

The stresses in the plate can be calculated with two fourth order coupled differential
equations, in which an Airy-type stress function which describes the membrane state,

has to be determined in addition to the unknown plate deformation.

In this case the problem is non-linear. The solution is far more complicated in
comparison with the simple plate bending theory which neglects membrane effects.

The behaviour of the plate is governed by von Karman's equations.

5.2.3.1.2. Distribution resulting from finite element methods (FEM)
More or less the same considerations hold when using FEM to determine the stress
distribution in plates which are subject to out-of-plane action as when using FEM for

plates under in-plane actions, except for the following:

- The plate element must be able to describe large deflections out-of-plane.

- The material model used should include plasticity.

5.2.3.2. Deflection and ultimate resistance

5.2.3.2.1. Deflections
Except for the yield line mechanism theory, all analytical methods for determining the
stress distributions will also provide the deformations, provided that the stresses are

in the elastic region.

Using adequate finite element methods leads to accurate determination of the
deflections, which take into account the decrease in stiffness due to plasticity in
certain regions of the plate. Most design codes contain limits to these deflections

which have to be met at serviceability load levels (see Fig.5.37).
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Fig. 5.37. Out-of-plane displacement

5.2.3.2.2 Uitimate resistance

The resistance of plates, determined using the linear plate theory only, is normally
much underestimated since the additional strength due to the membrane effect and
the redistribution of forces due to plasticity is neglected.

An upper bound for the ultimate resistance can be found using the yield line theory.
More accurate results can be achieved using FEM.

Via an incremental procedure, the action level can increase from zero up to the

desired design action level or even up to collapse (see Fig. 5.37).
5.2.4. Influence of the out-of-plane actions on the stability of unstiffened plates
The out-of-plane action has an unfavourable effect on the stability of an unstiffened

plate panel in those cases where the deformed shape due to the out- of-plane action

is similar to the buckling collapse mode of the plate under in-plane action only.
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The stability of a square plate panel, therefore, is highly influenced by the presence

of out-of-plane (transversely directed) actions.

When adequate Finite Element Methods are used, the complete behaviour of the

plate can be simulated taking the total action combination into account.

5.3. Behaviour and design of stiffened plates

5.3.1. Introduction

The automation of welding procedures and the need to design elements not only to
have the necessary resistance to external actions but also to meet aesthetic and
serviceability requirements leads to an increased tendency to employ thin-walled,
plated structures, especially when the use of rolled sections is excluded, due to the
form and the size of the structure. Through appropriate selection of plate thicknesses,
steel qualities and form and position of stiffeners, cross-sections can be best adapted
to the actions applied and the serviceability conditions, thus saving material weight.
Examples of such structures, shown in Fig.5.38 are webs of plate girders, flanges of
plate girders, the walls of box girders, thin-walled roofing, facades, etc.

1
1

(a)

(b)

Fig. 5.38. Examples of stiffened plates
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Plated elements carry simultaneously:

a) actions normal to their plane,

b) in-plane actions.

Out-of-plane action is of secondary importance for such steel elements since, due to
the typically small plate thicknesses involved, they are not generally used for carrying
transverse actions. In-plane action, however, has significant importance in plated

structures.

The intention of design is to utilise the full strength of the material. Since the
slenderness of such plated elements is large due to the small thicknesses, their
carrying resistance is reduced due to buckling. An economic design may, however,
be achieved when longitudinal and/or transverse stiffeners are provided. Such
stiffeners may be of open or of torsionally rigid closed sections, as shown in
Fig. 5.39. When these stiffeners are arranged in a regular orthogonal grid, and the
spacing is small enough to 'smear’ the stiffeners to a continuum in the analysis, such
a stiffened plate is called an orthogonal anisotropic plate or in short, an orthotropic
plate (Fig. 5.40).

LD

(a) (b)

(c)
Fig. 5.39. Stiffened plate with (a) open, (b) closed stiffeners, (c) corrugated plate
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Fig. 5.40. Orthotropic plate

N—

There is an extensive literature about the investigation and design of stiffened plates
(orthotropic plates). The differential equation for an orthotropic plate has been written
by HUBERT (1914). Other authors were studying this differential equation, including:
TROITSKY (1987), HAWRANEK, STEINHARDT (1958), HARDING (1989), HALASZ,
HUNYADI (1959), KLOPPEL, MOLLER (1968), KLOPPEL, SCHEER (1960),
MASSONNET, MAQUOI (1971), PELIKAN, ESSLINGER (1957), SEDLACEK (1992),
SKALOUD, et al (1965), IVANY1 (2003)

5.3.2. Stiffened plates under in-plane loading

5.3.2.1 Action distribution

5.3.2.1.1 Distribution resulting from membrane theory

The stress distribution can be determined from the solutions of Navier's equations,
but, for stiffened plates, this is limited to plates where the longitudinal and transverse
stiffeners are closely spaced, symmetrical to both sides of the plate, and produce
equal stiffness in the longitudinal and transverse direction, see Fig.5.41. This
configuration leads to an isotropic behaviour when the stiffeners are smeared out. In

practice this way of stiffening is not practical and therefore not commonly used.
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(a)

{b)

Fig. 5.41. Isotropic behaviour of symmetrically stiffened plate

All deviations from the "ideal" situation (eccentric stiffeners, etc.) have to be taken
into account when calculating the stress distribution in the plate.

5.3.2.1.2 Distribution resulting from linear elastic theory using Bernoulli's
hypothesis

As for unstiffened plates the most practical way of determining the stress distribution
in the panel is using the plane strain hypothesis. Since stiffened plates have a
relatively large width, however, the real stress distribution can differ substantially from

the calculated stress distribution due to the effect of shear lag.

Shear lag may be taken into account by a reduced flange width concentrated along
the edges and around stiffeners in the direction of the action (see Fig. 5.42).
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Stress distribution in a stiffened flange plate differs from
the distribunon based on the plain section hypothesis,
due to shear lag.

Fig. 5.42. Shear lag in stiffened plate panel

5.3.2.1.3 Distribution resulting from finite element methods
The stiffeners can be modelled as beam-column elements eccentrically attached to

the plate elements.

In the case where the stiffeners are relatively deep beams (with large webs) it is
better to model the webs with plate elements and the flange, if present, with a beam-

column element.

5.3.2.2 Stability of stiffened plates

5.3.2.2.1 Linear buckling theory

The knowledge of the critical buckling load for stiffened plates is of importance not
only because design was (and to a limited extent still is) based on it, but also
because it is used as a parameter in modern design procedures. The assumptions

for the linear buckling theory of plates are as follows:

a) The plate is perfectly plane and stress free.
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b) The stiffeners are perfectly straight.
c) The loading is absolutely concentric.
d) The material is linear elastic.

e) The transverse displacements are relatively small.

The equilibrium path has a bifurcation point which corresponds to the critical action
(Fig. 5.43).

A

Y

Fig. 5.43. Idealised stiffened plate under de-stabilising loading

Analytical solutions, through direct integration of the governing differential equations
are, for stiffened plates, only possible in specific cases; therefore, approximate
numerical methods are generally used. Of greatest importance in this respect is the
Rayleigh-Ritz approach, which is based on the energy method.

The most extensive studies on rectangular, simply supported stiffened plates were
carried out by KLOPPEL and SCHEER (1960) and KLOPPEL and MOLLER (1968).
They give charts, as shown in Fig. 5.44 for the determination of k as a function of the

coefficients 6 and 7, previously described, and the parameters o= a/b and ¥=0,/01

as defined in Fig. 5.43. Some solutions also exist for specific cases of plates with fully

restrained edges, stiffeners with substantial torsional rigidity, etc. For relevant
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literature the reader is referred to books by PETERSEN (1982) and by DUBAS and
GEHRI (1986).

N\
o 1
‘\\~~=ﬁ?-
P A=

Fig. 5.44. Buckling coefficient for a stiffened plate

When the number of stiffeners in one direction exceeds two, the numerical effort
required to determine k becomes considerable. Practical solutions may be found by
"smearing" the stiffeners over the entire plate. The plate then behaves orthotropically,
and the buckling coefficient may be determined by the same procedure as described

before.

An alternative to stiffened plates, with a large number of equally spaced stiffeners
and the associated high welding costs, are corrugated plates, see Fig. 5.39c. These

plates may also be treated as orthotropic plates, using equivalent orthotropic rigidities
(BRIASSOULIS(1986)).

So far only the application of simple action has been considered. For combinations of
normal and shear stresses a linear interaction, as described by Dunkerley, is very
conservative (Fig. 5.45). On the other hand direct determination of the buckling
coefficient fails due to the very large number of combinations that must be
considered, therefore an approximate method has been developed, which is based
on the corresponding interaction for unstiffened plates, provided that the stiffeners
are so stiff that buckling in an unstiffened sub-panel occurs before buckling of the
stiffened plate.
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Fig. 5.45. Interaction diagram

Optimum rigidity of stiffeners
Three types of optimum rigidity of stiffeners ", based on linear buckling theory, are

usually defined (CHWALLA,(1944)). The first type 7.', is defined such that for values

v > 7, no further increase of k is possible, as shown in Fig. 5.46a, because for

v =, the stiffeners remain straight.

|

b/2
b/2

(a)

"

{b)
Fig.5.46. Definition of the optimum rigidities

lb/4

=
‘é ‘I3b/4

The second type 7"', is defined as the value for which two curves of the buckling

coefficients, belonging to different numbers of waves, cross (Fig. 5.46b). The
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buckling coefficient for v < v, reduces considerably, whereas it increases slightly for

v > 7y. A stiffener with ¥ = v, deforms at the same time as the plate buckles.

The third type yu is defined such that the buckling coefficient of the stiffened plate

becomes equal to the buckling coefficient of the most critical unstiffened subpanel
(Fig. 5.46c¢).

The procedure to determine the optimum or critical stiffness is, therefore, quite
simple. However, due to initial imperfections of both plate and stiffeners as a result of
out of straightness and welding stresses, the use of stiffeners with critical stiffness
will not guarantee that the stiffeners will remain straight when the adjacent

unstiffened plate panels buckle.

This problem can be overcome by multiplying the optimum (critical) stiffness by a
factor m, when designing the stiffeners.

The factor is often taken as m = 2,5 for stiffeners which form a closed cross-section
together with the plate, and as m = 4 for stiffeners with an open cross-section such

as flat, angle and T-stiffeners.
5.3.2.2.2 Ultimate resistance of stiffened plates

Behaviour of stiffened plates

Much theoretical and experimental research has been devoted to the investigation of
stiffened plates. This research was intensified after the collapses, in the 1970's, of 4
major steel bridges in Austria, Australia, Germany and the UK, caused by plate
buckling. It became evident very soon that linear buckling theory cannot accurately
describe the real behaviour of stiffened plates. The main reason for this is its inability

to take the following into account:

a) the influence of geometric imperfections and residual welding stresses.
b) the influence of large deformations and therefore the post buckling
behaviour.

c) the influence of plastic deformations due to yielding of the material.
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d) the possibility of stiffener failure.

Concerning the influence of imperfections, it is known that their presence adversely
affects the carrying resistance of the plates, especially in the range of moderate

slenderness and for normal compressive (not shear) stresses.

Large deformations, on the other hand, generally allow the plate to carry loads in the
post-critical range, thus increasing the action carrying resistance, especially in the
range of large slenderness. The post-buckling behaviour exhibited by unstiffened
panels, however, is not always present in stiffened plates. Take, for example, a
stiffened flange of a box girder under compression, as shown in Fig. 5.47. Since the
overall width of this panel, measured as the distance between the supporting webs, is
generally large, the influence of the longitudinal supports is rather small. Therefore,
the behaviour of this flange resembles more that of a strut under compression than

that of a plate. This stiffened plate does not, accordingly, possess post-buckling

!-‘

resistance.

. ] <]
> ]
> ]

s}

B i
—> e
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(&) ;_’ [
[TTTTCCLT

Section A - A

Fig. 5.47. Strut model of a stiffened plate, i.e. each stiffener considered separately
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As in unstiffened panels, plastic deformations play an increasingly important role as

the slenderness decreases, producing smaller ultimate actions.

The example of a stiffened plate under compression, as it is shown in Fig. 5.48, is
used to illustrate why linear bucking theory is not able to predict the stiffener failure
mode. For this plate two different modes of failure may be observed: the first mode is
associated with buckling failure of the plate panel; the second with torsional buckling
failure of the stiffeners. The overall deformations after buckling are directed in the first
case towards the stiffeners, and in the second towards the plate panels, due to the
up or downward movement of the centroid of the middle cross-section. Experimental
investigations on stiffened panels have shown that the stiffener failure mode is much
more critical for both open and closed stiffeners as it generally leads to smaller
ultimate loads and sudden collapse. Accordingly, not only the magnitude but also the

direction of the imperfections is of importance.

