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Abstract

In this paper, we obtaining analytical approximate solutions for frac-
tional ordinary differential equations using Polynomial Least Square Method
(PLSM). An example is illustrated to show the presented methods efficiency
and convenience. 1
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1 Introduction

In recent years, fractional ordinary differential equations have been investigated
by many authors. Fractional ordinary differential equations are generally used
in many branches of science such as: mathematics, physics, chemistry and engi-
neering.

Since most of these equations have no exact solutions, it has been necessary
to develop numerical methods or analytical methods to find the approximate
solutions of these equations.

In order to find approximate solutions of these equations, many methods were
proposed, such as:

• Fractional Adams-Bashforth-Moulton method [2];

• Adomian decomposition method [4];

• Homotopy analysis method [3], [8];

• Variational iteration method [9], [10].

We consider the following fractional ordinary differential equation:

Dαy(x) = f(x, y(x)) (1)

1MSC (2010): 60H20, 34F15
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α > 0, with the initial condition:

y(0) = ν0 (2)

where ν0 are real constant and Dα denote the Caputo’s fractional derivative:

Dαỹ(x) =
1

Γ(n− α)
·
x∫

0

(x− ζ)n−α−1 · ỹ(n)(ζ)dζ

n− 1 < α < n where n ∈ N∗.
In the next section we will introduce the Polynomial Least Square Method

(PLSM) which allows us to determine analytical approximate polynomial solu-
tions for fractional ordinary differential equations and in the third section we
will compare our approximate solutions with approximate solutions presented by
fractional Adams-Bashforth-Moulton method (FABMM).

2 The Polynomial Least Squares Method

We denote by ỹ an approximate solution of equation (1). The error obtained by
replacing the exact solution y with the approximation ỹ is given by the remainder:

R(x, ỹ(x)) = Dαỹ(x)− f(x, ỹ(x)). (3)

For ε ∈ R+, we will compute approximate polynomial solutions ỹ of the problem
(1, 2) on the interval [0, b].

Definition 2.1. We call an ε-approximate polynomial solution of the problem
(1, 2) an approximate polynomial solution ỹ satisfying the relations

|R(ỹ)| < ε (4)

ỹ(0) = ν0. (5)

We call a weak ε-approximate polynomial solution of the problem (1, 2) an
approximate polynomial solution ỹ satisfying the relation:

b∫

0

|R(ỹ)|dx ≤ ε (6)

together with the initial conditions (5).
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Definition 2.2. Let Pm(x) = c0 + c1x + c2x
2 + · · · + cmx

m, ci ∈ R, i = 0,m
be a sequence of polynomials satisfying the condition:

Pm(0) = ν0.

We call the sequence of polynomials Pm(x) convergent to the solution of the
problem (1, 2) if lim

m→∞
D(Pm(x)) = 0.

We observe that from the hypothesis of the initial problems (1, 2) it follows
that there exists a sequence of polynomials Pm(x) which converges to the solution
of the problem.

We will compute a weak ε - approximate polynomial solution, in the sense of
the Definition 2.1, of the type:

ỹ(x) =

m∑

k=0

dkx
k (7)

where d0, d1, · · · , dm are constants which are calculated using the following steps:

• By substituting the approximate solution (7) in the equation (1) we obtain
the expression:

R(ỹ) = Dαỹ(x)− f(x, ỹ(x)). (8)

If we could find d0, d1, · · · , dm such R(ỹ) = 0, ỹ(0) = ν0, then by substi-
tuting d0, d1, · · · , dm in (7) we obtain the solutions of equation (1).

• Then we attach to the problem (1,2) the following functional:

J (d1, d2, d3, · · · , dm) =

b∫

0

R2(ỹ)dx (9)

where d0 is computed as functions of d1, d2, d3, · · · , dm using the initial con-
dition (5).

• We compute the values d01, d
0
2, d

0
3, · · · , d0m as the values which give the mini-

mum of the functional J , and the values of d0 is function of d01, d
0
2, d

0
3, · · · , d0m

using the initial condition.

• With constants d01, d
0
2, d

0
3, · · · , d0m previously determined we consider the

polynomial:

Mm(x) =
m∑

k=0

d0kx
k. (10)
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Theorem 2.1. The sequence of polynomials Mm(x) from (10) satisfies the prop-
erty:

lim
x→∞

b∫

0

R2(Mm(x))dx = 0. (11)

Moreover, ∀ε > 0, ∃mo ∈ N, m > m0 it follows that Mm(x) is a weak ε-
approximate polynomial solution of the problem (1, 2).

