UNIVERSITATEA "POLITEHNICA" DIN TIMIȘOARA FACULTATEA DE CONSTRUCȚII ȘI ARHITECTURĂ DEPARTAMENTUL DE CONSTRUCȚII METALICE ȘI MECANICA CONSTRUCȚIILOR

Ing. MIRELA ACHIM

TEZĂ DE DOCTORAT STUDIU PRIVIND CALCULUL ȘI COMPORTAREA GRINZILOR METALICE CU GOLURI ÎN INIMĂ, CU PLACA DE BETON ARMAT A PLANȘEULUI

CONDUCĂTOR ȘTIINȚIFIC Acad. Dr.H.C. Prof. Em. DAN MATEESCU

UNIVE TRANSP 1 631 909 369 B

Timişoara 2001

CAPITOLUL 1

ASPECTE GENERALE PRIVIND CONSTRUCȚIILE MIXTE OȚEL-BETON

1.1 INTRODUCERE

În prezent, pe scară tot mai largă s-a trecut la utilizarea planșeelor mixte oțel-beton pentru realizarea clădirilor etajate. Elementele principale ale acestor planșee mixte îl reprezintă grinzile mixte oțel-beton.

Rolul principal al planșeelor clădirilor etajate este acela de a realiza suprafețe orizontale între etaje, ce servesc la preluarea încărcărilor gravitaționale – permanente și utile – pe care le transmit apoi la grinzile și la stâlpii de susținere a acestora. Planșeele au de asemenea și un alt rol structural important, participând la transmiterea forțelor orizontale ce iau naștere din acțiunea vântului și din acțiunea seismică asupra construcției. Aceasta deoarece planșeele lucrează ca niște diafragme orizontale care preiau forțele orizontale din vânt și seism.

În general un planșeu este format din: grinzile principale (GP), care reazemă pe stâlpii de susținere (S), și grinzile secundare (GS) rezemate pe grinzile principale sau pe stâlpi, conform Figurii 1.1 [1].

Fig.1.1 Vederea în plan a elementelor planșeului

Grinzile principale pot fi alcătuite fie sub formă de grinzi cu inimă plină, fie ca și grinzi cu goluri dese în inimă, hexagonale, octogonale, circulare sau elipsoidale, fie ca grinzi cu zăbrele, în timp ce grinzile secundare se realizează ca și grinzi cu inimă plină sau ca și grinzi cu goluri.

1

În literatura de specialitate sunt date indicații cu privire la deschiderile grinzilor principale L și a grinzilor secundare l, precum și a distanțelor dintre grinzile secundare e (Fig.1.1), cu limitele uzuale în care se încadrează aceste distante:

-	deschiderile grinzilor principale:	
	L = (5.015.0) m	(1.1)
-	deschiderile grinzilor secundare:	
	l = (4.010.0) m	(1.2)
-	distanța dintre grinzile secundare:	
	e = (2.03.0)m	(1.3)

(1.3)

Planseele mixte au în alcătuire, pe lângă grinzile cu stâlpii metalici, și dale (plăci) din beton armat sustinute de acestea.

1.2 NOTIUNI GENERALE PRIVIND DEFINIREA CONSTRUCTIILOR MIXTE

Soluția modernă de realizare a planșeelor pentru clădirile etajate este aceea a planșeelor mixte otel-beton cu conlucrare.

Planșeele cu grinzi mixte oțel-beton sunt formate din grinzile din oțel și o dală din beton armat. Dala de beton armat poate fi realizată ca o dală plină turnată în cofraj din scânduri sau metalic cu sustineri din popi de lemn sau din tevi de otel, sau ca o dală nervurată. În acest ultim caz se utilizează table cutate cu pereți subțiri, îndoite la rece, care sunt rezemate pe sistemul de grinzi principale si secundare. Tablele cutate (nervurate) îndeplinesc pe lângă rolul de cofraj pentru dala de beton armat turnată la fața locului, și rolul de armătură inferioară pentru dala de beton după întărirea betonului. Se folosesc în general table cutate speciale amprentate, care sunt prevăzute pe fetele cutelor cu amprente speciale, sub forma unor striuri, care sporesc aderenta cu placa de beton.

Tablele cutate din otel pot fi fixate de grinzile metalice, prin puncte de sudură, fără a asigura în acest caz o legătură directă între grinzile de oțel și dala de beton armat. Se spune în acest caz că planseele mixte au o dală de beton armat neparticipantă.

Există însă și posibilitatea de a asigura o legătură directă, între placa de beton armat și grinda metalică, prin intermediul unor conectori, de regulă de tip gujon, care sunt conectori de tip dorn prevăzut la partea superioară cu un cap de formă circulară, sudat. Acești conectori de tip gujon (dorn), sunt sudați la fața locului de profilul metalic dublu T, la dalele pline din beton armat. În cazul dalelor nervurate, sudura automată de prindere a guioanelor de grinda metalică, traversează și tabla cutată. În acest caz, în plus față de acțiunea compozită a betonului cu tabla cutată suport a dalei de beton, se realizează o acțiune compozită a acesteia cu profilul metalic prin intermediul conectorilor. Se poate spune în acest caz că planșeele mixte prezintă o dală de beton participantă.

În funcție de tipul de legături dintre dala de beton și structura de rezistență metalică a planșeelor, pot exista trei tipuri de planșee, și anume:

- Planșee de beton cu dală neparticipantă, la care nu se execută o legătură directă între grinzile metalice și dala de beton

Planșee de beton cu dală participantă, la care numai grinzile lucrează pe direcția lor ca secțiuni compuse oțel-beton

Planșee de beton cu dală participantă pe două direcții

La construcția clădirilor etajate, alegerea unei dale, participantă sau neparticipantă, depinde în principal de mărimea și dimensiunile construcției proiectate. Fără a exista o regulă absolută, în general este mai economic de a avea o placă participantă, atunci când suprafața planșeelor este mare, și când trebuie folosite mai multe sute de gujoane (Figura 1.2).

Pentru grinzile mixte, efectul legăturii dintre dala de beton și grinda metalică este acela de a crește rezistența ponderată la încovoiere a grinzii cu până la 95% în cazul unei acțiuni compozite totale și cu până la 70% pentru o acțiune compozită parțială, precum și de a crește rigiditatea grinzii.

1

DP = dală plină	DN = dală nervurată	CG = conectori tip gujon
GP = grindă principală	GS = grindă secundară	GM = grindă metalică

Fig.1.2 Grinzi mixte cu dala plină (a) și nervurată (b)

Datorită creșterii rezistenței și a rigidității grinzilor de la planșeele mixte, acestea au înălțime mai mică, față de planșeele obișnuite, pentru aceleași încărcări. Aceasta duce la reducerea înălțimii etajelor și a consumului de oțel cu circa 30%.

1.3 MATERIALE FOLOSITE LA REALIZAREA GRINZILOR MIXTE

La realizarea planșeelor cu grinzi mixte oțel-beton, se folosesc mai multe materiale: beton, profile metalice, armături, table cutate și conectori. Calitatea și caracteristicile acestor materiale sunt date în standardele românești și în norma europeană EUROCODE 4.

1.3.1 Betonul din placa grinzii mixte oțel-beton

Placa de beton a grinzilor mixte, poate fi realizată din betoane de greutate normală sau din betoane ușoare.

1.3.1.1 Clasa de rezistență a betonului

Pentru realizarea elementelor compuse oțel-beton cu eficiență maximă, se vor folosi betoane care trebuie să aibă rezistența la compresiune măsurată la 28 de zile pe probe cilindrice, f_{ck} , de cel puțin 20 N/mm² (MPa), conform EUROCODE 4 și EUROCODE 2.

În tabelul 1.1 sunt indicate pentru diferite clase de rezistență ale betonului normal, notate cu C urmat de raportul a două grupe de cifre, care indică rezistența caracteristică f_{ck} la compresiune

a betonului. Primul grup de cifre indică rezistența măsurată pe probe cilindrice, iar al doilea cea măsurată pe cuburi din beton.

În tabel sunt date conform EUROCODE 4, și rezistența medie la tracțiune f_{ctm} pentru beton cu greutatea specifică normală, ca și rezistențele caracteristice la întindere, la limita inferioară cu fractilul de 5%, $f_{ctk0.05}$, și la limita superioară cu fractilul de 95%, $f_{ctk0.95}$.

În tabelul 1.1 sunt prezentate conform tratatului privind calculul structurilor din beton după EUROCODE 2, editat prin Tempus Phare 01198 la Timișoara în 1997 [21] și valorile corespunzătoare ale rezistențelor betonului după Norma românească STAS 10107/0-90.

Clase de rezist.	C12/	C16/	C20/	C25/	C30/	C35/	C40/	C45/	C50/
pt.beton cf. EC4	16	20	25	30	37	45	50	55	60
Rezist.caract. la									
compresiune pe	12	16	20	25	30	35	40	45	50
cilindru f _{ck}									
Valoarea medie									
a rezistenței la	20	24	28	33	38	43	48	53	58
compresiune f _{cm}									
Valoarea medie									
a rezistenței la	1.6	1.9	2.2	2.6	2.9	3.2	3.5	3.8	4.1
Intindere									
$\frac{I_{ctm} - 0.5I_{ck}}{I_{itm} inf 5\%}$				-					
razistantai la				1.0	•		2.5	0.7	• •
întindere		1.3	1.5	1.8	2.0	2.2	2.5	2.7	2.9
fun or=0.7fu									
Lim.sup.95% a									
rezistentei la	20	25	20	2.2	20	12	16	10	5.2
întindere	2.0	2.5	2.9	5.5	3.0	4.2	4.0	4.7	5.5
$f_{ct0.95} = 1.3 f_{ctm}$									
Rezistența la									
forțe tăietoare	-	_	0.26	0.3	0.34	0.37	0.41	0.41	0.41
$(\gamma_{c}=1.5) \tau_{Rd}$			0.20	0.5	0.51	0.57	0.11		•
Tip de rezist.	Bc15	Bc20	Bc25	Bc30	Bc35	Bc40	Bc50	Bc60	
Notații STAS	B200	B250	B300	B400	B450	B500	B600	B700	
10107/0-90									
Rezist. caract. la	ĺ								
compresione pe	12.5	16.6	20.5	24.3	28	31.6	38.5	45	
Rezist, medie la							-		· · · · ·
compresiune pe	20	25	20	10	15	50	60	70	
$cub R_b (f_{cm})$	20	25	50	40	43	50	00	/0	
Rezist.caract. la			i						
întindere 5%	1 19	1 4 3	1.65	1.86	2.03	22	2 51	2 78	
$\mathbf{R}_{tk}(\mathbf{f}_{ct0,05})$	1.17	1.75	1.05	1.00	2.05	£.2	I	2.70	
Rezist. medie la									
întindere	1.71	1.98	2.24	2.71	2.94				
$R_t = 0.22 R_b^{2/3} \cong f_{ctm}$									
Rezist. de calcul	0.8	0.95	1.1	1.25	1.35	1.45	1.65	1.85	
la întindere R _t									

Clasele de rezist. a betonului după EC4 și STAS 10107/0-90, în N/mm²(MPa) Tabelul1.1

Pentru betoane ușoare se pot obține rezistențele la tracțiune, înmulțind valorile din tabel cu coeficientul:

$$\eta = 0.3 + 0.7 \left(\frac{\rho}{2400}\right) \tag{1.4}$$

unde: ρ : este densitatea betonului ușor exprimată în kg/m³

1.3.1.2 Modulul de elasticitate secant al betonului

În tabelul 1.2 sunt indicate valorile nominale ale modulului secant mediu E_{cm} , după EC4, care se poate calcula cu relația (1.5),pentru betoanele de greutate normală cu densitatea $\rho = 2400$ kg/m³, pentru încărcări de scurtă durată, care este funcție de clasa de rezistență f_{ck} :

$$E_{cm} = 9.5 \cdot \sqrt[3]{f_{ck} + 8} \tag{1.5}$$

Sunt date în tabelul 1.2 și valorile modulului de elasticitate al betonului la compresiune, dat de Norma românească STAS 10107/0-90.

Clasa de rezist. a bet. conf. EC4	C12/ 16	C16/ 20	C20/ 25	C25/ 30	C30/ 37	C35/ 45	C40/ 50	C45/ 55	C50/ 60
Modulul de elast. secant al betonului E _{cm}	26000	27500	29000	30500	32000	33500	35000	36000	37000
Tipul rezistenței betonului după STAS 10107/0-90	Bc15 B200	Bc20 B250	Bc25 B300	Bc30 B400	Bc35 B450	Bc40 B500	Bc50 B600	Bc60 B700	
Modulul de elast. la compresiune a betonului E _b	24000	27000	30000	32500	34000	36000	38000	40000	

Modulul de elasticitate secant E_{cm} după EC4 și STAS 10107/0-90 (N/mm²) Tabelul 1.2

Pentru un beton cu vârsta mai mică de 28 de zile, se calculează modulul de elasticitate plecând de la valorile din tabelul 1.2, cu relația (1.5) luând în considerare rezistența reală a betonului f_{ck} la timpul t<28 zile.

La betoane ușoare modulul de elasticitate secant se poate calcula înmulțind valorile din tabelul 1.2 cu raportul ($\rho/2400$), ρ fiind densitatea betonului ușor măsurată în kg/m³.

Pentru construcțiile mixte nu se folosesc betoane având marca superioară clasei C50/60.

1.3.1.3 Coeficienții de echivalență

Pentru calculul clădirilor, cu excepția analizei globale a structurilor suple, se obține o precizie suficientă ținând cont de deformația betonului, dată de fluaj, dacă se înlocuiește în analiza structurii, aria secțiunii de beton A_c , prin aria de oțel echivalentă egală cu A_c/n , unde n reprezintă coeficientul de echivalență nominal egal cu:

$$n = \frac{E_a}{E_c} \tag{1.6}$$

unde: E_a : este modulul de elasticitate al oțelului de construcție

 E_c : este modulul echivalent al betonului, care se ia în considerare cu valorile indicate după cum urmează

Dacă acest lucru este precizat prin proiect și în toate cazurile pentru clădiri destinate în principal pentru depozitare, se convine să se utilizeze valorile nominale E_c astfel:

 $E_{c}^{'} = E_{cm}$ - pentru efecte pe termen scurt $E_{c}^{'} = E_{cm}/3$ - pentru efecte pe termen lung $E_{c}^{'} = E_{cm}/2$ - pentru alte cazuri, E_{cm} având valorile din tabelul 1.2

1.3.1.4 Coeficientul lui Poisson

Pentru nevoile uzuale de calcul se poate considera valoarea nominală a coeficientului lui Poisson, privind deformațiile elastice, ca fiind egal cu 0.2. Este permis să se considere ca fiind egal cu 0, dacă se presupune că betonul întins este fisurat.

Pentru coeficientul de dilatare termică α_T , valoarea nominală se ia egală cu 10×10^{-6} / °C, pentru beton cu masa volumică curentă. Pentru beton ușor este în curs de studiu și aprobare valoarea $\alpha_T = 7 \times 10^{-6}$ / °C.

1.3.2 Oțelul pentru armătura flexibilă

Pentru oțelul din care se confecționează armătura flexibilă dispusă în dala de beton a grinzilor mixte, se vor respecta prevederile din EUROCODE 2, paragraful 2.3.2.

1.3.2.1 Tipuri de oțeluri folosite

Oțelurile cuprinse în EUROCODE 4, trebuie să se distingă:

- 1. După caracteristicile suprafeței armăturii, putând fi:
 - a. bare și fire lise, inclusiv plase sudate
 - b. bare și fire cu suprafața profilată cu nervuri (tip PC), inclusiv plase sudate de acest tip, care conferă o aderență crescută a armăturii, față de beton

Trebuie notat că în EC2, clauza 3.2.5.1 definește barele de aderență ridicată, ca bare al căror coeficient de suprafață pe proiecția nervurilor, notată cu f_R este mai mare sau egală cu valoarea dată de EN10080, în curs de elaborare, care conform tabelului 5 de la clauza 5.7.2 indică valori situate între 0.036, pentru diametrul barelor d = 4mm și 0.056 pentru bare cu diametrul d ≥ 11 mm.

2. După caracteristicile lor de ductilitate ce pot să fie, de ductilitate înaltă sau normală, conform paragrafului 3.2.4.2(2), din EUROCODE 2.

3. După sudabilitatea lor, pentru care se aplică clauzele 3.2.5.2 și 4.2.2.4.2 din EUROCODE 2.

1.3.2.2 Calități de oțeluri pentru armătura flexibilă

Calitatea (nuanța) de oțel folosit pentru armătura flexibilă, este indicată prin valoarea limitei de elasticitate caracteristică, specificată, f_{sk} , exprimată în N/mm² (MPa).

Calitățile normalizate de oțel pentru armătură, definite în EN10080 sau în normele naționale ale fiecărei țări, pentru calități ce nu sunt acoperite de EN10080. Pentru aceste caracteristici f_{sk} trebuie definite următoarele valori: rezistența la tracțiune f_t , raportul minim f_t/f_{sk} , alungirea

sub încărcarea maximă ϵ_u , toate ca valori caracteristice, precum și coeficientul de suprafață a proiecției nervurilor f_R .

1.3.2.3 Modulul de elasticitate longitudinal

Pentru calculul structurilor mixte, este permis pentru simplificare să se ia valoarea nominală a modulului de elasticitate longitudinal, E_s a armăturii flexibile, egal cu valoarea indicată în EUROCODE 3, pentru oțelul de construcții metalice, adică $E_s = 210 \text{ KN/mm}^2$ (GPa) = 210000 N/mm² (MPa), valoare care este diferită de cea indicată în EUROCODE 2, $E_s = 200 \text{ KN/mm}^2$.

1.3.2.4 Diagrama efort deformație a armăturilor

~

Pentru calculul structurilor mixte oțel-beton, diagrama efort-deformație poate fi considerată pentru simplificare, ca fiind formată din două porțiuni:

Fig. 1.3 Diagrama efort-deformație pentru calculul armăturii

- prima porțiune ce pleacă din origine cu o pantă egală cu E_s , până la f_{sk} sau f_{sk}/γ_s în funcție de clauza corespunzătoare din capitolul 4.

- a doua porțiune orizontală, sau, pentru rațiuni practice de calcul cu ajutorul calculatorului se poate considera că această porțiune poate avea o foarte ușoară pantă de ordinul $10^{-4} E_s$, în acest ultim caz, deformația limitându-se la 0.01. Valoarea coeficientului de dilatare termică liniară, se poate lua simplificat egal cu $\alpha_T = 10 \times 10^{-6}/^{\circ}C$.

1.3.3 Oțelul de construcție pentru profilul metalic al grinzii mixte

Prima parte a EUROCODE 4, care acoperă calculul structurilor mixte oțel-beton, are la bază materialele din oțel, care sunt elaborate astfel ca să fie conforme cu dispozițiunile din capitolul 3 al normei EUROCODE 3. Nici o regulă de aplicare nu se referă la folosirea oțelului de calitate superioară, cuprinse în Anexa D din EUROCODE 3.

Secțiunea 3.2 din EUROCODE 3, este aplicabilă și la structurile mixte oțel-beton.

Cele mai importante caracteristici, întâlnite cel mai frecvent în alcătuirea și calculul construcțiilor mixte oțel-beton, sunt rezumate în cele ce urmează.

Pentru profilele metalice, laminate la cald, folosite la construcții mixte, valorile nominale ale limitei de curgere f_y și a limitei de rupere la tracțiune f_u , sunt date în EUROCODE 4 în tabelul 3.3, unde limita de curgere este denumită limită de elasticitate (Fig.1.4), și au valorile din tabelul 1.3.

Limita de curgere f _y ș	i de rupere f _u a profilelor metalice	Tabelul 1.3
------------------------------------	--	-------------

	Grosimea t* în mm						
Calități nominale de oțel	t ≤ 4	0mm	40mm < t ≤ 100mm				
	$f_y (N/mm^2)$	$f_u (N/mm^2)$	$f_y (N/mm^2)$	$f_u (N/mm^2)$			
Fe 360 (OL37)	235 (240)	360 (370)	215 (220)	340 (350)			
Fe 430 (OL44)	275 (280)	430 (440)	255 (260)	410 (420)			
Fe 510 (OL52)	355 (360)	510 (520)	335 (340)	490 (500)			
* t [.] reprezintă grosimea nor	ninală a element	nhi					

În tabelul 1.3, în paranteză sunt trecute notațiile oțelurilor, cu limita lor de curgere și de rupere, după normele românești din STAS 10108/0-78, iar fără paranteză, cele după EUROCODE 4.

Valorile nominale ale rezistențelor de curgere și de rupere, pot fi adoptate ca valori caracteristice (normate) la calculul structurilor.

1.3.3.2 Valori de calcul ale unor proprietăți a oțelului

Pentru oțelurile din profile laminate, folosite la construcțiile mixte, acoperite de prezentul EUROCODE 4, se pot lua în considerare la calcul, următoarele valori ale proprietăților oțelului.

- modulul de elasticitate longitudinal $E_a = 210000 \text{ N/mm}^2$
- modulul de elasticitate transversal (de forfecare) $G_a = \frac{E_a}{2(1+v_{\perp})}$
- coeficientul lui Poisson $v_a = 0.3$
- masa volumică a oțelului (densitatea) $\rho_a = 7850 \text{ kg/m}^3$

Pentru simplificarea calculului structurilor mixte, se admite să se ia valoarea coeficientului de dilatare termică liniară, $\alpha_T = 10 \times 10^{-6}$, care este valoarea indicată în EUROCODE 2 pentru oțelul din armături și pentru betonul normal cu masa volumică curentă.

1.3.3.3 Relația dintre efort și deformație

În conformitate cu clauza 5.2.1.4 din EUROCODE 3, pentru alcătuirea și calculul construcțiilor mixte, este permis să se ia în considerare o relație idealizată între efort și deformație pentru oțelul de construcție din profilul metalic, sub forma elastică-perfect plastică, așa cum este indicat în figura 1.4.

- ____

Q

Fig.1.4 Relația efort-deformație biliniară

Pentru a evita eventualele dificultăți privind calculul structurilor mixte printr-un calcul automat, cu ajutorul calculatorului, este permis să se utilizeze și o altă relație efort-deformație biliniară, indicată în figura 1.5. În acest caz, palierul plastic are o ușoară înclinație, nefiind perfect plastic după atingerea limitei de curgere.

Fig.1.5 Diagrama idealizată pentru calculul structurilor pe calculator

Dimensiunile și masa pe unitatea de lungime a profilelor, plăcilor și țevilor laminate, ca și toleranțele lor de dimensiuni și de masă, trebuie să respecte norma de referință 2 din EUROCODE 3.

1.3.4 Table cutate (profilate) din otel pentru dale mixte otel-beton

Partea 1.1 din EUROCODE 4. acoperă calculul dalelor (plăcilor) mixte care cuprind table cutate din oțel. Aceste table cutate (profilate) sunt realizate din oțel normal conform EN10025, din oțel de înaltă rezistență conform prEN10113, table din oțel laminate la rece conform normei ISO4997-1978, sau table din oțel galvanizate în conformitate cu proiectul de normă prEN10147.

10

Este recomandabil să se aleagă o grosime a tablei metalice, din care se realizează tabla cutată pentru planșee mixte, mai mare sau cel puțin egală cu 0.75mm, în afara cazului când tabla de oțel nu este folosită ca și cofraj permanent. Folosirea unei table cu grosimea mai mică nu este exclusă, cu condiția ca ea să fie confirmată și validată, printr-un calcul teoretic și prin rezultatele unor încercări experimentale.

Partea 1.3 din EUROCODE 3 se aplică și la tablele cutate din oțel folosite la dalele mixte oțelbeton.

1.3.4.1 Limita de curgere la table cutate

Valorile nominale ale limitei de curgere a materialului de bază din care se confecționează tablele cutate, f_{yb} sunt indicate în tabelul 3.4 din EUROCODE 4, pentru calitățile de oțel folosite, conform normelor menționate la începutul paragrafului 1.3.4 de mai sus și au valorile din tabelul 1.4.

Limita de curgere a materialului de bază a tablelor cutate

Tabelul 1.4

Norma	Calitatea	Calitatea	f _{yb} – EC4	f _{yb} – STAS
	oțelului	coresp. STAS	(N/mm^2)	(N/mm^2)
	Fe 360	OL 37	235	240
EN 10025	Fe 430	OL 44	275	280
	Fe 510	OL 52	355	360
	Fe.E 275N	-	275	-
prEN 10113	Fe.E 355N	-	355	-
partea 2	Fe.E 460N	-	460	-
	Fe.E 275TM	-	275	-
prEN 10113	Fe.E 355TM	-	355	-
partea 3	Fe.E 420TM	-	420	-
	Fe.E 460TM	-	460	-
	CR 220	-	220	-
ISO 4997	CR 250	-	250	_
	CR 320	-	320	-
	Fe.E 220G	-	220	-
prEN 10147	Fe.E 250G	-	250	-
	Fe.E 280G	-	280	-
	Fe.E 320G	-	320	-
	Fe.E 350G	-	350	-

Valorile nominale ale unor proprietăți ale materialelor, ca: modulul de elasticitate longitudinal E_a și transversal G_a , coeficientul lui Poisson v_a și masa volumică ρ_a , sunt și în acest caz cele indicate în paragraful 1.3.3.2.

Relația idealizată între efort și deformație indicată în paragraful 1.3.3.3 pentru oțelul de construcție din profilul metalic laminat la cald, se poate aplica și în cazul tablelor cutate din oțel.

1.3.4.2 Acoperirea suprafeței tablelor cutate

Suprafețele expuse ale tablelor cutate din oțel, trebuie să fie protejate convenabil pentru a rezista condițiilor atmosferice specifice.

Dacă este prevăzută o acoperire cu zinc, aceasta se face conform prevederilor normei ISO4998-77 "Table din oțel cu carbon de calitate, pentru construcții, galvanizate la cald în baie continuă", sau a altor norme.

O acoperire a ambelor fețe a tablei cutate cu 275 g/m² de masă totală, este în general suficientă în cazul planșeelor interioare în mediu neagresiv, dar această specificație poate varia în funcție de condițiile de folosire. EUROCODE 4 recomandă să nu se folosească altă tehnică de acoperire decât galvanizarea, decât dacă este demonstrat prin încercări că tablele respectă exigențele din această normă.

1.3.5 Mijloace de legătură între grinda metalică și dala de beton

Mijloacele de legătură între grinda metalică și dala de beton a grinzilor mixte, trebuie să fie adaptate la condițiile prescrise.

Pentru alte mijloace de legătură decât conectorii, EUROCODE 4 prevede că paragraful 3.3 din EUROCODE 3 este aplicabil.

1.3.5.1 Conectorii

Legătura dintre profilul laminat sau compus din oțel și placa de beton armat a construcțiilor mixte, se realizează prin intermediul conectorilor din oțel. Conectorii pot fi de mai multe tipuri, cel mai des fiind utilizate *gujoanele cu cap*. Acestea sunt formate dintr-o tijă cilindrică și un cap rotund și ele se sudează automat de talpa superioară a profilului metalic.

1.3.5.2 Rezistențele conectorilor

Rezistența unui conector este egală cu forța maximă aplicată în direcția considerată – în cele mai multe cazuri, paralel cu interfața dintre placa de beton și grinda de oțel – ce poate fi preluată de acest conector înainte de distrugerea lui. Trebuie să se țină seama de faptul că rezistența unui conector poate fi diferită în cazul că sensul de apăsare se inversează.

Rezistența caracteristică (normată) P_{Rk} este rezistența specificată în această parte, de la care se poate considera că se situează mai puțin de 5% din rezultatele încercărilor pe eșantioanele unui grup omogen, cu valori mai mici ca aceasta. Dacă o rezistență minimă garantată este precizată, aceasta poate fi considerată ca rezistență caracteristică.

Rezistența de calcul P_{Rd} este rezistența folosită la calculul conectorilor și se obține împărțind rezistența caracteristică, la coeficientul parțial de siguranță $\gamma_v = 1.25$.

Materialul din care se realizează conectorii, trebuie să fie de o calitate care să țină seama de comportamentul cerut și de metoda de fixare a acestora de structura din oțel. Dacă fixarea se face prin sudură, calitatea materialului trebuie să aibă în vedere tehnologia de sudare folosită. Dacă se folosesc ancoraje sau bucle de oțel rotund, drept conectori, trebuie în particular să se aibă în vedere că materialul lor este ușor sudabil.

Caracteristicile mecanice specifice materialului conectorilor, trebuie să respecte în plus următoarele prescripții:

- raportul dintre rezistența specifică ruperii la tracțiune f_u și limita de curgere minimă specifică, trebuie să fie mai mare ca 1.2

aria inițială a secțiunii transversale a epruvetei, trebuie să fie mai mare de 12%. Pentru conectorii de tip gujon, aceste proprietăți ale materialelor se referă la produsele finite. Se recomandă să se aleagă gujoane sudate ca și conectori, la care capul gujonului să aibă un diametru de cel puțin 1.5d (d fiind diametrul tijei gujonului) și o înălțime de cel puțin 0.4d. Materialul din gujoane trebuie să respecte toate normele europene privitoare la materialul metalic.

12

1.4 ELEMENTE DE CONSTRUCȚII MIXTE

După cum s-a arătat în paragraful 1.1, construcțiile mixte oțel-beton sunt folosite pe scară tot mai largă, la realizarea construcțiilor etajate.

Elementele principale ale construcțiilor mixte oțel-beton, sunt definite în paragraful 1.4.2 din EUROCODE 4, unde sunt utilizați următorii termeni:

- *Structura (osatura)* este un ansamblu întreg sau parțial al unei construcții, ce cuprinde elemente structurale, asamblate și dimensionate astfel încât împreună să reziste la încărcările ce acționează asupra lor.

- Structura mixtă este o structură destinată unei clădiri sau unei construcții similare, în care toată sau o parte din grinzile și stâlpii structurii sunt elemente mixte.

- *Elementul structural mixt* este un element al structurii de rezistență ce are componente din beton, din oțel de construcție, sau din table cutate formate la rece, care sunt legate între ele prin conectori, ce au rolul de a limita lunecarea longitudinală între beton și oțel și deci separarea celor două elemente componente.

- Structura sau elementul structural sprijinit (susținut) reprezintă o structură în ansamblu sau un element component, ale căror părți din oțel sunt susținute până ce parte din beton are asigurată o rezistență suficientă după întărire.

- Structura sau elementul structural nesprijinit (nesusținut) reprezintă o structură în ansamblu sau un element structural component, în care greutatea părții din beton este aplicată asupra părților din oțel, așa cum este în cazul dalelor prefabricate din beton armat.

- *Conexiunea* reprezintă un sistem de legături și îmbinări între elementele componente din beton și oțel, a unui element structural mixt, ce prezintă o rezistență suficientă pentru a permite să se considere și să se calculeze cele două componente ca părți ale unui singur element structural. În general, termenul de *conexiune* definește (cu unele excepții cuprinse în subparagrafele 4.8.2.7 și 7.1.2.2 din EUROCODE 4) o legătură mecanică ce rezistă la forfecare și nu se bazează pe aderența naturală sau pe altă legătură la interfața oțelbeton.

- *Grinda mixtă oțel-beton* este un element structural compus, solicitat în principal la încovoiere. În EUROCODE 4 sunt tratate doar grinzile mixte la care secțiunea grinzii metalice din oțel este simetrică față de axa de inerție minimă cuprinsă în planul inimii.

- Grinda mixtă oțel-beton continuă este o grindă pe trei sau mai multe reazeme, la care secțiunea grinzii de oțel, laminată sau compusă sudată, este fie continuă în dreptul reazemelor (la grinzi cu deschideri mici), fie asamblată prin legături rigide, având o rezistență completă, la care condițiile de rezemare presupun că reazemele nu transmit momente încovoietoare semnificative, grinzii. La nivelul reazemelor intermediare, grinda poate să necesite sau o armătură specifică suplimentară, sau numai o armătură nominală.

- *Stâlpii cu secțiunea mixtă* sunt elemente structurale mixte solicitate în principal la compresiune și la încovoiere, a căror formă a secțiunii transversale este prezentată în paragraful 4.8 din EUROCODE 4.

- Dalele sau plăcile mixte sunt elemente structurale mixte oțel-beton, bidimensionale, supuse în principal la încovoiere, realizate cu ajutorul tablelor cutate, ce pot îndeplini următoarele roluri:

- Sunt utilizate drept cofraj permanent, capabil să preia greutatea betonului proaspăt, a armăturilor și încărcările din obiectele de șantier

- După întărirea betonului, tablele cutate se unifică structural cu acesta și se comportă în totalitate sau ca o parte a armăturii întinse a dalei de beton În principal, elementele structurale ale construcțiilor mixte, sunt:

- grinzile cu secțiune mixtă (compusă) oțel-beton
- stâlpii cu secțiune mixtă (compusă) oțel-beton

1.4.1 Grinzile cu secțiune mixtă oțel-beton

Așa cum s-a arătat în paragraful 1.1 și în figura 1.1, grinzile mixte oțel-beton pot fi de două tipuri: grinzi principale GP și grinzi secundare GS (fig.1.1).

Distanța între grinzile secundare GS, variază între (2.0...3.0...3.5)m, ea fiind limitată de capacitatea cofrajului din table cutate de oțel, care trebuie să suporte greutatea betonului proaspăt turnat pe distanța dintre grinzi.

În ce privește deschiderea grinzilor secundare sau principale, mixte oțel-beton, aceasta poate atinge teoretic 20m. Totuși, în scopul limitării înălțimii totale a șarpantei planșeelor (formată din înălțimea grinzii metalice h și grosimea plăcii de beton armat h_c , adică $h+h_c$), deschiderea grinzilor L sau l (fig.1.1), nu trebuie să depășească 15m.

În general zveltețea grinzilor metalice, respectiv a grinzilor mixte, exprimată prin raportul deschiderii și a înălțimii acestora, se recomandă să se încadreze în următoarele limite (fig.1.1 și 1.2.a):

$$\frac{L}{h} \le 30 \tag{1.7}$$

$$15 \le \frac{L}{h+h_c} \le 25 \tag{1.8}$$

Aceste valori limită asigură o bună comportare în exploatare (serviciu) a acestor grinzi, ceea ce înseamnă că au săgeți și vibrații acceptabile, precum și rotații reduse pe reazeme, acestea limitând fisurarea dalei de beton pe reazeme.

Grinzile mixte oțel-beton sunt formate din două elemente: grinda cu inimă plină din oțel și dala (placa) din beton armat.

1.4.1.1 Grinda metalică a grinzii mixte oțel-beton

Grinda metalică a grinzii mixte oțel-beton, poate fi realizată dintr-un profil laminat la cald, pentru care se recomandă profilele europene cu tălpi late și cu grosimea constantă IPE, HEA și HEB (fig.1.6.a) sau din profile dublu T compuse sudate (fig.1.6.b). În ce privește profilele compuse sudate, acestea pot avea secțiunea dublu simetrică sau monosimetrică, față de axa maximă de inerție, având talpa inferioară mai lată (fig.1.6.b).

Se pot întâlni așa cum arată fig.4.1 din EUROCODE 4, și secțiuni (fig.1.6.c) din țevi dreptunghiulare pentru realizarea grinzii metalice.

14

Fig.1.6 Exemple de secțiuni tipice pentru grinzi mixte oțel-beton

1.4.1.2 Placa (dala) din beton armat

Placa din beton armat a grinzilor mixte oțel-beton, poate fi realizată ca dală plină turnată pe cofraje din lemn sau din table metalice, sau ca dală nervurată la care betonul este turnat pe tabla cutată, care participă și la asigurarea rezistenței grinzii mixte.

Alcătuirea, calculul și dimensionarea dalei din beton armat, începe în general prin alegerea grosimii dalei și a tablei cutate în cazul dalelor nervurate.

Grosimea dalei din beton armat, care se ia în considerare la calculul grinzilor mixte, numită grosimea eficace h_c , depinde de tipul dalei: plină sau nervurată. Dala de beton este considerată ca fiind o dală plină, dacă ea se toarnă pe un cofraj din scândură, sau din tablă plană. Se consideră dală plină și dacă ea se toarnă pe table ondulate sau cutate, dar care au nervuri cu înălțime mică, sau situate la distanță mare una de alta și care satisfac următoarele condiții (figura 1.7):

- pentru varianta cu tablă ondulată:

$$h_c = t + h_t \qquad \text{dacă:} \quad h_t \le 0.25h_c \tag{1.9}$$

- pentru varianta cu tablă cutată nervurată:

$$h_c = t + h_t$$
 dacă: $\frac{w_1 \ge 125; w_2 \le 0.2w_1; w_2 \le 0.25h_c}{h_t \le 40mm; h_t \le h_c}$ (1.10)

Fig. 1.7 Grosimea eficace = grosimea totală a dalei

Tipurile de tablă cutată din figura de mai sus, se utilizează în general la podurile mixte.

Fig.1.8 Grosimea eficace a dalei de beton

Pentru planșeele clădirilor se folosesc în general ca și cofraj și element de rezistență pentru placă, table cutate cu nervuri late, la care lățimea medie a cutelor $w \ge 2h_t$, la care h_t este înălțimea cutelor, fiind cuprinsă între 35...75mm.(figura 1.8.a)

Grosimea betonului de deasupra nervurilor cofrajului din tablă cutată t, se ia egală cu 65, 75, 85 sau 100mm și se utilizează în general un beton cu densitatea normală $\rho = 2300 \text{ kg/m}^3$, cu rezistența la compresiune f_c de 20 sau 25 N/mm² (MPa). În unele cazuri poate fi economic să se utilizeze beton ușor cu densitatea $\rho = 1850 \text{ kg/m}^3$.

În cazul când placa de beton este o placă plină (figura 1.6.a), atunci grosimea eficace a acesteia este egală cu toată grosimea plăcii de beton.

1.4.2 Stâlpii cu secțiune mixtă oțel-beton

Stâlpii cu secțiune mixtă oțel-beton sunt formați din profile metalice laminate sau compuse sudate, care sunt înglobate în beton armat, fie total, fie parțial (figura 1.9). Tot în categoria stâlpilor cu secțiune mixtă oțel-beton se încadrează și stâlpii din țeavă dreptunghiulară sau circulară, umpluți cu beton la interior (figura 1.9).

În figura1.9 sunt prezentate soluțiile caracteristice de realizare a stâlpilor cu secțiune mixtă oțel-beton după cum urmează:

- stâlpi cu secțiune mixtă oțel-beton, cu profil metalic laminat, înglobat total în beton și având armături longitudinale și etrieri (fig. 1.9.a)

- stâlpi cu secțiune mixtă oțel-beton, cu profil metalic compus sudat, înglobat parțial în beton, cu fețele tălpilor profilului la exterior și având armături longitudinale și etrieri (fig.1.9.b)

- stâlpi cu secțiune mixtă oțel-beton, cu profil metalic în cruce, înglobat parțial în beton cu fețele tălpilor profilului la exterior (fig.1.9.c)

- stâlpi cu secțiune mixtă oțel-beton, cu profil metalic din țeavă dreptunghiulară umplută cu beton (fig.1.9.d)

- stâlpi cu secțiune mixtă oțel-beton, cu profil metalic din țeavă circulară umplută cu beton (fig.1.9.e)

- stâlpi cu secțiune mixtă oțel-beton, cu profil metalic din țeavă circulară și un profil

15

16

metalic dublu T suplimentar introdus în interior (fig. 1.9.f)

Fig.1.9 Exemple tipice de stâlpi cu secțiune mixtă oțel-beton

1.5. AVANTAJELE CONSTRUCȚIILOR MIXTE OȚEL-BETON

Construcțiile mixte oțel-beton și în special grinzile compuse oțel-beton pentru planșeele clădirilor multietajate, prezintă o serie de avantaje dintre care cele mai importante sunt următoarele:

1. Grinzile compuse, formate dintr-un profil metalic dublu T, laminat sau compus sudat,

având secțiunea simetrică sau nesimetrică și o placă de beton armat, legată solidar de grinda metalică prin intermediul conectorilor, are avantajul că folosește rațional capacitatea portantă a grinzii de oțel și a dalei de beton.

2. Planșeele cu grinzi mixte oțel-beton au și avantajul că pot acoperi deschideri mai mari decât grinzile din beton armat și chiar decât cele metalice.

3. Planșeele clădirilor cu multe etaje, având grinzi compuse oțel-beton, au o greutate mai mică decât planșeele din beton armat, datorită faptului că grinzile metalice sunt mai ușoare decât grinzile din beton și sunt la distanțe mult mai mari decât grinzile din beton iar placa de beton armat are grosime mai mică la planșeele mixte decât la planșeele de beton armat, mai ales în cazul dalelor mixte nervurate, cu table cutate și beton turnat peste acestea, deci planșee mai ușoare.

4. Planșeele mixte ale clădirilor multietajate, au o rigiditate mult mai mare decât planșeele metalice, ceea ce înseamnă că au deformații mai mici, cu efecte favorabile asupra condițiilor de exploatare a acestora.