(b}

Fig. 5.48. Geometrical imperfections favouring (a) plate failure, (b) stiffener failure
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Due to the above mentioned deficiencies in the way that linear buckling theory
describes the behaviour of stiffened panels, two different design approaches have
been recently developed. The first, as initially formulated by the ECCS-
Recommendations (1978) for allowable stress design and later expanded by DIN
18800, part 3 (1990) to ultimate limit state design, still uses values from linear
buckling theory for stiffened plates. The second, as formulated by recent EC3-1-5, is
based instead on various simple limit state models for specific geometric
configurations and loading conditions. Both approaches have been checked against

experimental and theoretical results:

(A) Design approach with values from the linear buckling theory

With reference to a stiffened plate supported along its edges (Fig. 5.49), distinction is
made between individual panels, e.g. IJKL, partial panels, i.e. EFGH, and the overall
panel ABCD. The design is based on the condition that the design stresses of all the
panels shall not exceed the corresponding design resistances. The adjustment of the
linear buckling theory to the real behaviour of stiffened plates is basically made by
the following provisions:

a) Introduction of buckling curves as illustrated in Fig. 5.49b.
b) Consideration of effective widths, due to local buckling, for flanges
associated with stiffeners.

c) Interaction formulae for the simultaneous presence of stresses oy, gy and
T at the ultimate limit state.

d) Additional reduction factors for the strut behaviour of the plate.
e) Provision of stiffeners with minimum torsional rigidities in order to prevent

lateral-torsional buckling.
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Buckliing curve

{b)

Fig. 5.49. (a) Definition of subpanels for a stiffened plate, (b) buckling curve

(B) Design approach with simple limit state models

The stiffened plate can be considered as a grillage of beam-columns loaded in
compression column buckling attitude and plate (plate buckling attitude) loaded in
impression, which consist of the stiffeners themselves together with the adjacent
effective plate widths. This effective plate width is determined by buckling of the
unstiffened plates. The bending resistance M,, reduced as necessary due to the
presence of axial forces, is determined using the characteristics of the effective
cross-section. Where both shear forces and bending moments are present

simultaneously an interaction formula is given.

The resistance of a box girder flange subjected to compression can be determined
using the method presented in the EC3-1-5 referred to previously, by considering a
strut composed of a stiffener and an associated effective width of plating. The design
resistance is calculated using the Perry-Robertson formula. Shear forces due to
torsion or beam shear are taken into account by reducing the yield strength of the
material according to the von Mises vyield criterion. An alternative approach using
orthotropic plate properties is also given.
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Generally this approach gives rigidity and strength requirements for the stiffeners

which are stricter than those mentioned previously.

Discussion of the design approaches

Both approaches have advantages and disadvantages.

The main advantage of the first approach is that it covers the design of both
unstiffened and stiffened plates subjected to virtually any possible combination of
actions using the same method. Its main disadvantage is that it is based on the
limitation of stresses and, therefore, does not allow for any plastic redistribution at the

cross-section.

The second approach also has some disadvantages: there are a limited number of
cases of geometrical and loading configurations where these models apply; there are
different methodologies used in the design of each specific case and considerable

numerical effort is required, especially using the tension field method.

Another important point is the fact that reference is made to webs and flanges that

cannot always be defined clearly, as shown in the examples of Fig. 5.50.

Flange

(a) {b)

Fig. 5.50. Definition of webs and flanges
For a box girder subjected to uniaxial bending (Fig. 5.50a) the compression flange

and the webs are defined. This is however not possible when biaxial bending is
present (Fig. 5.50b).
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Finite Element Methods

In determining the stability behaviour of stiffened plate panels, basically the same
considerations hold as described in previous subchapter. In addition it should be
noted that the stiffeners have to be modelled by shell elements or by a combination
of shell and beam-column elements. Special attention must also be given to the initial

imperfect shape of the stiffeners with open cross-sections.

It is difficult to describe all possible failure modes within one and the same finite
element model. It is easier, therefore, to describe the beam-column behaviour of the
stiffeners together with the local and overall buckling of the unstiffened plate panels
and the stiffened assemblage respectively and to verify specific items such as lateral-
torsional buckling separately (see Fig. 5.51). Only for research purposes is it
sometimes necessary to model the complete structure such that all the possible

phenomena are simulated by the finite element model.

Lateral torsional
/ buckling

Tripping

Fig. .5.51. Lateral buckling and tripping

5.3.3. Stiffened plates under out-of-plane action application

5.3.3.1 Action distribution

(i) Distribution resulting from plate theory

The theory described previous points can only be applied to stiffened plates if the
stiffeners are sufficiently closely spaced so that orthotropic behaviour occurs. If this is
not the case it is better to consider the unstiffened plate panels in between the
stiffeners separately. The remaining grillage of stiffeners must be considered as a

beam system in bending.
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(ii) Distribution resulting from a grillage under lateral actions filled in with
unstiffened sub-panels

The unstiffened sub-panels can be analysed previous points.

The remaining beam grillage is formed by the stiffeners which are welded to the
plate, together with a certain part of the plate. The part can be taken as for buckling,
namely the effective width. In this way the distribution of forces and moments can be

determined quite easily.

(iii) Distribution resulting from finite element methods (FEM)

Similar considerations hold for using FEM to determine the force and moment
distribution in stiffened plates which are subject to out-of-plane actions as for using
FEM for stiffened plates loaded in-plane except that the finite elements used must be

able to take large deflections and elastic-plastic material behaviour into account.

5.3.3.2 Deflection and ultimate resistance

All considerations mentioned in previous points for unstiffened plates are valid for the
analysis of stiffened plates both for deflections and ultimate resistance. It should be
noted, however, that for design purposes it is easier to verify specific items, such as
lateral-torsional buckling, separately from plate buckling and beam-column

behaviour.

5.4. Planar orthotropic plated structures without transverse loading
according to EC 3 (Part 1.5)

EC 3 (Part 1.5) studies the planar plated structures without transverse loading. To be

compliant with EC3 for the rest of this chapter, the following definitions will apply:

elastic critical stress: Stress at which an elastic structure without imperfections
becomes unstable according to small deformation theory.
gross cross-section: The total cross-sectional area of a member but excluding

longitudinal stiffeners that are not continuous, battens and splice material.
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effective cross-section: The gross cross-section reduced for the effects of plate
buckling and shear lag.
membrane stress: Stress at mid-depth of the plate.
plated structure: A structure that is built up from nominally flat plates which are
welded together. The plates may be stiffened or unstiffened.
stiffener: A plate or rolled section attached to a plate with the purpose of delaying or
preventing buckling of the plate or reinforcing it against local loads. A stiffener is
denoted:

- longitudinal if its direction is parallel to that of the member;

- transverse if its axis is perpendicular to that of the member.
stiffened plate: Plate with transverse and/or longitudinal stiffeners.

subpanel: Unstiffened plate surrounded by flanges or stiffeners.
The suggested methods for the design of planar plated structures have been

summarised by JOHANSSON et al (1999) and JOHANSSON et al (2001) and they
are repeated here for completeness (see Fig. 5.52- Fig. 5.56):
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Fig. 5.52. Flow chart describing the general procedure for the design of plated

structures according to EC3, Part 1.5.
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Fig. 5.53. Flow chart describing the procedure for the determination of effective
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Fig. 5.54. Flow chart describing the procedure for the determination of effective

cross-section resistance in the shear buckling

Ch.5-58

BUPT



Forces applied through one flange

o

V1.sﬁ 5 Hvz.s

Forces applied through both flange

Forces applied through one flange to
an unstiffened end

rLFS

ﬂc" > Vs
=
1

2
kf =35+ 2[3—“”-]
a

[
S +C 2
kf=2+6{s ]
a
I

L

t3
F,, = 0,9kahi

w

T

Effective loaded length

I

_ b

b, Y -
m, = 0.02[—“] for AF >0,5

my; =0 for AF <05

ly=sg +21f(1+,[m] +m2)

ly :Minllylilﬂi'ylj
ke BN
2 fy, by

ly=leg + tf(,,ml + mz)

2
_ my leg
lyz—lcr+‘r[ 7+[-;J +m2]

ly3=s, +21f(1+‘[m, +m2)
]

of SSS+C
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EC 3 (Part 1.5) section describes the general steps to perform for the analysis of
planar orthotropic plated structures, however EC3 describes the analysis of the plate
section only between two cross girders in detail in Annex A and the stiffness of the
cross girders is examined separately. In this way only the effect of stiffened panel
buckling is investigated by EC3 (Fig. 5.57) and it may also be necessary to
investigate to effect of orthotropic buckling. (Fig. 5.17 is repeated here as it is

important in respect of this section.)

(b) Plate buckling

(¢) Stiftened panel
buckling

(d) Orthotropic buckling

Fig. 5.57. Buckling modes for stiffened plates in compression.
The aim of the research: Analysis of compressed stiffened plates
- To study the effect of the orthotropic buckling a special model is required
which takes into account this phenomenon and is based on the results of
known analytical methods.

- For the analysis of the effect of the orthotropic buckling the value of
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Ocr.c column buckling type and
Ocr.p plate buckling type

formulas are required (Fig. 5.53). In this way the results of the analytical
methods can be rearranged and introduced into a calculation according to
EC 3.

- The rearranged formulas must be checked for those equations of EC 3
Part 1.5 that are provided for the effect of stiffened plate buckling.

- To be able to analyse the effect of the orthotropic buckling the structural
details of the cross girder must be known the effect and behaviour of the
cross girder must be taken into account. In other words the connection
between the web of the cross girder and the longitudinal stiffeners must be
considered.

- During the investigation the results of the experiments and numerical
studies must be taken into account. The results presented in this chapter
are compared to the results obtained during the design of the composite
floodplain Danube bridges at Szekszard. Furthermore by executing a
parametric study advices are provided to perform a design procedure
according to the regulations of EC 3 Part 1.5.

5.5. Orthotropic buckling of compressed stiffened plates

The book (HANDBOOK OF STRUCTURAL STABILITY (1971)) published by the
"Column Research Committee of Japan" is one of the most complete collection in this

research area. In the following sections the basic assumption are collected with the
aid of this book.

(A) Column buckling attitude, ¢y ¢

HANDBOOK (1971) Chapter "2-25 Il Frames and Curved Members", Reference No.
105 (PIN-YU, MICHELSON 1969) provides easily manageable formulas for the
investigation of the column buckling attitude of the orthotropic buckling of
compressed, stiffened plates. Fig. 5.58 shows the corresponding page from the
HANDBOOK (1971).
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conditions results ref.
105 (1) All ends are built-in. 49
Grillage beams The criterion for the critical buckling load
b;sinh a;Lta;sin b,L=0
Stiffener
L2 o .Girder where
——n - —_—— e —_——
= /1 g1 .=/ 1o +1
- v:;lpi a V/ZV?: Nl b; 2V$,+4a
- - q 1 =
P~ - , a“f» BA"" S,EA"' Pi-qli
P~ —_e A; = Eigen-values of flexibility matrix [/;'*] ([a;;]
A [I;'/*] for girders, in which a;; is the influence
A . coefficient of stiffener
ssumption: I; = moment of inertia of {th girder
(1) The stiffeners are (=1, 2, wreeeree n)
1de(;xt.1cal m .propertles The envelope of the curves which can be plotted to
anc in sp acj‘mg. . show P; for different grillages is approximately expressed
(2) The spacing of stiff- b
eners is small. y L P
(3) The axial forces are Pcr,i=|:4+0-0866m]f,n if %55
proportional to the 13 P
- : €ryi
moment of inertia of P, """[3"'0‘ ZOZWJP o if p""'>5
the girders. where .
o=mex(i, P=T3L
When the girders are identical in size and in spacing,
2
4,=[0.020833+40. 01022(n_1)]-EII—I'
where ‘
n = the number of girders
I, I,= moment of inertia for stiffeners or girders
(2) All ends are simply supported.
- L? . Per,i )
Pc'$‘—[1+0-w66vm]1)¢, lf T‘—sz
Pory= 0202 P, if Lemigp
cryf . m [ T‘ N

Fig. 5.58. Column buckling attitude of the orthotropic buckling of compressed,
stiffened plates (HANDBOOK, 1971)

Formulas under subsection (2) will be used as it is assumed that all ends are simply
supported.

Using the notation of EC 3 Part 1.5 the equations in Fig. 5.58 can be rewritten as

follows. The arrangement of the stiffeners and cross girders can be seen in Fig. 5.59.
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stitfener (longitudinal)

er (transversal)

cross gird
] 2 ] / m
P“ —» N / / +— —r

<

—_— < P> E—

_—_’ ‘—

Ib:

P —» 1 < b

_’ ‘—-—
p.—» 2 -
P.—» | —

a

Fig. 5.59. Arrangement of the stiffeners and cross girders

When the stiffeners are identical in size and in spacing

a=(m-1a;,

b=(n-1)b;,
then
b3
Ap = [0.020833 +0.01022(n - 1)]? Iy, (5.11)
b

where [ is the inertia of the stiffener, I, is the inertia of the girder, n is the number

of stiffeners including the webs of the main girder, b is the length of the bottom flange
of the main girder and E is the Young's modulus. Eq. 5.11 is usually written in the
short form of

h=z21, (5.12)

where Z =[0.020833+0.01022(n—1)).