Proof. Based on the way the polynomials Mm(x) are computed and taking into
account the relations (8)-(11), the following inequalities are satisfied:

0 ≤
b∫

0

R2(Mm(x))dx ≤
b∫

0

R2(Pm(x))dx, ∀m ∈ N,

where Pm(x) is the sequence of polynomials introduced in Definition 2.2.
It follows that:

0 ≤ lim
x→∞

b∫

0

R2(Mm(x))dx ≤ lim
x→∞

b∫

0

R2(Pm(x))dx = 0.

We obtain:

lim
x→∞

b∫

0

R2(Mm(x))dx = 0.

From this limit we obtain that ∀ε > 0, ∃mo ∈ N, m > m0 it follows that Mm(x)
is a weak ε-approximate polynomial solution of the problem (1, 2).

In order to find ε-approximate polynomial solutions of the problem (1,2) by
using the Polynomial Least Squares Method we will first determine weak approx-
imate polynomial solutions, ỹ.

If |R(ỹ)| < ε then ỹ is also an ε approximate polynomial solution of the
problem.

3 Application

We consider the following linear fractional differential equation ([2]):

Dαy(x) + y(x)− xα+3 − Γ(4 + α)

6
· x3 = 0 (12)

α = 0, 25; x ∈ [0, 1
30 ] and the initial condition: y(0) = 0.
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The exact solution of the problem is:

y(x) = x3+α.

A numerical solutions for this problem is presented by Baskonus at all in [2] using
fractional Adams-Bashfort-Moulton method (FABMM).

Using (PLSM):

• We compute a solution of the type:

ỹ(x) = d0 + d1 · x1 + d2 · x2 + d3 · x3 + d4 · x4

with initial condition: ỹ(0) = 0 we obtain: d0 = 0.

• The approximate solution becomes:

ỹ(x) = d1 · x1 + d2 · x2 + d3 · x3 + d4 · x4.

• The corresponding remainder is:

R(x) =
4x3/4

(
385d1 + 8x

(
55d2 + 60d3x+ 64d4x

2
))

1155Γ
(
3
4

) +

+ d1x+ d2x
2 + d3x

3 + d4x
4 − x13/4 − 1

6
x3Γ

(
17

4

)
. (13)

Next we compute:

J (d1, d2, d3, · · · , dm) =

1
30∫

0

R2(ỹ)dx

and minimize it obtaining the values:

d1 = 3, 53901 · 10−6; d2 = 0, 00131029; d3 = 0, 387136, d4 = 2, 29079.

• The approximate analytical solution of the problem (12) using (PLSM) is:

ỹ(x) = 3, 53901 · 10−6 · x+ 0, 00131029 · x2 + 0, 387136 · x3 + 2, 29079 · x4.

Table 1 present the comparison between absolute errors coresponding to the
numerical solution proposed by Baskonus in [2] using (FABMM) and aur solution
(PLSM).

From the table, it is easy to see that using (PLSM) results are better than
using (FABMM).

Additionally, (PLSM) obtains the analytical solution of the polynomial form
of the problem, not only numerical solutions, thus demonstrating the usefulness
and accuracy of the (PLSM).
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Table 1: Numerical results

x Exactsolution Error(FABMM) Error(PLSM)

0.0033333 2.82× 10−3 3.8343× 10−9 2.9598× 10−9

0.0066667 1.73× 10−3 2.1194× 10−8 7.4355× 10−11

0.0100000 3.31× 10−4 5.4419× 10−8 1.8279× 10−9

0.0133333 1.15× 10−3 1.0405× 10−7 1.1658× 10−9

0.0166667 1.75× 10−3 1.7047× 10−7 6.2667× 10−10

0.0200000 2.36× 10−3 2.5705× 10−7 1.8004× 10−9

0.0233333 1.49× 10−3 3.5512× 10−7 1.2389× 10−9

0.0266667 2.66× 10−3 4.7380× 10−7 7.2161× 10−10

0.0300000 4.88× 10−3 6.1050× 10−7 1.7042× 10−9

0.0333333 0 7.6535× 10−7 3.1652× 10−9

Figure 1 - The approximate analytical solution using (PLSM)

Figure 2 - The absolute errors corresponding to the approximations given by
(PLSM)

BUPT



PLSM for fractional differential equation 47

4 Conclusions

The computations performed show that (PLSM) allows us to obtain approxima-
tions with an error relative to the exact or numerical solution smaller than the
errors obtained using by fractional Adams-Bashforth-Moulton method (FABMM).

The application presented emphasize the high accuracy of the method by
means of a comparison with previous results.
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E-mail: mspasca@yahoo.com
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