1.6. DEZAVANTAJELE CONSTRUCȚIILOR MIXTE OȚEL-BETON

Construcțiile mixte oțel-beton și în special grinzile compuse, prezintă și unele dezavantaje dintre care sunt de remarcat următoarele:

1. Grinzile compuse oțel-beton au o greutate mai mare în comparație cu structurile metalice, pentru clădiri înalte.

2. La execuția construcțiilor mixte și în particular a grinzilor compuse oțel-beton, apar unele complicații de execuție, care măresc durata de lucru, comparativ cu construcțiile cu structuri metalice. Aceste complicații apar și datorită necesității fixării pe grinda de oțel a conectorilor, care asigură conlucrarea acesteia cu dala de beton a grinzii mixte oțel-beton.

17

3. Construcțiile mixte oțel-beton, au un cost mai ridicat decât cele din beton sau metalice,

mai ales în cazul dalelor nervurate, datorită costului ridicat, al tablei cutate zincate și a conectorilor de tip gujon.

1.7. OBIECTUL TEZEI DE DOCTORAT

La execuția planșeelor mixte oțel-beton, apare în mod curent necesitatea înglobării unor conducte, țevi, canale de ventilație sau alte instalații în grosimea planșeelor.

Pentru a face posibil acest lucru, profilele metalice ale grinzilor mixte oțel-beton, trebuie să fie prevăzute cu goluri în inima profilului prin care să treacă aceste elemente ale diferitelor instalații. Forma și dimensiunile golurilor din inima profilului metalic al grinzilor compuse oțel-beton sunt foarte variate.

În general, până la ora actuală, studiile privind verificarea grinzilor compuse oțel-beton, în dreptul golurilor, s-au referit doar la grinzile compuse având goluri dreptunghiulare în inima profilului metalic.

Golurile din inima profilului metalic, al grinzilor compuse oțel-beton, pot avea însă și alte forme cum ar fi: hexagonale, octogonale, circulare, ovale sau alungite, situații care se întâlnesc mai ales când se folosesc profile metalice cu goluri dese în inimă, la grinzile mixte.

Având la bază ideea studierii și a calculului grinzilor mixte oțel-beton, cu goluri în inima profilului metalic, teza de doctorat are următoarele obiective de studiat:

1. Prezentarea sistematizată a problemelor privind alcătuirea și calculul grinzilor mixte oțelbeton, având goluri în inima profilului metalic.

2. Definirea diferitelor forme de goluri din inima profilului metalic, necesare trecerii unor instalații, și definirea limitelor în care se încadrează dimensiunile golurilor în raport cu cele ale profilului.

3. Folosirea metodei elementelor finite la calculul stării de eforturi în jurul golurilor din inima profilului metalic a grinzilor mixte oțel-beton având goluri dreptunghiulare, hexagonale, circulare și alungite, în inimă.

4. Optimizarea dimensiunilor golurilor din inima profilului metalic, care conduc la apariția unor eforturi cât mai reduse, in grinzile compuse oțel-beton.

5. Studiul comparativ al stării de eforturi din grinzile compuse oțel-beton pentru tipurile de goluri din inimă, dreptunghiulare, poligonale, circulare și alungite.

639.909 369

Uaivusilaus tehnică Thu unars Schlatora centrală

CAPITOLUL 2

GRINZI MIXTE OŢEL-BETON FĂRĂ GOLURI ÎN INIMA PROFILULUI METALIC

2.1 ASPECTE GENERALE

Grinzile mixte cu secțiunea compusă oțel-beton, sunt elemente de construcții solicitate în principal la încovoiere. Ele sunt folosite în mod deosebit la realizarea planșeelor pentru clădirile înalte cu multe etaje, dar sunt folosite cu bune rezultate și la alte tipuri de clădiri, cât și la poduri.

Norma europeană care se referă la alcătuirea, calculul și verificarea grinzilor cu secțiune compusă oțel-beton, este norma EUROCODE 4. Aceasta tratează numai grinzile mixte oțelbeton cu secțiunea simetrică față de axa de inerție minimă z-z, din planul inimii profilului metalic. În norma EUROCODE 4, nu sunt prevăzute prescripții și recomandări privind calculul grinzilor mixte cu secțiune compusă oțel-beton, care au profilul metalic înglobat în beton. Deoarece grinzile mixte sunt realizate dintr-un profil metalic și o dală de beton, la baza normei EUROCODE 4, pentru calculul grinzilor mixte oțel-beton, au stat prevederile normelor EUROCODE 2 pentru calculul construcțiilor din beton armat, respectiv EUROCODE 3 pentru calculul construcțiilor metalice.

După cum s-a arătat în capitolul 1 (fig.1.1), grinzile mixte oțel-beton pot fi: grinzi principale GP și grinzi secundare GS. Deschiderile grinzilor principale și a celor secundare, precum și distanța dintre acestea, se încadrează în limitele indicate de relațiile (1.1), (1.2) și (1.3).

2.2 STABILIREA DIMENSIUNILOR GRINZILOR MIXTE OŢEL-BETON

Principalele dimensiuni ale grinzilor mixte oțel-beton, se aleg în general în funcție de deschiderea acestora:

1. Referitor la înălțimea grinzii, în general sunt date două condiții:

- o condiție referitoare la înălțimea profilului metalic h, conform căreia aceasta trebuie să îndeplinească relația:

$$h \ge \frac{L}{30} \tag{2.1}$$

unde: h: este înălțimea profilului metalic (cm) (fig.1.2)

L. este deschiderea grinzii mixte oțel-beton (cm) (fig.1.2)

- a doua condiție privind înălțimea totală a grinzii mixte (formată din înălțimea grinzii metalice și grosimea dalei de beton):

$$\frac{L}{24} \le h + t_c \le \frac{L}{15}$$
 (2.2)

Profilul metalic al grinzii mixte poate fi un profil laminat la cald sau un profil compus prin sudură. Placa de beton armat poate fi o dală plină sau o dală nervurată, așa cum s-a arătat în figura 1.2.

Celelalte dimensiuni ale profilului metalic laminat, depind de tipul de profil ales, care poate fi: un profil I, sau IPE, sau HEA, HEB, HEM. În cazul profilului compus sudat, dimensiunile acestuia se aleg similar cu cele de la construcții metalice, în următoarele limite (fig.2.1):

Figura 2.1 Alegerea dimensiunilor grinzii metalice

a. Înălțimea h a profilului metalic care compune grinda mixtă:

$$h = \left(\frac{1}{15} \div \frac{1}{30}\right)L \tag{2.3}$$

b. Grosimea t_w a inimii profilului metalic (cm):

$$t_w \ge 1.5 \frac{T}{h \cdot R_f}$$
 unde $R_f = \frac{f_y}{\sqrt{3} \cdot \gamma_M}$ (2.4)

în care:T: este forța tăietoare maximă din lungul grinzii (daN)

 R_f : este rezistența de calcul la forfecare a profilului metalic (daN/cm²)

 f_y : este limita de curgere a oțelului (daN/cm²)

 γ_M : este coeficientul parțial de siguranță privind materialul profilului metalic, deci pentru oțel $\gamma_M = 1.1$

h: este înălțimea profilului metalic, din (2.3), în (cm)

Tot pentru tw este prevăzută și următoarea relație:

$$t_{w} = \left(\frac{1}{80} \div \frac{1}{120}\right)h$$
 (mm) cuh(mm) (2.5)

c. Lățimea tălpilor b a profilului metalic:

$$b = \left(\frac{1}{1} \div \frac{1}{4}\right)h \qquad (mm) \qquad (2.6)$$

valoarea 1/1 din relația de mai sus, este valabilă pentru profilele HEA și HEB cu h \leq 300mm, unde h: este înălțimea profilului metalic (mm).

d. Grosimea tălpilor t_f a profilului metalic:

$$t_f \le (1.5...2.5)t_w$$
 (mm) (2.7)

sau se alege astfel încât:

 $A_f = (1.0..1.05)A_w \tag{2.8}$

unde: A_f: este aria celor două tălpi ale grinzii metalice

A_w : este aria inimii grinzii

În multe situații, profilul metalic compus prin sudură, se alege cu tălpile inegale, talpa inferioară fiind mai lată decât talpa superioară, care este legată direct de dala din beton armat (fig.2.1.b). Lățimile acestor tălpi se aleg astfel încât să se încadreze în limitele relației (2.6) și în plus:

$$b_{\mu} = (1.2...1.5)b_{s} \tag{2.9}$$

unde: b_i: este lățimea tălpii inferioare b_s: este lățimea tălpii superioare

2. Grosimea plăcii de beton armat, se alege în general în funcție de deschidere și de modul de realizare a acesteia.

- pentru dale pline:

$$h_c = \left(\frac{1}{60} \div \frac{1}{100}\right) L$$
 (2.10)

- pentru dale nervurate, cu beton turnat pe un suport de tablă cutată cu amprente, betonul trebuie să umple nervurile (cutele) și să aibă o grosime suficientă deasupra acestora (fig.2.2), astfel:

$$t \ge 60mm$$
 (2.11)
 $h_c \ge 100mm$ (2.12)

Înălțimea cutelor tablei suport este în general de (35...75)mm, iar la stabilirea grosimii plăcii de beton armat se ia valoarea cea mai mare (mai defavorabilă), din relațiile (2.11) și (2.12).

21

Fig.2.2 Grosimea dalei de beton nervurată

În general grosimea dalei de beton armat de deasupra cutelor tablei se ia egală cu 65, 75 sau 85 mm, funcție de înălțimea acestor cute.

2.3 ELEMENTELE GRINZILOR MIXTE OŢEL-BETON

Grinzile mixte sunt elemente de construcții având o secțiune compusă din oțel și beton, solicitate în principal la încovoiere, fiind folosite mai ales ca și grinzi ale planșeelor pentru clădiri cu multe etaje.

În EUROCODE 4 sunt tratate grinzile mixte oțel-beton care au o secțiune simetrică în raport cu axa de inerție minimă z-z a profilului metalic, cuprinsă în planul inimii (fig.2.3). Sunt folosite în general mai multe tipuri de grinzi mixte (fig.2.3):

Fig.2.3 Tipuri de secțiuni pentru grinzile mixte

În figura 2.3.a este arătată secțiunea unei grinzi mixte, având placa din beton armat realizată ca o placă plină, iar în figura 2.3.b, la fel, doar că este o dală plină cu vute în dreptul rezemării pe grinda metalică.

În schimb, în figura 2.3.c și d sunt prezentate elevațiile și secțiunile grinzilor mixte având o dală nervurată, turnată pe un suport din tablă cutată, dispusă cu cutele perpendicular pe grinda metalică, în figura 2.3.c și paralel cu aceasta în figura 2.3.d.

2.3.1 Dala de beton armat a grinzilor mixte

Unul din elementele principale ale grinzilor mixte oțel-beton, este dala de beton armat, care prin conexiunile create, conlucrează cu grinda metalică, participând la preluarea eforturilor din încărcările ce acționează asupra grinzii mixte.

Dala de beton armat poate fi realizată (vezi fig.1.6, 1.8 și 2.3), în două moduri distincte și anume:

1. Ca dală plină cu secțiune dreptunghiulară, având grosimea plăcii h_c, care se toarnă

monolit la fața locului, pe un cofraj plan din lemn sau din tablă susținut pe eșafodaje din bile de lemn, sau din popi realizați de regulă din țeavă.

Se pot folosi tot ca dale pline și dalele prefabricate, atunci când există un număr restrâns de tipuri de plăci la o construcție, și când există un număr foarte mare de dale asemenea.

Grosimea acestor dale se alege între limitele date de relația (2.10), mărimea acestei grosimi fiind funcție și de natura și valoarea încărcărilor ce acționează pe grindă.

Dalele din beton armat sunt considerate pline și în condițiile și indicațiile date în paragraful 1.4.1.2 și figura 1.7.

În unele situații, la plăcile continue turnate monolit, acestea se pot realiza cu vute pe reazeme (figura 2.3.b), în scopul reducerii grosimii plăcii. Înălțimea acestor vute se ia mai mare cu (20...80)% decât grosimea dalei pline.

2. Ca dală nervurată, la care elementul suport se realizează din tablă cutată, care are pe de o parte rolul de cofraj pentru betonul proaspăt din dală, și pe de altă parte participă la preluarea eforturilor din placa de beton armat, constituind armătură în zona întinsă a dalei, după întărirea betonului. Această soluție de dală nervurată, se folosește numai în cazul dalelor monolite turnate la fața locului pe cofrajul din tablă cutată.

Tabla cutată folosită ca suport, este prevăzută cu amprente pe fața superioară și pe fețele laterale ale cutelor, pentru a asigura o cât mai bună conlucrare cu betonul din dală, așa cum se vede în figura 2.2.

2.3.2 Grinda metalică a grinzilor mixte oțel-beton

Cel de-al doilea element de bază a grinzii mixte, care alături de dala de beton armat, dau și denumirea acesteia, este grinda metalică din oțel.

Profilul metalic din oțel se poate realiza fie din profile laminate dublu T, fie din profile compuse prin sudură, executate din table groase folosite la alcătuirea inimii și a tălpilor profilului I.

Ca profile laminate se poate folosi atât profilul dublu T obișnuit, care are insă dezavantajul unor momente de inerție mici față de axa de inerție minimă(z-z, vezi fig.2.3) și a unor greutăți mari, datorită grosimilor foarte mari a pereților secțiunii profilului laminat, cât și profilele europene cu tălpi mai late și cu grosimi mai mici în comparație cu înălțimea inimii, respectiv cu lățimea tălpilor, a pereților acestor profile. Din această categorie fac parte profilul IPE și familia de profile laminate HEA;HEB și HEM, cel mai des folosite fiind profilul IPE și HEA care au grosimi reduse la inimă și la tălpi și deci masă mică pe metru liniar, în comparație cu celelalte.

Înălțimea profilelor metalice laminate se alege astfel ca să satisfacă condițiile din relațiile (2.1) și (2.2), celelalte dimensiuni ale profilului fiind date în tabelele (2.23), (2.24) și (2.25).

În unele cazuri, mai ales la deschideri și încărcări mari, unde sunt necesare profile de dimensiuni foarte mari, cu masă mare pe metru liniar, devine foarte avantajos să se utilizeze profile dublu T, compuse sudate, care pot folosi table mult mai subțiri decât este grosimea inimii și a tălpilor la profilele laminate, ceea ce duce la micșorarea masei profilelor metalice ale grinzii mixte oțel-beton.

Dimensiunile profilului dublu T compus sudat, se aleg conform relațiilor (2.3), (2.4), (2.5), (2.6), (2.7), (2.8) și (2.9).

Grinzile metalice compuse sudate prezintă și avantajul că permit realizarea unor profile nesimetrice față de axa de inerție maximă, normală la planul inimii, prin faptul că se pot realiza cu talpa inferioară mai lată decât talpa superioară conectată cu dala de beton, lucru ce este avantajos.

Reducerea greutății profilelor compuse sudate, față de profilele laminate folosite, poate ajunge la 30...50 %, la caracteristici geometrice apropiate.

Pentru profilele metalice ale grinzilor mixte oțel-beton, se pot folosi atât la cele laminate I, IPE, HEA, HEB, cât și la cele compuse sudate, toate cele trei calități de oțeluri folosite la construcții metalice Fe 360(OL 37), Fe 430(OL 44) și Fe 510(OL 52), care au rezistența de calcul R egală cu:

- $R = 2100 \text{ daN/cm}^2$ pentru Fe 360(OL 37)
- $R = 2500 \text{ daN/cm}^2 \text{ pentru Fe } 430(\text{ OL } 44)$
- $R = 3000 \text{ daN/cm}^2 \text{ pentru Fe 510(OL 52)}$

2.3.3.CONECTORII GRINZILOR MIXTE OŢEL-BETON

Pentru a asigura conlucrarea dintre profilul metalic și dala de beton armat a grinzilor mixte oțel-beton, se folosesc conectorii.

Conectorii ca elemente de conexiune între profilul metalic și dala de beton armat, trebuie să fie prevăzuți pe toată lungimea grinzii, pentru a transmite efortul longitudinal de forfecare între dală și grinda de oțel, în starea limită ultimă, neglijând efectul aderenței naturale dintre cele două elemente.

Conectorii trebuie să fie de asemenea capabili să prezinte o rezistență suficientă împotriva tendinței de ridicare a dalei (de desprindere), de pe profilul metalic.

Pentru a împiedica desprinderea dalei de pe profilul metalic, este necesar să se conceapă și să se calculeze conectorii la un efort nominal de tracțiune, perpendicular pe planul tălpii din oțel, efort egal cu cel puțin 0.1 ori rezistența de calcul la forfecare a conectorilor.

Se poate admite că în general, conectorii de tip gujon conferă o rezistență suficientă la tendința de ridicare a dalei de pe profilul metalic.

În EUROCODE 4, se face o distincție între tipurile de conectori (funcție de capacitatea lor de deformare), aceștia fiind de două feluri:

- conectori ductili
- conectori rigizi sau neductili

Se numesc conectori ductili, conform normei EUROCODE 4, aceia care prezintă o capacitate de deformare suficientă pentru a justifica ipoteza unui comportament ideal plastic al conexiunii din interiorul structurii grinzii mixte oțel-beton.

Din această categorie fac parte conectorii de tip gujon (tijă) cu cap, care au o lungime în afara zonei sudate de talpa superioară a profilului metalic, de cel puțin patru ori diametrul tijei și cu un diametru al tijei de cel puțin 16mm, fără însă a depăși 22mm. Conectorii de tip gujon pot fi considerați ductili, dacă se încadrează în limitele indicate în cele ce urmează, pentru gradul de conexiune, definită prin raportul N/N_f :

- Pentru profile din oțel cu tălpi egale:

- Dacă
$$L \le 5$$
 $\frac{N}{N_f} \ge 0.4$ (2.13)

- Dacă
$$5 \le L \le 25$$
 $\frac{N}{N_f} \ge 0.25 + 0.03L$ (2.14)

- Dacă
$$L \ge 25$$
 $\frac{N}{N_f} \ge 1$ (2.15)

- Pentru profile din oțel compuse sudate, având tălpile inegale, la care aria tălpii inferioare nu depășește de trei ori aria tălpii superioare:

- Dacă
$$L \le 20$$
 $\frac{N}{N_f} \ge 0.4 + 0.03L$ (2.16)

- Dacă
$$L \ge 20$$
 $\frac{N}{N_f} \ge 1$ (2.17)

unde mărimile de mai sus au următoarea semnificație:

L: este deschiderea grinzii mixte, în metri

 N_f : este numărul de conectori determinați din calcul, pentru lungimea adoptată a grinzii, în cazul conexiunii complete

N : este numărul de conectori dispuși în realitate pe aceeași lungime a grinzii

Se poate admite că genul de conectori menționați mai jos, posedă aceeași capacitate de deformare ca și conectorii de tip gujon cu cap, având dimensiunile menționate mai sus, și anume:

a. buloanele cu strângere controlată, folosite pentru prinderea dalelor prefabricate de grinda metalică din oțel

b. alte tipuri de conectori, a căror capacitate de alunecare în valoare caracteristică, este cel puțin egală cu 6mm, pentru nivelul lor de rezistență caracteristică, determinată prin încercări de forfecare pe epruvete, descrise în paragraful 10.2 în EUROCODE 4.

În afara conectorilor ductili de tip gujon, se folosesc și conectori neductili sau rigizi, realizați de regulă din profile laminate, completate cu vergele din oțel rotund cu cioc sau de tip închis. Distanța dintre conectori în lungul grinzii mixte, trebuie aleasă astfel ca aceștia să poată transmite forfecarea longitudinală și să împiedice separarea dalei de grinda metalică, considerând o repartiție apropiată de efortul longitudinal de calcul din forfecare.

Se recomandă ca distanța între gujoane, conform paragrafelor 6.3.2 pentru dale pline și 6.3.3 pentru dale nervurate (din EUROCODE 4), să fie uniformă pe lungimea L_{cr} între secțiunile transversale critice succesive (fig.2.4). Secțiunile critice sunt:

- secțiunile de moment încovoietor maxim S₁
- secțiunile de pe reazemele grinzilor mixte S₂
- secțiunile supuse la reacțiuni sau forțe concentrate importante S₃

Fig.2.4 Secțiunile critice la grinzi mixte

Distribuția uniformă a conectorilor de tip gujon, se face numai dacă:

- toate secțiunile critice din lungul grinzii considerate, sunt de clasa 1 sau de clasa 2

- N/N_f respectă limitele indicate prin relațiile (2.13), (2.14) și (2.15), unde lungimea totală L se înlocuiește prin L_{cr}

- momentul rezistent plastic al secțiunii mixte, nu depășește de 2.5 ori momentul rezistent plastic al elementului structural din oțel, considerat singur, fără dala de beton Dacă momentul rezistent plastic al grinzii mixte, depășește de 2.5 ori momentul rezistent plastic al elementului de oțel, considerat singur, se poate proceda la verificarea complementară corespunzătoare conexiunii, în dreptul punctelor intermediare situate aproximativ la mijlocul distanței dintre secțiunile critice succesive.

Se admite să se repartizeze numărul cerut de conectori între un punct de moment încovoietor maxim pozitiv și un reazem adiacent sau un punct de moment încovoietor maxim negativ, în conformitate cu repartiția forfecării longitudinale calculate prin teoria elastică, pentru încărcarea considerată.

2.3.4 Armăturile dalei de beton

Armăturile transversale ale dalei de beton armat, trebuie să fie dimensionate la starea limită ultimă, astfel ca să prevină o distrugere prematură prin forfecare longitudinală sau printr-o rupere prin despicare longitudinală.

Armăturile dalei de beton armat se dispun pe unul sau două rânduri, pe grosimea dalei, ele trebuind să satisfacă condițiile de rezistență ce vor fi prezentate în paragrafele care urmează. În cazul când armătura se dispune pe un singur rând, ea se dispune în general la mijlocul grosimii dalei, din motive de temperatură și de contracție a betonului.

25

Ca armătură a dalei se folosește în general o plasă din sârme de oțel având ochiurile sudate. Această plasă sudată este formată din sârme de oțel lise sau nervurate, dispuse pe două direcții ortogonale, cu spații regulate pe ambele direcții.

În unele zone, unde această armătură minimală nu este suficientă, trebuie dispuse bare de armătură suplimentară (cum este pe reazemele dalei), care se prevăd în general din bare ϕ 16. Dalele din beton armat se toarnă în general continuu, chiar și pe reazeme, chiar dacă grinda de oțel este simplu rezemată.

În acest caz, în dală apar momente încovoietoare negative și fața superioară a dalei are tendința să se fisureze perpendicular pe grindă. În acest caz este necesară armătură paralelă cu grinda mixtă, în partea superioară a dalei, în vecinătatea reazemelor. În aceste zone este recomandat să se ridice plasele sudate pentru contracție, astfel ca acestea să fie cât mai aproape de suprafața superioară a dalei.

În plus, la aceste plase trebuie adăugate cel puțin două bare de ϕ 16 mm, paralele cu grinda.

O altă formă de fisurare care trebuie controlată, este fisurarea paralelă cu axa longitudinală a grinzii mixte. Această fisurare se produce deasupra grinzii, pentru că dala este portantă transversal pe grindă, ceea ce face să se dezvolte un moment încovoietor negativ. Totodată, fisurarea este produsă și datorită transmiterii forței longitudinale de forfecare, prin intermediul conectorilor care se sprijină pe beton. Această fisurare poate conduce la o pierdere importantă a acțiunii compozite. Pentru aceasta, se dispun armături transversale, adică perpendiculare pe grinda mixtă.

În cazul dalelor nervurate, când cutele (nervurile) cofrajului din tablă cutată amprentată sunt paralele cu grinda (fig.2.3.d), cantitatea minimă de armătură, perpendiculară pe grinda de oțel și distribuită uniform în lungul grinzii, se ia:

$$A_{ar} = 0.002 \cdot h_c \cdot L \quad (\,\mathrm{mm}^2\,) \tag{2.18}$$

unde: L: este deschiderea grinzii (mm)

 $h_c \cdot L$: acest produs reprezintă suprafața de beton definită printr-o secțiune longitudinală, paralelă cu grinda

 h_c : este grosimea dalei (vezi fig.2.3.d), deasupra cutelor Pentru dalele pline, se aplică aceeași cantitate de armătură, dar în relația (2.18) h_c reprezintă grosimea totală a dalei de beton (fig. 2.3.a și b).

La dalele nervurate la care cutele cofrajului din tablă sunt dispuse perpendicular pe grindă, cantitatea de armătură se ia:

$$A_{ar} = 0.001 \cdot h_c \cdot L \quad (\,\mathrm{mm}^2\,) \tag{2.19}$$

unde: h_c : se ia ca în figura 2.3.c

2.4 LĂȚIMEA EFICACE A DALEI DE BETON ARMAT

Grinzile din oțel care susțin planșee din beton armat, sunt distanțate conform fig.1.1, la distanța e, pentru grinzile secundare și la distanța l, pentru grinzile principale, care este chiar deschiderea grinzilor secundare.

La calculul grinzilor mixte oțel-beton, trebuie să se ia în considerare deformația dalei legată de forfecarea în plan (alunecarea de forfecare), fie printr-o analiză riguroasă, fie prin utilizarea unei lățimi eficace, participantă, a dalei de beton.

Într-un planșeu mixt, transferul efortului de forfecare de la conectori la placa de beton armat, este cu atât mai puțin eficace, cu cât distanța dintre grinzile metalice este mai mare.

Lățimea eficace b_{eff} a dalei din beton armat de la o grindă mixtă, nu este întotdeauna egală cu distanța dintre grinzile de oțel.

Trebuie să se țină cont de efortul de lunecare din forfecare, care are ca efect reducerea eforturilor din încovoiere, în zonele plăcii de beton, mai îndepărtate de legătura (îmbinarea) dintre talpa grinzii metalice și dala de beton armat (fig.2.5)

Fig.2.5 Lățimea eficace beff a dalei de beton armat

Când distanța dintre grinzile de oțel e, este mare, dala nu participă în mod uniform la încovoierea grinzii mixte, eforturile normale din placă nefiind distribuite uniform (efectul de " shear lag "). Astfel se poate considera o lățime eficace a dalei b_{eff} , pe care se admite că eforturile normale de compresiune din încovoiere sunt uniforme, așa cum se arată la eforturile echivalente din figura 2.5.

Rezultatele studiilor analitice prin metoda elementelor finite, ținând cont de continuitatea dalei pe marginile longitudinale, ca de altfel și rezultatele studiilor experimentale ale diferiților autori, au permis să se stabilească următoarele concluzii:

- Lățimea eficace b_{eff} a dalei, variază în lungul grinzii mixte, variația acesteia depinzând de raportul L/e, unde: L: este deschiderea grinzii mixte iar e: este distanța dintre grinzi. Se recomandă să se ia următoarele valori:

$$\frac{L}{e} \ge 4 \qquad \text{si} \quad b_{eff} \le \frac{L}{4} \quad \text{dacă} \quad \frac{L}{e} \le 4 \qquad (2.20)$$

- Lățimea eficace este funcție de tipul de încărcare, uniform distribuită sau concentrată, în dreptul încărcărilor concentrate, lățimea eficace fiind mai redusă.

- Lățimea eficace la starea limită ultimă, este ușor superioară celei corespunzătoare stării limită de serviciu.

- Lățimea eficace este mai mică pentru o secțiune compusă parțial, deoarece se

observă o rigiditate la încovoiere mai redusă, lucru ce semnifică o participare mai slabă a dalei de beton armat.

Trebuie spus că nu se includ în secțiunea eficace a grinzii mixte, tablele profilate (cutate) ce formează cofrajul, cu excepția cazului în care nervurile tablei cutate sunt dispuse paralel cu grinda, și dacă dispozițiile constructive garantează o continuitate a rezistenței la trecerea din îmbinările tablelor și o rezistență convenabilă la forfecare longitudinală.

Lățimea eficace a dalei de beton armat se ia conform indicațiilor din paragraful 4.2.2 din EUROCODE 4 și a figurii 2.6.

Fig.2.6 Modul de determinare a lățimii eficace, funcție de deschideri

În general se admite ca lățimea participantă b_{eff} a dalei, să se ia constantă pe toată deschiderea grinzii. Această valoare poate fi valoarea adoptată la mijlocul deschiderii, pentru o deschidere rezemată la cele două capete, sau valoarea adoptată la nivelul reazemului, pentru o grindă în consolă.

Se acceptă să se ia pentru lățimea participantă eficace b_{eff} a unei dale asociate la fiecare inimă metalică, suma lățimilor participante b_e a părții dalei situată de fiecare parte a axei medii a inimii profilului metalic (vezi figura 2.6).

În aceste condiții, se poate lua pentru lățimea participantă de fiecare parte a grinzii metalice, be valoarea:

$$b_e = \frac{l_0}{8} \qquad \text{dar} \qquad b_e \le b \qquad (2.21)$$

Pentru lățimea reală b, se poate lua de fiecare parte a profilului metalic, jumătatea distanței între inima considerată și inima adiacentă, măsurată la mijlocul înălțimii dalei, cu excepția marginilor libere, unde lățimea reală este distanța dintre inimă și marginea liberă a dalei.

Lungimea l_o , care intră în relația (2.21), se ia egală cu distanța aproximativă între punctele de moment încovoietor nul. În cazul unei grinzi simplu rezemate, lungimea l_0 se ia egală cu deschiderea grinzii. Pentru grinzile continue curente, l_0 poate fi aleasă conform indicațiilor din figura 2.6.b, unde valorile în dreptul reazemelor (deci pentru moment încovoietor negativ) sunt indicate deasupra grinzii, iar pentru valorile din câmp (deci pentru moment încovoietor pozitiv), sunt indicate sub grindă. În calculul practic al grinzilor mixte oțel-beton, lățimea eficace a dalei de beton armat, se ia pe baza celor de mai sus, luate din prevederile normei EUROCODE 4, paragraful 4.2.2, cu valorile:

$$b_{eff} = \min\{2b_e; B\}$$
 (2.22)

unde: $b_e = \frac{l_0}{8}$ dat de relația (2.21)

B : este distanța dintre grinzi ($2b_1$ sau $b_1 + b_2$), din figura 2.6.a

2.5 CLASIFICAREA SECȚIUNILOR TRANSVERSALE ALE GRINZILOR

Clasificarea secțiunilor se definește conform prevederilor din EUROCODE 3, paragraful 5.3.2, care se referă la secțiunile transversale ale grinzilor metalice, dar care se aplică și la secțiunile transversale ale grinzilor mixte oțel-beton.

Sunt definite și pentru grinzile mixte oțel-beton, patru clase de secțiuni transversale:

- **Clasa 1** : se referă la secțiunile transversale care dezvoltă un moment de rezistență plastic M_{pl.Rd}, cu o capacitate de rotație suficientă pentru a permite redistribuire completă a momentelor încovoietoare din structura grinzii, prin apariția unor noi articulații plastice. Secțiunile transversale mixte formează o *articulație plastică*.

- **Clasa 2** : se referă la secțiunile transversale care dezvoltă un moment de rezistență plastic $M_{pl,Rd}$, dar capacitatea de rotație este limitată.

- **Clasa 3** : se referă la secțiunile transversale în care eforturile de compresiune din fibrele extreme ale grinzii metalice, pot atinge limita de curgere, dar a căror voalare locală este susceptibilă de a împiedica dezvoltarea momentului de rezistență plastic $M_{pl,Rd}$

- Clasa 4 : se referă la secțiunile transversale supuse fenomenului de voalare locală, care intervine în zona comprimată a grinzii metalice, înainte ca fibrele extreme să atingă limita de curgere. Rezistența grinzilor la încovoiere sau la compresiune, este determinată obligatoriu ținând cont explicit de efectul voalării locale.

Alura legii de comportament moment-rotație, corespunzător fiecărei clase de secțiuni, este redată în figura 2.7.

Elementele unei secțiuni transversale: inimă și tălpi, pot avea clase de secțiuni diferite. Clasa secțiunii transversale, a profilului metalic a grinzii mixte, se ia egală cu clasa cea mai defavorabilă (adică cea mai mare) a pereților comprimați din oțel.

Spre deosebire de secțiunile metalice, secțiunile mixte prezintă o problematică mai complexă în ceea ce privește clasificarea secțiunilor. Secțiunile grinzilor mixte sunt în general nesimetrice (chiar dacă grinda metalică este simetrică) și nu sunt constante (ca urmare a fisurării betonului pe reazeme). Ca o consecință a acestei observații, o secțiune mixtă își poate schimba clasa, când momentul schimbă de semn. De exemplu, pentru o grindă continuă, o secțiune de clasa 1 în zona de moment pozitiv, poate fi de clasa 3 sau 4 în zona de moment negativ.

În cazul când o inimă va fi tratată ca mascată (înglobată), așa cum va fi arătat în tabelul 2.1, betonul care învelește inima va trebui să fie armat, solidarizat prin mijloace mecanice de profilul metalic, care trebuie să fie capabil să împiedice voalarea inimii.

Solidarizarea betonului situat între tălpile și inima profilului metalic, se face prin sudarea unor etrieri pe inimă, sau cu ajutorul unor bare cu diametrul $\phi \ge 6$ mm, care traversează inima.

Totodată se mai poate realiza și cu ajutorul unor gujoane având un diametru mai mare de 10mm, sudate pe inima profilului metalic (vezi a treia secțiune cu inima înglobată în beton din tabelul 2.1)

Fig.2.7 Clasele secțiunii transversale, după alura curbei moment-rotație

Se recomandă ca distanța măsurată în sens longitudinal grinzii între gujoanele sudate de fiecare parte a inimii înglobate în beton, sau dintre barele ce traversează inima, să nu depăşească 400mm. De asemenea se cere ca distanța dintre fața interioară a fiecărei tălpi și rândul de gujoane sau de armături ce traversează inima, cel mai apropiat de talpă, să nu fie mai mare de 200mm.

La profilele a căror înălțime depășește 400mm, pe care mijloacele de fixare (gujoane sau armături ce traversează inima) se dispun pe două rânduri, se admite ca acestea să fie așezate în zig-zag, adică decalate unul față de altul.

2.5.1 Clasificarea tălpilor comprimate de oțel

Dacă talpa comprimată din oțel, este menținută împotriva voalării, printr-o fixare efectivă cu dala de beton armat, prin intermediul unor conectori corect dimensionați, aceasta poate fi considerată ca fiind de clasa 1.

Clasificarea altor tălpi comprimate din oțel, a grinzilor mixte oțel-beton, se face pe baza indicațiilor din tabelul 4.1 din norma EUROCODE 4, preluat după tabelul 5.3.1 din EUROCODE 3 și este prezentată în tabelul 2.1.

2.5.2 Clasificarea inimilor din oțel

Clasificarea inimilor se face plecând de la cele prevăzute în tabelul 2.2. Pentru secțiuni a căror talpă comprimată este de clasa 1 sau 2, trebuie să se lucreze cu o distribuție plastică a eforturilor pe secțiunea mixtă eficace, iar la cele de clasa 3 sau 4, trebuie utilizată o distribuție elastică a eforturilor.

O inimă de clasa 3 înglobată în beton, așa cum s-a arătat mai sus, poate fi reprezentată printr-o inimă eficace de clasa 2, cu aceeași secțiune.

Clasa	Tipul profilului	Inimă neînglob	ată Inimă	i înglobată			
Distribuți Compresiur po	ia eforturilor nea considerată zitivă	E					
1	Laminată Sudată	$c / t_f \le 10\varepsilon$ $c / t_f < 9\varepsilon$	c /	$t_f \le 10\epsilon$ $t_f \le 9\epsilon$			
2	Laminată Sudată	$\frac{c / t_f \le 11\epsilon}{c / t_f \le 10\epsilon}$	c /	$t_f \le 15\varepsilon$ $t_f \le 14\varepsilon$			
3 Laminată Sudată		$c/t_{f} \le 15\varepsilon$	c /	$t_f \le 21\epsilon$ $t_s \le 20\epsilon$			
$\varepsilon = \sqrt{\left(235/f_y\right)}$	$f_y(N/mm^2)$	235	275	355			
	ε	1.0	0.72	0.01			

31

O inimă de clasa 3 neînglobată în beton, poate fi reprezentată printr-o inimă eficace de clasa 2, presupunând că înălțimea inimii rezistentă la compresiune, este limitată la 20tɛ, pentru partea adiacentă tălpii comprimate.

Așa cum prevede norma EUROCODE 3, clasa secțiunii unui profil metalic, se exprimă funcție de rapoartele d/t_w pentru inimi și respectiv c/t_f pentru tălpi, unde d și t_w sunt înălțimea și grosimea inimii, iar c și t_f sunt lățimea în consolă și grosimea tălpii (vezi tabelul 2.1).

La secțiunile la care tălpile comprimate sunt de clasa 3 sau 4, clasa inimii trebuie să fie determinată plecând de la indicațiile date în tabelul 2.2, folosind axa neutră elastică.

<i>Inimi</i> :Pereți interiori	perpendiculari p	e axa	de încovoie	re		
ï	,	\	i 1			
· · · · ·		And an		¹ /		
			,			
,	,					
Clasa	Inimă încovoia	ată	Inimă cor	nprimată	Ini	mă încovoiată-
		<u> </u>				comprimată
Distribuția of orturilor						
Compresiunea						r is
considerată pozitivă						
A	$d / t_w \le 72\varepsilon$		$d / t_w \le 33\epsilon$		(Când $\alpha > 0.5$:
1					d / t _v	_v ≤ 396ε / (13α-1)
						Când $\alpha < 0.5$:
				····	d	$/t_w \le 36\varepsilon / \alpha$
	$d / t_w \le 83\varepsilon$		$d / t_w \le 38\varepsilon$			Când $\alpha > 0.5$:
2					d/t_{w}	$\leq 456\epsilon / (13\alpha - 1)$
						and $\alpha < 0.5$:
Distributio	· ·				<u>a</u> ,	$\frac{1}{1_{\rm W}} \leq 41.5\varepsilon/\alpha$
eforturilor			· · · ·			
Compresiunea			, ,			,
considerată pozitivă	, <u>,</u> , , , , , , , , , , , , , , , , ,		1. ·			,
	$d / t_w \le 124\epsilon$		d / t _w	≤ 42ε		Când $\psi > -1$:
3						$d / t_w \le 42\epsilon /$
					(0.67+0.33ψ)
					-	Când $\psi \leq -1$
					$d / t_w \le 62\varepsilon(1-\psi)$	
	£ (N1/2)		225	075		ν(-ψ)
$\varepsilon = \sqrt{(235/f_y)}$	$I_y(N/mm^-)$		235	2/5		<u> </u>
	3		I I	0.92		0.81

32

În tabelul 2.2, în ultima coloană corespunzătoare clasei 3, mărimea $\psi = \sigma_2 / \sigma_1$, este raportul tensiunilor de la marginile pereților interni comprimați (a inimilor).

În cazul unei secțiuni sub moment pozitiv, se pot utiliza ca reguli generale următoarele observații:

- când axa neutră este în dala de beton sau în talpa comprimată a profilului metalic (de zveltețe oarecare, dar conectată normal la dală), nu există nici un risc de voalare, pentru că inima profilului metalic este toată întinsă (inima putând fi în acest caz foarte zveltă) și deci secțiunea va fi de clasa 1. Pe de altă parte, riscul de spargere al betonului prin contracție este foarte mic.

- când axa neutră este în inima profilului metalic (în general în partea de sus a inimii), secțiunea va fi de clasa 2.

2.6 NOȚIUNI PRIVIND CONEXIUNEA GRINZILOR MIXTE

Grinzile mixte pot fi dimensionate pentru o acțiune compozită totală (completă) și parțială, privind legătura grindă-dală de beton.

2.6.1 Conexiunea totală

Acțiunea compozită este numită *totală*, dacă procentul de legătură între grinda metalică și dala de beton armat este de 100%, sau altfel spus gradul de conexiune la forfecare longitudinală este maxim, adică factorul de conexiune la forfecare este $\alpha = 1.0$.

Conexiunea *completă* sau *totală* a grinzilor mixte oțel-beton, presupune că efectul de lunecare a dalei de beton armat pe profilul I din oțel, este neglijabil și rezistența ultimă a grinzii mixte nu mai crește, dacă se adaugă conectori de legătură a dalei de grinda metalică. În acest caz, numărul de conectori trebuie să fie cel puțin egal cu numărul necesar pentru a transmite lunecarea de calcul.

Conectorii care asigură legătura dală-grindă de oțel, trebuie să fie capabili să prezinte și o rezistență suficientă la tendința de ridicare (de desprindere) a dalei de pe profilul metalic. În scopul împiedicării desprinderii dalei, se convine să se calculeze conectorii, la un efort de tracțiune nominal perpendicular pe planul tălpii din oțel, de cel puțin 10% din rezistența de calcul la forfecare a acestor conectori.

În general, se poate spune că toți conectorii de tip gujon cu cap, conferă o rezistență suficientă pentru a împiedica tendința de ridicare a dalei de beton de pe grinda metalică, cu excepția cazului când conexiunea, respectiv conectorii sunt supuși la o tracțiune directă.

Trebuie să se evite ruperea prin forfecare longitudinală și prin despicarea dalei, dată de eforturile concentrate transmise prin conectori.

Conexiunea totală dintre dală și grinda de oțel, se asigură nu numai prin conectori ci și prin armăturile transversale ce se prevăd pe toată lungimea grinzii.