When all ends are simply supported:

2
P, =|1+00866—2—|p i fr<o (5.13)
’ ‘,ajElo F, '
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r’Ely,

where a and a; can be seen in Fig. 5.58 and F, is £, =——

a
Eq. 5.13 can be rearranged into the form of
o _140.0866 ab
P, ab b3 : (5.14)
EZ—1I,
m-1_ EI,

where a = % Further rearrangement result in the following equation:

PCI' a g

=1+ 0.0866 =—"C <2
£, a oy (5.15)
—Z7ZK ’
m-1
IS
where Ko ==
1y

P
When P >2 then

€

2
a

P .
7 = 0.202——

which can be rearranged into the form of

a2 o

Pcri cr,c
=~ =0.202 = —>2

P & . (5.17)
e a ZKO cr,sl
m-—1

(i) Comparison

Comparing the derived results to the results of EC 3 Part 1.5 Annex A the following

conclusions can be drawn. If a=a; and the cross girders are simply supported then

the second component of Eq. 5.15 disappears and the method to study the stiffened

panel buckling is obtained.

(i) Parametric study

Fig. 5.60 — Fig. 5.62 show the relation between the P, force and the o parameter of

the plate. The different figures show the results for different number of trapezoidal
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stiffeners (n) and cross girders (m). In a figure the different curves represent different

ratio of the inertia between the trapezoidal stiffener and cross girder.

K=10

K=20

O A 1 1 1
05 1 15 o 2 25 3

K,=2.0

osf.-""
1 P

0.5 1 1.5 2 25 3

Fig. 5.61. The relation of P.; and a in the case of n=2, m=3
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K.=05 K.=10 k=05 Kh=20 K=10
T ’ -

3

Fig. 5.62. The relation of P, and o in the case of n=3, m=3

(B) Plate buckling attitude, O¢r p

HANDBOOK (1971) Chapter "3-158 lll Plates", Reference No. 203 (OKURA, ARIMA

1922) provides easily manageable formulas for the investigation of the plate buckling

attitude of the orthotropic buckling of compressed, stiffened plates (see Fig. 5.63).

conditions

results

ref.

203

Many longitudinal and

transverse stiffeners e-

qually spaced

I, Xm

r}

14

(i)

(i)

(i)

(iv)

m,n=the number of stiffeners in - and &-direc-

All edges simply supported
_n%aE (I,(m+1) ILi(n+1)
M b { a b }
All edges clamped
a*___4ir’aE{ Ia(m+1)+Ib (n +1)}
bt a b
a-edges clamped, b-edges simply supported
- 16 n’aE{ 31,,(m+1)+11,(n+1)}
3bt 164* b?
a-edges simply supported, b-edges clamped
0'k=4 zzaE[ I,(m+1) +315(n+1) }
bt al 16 b

tions, respectively

339

Fig. 5.63. The plate buckling attitude of the orthotropic buckling of compressed,
stiffened plates, HANDBOOK (1971)
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Formulas under subsection (i) will be used as it is assumed that all ends are simply

supported.

Using the notation of EC 3 Part 1.5 the equations in Fig. 5.63 can be rewritten as

follows. The arrangement of the stiffeners and cross girders can be seen in Fig. 5.64.

stiffener (longitudinal)

/ cross girder (transversal)
— / : .

D
i
—» oo J. ---------------------- boeemaoe- -—
S UL S SO S «— b
— ._-,-,.---_4: ............................... P —
1. x m I,xn
a

Fig. 5.64. Arrangement of the stiffeners and cross girders

When the stiffeners are identical in size and in spacing:

2 I,(m+1)
_rm’Ea(l (n+}1) b3
ML ( a’ J1+15,(n+1) : (5.18)
a3

When Eq. 5.18 is multiplied and divided by [bt312(1—02)] and by b and rearranged

then its form will be

a_K:( Z\IS,(n+1)12{1+ 1 m+la3}

o, e K, n+l (5.19)

here © __TE_ (LJZ d a=2 Ko =224 wh d he inerti
where ©. 12005\ b an =5 and Xo 7, en introducing the inertia
fthe plate ! _h d g La th
of the plate 1, = an = en

12(1-0v?) I,
JK (n"l’l) 1 m+1 3 Jcr,p
= 1+ a’ b= =k
o, & a’ { Ky n+1 } o, % (5.20)
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(i) Comparison

Comparing the derived results to the results of EC 3 Part 1.5 Annex A the following
conclusions can be drawn. Annex A examines the influence of stiffened plate
buckling on only one plate. Considering the bottom flange around the middle pier of
the floodplain Danube bridge at Szekszard the calculation according to Annex A
gives

k , =235.428.

P

Using the newly derived Eq. 5.9 and n=4, /,; =10415cm” | I, =402.9cm’ and
a =0.6618 then

10415 4+1
402.9 0.6618*

n+1_

kapz(l—uz)g (1-0.3%)

o =268.54
a

In the case of this example the newly derived method provides a 13% higher value.

(ii) Parametric study
Fig 5.65-Fig. 5.69 show the relation between the kap parameter and the «
parameter of the plate. The different figures show the results for different number of

trapezoidal stiffeners (n) and cross girders (m). In a figure the different curves

represent different ratio of the inertia between the trapezoidal stiffener and cross

girder.
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Fig. 5.65. The relation of k,, and o in the case of n=1, m=1

Ch.5-69

BUPT



v . . ' '
14 + ]
K.=0.5
12} . P
4 P
3 //,
T ' / 4
\ //
/
8 I ) /// -
cP \~,¥_’—///
° 1 K=1.0
6 )‘/.‘--u“»— ]
A T _
......... 1 Ks=2.0
2 | -
0 —L N , . .
0 05 1 15 2 Py 2
(04

10 F ‘ \ |
N \\J ] Kc=1.o

6 I -
1 K=2.0
4 o T B
2 I -t
0 L N N | .
0 0.5 1 15 P py .

a
Fig. 5.67. The relation of k,p and « in the case of n=2, m=2
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Fig. 5.68. The relation of k,, and o in the case of n=3, m=2
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Fig. 5.69. The relation of k,, and « in the case of n=3, m=3

5.6. The analysis of elastically “layer” connected structures,

The concept of the "ideal” cross section

FALKE (1983) (1984) suggested a new technique to analyze the orthotropic plates
based on the method used for composite structures where the parts of the structure
are elastically connected. Several other researched have worked on the problem of

elastically connected structures. Several other researched have worked on the
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problem of elastically connected structures (SATTLER (1955), LESKELA (1986),
STUSSI (1943), TOMMOLA, JUTILA (2001), SZABO (2006), PLATTHY (1965),
COSENZA, MAZZOLANI (1994), ARIBERT (1990))

(see Fig. 5.70)

web of cross girder

LA top pant LA
T oy W]
_:-l..~\ R .
1{ bottompart/ / ‘!'

C. the centroid of the bottom part of the structure
C the centroid ot the "ideal” cross section

E.A E,
.\I \(v(x) T t L

M,
- S L%‘"—N
a a
~ %ké _______________ < NEA EL V72 ) :2;

Fig. 5.70. Elastic “layer” connection model

One of the basic assumptions in the case of elastically connected structures is that
the connection between the two parts of the structural cross section is continuous.
This means that the model can be viewed as a structure where there is a continuous,
elastic layer between the two parts (see Fig. 5.71). The differential equation to
describe the behaviour of the static model of the orthotropic plate can be formulated

after FALKE (1984). If the spring constant of the “layer” is denoted by & then the

change of the length of the layer due to V(x) force can be written as

O(x)=¢eV(x).

In this case the relative elongation is

ds(x) _ _dV(x)
& dx

(5.23)
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. dx+Adx,

M(X) 1 M,(x)+dM(x)
N(x) \\\ QRN < X
\\\(\\ N(x)+dN(x) ~/
49 =
V(x)d.\ arama
M, (x) : M, (x)+dM,(x)
dx+Adx ' ‘
N(x b
(x) .

N(x)+dN(x) )

A

Fig. 5.71. State of equilibrium considering an "elastic" layer

On the other hand Eq. 5.23 can be written as the function of the relative elongation of
the two parts of the structure. To perform this rewriting an infinitesimally small part of
the structure (with length dx) will be considered and the displacements will be
investigated at the connection. It can be easily understood that the elastic layer has
to counter the relative displacements of the two parts of the structure, thus

(dx + Adx,) — (dx + Adx,) = dd(x) (5.24)

Substituting Eq. 5.23 into Eq. 5.24 the following can be written

Adv, Ady, _dS(x) _ _dV(x)
& & dx dx

(5.25)

However knowing the internal forces, M,, M, and N it is possible to write

Ad, N M,
&  E A, E, I,

and

Ady, _ N M,
& EA EI "

Considering that a, + a, = a and taking advantage of the equal rotation

Al, _ Alb
Etlt Eb[b.

Eq. 5.25 can be written as
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1 1] a _ _dV(x)
N(x){ EaE AJ M, (x) AN (5.26)

The right hand side of Eq. 5.26 can be rewritten, since from the condition of
equilibrium (see Fig. 5.71)

Y N(x)=N(x)+V(x)dx— N(x)-dN(x)=0,

thus
dN(x)

=V(x), (5.27)
and

dv(x) _ d’>N(x)
s e (5.28)

Furthermore from the equation of equilibrium
M=M,+M,+aN,
if My is neglected we get

My~M-aN . (5.29)

Using Eq. 5.27, 5.28 and 5.29 then Eq. 5.26 can be rewritten as

1 1 a’
, + +
dx? £ cE,I, '

in a second order differential equation. By introducing the following two new notations

a
=
cEyl,’
and
1 1 a’
+ +
12: EtAt EbAb EbIb

£

the differential equation has the form of

2
sz(x)—zz N(x)+oM(x)=0 (5.30)
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which is the usual form of the differential equation for elastically connected
structures. Eq. 5.30 is solved for load cases that can occur in practice, for example in

the book of SATTLER (1955) several approximate methods can be found.

HOMBERG (1952), HOISCHEN (1954), PLATTHY (1965) had suggested a new
method where instead of solving the elastically connected composite structures by
differential equation the problem is solved by an energy method. In this case an
"ideal" stiffness can be determined and then the elastically connected composite
structure can be calculated as a normal beam structure. One of them conclusions
that the displacements of the elastically connected, simple supported composite

beam are similar to the displacements of a homogeneous beam.

(i) The difference is in the stiffness (El) and for an elastically connected composite

structure it can be written as:

(E); = Eyly + E I, + ———5—— (5.31)

K+

which is the "reduced"” or "ideal" stiffness, where Ep, and E; are the Young's modulus
of the bottom and the top structural details, a is the sum of the distance between the
centre of gravity of the top part and the centre of gravity of the whole structural cross
section and the distance between the centre of gravity of the bottom part and the

centre of gravity of the whole cross section.

K = ! + !
EbAb EtAl,

where (56.32)

Ao and A are the areas of the bottom and top part [cm?]
| is the span [cm],

¢ is the elastic “layer” parameter [cm?/kN]

v=2n+1; n=0, 1, 2,....

When £=0 - the structure is infinitely stiff — then the "ideal" stiffness gives the same

formula which is used for composite structure:
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B

-~

(ED), = E 1, +E,I, + EK— =E,l, +E1I, +E,a}A, +E,a’4, (5.33)

where a, is the distance between the centre of gravity of the top part and the centre of
gravity of the whole cross section, ap is the distance between the centre of gravity of

the bottom part and the centre of gravity of the whole cross section (a = a; +ay).

When €= then there is no connection between the parts of the structural sross

section and
(EI)’ =Eb1b +Ev1‘,. (534)

The intermediate values for £ are schematically shown in Fig. 5.72.

(ED),
4

—r——

(EI; =E I, +E, I, +

==,

—~

Fig. 5.72. Stiffnes of elastically connected composite structure

(ii) The "ideal stiffness" in relation to the & elastic “layer” parameter can be

approximated with the exponential function (see Fig. 5.73) :

2 _&
a
(ED); =E I+ Ey I, +~e “ (5.35)
a2
£=0, (ED;=E 1, +E,1,+%, (5.36)
a’ 1
K e
e=cw, (EI),=E I +E,I,. (5.38)
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The ¢ elastic parameter to take into account the structural detail of the orthotropic

plate has been determined by a numerical analysis and it was compared to the
experimental results.

2 _£
-— (EI);, =E, I, +E, 1,,+"7e 2

Ve

Fig. 5.73. Elastic “layer” parameter with exponential function

5.7. Application of an ,ideal” cross section

5.7.1. The inertia of the "ideal" (reduced) cross section for the experimental
models

Lets determine the inertia of the ideal cross section for the cases investigated by the
experiments (R, S, E).