2.6.2 Conexiunea parțială

Dacă numărul de conectori este inferior celui prescris pentru o conexiune completă, avem o acțiune compozită parțială, adică altfel spus, o conexiune semi-rigidă a dalei de baton pe grinda din oțel. În acest caz se poate produce o oarecare lunecare a dalei pe grinda metalică. Se poate accepta că dala de beton armat participă la rezistența grinzii mixte, numai dacă gradul de conexiune la forfecare $\alpha \ge 0.4$, sub această valoare dala fiind o dală neparticipantă. Valoarea lui $\alpha = 0.4$ semnifică faptul că numărul de conectori trebuie să fie de cel puțin 40%

din numărul cerut pentru o acțiune compozită totală, pentru a putea considera o acțiune compozită a grinzii mixte.

Rezistența ponderată la încovoiere nu se reduce în același procent cu reducerea numărului de conectori. De exemplu, dacă numărul de conectori se reduce cu circa 50%, rezistența la încovoiere a grinzii mixte nu se reduce decât cu (10...20)%, din cauza redistribuirii forțelor pe conectori.

2.6.3 Tipuri de conectori folosiți

Pentru asigurarea unei legături eficiente între dala de beton și grinda de oțel, se folosesc elementele speciale de legătură, denumite *conectori*. Această legătură trebuie să împiedice nu doar lunecarea orizontală relativă dintre cele două elemente: dala și profilul metalic, dar și separarea lor pe verticală. Din aceste motive, rezultă necesitatea folosirii drept conectori, a gujoanelor cu cap. Într-adevăr, când o grindă mixtă oțel-beton se deformează din încovoiere sub încărcări, curbura grinzii produce forțe radiale dirijate spre centrul de curbură, la care trebuie să reziste conectorii, pentru a împiedica desprinderea și ridicarea dalei de beton armat, adică separarea ei de grinda metalică.

Conectorii de forfecare și armătura transversală trebuie prevăzuți pe toată lungimea grinzii, în scopul transmiterii efortului longitudinal de forfecare ce apare între dală și grinda metalică, în starea limită ultimă, neglijând efectul de aderență naturală dintre cele două elemente.

Conectorii de forfecare trebuie să fie capabili să asigure și rezistența la desprinderea dalei. În general nu este necesar să se facă o verificare la desprinderea dalei, dacă conectorii nu sunt supuși la o tracțiune directă și au o rezistență de cel puțin 0.1 ori rezistența lor la forfecare, lucru satisfăcut de gujoanele cu cap sudat.

Norma EUROCODE 4 face distincția între conectorii ductili și cei neductili.

Se numesc *conectori ductili*, conectorii care oferă o capacitate de deformare suficient de mare, pentru a justifica ipoteza unui comportament plastic ideal, a îmbinării de forfecare dintre grinda de oțel și dala de beton armat.

Fig.2.8 Curbele efort de forfecare P_R – lunecare s_u

Pentru acești conectori, curba reală efort de forfecare-alunecare, a unui conector, este cea din figura 2.8.a. În această curbă sunt definite valorile rezistenței la forfecare a conectorului P_R , care corespunde palierului de curgere a curbei simplificate efort-lunecare, și capacitatea ultimă de lunecare a conectorului s_u , care poate fi aleasă ca lunecarea maximă constatată la nivelul

rezistenței caracteristice. În calcul, rezistența experimentală P_R trebuie să fie înlocuită printr-o rezistență de calcul, egală cu:

$$P_{Rd} = \frac{P_R}{\gamma_v} \tag{2.23}$$

unde: γ_v : este un coeficient parțial de siguranță dat în EUROCODE 4, $\gamma_v = 1.25$ Pentru lunecarea s_u, o valoare mai mare de 6mm, permite să se considere că acest conector este ductil, această condiție fiind de obicei satisfăcută de gujoanele cu cap sudat, cu condiția ca ele să aibă o lungime totală egală cu cel puțin 4d, unde d: este diametrul tijei gujonului, situat între 6 și 22mm.

Opus conectorilor ductili, EUROCODE 4 definește conectorii *rigizi și neductili*, a căror curbă efort de forfecare-lunecare este arătată în figura 2.8.b, care are o ruptură, la care efortul P atinge rezistența P_R , fără a avea o lunecare semnificativă. În practică, conectorii de tip *bară* (proptea) pot fi considerați ca fiind rigizi și neductili, singura capacitate de deformație

provenind din betonul comprimat aflat în contact cu conectorii bară.

În practica execuției grinzilor mixte oțel-beton, se pot folosi mai multe tipuri de conectori, și anume:

1. La această oră, conectorii cei mai utilizați sunt cei de tip gujon cu cap (cui), datorită faptului că se pot așeza și fixa cu ușurință de talpa superioară a profilului metalic, cu ajutorul unui pistol de sudură. Acești conectori sunt ductili și ei se sudează direct de talpa superioară a grinzii de oțel, în cazul dalelor pline (figura 2.9.a), sau în cazul dalelor nervurate, când nervurile sunt paralele cu grinda metalică și tablele cutate sunt întrerupte deasupra grinzii metalice (figura 2.9.b).

Fig. 2.9 Conexiunea grinda de oțel - dala de beton, cu gujoane

Conectorii tip gujon pot fi sudați pe grinda de oțel și prin una sau două table cutate, în cazul când tablele sunt dispuse cu nervurile perpendicular pe grinda metalică și sunt eventual
suprapuse la marginile tablelor una peste alta (fig.2.9.c), sau și în cazul când tablele au nervurile paralele cu grinda metalică, dar trec continue peste aceasta (figura 2.9.d).

Trebuie făcută precizarea că acești conectori de tip gujon, pot fi sudați de talpa profilului metalic în două moduri:

- în perechi, adică două câte două gujoane alăturate (figura 2.9.a₁)
- în zig-zag, adică decalați și intercalați unii între alții (figura 2.9.a₂)

În cazurile când gujoanele se sudează de grinda metalică, penetrând tablele cutate, la dale nervurate (figura 2.9.c și d) trecând chiar prin două table, se cere să fie satisfăcută condiția ca grosimea fiecărei table să nu depășească 1.7mm, incluzând stratul de acoperire a tablei (cu vopsea sau prin zincare).

Diametrul gujoanelor d_g poate avea valori între 6 și 22mm (figura 2.9). În cazul planșeelor cu grinzi mixte oțel-beton, diametrul cel mai des folosit este $d_g = 19$ mm.

2. Din categoria conectorilor neductili, rigizi, fac parte mai multe grupe de conectori și anume:

2.a Conectori de tip bloc (bară sau proptea), care se folosesc doar la dalele pline și pot fi de următoarele tipuri:

- conectori de tip bară sau vergea (figura 2.10.a)
- conectori în formă de T culcat (figura 2.10.b)
- conectori în formă de U culcat (figura 2.10.c)
- conectori în formă de potcoavă (figura 2.10.d)

Toți acești conectori de tip bloc sau bară, pot fi, sau nu, completați suplimentar cu bare de oțel rotund în formă de arc (figura 2.10.a, c, d) sau în formă de cârlig-croșetă (figura 2.10.b).

Fig.2.10 Conectori rigizi tip bloc

2.b Conectori de tip cârlig sau ancoră (fig.2.11. a și b), sau conectori tip bară cu cârlig sau cu arc (fig.2.11.c și d), folosiți la dalele pline

Fig. 2.11 Conectori tip cârlig sau ancoră

2.c Conectori rigizi din corniere (fig.2.12.a) sau din profile U (fig.2.12.b), folosiți numai la dale pline

Fig. 2.12 Conectori rigizi din corniere și profile U

Pentru dalele nervurate se folosesc numai conectori de tip gujon, sudați la parte inferioară a nervurilor tablei cutate.

2.d Cei mai indicați și totodată, utilizați conectori, sunt cei de tip gujon, dar aceștia au dezavantajul că sunt scumpi și necesită un pistol special pentru sudare.

Pentru a prezenta o bună rezistență la forfecare și totodată o rezistență sporită la desprinderea dalei de beton, în cadrul unui studiu realizat la CTICM Franța, Prof.Dr.ing Gheorghe Mercea a propus câteva tipuri noi de conectori cu rezistență și rigiditate crescută. Acești conectori pot fi realizați sub formă de profile T compuse sudate, sau dintr-un cupon de profil dublu T tăiat la jumătate, la care se sudează inima de talpa grinzii metalice (fig.2.13.a). Un alt tip de conectori, pot fi realizați sub formă de profile T în formă de cruce în plan, la care se sudează inimile de talpa profilului metalic (fig.2.13.b). Cea de-a treia soluție propusă, este aceea de a folosi conectori asemănători cu gujoanele, fiind folosite cupoane din țeavă sudate pe talpa grinzii metalice. Acestea au un cap sudat, asemănător cu capul gujoanelor (fig.2.13.c)

Fig.2.13 Tipuri speciale de conectori de mare rezistență

2.7 PRINCIPII DE CALCUL A GRINZILOR MIXTE OŢEL-BETON

Calculul grinzilor mixte oțel-beton, se referă numai la secțiuni mixte al căror profil metalic are o axă de simetrie cuprinsă în planul inimii.

Pentru structurile mixte ale clădirilor, nu este necesar să se țină cont de efectele termice în cazul verificării la stările limită ultime. De asemenea, la structurile mixte ale clădirilor, se neglijează efectul contracției betonului pentru verificarea la stările limită ultime.

Grinzile mixte trebuie să fie verificate la metoda stărilor limită, la:

- rezistența secțiunilor transversale critice, definite în paragraful 2.3.3
- rezistența la deversare a secțiunii grinzii

- rezistența inimii la voalare prin forfecare și la compresiune locală sub încărcări transversale

- rezistența la forfecare longitudinală a conexiunii

2.7.1 Încărcările luate în calculul grinzilor mixte oțel-beton

Pentru calculul și verificarea grinzilor mixte oțel-beton, trebuie determinate solicitările de calcul, rezultate din calculul static: momentul încovoietor și forța tăietoare.

La determinarea solicitărilor de calcul, momentul încovoietor M_{Sd} și forța tăietoare V_{Sd} , se folosesc în calculul static încărcările de calcul F_d , care se obțin prin majorarea încărcărilor caracteristice F_k cu coeficientul parțial de siguranță γ_F , conform prevederilor normei EUROCODE 4, paragraful 2.2.4. Astfel, încărcările de calcul sunt:

$$F_d = \gamma_F \cdot F_k \tag{2.24}$$

Pentru diferitele încărcări, formula (2.24) devine:

- permanente
$$G_d = \gamma_G \cdot G_k$$
 (2.25)

- variabile
$$Q_d = \gamma_Q \cdot Q_k$$
 (2.26)

- accidentale
$$A_d = \gamma_A \cdot A_k$$
 (2.27)

În funcție de încărcările care se iau la calculul grinzilor mixte, pentru determinarea solicitărilor maxime se folosesc combinații de încărcări, indicate în paragraful 2.3.2.2 din EUROCODE 4, și anume:

- combinația fundamentală cu încărcări durabile și tranzitorii:

$$\sum_{j} \gamma_{G,j} \cdot G_{k,j} + \gamma_{Q,1} \cdot Q_{k,1} + \sum_{i \succ 1} \gamma_{Q,i} \cdot \psi_{0,i} \cdot Q_{k,i}$$
(2.28)

- combinația accidentală:

$$\sum_{j} \gamma_{GA,j} \cdot G_{k,j} + A_d + \psi_{1,1} Q_{k,1} + \sum_{i > 1} \psi_{2,i} \cdot Q_{k,i}$$
(2.29)

În aceste relații, mărimile de mai sus au următoarea semnificație:

 F_d , G_d , Q_d , A_d : sunt încărcările de calcul

 F_k , G_k , Q_k , A_k : sunt încărcările caracteristice (normate)

 $\gamma_{\rm F}$, $\gamma_{\rm G}$, $\gamma_{\rm O}$, $\gamma_{\rm A}$: sunt coeficienți parțiali de siguranță

 $G_{k,j}$: sunt valorile caracteristice ale diferitelor încărcări permanente

 $Q_{k,1}$ și $Q_{k,1}$: sunt valorile caracteristice a celei mai mari încărcări variabile, respectiv a celorlalte încărcări variabile

A_d : valoarea de calcul sau valoarea specificată a unei acțiuni accidentale

 $\gamma_{G,i} = 1.35$ și $\gamma_{GA,i} = 1$: sunt coeficienții de siguranță pentru încărcări permanente

 $\gamma_{Q,1} = 1.5$ și $\gamma_{Q,1} = 1.5$: sunt coeficienții de siguranță pentru cea mai mare, respectiv alte încărcări variabile

 $\psi_{0,i}$, $\psi_{1,1}$, $\psi_{2,i}$: sunt coeficienți de corecție pentru încărcări variabile, dați în EUROCODE 1 și EUROCODE 3 (paragraful 2.2.2.3)

2.7.2 Calculul și verificarea la starea limită ultimă de rezistență

Într-o grindă mixtă, dala de beton armat se comportă ca o talpă comprimată, în timp ce o parte, sau toată secțiunea de oțel, se comportă ca o talpă întinsă, după cum axa neutră este situată în secțiunea de oțel sau în dala de beton. Acest caz apare atunci când secțiunea mixtă se găsește sub un moment încovoietor pozitiv. În cazul secțiunilor sub moment negativ (pe reazemele intermediare ale grinzilor continue), dala de beton este întinsă (astfel încât ea se va neglija), în schimb armăturile din ea vor fi întinse iar profilul metalic, va fi o parte întins și o parte comprimat.

Rezistența de calcul la încovoiere a secțiunilor mixte, se poate determina printr-un calcul plastic (analiza neliniară), numai dacă secțiunea mixtă eficace este de clasa 1 sau 2.

Analiza liniară (calculul elastic) a grinzilor mixte se poate aplica la toate clasele secțiunilor transversale a grinzilor mixte.

La baza calculului grinzilor mixte stau următoarele ipoteze:

rezistența la întindere a betonului este neglijabilă

- secțiunile transversale plane, a părții din oțel și din beton armat, rămân plane și după deformație

La calculul elementelor structurale mixte, care posedă o conexiune completă, nu este necesar să se țină seama de efectul lunecării longitudinale, ceea ce permite să se presupună că secțiunile transversale plane a acestor elemente structurale, rămân plane.

2.8 MOMENTUL REZISTENT PLASTIC

2.8.1 Poziția axei neutre plastice ANP

În calculul grinzilor mixte oțel-beton, trebuie determinat momentul capabil rezistent al secțiunii transversale. Pentru aceasta se consideră că în starea limită ultimă de rezistență la încovoiere, există o distribuție plastică a eforturilor.

În acest caz, eforturile din zona solicitată la întindere a profilului metalic și din zona comprimată a dalei de beton armat, se consideră că sunt uniform distribuite pe secțiunea transversală. Acest lucru este posibil, numai dacă sunt respectate următoarele condiții de calcul:

1. Rezistența la forța tăietoare din grinda mixtă, este asigurată numai de secțiunea profilului de oțel.

2. În ecuațiile pentru calculul momentului plastic rezistent, se admite că dala din beton armat

este turnată pe un cofraj din tablă cutată de oțel, care este așezată cu nervurile perpendiculare pe grinda de oțel, și că grosimea eficace a dalei este egală cu h_c (fig.1.8.a). Dacă nervurile tablei cutate sunt paralele cu grinda de oțel, este suficient să se înlocuiască h_c prin $t_m = 2y$

(fig.1.8.b), y fiind distanța de la exteriorul dalei până la axa neutră plastică. Dacă dimensiunile tablei cutate care formează cofrajul, sunt cu nervuri mici, care satisfac condițiile din figura 1.7.a și b, grosimea dalei h_c se va lua egală cu grosimea totală a dalei de beton armat (fig.1.7)

3. Se acceptă o distribuție plastică uniformă de eforturi, egală cu limita de curgere f_y în secțiunea grinzii metalice, ceea ce înseamnă că secțiunea metalică este de clasa 1 sau 2, în cazul când axa neutră se găsește în secțiunea de oțel.

Într-adevăr în acest caz există compresiune fie într-o parte a tălpii profilului dublu T, fie în toată talpa și o porțiune din inimă. Pentru a admite o plastificare totală din compresiune. înainte de a se produce voalarea pereților secțiunii, trebuie să avem secțiuni de clasa 1 sau 2. Dacă secțiunea nu este de clasa 1 sau 2, se poate admite o distribuție elasto-plastică a eforturilor, cu excepția cazului când axa neutră plastică ANP, este în dala de beton. În acest ultim caz, toată secțiunea profilului de oțel este solicitată la întindere, astfel încât nu apar probleme de voalare.

4. La calcul, se neglijează prezența armăturilor din dala de beton armat comprimată. Ele sunt luate în considerare, numai în zonele cu moment încovoietor negativ de pe reazemele grinzilor continue, deci atunci când aceste se găsesc în zona întinsă.

Axa neutră plastică ANP separă zona întinsă de cea comprimată, astfel ca forțele interne să fie în echilibru. Ea poate să se găsească în dala de beton armat sau în secțiunea profilului metalic, așa cum se arată în figurile 2.14, 2..15 și 2.16, în care sunt prezentate și distribuțiile eforturilor.

Profilul metalic al grinzii mixte, poate fi un profil laminat dublu T, IPE, HEA sau HEB, precum și un profil compus sudat sau o grindă cu zăbrele. Eficacitatea grinzii mixte se poate îmbunătăți , dacă talpa grinzii metalice solicitată la tracțiune, are o secțiune mai mare decât talpa comprimată, lucru ce se realizează în general prin mărirea lățimii acesteia (fig.2.1.b).

În acest caz, secțiunea grinzii mixte este simetrică doar în raport cu axa verticală z-z din planul inimii.

Dacă secțiunea grinzii mixte este alcătuită dintr-o grindă cu zăbrele și dala de beton, atunci axa neutră în starea limită ultimă, trebuie să se situeze în dala de beton armat, iar acțiunea compozită trebuie să fie totală ($\alpha = 1.0$). În acest caz, secțiunea de oțel A_a, se consideră formată numai din aria tălpii inferioare a grinzii cu zăbrele, neglijând deci talpa superioară.

Rezistența ultimă la încovoiere a secțiunii mixte se determină scriind echilibrul forțelor interioare ultime, de unde se stabilește și poziția axei neutre plastice ANP.

Această poziție depinde de capacitatea dalei la compresiune, relativ la capacitatea secțiunii de oțel la întindere.

2.8.1.1 Determinarea poziției axei neutre plastice, în cazul unei secțiuni solicitate de un moment încovoietor pozitiv

În situația unei secțiuni supuse la încovoiere de către un moment pozitiv, fibrele inferioare sunt întinse, iar cele superioare, comprimate.

2.8.1.1.1 Axa neutră plastică ANP se găsește în dala de beton armat

Dacă capacitatea dalei comprimate este mai mare ca cea a secțiunii întinse a profilului din oțel $(F_c > F_a)$, axa neutră plastică se găsește în dala de beton armat a grinzii mixte.

Pentru a stabili poziția axei neutre plastice ANP, se calculează rezultantele eforturilor uniforme plastice, din dala de beton armat F_c și din profilul metalic F_a al grinzii mixte, după care se compară cele două rezultante ale eforturilor plastice:

- Dacă $F_c > F_a$ axa neutră plastică ANP se găsește în dala de beton armat
- Dacă $F_c < F_a$ axa neutră plastică ANP se află în profilul metalic

În figura 2.14.a este arătată poziția axei neutre plastice ANP situată într-o dală nervurată, iar în figura 2.14.b poziția axei neutre plastice ANP pentru o dală plină. În figurile 2.14.c și d este prezentată secțiunea transversală a grinzii compuse, având lățimea eficace a dalei b_{eff} și diagramele de eforturi plastice pe secțiunea transversală.

Fig.2.14 Calculul poziției axei neutre plastice aflată în dala de beton

Pentru a găsi unde se află axa neutră plastică ANP, se scriu rezultantele:

- rezultanta eforturilor de compresiune din dala de beton, pe toată grosimea dalei h_c:

$$F_c = b_{eff} \cdot h_c \cdot 0.85 f_{ck} / \gamma_c \tag{2.30}$$

- rezultanta eforturilor de întindere din profilul metalic:

$$F_a = A_a \cdot f_y / \gamma_a \tag{2.31}$$

Dacă $F_c > F_a$

axa neutră plastică se găsește în dala de beton (fig.2.14), unde:

 b_{eff} : este lățimea eficace (participantă) a dalei de beton

h_c : este grosimea dalei de beton

 $b_{eff} \cdot h_c$: este aria secțiunii eficace de beton

 f_{ck} : este rezistența caracteristică a betonului la compresiune, măsurată la 28 de zile, pe probe cilindrice

 $\gamma_a = 1.1$ și $\gamma_c = 1.5$: sunt coeficienții parțiali se siguranță pentru oțel, respectiv beton Pentru a determina poziția axei neutre plastice, exprimată prin distanța z, măsurată de la fața superioară a plăcii de beton până la axa neutră plastică ANP, se scrie rezultanta eforturilor de compresiune pe porțiunea de deasupra axei neutre plastice (fig.2.14.d) și se egalează cu rezultanta eforturilor de întindere din profilul metalic:

$$b_{eff} \cdot z \cdot 0.85 f_{ck} / \gamma_c = A_a \cdot f_v / \gamma_a$$
(2.33)

(2.32)

de unde rezultă distanța z până la axa neutră plastică:

$$z = \frac{A_a \cdot f_y}{0.85 f_{ck} \cdot b_{eff}} \cdot \frac{\gamma_c}{\gamma_a} \le h_c$$
(2.34)

Ținând cont de valorile lui $\gamma_a = 1.1$ și $\gamma_c = 1.5$, relația (2.34) se scrie:

$$z = 1.6 \frac{A_a \cdot f_y}{b_{eff} \cdot f_{ck}} \le h_c$$
(2.35)

2.8.1.1.2 Axa neutră plastică ANP se găsește în talpa superioară a profilului metalic

Dacă capacitatea dalei de beton la compresiune este mai mică decât cea a secțiunii de oțel la întindere : $F_c < F_a$, pentru a avea echilibrul forțelor, trebuie ca o parte a secțiunii de oțel să lucreze la compresiune. În acest caz, axa neutră plastică se află în profilul metalic.

În funcție de intensitatea efortului de compresiune, raportat la cel de întindere, axa neutră poate fi în talpa profilului de oțel, sau în inima acestuia.

Fig.2.15 Calculul poziției axei neutre plastice, aflată în talpa superioară

Pentru a putea scrie rezultantele eforturilor din fig.2.15.d, această diagramă se înlocuiește cu diagrama din fig.2.15.e, în care se suplimentează diagrama eforturilor de întindere pentru a acoperi toată înălțimea h a profilului metalic, iar pentru ca rezultanta totală să nu se schimbe, efortul de compresiune din talpa superioară a profilului metalic se dublează(pe înălțimea z, efortul fiind egal cu $2f_y/\gamma_a$), o jumătate anulând completarea făcută la efortul de întindere.

Astfel, ecuația de echilibru a rezultantelor, din care rezultă poziția axei neutre plastice, devine: $F_c = F_a$ (2.36)

în care:

$$F_c = F_{cc} + F_{ac} \tag{2.37}$$

unde: F_c : este rezultanta eforturilor de compresiune

F_a : este rezultanta eforturilor de întindere din tot profilul metalic

 F_{cc} : este rezultanta eforturilor de compresiune din toată dala de beton

)

 F_{ac} : este rezultanta eforturilor de compresiune din porțiunea de talpă metalică de înălțime z (de deasupra axei neutre) Aceste eforturi se calculează cu relațiile:

$$F_{cc} = 0.85b_{eff} \cdot h_c \cdot f_{ck} / \gamma_c$$
(2.38)

$$F_{ac} = A_{ac} \cdot 2f_y / \gamma_a = 2b_f \cdot z \cdot f_y / \gamma_a$$
(2.39)

iar efortul însumat de compresiune din (2.37) are valoarea

$$F_c = 0.85b_{eff} \cdot h_c \cdot f_{ck} / \gamma_c + 2b_f \cdot z \cdot f_v / \gamma_a$$
(2.40)

Rezultanta efortului de întindere din tot profilul metalic, este:

$$F_a = A_a \cdot f_y / \gamma_a \tag{2.41}$$

Egalând cele două rezultante pe baza relației (2.36) se obține

$$0.85b_{eff} \cdot h_c \cdot f_{ck} / \gamma_c + 2b_f \cdot z \cdot f_y / \gamma_a = A_a \cdot f_y / \gamma_a$$
(2.42)

din care rezultă distanța z de la marginea superioară a profilului metalic până la axa neutră plastică, care definește poziția acestei axe:

$$2b_f \cdot z \cdot f_y / \gamma_a = A_a \cdot f_y / \gamma_a - 0.85b_{eff} \cdot h_c \cdot f_{ck} / \gamma_c$$
(2.43)

și deci:

$$z = \frac{A_a}{2b_f} - \frac{0.85b_{eff} \cdot h_c \cdot f_{ck} / \gamma_c}{2b_f \cdot f_y / \gamma_a}$$
(2.44)

Pentru $\gamma_a = 1.1$ și $\gamma_c = 1.5$, relația (2.44) va deveni:

$$z = \frac{1}{2b_f} \left(A_a - 0.62 \frac{b_{eff} \cdot h_c \cdot f_{ck}}{f_y} \right) \le t_f$$
(2.45)

În aceste relații, mărimile ce intervin au următoarele semnificații (vezi fig.2.15):

A_a: aria secțiunii profilului metalic

beff : lățimea eficace a dalei de beton armat

h_c : grosimea dalei de beton (conform fig.2.15.a,b)

 $b_{eff} \cdot h_c$: este aria secțiunii eficace a dalei de beton armat

b_f și t_f: sunt lățimea și grosimea tălpii profilului metalic

 f_{ck} : este rezistența caracteristică a betonului la compresiune, măsurată la 28 de zile, pe probe cilindrice

 f_v : este limita de curgere a oțelului din profilul metalic

Distanța z trebuie să fie mai mică decât grosimea tălpii profilului metalic, pentru ca axa neutră plastică să fie în talpă.

2.8.1.1.3 Axa neutră plastică se găsește în inima profilului metalic

Dacă rezultanta eforturilor de întindere din profilul metalic F_a este mult mai mare ca rezultanta eforturilor de compresiune F_c din beton, atunci axa neutră plastică ANP se plasează în inima profilului metalic.

Fig.2.16 Calculul poziției axei neutre plastice, aflată în inima profilului metalic

Acest lucru se întâmplă de regulă când profilul metalic este un profil dublu T compus prin sudură, având talpa inferioară mai dezvoltată decât cea superioară, prin mărirea lățimii acesteia.

Pentru a determina poziția axei neutre plastice ANP, se pornește de la diagrama din fig.2.16.c de eforturi plastice, în care eforturile de compresiune apar în dala de beton, în talpa superioară și în partea de sus a inimii profilului metalic, pe înălțimea z a acesteia (fig.2.16.b). Diagrama de eforturi din fig.2.16.c se completează ca și în cazul fig.2.15, astfel ca eforturile de întindere f_y / γ_a să fie distribuite pe tot profilul metalic. Pentru a echilibra aceste eforturi, se dublează eforturile de compresiune din profilul metalic, la 2 f_y / γ_a (fig.2.16.d).

În acest caz, ecuația din care se determină poziția axei neutre plastice ANP (fig.2.16.b), se scrie:

$$F_c = F_a \tag{2.46}$$

în care (conform figurii 2.16.d):

$$F_{c} = F_{cc} + F_{af}^{c} + F_{aw}^{c}$$
(2.47)

unde: F_c : este rezultanta eforturilor de compresiune

F_a : este rezultanta eforturilor de întindere din tot profilul metalic

 F_{cc} : este rezultanta eforturilor de compresiune din toată dala de beton

 F_{af}^{c} : este rezultanta eforturilor de compresiune din talpa superioară a profilului metalic

 F_{av}^{c} : este rezultanta eforturilor de compresiune din porțiunea de inimă de înălțime z, a profilului metalic

Eforturile care intră în relațiile (2.46) și (2.47), au valorile:

$$F_{cc} = 0.85b_{eff} \cdot h_c \cdot f_{ck} / \gamma_c \tag{2.48}$$

$$F_{af}^{c} = b_{f}^{s} \cdot t_{f} \cdot 2f_{y} / \gamma_{a}$$
(2.49)

$$F_{aw}^{c} = z \cdot t_{w} \cdot 2f_{y} / \gamma_{a}$$
(2.50)

$$F_a = A_a \cdot f_y / \gamma_a \tag{2.51}$$

Înlocuind aceste relații în (2.47) și apoi în (2.46), rezultă:

$$F_{c} = 0.85b_{eff} \cdot h_{c} \cdot f_{ck} / \gamma_{c} + b_{f}^{s} \cdot t_{f} \cdot 2f_{y} / \gamma_{a} + z \cdot t_{w} \cdot 2f_{y} / \gamma_{a}$$
(2.52)

$$A_a \cdot f_y / \gamma_a = 0.85b_{eff} \cdot h_c \cdot f_{ck} / \gamma_c + b_f^s \cdot t_f \cdot 2f_y / \gamma_a + z \cdot t_w \cdot 2f_y / \gamma_a \qquad (2.53)$$

de unde se obține distanța z de la marginea superioară a inimii profilului metalic, până la axa neutră plastică, care și definește poziția acestei axe (fig.2.16.b):

$$2z \cdot t_{w} \cdot f_{y} / \gamma_{a} = A_{a} \cdot f_{y} / \gamma_{a} - \left(0.85b_{eff} \cdot h_{c} \cdot f_{ck} / \gamma_{c} + 2b_{f}^{s} \cdot t_{f} \cdot f_{y} / \gamma_{a}\right)$$
(2.54)

rezultând:

$$z = \frac{A_a - 2b_f^s \cdot t_f}{2t_w} - \frac{0.85b_{eff} \cdot h_c \cdot f_{ck} / \gamma_c}{2t_w \cdot f_y / \gamma_a}$$
(2.55)

în care dacă se înlocuiește $\gamma_c = 1.5$ și $\gamma_a = 1.1$, se obține:

$$z = \frac{1}{2t_w} \left(A_a - 2b_f^s \cdot t_f - 0.62 \frac{b_{eff} \cdot h_c \cdot f_{ct}}{f_y} \right) \succ 0$$
 (2.56)

unde: tw: este grosimea inimii profilului metalic

 b_f^s și t_f : sunt lățimea și grosimea tălpii superioare a profilului metalic

 b_{eff} și h_c : sunt lățimea eficace și grosimea dalei de beton

 f_{ck} și f_y : sunt rezistența caracteristică a betonului determinată pe cilindri, respectiv limita de curgere a oțelului

Poziția axei neutre plastice ANP, exprimată prin distanța z, determinată cu relațiile (2.35), (2.45) sau (2.56), servește la calculul momentelor rezistente plastice a grinzii mixte.

2.8.1.2 Determinarea poziției axei neutre plastice, în cazul unei secțiuni solicitate de un moment încovoietor negativ

În cazul unei secțiuni supuse la încovoiere sub un moment negativ, fibrele inferioare sunt comprimate, iar cele superioare sunt întinse.

Astfel, dala de beton armat găsindu-se în zona întinsă, aceasta se neglijează, deoarece betonul se consideră că este fisurat și deci nu se ia în calcul.

Ca o consecință a celor de mai sus, axa neutră plastică ANP se va găsi întotdeauna în profilul metalic al grinzii mixte.

În figura 2.17.a este arătată poziția axei neutre plastice ANP situată într-o dală plină. În figurile 2.17.b și c este prezentată secțiunea transversală a grinzii compuse, având lățimea eficace a dalei b_{eff} și diagramele de eforturi plastice pe secțiunea transversală.

Fig.2.17 Calculul poziției axei neutre plastice, pentru secțiuni supuse la moment negativ

Pentru a determina poziția axei neutre plastice ANP, se pornește de la diagrama din fig.2.17.c de eforturi plastice, în care eforturile de întindere apar în armăturile din dala de beton, în talpa superioară și în partea de sus a inimii profilului metalic, pe înălțimea z a acesteia (fig.2.17.b). Diagrama de eforturi din fig.2.17.c se completează ca și în cazul fig.2.16, astfel ca eforturile de compresiune f_y / γ_a să fie distribuite pe tot profilul metalic. Pentru a echilibra aceste eforturi, se dublează eforturile de întindere din profilul metalic, la 2 f_y / γ_a (fig.2.17.d). În acest caz, ecuația din care se determină poziția axei neutre plastice ANP (fig.2.17.b), se scrie:

$$F_t = F_a \tag{2.57}$$

în care (conform figurii 2.17.d):

$$F_{t} = F_{st} + F_{af}' + F_{aw}'$$
 (2.58)

unde: F_t : este rezultanta eforturilor de întindere

F_a : este rezultanta eforturilor de compresiune din tot profilul metalic

Fst : este rezultanta eforturilor de întindere din armăturile flexibile din dala de beton

 F'_{af} : este rezultanta eforturilor de întindere din talpa superioară a profilului metalic

 F_{av}^{\prime} : este rezultanta eforturilor de întindere din porțiunea de inimă de înălțime z , a profilului metalic

Eforturile care intră în relațiile (2.57) și (2.58), au valorile:

$$F_{st} = A_s \cdot f_{sk} / \gamma_s \tag{2.59}$$

$$F_{af}^{\prime} = b_{f}^{s} \cdot t_{f} \cdot 2f_{y} / \gamma_{a}$$
(2.60)

$$F'_{aw} = z \cdot t_w \cdot 2f_y / \gamma_a \tag{2.61}$$

$$F_a = A_a \cdot f_y / \gamma_a \tag{2.62}$$

Înlocuind aceste relații în (2.58) și apoi în (2.57), rezultă:

$$F_{t} = A_{s} \cdot f_{sk} / \gamma_{s} + b_{f}^{s} \cdot t_{f} \cdot 2f_{y} / \gamma_{a} + z \cdot t_{w} \cdot 2f_{y} / \gamma_{a}$$

$$(2.63)$$

$$A_a \cdot f_y / \gamma_a = A_s \cdot f_{sk} / \gamma_s + b_f^s \cdot t_f \cdot 2f_y / \gamma_a + z \cdot t_w \cdot 2f_y / \gamma_a$$
(2.64)

de unde se obține distanța z de la marginea superioară a inimii profilului metalic, până la axa neutră plastică, care și definește poziția acestei axe (fig.2.17.b):

$$2z \cdot t_{w} \cdot f_{y} / \gamma_{a} = A_{a} \cdot f_{y} / \gamma_{a} - \left(A_{s} \cdot f_{sk} / \gamma_{s} + 2b_{f}^{s} \cdot t_{f} \cdot f_{y} / \gamma_{a}\right)$$
(2.65)

rezultând:

$$z = \frac{A_a - 2b_f^s \cdot t_f}{2t_w} - \frac{A_s \cdot f_{sk} / \gamma_s}{2t_w \cdot f_y / \gamma_a}$$
(2.66)

în care dacă se înlocuiește $\gamma_s = 1.15$ și $\gamma_a = 1.1$, se obține:

$$z = \frac{1}{2t_{w}} \left(A_{a} - 2b_{f}^{s} \cdot t_{f} - 0.956 \frac{A_{s} \cdot f_{sk}}{f_{y}} \right)$$
(2.67)

unde: A_s : este aria armăturilor flexibile (active), dispuse pe zona lățimii de calcul a plăcii t_w : este grosimea inimii profilului metalic

 b_f^s și t_f : sunt lățimea și grosimea tălpii superioare a profilului metalic

 f_{sk} și f_y : sunt limita de elasticitate caracteristică a armăturii, respectiv limita de curgere a oțelului

Poziția axei neutre plastice ANP, exprimată prin distanța z, determinată cu relațiile (2.35), (2.45), (2.56) sau (2.67), servește la calculul momentelor rezistente plastice ale grinzii mixte oțel-beton.

2.8.2 Ipoteze pentru calculul momentului rezistent plastic

La calculul momentului rezistent plastic $M_{pl\,Rd}$, trebuie adoptate următoarele ipoteze de calcul, în cazul conexiunii complete:

- conexiunea traveii unde se situează secțiunea studiată, este completă, în sensul că: grinda metalică, dala de beton sau armăturile din ea, pot atinge rezistența lor axială maximă (în acest caz se poate spune că interacțiunea este completă)

- toate fibrele grinzii metalice (înțelegând cele din vecinătatea axei neutre) sunt plastificate la întindere sau compresiune, eforturile din aceste fibre fiind $\pm f_y / \gamma_a$,

cu coeficientul parțial de siguranță al oțelului ya

- rezistența la întindere a betonului este neglijată

- distribuția eforturilor normale în betonul comprimat este uniformă, având valoarea $0.85 f_{ct} / \gamma_c$, cu coeficientul parțial de siguranță al betonului γ_c . În cazul betonului se ia doar 85% din rezistența sa caracteristică, ținând astfel cont de diferențele dintre încercările pe cilindri standard de beton și comportamentul real al betonului într-un element structural (durata mai mare a încărcărilor pe structură, diferențele legate de condițiile de margine, etc.)

- atât timp cât armăturile din dală sunt întinse, plastificarea lor se face la un efort egal cu f_{sk} / γ_s , cu coeficientul parțial de siguranță al armăturii γ_s . Armăturile comprimate din dala de beton armat, se neglijează.

- tablele cutate cu nervuri din oțel, situate în zona comprimată, sunt de asemenea neglijate. Trebuie însă presupus că tablele cutate din oțel întinse și cuprinse în secțiunea eficace, sunt supuse la un efort egal cu f_v / γ_{ap}

În determinarea rezistențelor de calcul, coeficienții parțiali de siguranță pentru oțelul structural γ_a , beton γ_c , oțelul din armături γ_s și tablele cutate γ_{ap} , sunt dați în continuare, în tabelul 2.3

COMBINAȚIA	Oțel de construcții pt. profilul metalic γ _a (γ _{M0} din EC3)	Beton γ _c	Armături din oțel γs	Table cutate din oțel γ _{ap}
Fundamentale	1.1	1.5	1.15	1.1
Accidentale cu excepția seism	1.0	1.3	1.0	1.0

Coeficienții parțiali de siguranță pentru rezistența materialelor

Tabelul 2.3

Dacă conexiunea dintre profilul metalic și placa de beton armat este o conexiune parțială, adică numărul conectorilor este mai mic decât cel necesar pentru o conexiune completă, se poate calcula momentul rezistent plastic al grinzii mixte pe baza ipotezelor anterioare (de la grinzi cu conexiune completă), cu diferența că efortul de compresiune din beton, egal cu $0.85 f_{ck} / \gamma_c$, se va înlocui printr-o valoare redusă F_c, determinată în conformitate cu prevederile paragrafului 6.2.1 din EUROCODE 4.

2.8.3 Calculul momentului rezistent plastic în secțiuni de moment pozitiv și verificarea condiției de rezistență la încovoiere

Determinarea momentului rezistent plastic pozitiv (momentului capabil), se face în mod diferit în funcție de poziția axei neutre plastice, conform paragrafelor 2.7.3.1.

Având poziția axei neutre plastice ANP, în continuare se prezintă determinarea momentului rezistent plastic, pentru diferitele poziții ale acesteia.

2.8.3.1 Calculul momentului rezistent plastic când axa neutră plastică ANP este situată în dala de beton armat a grinzii mixte

După cum se vede în figura 2.14, axa neutră plastică se găsește în dala de beton armat, adică $z < h_c$ (fig.2.14.a,b,c). Momentul rezistent plastic se poate determina scriind o ecuație de momente față de rezultanta eforturilor de compresiune din dala de beton armat (față de centrul de greutate al dalei):

$$M_{pl,Rd}^{+} = F_a \cdot e \tag{2.68}$$

unde: F_a : este rezultanta eforturilor de întindere din întreg profilul metalic, în conformitate cu relația (2.31)

e : este distanța de la centrul de greutate al profilului metalic până la centrul de greutate al zonei comprimate, unde acționează rezultanta F_c a eforturilor de compresiune din dala de beton armat

$$e = \frac{h}{2} + h_c - \frac{z}{2} = \frac{1}{2} \left(h + 2h_c - z \right)$$
 (2.69)

unde:

$$z = \frac{A_a \cdot f_y}{0.85 f_{ck} \cdot b_{eff}} \cdot \frac{\gamma_c}{\gamma_a} \le h_c$$
(2.34)

Cu distanța e de mai sus, momentul plastic rezistent se scrie:

$$M_{pl.Rd}^{+} = A_{a} \cdot f_{y} / \gamma_{a} \cdot \frac{1}{2} (h + 2h_{c} - z)$$
(2.70)

$$M_{pl.Rd}^{+} = \frac{1}{2\gamma_{a}} A_{a} \cdot f_{y} \cdot (h + 2h_{c} - z)$$
(2.71)

În acest caz, condiția de verificare a grinzii mixte, este:

$$M_{Sd}^+ \le M_{pl,Rd}^+$$
 (2.72)

În relația (2.72) M_{Sd} este momentul încovoietor maxim de calcul, rezultat din calculul static din încărcările de calcul ce acționează asupra grinzii mixte, care rezultă înmulțind încărcările normate cu coeficienții parțiali de siguranță γ_F privind încărcările.