(EI); = El, +EI, + a

(g =1949cm*,  (1,)5 p =10638cm*,

where a is the distance between the centroids of the top and bottom sides

ap = 19,835¢cm, aS,E =20,759cm ,
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(EK)R == +—E—-=—l—+—l—=0,11496[ ! }

" EA;  E4, 30 12,25 )

1,1 1
= — — 4 — |,
(EK)$,E =5g+77 =012 24{ 2}

cm

2,2 )
EXT—£=21000"> ¢ =8290¢,
! 50

v=2n+1,(n=012,...),

v=1,

(1), —09+1949+ 198352

I'R™ ™ 7 70,11496+82,90¢
20,7592

0 )S,E =0.9+106,38+ 0,12424 +82,90¢

The ¢ spring constant of the elastic “layer” can be determined by numerical

experiments and it is checked with the experimental results.
5.7.2. Results of the numerical analysis and the experimental tests

A 3D linear finite element model has been calculated in the numerical analysis. The

elastic layer is defined between the two structural components, thus the & spring

constant can be determined by the length change due to shearing.

In the numerical analysis the displacements due to V shear force have been

determined. The & spring constant can be calculated according to the displacement

difference between point A and D. In this way the analysis of the elastic “layer”

between the two structural parts means a "push-out" test (Fig. 5.74).

Numerical analysis has been performed at the load level N=125 kN, Table 5.1

summarizes the results.
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Fig. 5.74. The effect of shear load

TRR-3 x [-0,3821x10-3 m -0,3814x10-3 m
y [-1,0x10-8 m -0,1284x10-6 m
z |-0,2906x10-4 m -0,1553x10-2 m
x |-0,17928x10-4 m 0
y [-0,1240x10-7 m 0
z |-0,1459x10-2 m 0

TR S-3 x [-0,56313x10-3 m -0,56256x10-3 m
y |-0,2239x10-8 m -0,31574x10-6 m
z |-0,2787x10-4 m -0,19549x10-2 m
x |-0,42429x10-4 m 0
y |-0,40876x10-7 m 0
z |-0,18582x10-2 m 0

TRE-3 x |-0,65531x10-3 m -0,6473x10-3 m
y |-0,17002x10-7 m -0,17684x10-7 m
z |-0,274471x10-4m -0,20464x10-2 m
x {-0,5387x10-4 m 0
y |-0,73969x10-7 m 0
z |-0,19498x10-2 m 0

Table 5.1. Deflections of different point (ABCD) by numerical analysis

In case of N=125kN the relative displacements in the x direction of point A and D

calculated by the numerical analysis are:
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R rigid: (eax)r=0.001793 cm,
S standard: (eax)s=0.004243 cm,

E economic: (eax)e=0.005387 cm.

The load level in the experiments were N=50kN when the relative displacements
have been measured in the experiments (Chapter 3). After adjusting the values by
considering the load difference the relative displacement and their relation to the

numerically determined relative displacements are:

R rigid: (eax)r=0.0015 cm, 88%
S standard: (eax)s=0.0038 cm, 90%
E economic: (eax)e=0.0058 cm. 108%

In the calculations the numerical results have been used.

5.7.3. Structural details investigated by experimental models

The ¢ spring parameter for the inertia of “ideal” structural cross section can be

determined of the elastic “layer”. (Geometry of the models can be found in Chapter
3.) In this section a fourth structural details is considered, full connection. In this case
the web of the cross girder is continuously welded to the orthotropic plate, the
trapezoidal stiffeners do not cut a hole into this web.

(i) (F) Full connection
=0,

The ratio between the
19,8352
0,11496

=0,9+1949+34223= 3618,1cm4 : inertia of a structural
detail (R,S,E) and the
inertia of the structural
details with full (F)

I =09+1949+

(ii) R-rigid connection

e va 2
AX 2 _ 0,001793[cm]-50[cm)] cm -
= = = connection
sp=—2 250N 0,0003586 72—,
1;)p =1958+2532,6 =2728,5cm*. 75,4%
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(iif) S-standard connection

e yva 2
_€4x9 _0004243-50 _ cm
ES=TON =T 250 00084865,
1;)s =107.28+2214,6 =23219cm* . 64,1%

(iv) E-economic connection

e ya 2
_€4x49 0,005387-50 _ cm
FESToN T 250 00107
I;)g =107,28+2017.9=21252cm*. 58,7%

(v) When there is no connection between the two structural components:

E=00,

Iy= 1958cm3 |

5.7.4. Case study of the floodplain bridge at Szekszard over the Danube

The inertia of the ideal (reduced) cross section of the floodplain bridge at Szekszard
over the Danube will be determined in this section. The studied orthotropic plate
section is under compression, therefore the bottom flange near the middle pier will be
considered (Fig. 5.75).

2350 ’ 100030 1056

U

5500 |

Fig. 5.75. The cross section of the floodplain Danube bridge at Szekszard
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a?

Elk+¥Y % g}
12
p 2100120 g
b 12 ’ '

It has been assumed that that the £ spring constant can be used in the case of the

floodplain bridge at Szekszard over the Danube.

(i) F-full conection

I =5843 lem?

(ii) R-rigid connection

() =31185em*,  (1,)g g =1523,6cm*,

ap=46,2-653=39,67cm, ag g = 46,2-5,04=4116cm,

1,11 1 1
Kp=—t—— =t —-=0,02874 —|,
R4, "4, 290 120 "Lmz]

1 1 1

120 )
2.2 2
EYZ  £=21000-2—£=17128¢,
12 1102
1=§=110cm,
£ =000035285[c”22
R lkN ’
2
39,67 4
I.1. =144 J = )
7;)p =14, 38 S e e 17 Tog8s = 28375em
(iii) S-standard connection
=0,00084859 cm’
s N |
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detail (R,S,E) and the
inertia of the structural
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41162

4

I)c =14,4+15236 =39111em?. 99
il * *0.030555+ 17,1288z cm (72.9%)
(iv) E-economic connection

=0,0010774 em?

“E=T N |’
(1) =144+15236+ 41162 ~36105cm? (67.3%)

i/E =" "2 70,030555+17,1288¢ ' =7

5.7.5. Study of the bottom flange at the middle pier in the floodplain bridge at

Szekszard over the Danube when an exponential function is used

To determine ¢y first the inertia must be calculated
R-rigid connection

39672 1

_ 4
0.00874 27183 ~ 222 /6:6cm

1;)p =144+31185+

S-standard and E-economic connection

2

~ alle: 1 4
U;)g g =144+15236+ 0030555 37 1g3 = 2193520
The values of &¢:
R 1712886 = 39672 0 00874 & = 00028832 ™"
" "TTN0 7201437 U kN
= 1712886 = ALL6% 0 130555 4 —0,0030652 5™
e ’ 0720397 7 e kN

Percentages
compared to the
inertia determined

The inertia in the case of different structural details: in Section 5.7.4

39,672 _00000002385823825 4
» . — L _ ’ = 50
R (1) =31329+ S 46001,4cm (5%)
41162 ~ 000000038(;1685529 4
” X — 3 ? = 1 1 °
" (11 )S 1538+—————0’030555€ 43575,4cm (11%)
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_0,0010774

41162
= 402 o Y =40551 129
£ (II)E 1538 0’030555e 0551,6cm (12%)

Thus it is possible to investigate the effects of the different structural details with the

approximation of an exponential function which does not contain |.
5.7.6. Study of the floodplain bridge at Szekszard over the Danube

in this section first the ultimate limit state of the bottom flange will be calculated

considering the "ideal" cross section of the cross girders.

(Full) cross girder:  1r=58431cm®,

(Rigid): (1)r=48375cm*,
(Standard): (1)s=39111cm*,
(Economic): (1)e=36105cm*.

The calculation has been performed on a part of the stiffened panel sections with the
effect of stiffener of cross girders.

The calculations were carried out by the MathCAD program and the details can be
found in the Appendices.

Appendix 1 contains the analysis of one plate section between two cross girders
according to EC 3-1-5 (2005). The values of o, , and o, . have been determined

according to Annex 1 of EC 3.

The load bearing capacity is Ng 4, =321094N .

The load bearing capacity considering shear lag is Ng 4sheariag = 19551kN .

Appendix 2 contains the analysis of one plate section between two cross girders
according to prENV EC 3-1-5 (1992). These analysis were performed following the
examples of EISEL et al (1995) and BANCILA (1996).
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The load bearing capacity is Nz, = 294394N |

The load bearing capacity considering shear lagis Ng gneariag =~ -

Appendix 3 contains the analysis of two plate sections with three cross girders

according to EC 3-1-5 (2005). To be able to determine o, , and o, . the stiffness

of the cross girders is required. In this case the full cross section of the cross girder is

taken into account. The results are shown in Table 5.2.

Appendix 4 contains an analysis similar to the analysis in Appendix 3 with the
exception that in this case the stiffnes of the cross girder has been determined with
the concept of the "ideal" cross section (Section 5.7.4) and the connection between
the trapezoidal stiffener and the cross girders is rigid (R). The results are shown in
Table 5.2.

Appendix 5 contains an analysis similar to the analysis in Appendix 4 with the
exception that in this case the connection between the trapezoidal stiffener and the

cross girders is the type of standard (S). The results are shown in Table 5.2.

Appendix 6 contains an analysis similar to the analysis in Appendix 4 with the
exception that in this case the connection between the trapezoidal stiffener and the

cross girders is the type of economic (E). The results are shown in Table 5.2.

Based on the these calculations the following conclusions can be drawn:

e The stiffnes of the cross girders is significantly different when using different
structural details (R, S, E).

e The load bearing capacity of the structure with two compressed plates is
influenced in a less significant way by the structural details (R, S, E).
Furthermore the structural detail of the connection between the stiffener and
the cross girder has smaller effect on the load bearing capacity when

considering shear lag.
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(I)F,R,S,E (Ui)R,S.E NR,d NR,d,i NR d shear NRd sheatag
[mm4] 3 [kN] Np d [kN] NRd

App. 3 8

5.84 10 1.000 38 290 1.000 22 428 1.000
F (Full)
App. 4 8

4,837 10 0.825 37 577 0.981 22103 0.985
R (Rigid)
App. 5 8

3.911 10 0.669 36 691 0.958 21 698 0.967
S (Standard)
App. 6 8

3,611 10 0.618 36 337 0.948 21 635 0.960
E (Economic)

Table 5.2. The effect of the structural detail in the stiffness and the load bearing

capacity

5.7.7. “Supporting” effect of the cross girders

In the case of traditional structural details the connection between the longitudinal
stiffeners and the cross girders is direct and thus the supporting effect is also direct.
On the other hand the supporting effect is not direct and therefore it is worth to study
in the structural detail investigated in this thesis.

(i) It is important to note that EC 3 Part 1.5 is still valid for the type of orthotropic steel
plates that are going to be investigated in this chapter. The main assumption that
there are no transversal loading on the plates.

(i) The Japanese-Hungarian joint research work (IVANYI, 2001) discussed in the
introduction of this chapter have investigated the requirements for the automatic
welding (with robots) and studied the structural details of the open cross section, non
continuous stiffeners for plates. The conclusion of this research was that a gap,
causing the disruption in the continuity of the stiffeners, do not significantly affect the
load carrying capacity if its size do not exceed a certain size. Thus this structural
details is acceptable for stiffeners.
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In the engineering practice there are well-known basic problems where due to the
lack of direct support the structure utilizes an indirect support. Classic example is the
stability analysis of the top flange of an open truss system, where the columns and
cross beams form a U-shaped frame and the stiffness of this frame determines the
elastic support of the compressed flange. Another example is the elastically

supported, compressed bar (HALASZ-IVANYI, 2001). This example can be seen in
Fig. 5.76.

[ I
ar R 1 - 1 Ny
b
Vi meT Tt e
—"T: z [ ]
—_ ——
e £
. G
. p
~. »
27°Fl ¢

[

LI

Fig. 5.76. Elastically supported, compressed bar

Beyond a certain value of the elastic parameter the buckling of the bar is not

influenced, however below this value the buckling length is modified.

In this study, in the case economic (E) structural detail there is no direct connection
between the trapezoidal stiffener and the web of the cross girders, however the

neighbouring” plates can provide indirect support. In this section this problem will be

investigated with a simple engineering model (see Fig. 5.77).

=

Fig. 5.77. Stiffened plate between stiffeners with economic (E) connections
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The web of the cross girder is connected directly to the plate. It is assumed that the
trapezoidal stiffeners provide a simple support for the plates. Lets examine two
adjacent plates, or in other words only one cross girder is assumed. To determine the
elastic parameter it is required to calculate the elastic displacement of plate that is
simple supported at all four sides and loaded by a partial distributed load. SZILARD

(1974) provides a solution for this problem:

w(x, y) = Pp ® sin(mn& / a)sin(nzn/b)sin(mnx c/2a)sin(nz d/2b) sin X o n7;y

6 el e 2 a
Dz™ m=1n=l mn{(mz/a2)+(n2/b2)]

(5.39)
where the explanation of the variables can be seen in Fig. 5.78. The convergence of
this solution is relatively fast, provided that the dimensions a and b are not too small.
The displacement can be obtained with sufficient accurary by taking the first four
terms of the series.

simple support

Fig. 5.78. Uniform load over a small rectangular area

It is also assumed that the area of the partial load is equivalent to the cross section
area of the cross girder and assuming p=1 N/m? load then the deflection of the plate
will provide the elastic parameter. By knowing this elastic parameter the stability
model can be solved now (see Fig. 5.79 — Fig. 5.80).
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\ /_\ﬂ/

{ examined part [

b = 5500 mm
4 1

Fig. 5.79. The examined cross section

t=20 mm simple supported
kX \
— " \ 120 \ )
_— Y y .
p. = I kN/em’ b, =874 mm
— 10
—
. T 20 n—
a = 3640 mm | a=3640 mm
1’
L =7220 mm

Fig. 5.80. Structural model for the calculation of the plate displacement

The area and inertia of the cross section of the trapezoidal stiffener:

132136

Asl -

=33034mm?2,

_4123-108

- 8 4
sl 7] =1,0307-10°mm™,

1

Loading is Py =1k—Nz.
cm

The loading surface of the web of the cross girde is A=83,4cm?.
The deflection at the examined point: e,=0,427cm,

_Po4 1834 kN

¢ e~ 0427 PP

3 3
oo CL 19537223 ..o
EI_ ~ 21000-10307

In the case of the simple supported beam that is elastically supported in the middle

the elastic parameter can be taken from TABLE (2004)
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If the elastic parameter is larger than 150, which is the case here, the support can be

considered rigid.
5.8. Conclusions

| have studied the connection of the stiffeners of a stiffened plate. It can be stated
that the economic (E) connection can also provide sufficient support for the
longitudinal stiffeners.

The concept of the ideal cross section can be recommended to determine the
stiffness of the cross girders. The formula can be generalized using the exponential
function

£

&
(ENi =EfI; + Eply +Ze 0

where t is the top of the cross section,
b is the bottom of the cross section,

a is distance between the centroids of the two parts of the structure,

1 1
K= + .
EyAdy  E4

The recommended values for the £ elastic “layer” parameter:
In the case of S standard structural detail: (£)s=0,00084859 [cm?/kN],

In the case of E economic structural detail: (£)e=0,0010774 [cm?/kN].

The value of &9 parameter when the structural detail of the cross girder of the
floodplain bridge at Szekszard is used: (£)0=0,0030652 [cm?/kN],
(IVANYI, Jr., BANCILA, 2006, IVANYI, Jr., et al, 2007),
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CHAPTER 6

Summary and Conclusions

| have investigated the connection between the trapezoidal stiffener and the open
cross section girder in an orthotropic plate which is loaded only in its plane. The
calculations determine the effect of the different connection types on the load bearing

capacity of the orthotropic plate.
6.1. Examining the design process

The basis of the analysis is the EC 3-1-5 standard and determines the values of

Ocr,p (plate buckling attitude) and O¢r ¢ (column buckling attitude). In Annex 1 of

EC 3-1-5 contains formulas only for the design of one plate section between two

cross girders.

(i) The method discussed in this study makes it possible to examine two plate
sections with three cross girders.

(i) | have also presented a method which can take into account the different
structural detail between the cross girders and the trapezoidal stiffeners in
a compressed plate with stiffeners. In this way it is possible to study the
"orthotropic buckling" phenomena.

(iii) | have examined three structural details for the connection between the
trapezoidal stiffener and the cross girder. In the case of the rigid (R)
connection the web of the cross girder is fully welded to the plate. Two

other types of connections have been considered, the standard (S) (the
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(vi)

traditional used) and the economic (E) (the newly proposed). The results
have shown that the structural details have little effect on the load bearing
capacity, even when shear lag is considered.

The structural detail has a significant effect on the stiffness of the cross
girder. For the calculations the concept of the "ideal" cross section has
been introduced which can take into account the effect of the structural
detail through the introduction of an elastic layer.

The elastic parameter for the elastic layer has been determined by
numerical analysis and experiments.

The "ideal" cross section has also been determined by the exponential

function which is well known in the engineering practice.

6.2. Experiments

(vii)

(viii)

(i)

(x)

| have designed and carried out experiments to study the different
structural details (R, S, E) between a trapezoidal stiffener and a cross
girder. The experimental specimens were loaded by sagging and hogging
moments and by shear forces.

The results of the experiments show that the stiffnesses of the different
structural details (R, S, E) are significantly different.

It can also be concluded that the plastic behaviour of the different
structural details under different loadings is different, especially under
shear loading.

It can be similarly stated that the deformation capacities are also different

under different loading considering different structural connections.

6.3. Numerical simulation

(xi)

(xii)

| have designed and executed numerical simulations to study the different
structural details (R, S, E) between a trapezoidal stiffener and a cross
girder. Using a linear 3D finite element analysis the effect of the different
structural details (R, S, E) could be studied.

In the frame of non-linear 3D finite element analysis | have studied the
behaviour of the different connection types (R, S, E) under shear loading.
In this case the plate buckling and material failure could be modelled at
the final stages of the loading.
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6.4. New Scientific Results

Thesis 1.

| have design and performed an experimental program on half scale test under static
loading in bending and shear with the purpose of defining the static load bearing
capacity and behaviour of the joints between the trapezoidal stiffeners and the web of
the cross beam for orthotropic plate.

On the basis of the experimental results | have characterized the static behaviour of
the joints as follows:

a) | determined the load bearing capacity of the tested joints and
characterized the different failure modes (web buckling around the
different structural details of the joints). Based on the results | described
the effect of the “Rigid”, “Standard” and “Economical” solutions of joints.

b) | determined the elastic behaviour of the joints under bending and shear
separately. The effect of the shear forces gave very important
experimental information of the behaviour of the different structural details.

It was a special push-out experimental program.

Thesis 2.

| have performed an investigation on the stiffness of the different structural details of
joints between the trapezoidal stiffeners and the web of the cross girder by a 3D
linear element model on the basis of the application of the experimentally determined
characteristics of the special “push-out test” for shear forces.

a) | showed that the determination of joint-stiffness based on push-out test
contains several uncertainties due to the observed initial nonlinearity in the
behaviour, consequently, | proposed the approximate consideration of the
joint stiffness by stiffness coefficient.

b) By a parametric study | proved the acueracy of the application of the

stiffnes coefficient in design.
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C) Comparing the numerical and test results | estabilished that the proposed
linear model gives good prediction — despite of the observed nonlinearity —

until the load level belonging to the serviceability limit state is reached.

Thesis 3.

| have developed a 3D nonlinear finite element model for the investigation of the
different joints structural details between the trapezoidal stiffeners and the web of the
cross girder. The model is built by shell and solid elements and considers the
geometrical and material nonlinearities, the model includes the “special push-out test”
for shear forces based joints characteristics.

a) Based on the comparison of numerical and experimental results |
determined the model level that is required to describe the complex
behaviour (accuracy) and permit the practical application (efficiency).

b) By numerical analysis | determined the effect of each behavioural
component on the nonlinear behaviour of the joints between the
trapezoidal stiffeners and the web of the cross girder.

c) | proved numerically the development of the slip distribution in the shear

effect that is one of the basic assumptions of the design model.

Thesis 4.

Since the Eurocodes (3 and 4) do not give recommendation as to the evaluation of
the design resistance of the different structural details of joints, | have performed
analytical studies of these joints types based on the component method. The results
of these analytical studies are summarized as follows:

a) | developed a design method to evaluate the so called “orthotropic
buckling” case when the effect of the plate elements, the trapezoidal
stiffeners and the cross girders joint to each other different cases (Rigid,
Standard and Economical solutions) — | verified and validated the design
method using the test and numerical analysis results.

b) | developed a EC3 compatible design method for the joints. With the

application of the developed method the design resistance of the joints
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including the “column type attitude” and “plate type attitude” for the

“orthotropic buckling”.

Thesis 5.

Based on the comparison of the experimental, numerical and analytical results | have
derived practical design rules that ensure favourable ultimate behaviour and
resistance.

a) | demonstrated that within certain certain limits the “Economical” solution
for the joints has enough stiffness for the ultimate limit states of the
orthotropic plate.

b) | verified the design method based on the numerical analysis and
experimental results of half-scale beam test. | proved that the failure load
and the stress distribution in the ultimate state are in good agreement if

the measured material properties are used.
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APPENDIX 1

Analysis of one stiffened plate section between two cross girders
according to prEN 1993-1-5 (2005)
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N:= kg-——z- kN := 1000-N
sec
N
v:=0.3 E .= 210000-——3
mm
N
fy = 355 —— €= e = 0.814
2
mm

Bottom of the trapezoidal stiffener:

Hight of the trapezoidal stiffener

Cross section area of the trapezoidal stiffener

Inertia of the trapezoidal stiffener

No. of the trapezoidal stiffener n .= 4

Distance between the cross girders
Width of the plate
Thickness of the plate

Cross sectional area of the plate

inertia of the plate

Bottom flange and trapezoidal stiffeners

by := 306-mm
hyr :== 200-mm

Ag|q = 5534-mm2

lgj1 == 1.0415-10%-mm?* to the edge of the plate

Ysiq == 121-mm €= Ysi1

, Is11 _

ig = | — igi1 = 137.186 mm
Asi

a:= 3640-mm

b := 5500-mm

t:=20-mm

Ap = bt Ap = 110000mm’
(b-£)

6 4
Iy = ——— lnh = 4.029 x 10" mm
P > P
12-{\1 — v

A=bt+4Agy  A=1321x 10°mm’

lg| = 4.123-105. mm*

Distance between the center of gravity and the edge of the bottom flange  y;:= 32.mm
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PLATE BUCKLING ATTITUDE

d=(n+1)8

a = 0.662

Q
i
olo

(1 + a2)2+y

Kop = ( 2\\

1+\/Ty

(v + 1)-(1 +8)

ocrp = Kop'SE

7}(1 + \y)-(l + 5)

N
o = 2.51 —
mm
vn = 102.325 Isl - plate+stiffeners
Ip - only plate
yL = 25.581
y = 127.907
&p = 0.201 Asl - area of the all stiffeners
Ap - area of the plate
3 = 0.05
5=0.252

9=y  g=3363

if aS%

o>y kop = 237.102

N
Ocmp = 595.066 ——
crp >
mm
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COLUMN BUCKLING ATTITUDE

Closest stiffener to the edge of the plate where the compression stresses highest

calculation of the effective plate:  (Fig.:4.1) in the EC3

bq := 827-mm
by := 874-mm
3 -
binf = (_\V\'m b1inf = 413.5mm
5-v)
2 )
b25up = ;—_'; b2 bzsup = 437 mm

width of the effective plate adjacent to the stiffener
btot := b1inf + btr + b2sup btot = 1156.5mm

area of the stiffener and the adjacent effective plate

2
Asi1_tot = Asit + brot-t Asl1_tot = 28664 mm
2
n-E-lsiq N
Ocrc:= "~ Gcrec = 56838 ——
2
Asl1_tot-a mm
Determination of B,, Bsp for A slendemess
a) flange of the trapezoidal stiffener
btr_ﬂange = 150mm ttr_ﬂange = 10'mm

2 2
n-E ‘ttr_flange

OE_tr_flange ==
12 '(1 - V2) 'btr_ﬂange2 mm

Kop_tr flange =4 (Table 4.1) in the EC3

Ocrp_tr_flange = kcp_tr_ﬂange'c E_tr_flange

N
O'crp_tr_ﬂange = 3374.224 ——2

mm

f

y

)‘p__tr_ﬂange = Xp_tr_ﬂange = 0.324
Ocrp_tr_flange

Pp_tr_flange = 1
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b) web of the trapezoidal stiffener

btr_web = 214.67-mm ttr_web = 10-mm

2 2
n-E “ftr_web

CE_tr_web =
12‘(1 - VZ) 'btr_web2

Kop_tr_web =4 (Table 4.1) in the EC3

Ccrp_tr_web = kcrp_tr_web "CE_tr_ web

fy

Ap_tr web= |[——
Ocmp_tr_ web
c) b, plate
b1 = 827 mm t=20mm
7t2~E-'(2

12-(1 - vz)-b12

kop 1:=4 (Table 4.1) in the EC3

OE_1:=

Ccrp_1°= kcp_1 "OE 1

fy
Scrp_1

Ap 1:=

Ap 1—0.055-(3 + y)

pq = >

Appendix 1- 5

o E_tr_web = 411.864 _2
mm

N
Gcrp_tr_web = 1647.455 "'—'5
mm

A p_tr_web = 0464

Pp_tr_web = 1

N
CE 1= 111.006—2
mm

N
Gcrp_1 = 444023 '_2
mm

Ap_1 = 0.894

pq=0.843
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d) b, plate

by = 874 mm t=20mm
el 99,388 —>
g = g = . —
E_2 5 5 E 2 >
12-.\1 - v7)-bp mm
Kop_2:=4 (Table 4.1) in the EC3
ocrp_2 = Kop_2'0E_2 Gerp_2 = 397.552 —
mm
fy
Ap 2= Ap 2=0945
Ocrp_2
Ap 2 - 0.055-(3 + y)
p2 = > p2 = 0.812
A.p_z
b1 5
Asl1_eff_tot:= Agl1 + t-| pq > bir + P2 J Asl1_eff_tot = 25723.045 mm
Asl1_eff_tot
pac = ———— BAC = 0.897
Asl1_tot
Ap = 1.1x 10° mm? : 2
p= 1 X mm As'_eff = 4As|1 As|_eff = 22136 mm

b4 b2
Ap_eff_|oc = As|_eff + 2p1 -2'— 1+ 4btrt + 3p27 -t-2 Ap_eff_'oc = 103136.929 mm2

Ap_eff_loc

pap = ———— Bap = 0.938
Ap

Appendix 1- 6

BUPT



) slendemess

Plate buckling attitude:

Bap-fy

)\. =
p
Scrp

Ap - 0.055(3 + )

if Ap>0.673

2
Ap

Column buckling attitude:

Bac-f
}\'C = y
Gcrc
0.09
Qe = agtiff + ——~
'511\
e )

= 0.5-[1 + ae-(hg-0.2) + kcz]

1

Xc = 5 >
d+4 0 —Ac
Cc

€= I—p—l
Gcre

pc = (pp - 1c)-§-(2 - &)+ %c

b4
Ac_eff = pc-Ap_eff loc + 2:P1 '—Z"t

™M= 1

1
NRd = Ac_eff-fy-—
™

Appendix 1- 7

Ap = 0.748

)\,c = 0749
agtiff := 0.34
oe = 0.419
o = 0.895
xc = 0.721
£ = 0.047
Pc = 0742

Ac_eff = 90448.472 mm’

NRqg = 32109.208 kN
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Taking into account the SHEAR LAG

section 3.3
b
bg = Fy bg = 2750mm
Le

Le := 0.25-2-65500mm Le = 32750 mm % = 655mm
must be examine

Ac_eﬁ 1.282
apn = ap=1.