2.8.3.2 Calculul momentului rezistent plastic când axa neutră plastică ANP este situată în talpa superioară a profilului de oțel

Dacă axa neutră plastică se găsește în talpa superioară a profilului metalic (fig.2.15), cu $z \le t_f$ (t_f fiind grosimea tălpii), momentul rezistent plastic se determină pe baza diagramei de eforturi din figura 2.15.d, completată ca în fig.2.15.e, scriind ecuația de momente față de rezultanta F_{cc} a eforturilor de compresiune din dala de beton (centrul de greutate al dalei din beton armat):

$$M_{pl.Rd}^{+} = F_{a} \cdot e_{c} - F_{ac} \left(e_{c} - e_{f} \right)$$
(2.73)

unde: F_a : este rezultanta eforturilor de întindere din profilul de oțel, din relația (2.31)

 F_{ac} : este rezultanta eforturilor de compresiune din porțiunea de talpă superioară de deasupra axei neutre, din relația (2.39)

Distanțele e_c și e_f din relația (2.73), se determină din relațiile: - pentru dale pline (fig.2.15.a,e):

$$e_{c} = \frac{h}{2} + \frac{h_{c}}{2} = \frac{1}{2} (h + h_{c})$$
(2.74)

$$e_f = \frac{h}{2} - \frac{z}{2} = \frac{1}{2}(h - z)$$
(2.75)

- pentru dale nervurate (fig.2.15.b,c,,e):

$$e_{c} = \frac{h}{2} + h_{t} + \frac{h_{c}}{2} = \frac{1}{2} \left(h + 2h_{t} + h_{c} \right)$$
(2.76)

$$e_f = \frac{h}{2} - \frac{z}{2} = \frac{1}{2}(h - z)$$
(2.75)

unde:

$$z = \frac{A_a}{2b_f} - \frac{0.85b_{eff} \cdot h_c \cdot f_{ck} / \gamma_c}{2b_f \cdot f_y / \gamma_a}$$
(2.44)

Cu aceste distanțe, momentul plastic rezistent devine:

- pentru dale pline:

$$M_{pl.Rd}^{+} = A_{a} \cdot f_{y} / \gamma_{a} \cdot \frac{1}{2} (h + h_{c}) - 2b_{f} \cdot z \cdot f_{y} / \gamma_{a} \left[\frac{1}{2} (h + h_{c}) - \frac{1}{2} (h - z) \right]$$
(2.77)

sau:

$$M_{pl.Rd}^{+} = \frac{1}{2} \cdot \frac{f_{y}}{\gamma_{a}} \Big[A_{a} \big(h + h_{c} \big) - 2b_{f} \cdot z \big(h_{c} + z \big) \Big]$$
(2.78)

- pentru dale nervurate:

$$M_{pl,Rd}^{+} = A_{a} \cdot f_{y} / \gamma_{a} \cdot \frac{1}{2} (h + 2h_{t} + h_{c}) - 2b_{f} \cdot z \cdot f_{y} / \gamma_{a} \left[\frac{1}{2} (h + 2h_{t} + h_{c}) - \frac{1}{2} (h - z) \right] (2.79)$$

sau:

$$M_{pl,Rd}^{+} = \frac{1}{2} \cdot \frac{f_{y}}{\gamma_{a}} \Big[A_{a} \big(h + 2h_{t} + h_{c} \big) - 2b_{f} \cdot z \big(h_{c} + 2h_{t} + z \big) \Big]$$
(2.80)

Condiția de verificare este și în acest caz:

$$M_{Sd}^+ \le M_{pl,Rd}^+$$
 (2.72)

2.8.3.3 Calculul momentului rezistent plastic când axa neutră plastică ANP este situată în inima profilului de oțel

În situația când axa neutră plastică se găsește în inima profilului metalic (fig.2..16.b), cu z>0, momentul rezistent plastic se determină pe baza diagramei reale de eforturi (fig.2.16.c), dar se calculează mai ușor având la bază eforturile din diagrama completată ca în fig.2.16.d, scriind și în acest caz ecuația de momente față de centrul de greutate al dalei de beton (față de rezultanta F_{cc}):

$$M_{pl,Rd}^{+} = F_{a} \cdot e_{c} - F_{aw}^{c} (e_{c} - e_{w}) - F_{af}^{c} (e_{c} - e_{f})$$
(2.81)

în care:

 F_a : este rezultanta eforturilor de întindere din tot profilul metalic, conform relației (2.31)

 F_{af}^{c} : este rezultanta eforturilor de compresiune din talpa superioară a profilului metalic, conform relației (2.49)

 F_{aw}^{c} : este rezultanta eforturilor de compresiune din porțiunea de inimă de înălțime z, a profilului metalic, conform relației (2.50)

Distanțele e_c , e_w și e_f se determină cu relațiile următoare, considerând că profilul metalic nu este simetric, fiind un profil compus sudat, cu talpa inferioară mai dezvoltată (caz în care, de regulă, axa neutră se plasează în inima profilului metalic):

$$e_{c} = h_{s} + t_{f} + \frac{h_{c}}{2} = \frac{1}{2} \left(2h_{s} + 2t_{f} + h_{c} \right)$$
(2.82)

$$e_w = h_s - \frac{z}{2} = \frac{1}{2} (2h_s - z)$$
 (2.83)

$$e_f = h_s + \frac{t_f}{2} = \frac{1}{2} \left(2h_s + t_f \right)$$
(2.84)

unde:

 $h_{s}:\mbox{este}$ înălțimea inimii profilului I de deasupra centrului de greutate al profilului metalic

t_f: este grosimea tălpii superioare a profilului metalic

tw : este grosimea inimii profilului metalic

h_c : este grosimea dalei de beton armat

z : este distanța de la marginea superioară a inimii profilului metalic, la axa neutră plastică:

$$z = \frac{A_a - 2b_f^s \cdot t_f}{2t_w} - \frac{0.85b_{eff} \cdot h_c \cdot f_{ck} / \gamma_c}{2t_w \cdot f_y / \gamma_a}$$
(2.55)

 b_{f}^{s} : este lățimea tălpii superioare a profilului metalic

Înlocuind în relația (2.81), momentul rezistent plastic se va scrie:

$$M_{pl,Rd}^{+} = A_{a} \cdot f_{y} / \gamma_{a} \cdot \frac{1}{2} (2h_{s} + 2t_{f} + h_{c}) - 2z \cdot t_{w} \cdot f_{y} / \gamma_{a} \left[\frac{1}{2} (2h_{s} + 2t_{f} + h_{c}) - \frac{1}{2} (2h_{s} - z) \right]$$

$$-2b_{f}^{s} \cdot t_{f} \cdot f_{y} / \gamma_{a} \left[\frac{1}{2} (2h_{s} + 2t_{f} + h_{c}) - \frac{1}{2} (2h_{s} + t_{f}) \right]$$
(2.85)

sau:

$$M_{pl,Rd}^{+} = \frac{1}{2} \frac{f_{y}}{\gamma_{a}} \Big[A_{a} \Big(2h_{s} + 2t_{f} + h_{c} \Big) - 2z \cdot t_{w} \Big(2t_{f} + h_{c} + z \Big) - 2b_{f}^{s} \cdot t_{f} \Big(t_{f} + h_{c} \Big) \Big] \quad (2.86)$$

Condiția de verificare este și în acest caz:

$$M_{Sd}^* \le M_{pl,Rd}^*$$
 (2.72)

cu: M_{Sd}^{+} : momentul încovoietor pozitiv de calcul, obținut din calculul static, din încărcările de calcul, determinate conform paragrafului (2.7.1).

2.8.4 Calculul momentului rezistent plastic în secțiuni de moment negativ și verificarea condiției de rezistență la încovoiere

Determinarea momentului rezistent plastic negativ (momentului capabil), se face în funcție de poziția axei neutre plastice, determinată conform paragrafului 2.7.3.2.

În situația când secțiunea se găsește sub moment negativ, axa neutră plastică se găsește în inima profilului metalic (fig.2..17.b). Momentul rezistent plastic negativ se determină pe baza diagramei reale de eforturi (fig.2.17.c), dar se calculează mai ușor având la bază eforturile din diagrama completată ca în fig.2.17.d, scriind și în acest caz ecuația de momente față de centrul de greutate al armăturilor(față de rezultanta F_{st}), care coincide cu centrul de greutate al dalei de beton :

$$M_{pl,Rd}^{-} = F_{a} \cdot e_{s} - F_{aw}^{\prime} \left(e_{s} - e_{w} \right) - F_{af}^{s} \left(e_{s} - e_{f} \right)$$
(2.87)

în care:

 F_a : este rezultanta eforturilor de compresiune din tot profilul metalic, conform relației (2.62)

 F'_{af} : este rezultanta eforturilor de întindere din talpa superioară a profilului metalic, conform relației (2.61)

 F_{av}^{\prime} : este rezultanta eforturilor de întindere din porțiunea de inimă de înălțime z, a profilului metalic, conform relației (2.60)

Distanțele e_s , e_w și e_f se determină cu relațiile următoare, considerând că profilul metalic nu este simetric, fiind un profil compus sudat, cu talpa inferioară mai dezvoltată (în mod asemănător cu paragraful anterior):

$$e_s = h_s + t_f + \frac{h_c}{2} = \frac{1}{2} \left(2h_s + 2t_f + h_c \right)$$
(2.88)

$$e_{w} = h_{s} - \frac{z}{2} = \frac{1}{2} (2h_{s} - z)$$
 (2.89)

$$e_f = h_s + \frac{t_f}{2} = \frac{1}{2} \left(2h_s + t_f \right)$$
(2.90)

unde:

 h_{s} : este înălțimea inimii profilului I de deasupra centrului de greutate al profilului metalic

t_f: este grosimea tălpii superioare a profilului metalic

tw: este grosimea inimii profilului metalic

h_c : este grosimea dalei de beton armat

z : este distanța de la marginea superioară a inimii profilului metalic, la axa neutră plastică:

$$z = \frac{A_a - 2b_f^s \cdot t_f}{2t_w} - \frac{A_s \cdot f_{sk} / \gamma_s}{2t_w \cdot f_v / \gamma_a}$$
(2.66)

 b_f^s : este lățimea tălpii superioare a profilului metalic

Înlocuind în relația (2.87), momentul rezistent plastic negativ, se va scrie:

$$M_{pl,Rd}^{-} = A_{a} \cdot f_{y} / \gamma_{a} \cdot \frac{1}{2} (2h_{s} + 2t_{f} + h_{c}) - 2z \cdot t_{w} \cdot f_{y} / \gamma_{a} \left[\frac{1}{2} (2h_{s} + 2t_{f} + h_{c}) - \frac{1}{2} (2h_{s} - z) \right]$$

$$-2b_{f}^{s} \cdot t_{f} \cdot f_{y} / \gamma_{a} \left[\frac{1}{2} (2h_{s} + 2t_{f} + h_{c}) - \frac{1}{2} (2h_{s} + t_{f}) \right]$$
(2.91)

sau:

$$M_{pl.Rd}^{-} = \frac{1}{2} \frac{f_{y}}{\gamma_{a}} \Big[A_{a} \Big(2h_{s} + 2t_{f} + h_{c} \Big) - 2z \cdot t_{w} \Big(2t_{f} + h_{c} + z \Big) - 2b_{f}^{s} \cdot t_{f} \Big(t_{f} + h_{c} \Big) \Big] \quad (2.92)$$

Condiția de verificare este și în acest caz:

$$M_{Sd}^{-} \le M_{pl,Rd}^{-}$$
 (2.93)

cu: M_{Sd}^- : momentul încovoietor negativ de calcul (de pe reazemele intermediare ale grinzilor continue), obținut din calculul static, din încărcările de calcul, determinate conform paragrafului (2.7.1).

2.9 MOMENTUL REZISTENT ELASTIC

Calculul plastic, prezentat în paragraful anterior, este valabil doar atunci când secțiunea mixtă este de clasa 1 sau 2. Analiza elastică se poate aplica pentru secțiunile de orice clasă (1, 2, 3, sau 4).

Analiza elastică a grinzilor mixte se bazează pe următoarele ipoteze:

- grinzile mixte oțel-beton sunt realizate dintr-un profil metalic, legat pe toată lungimea lui de o dală de beton armat, sau o dală mixtă beton-tablă cutată; legătura dintre cele două elemente: profilul metalic și dala de beton, este suficientă pentru a împiedica lunecarea la interfața de contact oțel-beton (fig.2.18)

- secțiunile plane rămân plane și după deformare
- oțelul și betonul se consideră două materiale elastice
- betonul întins nu se ia în considerare

Fig. 2.18 Grinzi mixte oțel-beton cu conlucrare totală

Bazându-ne pe ipotezele enumerate mai sus, secțiunea mixtă se poate considera ca fiind formată dintr-un material omogen echivalent în oțel. Pentru aceasta se pot exprima caracteristicile geometrice elastice ale grinzii mixte, prin caracteristici geometrice echivalente, folosind coeficientul de echivalență n, definit în paragraful 1.3.1.3. Coeficientul n depinde de tipul acțiunii, tipul de stare limită și de etapa de încărcare pentru care se face verificarea, având valoarea:

$$n = \frac{E_a}{E_c}$$
(2.94)

unde: E_a : este modulul de elasticitate al oțelului de construcție

 E_c : este modulul echivalent al betonului, care se calculează în funcție de modulul de elasticitate secant al betonului E_{cm} (cu valorile din tabelul 1.2), și este:

 $E'_{c} = E_{cm} - pentru încărcări de scurtă durată$ $E'_{c} = E_{cm}/3 - pentru încărcări permanente și de lungă durată$ $E'_{c} = E_{cm}/2 - pentru alte cazuri$

Fig.2.19 Secțiunea transversală a unei grinzi mixte

Conform figurii 2.19, cu notațiile corespunzătoare, aria echivalentă în oțel se calculează cu relația:

$$A_{1} = A_{a} + A_{s} + \frac{A_{c}}{n} = t_{f} \cdot b_{f}^{s} + t_{f} \cdot b_{f}^{\prime} + t_{w} \cdot h_{w} + A_{s} + \frac{b_{eff} \cdot h_{c}}{n}$$
(2.95)

unde: A_a : este aria profilului metalic

A_s: este aria armăturilor flexibile, care se neglijează dacă placa de beton este în zona comprimată a grinzii

A_c : este aria secțiunii eficace de beton Caracteristicile geometrice echivalente și verificarea în domeniul elastic, depinde de asemenea de poziția axei neutre elastice și de semnul momentului încovoietor.

2.9.1 Calculul elastic în cazul unei secțiuni mixte aflate în zona de moment pozitiv

În această situație, în fibra superioară există compresiune (dala de beton fiind comprimată, se neglijează armătura flexibilă din beton), iar în cea inferioară, întindere.

Și în acest caz, ne interesează să determinăm poziția axei neutre elastice ANE, care se poate situa în dala de beton, sau în grinda metalică.

2.9.1.1 Axa neutră elastică ANE se găsește în grinda metalică

Aria secțiunii eficace de beton este (conform fig.2.20):

$$A_c = b_{eff} \cdot h_c \tag{2.96}$$

Cu aceasta, aria echivalentă în oțel a întregii secțiuni mixte, se poate scrie (neglijând aria armăturii flexibile A_s):

55

$$A_{1} = A_{a} + \frac{A_{c}}{n} = t_{f} \cdot b_{f}^{s} + t_{f} \cdot b_{f}^{t} + t_{w} \cdot h_{w} + \frac{b_{eff} \cdot h_{c}}{n}$$
(2.97)

Fig.2.20 Axa neutră elastică aflată în grinda metalică

Poziția centrului de greutate al secțiunii mixte G_m , scris față de centrul de greutate al dalei de beton armat G_c (prin distanța d_c), respectiv față de centrul de greutate al profilului metalic G_a (prin distanța d_a), se determină egalând momentele statice ale secțiunii de beton, respectiv de oțel (fig.2.20):

$$A_a \cdot d_a = \frac{A_c}{n} \cdot d_c \tag{2.98}$$

Dar, din geometria grinzii mixte, se poate scrie:

$$d_a + d_c = h_s + t_f + \frac{h_c}{2}$$
 (2.99)

sau:

$$d_a = h_s + t_f + \frac{h_c}{2} - d_c \tag{2.100}$$

Înlocuind în relația (2.98):

$$A_a\left(h_s + t_f + \frac{h_c}{2} - d_c\right) = \frac{A_c}{n} \cdot d_c$$
(2.101)

de unde:

$$d_{c} = \frac{A_{a}\left(h_{s} + t_{f} + \frac{h_{c}}{2}\right)}{A_{a} + \frac{A_{c}}{n}}$$
(2.102)

iar:

$$d_{a} = \frac{A_{c}}{n} \left(\frac{h_{s} + t_{f} + \frac{h_{c}}{2}}{A_{a} + \frac{A_{c}}{n}} \right)$$
(2.103)

Cu distanțele de mai sus calculate, se pot determina distanțele de la centrul de greutate al grinzii mixte G_m la fibrele extreme ale acesteia: v_c : distanța până la fibra superioară comprimată a dalei de beton, respectiv v_a : distanța până la fibra inferioară întinsă a profilului metalic (necesare pentru a scrie tensiunile normale σ în aceste fibre):

$$v_{c} = d_{c} + \frac{h_{c}}{2} = \frac{A_{a}\left(h_{s} + t_{f} + \frac{h_{c}}{2}\right)}{A_{a} + \frac{A_{c}}{n}} + \frac{h_{c}}{2}$$
(2.104)

sau înlocuind aria A_c și făcând calculele rezultă relația finală:

$$v_{c} = \frac{A_{a}(h_{s} + t_{f} + h_{c}) + \frac{b_{eff} \cdot h_{c}^{2}}{2n}}{A_{a} + \frac{A_{c}}{n}}$$
(2.105)

Distanța v_a se va scrie:

$$v_{a} = d_{a} + h_{i} + t_{f} = \frac{A_{c} \left(h_{s} + t_{f} + \frac{h_{c}}{2}\right)}{A_{a} + \frac{A_{c}}{n}} + h_{i} + t_{f}$$
(2.106)

sau:

$$v_{a} = \frac{\frac{A_{c}}{n} \left(h_{a} + \frac{h_{c}}{2}\right) + A_{a} \left(h_{i} + t_{f}\right)}{A_{a} + \frac{A_{c}}{n}}$$
(2.107)

unde: h_a : este înălțimea întregului profil metalic

Momentul de inerție al secțiunii echivalente în oțel, scris față de axa principală y ce trece prin centrul de greutate al secțiunii mixte G_m , se va exprima prin relația:

$$I_{1} = I_{a} + \frac{I_{c}}{n} + A_{a} \cdot d_{a}^{2} + \frac{A_{c}}{n} \cdot d_{c}^{2}$$
(2.108)

unde:

 I_a : este momentul de inerție al întregului profil metalic, scris față de centrul de greutate al acestuia G_a

$$I_{a} = \frac{b_{f}^{s} \cdot (t_{f})^{3}}{12} + \left(h_{s} + \frac{t_{f}}{2}\right)^{2} \cdot b_{f}^{s} \cdot t_{f} + \frac{(h_{s})^{3} \cdot t_{w}}{12} + \left(\frac{h_{s}}{2}\right)^{2} \cdot h_{s} \cdot t_{w} + \frac{(h_{i})^{3} \cdot t_{w}}{12} + \left(\frac{h_{i}}{2}\right)^{2} \cdot h_{s} \cdot t_{w} + \frac{b_{f}^{i} \cdot (t_{f})^{3}}{12} + \left(h_{i} + \frac{t_{f}}{2}\right)^{2} \cdot b_{f}^{i} \cdot t_{f}$$

$$(2.109)$$

 l_c : este momentul de inerție al dalei de beton, scris față de centrul de greutate al acesteia G_c

$$I_{c} = \frac{b_{eff} \cdot (h_{c})^{3}}{12}$$
(2.110)

A_a : este aria totală a profilului metalic

$$A_a = t_f \cdot b_f^s + t_f \cdot b_f' + t_w \cdot h_w$$
(2.111)

 A_c : este aria dalei de beton (conform 2.96)

$$A_c = b_{eff} \cdot h_c \tag{2.96}$$

 d_a și d_c : sunt distanțele definite conform relațiilor (2.103) și (2.102), de la centrul de greutate al secțiunii echivalente în oțel G_m , până la centrul de greutate al profilului metalic G_a , respectiv al dalei de beton G_c

Având caracteristicile geometrice ale secțiunii echivalente în oțel, verificarea secțiunii printr-un calcul elastic nu pune probleme deosebite, folosindu-se relațiile clasice din rezistența materialelor.

Verificarea tensiunilor pe înălțimea secțiunii se face folosind relațiile:

$$\sigma = \frac{M}{I_1} z = \frac{M}{W_a} \le f_y / \gamma_a$$
(2.112)

- în beton:

$$\sigma = \frac{M}{nI_1} z = \frac{M}{W_c} \le 0.85 f_{ck} / \gamma_c$$
 (2.113)

unde:

 W_a și W_c : sunt modulele de rezistență elastice pentru profilul metalic, respectiv pentru dala de beton, calculându-se astfel:

- pentru fibra inferioară a profilului metalic:

$$W_{ai} = \frac{I_1}{v_a}$$
(2.114)

- pentru fibra superioară a profilului metalic:

$$W_{as} = \frac{I_1}{v_c - h_c}$$
(2.115)

- pentru fibra inferioară a plăcii de beton:

$$W_{ci} = \frac{nI_1}{v_c - h_c}$$
(2.116)

- pentru fibra superioară a plăcii de beton:

$$W_{cs} = \frac{nI_1}{v_c}$$
 (2.117)

unde: I_1 : este momentul de inerție calculat conform relației (2.108)

 v_a și v_c : sunt distanțele calculate conform relațiilor (2.107) și respectiv (2.105)

2.9.1.2 Axa neutră elastică ANE se găsește în dala de beton armat

Dacă distanța v_c calculată cu relația (2.105) rezultă mai mică decât grosimea dalei h_c , axa neutră elastică ANE se află în dala de beton.

Fig.2.21 Axa neutră elastică aflată în dala de beton armat

În situația în care axa neutră elastică se găsește în dala de beton, placa de beton este comprimată doar pe înălțimea v_c . Betonul întins, pe înălțimea dalei ($h_c - v_c$), se neglijează, diagrama de eforturi normale fiind cea indicată în figura 2.21.

Poziția axei neutre elastice se determină tot la fel ca în situația anterioară, egalând momentul static ale dalei comprimate de beton (transformată într-o secțiune echivalentă în oțel, prin intermediul coeficientului de echivalență n) cu cel al profilului metalic, întins.

Aria betonului comprimat este (pe înălțimea v_c):

$$A_{cc} = b_{eff} \cdot v_c \tag{2.118}$$

Egalitatea momentelor statice:

$$\frac{A_{cc}}{n} \cdot d_c = A_a \cdot d_a \tag{2.119}$$

unde:

A_a : este aria totală a profilului metalic

$$A_a = t_f \cdot b_f^s + t_f \cdot b_f' + t_w \cdot h_w \tag{2.111}$$

 d_c : este distanța de la centrul de greutate al dalei comprimate (pe înălțimea v_c) G_{cc} , până la axa neutră elastică:

$$d_c = \frac{v_c}{2}$$
 (2.120)

 d_a : este distanța de la centrul de greutate al profilului metalic G_a , până la axa neutră elastică:

$$d_a = h_s + t_f + h_c - v_c$$
 (2.121)

Înlocuind distanțele d_c și d_a și aria A_{cc} în relația (2.119), rezultă:

$$\frac{b_{eff} \cdot v_c^2}{2n} = A_a (h_s + t_f + h_c - v_c)$$
(2.122)

Rezolvând ecuația de mai sus, cu necunoscuta v_c și reținând doar valorile pozitive, rezultă:

$$v_{c} = A_{a} \cdot \frac{n}{b_{eff}} \left[\sqrt{1 + \frac{2b_{eff}}{n \cdot A_{a}} \left(h_{s} + t_{f} + h_{c}\right)} - 1 \right] < h_{c}$$
(2.123)

iar:

$$\mathbf{v}_a = \mathbf{h}_a + \mathbf{h}_c - \mathbf{v}_c \tag{2.124}$$

Aria echivalentă în oțel se va scrie:

$$A_{1} = A_{a} + \frac{A_{cc}}{n} = A_{a} + \frac{b_{eff} \cdot v_{c}}{n}$$
(2.125)

Momentul de inerție echivalent, în oțel, este:

$$I_{1} = I_{a} + A_{a} \cdot d_{a}^{2} + \frac{I_{cc}}{n} + \frac{A_{cc}}{n} \cdot d_{c}^{2}$$
(2.126)

unde: I_a și A_a : sunt momentul de inerție și respectiv aria profilului de oțel, conform relațiilor (2.109) și (2.111)

 I_{cc} : este momentul de inerție al dalei comprimate de beton:

$$I_{cc} = \frac{b_{eff} \cdot v_c^3}{12}$$
(2.127)

Înlocuind acestea în relația (2.126), la fel ca și aria A_{cc} și distanțele d_a și d_c, rezultă momentul de inerție al secțiunii echivalente în oțel, scris față de axa principală y ce trece prin centrul de greutate al secțiunii mixte G_m :

$$I_{1} = I_{a} + A_{a}(h_{s} + t_{f} + h_{c} - v_{c})^{2} + \frac{b_{eff} \cdot v_{c}^{3}}{3n}$$
(2.128)

Verificarea tensiunilor pe înălțimea secțiunii, se face similar cu paragraful anterior, folosind relațiile:

- în oțel:

$$\sigma = \frac{M}{I_1} z = \frac{M}{W_a} \le f_y / \gamma_a$$
(2.129)
- în beton:

$$\sigma = \frac{M}{nI_1} z = \frac{M}{W_c} \le 0.85 f_{ck} / \gamma_c$$
(2.130)

unde:

 W_a și W_c : sunt modulele de rezistență elastice pentru profilul metalic, respectiv pentru dala de beton, calculându-se astfel:

- pentru fibra inferioară a profilului metalic:

$$W_{ai} = \frac{I_1}{v_a}$$
(2.131)

- pentru fibra superioară a profilului metalic:

$$W_{as} = \frac{I_1}{h_c - v_c}$$
(2.132)

- pentru fibra inferioară a plăcii de beton:

$$W_{ci} = \frac{nI_1}{h_c - v_c}$$
(2.133)

- pentru fibra superioară a plăcii de beton:

$$W_{cs} = \frac{nI_1}{v_c}$$
 (2.134)

unde: I_1 : este momentul de inerție calculat conform relației (2.128)

 v_a și v_c : sunt distanțele calculate conform relațiilor (2.124) și respectiv (2.123)

2.9.2 Calculul elastic în cazul unei secțiuni mixte aflate în zona de moment negativ

În cazul reazemelor intermediare ale grinzilor continue, este necesară verificarea acestor secțiuni, de moment negativ, unde în fibra superioară există întindere (dala de beton fiind întinsă și deci betonul fiind fisurat, aceasta se neglijează, în schimb se ține cont de armătura flexibilă din beton), iar în cea inferioară, compresiune.

În această situație, dala fiind întinsă și deci betonul fisurat, trebuie să se evalueze din nou lățimea eficace (participantă) de placă (conform paragrafului 2.4), pentru cazul reazemelor intermediare ale grinzilor continue.

Aria echivalentă în oțel a secțiunii active este:

$$A_2 = A_a + A_s \tag{2.135}$$

unde: A_a : este aria totală a profilului metalic

$$A_a = t_f \cdot b_f^s + t_f \cdot b_f^\prime + t_w \cdot h_w \tag{2.111}$$

 A_s : este aria secțiunii armăturii flexibile dispuse în placa de beton pe zona lățimii efective b_{eff}

$$A_s = A_{si} + A_{ss} \tag{2.136}$$

 A_{si} și A_{ss} : sunt ariile secțiunilor armăturii flexibile inferioare, respectiv superioare, din dala de beton armat

Fig.2.22 Secțiune mixtă sub moment negativ

Scriind și în această situație egalitatea momentelor statice, rezultă:

$$A_a \cdot d_a = A_{ss}(v_c - d_{ss}) + A_{sl}(v_c - d_{sl})$$
(2.137)

unde distanța d_a se poate scrie:

$$d_a = h_s + t_f + h_c - v_c \tag{2.138}$$

Înlocuind distanța d_a în relația (2.137), rezultă distanța v_c :

$$v_{c} = \frac{A_{a}(h_{s} + t_{f} + h_{c}) + A_{ss} \cdot d_{ss} + A_{si} \cdot d_{si}}{A_{2}}$$
(2.139)

cu: A_2 : aria echivalentă în oțel a secțiunii active, conform relației (2.135)

 d_{si} și d_{ss} : sunt distanțele de la centrele de greutate ale armăturii flexibile inferioare, respectiv superioare, până la fibra extremă superioară întinsă a grinzii mixte. Distanța v_a se va scrie:

$$v_a = h_a + h_c - v_c \tag{2.140}$$

Momentul de inerție al secțiunii echivalente în oțel, este:

$$I_2 = I_a + A_a (h_s + t_f + h_c - v_c)^2 + A_{ss} (v_c - d_{ss})^2 + A_{si} (v_c - d_{si})^2$$
(2.141)

unde: Ia și Aa : sunt momentul de inerție și respectiv aria profilului de oțel, conform relațiilor

62

63

(2.109) și (2.111)

 v_c : este distanța determinată conform relației (2.139)

În relația (2.141) s-a neglijat momentul de inerție propriu al armăturilor flexibile.

Verificarea tensiunilor pe înălțimea secțiunii, se face similar cu secțiunile aflate sub moment pozitiv, folosind relațiile:

- în oțel:

$$\sigma = \frac{M}{I_2} z = \frac{M}{W_a} \le f_y / \gamma_a$$
(2.142)
- în armătură:

$$\sigma = \frac{M}{I_2} z = \frac{M}{W_s} \le f_{sk} / \gamma_s \tag{2.143}$$

unde:

 W_a și W_s : sunt modulele de rezistență elastice pentru profilul metalic, respectiv pentru armăturile flexibile, calculându-se astfel:

- pentru fibra inferioară a profilului metalic:

$$W_{ai} = \frac{I_2}{v_a}$$
(2.144)

- pentru fibra superioară a profilului metalic:

$$W_{as} = \frac{I_2}{v_c - h_c}$$
(2.145)

- pentru armătura inferioară din placa de beton:

$$W_{si} = \frac{I_2}{v_c - d_{si}}$$
(2.146)

- pentru armătura superioară din placa de beton:

$$W_{ss} = \frac{I_2}{v_c - d_{ss}}$$
(2.147)

unde: I_2 : este momentul de inerție calculat conform relației (2.141)

 v_a și v_c : sunt distanțele calculate conform relațiilor (2.140) și respectiv (2.139)

2.9.3 Calculul momentului rezistent elastic și verificarea acestuia

În paragrafele anterioare s-a arătat cum se determină poziția axei neutre elastice și apoi s-au determinat și verificat tensiunile normale σ .

Tot în ceea ce privește calculul de rezistență, se poate evalua și momentul rezistent elastic $M_{el,Rd}$, pornind tot de la relațiile cu care s-a verificat tensiunea σ , în paragrafele anterioare.

2.9.3.1 Calculul momentului rezistent elastic în secțiuni de moment pozitiv

Momentul capabil elastic pozitiv se calculează cu relația (conform fig. 2.20 și 2.21):

$$M_{el.Rd}^{+} = \min\left(M_{el.Rd}^{(1)}, M_{el.Rd}^{(2)}\right)$$
(2.148)

unde: $M_{el,Rd}^{(1)}$: momentul capabil elastic evaluat în raport cu fibra inferioară a profilului metalic (unde σ este maxim, în oțel), calculat cu relația:

$$M_{el,Rd}^{(1)} = \frac{I_1}{v_a} \cdot \frac{f_y}{\gamma_a}$$
(2.149)

 $M_{el,Rd}^{(2)}$: momentul capabil elastic evaluat în raport cu fibra superioară a dalei de beton (unde σ este maxim, în beton), calculat cu relația:

$$M_{el,Rd}^{(2)} = \frac{nI_1}{v_c} \cdot \frac{0.85f_{ck}}{\gamma_c}$$
(2.150)

Verificarea se va face cu relația:

$$M_{Sd}^+ \le M_{el,Rd}^+$$
 (2.151)

cu: M_{Sd}^{+} : momentul încovoietor pozitiv de calcul, obținut din calculul static, din încărcările de calcul, determinate conform paragrafului 2.7.1

2.9.3.2 Calculul momentului rezistent elastic în secțiuni de moment negativ

Momentul capabil elastic negativ se calculează cu relația (conform fig. 2.22):

$$M_{el.Rd}^{-} = \min\left(M_{el.Rd}^{(1)}, M_{el.Rd}^{(3)}\right)$$
(2.152)

unde: $M_{el,Rd}^{(1)}$: momentul capabil elastic evaluat în raport cu fibra inferioară a profilului metalic (unde σ este maxim, în oțel), calculat cu relația:

$$M_{el.Rd}^{(1)} = \frac{I_2}{v_a} \cdot \frac{f_y}{\gamma_a}$$
(2.153)

 $M_{el.Rd}^{(3)}$: momentul capabil elastic evaluat în raport cu armătura flexibilă superioară (unde σ este maxim, în armătură), calculat cu relația:

$$M_{el.Rd}^{(3)} = \frac{I_2}{v_c - d_{ss}} \cdot \frac{f_{sk}}{\gamma_s}$$
(2.154)

Verificarea se va face de asemenea cu relația:

$$M_{Sd}^- \le M_{el,Rd}^- \tag{2.155}$$

cu: M_{sd}^- : momentul încovoietor negativ de calcul (de pe reazemele intermediare ale grinzilor continue), obținut din calculul static, din încărcările de calcul, determinate conform paragrafului 2.7.1

2.10 ALTE VERIFICĂRI ALE GRINZILOR MIXTE OŢEL-BETON

2.10.1 Verificarea la acțiunea forței tăietoare

Calculul grinzilor mixte oțel-beton având grinda metalică cu secțiunea plină, la acțiunea forței tăietoare, se face după prevederile din EUROCODE 3, considerând că întreaga forță tăietoare acționează asupra profilului metalic, neglijând aportul plăcii de beton. Conditia de verificare la acțiunea forței tăietoare este:

$$V_{sd} \le V_{pl,Rd} \tag{2.156}$$

unde: V_{Sd} : este forța tăietoare de calcul determinată din calculul static, din încărcările de calcul, determinate conform paragrafului 2.7.1

 $V_{pl\,Rd}$: este rezistența admisă la forfecare, adică forța tăietoare capabilă, care se calculează cu relația:

$$V_{pl\,Rd} = A_v \cdot \frac{f_v}{\sqrt{3}} \cdot \frac{1}{\gamma_a}$$
(2.157)

unde: $f_v / \sqrt{3}$: este rezistența de calcul la forfecare a oțelului

 γ_a : este coeficientul parțial de siguranță al oțelului structural ($\gamma_a = 1.1$)

 A_v : este secțiunea de forfecare a profilului metalic, care se ia:

- pentru profile I sau H compuse sudate:

$$A_v = \sum dt_w \tag{2.158}$$

- pentru profile I sau H (HEA, HEB) laminate:

$$A_{v} = A - 2b_{f}t_{f} + (t_{w} + 2r)t_{f}$$
(2.159)

unde: d și t_w : sunt înălțimea între suduri și respectiv grosimea inimii

A : este aria întregului profil laminat

b_f și t_f : sunt lățimea și respectiv grosimea tălpii profilului laminat

r : este raza de racordare la conjeu, adică racordului dintre talpă și inimă

 f_y : este limita de curgere a oțelului, care se ia funcție de calitatea oțelului grinzii metalice

2.10.2 Verificarea secțiunii la moment încovoietor cu forță tăietoare

În practică, inegalitatea din relația (2.156) trebuie să ia o formă mai severă, adică:

$$V_{Sd} \le 0.5 V_{pl,Rd}$$
 (2.160)

pentru a se putea neglija influența forței tăietoare asupra momentului rezistent plastic M_{pl.Rd}.

Dacă inegalitatea din relația (2.160) nu este respectată, trebuie să se țină cont de criteriul de interacțiune moment-forță tăietoare, la evaluarea momentului plastic rezistent, criteriu ilustrat în figura 2.23.

Fig. 2.23 Curba de interacțiune moment-forță tăietoare

Verificarea la încovoiere cu tăiere se va face cu relația:

$$M_{Sd} \le M_{pl.Rd(redus)} \tag{2.161}$$

unde: M_{Sd}: este momentul încovoietor de calcul, rezultat din calculul static

 $M_{pl.Rd(redus)}$: este momentul plastic rezistent redus de influența forței tăietoare, determinat prin interpolare între valoarea $M_{pl.Rd}$ și $M_{f.Rd}$, cu relația:

$$M_{pl.Rd(redus)} = M_{f.Rd} + \left(M_{pl.Rd} - M_{f.Rd}\right) \left[1 - \left(\frac{2V_{Sd}}{V_{pl.Rd}} - 1\right)^2\right]$$
(2.162)

unde: V_{Sd}: este forța tăietoare de calcul, determinată din calculul static

 $V_{pl,Rd}$: este rezistența admisă la forfecare, adică forța tăietoare rezistentă, conform relației (2.157)

 $M_{pl.Rd}$: momentul plastic rezistent, conform relațiilor (2.71), (2.78), (2.86) sau (2.92)

 $M_{f,Rd}$: este momentul plastic rezistent al unei secțiuni mixte, la care profilul metalic se consideră că este realizat doar din tălpi, neglijându-se aportul inimii grinzii metalice (secțiunea eficace este identică cu cea folosită la calculul momentului rezistent plastic $M_{pl,Rd}$)

2.10.3 Rezistența la deversare (flambaj lateral) a grinzilor mixte oțel-beton

Talpa din oțel a profilului metalic, conectată la dala de beton prin intermediul gujoanelor, sau la o dală mixtă cu tablă cutată, poate fi considerată ca stabilă lateral, numai dacă lățimea totală a dalei nu este mai mică decât înălțimea elementului din oțel. În cazul unei grinzi izolate, talpa conectată poate fi considerată ca stabilă, cu condiția suplimentară ca distanța dintre punctele care mențin stabilitatea laterală să fie mai mică la de 30 de ori lățimea dalei.

Pentru verificarea stabilității generale(deversării) a grinzilor mixte fără sprijiniri, momentul încovoietor ce acționează la nivelul unei secțiuni transversale oarecare, trebuie să se ia egal cu suma momentului aplicat pe elementul mixt și a momentului aplicat pe elementul de oțel.