0 bo 1 0

bo
X = aQg — x =0.108

Le

B:=|1.0 if x<0.02
1

1+6-(K— ! \+1.6'K2
2500-x )

1

if 002<x Ax<0.70

6w if x>0.70 B = 0.600
2
Aeff_shearlag = B-Ac_eff Acfi_shearlag = 55072.497 mm
1
NRd_shearlag = Aeff_shearlag‘fy‘w NRd_sheartag = 19550.737kN

Appendix 1- 8
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APPENDIX 2

Analysis of one stiffened plate section between two cross girders
according to prEN 1993-1-5 (1992)

\\ /
v \ s —1
\ \ / /
[N 2 SN A )\ oo

Appendix 2-1
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2
sec

v:=103

kN := 1000-N

N
E:= 210000--—2
mm

Bottom of the trapezoidal stiffener

Bottom of the trapezoidal stiffener

Cross section area of the trapezoidal stiffener

Inertia of the trapezoidal stiffener

No. of the trapezoidal stiffener

Distance between the cross girders

Width of the plate

Thickness of the plate

Cross sectional area of the plate

Inertia of the plate

Bottom flange and trapezoidal stiffeners

N
fy = 355-—2
mm
btr = 306-mm
htr = 200-mm

Aglt = 5534-mm2

Isi1 == 1.0415-10%-mm* to the edge of the plate

Ysi1:= 121-mm

: Isi1

sit= | —

Asl1

n:=4

a:= 3640-mm

b := 5500-mm

t:=20-mm

Ap = b't

. (0.8}

P= " [
12-(1 - vz)

A:=Db-1+4-Ag

lg) == 4.123-10%-mm

4

€ = Ysi1

igl1 = 137.186 mm

Ap = 110000 mm2

Ip = 4.029 x 10°mm

A=1.321x 105mm

Distance between the center of gravity and the edge of the bottom flange  y;:= 32.mm

E|s|
Dx = b
5 Et
y -~
12-(1 - v2)
Dx
Y= [—
Dy
a
a:= -
b
nz-E-t2
OE =
12-(1 - v2) b
Appendix 2- 2

3

4

2

N
Dy = 15.742m” —

mm

3 N
Dy= 0.154m™ ——
2

mm
y=10.116
o = 0.662
N
oF = 2.51 —

mm
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aq =
e
2
kcp = (a + (1)
nz-Dx
Ocrc =
az-t
f
y
Ap =
P oo
(Ap - 0.22)
Pp =
2
p
f
y
Ap= | ——
‘ Ccrc
b'DX
i=
A-E
0.09
a_:= 034 +
i
e

b= 0'5'[1 + a—'()\c - 0.2) + kcz:l

1

Pc= : 5
N P
Cc

§ = L
Ccrc

p:=(pp - Pc)E(2-8)+pc

Appendix 2- 3

aq = 0.208
kop = 254.287

N
o = 638.198 ——
mm

N
Ocrc = 586.323 —
mm

Ap = 0.746
pp = 0.945
Ac= 0.778

i = 55.859mm
a_=0.535

b = 0.957

pe = 0.66

£ = 0.088

p = 0.708
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a) flange of the trapezoidal stiffener

btr_flange = 150-mm

2 2
n -E-tr flange

12'(1 - Vz)'btr_ﬂange

OE_tr_flange -= )

kcsrcp__tr_ﬂange =4

Scrp_tr flange -= kcyrcp_tr_ﬂange "OE_tr_flange

fy
kp__tr_ﬂange : -
Scrp_tr_flange

Ap_tr_fiange — 0.22

Pp_tr_flange = 5
Ap_tr flange

b) web of the trapezoidal stiffener

btr-web = 214.67-mm

2 2
n-E Hr_web

12‘(1 - Vz)'btr_web

CE_tr web= 5

Korcp_tr_web = 4

Scrp_tr_web = kcrcp_tr_web'ﬁ E_tr_web

f
y
Ap tr webi= [——
Scrp_tr_web
Xp_tr_web -0.22
Pp_tr_web = >
Xp_tr_web
Appendix 2- 4

ttr flange = 10-mm

ttr_web = 10-mm

O'E_tr—ﬂange = 843.556 _2
mm

N
Ccrp_tr_ﬂange = 3374.224 _2

mm

)\.p_tr_ﬂange = 0324

Pp_tr_flange = 0.992

OE_tr web = 411.864 —
mm

N
O'crp_tr_web = 1647.455 _—2
mm

).p_tr_web = 0464

Pp_tr_web = 1.133

Pp_tr_ web:=1
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c) b, plate

by = 827mm t=20mm
2
n"-E-tz 111.006 N
OE 1= OE 1= 006 ——
— ‘) —
12~(1 - v")-b12 mrn2
Kop 1:=4 (Table 4.1) in the EC3
N
Serp_1:= Kop_1'CE_1 Gerp_1 = 444.023 —
mm
fy
A.p_‘] = )\.p_‘] = 0.894
Serp_1
Ap_1- 022
Pri=———— p1=0.843
d) b, plate
bo = 874mm t=20mm
nz-E¢2 99.388 N
GE_2 = GE_2 = 3 —_—
12-(1 - vz)-bz2 mm2
kKop 2:=4 (Table 4.1) in the EC3
N
Scrp_2 = Kop_2-CE_2 Sorp_2 = 397.552—
mm
fy
hp_2:= Ap 2 =10.945
B Ccrp_2 -
hp 2 — 022
p2i= ——— po2 = 0.812
Appendix 2- 5

BUPT



e) b; plate

As)_eff = 4-Agl

b3 := 306mm t=20mm
1:2-E-1:2
CE 3=
12-(1 - v2)~b32
kop 3:=4 (Table 4.1) in the EC3

Scrp_ 3= Kop 3'CE_3

f;
A-p = y
- Gcrp_3
Ap 3 - 0.22
03 = P
2
A,p_3

As|_eff = 22136 mm2

Ac = Ag|_eff + (2-p1 ‘bq-t+ 4-by-t + 3-p2-b2-t)

Ac_eﬁ = p-Ac

NRd == Ac_efffy

Appendix 2- 6

N
og 3=810.8 —
mm

N
mm

Ap 3= 0331
p3 = 1.013
p3:=1

Ac = 117083.599 mm”

Ac_eff = 82925.873 mm’

NRd = 29438.685 kN
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APPENDIX 3

Analysis of two stiffened plate sections between three cross girders

according to prEN 1993-1-5 (2005) (F) full
AN
\E e/ 7/
150, . g /]
ol N A
22 $ﬁQ% g l ! i —_
: 1180 % 1180 ~ 1180 E 980 E % | =
5500 ; < Alf?'\x - < %
—V N TV —
5600 .
|
|
|
;—/-,’ v \ ‘v A
Appendix 3-1
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N:= kg-—— kN := 1000-N
sec
N N
vi=03 E:= 210000-—2 fy = 355 ——
mm mm
No. of the trapezoidal stiffener n=4
Bottom of the trapezoidal stiffener by := 306-mm
980mm
1180mm
Distance of the trapezoidal stiffeners bj:= | 1180mm
1180mm
980mm
b:=Zbi b = 5500mm
2

Crass sectional area of the trapezoidal
stiffener

Inertia of the trapezoidal stiffener

Agl1 := 5534-mm

4

Is|q = 1.0415-10%.mm* tothe edge of the plate

Ysi1 = 121-mm e = Ysii
_ sl .
iglt = | — igl1 = 137.186 mm
Asl1
No. of the cross girders m:=23
Distance between the cross girder aj := 3640-mm
Cross sectional area of the cross girder Ap = 18900mm?
Inertia of the cross girder Ip = 5.84- 108mm*
a:=(m-1)g a=728m
Thickness of the plate t:= 20mm
Cross sectional area of the plate Ap = b-t Ap = 110000 mm2
_ a
% o= 1324
2
n E-lg)q 3
Pe = — Pe = 4.073 x 10°kN
a
Isi1
K= — K = 0.178
b
Appendix 3- 2
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Plate buckling attitude

Inertia of the plate

Column buckling attitude

nz-E-t2
OFE =
12-(1 - vz)-bz
o tb
p:
IZ(I—VZ)
_ Isi1
lp
nel( 1 m+l 3)
=g |1+ —=- a -
Ocrp =9 az K ntl ) E

N
OE = 2.51 —2'
mm

lp = 4.029 x 10° mm*

g = 25.848

N
Gcrp = 2111076—_2
mm

z := 0.020833 + 0.01022-(n — 1) z = 0.051
b 4 2 -1
Ao = (z)—-lgi AQ=7276x 10 12 % sec kg
E-lp
2
Per_at = 1 + 0.0866- Per_at = 2.946
vl
z-K
m-1
2
Pcr_a2 = 0.202- Pcr_a2 = 4.54
a
2K
m-1
Per ai:== |Pcr a1 if Pcrat<2
Pcr a2 if Pcr a2>2
"hiba" otherwise Pcr ai = 4.54
Pe 735.998 N
Ccr sl'= 77— Gcr_sl= FI0
ASH mm2

Gcrc = Pcr_ai*Ocr_sl

Appendix 3- 3

N
Ccrc = 3341169__2

mm
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yvi=1
Calculation of the effective plate  (Fig.:4.1)

bq := 827-mm
by := 874-mm
3 _
D1inf = (—W\~b1 b1inf = 413.5mm
5-v)
2
bZSup = 5—_—W b2 b2$up = 437 mm

width of the effective plate adjacent to the stiffener

btot = b1inf + btr + b2sup btot = 1156.5mm
area of the stiffener and the adjacent effective plate
2
Asl1_tot = Asi1 + biott Asl1_tot = 28664 mm
2
n-E-lglq N
Ocrsl=—""T-—_ Ccr sl = 142.095 ——
_ ) " 5
Asl1_tota mm
Ocr_c = Pecr_ai'Scr_sl Gcr ¢ = 645.061 —

mm

Determination of 55, S ap fOr A slendemess

a) flange of the trapezoidal stiffener

btr_ﬂange = 150-mm ttr_ﬂange = 10-mm

2 2
n -E-tr_flange

N
c = 843.556 ——
( 2) ) E_tr_flange >
12-\1 — v"'/-br_flange mm

kcp_tr_ﬂange =4 (Table 4.1) in the EC3

OE_tr_flange -=

Ocrp_tr_flange -= kcp_tr_ﬂange "CE_tr_flange

N
Gcrp_tr_ﬂange = 3374.224 _3
mm

f

y

Xp_tr_ﬂange =T )»p__tr_ﬂange =0.324
Scrp_tr_flange

Pp_tr_flange = 1

Appendix 3- 4



b) web of the trapezoidal stiffener

btr_web = 214.67-mm ttr_web = 10-mm

2 2
n-E ttr_web

CE_tr_web= > OE_tr_web = 411.864 —2

12'(1 - Vz)'btr_web mm

Kop_tr_web = 4 (Table 4.1) in the EC3

Scrp_tr_web = Kop_tr web SE_tr_web Ocrp_tr_web = 1647.455 -
mm
fy
Ap tr web:= |—— Ap tr_web = 0.464
Scrp_tr_web
Pp_tr web =1
c) b, plate
b1 = 827 mm t=20mm
L 111,006 —
O'E_1 = GE_1 = . —
12-(1 - vz)-b12 mm2
Kop 1:=4 (Table 4.1) in the EC3
N
oerp 1= Kop_1°0E_1 Ocrp_1 = 444.023 -
mm
fy
Ap_1:= Ap_1=0.894
- Scrp_1 -