Se poate accepta ca o grindă continuă sau o grindă a structurii (care este mixtă în totalitate pe lungimea sa), să nu fie prevăzută cu contravântuiri laterale, dacă sunt satisfăcute următoarele condiții:

- 1. Diferența dintre două deschideri adiacente diferite trebuie să nu depăşească 20% din deschiderea cea mai mică. Dacă grinda are și o consolă, deschiderea ei nu trebuie să depăşească 15% din deschiderea adiacentă consolei.
- 2. Încărcările ce acționează pe fiecare deschidere trebuie să fie uniform repartizate, iar încărcările permanente de calcul să reprezinte cel puțin 40% din încărcările totale de calcul.
- 3. Distanța longitudinală s dintre gujoane, sau cea dintre rândurile de gujoane (la grinzi neînglobate în beton), trebuie să fie.

$$\frac{s}{b} \le 0.02d^2 \cdot \frac{h_a}{t_w^3}$$
 (2.163)

unde: d: este diametrul gujoanelor (mm) b: este lățimea tălpii superioare a profilului metalic (mm) h_a: este înălțimea profilului metalic (mm) t_w : este grosimea inimii profilului metalic (mm)

- 4. Pentru elemente din oțel înglobate în beton, se admite ca distanța s să se limiteze la jumătate din cea de la profile neînglobate.
- 5. Pe reazemele dalei de beton, pe grinda marginală, armătura trebuie să fie complet ancorată la partea superioară, dacă ea se extinde pe o lungime mai mare de a/4, deasupra tălpii superioare a profilului metalic (unde a: este distanța dintre două grinzi învecinate). Totodată, secțiunea armăturii ce trebuie să preia momentul negativ de pe reazem, pe unitatea de lungime a grinzii, trebuie să fie mai mare ca $0.25 f_y \cdot t_w^2 / \gamma_a$, unde fy : este

limita de curgere a oțelului, iar $\gamma_a = 1.1$

6. Rigiditatea la încovoiere El a dalei pline, sau a dalei nervurate, trebuie să satisfacă condiția:

$$E_{cm} \cdot I_{c2} \ge 0.35E_a \cdot t_w^3 \cdot \frac{a}{h_a}$$
(2.164)

unde: E_{cm} : este modulul secant de elasticitate al betonului, conform tabelului 1.2

 \hat{I}_{c2} : este momentul de inerție al betonului din dală

 $E_{cm} \cdot I_{c2}$: este media rigidităților la încovoiere pe unitate de lățime a dalei (adică pe unitate de lungime a grinzii), la mijlocul deschiderii considerate, neglijând betonul întins, dar incluzând aria omogenizată a secțiunii de armătură (și a tablei cutate, la dale nervurate), dacă ele participă la calculul momentului plastic rezistent M_{pl.Rd}.

a: este distanța dintre două grinzi învecinate

t_w și h_a : sunt grosimea inimii și respectiv înălțimea profilului metalic (fig.2.24)

7. Pentru elemente din oțel formate din profile europene IPE, HEA, HEB, HEM sau alte profile laminate la cald cu $A_w / A_a \le 0.45$, trebuie să se respecte condiția următoare:

$$\left(\frac{h_s}{t_w}\right)^3 \frac{t_f}{b_f} \le 10^4 \varepsilon^4 \tag{2.165}$$

unde (conform figurii 2.24):

h_s : este distanța dintre axele tălpilor profilelor IPE și HE

 t_w , t_f , b_f : sunt grosimea inimii, grosimea tălpii și respectiv lățimea tălpii profilului metalic

A_a : este aria întregului profil metalic

A_w : este aria inimii profilului metalic

$$A_{w} = h_{s} \cdot t_{w} \tag{2.166}$$

 ϵ : este factorul de corecție

$$\varepsilon = \sqrt{\frac{235}{f_y}} \tag{2.167}$$

 f_y : este limita de curgere a oțelului din profilele laminate, în N/mm² (conform tabelului 1.3)

2.10.4 Momentul rezistent la deversare

Valoarea de calcul a momentului de rezistență la deversare, a unei grinzi nemenținută lateral să flambeze, trebuie să fie egală cu:

- pentru secțiuni transversale de clasa 1 sau 2, cu $\gamma_{Rd} = 1.1$

$$M_{b.Rd} = \chi_{LT} \cdot M_{pl.Rd} \cdot \frac{\gamma_a}{\gamma_{Rd}}$$
(2.168)

- pentru secțiuni transversale de clasa 3, cu $\gamma_{Rd} = 1.1$

$$M_{b.Rd} = \chi_{LT} \cdot M_{el.Rd} \cdot \frac{\gamma_a}{\gamma_{Rd}}$$
(2.169)

- pentru secțiuni transversale de clasa 4

$$M_{b.Rd} = \chi_{LT} \cdot M_{el.Rd} \tag{2.170}$$

unde: χ_{LT} : este coeficientul de reducere pentru deversare

 $M_{pl.Rd}$: momentul plastic rezistent, conform relațiilor (2.71), (2.78), (2.86) sau (2.92)

 $M_{el,Rd}$: momentul elastic rezistent, conform relațiilor (2.148) sau (2.152) Coeficientul de reducere pentru deversare χ_{LT} se poate calcula cu relația:

$$\chi_{LT} = \frac{1}{\varphi_{LT} + (\varphi_{LT}^2 - \overline{\lambda}_{LT}^2)^{1/2}} \le 1$$
 (2.171)

unde:

$$p_{IT} = 0.5 \left[1 + \alpha_{IT} \left(\overline{\lambda}_{IT} - 0.2 \right) + \overline{\lambda}_{IT}^2 \right]$$
(2.172)

cu: $\alpha_{LT} = 0.21$ pentru profile laminate

\$1/2

 $\alpha_{LT} = 0.49$ pentru profile compuse sudate

Coeficientul de zveltețe redus $\overline{\lambda}_{IT}$ se poate calcula cu relațiile:

$$\overline{\lambda}_{LT} = \left(\frac{M_{pl}}{M_{cr}}\right)^{-1} \qquad \text{pentru secțiuni de clasa 1 sau 2} \qquad (2.173)$$

$$\overline{\lambda}_{LT} = \left(\frac{M_{el}}{M_{cr}}\right)^{1/2} \qquad \text{pentru secțiuni de clasa 3 sau 4} \qquad (2.174)$$

unde: M_{pl} : este valoarea lui $M_{pl,Rd}$, conform relațiilor (2.71), (2.78), (2.86) sau (2.92), dar cu coeficienții parțiali de siguranță $\gamma_a = \gamma_c = \gamma_s = 1.0$

 M_{el} : este valoarea lui $M_{el,Rd}$ conform relațiilor (2.148) sau (2.152), dar cu coeficienții parțiali de siguranță $\gamma_a = \gamma_c = \gamma_s = 1.0$

 M_{cr} : momentul elastic critic la deversare, care se determină conform Anexei B din EUROCODE 4 (din paragraful B.1.2(4))

Conform Anexei B din EUROCODE 4, coeficientul de zveltețe redus $\overline{\lambda}_{LT}$ din relația (2.173), pentru secțiuni de clasa 1 sau 2, se poate determina cu relația:

$$\overline{\lambda}_{LT} = 5.0 \left[1 + \frac{t_w h_s}{4b_f t_f} \right] \left[\left(\frac{f_v}{E_a C_4} \right)^2 \left(\frac{h_s}{t_w} \right)^3 \left(\frac{t_f}{b_f} \right) \right]^{1/4}$$
(2.175)

unde (conform figurii 2.24):

tw și tf: sunt grosimea inimii și respectiv a tălpilor profilului metalic

 h_s : este înălțimea între centrele de greutate ale tălpilor $h_s = h_a - t_f$

b_f : este lățimea tălpilor profilului de oțel

fy : este limita de curgere a oțelului

E_a : este modulul de elasticitate al oțelului

 C_4 : este un factor ce ține seama de repartiția momentului încovoietor pe lungimea grinzii L, funcție de coeficientul ψ (ψ = M_r / M_c , adică raportul momentelor de pe reazem și a celor din câmp), dat în tabelele B.1, B.2 și B.3 din EUROCODE 4, Anexa B

Tot conform Anexei B, pentru cazul secțiunilor de clasa 3 sau 4, zveltețea redusă λ_{LT} se calculează cu relația (2.174), în care momentul critic M_{cr} se poate calcula direct cu formula:

$$M_{cr} = \frac{k_c}{26} \frac{E_a C_4}{\sqrt{1 - v_a^2}} \cdot b_f^{3/2} \cdot t_w^{3/2} \cdot \left(\frac{t_f}{h_s}\right)^{1/2}$$
(2.176)

Fig.2.24 Notații pentru verificarea grinzii mixte, la deversare

unde: k_c : se calculează cu relația dată în Anexa B, paragraful B.1.3, pentru cazul secțiunilor dublu simetrice:

$$k_{c} = \frac{\frac{h_{s}I_{y}}{I_{ay}}}{\left(\frac{h_{s}^{2}}{4} + i_{x}^{2}\right)} + h_{s}}$$
(2.177)

unde:

$$e = \frac{AI_{ay}}{A_a z_c (A - A_a)}$$
(2.178)

 I_y : este momentul de inerție la încovoiere, al secțiunii mixte având aria echivalentă în oțel A (calculată neglijând betonul întins), scris față de axa maximă de inerție y ce trece prin centrul de greutate al grinzii mixte G_m

 I_{ay} și I_{az} : sunt momentele de inerție la încovoiere, ale secțiunii de oțel de arie A_a , scrise față de axele y_a și respectiv z_a ce trec prin centrul de greutate al grinzii metalice G_a

$$i_x^2 = (I_{ay} + I_{az})/A_a$$
(2.179)

 z_c : este distanța de la centrul de greutate al elementului de oțel și nivelul mediu al dalei (conform fig.2.24)

 $v_a = 0.3$ este coeficientul lui Poisson pentru oțel Condiția de verificare la deversare se scrie:

$$M_{Sd} \le M_{b,Rd} \tag{2.180}$$

unde: M_{Sd}: este momentul încovoietor de calcul, rezultat din calculul static

 $M_{b.Rd}$: este momentul rezistent la deversare, conform relațiilor (2.168), (2.169) sau (2.170)

Atât timp cât zveltetea redusă $\overline{\lambda}_{1T} \le 0.4$, nu este necesar să se țină seama de deversare.

2.10.5 Rezistenta la voalare prin forfecare

Pentru verificarea rezistenței inimii la voalare prin forfecare, se respectă prevederile din norma EUROCODE 3, capitolul 5, paragraful 5.6.1.

Rezistența inimii unei grinzi mixte la voalare prin forfecare, trebuie verificată numai dacă: -

pentru o inimă nerigidizată și neînglobată în beton:

$$\frac{d}{t_{\rm w}} > 69\varepsilon \tag{2.181}$$

pentru o inimă nerigidizată, dar înglobată în beton:

$$\frac{d}{t_{w}} > 124\varepsilon \tag{2.182}$$

pentru o inimă rigidizată, dar neînglobată în beton:

$$\frac{d}{t_w} > 30\varepsilon \sqrt{k_r} \tag{2.183}$$

unde: d și t_w : sunt înălțimea și grosimea inimii profilului metalic

 ε : este factorul de corecție, conform relației (2.167)

 k_{t} : este coeficientul de voalare prin forfecare, dat în EUROCODE 3, paragraful 5.6.3, care se calculează astfel:

pentru inimi cu rigidizări transversale numai pe reazeme:

$$k_{\tau} = 5.34$$
 (2.184)

pentru inimi având rigidizări pe reazeme și intermediare cu a/d < 1: -

$$k_{r} = 4 + \frac{5.34}{\left(a/d\right)^{2}}$$
(2.185)

pentru inimi având rigidizări pe reazeme și intermediare cu $a/d \ge 1$:

$$k_{\tau} = 5.34 + \frac{4}{\left(a/d\right)^2} \tag{2.186}$$

unde: a: este distanța între rigidizări (lungimea panoului inimii)

d: este înălțimea inimii profilului metalic Verificarea rezistenței la voalare a inimii profilului metalic, se face cu metoda post critică simplă, definită în EUROCODE 3, paragraful 5.6..3, cu relația:

$$V_{Sd} \le V_{ba,Rd} \tag{2.187}$$
unde: V_{Sd} : este forța tăietoare de calcul, determinată din calculul static V_{baRd} : este rezistența la voalare prin forfecare, egală cu:

$$V_{ba,Rd} = d \cdot t_w \cdot \tau_{ba} / \gamma_{M1} \tag{2.188}$$

unde: $\gamma_{MI} = 1.1$

 τ_{ba} : este rezistența post critică simplă la forfecare, dată în EUROCODE 3, paragraful 5.6.3

În cazul grinzilor mixte simplu rezemate, lipsite de rigidizări intermediare, la o conexiune completă și supusă la o încărcare uniform repartizată, se admite să se utilizeze în alternativă, alte relații și condiții de calcul a rezistenței post critice, după cum urmează:

- pentru
$$1.5 < \overline{\lambda}_w < 3.0$$
 $\tau_{ba} = \frac{f_{yw}}{\sqrt{3}} \left(\frac{3}{\overline{\lambda}_w} + 0.2\overline{\lambda}_w - 1.3 \right)$ (2.190)

- pentru
$$3.0 \le \overline{\lambda}_w \le 4.0$$
 $\tau_{ba} = \frac{f_{yw}}{\sqrt{3}} \cdot \frac{0.9}{\overline{\lambda}_w}$ (2.191)

în care: f_{vw} : este limita de curgere nominală a inimii profilului metalic

 $\overline{\lambda}_{w}$: este zveltețea inimii, care trebuie să fie mai mică decât 4.0 și care se determină cu formula dată în EUROCODE 3:

$$\overline{\lambda}_{w} = \left[\frac{f_{yw}}{\sqrt{3}} / \tau_{cr}\right]^{0.5} = \frac{d t_{w}}{37.4\varepsilon \sqrt{k_{\tau}}}$$
(2.192)

Este convenabil să avem un număr suficient de conectori N, pe fiecare semideschidere, pentru a avea o conexiune completă. Dacă $V_{Sd} > V_{cr}$, cei N conectori trebuie repartizați conform figurii 2.25.

Forța tăietoare critică V_{cr} se calculează cu relația:

$$V_{cr} = d \cdot t_w \cdot \tau_{cr} \tag{2.193}$$

unde: τ_{cr} se ia din EUROCODE 3, paragraful 5.6.3, astfel:

- pentru
$$0.8 < \overline{\lambda}_w < 1.2$$
 $\tau_{cr} = \left[1 - 0.625 \left(\overline{\lambda}_w - 0.8\right)\right] \cdot \left(\frac{f_{yw}}{\sqrt{3}}\right)$ (2.195)

 $\tau_{cr} = \frac{f_{yw}}{\sqrt{3}} \cdot \frac{0.9}{\overline{\lambda}y}$

- pentru $\overline{\lambda}_{w} \ge 1.2$

)

Fig. 2.25 Repartizarea conectorilor pe grindă

Numărul de conectori este:

$$N_2 = N (1 - V_{cr} / V_{Sd})^2$$
(2.197)

iar

$$N_1 = N - N_2 \tag{2.198}$$

 b_{eff} : este lățimea eficace a dalei de beton conform paragrafului 2.4 Rigidizarea de la capătul grinzii (de pe reazem), se calculează la un efort de compresiune axială uniform, egal cu forța tăietoare maximă V_{sd} din secțiunea considerată.

Sudura de prindere a rigidizării de capăt, de inima (pe o parte) și de talpa profilului metalic, se calculează la un efort de forfecare egal cu $f_{yw} \cdot t_w / \sqrt{3}$, pe unitatea de lungime.

2.11 CALCULUL CONEXIUNII GRINZILOR MIXTE OŢEL-BETON

Conectorii și armăturile transversale trebuie să fie prevăzuți pe toată lungimea grinzii, cu scopul principal de a transmite efortul longitudinal de forfecare dintre dala de beton și grinda de oțel, în starea limită ultimă, neglijând efectul aderenței (în sens fizico-chimic) dintre cele două elemente ale grinzilor mixte, aflate în contact.

Numărul de conectori trebuie să fie cel puțin egal cu efortul longitudinal de calcul, împărțit la rezistența de calcul a unui conector P_{Rd} , determinată în continuare.

Totodată, conectorii grinzilor mixte trebuie să fie capabili să prezinte o rezistență suficientă la ridicarea (desprinderea) dalei de beton de pe grinda metalică.

Pentru a împiedeca ridicarea dalei de pe grinda de oțel, conectorii trebuie concepuți și calculați la un efort nominal de tracțiune perpendicular pe talpa profilului de oțel, de cel puțin 0.1 ori rezistența de calcul la forfecare a acestor conectori. Se poate considera că tipul de conectori gujon cu cap asigură o rezistență suficientă la ridicarea dalei, cu excepția cazului când conexiunea este supusă la o tracțiune directă.

2.11.1 Calculul efortului longitudinal de forfecare

În cele ce urmează, este prezentat doar calculul efortului longitudinal de forfecare în cazul conexiunii complete. O travee a unei grinzi mixte prezintă o conexiune completă, atunci când creșterea numărului de conectori dispuși pe traveea respectivă, nu mai conduce la creșterea rezistenței la încovoiere a grinzii. În caz contrar, conexiunea se consideră că este parțială. Calculul efortului longitudinal de forfecare în cazul conexiunii parțiale, se face conform paragrafului 6.2.1.2 si 6.2.1.3 din EUROCODE 4.

Pentru o conexiune completă, efortul longitudinal de forfecare de calcul V_1 , la care trebuie să reziste conectorii, între punctul de moment încovoietor maxim pozitiv și un reazem simplu de capăt, se calculează cu relația:

$$V_{l} = F_{cf} = \min(F_{cf1}, F_{cf2})$$
(2.199)

unde: F_{cfl} : este efortul capabil al profilului metalic

$$F_{cf1} = A_a \frac{f_y}{\gamma_a} \tag{2.200}$$

 F_{ct2} : efortul capabil al dalei de beton și a armăturilor

$$F_{cf2} = A_c \frac{0.85 f_{ck}}{\gamma_c} + A_{se} \frac{f_{sk}}{\gamma_s}$$
(2.201)

unde: A_a : este aria profilului metalic al grinzii mixte

A_c : este aria secțiunii eficace a dalei de beton pe lățimea b_{eff}

 A_{se} : este aria unei eventuale armături longitudinale comprimate, care a fost luată în considerare la calculul rezistenței la încovoiere

Ariile de mai sus se referă la secțiunea transversală de moment încovoietor maxim pozitiv. Tot pentru o conexiune completă, efortul longitudinal de forfecare de calcul V_1 , la care trebuie să reziste conectorii, între punctul de moment încovoietor maxim pozitiv și un reazem intermediar sau un reazem încastrat, se calculează cu relația:

$$V_{l} = F_{cf} + A_{s} \frac{f_{sk}}{\gamma_{s}} + A_{ap} \frac{f_{yp}}{\gamma_{ap}}$$
(2.202)

unde: F_{cf}: este efortul definit în relația (2.199), care se ia egal cu zero în cazul consolelor A_s: este aria efectivă a armăturii longitudinale din dala de beton

 A_{ap} : este aria efectivă a tablei profilate (dacă este cazul)

2.11.2 Determinarea rezistenței de calcul a conectorilor de tip gujon

Rezistența de calcul, respectiv capacitatea portantă a unui conector, depinde de felul conectorilor: ductili sau neductili.

A. Capacitatea portantă a gujoanelor în dale pline

a. Rezistența de calcul la forfecare a unui gujon având capul sudat automat cu o sudură normală în formă de inel, se determină cu una din formulele următoare:

$$P_{Rd1} = 0.8 f_u \cdot \frac{\pi d^2}{4} \cdot \frac{1}{\gamma_v}$$
(2.203)

sau

$$P_{Rd2} = 0.29 \alpha d^2 \sqrt{f_{ck} \cdot E_{cm}} \frac{1}{\gamma_v}$$
(2.204)

dintre cele două valori de mai sus, luându-se cea mai mică.

Mărimile ce intră în relațiile de mai sus, au următoarea semnificație:

d : este diametrul tijei gujonului

 f_u : este rezistența ultimă la tracțiune specifică materialului gujonului, fără a depăși valoarea de 500 N/mm^2

 f_{ck} : este rezistența caracteristică a betonului măsurată pe cilindru E_{cm} : este valoarea medie a modulului secant de elasticitate pentru beton α : este un coeficient ce are valorile:

$$\alpha = 0.2[(h/d) + 1]$$
 pentru $3 \le h/d \le 4$ (2.205)
 $\alpha = 1.0$ pentru $h/d > 4$ (2.206)

h : este înălțimea totală a gujonului, inclusiv capul acestuia

 γ_v : este coeficientul parțial de siguranță pentru conectori, în starea limită ultimă, $\gamma_v{=}1.25$

Formulele de mai sus se pot utiliza doar în cazul gujoanelor care au diametrul d < 22mm. În absența unor norme specifice, pentru o sudură în formă de inel pe conturul tijei, trebuie respectate următoarele cerințe:

- Sudura inelară trebuie să prezinte o formă regulată și o topire și depunere a materialului fără defecte

Diametrul inelului de sudură nu trebuie să fie mai mic de 1.25d

- Înălțimea media a sudurii nu trebuie să fie mai mică de 0.2d, iar înălțimea minimă este de 0.15d (d: diametrul tijei gujonului)

b. Pentru *gujoanele fără cap*, se poate calcula capacitatea portantă cu relațiile (2.203) și (2.204), de la gujoanele cu cap, cu condiția ca ridicarea (desprinderea) dalei de beton de pe grinda metalică, să fie împiedecată.

B. Capacitatea portantă a gujoanelor în dale nervurate

a. În cazul dalelor nervurate, la care nervurile tablei cutate sunt paralele cu profilul metalic al grinzilor mixte, gujoanele sunt amplasate în zona de beton ce formează o întăritură (vută) deasupra grinzii metalice (fig.2.9.b)

Dacă tabla cutată este continuă la trecerea peste grinda metalică, lățimea întăriturii (a vutei) b_0 este chiar lățimea nervurii. Dacă tabla nu este continuă, b_0 este definit ca în fig.2.9.b, în mod asemănător.

În această situație, pentru dale nervurate se acceptă să se ia pentru rezistența de calcul la forfecare, rezistența determinată pentru dalele pline cu relațiile (2.203) și (2.204), multiplicate de un coeficient de reducere k_i, dat de relația:

$$k_{I} = 0.6 \frac{b_{0}}{h_{p}} \left[\frac{h}{h_{p}} - 1 \right] \le 1.0$$
(2.207)

în care:h: este înălțimea totală a gujonului, inclusiv capul acestuia, fără însă a depăși h_p+75mm h_p: este înălțimea nervurilor tablei cutate (fig.2.9.b)

b. Dacă nervurile tablei cutate sunt perpendiculare pe grinzile portante din oțel, iar diametrul gujoanelor nu depășește 20mm (gujoanele fiind situate în interiorul nervurilor, conform fig.2.9.c, cu înălțimea h_p care nu depășește 85mm și lățimea b_0 , cel puțin egală cu h_p), atunci rezistența de calcul la forfecare se ia cea de la dalele pline, relațiile (2.203) și (2.204), cu condiția ca rezistența ultimă f_u să nu fie mai mare de 450 N/mm², care se multiplică cu coeficientul de reducere k_t, dat de relația:

$$k_{t} = \frac{0.7}{\sqrt{N_{r}}} \cdot \frac{b_{0}}{h_{p}} \left[\frac{h}{h_{p}} - 1 \right]$$
(2.208)

unde: N_r : este numărul de gujoane pe o nervură, la intersecția acesteia cu grinda metalică, fără ca N_r să depășească 2. Celelalte notații au aceeași semnificație ca în relația (2.207) Pentru gujoane sudate ce traversează tabla cutată (nervurată), se admite să se ia pentru coeficientul k_t din relația (2.208), o valoare mai mică sau egală cu 1.0, când $N_r = 1$ și mai mică sau egală cu 0.8, pentru $N_r \ge 2$.

2.11.3 Determinarea rezistenței de calcul a conectorilor tip bloc în dale pline de beton armat

Conectorii pot fi concepuți și calculați ca și conectori tip bloc sau bară (fig.2.10.a...d), dacă fața lor frontală nu este în formă de pană și dacă ei sunt atât de rigizi, încât să se poată considera că la cedare, presiunea ce se exercită asupra betonului din fața conectorilor, este uniform repartizată.

Se acceptă să se conceapă și să se calculeze și conectorii tip bloc sau bară în formă de T (fig.2.10.b), de U (fig.2.10.c) și de potcoavă (fig.2.10.d), în același fel ca cei bară (fig.2.10.a), cu condiția respectării următoarelor prescripții constructive:

- Înălțimea conectorilor tip bară (fig.2.10) nu trebuie să depăşească de patru ori grosimea lor.

- Conectorii de tip T (fig.2.10.b) pot fi realizați din profile laminate la cald T sau 1/2I, cu limitarea lățimii tălpii la de 10 ori grosimea ei.

- Înălțimea conectorilor tip T (fig.2.10.b) nu trebuie să depăşească de zece ori grosimea tălpii și maximum 150mm.

- Conectorii în formă de U (fig.2.10.c) pot fi realizați din profile laminate la cald, la care înălțimea inimii nu trebuie să depășească de 25 de ori grosimea inimii, iar înălțimea conectorilor U, normală pe talpa grinzii, nu va depăși de 15 ori grosimea inimii și maximum 150mm.

- La conectorii în formă de potcoavă, înălțimea conectorilor se limitează la de 20 de ori grosimea inimii și la maximum 150mm.

Rezistența de calcul a conectorilor tip bară (fig.2.10.a...d) se determină cu ajutorul formulei:

$$P_{Rd} = \eta \cdot A_{f1} \cdot \frac{f_{ck}}{\gamma_c}$$
(2.209)

unde: A_{f1} : este aria feței frontale a conectorului, definită în figura 2.10.a...d

 $\eta = \sqrt{\frac{A_{f2}}{A_{f1}}}$: este un coeficient care nu trebuie să depășească valoarea de 2.5 pentru

beton cu masa volumetrică normală și respectiv 2.0 pentru betoane ușoare

 A_{f2} : este aria feței frontale a conectorilor, sporită prin utilizarea unei pante de 1/5 până la fața din spate a conectorului adiacent (fig.2.26), dar înălțimea ei nu trebuie să depășească înălțimea dalei de beton.

 $\gamma_c = 1.5$: este coeficientul parțial de siguranță pentru beton

Fig.2.26 Definirea ariei A_{f2}

Sudurile de prindere a conectorilor de tip bară, de grinda de oțel, trebuie calculate ținând cont de excentricitatea efortului din conector, față de planul sudurilor.

2.11.4 Determinarea rezistenței de calcul a conectorilor de tip cârlig sau ancoră și de tip arc, la dale pline

pentru conectorii de tip cârlig și arc, sudați direct de talpă (fig.2.11.a și b), rezistența de calcul la forfecare longitudinală, pentru fiecare tijă a cârligului sau arcului, se calculează cu relația:

$$P_{Rd} = \frac{A_s \cdot f_{yd}}{\sqrt{\left(1 + \sin^2 \alpha\right)}} \cos \beta$$
(2.210)

unde: A_s : este aria secțiunii transversale a tijei conectorului tip cârlig sau în arc

 α : este unghiul din plan vertical între tija conectorului cârlig sau arc și planul tălpii grinzii de oțel (fig.2.11.a și b)

 β : este unghiul format în plan orizontal între tija cârligului și axa longitudinală a

grinzii, pentru cârlige plasate oblic f_{yd} : este rezistența de calcul a materialului tijei, care se ia egal cu f_y / γ_a sau f_{sk} / γ_s , după caz

 f_y : este limita de curgere a oțelului din profilul metalic, dacă conectorul este din oțel rotund

 f_{sk} : este limita de curgere caracteristică a armăturii, dacă conectorii sunt realizați din oțel pentru armături

 $\gamma_a = 1.1$ și $\gamma_s = 1.15$: sunt coeficienții parțiali de siguranță pentru oțelul structural, sau cel pentru armături, funcție de tipul de oțel ce se folosește pentru conectori

2.11.5 Determinarea rezistenței de calcul a conectorilor tip bară, prevăzuți cu cârlig sau arce, la dale pline

În cazul conectorilor tip bară, prevăzuți cu cârlige sau arce (fig.2.11.c și d), se poate accepta că efortul longitudinal de forfecare, se repartizează între conectorii tip bloc sau bară și cârligele sau arcele ce sunt sudate de aceștia, cu condiția ca să se țină cont de diferența de rigiditate a acelorași conectori.

În lipsa unor calcule sau încercări experimentale mai precise, rezistența de calcul a acestor combinații de conectori, se poate determina cu una dintre formulele:

- pentru conectorii tip bară, combinați cu cârlige (fig.2.11.c):

$$P_{Rd(comb)} = P_{Rd(bara)} + 0.5P_{Rd(carlig)}$$
(2.211)

- pentru conectorii tip bară, combinați cu arce (fig.2.11.d):

$$P_{Rd(comb)} = P_{Rd(bara)} + 0.7P_{Rd(arc)}$$
(2.212)

Se acceptă de asemenea ca sudurile ce fixează conectorii tip bloc (bară) echipați cu cârlige sau cu arce, pe grinda de oțel, să se calculeze la un efort egal cu $1.2 \times P_{Rd(comb)}$ din (2.211) sau (2.212).

2.11.6 Determinarea rezistenței de calcul a conectorilor din corniere sau profile U așezate în picioare, la dale pline

Dacă se folosesc conectori realizați din corniere sau profile U așezate vertical (fig.2.12.a și b) rezistența de calcul la forfecare longitudinală a unui conector se calculează cu relația:

$$P_{Rd} = 10b \cdot h^{3/4} \cdot f_{ck}^{2/3} / \gamma_{v}$$
 (2.213)

unde: b : este lungimea cornierei sau a profilului U (conform fig.2.12.a și b)

h : este înălțimea aripii verticale a cornierei sau înălțimea profilului U

 f_{ck} : este rezistența caracteristică a betonului

 $\gamma_v = 1.25$: este coeficientul parțial de siguranță la starea limită ultimă, pentru conectori La calculul sudurilor cu care sunt fixate cornierele sau profilele U de grinda de oțel, se va lua o excentricitate a efortului $1.2P_{Rd}$:

$$e = h/4 \tag{2.214}$$

Armătura ce traversează corniera (fig.2.12.a), care are rolul de a se opune tendinței ridicării (desprinderii) dalei de beton de pe grinda de oțel, se verifică cu relația:

$$A_c \cdot \frac{f_{sk}}{\gamma_s} \ge 0.1 P_{Rd} \tag{2.215}$$

unde: A_e :este aria secțiunii transversale a barei ce traversează corniera ($A_e = \pi d^2/4$, d : fiind diametrul barei)

f_{sk} : este limita de curgere a oțelului din armătură

 $\gamma_s = 1.15$: este coeficientul parțial de siguranță al armăturii Conectorii neductili (rigizi) (fig.2.10...2.13) se folosesc mai mult la poduri.

2.11.7 Determinarea numărului de conectori N

Considerăm legătura dintre profilul metalic și dala de beton armat ca fiind o conexiune completă, realizată la construcții civile și industriale în general cu ajutorul gujoanelor, având de regulă diametrul d = 19mm. Dacă raportul h/d este mai mare decât 4, conectorii se consideră ductili conform indicațiilor din norma EUROCODE 4, paragraful 6.1.2(2). Se calculează în primul rând forța de forfecare longitudinală V₁, cu relațiile (2.200) și (2.201), luând în final cea mai mică valoare:

$$V_{l} = \min(F_{cf1}; F_{cf2})$$
(2.216)

Se determină apoi, rezistența de calcul la forfecare a unui conector cu relațiile (2.203) (2.213). Pentru conectorii tip gujon se ia cea mai mică valoare dintre relațiile (2.203) și (2.204):

$$P_{Rd} = \min\{P_{Rd1}; P_{Rd2}\}$$
(2.217)

Pentru o conexiune completă, în conformitate cu EUROCODE 4 paragraful 6.2.1.1, o travee de forfecare pentru o grindă simplu rezemată, este egală cu distanța dintre secțiunea de moment maxim pozitiv și un reazem liber de la capătul grinzii, adică jumătate de deschidere L/2. Numărul necesar de conectori N, pe o travee de forfecare, se determină cu relația:

$$N = \frac{V_l}{P_{Rd}}$$
(2.218)

cu V_1 și P_{Rd} luate din relațiile (2.216) și (2.217).

Gujoanele se pot suda pe talpa superioară a profilului metalic, pe unul sau două rânduri. În general, ele se dispun pe două rânduri, sau decalate cu o jumătate de pas pe un rând față de celălalt. Numărul de conectori N se repartizează în mod uniform pe lungimea traveii de forfecare, din care rezultă distanța între conectori, care trebuie să satisfacă condițiile din paragraful următor.

Dacă conectorii se dispun la distanțe egale (modul uzual de dispunere), distanța dintre conectori rezultă împărțind lungimea traveii de forfecare la numărul de conectori N, dacă aceștia sunt dispuși pe un rând, sau la N/2 dacă se dispun pe două rânduri, având însă grijă să se asigure un spațiu și de la capătul grinzii până la primii conectori.

Distanța dintre conectori trebuie însă să respecte și prevederile din paragraful 6.4.1.5 din EUROCODE 4 și anume:

- Dacă se presupune, pentru calcul, că stabilitatea grinzii de oțel și a elementului structural de beton este asigurată prin conexiunea dintre cele două elemente, distanța dintre conectori trebuie să fie suficient de redusă, pentru a satisface această ipoteză.

- Dacă se admite că talpa comprimată a grinzii de oțel (care este de clasa cea mai defavorabilă) este de clasa 1 sau 2, având în vedere creșterea rigidității produsă de conectori, se acceptă să nu se depășească următoarele limite pentru distanța interax dintre conectori, în direcția compresiunii:

- în cazul când dala de beton este în contact continuu cu grinda metalică, cum este cazul dalelor pline:

$$s \le 22t \sqrt{\frac{235}{f_y}} \tag{2.219}$$

- în cazul când dala de beton nu este în contact continuu cu grinda metalică, cum este cazul dalelor nervurate, cu nervurile perpendiculare pe grindă:

$$s \le 15t \sqrt{\frac{235}{f_y}} \tag{2.220}$$

- în sens transversal grinzii metalice, distanța netă dintre marginea tălpii comprimate și șirul de conectori cel mai apropiat de aceasta, nu trebuie să depășească valoarea:

$$s_1 \le 9t \sqrt{\frac{235}{f_y}}$$
 (2.221)

unde: t: este grosimea tălpii profilului metalic

fy : este limita de curgere nominală a oțelului din talpă

Pentru distanța maximă interax dintre conectori, măsurată în sens longitudinal, se convine de asemenea ca aceasta să nu depășească:

$$s \le 6h_c$$
 și $s \le 800mm$ (2.222)

unde: h_c : este grosimea dalei de beton

2.11.9 Prescripții pentru alegerea conectorilor

Pentru alegerea dimensiunilor la conectorii utilizați (ductili sau neductili), normativul EUROCODE 4 dă în paragrafele 6.4.2...6.4.6 următoarele prescripții și recomandări.

2.11.9.1 Recomandări pentru gujoane

- 1. Se recomandă ca înălțimea totală a gujoanelor să fie de cel puțin 3d, unde d: este diametrul tijei gujonului.
- 2. Distanța dintre gujoane pe direcția efortului longitudinal de forfecare, este recomandabil să se ia mai mare sau cel puțin egală cu 5d. Distanța perpendicular pe efortul longitudinal de forfecare trebuie să fie de cel puțin 2.5d, pentru dale pline, respectiv de 4d, în alte cazuri.
- 3. Cu excepția cazului când gujoanele sunt sudate direct deasupra inimii, se recomandă să se ia pentru diametrul gujoanelor sudate o valoare mai mică de 2.5 ori grosimea părții pe care se sudează (grosimea tălpii).
- 4. În cazul gujoanelor sudate pe table cutate folosite ca şi cofraj la dalele nervurate, gujoanele se pot suda traversând tabla cutată din oțel, acoperind marginea tablelor cutate. Este necesar să existe un contact riguros a tablelor suprapuse la margini, cu condiția ca grosimea totală să nu depăşească 1.25mm pentru table galvanizate şi 1.5mm pentru cele negalvanizate. Grosimea maximă a stratului de galvanizare nu trebuie să depăşească 30 de microni pe fiecare față a tablelor. De asemenea este recomandabil să nu se sudeze gujoane traversând două table galvanizate.
- 5. În cazul gujoanelor sudate prin table cutate, se recomandă ca toți conectorii să depăşească cu cel puțin 2d fața superioară a tablelor cutate.
- 6. De asemenea, se recomandă ca lățimea minimă a nervurilor umplute cu beton să fie de cel puțin 50mm.
- 7. Este recomandabil ca tablele cutate din oțel să fie fixate în fiecare nervură, în dreptul fiecărei grinzi din oțel, pentru a se comporta ca o grindă mixtă. Fixarea tablelor cutate se poate realiza cu ajutorul gujoanelor sau prin intermediul unei combinații: gujoane și sudură prin puncte.

2.11.9.2 Recomandări pentru conectori tip bloc sau bară

- 1. În cazul conectorilor tip bloc sau bară (fig.2.10.a), înălțimea acestora se limitează la de patru ori grosimea lor.
- 2. Pentru conectori în T (fig.2.10.b) realizați din profile laminate T sau din jumătăți de profil dublu T, se recomandă ca lățimea tălpii să nu depășească de 10 ori grosimea sa, iar înălțimea conectorilor în T să nu depășească de 10 ori grosimea tălpii și nici 150mm.
- 3. Conectorii în U (fig.2.10.c), realizați din profile U laminate la cald, se recomandă ca înălțimea inimii acestora să nu depășească de 25 de ori grosimea inimii, iar înălțimea conectorilor în U se limitează la de 15 ori grosimea inimii și maximum 150mm.
- 4. Înălțimea conectorilor în formă de potcoavă nu trebuie să fie mai mare de 20 de ori grosimea inimii și maximum 150mm.

2.11.9.3 Recomandări pentru conectori cu cârlige sau cu arce

Se recomandă ca un conector cârlig (fig.2.11.a) sau în arc (fig.2.11.b) să satisfacă următoarele cerințe, pentru a fi bine ancorat în beton (fig.2.27):

 $r \ge 7.5\varphi$, $l \ge 4r$, și grosimea de înglobare 3φ

unde: r, l și ϕ : sunt raza de îndoire r, lungimea de ancoraj l și respectiv diametrul ϕ al oțelului rotund din care este realizat arcul (fig.2.27)

Fig.2.27 Conectori în arc

2.11.9.4 Recomandări pentru conectori din corniere și profile U

În cazul conectorilor din corniere (fig.2.12.a) sau din profile U așezate vertical (fig.2.12.b), din profile laminate, se fac următoarele recomandări:

- 1. Înălțimea h a aripii verticale a cornierei, sau înălțimea profilului U, se recomandă să fie mai mică decât de 10 ori grosimea aripii sau a inimii profilului U și maximum 150mm.
- 2. Se limitează de asemenea lungimea b a cornierei sau a profilului U, la 300mm.

2.12 CALCULUL ARMĂTURILOR TRANSVERSALE ALE GRINZILOR MIXTE OȚEL-BETON

2.12.1 Aspecte generale

Armăturile transversale ale dalei trebuie să fie dimensionate la starea limită ultimă, astfel încât să se prevină avarierea (distrugerea) prematură, prin forfecare longitudinală sau ruperea prin despicarea longitudinală, a dalei de beton armat a grinzii mixte.

Dala de beton trebuie să aibă un procent minim de armare transversală, pentru a fi capabilă să preia eforturile de forfecare (lunecare), aduse de conectori.

Valoarea de calcul v_{Sd} a forfecării longitudinale pe unitatea de lungime, pentru orice suprafață potențială de distrugere prin forfecare a dalei, nu trebuie să depășească rezistența de calcul la forfecare longitudinală v_{Rd} , pentru suprafața considerată:

$$v_{Sd} \le v_{Rd} \tag{2.223}$$

Suprafetele (sectionile) potentiale tipice de distrugere prin forfecare, sunt indicate în figura 2.28 si în tabelul 2.4.

Fig.2.28 Suprafete potențiale tipice de distrugere prin forfecare

În figura 2.28 și tabelul 2.4, notațiile au următoarea semnificație:

A_b : este aria armăturilor transversale de la partea inferioară a dalei de beton At : este aria armăturilor transversale de la partea superioară a dalei de beton A_{bh} : este aria armăturilor transversale înclinate la vute din dala de beton

Valoarea suprafețelor potențiale de distrugere		Tabelul 2.4
Număr curent	Tipul secțiunii din dală	Mărimea suprafețelor A _c
1	a-a	$(A_b + A_t)$
2	b-b	2 A _b
3	с-с	$2(A_b + A_{bh})$
4	d-d	A _{bh}
5	e-e	A _t

anna fatalan natantiala da diatungana X7 - B - - - - - -

2.12.2 Valorile eforturilor de calcul

Efortul de calcul v_{Sd} se determină din rezistența conectorilor de pe grindă P_{Rd} și ea se calculează ca o forță pe unitatea de lungime a grinzii mixte, cu relațiile:

-Sectiunea a-a, cu conectorii de pe un singur rând :

$$v_{Sd} = \frac{P_{Rd}}{s} \qquad (kN/mm sau N/mm) \qquad (2.224)$$

unde:

 P_{Rd} : este rezistența de calcul a unui singur conector ce se află pe o parte a grinzii spre secțiunea a-a, calculată cu relațiile (2.217) pentru conectorii tip gujon, (2.209) la conectorii tip bloc, (2.210) la conectorii tip cârlig sau ancoră și respectiv (2.213) la conectorii din comiere

s : este distanța dintre conectori, calculată cu relațiile (2.219)....(2.222)

- Secțiunea b-b, la care se iau conectorii de pe două rânduri (fig.2.21.d), deoarece secțiunea b-b taie ambele rânduri de gujoane:

$$v_{sd} = \frac{2P_{Rd}}{s} \quad (kN/mm sau N/mm)$$
(2.225)

2.12.3 Determinarea rezistenței de calcul la forfecare

La stabilirea rezistenței de calcul la forfecare longitudinală, trebuie stabilite ariile A_e ale armăturilor transversale, calculate cu relațiile din tabelul 2.4.

Lungimea suprafeței de forfecare b-b indicată pe figura 2.28.d, trebuie luată egală cu 2h plus diametrul capului gujonului (în cazul gujoanelor izolate dispuse pe un singur rând, aliniate unul după altul, sau în cazul gujoanelor dispuse pe două rânduri, dar decalate unul față de celălalt cu o jumătate de pas). Dacă gujoanele sunt dispuse alăturate în perechi pe două șiruri, atunci lungimea suprafeței de forfecare în secțiunea b-b se ia egală cu $2h+s_t$ plus diametrul capului, unde h: este înălțimea gujonului iar s_t : este distanța transversală între axele celor două șiruri de gujoane.

În cazul dalelor nervurate, când se folosesc table cutate de oțel dispuse în sens transversal grinzii metalice, nu este necesar să se ia în considerare suprafața de forfecare de tip b-b, cu condiția ca rezistența de calcul a gujoanelor să fie calculată cu luarea în considerare a coeficientului de reducere k_t din relația (2.208).

Rezistența de calcul a dalei, în planul a-a din figura 2.21.a,d și e, se determină conform prevederilor din normativul EUROCODE 2. Se poate presupune că o tablă cutată de oțel, a căror nervuri sunt perpendiculare pe grinda din oțel, contribuie la rezistența la forfecare longitudinală, dacă aceste table sunt continue pe talpa superioară a grinzii metalice, sau dacă ele sunt sudate de grinda din oțel prin gujoane.