Ap_1-0.055-(3 + y)
p1:= 5 p1= 0843

Appendix 3- 5
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d) b, plate

by = 874 mm t=20mm
2
e 99,388 —
(o) = = . —
E_2 5 CE_2 >
121 - v7)-b2 mm
kop 2:= 4 (Table 4.1) in the EC3
N
ocrp_2 = Kop_2'OE_2 Cerp_2 = 397.552 —
mm
fy
Ap 2= Ap_2 = 0.945
Ccrp_2
Ap 2~ 0.055-(3 + y)
p2 = » p2 = 0.812
5 2 2
Ap=1.1x 10"mm Agl_eff = 4-Asl1 As|_eff = 22136 mm
b1 bz
Ap_eff loc = Asl_eff +2:p1-—t+ 4-byrt+ 3.pp-—-1:2
2
Ap_eff_'oc = 103136.929 mm
Ap_eff_loc
Bap = v BAp = 0.938
p
b1 b2 ) 5
Asl1_eff_tot:= Asl1 + t-| p1 7 + by + p2-7} Asl1_eff_tot = 25723.045 mm
Asl1_eff_tot
Bac = ——— BAC = 0.897
Asl1_tot

Appendix 3- 6
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A slenderness

Plate buckling attitude:

Bap-fy
)\.p = }\,p = 0.397
Gcrp

Ap — 0.055(3 + y)

2
Ap

Column buckling attitude:

Bacf
A= y Ac = 0.309
Gcrc

astiff = 0.34
0.09
Og = Ogtiff + >———=<
&= Astift i) ae = 0419
e )
2
¢ = 0.5-[1 + ag(re - 0.2) + xc] ¢ = 0.57
1
xc = xc = 0.952
2 2
d+y o —Ac
c
E= —P g = —0.368
Gcre
Pc= (Pp - xC)-E,-(2 - &)+ xc pc = 0911
Ac_eff = pc'Ap_eff_k)c + 2p1 —i"t Ac_eff = 107859.033 mm
M= 1
1
NRd = Ac_eff-fy-— NRd = 38289.957 kN
- ™
Appendix 3- 7
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Taking into account the SHEAR LAG:

section 3.3
b
bg = 3 bg = 2750 mm
Le

Le := 0.25-2-65500mm Le = 32750 mm —53 = 655mm
must be examine

Ac_eff 14
ag .= anp=1.

0 bo -t 0

bo
K:=aQg — x =0.118

Le

B=]10 if «x<0.02
1

1
1+6|x- \+].6-x2
25

if 0.02<xAx<0.70

00-x )
1
if x>0.70
8.6-x
2
Aeff_shearlag == B-Ac_eff Aeff_shearlag = 63177.049 mm
1
NRd_shear'ag = Aeff_shear'ag'fy'm NRd_shearIag = 22427852 kN

Appendix 3- 8
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APPENDIX 4

Analysis of two stiffened plate sections between three cross girders
according to prEN 1993-1-5 (2005) (R) rigid

Pledl /df

\ ‘\ 150 8 l]
|
|

g 306 |
: e sy
980 | 1780 1180 ‘ 1180 980 - IS
: ' ' )
5500 > /"'\ - : ‘
; ; ; :
ﬁ’\, r /\F AV_T_I_J\/ \—
\ i i
dd
. 5600 :
’3
2
L
i
g g
‘ -
i
£ /\/ /.. /\ A
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No. of the trapezoidal stiffener

Bottom of the trapezoidal stiffener

Distance of the trapezoidal stiffeners

Crass sectional area of the trapezoidal

stiffener

Inertia of the trapezoidal stiffener

No. of the cross girders
Distance between the cross girder
Cross sectionai area of the cross girder

Inertia of the cross girder

Thickness of the plate

Cross sectional area of the plate

kN := 1000-N
N N
E := 210000-—— fy == 355.-——
2 y 2
mm mm
n:=4
by := 306-mm
980mm )
1180mm
bj := | 1180mm
1180mm
980mm J

b:=Zbi
2

Agj1 = 5534-mm

Ysi1 = 121-mm

aj = 3640-mm

Ap = 18900mm2

Ip := 4.837-108mm*

a:=(m-1)a

t := 20mm
Ap = b't
a
a=—
b
ﬂzE-lsn
Pe = >
a
st
-
Appendix 4- 2

b = 5500mm

Isit = 1.0415-10%-mm* to the edge of the plate

e := ysi1

ig)q = 137.186 mm

a=728m

Ap = 110000 mm”
o = 1.324

Pe = 4.073 x 10° kN

K=0.215
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Plate buckling attitude

Inertia of the plate

Column buckling attitude

7t2-E-t2
CE:
12-(1 - v2)~b2
| b
p=
12(1—v2)
Isi1
91=—|—
p
nel( 1 m+l 3)
= . -_— a g
Serp = 9 2 K n+ ) E

z = 0.020833 + 0.01022-(n — 1)
3

A (z) b |
=(z) ——-
0 E-lp si1
2
pcr al == 1 + 0.0866-
- a
z-K
m-1
2
pcr_az = 0202 .
a
.z K
m-1
Per ai:= |Per_ a1t if Per_at <2
Pcr a2 if Pcr_a2>2
"hiba" otherwise
Pe
Ccr sl=
- Asl1

Gcrc = Per_ai‘Ocr_sl

Appendix 4- 3

N
o = 2.51 —

mm

Ip = 4.029 x 106 mm4

g = 25.848

N
Gcrp = 1780.302 -

z = 0.051

4

AQ0=8784x 10 12 1% sec? kg

Pcr_at = 2.771
pcr_az = 4.131
Pcr_ai = 4131

N
Gcr_sl = 735.998 '_2
mm

N
Ccrec = 3040.746 _2'
mm
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yi=1
Calculation of the effective plate  (Fig.:4.1)

b1 := 827-mm
bo = 874-mm
3 -
Diinf == (—W\ -bq biinf = 413.5mm
S-v)
2
bZSup = m b2 b25up =437 mm

width of the effective plate adjacent to the stiffener

btot := b1inf + bir + b2sup btot = 1156.5mm
area of the stiffener and the adjacent effective plate
2
Asi1_tot = Agl1 + biot-t Asi1_tot = 28664 mm
2
n-E-lsit N
Ccr_sl-= —2 Ccr_sl = 142.095 ——
Asl1_tota mm
Ocr_c = Pcr_ai'Scr_sl Gcr ¢ = 587.06 —
mm

Determination of 35, S ap fOr A siendemess

a) flange of the trapezoidal stiffener
btr_fiange := 150-mm ttr flange == 10-mm

2 2
n-E-ttr flange

12'(1 - Vz)'btr_ﬂange

Kop_tr_flange = 4 (Table 4.1)in the EC3

OE_tr_flange = 5

Ocrp_tr_flange -~ kcsp_tr_ﬂange "OE_tr_flange

N
O'E_tr_ﬂange = 843.556 _2

mm

N
O'crp_tr_ﬂange = 3374.224 _—2

f
y
JLp_tr__ﬂange = j R — Ap tr flange = 0.324

Scrp_tr_flange

Pp_tr flange =1

Appendix 4- 4

mm
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b) web of the trapezoidal stiffener

btr_web = 214.67-mm

2 2
n-E-tr web

OE tr web=
- = 2 2
12'(1 -V )'btr_web

kcp tr web = 4 (Table 4.1) in the EC3

Ccrp_tr_ web = kcyp_tr_web'c E_tr web

f
y

}vp_tr_web =

Ocrp_tr_web
c) b, plate
b1 = 827mm t=20mm
th-E-tz
CE_1=

12-(1 - vz)-b12

kop 1:=4 (Table 4.1) in the EC3

Scrp_1= Kop_1-0E_1

f
A.p 1= y
- Gcrp_1
Ap 1-0.055-(3 + )
p1:=
2
XP_1
Appendix 4- 5

ttr_web = 10-mm

O'E_tr_web =411.864 _2
mm

N
O'Cfp_tr_web = 1647.455 __2
mm

A p_tr_web = 0.464

Pp_tr web =1

N
CE_1= 111.006——2-
mm

N
Gcrp_1 = 444.023 —‘2‘
mm

hp_1 = 0.894

p1 = 0.843
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d) b, plate

by = 874 mm t=20mm

e 99,388 —

= o = . —
CE_2 > > E_2 )
12\1 —v7}-bp mm
kop 2:=4 (Table 4.1) in the EC3
N
ocrp 2= Kop_2'CE_2 Gcrp_2 = 397.552 —
mm

fy

}\,p_z = )\.p_2 = 0945
Ocrp_2
Ap 2-0.055-(3 + )
p2 = > p2 = 0.812
kp_z
5 2 2
b1 bo
Ap_eff_loc = As|_eff + 2-p1 'T't +4-br-t + 3'92'74'2
2
Ap_eff_Joc = 103136929 mm
Ap_eff_loc
Bap = Y BAp = 0.938

p

by b2\ 2

Asl1_eff_tot = Asl1 + t-| pq ot btr + P2 ) Asl1_eff_tot = 25723.045 mm
Asl1_eff_tot
BAC = ——— BAC = 0.897
Asl1__tot

Appendix 4- 6
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A slenderness

Plate buckling attitude:

Bap-fy
Ap = Ap = 0.432

Gcrp

Ap - 0.055(3 + )
Ap

Column buckling attitude:

Bacf
)"C = C y )\'C = 0324
Gcre

atiff := 0.34
_ ' 0.09
Og = Qgtjff + |S|1\ Qe = 0419
e )
2
¢ = 0.5-[1 + ae{he-02) + xc] 6 =0.578
1
Xc = Xc = 0.946
2 2
0+ 0 -2
o
Em —P £ =—0415
Scrc
pc= (Pp - )(c)'ﬁ‘(2 - &)+ xc pc = 0.891
b1 2
Ac_eff = pc'Ap_eff_|oc + 2p1 ‘2_ -1 Ac-eff = 105849.485 mm
M= 1
NRg = Ac eﬁ-fy--l— NRg = 37576.567 kN
- ™
Appendix 4- 7
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Taking into account the SHEAR LAG:

section 3.3
bg = Py bg = 2750 mm
Le

Le := 0.25-2-65500mm Le = 32750 mm % = 655mm
must be examine

Ac‘eﬁ 1.387
an .= an=1.

0 bo -t 0

bo
K= ag— k= 0.116

Le

B:= |10 if x<0.02
1

1
1 +6-(K— \+ 1.6-x2

if 0.02<xAx<0.70

2500-x )
if x>0.70
8.6:x
2
Aeff_shearlag == B-Ac_eff Aefi_shearlag = 62262.871 mm
1
NRd_shearlag = Aeff_shearlag'fy'm NRd_shearlag = 22103.319kN
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APPENDIX 5

Analysis of two stiffened plate sections between three cross girders
according to prEN 1993-1-5 (2005) (S) standard

g
g
]
—

i
3
A
_)\_
N
A

—\ & v '\l N—
5600
L_'v /‘\ A /‘\ /V
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N:= kg- > kN := 1000-N
sec”

N N
v:=10J3 E:= 210000-——3 fy = 355-——

mm mm

No. of the trapezoidal stiffener n:=4

Bottom of the trapezoidal stiffener bt := 306-mm
980mm

1180mm

Distance of the trapezoidal stiffeners bj:= | 1180mm

1180mm
980mm )

Crass sectional area of the trapezoidal
stiffener

Inertia of the trapezoidal stiffener

No. of the cross girders
Distance between the cross girder
Cross sectional area of the cross girder

Inertia of the cross girder

b = 5500mm

b:=Zbi
2

Agjq := 5534-mm

Igj1 := 1.0415-10%-mm*

Ysi1 = 121-mm e:= Ysii
Isi1 .
ig|{ == | — ig]q = 137.186 mm
Asl1
m:=3
aj == 3640-mm
2
Ap = 18900mm

lp := 3.9111-10%mm*

a:=(m-1)-3 a=728m
Thickness of the plate t:= 20mm
Cross sectional area of the plate Ap = bt Ap = 110000 mm2
B
=% a=1324
TCZE'|sI1 3
Pe = ——2— Pe = 4073 x 10 kN
a
sl
K= —— K = 0.266
b
Appendix 5- 2

to the edge of the plate
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Plate buckling attitude

n-E42 5 s
CE:=—F——— OE = 2.5 ——
12-(1 - v2)~b2 mm2
£.b
Inertia of the plate lp = lp = 4.029 x 106 mm4
2
12(1 -V )
Ist1
g:=— g = 25.848
o
n+l 1 L mr] 3\ 1474.955 N
O = . . + — QL Xe} O — . —
orp = 97 Kn+1 o )°F crp 2
a mm
Column buckling attitude
z := 0.020833 + 0.01022-(n - 1) z = 0.051
b3
Ag = (z)—-lg11 Ao =1.086x 10 oyt sec2 kg-1
E-lp
2
o]
pcr_a1 =1+ 0.0866 ———— pcr_a1 = 2.593
o}
z-K
m - |
2
a
pcr_az = 0202 — pcr_a2 = 3.715
a
z-K
m- 1
Pcr ai= |Pcr at if Pcr a1 <2
Per a2 if Pcr a2>2
"hiba" otherwise Pcr_ai = 3.715
Pe
COcr_sl= Ocr sl = 735.998 ——
— Ag - mm
Scrc == Per_ai*Ocr_sl Ocrc = 2734.271 -
mm
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yi=1
Calculation of the effective plate  (Fig.:4.1)

bq = 827-mm
b2 = 874-mm
3 -
b1inf = (—W-\ by b1inf = 413.5mm
S-vy)
b ( 2 \ b b 437 mm
2sup <= [ T )02 2sup =
p 5 _ \V) p

width of the effective plate adjacent to the stiffener

btot := D1inf + btr + b2sup btot = 1156.5 mm
area of the stiffener and the adjacent effective plate
2
Asl1_tot = Agl1 + byot-t Asl1_tot = 28664 mm
n;EJg1
0'Cl'_SI = _——2 Gcr_sl = 142.095 ——
Asl1_tot-a mm
0.CI'__C = pcr_ai'ccr_sl Gcr_c = 527.891 —2
mm