În absența unui calcul mai precis, se poate determina rezistența de calcul a tuturor suprafețelor potențiale de distrugere prin forfecare, în talpă sau în întăriturile cu vute, plecând de la ecuațiile ce urmează:

$$v_{Rd} = 2.5A_{cv} \cdot \eta \cdot \tau_{Rd} + A_e \cdot \frac{f_{sk}}{\gamma_s} + v_{pd}$$
(2.226)

şi

$$v_{Rd} = 0.2A_{cv} \cdot \eta \cdot \frac{f_{ck}}{\gamma_c} + \frac{v_{pd}}{\sqrt{3}}$$
(2.227)

dintre cele două valori din relațiile (2.226) și (2.227), luându-se cea mai mică valoare, unde:

 τ_{Rd} : este rezistența de bază la forfecare a betonului, care este:

$$\tau_{Rd} = 0.25 \frac{f_{clk0.05}}{\gamma_c}$$
(2.228)

 $f_{ctk0.05}$: este rezistența caracteristică la tracțiune a betonului, cu un fractil de 0.05, care are valorile din tabelul 1.1

 f_{ck} : este rezistența caracteristică pe cilindri din beton, care se ia tot din tabelul 1.1

 f_{sk} : este limita de curgere caracteristică a armăturii

 $\eta = 1$: pentru beton de masă normală

 $\eta = 0.3 + 0.7(\rho/2400)$: pentru beton uşor având masa volumică ρ , exprimată în kg/m³

A_e : reprezintă suma ariilor secțiunilor armăturilor transversale ce traversează suprafețele de forfecare considerate a-a, b-b, c-c, d-d, e-e, presupuse perpendiculare pe grindă, evaluată pe unitatea de lungime a grinzii (fig.2.28 și tabelul 2.4), inclusiv armătura prevăzută pentru rezistența la încovoiere a dalei de beton armat. Aceste arii se iau astfel:

- Pentru secțiunea a-a, aria A_e este:

$$A_{e} = \frac{A_{b} + A_{i}}{s} = \frac{\pi d_{b}^{2} + \pi d_{i}^{2}}{4} \quad (\text{mm}^{2}/\text{mm})$$
(2.229)

unde:

 A_b și A_t : sunt ariile secțiunii transversale a armăturilor de la partea inferioară, respectiv de la partea superioară a dalei de beton, din secțiunea a-a (tabelul 2.4 și fig.2.28.a, d, e, f)

 d_b și d_t : sunt diametrele celor două armături de la partea inferioară, respectiv de la partea superioară a dalei de beton

s : este distanța dintre conectori, măsurată în lungul grinzii

- Pentru secțiunea b-b, aria A_e este:

$$A_{e} = \frac{2A_{b}}{s} = 2\frac{4}{s} \quad (\text{mm}^{2}/\text{mm})$$
(2.230)

- Pentru secțiunea c-c, aria A_e este:

$$A_{e} = \frac{2(A_{b} + A_{bh})}{s} = 2 \frac{\frac{\pi d_{b}^{2}}{4} + \frac{\pi d_{bh}^{2}}{4}}{s} \quad (\text{mm}^{2}/\text{mm})$$
(2.231)

unde:

 A_{bh} : este aria secțiunii transversale a armăturii înclinate din vute d_{bh} : este diametrul acestor armături înclinate

 A_{cv} : este aria secțiunii transversale a betonului pe unitatea de lungime din dala grinzii mixte, în suprafața de forfecare luată în considerare conform figurii 2.28. De exemplu:

Pentru secțiunea a-a, fig.2.21.a, d, e, f, aria Acv este:

$$A_{cv} = l_1 \cdot h_c \quad (\,\mathrm{mm}^2\,) \tag{2.232}$$

unde:

 $I_1 = 1.0 \text{ mm}$: este mărimea unității de lungime a dalei, în lungul grinzii

- h_c : este grosimea dalei de beton armat (fig.2.3)
- Pentru secțiunea b-b, fig.2.21.d, aria Acv este:

$$A_{cv} = l_1 \cdot l_{b-b} \quad (mm^2)$$
 (2.233)

)

unde:

 $l_1 = 1.0 \text{ mm}$: este mărimea unității de lungime a dalei, în lungul grinzii l_{b-b} . este lungimea suprafeței de forfecare din secțiunea b-b:

$$l_{b-b} = 2h + s_i + 2\frac{d_c}{2} \tag{2.234}$$

unde:

h : este înălțimea totală a gujoanelor, inclusiv capul (fig.2.28.a)

 s_t : este distanța dintre cele două șiruri de gujoane de pe talpa profilului metalic (fig.2.28.d)

 d_c . este diametrul capului gujoanelor (pentru gujoanele cele mai des folosite, de diametru d = 19mm, d_c este: d_c = 30mm)

 v_{pd} : este efortul care ține cont de contribuția tablei cutate la dalele nervurate, care se calculează cu relația:

$$v_{pd} = A_p \cdot \frac{f_{yp}}{\gamma_{ap}} \tag{2.235}$$

unde:

 v_{pd} : este exprimat în N pe unitatea de lungime a grinzii, pentru fiecare intersecție a suprafeței de forfecare cu tabla cutată

A_p : este aria secțiunii transversale a tablei cutate, pe unitatea de lungime a grinzii

 f_{yp} : este limita de curgere a tablei cutate, dată în tabelul 1.4

 γ_{ap} : este coeficientul parțial de siguranță pentru tabla cutată, $\gamma_{ap} = 1.10$

Relația (2.235) este valabilă atunci când tablele cutate sunt continue deasupra tălpii superioare a grinzii din oțel și sunt dispuse perpendicular pe grindă (fig.2.28.b).

Pentru o dală nervurată cu tablă amprentată, suprafața de forfecare A_{cv} se poate determina luând în considerare efectul nervurilor tablei. Dacă nervurile sunt dispuse perpendicular pe deschiderea grinzii, este permis de a include în A_{cv} și betonul conținut pe înălțimea nervurilor, în ecuația (2.226), dar pentru suprafețele de forfecare potențiale de tip e-e din figura 2.28.b și c, betonul din nervuri nu se include în valoarea lui A_{cv} din ecuația (2.227).

Dacă tablele cutate, ale căror nervuri sunt perpendiculare pe grinda metalică, nu sunt continue deasupra tălpii superioare a grinzii și dacă gujoanele sunt sudate pe grinda de oțel direct prin table, se convine să se ia în considerare contribuția tablei cutate sub forma relației:

$$v_{pd} = \frac{P_{pb,Rd}}{s} \quad \text{dar} \quad v_{pd} \le A_p \cdot \frac{f_{yp}}{\gamma_{ap}}$$
 (2.236)

unde:

 $P_{pb.Rd}$: este rezistența de calcul la presiune diametrală în dreptul gujoanelor cu cap, sudate prin table, egală cu:

$$P_{pb.Rd} = k_{\varphi} \cdot \frac{d_{d_0} \cdot t \cdot f_{yp}}{\gamma_{ap}}$$
(2.237)

cu:

07

(2.238)

unde:

 k_{o} : este un coeficient de corecție

 $k_{\varphi} = 1 + \frac{a}{d_{d_{\varphi}}} \le 4.0$

 d_{d_a} : este diametrul inelului format din cordonul de sudură periferic, care se poate lua egal cu 1.1 ori diametrul tijei gujonului

t : este grosimea tablei cutate

a : este distanța dintre centrul gujonului și extremitatea tablei ($a \le 2d_d$)

s : este distanța dintre axele gujoanelor în sens longitudinal

 f_{vp} și $\gamma_{ap} = 1.10$: se referă la tabla cutată și se alege ca mai sus

La verificarea armăturilor transversale, se alege un diametru al acestora cuprins între ϕ 12 și ϕ 20, iar apoi se face verificarea acestora cu relațiile:

- secțiunea a-a
$$v_{sd} = \frac{P_{Rd}}{s} \le v_{Rd}$$
 (2.239)

- secțiunea b-b
$$v_{Sd} = \frac{2P_{Rd}}{s} \le v_{Rd}$$
 (2.240)

unde:

 v_{Sd} : este efortul de calcul din armături (relațiile 2.224 și 2.225)

 v_{Rd} : este rezistența de calcul a suprafețelor de forfecare, care se determină ca valoarea minimă dintre 2.226 și 2.227

Diametrul armăturilor alese, se modifică pe parcurs, astfel încât relațiile 2.239 și 2.240 să fie cât mai la limită pentru a nu avea un consum prea mare de otel pentru armături.

2.12.4 Secțiunile minime ale armăturilor transversale

La dalele pline, se recomandă să se dispună o arie de armătură uniform repartizată, egală cu cel puțin de 0.002 ori aria betonului din dală

La dalele nervurate, când nervurile sunt paralele cu deschiderea grinzii, este necesar să se dispună o arie de armătură transversală uniform repartizată, cel puțin egală cu 0.002 ori aria betonului situat deasupra nervurilor dalei, considerate în sens longitudinal

Dacă nervurile dalelor sunt perpendiculare pe deschiderea grinzii, trebuie să se dispună o arie de armătură transversală uniform repartizată, cel puțin egală cu de 0.002 ori aria de beton în sens longitudinal. Este permis să se presupună ca tablele cutate din oțel, continue deasupra tălpii grinzii metalice, contribuie la satisfacerea acestei cerinte.

Pentru prevenirea distrugerii grinzii mixte, prin despicarea longitudinală a dalei de beton în dreptul gujoanelor, se aplică unele recomandări suplimentare pentru toate grinzile mixte la care distanța dintre marginea liberă a tălpii și axa șirului de conectori cel mai apropiat este mai mică de 300mm, după cum urmează:

- a. Se vor realiza armături transversale cu bare îndoite în formă de U, ce trec în jurul conectorilor. Aceste bare în U se așează sub vârful conectorilor
- b. Dacă se folosesc gujoane cu cap sudat, drept conectori, se admite să se adopte o distanță între marginea liberă a tălpii și axa gujonului cel mai apropiat egală cu 6d,

unde d: este diametrul nominal al gujonului. De asemenea trebuie să se dispună bare în U, cu diametrul de cel puțin 0.5d.

c. Este necesar ca barele în U să fie așezate cât mai jos posibil, asigurând însă o înglobare inferioară suficientă în beton.

2.13 CALCULUL ȘI VERIFICAREA SĂGEȚILOR LA GRINZILE MIXTE

Verificarea la starea limită de serviciu se referă la verificarea săgeții grinzii mixte, respectând prevederile din EUROCODE 3, paragraful 4.2.2.

Conform acestor prevederi, săgeata totală (fig.2.29) se calculează cu relația:

 $\delta_{\max} = \delta_1 + \delta_2 - \delta_0 \tag{2.241}$

unde: δ_0 : este curbura inițială sau contrasăgeata dată inițial

 δ_1 : este variația săgeții grinzii, dată de încărcările permanente imediat după încărcare (stadiul 1)

 δ_2 : este variația săgeții grinzii mixte, dată de încărcările variabile, după un anumit timp de la producerea săgeții din încărcări permanente δ_1 (stadiul 2)

Fig.2.29 Elemente pentru calculul săgeții grinzii mixte

În aceste condiții, se determină separat săgeata δ_1 produsă de încărcările permanente caracteristice G_k nemajorate de către coeficientul parțial de siguranță pentru încărcări permanente γ_G ($\gamma_G = 1.0$) și separat săgeata δ_2 provenită din încărcările variabile caracteristice Q_k , care se iau neînmulțite cu coeficientul parțial de siguranță pentru încărcări variabile γ_Q ($\gamma_Q = 1.0$).

Determinarea săgeților δ_1 și δ_2 se face în mod simplificat, de o manieră care să fie coerentă cu ipoteza utilizată la calculul momentului de inerție al secțiunii echivalente în oțel I₁ (conform paragrafului 2.9.1, relațiile (2.108) și (2.128)). Acest mod de calcul nu face distincție între acțiunile de lungă durată și cele de scurtă durată, pentru calculul modulului de elasticitate al grinzii mixte $E_c = E_{cm} / 2$, conform capitolului 1.

89

2.13.1 Calculul săgeții din încărcări permanente δ_1

La calculul săgeții din încărcări permanente, trebuie să se țină seama de două situații, deplasarea δ_1 scriindu-se:

$$\delta_1 = \delta_{11} + \delta_{12} \tag{2.242}$$

)

în care:

 δ_{11} : este săgeata produsă de greutatea profilului metalic și greutatea betonului neîntărit, care se calculează cu momentul de inerție al profilului metalic scris față de axa maximă de inerție y-y (fig.2.1), adică l_{ay}, deoarece betonul neîntărit nu participă la secțiunea grinzii. De asemenea în rigiditatea grinzii El, la calculul săgeții δ_{11} din încovoiere, se introduce tot modulul de elasticitate al oțelului E_a .

Considerând că grinda mixtă este simplu rezemată, deformația din încovoiere (săgeata) δ_{11} se calculează cu relația:

$$\delta_{11} = \frac{5}{384} \cdot \frac{(G_{k1} + G_{k2}) \cdot L^4}{E_a \cdot I_a} \quad (\text{mm})$$
(2.243)

unde: G_{k1} : este greutatea profilului metalic dublu T (N/mm=kN/m)

 G_{k2} : este greutatea betonului neîntărit din dală (N/mm=kN/m)

L: este deschiderea grinzii mixte (mm)

 $E_a = 210000 \text{ N/mm}^2$: este modulul de elasticitate al profilului metalic

 $I_a = I_{av}$: este momentul de inerție al profilului metalic față de axa maximă de inerție y-y

 δ_{12} : este săgeata produsă de greutatea pardoselii sau a altor straturi de finisaje, care se așează pe grinda mixtă cu betonul întărit. Această deformație se calculează înlocuind în rigiditatea grinzii EI, tot modulul de elasticitate al oțelului E_a , dar momentul de inerție al secțiunii echivalente în oțel I_1 .

Considerând de asemenea că grinda mixtă este simplu rezemată, deformația (săgeata) δ_{12} se calculează cu relația:

$$\delta_{12} = \frac{5}{384} \cdot \frac{G_{k3} \cdot L^4}{E_a \cdot I_1} \quad (\text{ mm})$$
(2.244)

unde: G_{k3} : este greutatea pardoselilor sau a altor finisaje (N/mm=kN/m)

 I_1 : este momentul de inerție al secțiunii echivalente în oțel, calculat conform paragrafului 2.9.1, relațiile (2.108) și (2.128)

2.13.2 Calculul săgeții din încărcări variabile δ₂

Deformația din încovoiere (săgeata) din încărcări variabile (sarcini utile, acțiunea zăpezii și altele), se calculează cu relația:

$$\delta_2 = \frac{5}{384} \cdot \frac{Q_k \cdot L^4}{E_a \cdot I_1} \quad (\text{mm})$$
(2.245)

unde: Q_k : este suma încărcărilor variabile ce acționează pe grindă (N/mm=kN/m) L: este deschiderea grinzii mixte (mm)

 $E_a = 210000 \text{ N/mm}^2$: este modulul de elasticitate al profilului metalic

 I_1 : este momentul de inerție al secțiunii echivalente în oțel, calculat conform paragrafului 2.9.1, relațiile (2.108) și (2.128)

2.13.3 Condiții de verificare a săgeților

Săgeata totală calculată cu relația (2.241), se verifică cu relațiile care se scriu conform normei EUROCODE 3, în starea limită de serviciu:

$$\delta_2 \le \frac{L}{300} \tag{2.246}$$

şi

$$\delta_{\max} = \delta_1 + \delta_2 - \delta_0 \le \frac{L}{250} \tag{2.247}$$

adică se verifică săgeata din încărcări variabile δ_2 și cea totală δ_{max} , comparându-le cu săgețile admise ale grinzilor mixte, în cazul planșeelor.

Condiția (2.246) pentru verificarea lui δ_2 , poate deveni hotărâtoare doar atunci când contrasăgeata $\delta_0 \neq 0$, lucru care se întâmplă atunci când deschiderea grinzii mixte este mare L = 12...15m și este recomandabil ca acestea să aibă contrasăgeți δ_0 , realizarea acestora fiind însă în general costisitoare și greu de realizat.

2.14 CONTRIBUȚII PERSONALE LA CAPITOLUL 2

În vederea proiectării cu uşurință a grinzilor mixte oțel-beton, folosite pe scară tot mai largă în ultimul timp (în special la realizarea planșeelor pentru clădiri etajate), în acest capitol a fost realizată o prezentare a tuturor aspectelor legate de alcătuirea și calculul acestor elemente de construcții, având la bază norma europeană EUROCODE 4 [20], precum și alte lucrări cuprinse în bibliografia studiată [22], [30], [31], [32].

Dintre principalele contribuții personale, sunt de remarcat:

1. Prezentarea aspectelor legate de stabilirea dimensiunilor principale inițiale ale grinzilor mixte oțel-beton (predimensionarea), referitoare la:

- alegerea înălțimii profilului metalic și a grinzii mixte, conform relațiilor (2.1), (2.2) și (2.3).

- alegerea tuturor dimensiunilor profilului metalic, laminat la cald, dar mai ales la cele compuse sudate, care pot fi simetrice față de ambele axe de inerție, sau doar față de axa verticală z-z, față de cea orizontală y-y fiind nesimetrice, având talpa inferioară mai dezvoltată (fig.2.1.b). În acest caz predimensionarea se face pe baza relațiilor (2.4), (2.5), (2.6), (2.7), (2.8) și (2.9).

- alegerea grosimii dalei de beton armat, cu relațiile (2.10), (2.11) și (2.12).
2. Descrierea sistematizată a elementelor principale ale grinzilor mixte oțel-beton, și sistemele folosite la realizarea acestor elemente: dala sau placa de beton armat, profilul metalic al grinzii mixte, conectorii care asigură legătura dintre dala de beton armat și grinda metalică, precum și armăturile dalei de beton [20] și [22].

La fiecare element al grinzii mixte, sunt prezentate tipurile și posibilitățile de realizare ale acestora.

3. Este arătat într-o formă ordonată, cu relații practice, modul de calcul a lățimii eficace a dalei de beton armat, ca parte componentă a grinzii mixte oțel-beton, atât pentru cazul secțiunilor solicitate de un moment încovoietor pozitiv (dala de beton fiind comprimată), cât și pentru cazul secțiunilor aflate sub un moment încovoietor negativ, pe reazemele grinzilor continue (dala de beton fiind întinsă).

4. În cadrul acestui capitol este prezentată de asemenea conexiunea dintre grinda metalică și placa de beton armat. În acest scop sunt arătate toate tipurile de conectori ductili și rigizi, conform normei EUROCODE 4, precum și a unor noi tipuri de conectori, pentru grinzi solicitate de forțe longitudinale de forfecare foarte mari.

5. Lucrarea prezintă apoi principiile de calcul a grinzilor mixte oțel-beton, făcând la început o sistematizare a modului de calcul a axei neutre plastice ANP, pentru cele trei situații (în cazul când secțiunea se găsește sub moment încovoietor pozitiv):

Axa neutră plastică ANP se găsește în dala de beton armat

- Axa neutră plastică ANP este situată în talpa superioară a profilului din oțel al grinzii mixte

- Axa neutră plastică ANP se situează în inima profilului metalic al grinzii mixte În cazul când secțiunea este solicitată de un moment încovoietor negativ, există o singură poziție posibilă a axei neutre plastice, și anume:

- Axa neutră plastică ANP este în inima profilului metalic al grinzii mixte Pentru fiecare din aceste poziții posibile, sunt stabilite în paragraful 2.8.1, formule practice pentru calculul acestei poziții ale axei neutre plastice ANP, relațiile (2.35) când ANP este în dala de beton, (2.45) când ANP este în talpa superioară a grinzii metalice, (2.56) când ANP este în inima grinzii metalice, respectiv (2.67) când ANP se calculează pentru o secțiune sub moment negativ.

6. În continuare, lucrarea prezintă pentru cele patru cazuri de situare a axei neutre plastice ANP, relațiile și modul de calcul a momentelor rezistente plastice și apoi condițiile de verificare a rezistenței plastice a grinzii mixte, printr-un calcul neliniar.

Valorile momentelor rezistente plastice se calculează cu formulele practice (2.71), (2.78), (2.86), pentru cazul secțiunilor sub moment pozitiv, și respectiv (2.92), pentru secțiunile sub moment negativ.

7. Se prezintă totodată, în paragraful 2.9, calculul poziției axei neutre elastice ANE, de asemenea pentru cazurile posibile, când aceasta se găsește în dala de beton sau în profilul metalic, pentru secțiunile sub moment pozitiv, respectiv negativ. Pentru aceste situații se prezintă și calculul caracteristicilor geometrice elastice a întregii grinzi mixte: aria și momentul de inerție, când dala de beton armat se transformă într-o secțiune echivalentă în oțel (utilizând coeficientul de echivalență n, definit în paragraful 1.3.1.3 al capitolului 1). Tot în acest paragraf se prezintă modul de calcul al momentului rezistent elastic, precum și verificarea de rezistență printr-un calcul liniar.

8. În paragraful 2.10 este făcută o sistematizare a altor verificări care se fac la grinzile mixte oțel-beton și anume:

- Verificarea la acțiunea forței tăietoare, cu relația (2.156)

- Verificarea la acțiunea combinată a momentului încovoietor și a forței tăietoare, cu relația (2.161)

- Verificarea rezistenței la deversare a grinzilor mixte, cu relația (2.180)

- Verificarea la voalare prin forfecare, cu relația (2.187), fiind indicate și cazurile când trebuie făcută această verificare

Pentru toate aceste verificări de mai sus, sunt date în mod explicit relațiile de calcul și de verificare, ușor de folosit în proiectare, bazându-se atât pe prevederile normei EUROCODE 4 pentru construcții mixte, cât și a normei EUROCODE 3 pentru construcții metalice.

9. În lucrare, la paragraful 2.11 este prezentat într-o formă unitară, calculul conexiunii dintre profilul metalic și dala de beton armat, care cuprinde:

- Calculul efortului longitudinal de forfecare, la nivelul conectorilor

- Determinarea rezistenței de calcul a conectorilor de tip: gujoane cu cap sudat, bloc, ancoră sau corniere

- Determinarea numărului de conectori N, care se face cu relația (2.218)

- Prevederile normei EUROCODE 4 [20], pentru stabilirea distanțelor maxime între conectori , după cum se arată în relațiile (2.219), (2.220), (2.221) și (2.222)

- În mod particular sunt prescrise și recomandări practice pentru alegerea conectorilor și realizarea conexiunilor

10. Lucrarea prezintă de asemenea în paragraful 2.12, o serie de aspecte cu indicații practice pentru calculul armăturilor transversale, pe baza eforturilor de calcul v_{Sd} și a rezistenței de calcul la forfecare a armăturilor transversale, în diferite secțiuni de forfecare indicate conform EUROCODE 4, în figura 2.28.

Pentru a realiza cu ușurință proiectarea armăturilor transversale, sunt date indicații practice pentru calculul armăturilor, din secțiunile date în tabelul 2.4 și figura 2.28.

Pe baza acestora, condițiile de verificare a armăturilor, al căror diametru este recomandabil să se ia între ϕ 12 și ϕ 20 mm, sunt cele conform relațiilor (2.239) sau (2.240).

11. O contribuție importantă adusă calculului grinzilor mixte, în această lucrare, se referă la calculul acestora în starea limită de serviciu. Pentru aceasta, în paragraful 2.13, sunt date relații practice pentru calculul săgeților la grinzile mixte și condițiile de verificare a acestora, pe baza normelor EUROCODE 3 [19] și EUROCODE 4 [20], precum și a lucrării bibliografice [22] Este prezentat modul de calcul al săgeții din încărcări permanente δ_1 , cu relația (2.242) și a săgeții din încărcări variabile δ_2 , cu relația (2.245).

Săgeata totală δ_{max} se determină în final cu relația (2.241), ținând seama și de o eventuală contrasăgeată δ_0 (pentru grinzile de deschidere mare). Condițiile de verificare conform aceleași norme, sunt date de relațiile (2.246) și (2.247).

2.15 CONCLUZII

Consider că prin cele prezentate în capitolul 2, este pusă la dispoziția proiectantului, atât justificarea teoretică a calculului grinzilor mixte oțel-beton, cât și o metodologie practică de lucru, conținând toate verificările ce trebuie făcute.

Sistematizarea acestor verificări necesare calculului grinzilor mixte oțel-beton, ușurează munca în proiectare și permite inginerilor să realizeze o proiectare corectă a acestora.

CAPITOLUL 3

CALCULUL GRINZILOR MIXTE OŢEL-BETON CU GOLURI ÎN INIMA PROFILULUI METALIC. STADIUL ACTUAL AL PROBLEMEI

3.1 ASPECTE GENERALE

Inginerii care proiectează structuri pentru clădiri cu multe etaje, au adesea în față sarcina limitării înălțimii fiecărui etaj, precum și a înălțimii totale a clădirii. Aceste limitări sunt impuse de considerente economice, pentru că reducerea înălțimii construcțiilor conduce la reducerea consumului de oțel și implicit la reducerea costului acestora.

Uneori reducerea înălțimii este impusă și de considerații estetice, privind suplețea planșeelor clădirilor etajate.

Una din posibilitățile de reducere a înălțimii planșeelor și implicit a înălțimii clădirilor, este de a utiliza planșee mixte, având grinzi mixte oțel-beton prevăzute cu goluri în inima profilului metalic. Aceste goluri permit trecerea tuburilor pentru ventilație sau pentru aer condiționat, a conductelor pentru instalații sanitare și de încălzire, ca și a altor tipuri de țevi având destinații speciale, precum și a altor utilități necesare în aceste clădiri etajate. În acest caz, toate instalațiile necesare sunt înglobate în grosimea planșeelor, eliminând situația existenței acestor utilități sub planșeu, lucru care ar conduce la creșterea înălțimii etajelor.

Golurile inimii grinzilor mixte pot avea diferite forme și dimensiuni. Cea mai uzuală formă a golurilor este forma dreptunghiulară sau în particular cea pătrată (fig.2.1.a), dar pot exista de asemenea goluri poligonale: hexagonale sau octogonale (fig.2.1.b și c), precum și goluri circulare sau alungite (fig.2.1.d și e).

Fig.3.1 Formele golurilor din inima profilelor metalice

Dimensiunile golurilor din inima profilelor metalice a grinzilor mixte oțel-beton, sunt foarte variabile și vor fi prezentate în paragraful următor.

3.2 DEFINIREA ROLULUI ȘI A DIMENSIUNILOR GOLURILOR DIN INIMA PROFILULUI DE OȚEL AL GRINZILOR MIXTE

3.2.1 Definirea rolului golurilor din inima profilului de oțel la grinzi mixte

Având în vedere că grinzile mixte oțel-beton sunt folosite în construcțiile civile ca și grinzi pentru planșee, golurile care se prevăd în inima profilelor metalice ale acestor grinzi, îndeplinesc următoarele roluri:

- Permit trecerea tuburilor (canalelor) de ventilație (care la clădirile cu multe etaje sunt absolut necesare), iar așezarea lor sub nivelul grinzilor de la planșee ar conduce la mărirea nejustificată a înălțimii etajelor și implicit a clădirilor.

- Asigură posibilitatea de trecere a canalelor și conductelor pentru aer condiționat, necesare la clădirile moderne și în special la cele pentru birouri sau pentru clădirile sociale (spitale, cămine pentru bătrâni sau copii și altele).

- Golurile din inima profilului metalic a grinzilor mixte fac posibilă trecerea conductelor pentru instalațiile sanitare și de încălzire, a tuburilor în care se montează conductorii pentru instalațiile electrice, de iluminat și de forță, a celor pentru telefonie, precum și a altor tipuri de țevi pentru instalații speciale și a altor utilități.

3.2.2 Forma și dimensiunile golurilor din inima profilului metalic al grinzilor mixte

Golurile din inima profilului metalic al grinzilor mixte oțel-beton, pot avea diferite forme și dimensiuni. În general, golurile pot fi realizate în două soluții, ca și goluri dreptunghiulare sau pătrate, prezentate în acest capitol, și anume:

- Goluri dreptunghiulare sau pătrate neîntărite (nerigidizate), care se realizează prin tăierea cu flacără oxiacetilenică, sau mai bine prin perforarea inimii cu ajutorul unei prese.

Pentru o mai bună comportare în exploatare, în scopul evitării concentrării eforturilor în colțurile golurilor, se recomandă ca golurile să nu aibă colțuri cu muchii vii, ci două câte două margini adiacente se racordează între ele prin arce de cerc (fig.2.2.a şi b).

- Goluri dreptunghiulare sau pătrate întărite pe margini cu rigidizări, care pot fi de mai multe feluri (fig.2.2.c, d, e și f).

În figura 2.2.c este arătat modul de întărire a golului prin două benzi de oțel, sudate de o parte și alta a inimii, atât deasupra cât și dedesubtul golului. Aceste întărituri se prelungesc dincolo de marginile verticale ale golului, pe lungimea a.

Figura 2.2.d prezintă modalitatea de întărire a golului cu câte o bandă de oțel sudată la partea de sus și jos a golului, care se prelungesc cu lungimea a dincolo de marginile verticale, după care li se creează două fante de petrecere peste inimă.

În figura 2.2 e și f sunt arătate două moduri de întărire cu benzi de oțel curbate, cu scopul de a rigidiza și marginile verticale ale golului, parțial ca în figura 2.2.e, sau total pe tot conturul, ca în fig.2.2.f.

Fig.3.2 Forma și dimensiunile golurilor dreptunghiulare, fără și cu rigidizări

În ce privește dimensiunile golurilor dreptunghiulare din inima profilului metalic al grinzilor mixte oțel-beton, există în literatura tehnică de specialitate mai multe recomandări privind alegerea acestora.

1. Andre Picard și Denis Beaulieu [1], în cartea "Construcții mixte oțel-beton ", tipărită de Institutul Canadian pentru Construcții din Oțel, în 1991, recomandă următoarele:

- Raportul dintre lungimea l_0 și înălțimea h_0 a golurilor dreptunghiulare se alege:

$$\frac{l_0}{h_0} = 1.2....2.0 \tag{3.1}$$

- Înălțimea golurilor dreptunghiulare se alege:

$$h_0 = (0.6....0.7)h \tag{3.2}$$

unde: l_0 : este lungimea golurilor dreptunghiulare (fig.3.2)

 h_0 : este înălțimea acestor goluri (fig.3.2)

h : este înălțimea totală a profilului metalic al grinzii mixte (fig.3.2)

2. David Darwin din SUA, care este autorul celor mai numeroase studii și cercetări privind grinzile mixte oțel-beton cu goluri în inimă, prevede în [5] următoarele relații de calcul ale dimensiunilor pentru golurile din inima profilului metalic:

Dacă:
$$\frac{h-2t_f}{t_w} \le \frac{1100}{\sqrt{f_y}}$$
 atunci: $\frac{l_0}{h_0} \le 3.0$ (3.3)

Dacă:
$$\frac{1100}{\sqrt{f_y}} < \frac{h - 2t_f}{t_w} \le \frac{1360}{\sqrt{f_y}}$$
 atunci: $\frac{l_0}{h_0} \le 2.2$ (3.4)

$$si h_0 \le 0.7d (3.5)$$

în care:

d : este înălțimea inimii cu grosime constantă, egală cu distanța dintre racordurile curbe dintre inimă și tălpi la profilele laminate, respectiv dintre cordoanele de sudură a tălpilor de inimă, la profile compuse sudate (fig.3.2)

t_f: este grosimea tălpii profilului metalic (fig.3.2)

tw : este grosimea inimii profilului metalic (fig.3.2)

 f_y : este limita de curgere a oțelului din profilul metalic (conform paragrafului 1.3.3.1) h : este înălțimea profilului metalic (fig.3.2)

h-2 t_f : este înălțimea inimii egală cu distanța dintre tălpi

3. Același autor David Darwin prescrie ca la alegerea dimensiunilor golurilor să se respecte și condiția:

$$p_{0} = \frac{l_{0}}{h_{0}} + \frac{6h_{0}}{h} \le 5.6 \quad \text{la grinzile din oțel}$$

$$p_{0} = \frac{l_{0}}{h_{0}} + \frac{6h_{0}}{h} \le 6.0 \quad \text{la grinzile mixte oțel-beton}$$
(3.6)

4. De asemenea sunt date de către D.Darwin [5] și alți autori [2], [6] și [7], și alte relații privind dimensiunile plinurilor (T-urilor) de sub și de deasupra golurilor la grinda metalică, precum și referitor la distanța dintre golurile dreptunghiulare (dacă sunt mai multe goluri în inima profilului metalic, conform fig.3.3) și alte dimensiuni.

Fig.3.3 Elemente dimensionale ale golurilor

- Înălțimea T-ului de deasupra golului s_t (fig.3.3):

$$s_t \ge 0.15d \tag{3.7}$$

- Înălțimea T-ului de dedesubtul golului s_b (fig.3.3):

$$s_b \ge 0.15d$$
 la grinzi din oțel cu goluri (3.8)

$$s_b \ge 0.12d$$
 la grinzi mixte oțel-beton (3.9)

- Factorul v egal cu raportul lungimii golului față de înălțimea T-urilor:

$$v = \frac{l_0}{s_t} \le 12$$
 și $v = \frac{l_0}{s_b} \le 12$ (3.10)

- Raza de racordare la colțul golurilor (fig.3.3):

$$r \ge 2t_w$$
 şi $r \ge 15mm$ (3.11)

- Prelungirea întăriturilor (rigidizărilor) de deasupra și dedesubtul golurilor întărite, dincolo de marginile golurilor cu lungimea a (fig.3.2.c, d, e):

$$a = \min\left\{\frac{l_0}{4}; \frac{A_r \sqrt{3}}{2t_w}\right\}$$
(3.12)

98

unde: Ar . este aria rigidizării de întărire

- Distanța s dintre golurile dreptunghiulare, și de la reazem la primul gol din inima profilului metalic s_0 (fig.3.3):

$$s \ge h_0$$
 și $s \ge d$ pentru grinzi metalice (3.13)

$$s \ge l_0$$
 și $s \ge 2d$ pentru grinzi mixte (3.14)

$$s_0 \ge d$$
 și $s_0 \ge \frac{2}{3} l_0$ (3.15)

- Distanța c de la o forță concentrată P la marginea golului cel mai apropiat (fig.3.3):

$$c \ge \frac{d}{2}$$
 si $c \ge \frac{l_0}{2}$ (3.16)

În relațiile (3.13), (3.14), (3.15) și (3.16), dintre cele două valori calculate, în fiecare caz în parte, se alege valoarea cea mai mare.

3.3 COMPORTAMENTUL GRINZILOR CU GOLURI ÎN INIMĂ

În mai multe studii [5], [8], [9], când se vorbește despre comportamentul grinzilor mixte cu goluri în inimă, se fac referiri la comportamentul grinzilor metalice cu goluri în inimă.

3.3.1 Comportamentul grinzilor din oțel cu goluri în inimă

Grinzile din oțel necompozite, care au goluri dreptunghiulare în inimă, în regiunea grinzii solicitată de forța tăietoare, prezintă deformații așa cum se arată în figura 3.4, foarte aproape de rezistența ultimă [12], [14].

Fig.3.4 Modul de distrugere al grinzilor din oțel cu goluri

În stadiul de distrugere a grinzilor din oțel, se produc articulații plastice în colțurile golurilor, care sunt însoțite în unele cazuri de deformații inelastice, produse de eforturile de forfecare care acționează asupra inimii grinzii, deasupra și dedesubtul golului, și care conduc la deformații relativ mari între capetele golului. Aceste deformații produse de forța tăietoare sunt denumite deformații Vierendeel, care se produc în special la golurile neîntărite, în dreptul golurilor grinda de oțel fiind asemănătoare cu grinda Vierendeel.

Aceste deformații se produc sub acțiunea combinată a forței tăietoare și a momentului încovoietor. În momentul distrugerii grinzii în dreptul golurilor, apar de asemenea și deformații locale ale tălpilor grinzii, ele corespunzând încărcării ultime.

Totodată pot să survină și deformații de voalare a inimii, în special la grinzile cu inimi foarte suple, cum sunt cele cu secțiune compusă dublu T sudată.

Toate studiile efectuate de diferiți autori susțin că golurile din inima profilelor metalice reduc capacitatea portantă la o solicitare combinată de încovoiere și forfecare.

3.3.2 Comportamentul grinzilor mixte oțel-beton cu goluri în inimă

Pentru a cunoaște comportamentul grinzilor mixte cu goluri în inima profilului metalic, au fost efectuate încercări experimentale în laboratoare, pe diferite specimene de grinzi mixte cu goluri în inimă. Rezultatele acestor încercări au arătat că aceste grinzi prezintă un comportament similar cu cel al grinzilor din oțel cu goluri în inimă, prezentând de asemenea deformații Vierendeel, în special în cazul grinzilor mixte cu mai multe goluri în inima profilului metalic.

În dreptul golurilor s-a dovedit de asemenea că și la grinzile mixte oțel-beton capacitatea portantă se reduce sub solicitările de încovoiere și forfecare.

Studiile experimentale au fost făcute atât pe grinzi mixte cu dale pline de beton armat, cât și pentru dale mixte având o dală nervurată, cu o tablă cutată având rol de cofraj pentru betonul proaspăt în timpul turnării acestuia.

Grinzile mixte cu dale nervurate pot avea tablele cutate din oțel cu nervuri transversale, adică perpendicular pe axa grinzii de oțel, sau cu nervuri longitudinale, adică paralel cu axa grinzii.

Rezistența ultimă a grinzilor mixte trebuie să fie asociată cu distrugerea dalei și cu deformațiile plastice ale grinzii de oțel necompozită [12].

Fig.3.5 Modalități de distrugere a dalei de beton

La grinzile mixtă cu dală plină, încercate experimental, se recunosc cu uşurință armăturile din beton la distrugerea prin forfecare și pot fi de asemenea observate unele fisuri transversale, la extremitatea golului de moment maxim (fig.3.5.a).

La dalele cu tablă cutată (fig.3.5.b), care constituie cofraj pentru betonul proaspăt turnat, fisurarea începe de obicei foarte aproape de colțul superior al cutelor tablei și fisurile avansează spre partea superioară a dalei în diagonală (fig.3.5.b), în direcția marginii golului unde momentul este maxim.

Acest mod de distrugere a grinzii implică în general o ridicare a betonului la capătul fisurii, deasupra conectorilor, dala de beton rezistând la încovoierea locală de tip Vierendeel, împreună cu secțiunea din oțel [5], [8].

Prezența dalei de beton armat conduce la creșterea capacității portante a grinzii mixte la forfecare în dreptul golurilor. Această creștere a capacității portante, depinde de numărul de conectori de forfecare, care se situează între capătul grinzii și golul din inima profilului metalic al grinzii mixte.

3.3.3 Modul de cedare a grinzilor mixte oțel-beton

În general modul de capotare (cedare) a grinzilor mixte oțel-beton se bazează pe observațiile privind modurile de cedare a unor grinzi încercate în laborator.

Astfel lucrările științifice ale lui W.Clawson și D.Darwin [3], [4] și ale lui R.Redwood și Soon Ho Cho [12] din SUA și Canada, care se referă la încercările unor grinzi mixte oțelbeton, arată că mecanismul de distrugere prin deformații plastice este funcție de raportul M/V dintre momentul încovoietor M și forța tăietoare V, în dreptul golurilor din inima profilului metalic, după cum urmează:

a. Mecanismul de distrugere prin încovoiere pură
c. Mecanismul de distrugere prin forfecare pură

Fig. 3.6 Moduri de distrugere a grinzilor mixte cu goluri în inimă

1. Pentru un raport M/V mare, distrugerea grinzii mixte se produce printr-un mecanism de incovoiere (fig.3.6.a). Forța tăietoare și momentele secundare produse de aceasta sunt reduse, astfel încât profilul T inferior (de sub gol), atinge primul distrugerea provocată de întindere. Profilul T superior (de deasupra golului) este supus la un efort de compresiune cu încovoiere. În cazul unei încovoieri pure, fără forță tăietoare, profilele T superior și inferior sunt supuse la o stare uniformă de eforturi în lungul golului (fig.3.6.a)

2. Dacă raportul M/V scade, fiind un raport mediu, efectul forței tăietoare crește și

momentele secundare se dezvoltă în profilele T superior și inferior (de deasupra și de dedesubtul golului).În general profilul T inferior atinge stadiul de distrugere sub efectul combinat al forțelor axiale, forțelor tăietoare și a momentelor suplimentare. Articulațiile plastice se formează la ambele extremități ale profilului T.

În profilul T superior, momentele secundare scad, ajutând efectul de încovoiere primară a momentelor mai mici și a celor mai mari de la capetele golului. Pentru acest motiv, momentul mai mare singur, de la extremitatea din dreapta, este critic și distrugerea se produce prin apariția a trei articulații plastice, care dau naștere unui mecanism indicat în figura 3.6.b.

3. Pentru un raport M/V mai mic, forța tăietoare crește și profilul T inferior continuă să afișeze două articulații plastice de distrugere. La o forță tăietoare mai mare, profilul T superior poate prezenta unul sau două moduri de distrugere.