Determination of 85, S ap fOr A slendemess

a) flange of the trapezoidal stiffener

btr_ﬂange = 150-mm ttr_flange :== 10-mm

2 2
n -E-% flange

12-(1 - Vz)'btr_ﬂange

ko’p_tr_ﬂange =4 (Table 41) in the EC3

OE_tr_flange = >

Ocrp_tr_flange = kcrp_tr_ﬂange ‘CE_tr_flange

N
GE—tr_ﬂange = 843.556 _2

N
O'crp_tr_ﬂange = 3374224 —'5
mm

f

y

Kp_tr__ﬂange = )\-p_tr_ﬂange = 0.324
Scrp_tr_flange

Pp_tr flange == 1
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b) web of the trapezoidal stiffener

btr_web = 214.67-mm ttr_web = 10-mm

2 2
n-E 'ttr_web

N
CE_tr_web = 5 CE_tr web = 411.864 ——2

12'(1 - Vz)‘btr_web mm

Kop_tr web:=4  (Table 4.1)in the EC3

Scrp_tr_web = Kop_tr_web'OE_tr_web Ccrp_tr_web = 1647.455 -
mm
fy
Ap_trweb:= | Ap_tr_web = 0.464
Ocrp_tr_web
Pp_tr web =1
c) b, plate
by = 827 mm t=20mm
e 111,006 —
c = = 111.006 ——
E_1 T CE_1 >
12-\1 — v7/-bq mm
kop 1:=4 (Table 4.1) in the EC3
N
oerp_1:= Kop_1'0E_1 Ocrp 1= 444.023 —
mm
fy
Ap 1:= Ap 1=0.894
Ccrp_1
Ap_1-0055-(3 +vy)
p1 = > pq = 0.843
)\.p_‘]
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d) b, plate

by = 874 mm t=20mm
' e ~ 99388 —
OE_2= 5 5 oE 2=99. .
1241 - v7)-bp mm
kcp 2:=4 (Table 4.1) in the EC3
N
Gcrp_z = ko-p_ZO'E_Z Ccrp_z = 397552 _2
mm
fy
Ap 2= Ap_2=0.945
- Ccrp_2 -
Ap 2-— 0.055-(3 + vy)
p2 = > p2 = 0.812
A.p_z
5 2 2
Ap = 11 x 10 mm Asl_eff = 4'As|1 As'_eff = 22136 mm

bq by
Ap_eft_loc = Asl_eff + 2-p1 ot Abyt+ 3-p2-—= 12

Ap_eff_loc = 103136929 mm”
‘ Ap_eff_loc
Bap = Y Bap = 0.938
o]
bq b2 ) )
Asl1_eff_tot:= Asl1 + | p1 5 bir + P2 J Asi1_eff_tot = 25723.045 mm
Asl1_eff_tot
BaCc = —— Bac = 0.897
As|1_tot
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A slendemess

Plate buckling attitude:

Bap-fy

Ap =
p
Ocrp

pp:=|f1 if Ap<0.673
Ap — 0.055(3 + )

2
Ap

if Ap>0.673

Column buckling attitude:
Bac-f

Xc = y
Ccre

0.09
ae = Astiff + —
( 1)

is

e )

6= 0.5-[1 +ag(he—02)+ xcz]

Ac = > 5
d+4 b —Ac
Oc

E:= rp—1
Gcrc

pPc= (Pp - Xc)‘@'(2 - &)+ %c

b1
Ac_eff == pc'Ap_eff_loc + 2-P1 '?'t

M= 1

1
NRd = Ac_eff fy-—
™

Appendix 5- 7

Ap = 0.475

Ac = 0.341

astiff == 0.34

ae = 0419

¢ = 0.588

Xe = 0938

£ = —0.461

pc = 0.867

Ac_eff = 103356.122mm’

NRrd = 36691.423 kN



Taking into account the SHEAR LAG:

section 3.3
b
bg := Y bg = 2750mm
Le
Le := 0.25-2-65500mm Le = 32750 mm S0 655 mm
must be examine
AkLeﬁ 1.371
ag = ag= 1.
0 bo 1 0
bo
K:=0a9 — xk =0.115
Le
B:= |10 if x<0.02
1
if 0.02<x Ax<0.70
1 \ 2
1+6-]x- + 1.6-x
00-x )
1
if x>0.70
8.6-x
2
Aeff_sheariag = B-Ac_eff Aeff_shearlag = 61121.217 mm
1
NRd_shearlag := Aeff_shearlag'fy'm NRd_shearlag = 21698.032 kN
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APPENDIX 6

Analysis of two stiffened plate sections between three cross girders
according to prEN 1993-1-5 (2005) (E) economic

\iw o

NN
' |

~

T ™

306

0 1180 1180 ‘ 1180 l 980 : n
f f }

i

—V \ \r v A/

5600

3640

3640
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N:= kg-— kN := 1000-N
sec”

N N
vi=03 E := 210000-—— fy = 355-——
2 2

mm mm

No. of the trapezoidal stiffener n:=4

Bottom of the trapezoidal stiffener by := 306-mm
980mm

1180mm

Distance of the trapezoidal stiffeners bj:= | 1180mm

1180mm
980mm )

Crass sectional area of the trapezoidal

stiffener

Inertia of the trapezoidal stiffener

b:=2bi
2

Agjq := 5534-mm

Ysi1 = 121-mm

Isi1
Isit = | ——
Asl1
No. of the cross girders m:=3
Distance between the cross girder aj == 3640-mm
Cross sectional area of the cross girder Ap = 18900mm2
4

Inertia of the cross girder

Thickness of the plate

Cross sectional area of the plate

lp := 3.6105-10°mm

a:=(m-1)g

t:= 20mm
Ap = b t
a
a=—
b
Pe := >
a
_lsit
-
Appendix 6- 2

b = 5500mm

Islq == 1.0415-108. mm* tothe edge of the plate

e := Ysi1

igi1 = 137.186 mm

a=1728m

Ap = 110000 mm2
a = 1324

Pe = 4.073 x 10° kN

K =0.288
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Plate buckling attitude

Inertia of the plate

Column buckling attitude

o = th-E-tz
12~(l - vz) b2
. b
12(1 - v2)
_ s
lp

z = 0.020833 + 0.01022-(n — 1)

A (2) b3 |
= (z2)——-
0 E-lp sl
2
pcr al = 1 + 0.0866-
- a
z-K
m-1
2
pcr_az = 0202
a
-Z-K
m-1
Per ai= {Pcr a1l if Pcr a1<2
Per a2 if Per_a2>2
"hiba" otherwise
Pe
Ccr sl==——
—  Asn

Gcrc -= Per_ai'Ocr_sl

Appendix 6- 3

N
o = 2.51 -

mm

lp = 4.029 x 10° mm”

g = 25.848

N
O'crp = 1375.822 —;
mm

z = 0.051

o= 1177 x 107 ' m*sec kg

Pcr_at =253
Pcr_a2 = 3.569
Pcr_ai = 3.569

N
Sor_si= 735998 —

mm

N
Ccrc = 2627.095 _—2

mm
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y =1
Calculation of the effective plate  (Fig.:4.1)

bq = 827-mm
bo = 874-mm
R
b1inf = (___\'i\ -bq b1inf = 413.5mm
5-v)
2_)
basup = | ST P2 b2syp = 437 mm

width of the effective plate adjacent to the stiffener

btot := b1inf + btr + b2sup btot = 1156.5mm
area of the stiffener and the adjacent effective plate
2
Asi1_tot = Ag|1 + byot-t Asl1_tot = 28664 mm
7t2-E-ls,n
CScrst=——7_ Ocr st = 142.095 ———
— 2 —
As1_tot-a mm
Ocr_c = Pcr_aiTcr_sl Ocr_c = 507.199 ——
mm

Determination of 5,5, 5 ap for A slendemess

a) flange of the trapezoidal stiffener

btr_flange := 150-mm tir flange := 10-mm

2 2
n -E-ttr flange

12'(1 - Vz)'btr_ﬂange

Kop_tr flange = 4  (Table 4.1) in the EC3

OE_tr_flange = >

Scrp_tr_flange = kop_tr__ﬂange'U E_tr_flange

GE_tr_ﬂange = 843.556 _;

N
Gcrp_tr_ﬂange = 3374.224 —'—2
mm

f

y

lp_tr_ﬂange e Ap_tr flange = 0.324
Scrp_tr_flange

Pp_tr_flange == 1
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b) web of the trapezoidal stiffener

btr web = 214.67-mm ttr_web = 10-mm

2 2
n-E ttr_web

N
OE_tr_web = " CE_tr web= 411.864 —2

12'(1 - Vz)'btr_web mm

Kop_tr_web=4  (Table 4.1)in the EC3

N
Scrp_tr_web = Kop_tr web'SE_tr_web Ocrp_tr_web = 1647.455 —
mm
fy
Ap tr web:= | ——— Ap_tr_web = 0.464
Ocrp_tr_web
Pp_tr web =1
c) b, plate
by = 827mm t=20mm
e 111.006 ——
c = = .
E_1 S OE_1 >
12-\1 = v7/-bq mm
Kop 1:=4 (Table 4.1) in the EC3
N
cerp_1:= Kop_1'SE_1 Gerp 1 = 444.023 -
mm
fy
Ap 1= Ap_1=0.894
- Scrp_1 -
Ap 1-0.055-(3 + v)
p1 = > pq = 0.843
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d) b, plate

by = 874 mm t = 20mm
2
“_'E'tz 99.388 N
CE 2= GE 2= 99.388 ——
12-(1 - vz)-b;g2 mm2
Kop 2:=4 (Table 4.1) in the EC3
N
Ocrp_2 = Kop_2'0E_2 Serp_2 = 397.552 ——
mm?
fy
Ap 2= Ap_2 = 0.945
Ocrp_2
lp_z - 0.055-(3 + y)
p2 = > p2 = 0.812
)\,p—z
Ap = 1.1x 10° mm® Adl off = 4-A 2
pP= " sl_eff == 4-Ag|1 Asl_eff = 22136 mm

b1 bo
Ap_eff_loc = Asl_eff +2-pq '74 + 4-by-t + 3-p2-7-t-2

Ap._eff loc = 103136.929 mm’
_ Ap_eff_loc
Bap = A BAP = 0.938
p
b1 b2 ) X
Asl1_eff_tot =Aglt + 1| p1-— + by + p2-— Agl1 eff tot = 25723.045 mm
2 2 ) e
Asl1_eff_tot
pac = ——m—— BAC = 0.897
Asl1_tot
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A slendemess

Plate buckling attitude:

Bap-fy
Ap = Ap = 0.492
Ocrp

lp - 0.055(3 + y) _
> if Ap>0.673 pp=1
Ap

Column buckling attitude:

Bacf
A’C = y >\.c = 0348
Gcrc

agtiff := 0.34
0.09

Qe .= Qgtiff + 0

&= st T o) ag = 0.419

e )
2
= o.s-[1 +ae(he—-02) + xc} ¢ = 0.592
1
Xc= —T xc = 0.934
o+ \/ o —Ac
Sc
£= —P2 £ = ~0.476
Scrc
pc:=(pPp - xc) E(2 - &) + xc pc = 0.857
b4 )
Ac_eff = pc-Ap_eff_loc + 2-p1 5t Ac_eff = 102356.5mm
YM:=1
1
NRd = Ac_eff'fy'm NRq = 36336.558 kN
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Taking into account the SHEAR LAG:

section 3.3
b
bg = 3 bg = 2750mm
Le

Le := 0.25-2-65500mm Le = 32750 mm e 655 mm
must be examine

Ac_eff 1.364
agp = an= 1.

0 b 1 0

bo
K =aQg— xk =0.115

Le
B:= |10 if x<0.02

1
if 0.02<x Ak <070
1 \ 2
1+6x- + 1.6-x
2500-x
if x>0.70
8.6-x
2
Aeff_shearlag = B-Ac_eff Aeff_shearlag = 60661.176 mm
1

NRd_shearlag := Aeff_sheadag'fy'm NRd_shearlag = 21534.717kN
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