Articulațiile plastice se pot forma la cele două capete ale profilului T superior, când avem mecanismul de distrugere din figura 3.6.c, unde betonul și oțelul pot atinge distrugerea prin forfecare în punctul de inflexiune, rezultând distrugerea prin forfecare ca în figura 3.6.d.

În ceea ce privește acțiunea compozită a grinzilor mixte, care asigură conlucrarea între grinda metalică și dala de beton, toate lucrările și studiile efectuate arată că prezența dalei de beton armat conduce la o rezistență mai mare la forfecare și la încovoiere, a grinzilor mixte [13]. În lucrarea lui Soon Ho Cho [13] este arătat că efectul dalei de beton armat în dreptul golului, se manifestă printr-o creștere a rezistenței la forfecare a grinzii mixte. În cazul unei grinzi mixte cu o dală plină creșterea rezistenței la forfecare este de 40%...420%, în comparație cu rezistența unei grinzi metalice singure, fără dală de beton armat. La grinzile mixte cu dale nervurate, creșterea rezistenței la forfecare este de 30%...260%, în comparație cu grinzile metalice necompozite. Aceste rezultate au fost obținute printr-o analiză teoretică. Încercările experimentale au arătat însă că această creștere a rezistenței grinzilor mixte este de 20%...160%.

Referindu-se la înălțimea golurilor din inima profilului de oțel, asupra comportamentului grinzilor mixte, unele studii prezentate în lucrările [4], [5] și [13] arată că înălțimea golurilor h_0 nu trebuie să depășească (60...70)% din înălțimea grinzii de oțel (fig.3.2). De asemenea, în aceleași lucrări se precizează că golurile nu trebuie să se amplaseze în zone de forțe tăietoare mari.

Comportamentul grinzilor mixte a fost studiat pentru două tipuri de grinzi cu goluri în inimă și anume: grinzi mixte cu goluri întărite (rigidizate) și cu goluri neîntărite. În acest sens cercetările au arătat că la grinzile la care golurile nu sunt situate în secțiunile de solicitări

(moment încovoietor M și forță tăietoare V) mari, nu este necesar să se prevadă rigidizări ale golurilor. În caz contrar, dacă necesitățile constructive și funcționale impun amplasarea golurilor în zone de moment și forță tăietoare mari, pentru a crește rezistența grinzii mixte în dreptul golurilor, trebuie să se prevadă întărituri ale golurilor, după cum se arată în figura 3.2.

Încercările experimentale ale lui Clawson și Darwin [4], efectuate pe 6 grinzi mixte au arătat că modul de comportare și rezistența grinzilor mixte cu goluri în inimă, depind de următorii parametri:

- La grinzile mixte cu mai multe goluri în inima profilului metalic, rezistența grinzilor scade, față de grinzile pline sau cele cu un singur gol

- Forma golurilor (fig.3.1) studiată de diverși cercetători a fost în general doar forma dreptunghiulară

- Dimensiunile golurilor, adică lungimea golului l_0 și înălțimea acestuia h_0 , trebuie să respecte condițiile (3.1), (3.2) și (3.5) și alte prescripții și recomandări

- Poziția golurilor în lungul grinzilor mixte este bine să se aleagă astfel ca ele să fie amplasate în zone cu solicitări M și V mai mici, dacă este posibil chiar în secțiuni unde momentul încovoietor M schimbă de semn, cum este cazul grinzilor simplu rezemate cu console sau la grinzi continue

- Natura și poziția încărcărilor care acționează pe grinzile mixte (putând fi concentrate sau distribuite), are de asemenea influență asupra comportării grinzilor mixte. În acest sens se recomandă să nu existe forțe concentrate în apropierea golurilor din inimă, evitând amplasarea golurilor sub forțe concentrate sau chiar în vecinătatea acestora. În încercările din lucrarea [4] s-au studiat grinzi cu forțe concentrate foarte apropiate de goluri , sau distanțate față de acestea, rezultând concluziile de mai sus.

În lucrarea [14] se recomandă ca forțele concentrate să se plaseze la o distanță mai mare decât jumătate din lungimea golului l_0 față de marginea golurilor, pentru a elimina influența locală a forței concentrate asupra eforturilor din dreptul golurilor din inima profilului metalic (conform relațiilor 3.16).

Pentru a avea o cît mai bună comportare a grinzilor mixte, în dreptul golurilor, toți autorii recomandă ca colțurile golurilor să fie racordate cu arce de cerc, care în încercările experimentale a fost luată r = 10mm, iar în literatura tehnică raza r se alege conform relației (3.11). În studiile din [14], se recomandă și relația (3.17) de determinare a razei de racordare la colțurile golurilor:

$$r \ge \frac{1}{20} h_0$$
 (3.17)

unde: h₀ : este înălțimea golului

Încercările efectuate pentru studierea comportamentului grinzilor mixte cu goluri în inimă,

s-au făcut întâi în stadiul elastic, încărcările concentrate crescând în 5...10 trepte, după care au fost conduse aceste încercări în stadiul plastic, până la curgere, când încep să apară deformații plastice.

Rezultatele acestor încercări [4] au arătat că acțiunea tip Vierendeel, care produce o săgeată de forfecare a inimii în regiunea golului, se manifestă prin deplasări verticale ale celor două extremități ale golurilor.

În timpul încercărilor la care au fost supuse grinzile mixte, au urmat fisuri în betonul dalei, constatându-se că aceste fisuri survin în vecinătatea golurilor grinzilor. La unele grinzi, fisurarea betonului a început în regiunea cu moment mai mare M_h , în apropiere de forțele aplicate pe grindă (fig.3.7.a).

Regiunile critice cu multe fisuri au fost la partea superioară a dalei, la extremitatea cu momentul mai mic din dreptul golului M_I , apoi la partea inferioară a dalei, la extremitatea cu momentul cel mai mare din dreptul golului, precum și la partea inferioară a dalei în apropierea centrului golului (fig.3.7.b).

În starea limită ultimă, betonul de la partea superioară a dalei ajunge la ruină (distrugere) prin spargere. Fisurile din zona centrală de la suprafața liberă a dalei încep la o încărcare egală cu

3/4 din încărcarea ultimă (fig.3.7.b), în regiunea de la mijlocul golului. La încărcarea ultimă fisurile se propagă la 45°, transversal pe suprafața inferioară a betonului, dala având tendința de a se separa ușor de talpa profilului de oțel (fig.3.7.b și c).

Fig.3.7 Modalități de fisurare a dalei de beton

În toate cazurile grinzilor încercate, deformațiile de compresiune ale betonului rămân mici până la curgerea oțelului, iar distrugerea dalei de beton se produce prin fisurarea sau prin spargerea betonului.

Pe baza acestor studii teoretice și experimentale și a studiilor proprii, Al.Bitar [15] a sistematizat modul de apariție a fisurilor din dala de beton armat, în starea de ruină a grinzilor mixte, după cum se arată în figura 3.7.

Dala de beton este cu atât mai importantă cu cât profilul metalic este mai slab (de secțiune mai mică).

În urma încercărilor experimentale au rezultat concluziile:

- Rezistența grinzii mixte se reduce în prezența golurilor din inimă

- Încărcarea din timpul primei curgeri oțelului în apropierea golului, nu este reprezentativă pentru rezistența ultimă a grinzii

- Distrugerea betonului este precedată de curgerea oțelului din grinda metalică, în vecinătatea golului
- Betonul din dala grinzilor mixte are o contribuție importantă la creșterea rezistenței la încovoiere și la forfecare a grinzilor mixte.

- Pentru modul de distrugere a grinzilor mixte, în dreptul golului cea mai mare importanță o are raportul M/V (moment încovoietor/forță tăietoare).

3.4 STADIUL ACTUAL AL PRINCIPALELOR METODE DE CALCUL A GRINZILOR MIXTE OȚEL-BETON CU GOLURI ÎN INIMĂ.

Grinzile mixte oțel-beton cu goluri în inima profilului metalic au fost studiate de mai mulți autori, în special din SUA și Canada, unde astfel de grinzi au fost folosite încă din anii '80, pentru construcțiile multietajate. Cel mai mult s-a ocupat de acest tip de grinzi Profesorul David DARWIN, de la Universitatea Lawrence-Kansas, SUA [5], dar totodată au fost și alți cercetători care s-au ocupat de această problemă, ca: D.Tood și P.Cooper [2], W.Clawson [3], M.Donaghue [6], R.Redwood și G.Poumbouras [7], Soon Cho [8] și alții.

103

3.4.1 Unele recomandări și indicații generale privind realizarea și calculul grinzilor mixte oțel-beton cu goluri în inima profilului metalic

Dintre cei care au studiat acest vast subiect al grinzilor mixte cu goluri în inimă, mulți s-au ocupat în special de probleme pur teoretice privind calculul acestor grinzi, fără un obiect mai precis referitor la alcătuirea și folosirea acestora de către proiectanți și de către cei care le execută. Pe de altă parte, alți cercetători au prezentat metode de calcul și recomandări constructive, mult mai legate de activitatea de proiectare și de execuție a acestor tipuri de grinzi.

În toate lucrările care s-au ocupat de studierea grinzilor mixte oțel-beton cu goluri în inima profilului metalic, aceste grinzi sunt definite ca și grinzi formate dintr-un profil metalic din oțel, laminat sau compus sudat, având o secțiune dublu T, care preia încărcările exterioare prin conlucrarea cu o dală de beton care se toarnă și se leagă de profilul metalic prin intermediul unor conectori, pentru a prelua acțiunile ce se exercită asupra lor.

În ceea ce privește calculul și alcătuirea grinzilor mixte oțel-beton cu goluri în inima profilului metalic, diferiți autori indică unele recomandări referitoare la aceste aspecte, și anume:

1. Profilul metalic dublu T laminat trebuie să aibă înălțimea înscrisă în limitele normale,

indicate în capitolul 2, iar grosimea dalei de beton armat trebuie să se situeze la valori uzuale. Această grosime a dalei este funcție de deschiderea grinzii mixte și de tipul dalei : plină sau nervurată, încadrându-se în următoarele limite:

- la dale pline, grosimea totală a dalei(fig.3.2):

$$h_c = 8....15 \text{ cm}$$

- la dale nervurate, grosimea dalei de deasupra nervurilor tablei cutate(fig.3.5.b):
 - $h_c = 6.5...10 \text{ cm}$

2. La realizarea grinzilor mixte oțel-beton, pentru realizarea grinzii metalice se folosește oțel de calitățile: Fe360 (OL37) sau Fe430 (OL44) sau Fe510 (OL52) iar pentru dală, beton normal având densitate de 2300 kg/m³ și o rezistență la compresiune $f_{ck} = 20$ MPa, corespunzătoare unui beton C20/25 (B350) sau $f_{ck} = 25$ MPa, ce corespunde unui beton C25/30 (B400), adică rezistențe ce se referă la betoane de calitate superioară. Se poate folosi pentru dală, și un beton ușor cu densitatea de 1850 kg/m³, care poate fi economic în alcătuirea grinzilor mixte.

3. Grinzile mixte oțel-beton trebuie să fie prevăzute obligatoriu cu conectori, care leagă dala de beton de profilul metalic al grinzii mixte (fig.3.2, fig.3.5), recomandându-se să se realizeze o conexiune completă între cele două elemente.

4. Pentru conexiunea dalei de beton armat cu profilul metalic, se pot folosi atât conectori ductili de tipul gujoanelor, precum și conectori rigizi de tip bară sau din profile. La clădirile civile multietajate se folosesc de regulă conectori ductili, de tip gujon cu cap sudat, conectorii rigizi fiind folosiți mai mult la podurile cu grinzi mixte, unde eforturile de forfecare sunt mult mai mari.

5. În general, în toate lucrările studiate, au fost analizate numai grinzile mixte cu goluri dreptunghiulare, așezate în diferite poziții în lungul grinzii, putând fi dispuse centric (axa golului coincide cu axa longitudinală a grinzii metalice), precum și excentric pe înălțimea profilului metalic.

6. Distrugerea grinzii mixte este limitată numai la curgerea oțelului din profilul metalic, fără a ține cont de unele probleme de instabilitate a grinzii în starea limită.

În calculul grinzilor mixte oțel-beton, rezistența la compresiune și la încovoiere, în dala de beton armat, în starea limită ce corespunde plastificării secțiunii, este egală cu $0.85 f_{ck}/\gamma_c$, unde γ_c este coeficientul parțial de siguranță pentru beton, care este egal cu $\gamma_c = 1.5$.

3.4.2 Metoda lui David Darwin de calcul a grinzilor mixte oțel-beton cu goluri în inima profilului metalic

Metoda propusă de Profesorul David Darwin în mai multe lucrări de cercetare științifică [3], [4], [5], [9] și [10], a fost pregătită sub coordonarea Comitetului de Cercetare științifică a Institutului American de Construcții Metalice și ea reprezintă o sinteză a acestor lucrări științifice. Metoda se referă la grinzi mixte, având goluri dreptunghiulare în inima profilului metalic, necesare pentru trecerea canalelor de ventilație, a conductelor și a țevilor pentru diferite instalații și utilități.

În lucrările autorului se arată că prin existența golurilor din inima profilului metalic al grinzilor mixte, se reduce capacitatea la încovoiere și forfecare. De asemenea, metoda se poate aplica atât la grinzile metalice necompozite cu goluri în inimă, cât și la grinzile mixte

oțel-beton având goluri în inima profilului metalic, goluri care pot fi întărite (rigidizate) sau neîntărite (nerigidizate).

În ceea ce privește întăriturile din jurul golurilor, ele pot fi orizontale (deci paralele cu deschiderea grinzii) situate deasupra și dedesubtul golului, fiind foarte eficiente, precum și verticale pe marginile de la capetele golurilor, care însă nu au o influență prea mare la creșterea capacității grinzii.

Relațiile de verificare propuse de Darwin sunt aplicabile la grinzi mixte cu un singur gol, precum și la cele cu goluri multiple, pe toată lungimea grinzii mixte, distanțate corespunzător.

Metoda se aplică atât la grinzi mixte cu dale pline, cât și la cele cu dale nervurate, pe suport de tablă cutată, având nervuri transversale sau logitudinale.

Ca și alte metode, și această metodă a lui Darwin (socotită cea mai generală metodă de calcul a grinzilor mixte cu goluri în inimă) are anumite limite, dintre care cele mai importante sunt următoarele:

1. Metoda Darwin nu se aplică la grinzile de oțel sau mixte, cu grinzi metalice ajurate, la care golurile sunt mai apropiate unul de altul, decât la grinzile la care golurile sunt mai distanțate unul față de celălalt.

2. Din considerații practice, înălțimea golurilor este întotdeauna limitată la maximum 70% din înălțimea grinzii (fig.3.2 și 3.3):

$$h_0 \le 0.70h$$
 (3.18)

unde: h_0 : este înălțimea golului

h: este înălțimea totală a profilului metalic al grinzii mixte

3. Limita de curgere a oțelului din grinda metalică nu trebuie să depășească valoarea de 65 Ksi (Ksi fiind o unitate de măsură americană a eforturilor unitare, egală cu: 1 Ksi = 6.895 MPa), deci exprimat în unitățile europene de măsură:

$$f_y \le 450 \, N/mm^2 = 450 MPa \tag{3.20}$$

4. Secțiunea grinzii mixte trebuie să satisfacă toate exigențele impuse de Institutul American de Construcții Metalice (A.I.S.C.), pentru secțiuni compacte.

5. Alte limitări și condiții care trebuiesc respectate, vor fi indicate în decursul prezentei lucrări.

3.4.2.1 Studii de bază privind grinzile cu goluri în inimă. Forțe și ecuații de echilibru în jurul golului

La baza calculului de verificare a grinzilor mixte cu goluri în inimă, verificare ce este prezentată în acest paragraf, stau rezultatele încercărilor de laborator și studiile privind comportamentul grinzilor mixte cu goluri în inimă, ca și modul de descompunere al eforturilor în jurul golurilor.

Deformațiile și modul de cedare al grinzilor mixte, sunt explicate în figurile 3.6.a, b, c și d, prezentate în [3] și [4].

Comportamentul grinzilor mixte cu goluri în inimă, depinde de raportul dintre momentul încovoietor și forța tăietoare M/V, așa cum arată mai mulți autori în [2], [3], [5] și [7].

Eforturile moment încovoietor M și forță tăietoare V , se consideră că acționează în vecinătatea golului, ca în figura 3.8.a.

Aceste eforturi sunt descompuse într-un sistem de forțe, în cele două secțiuni de la extremitățile din stânga și din dreapta golului, așa cum este arătat în figura 3.8.b.

Fig.3.8 Eforturi și forțe ce acționează în jurul golului

Pentru un moment pozitiv (fig.3.8.a), secțiunea profilului T inferior, de sub gol, este solicitată de o forță de întindere P_b și de o forță tăietoare V_b , precum și de două momente locale secundare de încovoiere: M_{bl} , de la extremitatea din stânga a golului unde momentul are valoare mai mică și respectiv M_{bh} , de la extremitatea din dreapta a golului unde momentul are valoare mai mare. Secțiunea profilului T superior, de deasupra golului, este solicitată de o forță de compresiune P_t și de forța tăietoare V_t , precum și de cele două momente de încovoiere similare cu cele de la profilul T inferior, M_{tl} și M_{th} .

Toate forțele tăietoare V, V_t și V_h au fost considerate ca fiind pozitive după regula din rezistența materialelor, adică de jos în sus în stânga golului și respectiv de sus în jos în dreapta acestuia. Pentru aceste eforturi (fig.3.8.b), se pot scrie următoarele ecuații de echilibru:

$$\sum H = 0 \qquad P_b = P_t = P \qquad (3.21)$$

$$\sum V = 0 \qquad \qquad V = V_b + V_i \qquad (3.22)$$

$$\sum M_{\text{inf}}^{b} = 0 \qquad V_{b} \cdot l_{0} = M_{bl} + M_{bh} \qquad (3.23)$$

$$\sum M'_{sup} = 0 \qquad V_t \cdot l_0 = M_{tl} + M_{th} \qquad (3.24)$$

$$\left(\sum M\right)_{dreapta} = 0$$
 $M = P \cdot z + M_{th} + M_{bh} - V \cdot \frac{l_0}{2}$ (3.25)

unde: V: este forța tăietoare totală ce acționează în axul golului

M: este momentul încovoietor total din axul vertical al golului

l₀ : este lungimea golului din inima profilului metalic

z : este distanța dintre punctele în jurul cărora au fost scrise momentele încovoietoare secundare

Metoda propusă de Darwin, pentru calculul grinzilor mixte oțel-beton cu goluri în inimă, este compatibilă cu metoda acceptată de normele americane, și anume LRFD (Load and Resistance Factor Design) din 1986, care este de fapt Metoda Stărilor Limită, în vigoare la noi din 1978, conform STAS 10108/0-78, iar în prezent și în Uniunea Europeană, prin normele EUROCODE. Metoda americană LRFD a fost publicată în Manualul de Construcții Metalice din norma americană pentru calculul construcțiilor metalice AISC 1986a (American Institute of Steel Construction , acum din 1991).

Coeficienții încărcărilor pentru elementele de construcții cu goluri în inimă, corespund celor utilizați în metoda LRFD (din norma AISC 1986b).

Coeficienții rezistenței materialelor folosite sunt luați: $\Phi = 0.90$ pentru elemente de oțel și $\Phi = 0.85$ pentru elemente compozite (grinzi mixte oțel-beton) și ei se aplică la ambele capacități portante din momentul încovoietor și din forța tăietoare, adică:

$$M_{\mu} \le \Phi \cdot M_{\mu} \tag{3.26}$$

$$V_{\mu} \le \Phi \cdot V_{\mu} \tag{3.27}$$

unde: M_u : este momentul încovoietor de calcul, determinat cu coeficienții de multiplicare a încărcărilor, din calculul static

 V_u : este forța tăietoare de calcul, determinat cu coeficienții de majorare a încărcărilor, din calculul static

M_n : este momentul rezistent (momentul capabil), calculat cu încărcările nominale

 V_n : este forța tăietoare rezistentă la forfecare (forța tăietoare capabilă), determinată cu încărcările nominale

Metoda de calcul propusă de Darwin se aplică atât la grinzile metalice, cât și la cele mixte oțel-beton, cu goluri în inima profilului metalic, nerigidizate sau rigidizate (fig.3.2), cu dale pline (fig.3.2 și 3.3) sau cu dale nervurate (fig.3.5.b) de beton armat, având goluri centric dispuse (axa golului coincide cu axa longitudinală a profilului metalic), sau goluri excentrice (axa golului este deasupra sau dedesubtul axei grinzii de oțel).

La marginile golului secțiunile sunt solicitate la încovoiere însoțită de forfecare. Sub acțiunea combinată a eforturilor de încovoiere și de forfecare, rezistența grinzii scade, în comparație cu rezistența grinzii la acțiunea singulară numai a momentului încovoietor sau numai a forței tăietoare. Calculul grinzii mixte cu goluri în inima profilului metalic constă în determinarea rezistenței maxime la încovoiere M_m și a rezistenței maxime la forfecare V_m , în dreptul golului, după care se obține capacitatea nominală M_n la încovoiere (3.26) și V_n la forfecare (3.27), pentru combinația dintre momentul și forța tăietoare care apar în dreptul golului.

107
Pentru elementele de oțel, rezistența grinzii la încovoiere M_m este dată de rezistența secțiunii fără goluri. Pentru secțiunile mixte, expresia lui M_m se bazează pe poziția axei neutre plastice a secțiunilor fără goluri. Rezistența la forfecare V_m se obține prin însumarea componentelor V_{mt} din profilul T superior (deasupra golului) și V_{mb} din profilul T inferior (dedesubtul golului).

3.4.2.2 Interacțiunea moment încovoietor-forță tăietoare

La grinzile cu goluri în inimă solicitate la încovoiere cu tăiere (forfecare), în dreptul golului intervin eforturile M și V, care interacționează conducând la o rezistență mai redusă decât la o grindă supusă numai la încovoiere pură sau doar forfecare pură.

Din fericire, în secțiunile din golurile grinzii mixte interacțiunea dintre încovoiere și forfecare este redusă, deoarece nici rezistența la încovoiere nici cea la forfecare nu se reduc repede.

Interacțiunea dintre rezistența la încovoiere ΦM_n și la forfecare ΦV_n este pusă în evidență prin curba plină roșie din figura 3.9, această interacțiune exprimându-se prin relația:

$$\left(\frac{\Phi M_n}{\Phi M_m}\right)^3 + \left(\frac{\Phi V_n}{\Phi V_m}\right)^3 \le R^3 \quad \text{unde} \quad R = 1.0$$
(3.28)

Fig.3.9 Curbele de interacțiune moment - forță tăietoare

În figura 3.9 au fost incluse pe lângă curba plină roșie și alte curbe adiționale, punctate, cu valori ale curbei R situate între 0.6 și 1.2.

Eforturile de calcul la marginea golului : M_u și V_u , sunt verificate folosind curbele de interacțiune punctate ($V_u / \Phi V_m$ și $M_u / \Phi M_m$).

Dacă punctul care reprezintă interacțiunea moment – forță tăietoare se situează în interiorul curbei R = 1, secțiunea din dreptul golului satisface condițiile din ecuațiile (3.26) și (3.27), iar verificarea din proiectul tehnic este întotdeauna satisfăcută.

Dacă punctul de interacțiune se situează în exteriorul curbei pline R = 1, condițiile de verificare nu sunt satisfăcute.

Valoarea lui R într-un punct de coordonate ($V_u / \Phi V_m$; $M_u / \Phi M_m$), permite să se calculeze ΦV_n și ΦM_n , cu relațiile:

$$\Phi V_n = \frac{V_u}{R} \tag{3.29}$$

$$\Phi M_n = \frac{M_u}{R} \tag{3.30}$$

Aceste eforturi sunt produse de încărcările aplicate, iar în alternativă ținând cont de relația (3.28), se poate calcula direct ΦV_n și ΦM_n :

$$\Phi V_n = \Phi V_m \left[\frac{\left(\frac{M_u}{\Phi M_m}\right)^3}{\left(\frac{V_u}{\Phi V_m}\right)^3} + 1 \right]^{-1}$$
(3.31)

şi

$$\Phi M_n = \Phi V_n \left(\frac{M_u}{V_u}\right) = \Phi M_m \left[\frac{\left(\frac{V_u}{\Phi V_m}\right)^3}{\left(\frac{M_u}{\Phi M_m}\right)^3} + 1\right]^{-\frac{1}{3}}$$
(3.32)

unde: M_u și V_u : sunt momentul încovoietor și forța tăietoare obținute din calculul static, din încărcările de calcul, majorate de coeficientul de siguranță al încărcărilor γ_F .

3.4.2.3 Ecuațiile pentru calculul momentului rezistent maxim M_m

Momentul maxim rezistent M_m , în cazul unei încovoieri pure, a fost calculat atât pentru grinzile de oțel, cât și pentru cele mixte, având golurile întărite sau neîntărite, cu metoda propusă de D.Darwin.

1. Grinzi de oțel

Momentul rezistent maxim M_m , din încovoiere pură (cum este de exemplu cazul unei grinzi simplu rezemate, solicitată de două forțe concentrate egale și egal depărtate de reazeme, pe

porțiunea dintre forțe), în grinzile de oțel cu un gol în inimă, se exprimă în funcție de momentul rezistent plastic al grinzii metalice pline (fără goluri în inimă).

În cele ce urmează vor fi date doar relațiile de calcul pentru grinzile cu goluri neîntărite, pentru a reduce volumul de lucru în cadrul tezei de doctorat (mai ales că grinzile calculate cu programul de calcul automat ANSYS, în capitolele care urmează, se referă doar la grinzi cu goluri nerigidizate)

În figura 3.10.a este arătată distribuția eforturilor în stadiul plastic, în grinda de oțel fără goluri în inimă, iar în figura 3.10.b, aceeași distribuție pentru grinda de oțel cu goluri în inimă. Cu ajutorul acestei distribuții se determină momentul maxim M_m .

Fig.3.10 Distribuția eforturilor în secțiunea grinzii de oțel

Pentru grinda plină sau cu un gol neîntărit, din oțel (fig.3.10), momentul maxim M_m se poate determina în funcție de momentul plastic al secțiunii pline M_p , al profilului dublu T, care este:

$$M_p = f_y \cdot W_{pl} \tag{3.33}$$

unde: f_v : este limita de curgere a oțelului, egală cu:

$$f_{y} = 235 \text{ N/mm}^{2} \text{ pentru oțel Fe360 (OL37)}$$

$$f_{y} = 275 \text{ N/mm}^{2} \text{ pentru oțel Fe430 (OL44)}$$
(3.34)
$$f_{y} = 355 \text{ N/mm}^{2} \text{ pentru oțel Fe510 (OL52)}$$

$$W_{pl} : \text{ este modulul de rezistență plastic al secțiunii din oțel, egal cu:}$$

$$W_{pl} = S_{yl} + S_{yc}$$
(3.35)

 S_{yi} și S_{yc} : sunt momentele statice ale zonei întinse, respectiv comprimate a profilului metalic, scrise față de axa neutră plastică

Pentru o secțiune dublu simetrică, dublu T, compusă sudată, aceste momente statice se scriu, conform figurii 3.11, astfel:

$$S_{yi} = S_{yc} = b_f \cdot t_f \cdot e + \frac{1}{2} (h - 2t_f) \cdot t_w \cdot e_1$$
 (3.36)

unde:
$$e = \frac{h}{2} - \frac{t_f}{2} = \frac{1}{2} (h - t_f)$$

(3.37)

 $e_1 = \frac{1}{2} \left(\frac{h}{2} - t_f \right)$

Fig.3.11 Elemente pentru calculul lui W_{pl}

cu care rezultă:

$$S_{yr} = S_{yc} = b_f \cdot t_f \cdot \frac{1}{2} (h - t_f) + \left(\frac{h}{2} - t_f\right) \cdot t_w \cdot \frac{1}{2} \left(\frac{h}{2} - t_f\right)$$
(3.39)

$$S_{yt} = S_{yc} = \frac{1}{2}b_f \cdot t_f \left(h - t_f\right) + \frac{1}{2}\left(\frac{h}{2} - t_f\right)^2 \cdot t_w$$
(3.40)

și în final W_{pl} .

$$W_{pl} = 2S_{yl} = 2S_{yc} \tag{3.41}$$

$$W_{pl} = b_f \cdot t_f \left(h - t_f \right) + \left(\frac{h}{2} - t_f \right)^2 \cdot t_w$$
(3.42)

Astfel momentul rezistent plastic al secțiunii pline întregi M_{pl} , este:

$$M_{pl} = f_y \left[b_f \cdot t_f \left(h - t_f \right) + \left(\frac{h}{2} - t_f \right)^2 \cdot t_w \right]$$
(3.43)

Pentru profilele laminate dublu T de tip IPE, HEA, HEB, modulul de rezistență plastic W_{pl} este mai mare decât cel calculat cu relația (3.42), considerând profilul format din dreptunghiuri cu cca. 15%, pentru profile HEA și HEB și cu 25% la profilele IPE, datorită conjeului profilelor (racordului cu raza r între tălpile și inima profilelor).

În consecință, pentru profilele laminate, modulul de rezistență plastic W_{pl}^{c} se poate calcula (dacă nu avem la dispoziție tabele în care acesta este calculat), cu relația:

$$W_{pl}^c = k \cdot W_{pl} \tag{3.44}$$

unde:
$$k = 1.13...1.14$$
 pentru profile HEB
 $k = 1.15...1.16$ pentru profile HEA
 $k = 1.25...1.26$ pentru profile IPE (3.45)

 W_{pl} : este modulul de rezistență determinat cu relația (3..42), pentru secțiunea formată din dreptunghiuri (fig.3.11)

Cunoscând momentul plastic al secțiunii pline M_p (3.33 și 3.43), se poate scrie conform studiilor lui Darwin, momentul maxim M_m , pentru secțiunea din dreptul golului (fig.3.10.b):

$$M_{m} = M_{p} - f_{y} \cdot \Delta A_{s} \cdot \frac{h_{0}}{4} = f_{y} \cdot W_{pl} - f_{y} \cdot \Delta A_{s} \cdot \frac{h_{0}}{4} = M_{p} \left(1 - \frac{\Delta A_{s} \cdot \frac{h_{0}}{4}}{W_{pl}} \right)$$
(3.46)

unde: $\Delta A_s = t_w \cdot h_0$ este secțiunea transversală a golului, h_0 fiind înălțimea acestuia Momentul maxim final din dreptul golului, M_m va fi deci:

$$M_{m} = M_{p} \left(1 - \frac{t_{w} \cdot h_{0}^{2}}{4W_{pl}} \right)$$
(3.47)

2. Grinzi mixte otel-beton

Expresiile pentru momentul maxim rezistent M_m , pentru grinzi compozite cu goluri în inimă, la încovoiere pură, se pot aplica atât la grinzile cu goluri neîntărite (fig.3.2.a și b) cât și la cele cu goluri întărite (fig.3.2.c, d, e, f).

Eforturile în stadiul plastic în dreptul golurilor neîntărite sunt cele arătate în fig.3.12, pentru cazul unei grinzi solicitate la încovoiere pură, pentru o grindă mixtă cu dală plină (fig.3.12.a) și cu dală nervurată (fig.3.12.b).

Fig.3.12 Distribuția eforturilor la grinzi mixte oțel-beton

În lucrarea sa Darwin arată distribuția eforturilor pentru cele trei situații, când axa neutră plastică ANP se găsește în dala de beton armat, sau în talpa profilului metalic, sau în inima acestuia.

În cele ce urmează se va prezenta modul de calcul al momentului maxim M_m al grinzii mixte, numai în cazul când axa neutră plastică se găsește în dala de beton armat, plină sau nervurată, caz cel mai frecvent întâlnit și de altfel cea mai favorabilă situație, deoarece profilul metalic este în întregime întins. Pentru o grindă mixtă dată, cu un gol în inimă, forța rezultantă P_c din dala de beton armat, este limitată la valoarea minimă dintre: rezistența la compresiune a betonului, rezistența la forfecare a conectorilor, sau rezistența la limita de curgere a secțiunii nete a profilului de oțel. Acestea se exprimă prin următoarele relații (urmând ca dintre cele trei valori să se ia valoarea minimă):

$$P_{c} \leq 0.85 f_{ck}^{'} \cdot b_{cf} \cdot h_{c} \qquad \text{rezistența betonului} \qquad (3.48)$$

$$P_{c} \leq N \cdot Q_{n} \qquad \text{rezistența conectorilor} \qquad (3.49)$$

$$P_{c} \leq T = f_{v} \cdot A_{net} \qquad \text{rezistența profilului metalic} \qquad (3.50)$$

unde: $A_{net} = A - h_0 \cdot t_w$: este aria netă a profilului metalic, în dreptul golului

A : este aria totală a profilului metalic

bef : este lățimea eficace a dalei de beton

 h_c : este grosimea dalei de beton, egală cu grosimea totală a dalei, la dalele pline, respectiv egală cu grosimea dalei de deasupra cutelor, la dalele nervurate

N : este numărul de conectori situați pe distanța de la reazem până la gol

Q_n : este capacitatea la forfecare a unui conector

$$f_{ck}$$
 : este rezistența de calcul a betonului, egală cu $f_{ck} = \frac{f_{ck}}{\gamma_c}$, $\gamma_c = 1.5$ fiind

coeficientul parțial de siguranță pentru beton, conform tabelului 2.3 din EUROCODE 4, iar f_{ck} este rezistența cilindrică a betonului, dată în EUROCODE 4 în tabelul 3.1

Momentul maxim rezistent M_m , depinde de inecuația care guvernează comportamentul grinzii, deci una din relațiile (3.48), (3.49) sau (3.50).

În cazul când axa neutră plastică se găsește în dala de beton armat, inecuația corespunzătoare este cea conform relației (3.50) din figura 3.12.

$$P_c = T \tag{3.51}$$

În acest caz valoarea momentului maxim M_m , se poate calcula scriind o ecuație de momente a eforturilor din figura 3.12, în raport cu rezultanta P_c a eforturilor din beton.

1. Cazul grinzii mixte oțel-beton, cu dală plină (fig.3.12.a):

$$M_m = T\left(\frac{h}{2} + h_c - \frac{a}{2}\right) \tag{3.52}$$

2. Cazul grinzii mixte oțel-beton, cu dală nervurată (fig.3.12.b):

$$M_{m} = T\left(\frac{h}{2} + h_{n} + h_{c} - \frac{\bar{a}}{2}\right)$$
(3.53)

în care:

 $T = f_y \cdot A_{net}$: este rezultanta eforturilor de întindere din profilul metalic, în secțiunea din dreptul golului

 f_v : este limita de curgere a oțelului

A_{net} : este secțiunea netă a profilului metalic, $A_{net} = A - h_0 \cdot t_w$

A : este secțiunea brută a profilului metalic, fără gol

h₀ : este înălțimea golului

tw: este grosimea inimii profilului metalic

h : este înălțimea totală a profilului din oțel (fig.3.12)

 h_n : este înălțimea nervurilor tablei cutate (fig.3.12.b)

 h_c : este înălțimea dalei pline (fig.3.12.a), sau a dalei de deasupra tablei cutate la dale nervurate (fig.3.12.b)

a: este înălțimea blocului de eforturi din beton, de deasupra axei neutre plastice ANP (fig.3.12), egală cu:

$$\bar{a} = \frac{P_c}{0.85 f'_{ck} \cdot b_{ef}}$$
(3.54)

3.4.2.4 Ecuațiile pentru calculul forței tăietoare rezistente maxime V_m

Ecuațiile din acest paragraf se folosesc pentru calculul capacității maxime la forfecare, atât pentru grinzile de oțel cât și pentru cele mixte.

Capacitatea maximă nominală la forfecare în dreptul golului, este egală cu suma capacităților portante a profilelor T inferior și superior, a grinzii metalice:

$$V_m = V_{mb} + V_{mt} \tag{3.55}$$

unde: V_{mb} : este forța tăietoare din profilul T, metalic, de sub gol (fig.3.13) V_{mt} : este forța tăietoare din profilul T, metalic, de deasupra golului (fig.3.13)

Fig.3.13 Distribuția eforturilor la forfecare în dreptul golului

Forța tăietoare maximă V_m este calculată considerând că forțele axiale în profilele T superior P_t și inferior P_b , în dreptul golului, sunt nule.

$$P_t = P_b = 0 \tag{3.56}$$

Această condiție corespunde unei forfecări pure, când M = 0, pentru secțiunea de oțel, care este aceeași și pentru secțiunea mixtă, existând o mică diferență dată de momentele suplimentare produse de forța tăietoare, care nu sunt egale la cele două extremități ale golului, în cazul grinzilor mixte oțel-beton.

Forțele tăietoare V_{mb} din profilul T inferior și V_{mt} din profilul T superior pot fi calculate utilizând ecuația de moment, pentru profilul T (conform ecuațiilor 3.23 și 3.24).

Deoarece profilele T superior și inferior sunt supuse la efectul combinat al forfecării și al momentelor secundare, este necesar să se țină cont și de eforturile axiale distribuite. Cea mai mare parte a forfecării este preluată de inima profilului din oțel (conform formulei lui Juravski). În aceste condiții, dacă se ține seama de interacțiunea dintre forța tăietoare și efortul axial, aceasta poate fi exprimată prin relația dată de criteriul de curgere Von Misses:

$$\overline{f_y} = \sqrt{f_y^2 - 3\tau^2}$$
 (3.57)

unde: $\overline{f_y}$: este rezistența axială la curgere, redusă prin interacțiunea dintre eforturile axiale distribuite (fig.3.13) și cele de forfecare

 f_v : este limita de curgere a oțelului

 τ : sunt eforturile de forfecare din inima profilului metalic

În interacțiunea dintre eforturile axiale și de forfecare nu se ține seama de beton și de eforturile din acesta. Totuși eforturile axiale distribuite din beton se consideră egale cu $0.85f_{ck}$, când în grindă se ajunge la forța tăietoare maximă V_m . Distribuția eforturilor pe secțiunile grinzii mixte de la capetele golurilor este arătată în figura 3.13.a, pentru dale pline și în figura 3.13.b, pentru dale nervurate.

Fig.3.14 Curbele relațiilor Von Misses

D.Darwin și R.Donahey au dat soluția pentru calculul forțelor tăietoare V_{mb} și V_{mt} , folosind o versiune simplificată a criteriului Von Misses, rezultând o formulă aproximativă liniară:

$$\overline{f_y} = \lambda \cdot f_y - \sqrt{3} \cdot \tau \tag{3.58}$$

unde factorul λ a fost calculat de Darwin și Donahey [10], rezultând valoarea:

$$\lambda = \frac{1+\sqrt{2}}{2} = 1.207 \tag{3.59}$$

Ulterior, Lucas și Darwin au dat o valoare a lui $\lambda = \sqrt{2} = 1.414$, care este mai apropiată de rezultatele experimentale.

În figura 3.14 se pot observa comparativ curba ce reprezintă ecuația (3.57) și dreptele ce sunt date de ecuația (3.58) pentru $\lambda = \frac{1+\sqrt{2}}{2} = 1.207$ și $\lambda = \sqrt{2}$.

 $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$

Valoarea maximă limită a efortului de forfecare este $\tau \leq \frac{f_y}{\sqrt{3}}$.

Pentru a determina forțele tăietoare V_{mb} și V_{mt}, Darwin a considerat o distribuție simplificată a eforturilor în dreptul golului, în cazul forfecării maxime (fig.3.15) și cu ajutorul acestei distribuții, precum și a ecuațiilor (3.23) și (3.24), se pot determina eforturile de forfecare. Această simplificare majoră este posibilă, deoarece axa neutră plastică ANP se găsește în general în dala de beton sau în talpa profilului metalic, a cărei grosime este mică în raport cu înălțimea. Distribuția eforturilor consideră că acestea sunt constante pe înălțimea profilelor T, de deasupra și de dedesubtul golului, luându-se egale cu $\overline{f_y}$.

Fig.3.15 Distribuția eforturilor simplificate, la forfecare

Pentru profilul T superior se poate scrie o ecuație a capacității maxime la forfecare. Ecuația de echilibru pentru momentele scrise în raport cu marginea superioară a tălpii profilului metalic și situate la extremitatea din stânga golului (de moment mai mic), se exprimă prin:

$$V_{ml} \cdot l_0 = f_y \cdot \frac{s_l^2}{2} + P_{ch} \cdot d_h - P_{cl} \cdot d_l$$
 (3.60)

unde: l_0 : este lungimea golului

st : este înălțimea profilului metalic T superior

 P_{ch} și P_{cl} : sunt rezultantele eforturilor din dala de beton la cele două extremități din dreapta, respectiv stânga golului

 d_h și d_i : sunt distanțele de la marginea superioară a profilului metalic, până la rezultantele eforturilor din dala de beton armat (conform figurii 3.15) de la marginea din dreapta, respectiv stânga golului

Forțele rezultante ale eforturilor din dala de beton armat P_{ch} și P_{cl} sunt egale cu mărimea minimă dintre următoarele valori:

$$P_{ch} \le 0.85 f_{ck}^{'} \cdot b_{cf} \cdot h_{c} \qquad P_{cl} \le 0.85 f_{ck}^{'} \cdot b_{cf} \cdot h_{c} \qquad (3.61)$$

$$P_{ch} \le N \cdot Q_n \qquad \qquad P_{cl} \le N \cdot Q_n \qquad (3.62)$$

$$P_{ch} \le f_y \cdot A_{st} \qquad P_{cl} \le f_y \cdot A_{sb} \qquad (3.63)$$

Primele relații (3.61) țin cont de rezistența betonului din dală, relațiile (3.62) iau în considerare rezistența conectorilor la o conexiune completă, iar relațiile (3.63) țin seama de rezistența profilului metalic al grinzii mixte, în care:

 f_{ck} , b_{ef} și h_c : sunt rezistența, lățimea eficace și înălțimea dalei de beton armat

N și Q_n : sunt numărul de conectori și capacitatea unui conector

 A_{st} și A_{sb} : sunt ariile profilului metalic T superior și inferior

Forța P_{cl} din dala de beton de la capătul din stânga golului poate fi calculată și cu relația:

$$P_{cl} = P_{ch} - N_0 \cdot Q_n \ge 0 \tag{3.64}$$

unde: N_0 : este numărul net de conectori de forfecare de deasupra golului. Acesta nu include gujoanele care sunt fixate, de exemplu, chiar la capetele golului

În ceea ce privește distanțele d_h și d_l , de la marginea superioară a profilului metalic până la rezultantele eforturilor din dala de beton, acestea se determină cu relațiile (conform fig.3.15):

$$d_{h} = h_{d} - \frac{P_{ch}}{2 \cdot 0.85 f_{ck} \cdot b_{ef}}$$
(3.65)

$$d_{l} = \frac{P_{cl}}{2 \cdot 0.85 f_{ck}^{'} \cdot b_{ef}} \qquad \text{pentru dale pline} \qquad (3.66)$$

$$d_{l} = h_{d} - h_{c} + \frac{P_{cl}}{2 \cdot 0.85 f_{ck} \cdot b_{ef}}$$
pentru dale nervurate cu nervuri transversale (3.67)

unde:

h_d :este înălțimea totală a dalei de beton armat

 h_{c} : este înălțimea efectivă a dalei de deasupra nervurilor tablei cutate (conform fig.3.15)

Dacă se utilizează ecuația liniară (3.58), pentru calculul rezistenței axiale la curgere redusă $\overline{f_y}$, datorită interacțiunii dintre eforturile axiale distribuite (fig.3.13 și 3.15) și cele de forfecare, cu notațiile:

$$\tau = \frac{V_{mt}}{t_w \cdot s_t} \qquad \text{si} \qquad f_y = \frac{\sqrt{3} \cdot V_{pt}}{t_w \cdot s_t} \tag{3.68}$$

care exprimă valoarea eforturilor din inima profilului T superior, și dacă se înlocuiesc aceste valori în relația (3.60) se obține o ecuație liniară în V_{mt}, soluția acestei ecuații fiind:

$$V_{mt} = V_{pt} \left(\frac{\sqrt{3\lambda + \mu}}{\nu + \sqrt{3}} \right) = V_{pt} \cdot \alpha_{\nu} \le V_{pt}$$
(3.69)

unde:

$$V_{pt} = A_{wt} \cdot \tau = A_{wt} \cdot \frac{f_y}{\sqrt{3}} = \frac{t_w \cdot s_t \cdot f_y}{\sqrt{3}}$$
(3.70)

în care: V_{pt} : este capacitatea maximă a inimii profilului T superior, la forfecare

 $A_{wt} = t_w \cdot s_t$: este aria inimii profilului T superior

 t_w și s_t : sunt grosimea și înălțimea inimii profilului T de deasupra golului f_y . este limita de curgere a oțelului

În relația (3.69), mărimile ce intervin au următoarea semnificatie:

$$v = \frac{l_0}{s_t} \tag{3.71}$$

$$\mu = \frac{P_{ch} \cdot d_h - P_{cl} \cdot d_l}{s_l \cdot V_{rt}}$$
(3.72)

pentru $\lambda = \sqrt{2}$ coeficientul α_v din ecuația (3.69) devine:

$$\alpha_{v} = \frac{V_{mb}}{V_{pb}} \qquad \text{sau} \qquad \frac{V_{ml}}{V_{pl}} = \frac{\sqrt{6+\mu}}{\nu+\sqrt{3}} \le 1$$
(3.73)

unde:

$$V_{pb} \operatorname{sau} V_{pt} = \frac{t_w \cdot s \cdot f_y}{\sqrt{3}} \qquad (\operatorname{cu} s = s_b \operatorname{sau} s_t) \qquad (3.74)$$

Coeficientul μ , scris pentru profilul T superior prin relația (3.72), poate fi exprimat și pentru profilul T inferior printr-o relație simplă:

$$\mu = 0$$

(3.75)

)

deoarece pe profilul T de sub gol, $P_{ch} = P_{cl} = 0$, după cum se vede în figura 3.15. Dacă raportul α_{v} din relația (3.73) este $\alpha_{v} > 1$, atunci se utilizează, în alternativă, relația:

$$\alpha_{v} = \frac{V_{mt}}{V_{pt}} = \frac{\mu}{v} \ge 1$$
 (3.76)

unde: $v = \frac{l_0}{s}$ pentru dimensiunile din dreptul golului

Dacă α_{v} este dat de relația (3.73), valoarea lui P_{ch} luată ca minimul dintre valorile date de relațiile (3.61)....(3.63) (în care h_c este înălțimea dalelor pline, sau înălțimea de deasupra tablei cutate a dalelor nervurate (fig.3.15) cu nervuri transversale și egală cu (h_d + h_n)/ 2 pentru nervuri longitudinale), trebuie să fie comparat cu efortul de curgere completă a tălpii, conform relației:

$$P_{ch} \le f_y \cdot t_f \left(b_f - t_w \right) \tag{3.77}$$

119

unde: b_f și t_f: sunt lățimea și grosimea tălpii profilului metalic

t_w : este grosimea inimii profilului metalic

În final, D.Darwin a stabilit o condiție și anume ca efortul de forfecare V_{mt} să nu depășească capacitatea profilului T superior, solicitat la forfecare pură $V_{mt}(sh)$, egal cu:

$$V_{mt}(sh) = V_{pt} + 0.29A_{w}\sqrt{f_{ck}} \qquad (N)$$
(3.78)

unde:

 f_{ck} (N/mm²): este rezistența de calcul a betonului (f_{ck}/γ_c)

 A_{w} : este aria efectivă a betonului la forfecare, egală cu:

$$A_{\mu\nu} = 3h_{\nu}^{2} \qquad \text{la dale pline} \qquad (3.79)$$

$$A_{\rm sc} = 3h_d \cdot h_c \quad \text{la dale nervurate (fig.3.15)}$$
(3.80)

unde:

 h_c : este înălțimea dalei pline, sau a dalei de deasupra nervurii la dale nervurate, susținute de tablă cutată ce alcătuiesc și cofrajul dalei

 h_d : este înălțimea totală a dalei nervurate ($h_d = h_n + h_c$)

 h_n : este înălțimea nervurilor

Condiția de verificare a eforturilor de forfecare V_{mt} , este deci:

$$V_{mt} \le V_{mt}(sh)$$

În mod similar cu relația (3.69), se poate scrie o relație pentru calculul forței tăietoare V_{mb} din profilul T inferior:

$$V_{mb} = V_{pb} \left(\frac{\sqrt{3\lambda} + \mu}{\nu + \sqrt{3}} \right) = V_{pb} \left(\frac{\sqrt{3\lambda}}{\nu + \sqrt{3}} \right) \le V_{pb}$$
(3.82)

 μ fiind egal cu 0, conform relației (3.75)

În relația (3.82) forța tăietoare V_{pb} este:

$$V_{pb} = A_{wb} \cdot \tau = A_{wb} \cdot \frac{f_y}{\sqrt{3}} = \frac{t_w \cdot s_b \cdot f_y}{\sqrt{3}}$$
(3.83)

iar V_{mb} trebuie să verifice condiția:

$$V_{mb} \le V_{mb}(sh) \tag{3.84}$$

în care:

$$V_{mb}(sh) = V_{pb} + 0.29A_{w}\sqrt{f_{ck}}$$
 (N) (3.85)

unde: V_{pb} se ia din relația (3.83)

 $A_{\rm sc}$ se ia din relațiile (3.79) sau (3.80)

Cu valorile V_{mb} (3.82) și V_{mt} (3.69), forța tăietoare maximă V_m din dreptul golului grinzilor mixte, va fi:

$$V_m = V_{mb} + V_{mt}$$
(3.86)

Această forță tăietoare maximă (care reprezintă capacitatea maximă la forfecare a grinzii mixte), a fost limitată de Darwin la valoarea:

$$V_m \le \frac{2}{3}\overline{V_p} + \overline{V_c} \tag{3.87}$$

unde: $\overline{V_p} = \frac{t_w \cdot h \cdot f_y}{\sqrt{3}}$ (3.88)

reprezentând capacitatea plastică a inimii neperforate (fără gol)

iar
$$\overline{V_s} = \min\left\{V_{pr}\left(\frac{\mu}{\nu}-1\right) \ge 0 \, si \, V_{mr}\left(sh\right) - V_{pr}\right\}$$
 (3.89)

in care: V_{pt} se ia din (3.74), μ din (3.72), ν din (3.71), V_{mt} (sh) din (3.78)

Cunoscând momentul maxim M_m , care se calculează cu relația (3.52) pentru dale pline și (3.58) pentru dale nervurate, precum și forța tăietoare maximă V_m din relația (3.86), se poate face verificarea interacțiunii moment – forță tăietoare, cu relația (3.28), mărimile luându-se din relațiile (3.29....3.32).

120

3.4.3 Metoda L.R.F.D., a lui D.Darwin și R.Donahey

Notația americană L.R.F.D. are semnificația " Load and Resistance Factor Design ", fiind echivalentă cu " Metoda Stărilor Limită " atât din normele EUROCODE cât și din normele românești.

Făcând o analiză a metodelor de calcul studiate de diferiți specialiști [3], [4], [5], autorii acestor studii au propus în [10]. metoda L.R.F.D. folosită în SUA, care determină capacitatea totală a secțiunii mixte cu goluri în inimă, la încovoiere pură, la forfecare pură și la o combinație a acestor două.

Proiectul tehnic al metodei cuprinde două etape:

- 1. Formularea generală a capacității portante a elementelor cu goluri în inimă, la forfecare pură, care se bazează pe simplificările admise prin câteva ipoteze
- 2. Formularea generală a unei soluții simple și directe pentru capacitatea elementelor cu goluri în inimă, situate în regiuni solicitate la acțiunea compusă a încovoierii și a forfecării

Metodele cuprinse în proiectul tehnic al metodei L.R.F.D., se aplică la grinzile compozite cu goluri în inimă, goluri întărite pe margine (fig.3.2.c, f) sau neîntărite (fig.3.2.a, b), cu dale pline de beton armat (fig.3.2, 3.8 și 3.12.a) sau cu dale nervurate turnate pe tablă cutată

(fig.3.12.b, 3.13.b și 3.15), având nervurile tablei orientate perpendicular sau paralel cu grinzile metalice.

Golurile din inima profilelor metalice au lungimea l_0 și înălțimea h_0 (fig.3.2), iar grosimea dalei de beton armat este h_c la dalele pline (fig.3.2) și h_c deasupra nervurilor, care au înălțimea h_n (fig.3.12.b).

3.4.3.1 Limitele metodei L.R.F.D

La calculul capacității grinzii mixte cu goluri în inimă, au fost admise următoarele limite:

1. Efortul axial de compresiune din dala de beton armat poate fi presupus egal cu $0.85 f_{ct}$

(cu $f_{ct} = f_{ct} / \gamma_c$, explicate la relația 3.48), când se atinge capacitatea maximă la forfecare V_m .

2. Cea mai mare cantitate din forța tăietoare ce solicită grinda mixtă, este preluată de inima profilelor T de deasupra și de dedesubtul golului, existent în inima profilului metalic.

3. Eforturile din secțiunea transversală în dreptul golului, trebuie să satisfacă criteriul de rezistentă Von Misses.

4. Pentru elaborarea proiectului tehnic al metodei L.R.F.D. a fost utilizată forma simplificată a criteriului Von Misses.

5. Poziția axei neutre plastice ANP poate fi în dala de beton armat a grinzii mixte oțel-beton (fig.3.16.a) sau în profilul metalic (fig.3.16.b), care poate fi în talpa sau în inima acestuia. În general axa neutră plastică se găsește în dala de beton, dacă aceasta are grosime mare, iar dacă În această metodă s-a admis că axa neutră plastică este în profilul de oțel (fig.3.18.b, c).

6. Se admite că există un echilibru local în interiorul profilelor T.

Fig.3.16 Configurația și dimensiunile grinzilor mixte cu goluri în inimă

3.4.3.2 Starea de eforturi în metoda L.R.F.D.

Eforturile care acționează în dreptul golurilor grinzilor mixte oțel-beton, se presupune că sunt cele din fig.3.17, pentru cazul unei grinzi solicitată de un moment pozitiv. În centrul de greutate al golului grinda este solicitată de o forță tăietoare V și de un moment încovoietor M (fig.3.17.a).

Fig.3.17 Eforturile care acționează în dreptul golului

Porțiunea de grindă de deasupra golului (adică profilul T superior), este supusă la un efort axial de compresiune P_t , la o forță tăietoare V_t și la un moment încovoietor secundar, la cele

două capete ale golului, cu momentul mai mic M_{tl} , la capătul din stânga și respectiv cu momentul mai mare M_{th} , la capătul din dreapta al golului.

Porțiunea de grindă de dedesubtul golului (adică profilul T inferior), este supusă la un efort axial de întindere P_b , la o forță tăietoare V_b și la un moment încovoietor secundar, la cele două capete ale golului, cu momentul mai mic M_{bl} , la capătul din stânga și respectiv cu momentul mai mare M_{bh} , la capătul din dreapta al golului (fig.3.17.b).

Dacă se scrie ecuațiile de echilibru corespunzătoare acestei stări de eforturi, rezultă ecuațiile:

$$\sum x = 0 \qquad P_b = P_t = P \qquad (3.89)$$

$$\sum z = 0 \qquad \qquad V = V_b + V_t \qquad (3.90)$$

$$\left(\sum M\right)_{inf} = 0$$
 $V_b \cdot l_0 = M_{bl} + M_{bh}$ (3.91)

$$(\sum M)_{sup} = 0$$
 $V_{t} \cdot l_{0} = M_{tl} + M_{th}$ (3.92)

$$\left(\sum M\right)_{dreapta} = 0 \qquad M = P \cdot z_0 + M_{th} + M_{bh} - V \cdot \frac{l_0}{2} \qquad (3.93)$$

Cercetările științifice au arătat că interacțiunea dintre moment și forță tăietoare este mai redusă în partea dreaptă a golului. Acest lucru conduce de multe ori la defecte și la distrugerea grinzilor mixte, la golurile unde interacțiunea este mai redusă (fig.3.4 și 3.6).

Curba de interacțiune între forța tăietoare maximă V_m și momentul încovoietor maxim M_m , a fost stabilită inițial prin măsurători pe un model încercat experimental, apoi au fost studiate câteva curbe care conduc cel mai bine la o soluție mai simplă și mai corectă.

În cele ce urmează, sunt prezentate soluțiile pentru calculul eforturilor maxime M_m și V_m , care au la bază echilibrul între eforturile limită de distrugere a grinzii, ce acționează pe secțiunea transversală.

De la început, pentru interacțiunea moment-forță tăietoare a fost adoptată o curbă de interacțiune de gradul trei (cubică), funcție de rapoartele dintre: forța tăietoare nominală V_n și capacitatea maximă a secțiunii la forfecare V_m , precum și momentul nominal M_n și cel maxim rezistent M_m :

$$\left(\frac{M_n}{M_m}\right)^3 + \left(\frac{V_n}{V_m}\right)^3 \le 1$$
(3.94)

Ecuația de mai sus reprezintă cu bune rezultate și exactitate, interacțiunea dintre încovoiere și forfecare, fiind în același timp în concordanță cu rezultatele experimentale ale lui Donahey și Darwin [10], permițând calculul eforturilor maxime M_m și V_m , cu ușurință.

3.4.3.3 Calculul momentului rezistent plastic M_m (capacitatea maximă la încovoiere)

Calculul momentului rezistent M_m , se bazează pe procedeele fixate în metoda stărilor limită ultime S.L.U. și pe diagramele de eforturi din încovoiere pură, ce acționează pe secțiunea transversală (fig.3.18).

Figura 3.18.a reprezintă eforturile din încovoiere pură, în situația când axa neutră plastică ANP se situează în dala de beton, figura 3.18.b, când axa neutră plastică ANP este în talpa

profilului metalic, respectiv figura 3.18.c se referă la cazul când ANP se găsește în inima profilului de oțel.

Fig.3.18 Eforturile din încovoiere pură pentru momentul maxim M_m

Pentru o grindă dată, cu o configurație anume a golului, forța rezultantă a eforturilor din beton P_c este limitată la trei valori, date de rezistența la compresiune a betonului, de capacitatea conectorilor la forfecare și de rezistența la limita de curgere a secțiunii nete de oțel a grinzii metalice, în dreptul golurilor, adică:

	- compresiunea betonului	$P_c \leq 0.85 f_{ck} \cdot b_{ef} \cdot h_c$	(3.95)
--	--------------------------	---	----------

- rezistența conectorilor
$$P_c \le N \cdot Q_n$$
 (3.96)

- rezistența la curgere a oțelului $P_c \leq T' = f_v \cdot A_{sn}$ (3.97)

unde: $A_{sn} = A_s - t_w \cdot h_0$: este aria secțiunii nete a profilului de oțel, în dreptul golului

 h_c : este grosimea totală a dalei de beton în cazul dalelor pline, respectiv grosimea dalei de beton de deasupra cutelor tablei, la dale nervurate

bef : este lățimea eficace a dalei, determinată în capitolul 2

 $f_{ck} = \frac{f_{ck}}{\gamma_c}$: este rezistența de calcul a betonului din dală

N: este numărul de conectori situați între reazem și gol

Q_n : este capacitatea la forfecare a unui singur conector

 A_s : este secțiunea brută a profilului metalic dublu T, al grinzii mixte oțel-beton, în regiunea fără gol

Momentul maxim rezistent (capabil) al grinzii mixte în dreptul golului, depinde de una din cele trei ecuații (3.95....3.97).

- Dacă $P_c = T'$ (ecuația 3.97 și figura 3.18.a), momentul M_m rezultă scriind o ecuație de moment în raport cu centrul de greutate al eforturilor din dala de beton, în acest caz axa neutră plastică ANP aflându-se în beton:

$$M_{m} = T \left[\frac{h}{2} + (h_{n} + h_{c}) - \frac{a}{2} \right]$$
 (3.98)

unde:

$$T' = f_y \cdot A_{sn} \tag{3.99}$$

$$a = \frac{c}{0.85 f_{ck} \cdot b_{cf}}$$
(3.100)

Valoarea lui a din relația (3.100) este valabilă pentru dale pline și pentru dale nervurate cu nervuri transversale, dacă a < h_c (fig.3.18.a).

Dacă P_c < T['] (ecuațiile 3.95 și 3.96 și figura 3.18.b și c), o porțiune a secțiunii de oțel a profilului metalic este comprimată iar axa neutră plastică ANP se situează fie în talpa (fig.3.18.b) fie în inima profilului T superior (fig.3.18.c), de deasupra golului și aceasta se bazează pe inegalitatea:

$$P_{c} + f_{y} \cdot A_{f} \leq f_{y} \left(A_{sn} - A_{f} \right)$$
(3.101)

unde: $A_f = b_f \cdot t_f$: este aria secțiunii tălpii profilului metalic

În cazul în care în inegalitatea (3.101) membrul stâng este mai mare decât membrul drept, axa neutră plastică ANP se găsește în talpa profilului metalic (fig.3.18.b), la distanța z egală cu:

$$z = \frac{A_{sn} \cdot f_y - P_c}{2b_f \cdot f_y} \tag{3.102}$$

măsurată de la marginea de sus a tălpii superioare a profilului metalic. În această situație, momentul maxim capabil M_m are valoarea:

$$M_{m} = T \left[\frac{h}{2} - \frac{b_{f} \cdot z^{2}}{A_{sn}} \right] + P_{c} \left(h_{n} + h_{c} - \frac{a}{2} \right)$$
(3.103)

În cazul în care membrul drept al inegalității (3.101) este mai mare decât membrul stâng, axa neutră plastică ANP este în inima profilului de oțel (fig.3.18.c), la distanța z de la marginea superioară a profilului metalic, egală cu:

$$z = \frac{A_{sn} \cdot f_y - 2A_f}{2t_w} - \frac{P_c}{2f_y \cdot t_w} + t_f$$
(3.104)

Cu a ceastă valoare, rezultă momentul maxim, egal cu:

$$M_{m} = T \left[\frac{h}{2} - \frac{(b_{f} - t_{w})t_{f}^{2} + t_{w} \cdot z^{2}}{A_{sn}} \right] + P_{c} \left(h_{n} + h_{c} - \frac{a}{2} \right)$$
(3.105)

Relațiile (3.103) și (3.105) s-au obținut scriind o ecuație de echilibru în raport cu marginea superioară a tălpii.

3.4.3.4 Calculul forței tăietoare rezistente maxime V_m

Capacitatea maximă la forfecare V_m se obține considerând că eforturile axiale sunt $P_b = P_t = 0$, pentru forfecarea pură (figura 3.17).

Forța tăietoare maximă V_m este calculată ca suma eforturilor de forfecare din profilele T inferior și superior, din dreptul golului:

$$V_m = V_b(\max) + V_t(\max)$$
 (3.106)

unde: $V_b(\max) + V_t(\max)$ este calculată folosind ecuațiile de echilibru pentru profilele T din dreptul golurilor (ecuațiile 3.91 și 3.92)

Pentru încovoiere și forfecare simultană, efortul unitar axial redus din inima profilului f_{yr} , poate fi exprimat în funcție de limita de curgere f_y și de efortul unitar tangențial τ din inimă (unde acesta este maxim), cu ajutorul criteriului de curgere Von Misses, sub forma:

$$f_{yr} = \sqrt{f_{y}^{2} - 3\tau^{2}}$$
(3.107)

relație identică cu relația (3.57) din metoda Darwin.

Pentru o combinație de eforturi ca cea din figura 3.19, cu ecuațiile (3.91) și (3.92) și cu ecuația (3.107) se pot exprima prin ecuații de gradul III V_b(max) și V_t(max), în profilele T de sub gol și de deasupra lui. Aceste ecuații trebuie rezolvate prin iterație cu metoda Clawson-Darwin, reprezentând un procedeu dificil pentru activitatea practică.

Din acest motiv, pentru activitatea practică de elaborare a proiectelor tehnice au fost adoptate ipotezele 4, 5 și 6 din paragraful 3.4.3.1 care prezintă limitele metodei L.R.F.D., cu care pot fi găsite trei soluții particulare ale problemei.

Fig.3.19 Eforturi de forfecare maxime pentru soluția I

Soluția I

Prima soluție se bazează pe două ipoteze:

1. Criteriul expresiei elastice Von Misses din relația (3.107) este mai bine reprezentat printr-o aproximație liniară:

$$f_{yr} = \lambda \cdot f_y - \sqrt{3}\tau \tag{3.108}$$

)

în care: $\lambda = 1.207$

 τ : este efortul maxim de forfecare, considerat egal cu:

$$\tau = f_v / \sqrt{3} \tag{3.109}$$

valoare ce este puțin mai mare decât cea rezultată din egalarea relațiilor (3.107) și (3.108). 2. Axa neutră plastică ANP a profilelor T de deasupra și de dedesubtul golului este întotdeauna în tălpile profilelor T, la forfecare, iar diagramele de eforturi sunt cele din fig.3.19 Dacă sunt înlocuite momentele secundare M_{bl} și M_{bh} (fig.3.19) în ecuația (3.91), în termeni de eforturi unitare: f_y în talpă și f_{yr} în inima profilului T inferior, folosind ecuația (3.108) pentru f_{yr} și ținând cont că:

$$\tau = \frac{V_b}{t_w \cdot s_b} \tag{3.110}$$

se poate scrie o ecuație de gradul doi din care rezultă următoarea soluție pentru V_b :

$$V_{b}(\max) = f_{y}\left(\frac{\beta_{b} - \sqrt{\beta_{b}^{2} - 4\alpha_{b} \cdot \gamma_{b}}}{2\alpha_{b}}\right) \le V_{pb}$$
(3.111)

În relația (3.110) $t_w \cdot s_b$ este aria inimii profilului T, t_w fiind grosimea inimii, iar s_b fiind înălțimea profilului T.

În relația (3.111) mărimile ce intervin se calculează cu următoarele formule:

$$\alpha_b = 3 + 2\sqrt{3} \frac{l_0}{s_b} \tag{3.112}$$

$$\beta_{b} = 2\sqrt{3} \left(b_{f} - t_{w} \right) \left(s_{b} - t_{f} + \frac{t_{f}^{2}}{s_{b}} \right) + 2\sqrt{3}\lambda t_{w} s_{b} + 2l_{0} \left[b_{f} + (\lambda - 1)t_{w} \right]$$
(3.113)

$$\gamma_{b} = \left(b_{f} - t_{w}\right)^{2} \cdot t_{f}^{2} + \lambda^{2} t_{w}^{2} s_{b}^{2} + 2\lambda t_{w} \left(b_{f} - t_{w}\right) \left(s_{b}^{2} - s_{b} t_{f} + t_{f}^{2}\right)$$
(3.114)

iar:
$$V_{pb} = \frac{f_y I_w S_b}{\sqrt{3}}$$
 : este capacitatea plastică maximă a profilului T (3.115)

unde: l₀ : este lungimea golului

 $\alpha_t = 3 + 2\sqrt{3} \frac{l_0}{s_t}$

 b_f și t_f : sunt lățimea și grosimea tălpilor profilului metalic

tw: grosimea inimii acestuia

Urmând același procedeu cu ecuația (3.92), pentru profilul T superior, dar înglobând și forțele din beton P_{ch} și P_{cl}, se obține V_t(max), calculat cu relația:

$$V_{t}(\max) = f_{y}\left(\frac{\beta_{t} - \sqrt{\beta_{t}^{2} - 4\alpha_{t} \cdot \gamma_{t}}}{2\alpha_{t}}\right) \le V_{pt}$$
(3.116)

cu:

$$\beta_{t} = 2\sqrt{3} \left(b_{f} - t_{w} \right) \left(s_{t} - t_{f} + \frac{t_{f}^{2}}{s_{t}} \right) + 2\sqrt{3}\lambda t_{w} s_{t} + 2l_{0} \left[b_{f} + (\lambda - 1)t_{w} \right] + \frac{2\sqrt{3}}{s_{t} f_{y}} \left(P_{ch} d_{h} - P_{cl} d_{l} \right) + \frac{\sqrt{3}}{f_{y}} \left(P_{ch} - P_{cl} \right)$$
(3.118)

(3.117)

$$\gamma_{t} = (b_{f} - t_{w})^{2} \cdot t_{f}^{2} + \lambda^{2} t_{w}^{2} s_{t}^{2} + 2\lambda t_{w} (b_{f} - t_{w}) (s_{t}^{2} - s_{t} t_{f} + t_{f}^{2}) + \frac{2[b_{f} + (\lambda - 1)t_{w}]}{f_{y}} (P_{ch} d_{h} - P_{cl} d_{l}) - \frac{P_{ch}^{2} + P_{cl}^{2}}{2f_{y}^{2}} + \frac{[(b_{f} - t_{w})t_{f} + \lambda t_{w} s_{t}]}{f_{y}} (P_{ch} - P_{cl})^{(3.119)}$$

Distanțele d_h și d_1 , măsurate de la partea superioară a profilului metalic până la centrul de greutate al blocurilor de eforturi din dala de beton (fig.3.19), sunt:

$$d_{h} = (h_{n} + h_{c}) - \frac{0.5P_{ch}}{0.85f_{ck} \cdot b_{cf}}$$
(3.120)

$$d_{l} = \frac{0.5P_{cl}}{0.85f_{ck} \cdot b_{cf}} \text{ la dale pline, sau } d_{l} = h_{n} + \frac{0.5P_{cl}}{0.85f_{ck} \cdot b_{cf}} \text{ la dale nervurate (3.121)}$$

În aceste relații, mărimile au semnificațiile explicate anterior, iar P_{ch} și P_{cl} sunt eforturile din dala de beton de la capătul din dreapta, cu eforturi mai mari, respectiv din stânga golului, unde eforturile sunt mai mici. Aceste eforturi se calculează astfel:

- Efortul mai mare, se ia cea mai mică dintre valorile:

- beton $P_{ch} \le 0.85 f_{ck} \cdot b_{ef}$ (3.122)

- conectori
$$P_{ch} \le N \cdot Q_n$$
 (3.123)

- grinda metalică $P_{ch} \le f_v \cdot A_{st}$ (3.124)

- Efortul mai mic de la capătul din stânga golului, este egal cu:

$$P_{cl} = P_{ch} - N_0 \cdot Q_n \ge 0 \tag{3.125}$$

unde:

A_{st} : este aria profilului T de deasupra golului, calculată cu relația:

 $A_{st} = s_t \cdot t_w + (b_f - t_w) t_f$ (3.126)

N: este numărul de conectori de la reazem până la secțiunea cu gol

 N_0 : este numărul de conectori de deasupra golului (pe lungimea l_0)

Forța tăietoare $V_{t max}$ trebuie comparată cu V_{pt} , care este capacitatea la forfecare a profilului T superior, egală cu:

$$V_{pt} = \frac{f_y \cdot t_w \cdot s_t}{\sqrt{3}} \tag{3.127}$$

V_{pt} se consideră egală cu capacitatea inimii profilului metalic de a prelua eforturile tangențiale.

Soluția II

În cea de-a doua soluție, se admite că grosimea tălpii t_f este mică în raport cu înălțimea inimii profilului T, având deci o contribuție redusă asupra momentelor secundare M_{tl} și M_{th} , caz în care eforturile din talpă vor fi calculate fără momentele secundare.

Eforturile în secțiunea din dreptul golului, sunt în acest caz după cum se arată în figura 3.20. Folosind eforturile din figura 3.20 și ignorând echilibrul local, dar respectând criteriul Von Misses, cu ecuația (3.91), pentru profilul T inferior, de sub gol, se obține o ecuație de gradul doi, din care rezultă:

$$V_b(\max) = V_{pb} \left(\frac{\alpha}{1+\alpha}\right)^{\frac{1}{2}}$$
(3.128)

BUPT

în care:

$$\alpha = 3 \left(\frac{s_b}{l_0}\right)^2 \tag{3.129}$$

128

unde: s_b : este înălțimea profilului T de sub gol

l₀ : este lungimea golului

V_{pb} : este capacitatea maximă plastică a profilului T inferior, din relația (3.115)

Fig.3.20 Eforturi de forfecare maxime pentru soluțiile II și III

O expresie pentru $V_t(max)$ se obține în mod asemănător din ecuația (3.92), calculând P_{ch} cu ecuațiile (3.122) și (3.123) (ecuația (3.124) nu se poate utiliza deoarece conduce la o soluție eronată) și apoi P_{cl} cu ecuația (3.125), rezultând:

$$V_{t}(\max) = V_{pt} \left[\frac{2\mu v + \sqrt{12v^{2} - 12\mu^{2} + 36}}{2(3 + v^{2})} \right]$$
(3.130)

unde:

$$\mu = \frac{P_{ch}d_h - P_{cl}d_l}{s_l \cdot V_{pl}}$$
(3.131)

$$v = \frac{l_0}{s_t}$$
 (3.132)

$$V_{pl} = \frac{f_y \cdot t_w \cdot s_l}{\sqrt{3}} \tag{3.133}$$

Efortul de forfecare din profilul T superior, care corespunde momentului secundar, se poate calcula cu relația:

$$V_{tc} = \frac{P_{ch}d_h - P_{cl}d_l}{l_0} = \frac{\mu V_{pl}}{\nu}$$
(3.134)

Dacă dala de beton armat are grosime mare și dacă numărul de conectori este mai mare deasupra golului, factorul μ are o valoare mai mare.

În cazul în care $\mu > \nu$ atunci $V_{tc} > V_{pt}$ și oțelul ajunge la curgerea maximă din forfecare, situație în care V_t(max) este egal cu:

$$V_{t}(\max) = V_{tc} = \frac{P_{ch}d_{h} - P_{ct}d_{l}}{l_{0}} \ge V_{pt}$$
(3.135)

Soluția III

Cea de-a treia soluție prezentată în norma L.R.F.D., pentru forța de forfecare V_m , combină reprezentarea simplificată a profilelor T din soluția a II-a, cu o reprezentare liniară de curgere din prima soluție. Expresiile eforturilor de forfecare V_b din profilul T inferior și V_t din cel superior, sunt de forma:

$$V_{b}(\max) = V_{pb}\left(\frac{\lambda\sqrt{3}}{\sqrt{3}+\nu}\right) \le V_{pb}$$
(3.136)

şi

$$V_{t}(\max) = V_{pt}\left(\frac{\mu + \lambda\sqrt{3}}{\nu + \sqrt{3}}\right)$$
(3.137)

unde:

V_{pb} se calculează cu relația (3.115) V_{pt} se calculează cu relația (3.133) $v = \frac{l_0}{s_b} = \frac{l_0}{s_t}$

Dacă V_t(max) din ecuația (3.137) este mai mare ca V_{pt} din ecuația (3.133), inima curge în întregime și V_t(max) trebuie să verifice condiția (3.135) de la soluția II, când P_{ch} și P_{cl} sunt calculate din nou cu relațiile:

$$P_{ch} \le f_y \cdot t_f \left(b_f - t_w \right) \tag{3.138}$$

$$P_{cl} = P_{ch} - N_0 Q_n \tag{3.139}$$

iar distanțele d_h și d_1 sunt calculate cu relațiile (3..120) și (3.121). Condiția de verificare a lui $V_t(max)$ calculat cu relația (3.135), este:

$$V_{t}(\max) \le V_{t}(sh) \tag{3.140}$$

unde:

$$V_{t}(sh) = V_{pt} + 489\sqrt{f_{ck} \cdot A_{w}}$$
(3.141)

$$A_{vc} = 3(h_n + h_c) \cdot t_e$$
 (3.142)

cu:

 h_n : înălțimea cutelor tablelor nervurate h_c : înălțimea dalei deasupra cutelor $t_c = h_c$: la dale pline și la dale nervurate cu nervuri transversale

 $t_e = (h_n + h_e)/2$: la cele cu nervuri longitudinale

În toate cele trei soluții, capacitatea maximă la forfecare V_m se va scrie ca fiind egală cu: $V_m = V_b(\max) + V_t(\max)$ (3.143) unde: $V_b(\max)$ se ia din relațiile (3.111 soluția I), (3.128 soluția II) și (3.136 soluția III) iar $V_t(\max)$ se ia din relațiile (3.116 soluția I), (3.130 soluția II) și (3.137 soluția III).

3.4.3.5 Procedeul interacțiunii

Pentru verificarea grinzilor mixte cu goluri în inimă, și în metoda L.R.F.D. se folosește procedeul interacțiunii dintre momentul încovoietor și forța tăietoare. După ce se calculează capacitatea maximă la încovoiere M_m , cu relațiile (3.98), (3.103) și (3.105), respectiv capacitatea maximă la forfecare V_m cu relația (3.143), capacitatea nominală M_n și V_n pot fi calculate prin procedeul interacțiunii. În această metodă se ține cont de interacțiune prin intermediul relației (3.94):

$$\left(\frac{M_n}{M_m}\right)^3 + \left(\frac{V_n}{V_m}\right)^3 = 1 \tag{3.94}$$

Această ecuație se bazează pe o curbă determinată prin încercări și care este prezentată în fig.3.21.a, curba din norma tehnică L.R..F.D., bazată pe ecuația (3.94) reprezentată în fig.3.21.b.

Fig.3.21 Diagrame de interacțiune moment-forță tăietoare

Pentru a calcula valorile nominale ale forței tăietoare V_n și momentului încovoietor M_n , se consideră un raport al momentului de calcul și al forței tăietoare de calcul și considerând ecuația (3.94) în care se introduce raportul:

$$\frac{M_n}{V_n} = \frac{M_u}{V_u} = \frac{M}{V}$$
(3.144)

se pot exprima valorile eforturilor nominale V_n și M_n , după cum urmează:

$$V_{n} = V_{m} \left[\frac{\binom{M}{V}^{3}}{\binom{M_{m}}{V_{m}}^{3}} + 1 \right]^{-1_{3}}$$
(3.145)

$$M_{n} = M_{m} \left[\frac{\binom{M_{m}}{V_{m}^{3}}}{\binom{M}{V}^{3}} + 1 \right]^{-1_{3}}$$
(3.146)

Ecuațiile (3.145) și (3.146) permit determinarea facilă a eforturilor nominale V_n și M_n , funcție de raportul M/V.

În relațiile (3.144), (3.145) și (3.146), $M = M_u$ și $V = V_u$ sunt momentul și forța tăietoare din dreptul axului golului, rezultate din calculul static al grinzii mixte.

3.4.4 Metoda dată în REGULILE AMERICANE ASCE 1993

Această metodă este rezultatul mai multor studii efectuate de Redwood, Darwin, Cho, Clawson, Donahey, Lucas, Donaghue, Cooper, Wong și alții [3], [4], [6], [7], [8], [9], [10], [12].

Metoda se referă atât la grinzi mixte oțel-beton, cât și la grinzi de oțel, cu goluri dreptunghiulare în inimă, deoarece în secțiunile de moment negativ, grinzile mixte se comportă ca o grindă necompusă, adică numai din oțel.

3.4.4.1 Limitele metodei ASCE

Metoda de față impune următoarele limite:

- 1. Metoda consideră că secțiunea de oțel este o secțiune care respectă condițiile cerute de o secțiune compactă
- 2. Momentul rezistent pentru grinzile cu goluri întărite presupune că întăriturile sunt dispuse pe marginile golurilor
- 3. Capacitatea maximă la forfecare a inimilor cu goluri depinde de formarea a patru articulații plastice în cele patru colțuri ale golurilor
- 4. Pentru calculul forței tăietoare capabile V_m se consideră că nu există forțe axiale pe secțiune
- 5. Pentru calculul forței tăietoare maxime V_m se acceptă criteriul simplificat Von Misses, dat de relația (3.108)
- 6. Se consideră că efortul de forfecare este preluat numai de inima profilului metalic
- 7. Lungimea golului din inima profilului metalic l_0 respectă condițiile: $l_0/h_0 \le 3.0$ pentru grinzi de oțel și $l_0/h_0 \le 2.2$ pentru grinzi compuse oțel-beton

3.4.4.2 Principiile de calcul a grinzilor cu goluri în inimă

Rezistența elementelor cu goluri în inimă, solicitate la încovoiere, trebuie determinată pe baza interacțiunii dintre moment și forță tăietoare, în dreptul golului. Această metodă este în concordanță cu indicațiile Institutului American de Construcții Metalice (American Institute of Steel Construction AISC) și cu metoda L.R.F.D.

3.4.4.3 Interacțiunea dintre încovoiere și forfecare

Și în cadrul acestei metode, interacțiunea dintre momentul încovoietor și forța tăietoare se exprimă tot printr-o ecuație de gradul III, bazată pe ecuația (3.94), din metoda L.R.F.D. (metoda stărilor limită), la care se face o corecție printr-un coeficient ce mărește valoarea eforturilor, relația de verificare fiind:

$$\left(\frac{M}{\Phi_0 M_m}\right)^3 + \left(\frac{V}{\Phi_0 V_m}\right)^3 \le 1$$
(3.147)

unde:

M : este momentul de calcul din axa verticală a golului, rezultat din relația (3.149)

V : este forța tăietoare de calcul din axa verticală a golului, care de ia din (3.148)

 M_m : este momentul rezistent (capabil) maxim, în dreptul golului, care survine atunci când $V_{\text{u}}=0$

 V_{m} : este forța tăietoare rezistentă (capabilă) maximă, în dreptul golului, care survine atunci când V_{u} = 0

 Φ_0 : este factor de corecție a rezistenței, pentru proiectul tehnic, în secțiunea din dreptul golului, având valoarea:

 $\Phi_0 = 0.9$ pentru grinzi necompozite, din otel

 $\Phi_0 = 0.85$ pentru grinzi mixte oțel-beton

 M_u și V_u : sunt eforturile din axul golului, rezultate din calculul static

Formula (3.147) are rolul unei reprezentări consistente și conservative a interacțiunii dintre încovoiere și forfecare, pentru inimi cu goluri la grinzi compuse oțel-beton, precum și la grinzi metalice necompozite.

Limita superioară a eforturilor V_u și M_u este rezistența pentru proiectul tehnic $\Phi_0 V_n$ și $\Phi_0 M_n$, care se pot obține cu relațiile:

 $\Phi_{0}V_{n} = \Phi_{0}V_{m} \left[\frac{\begin{pmatrix} M_{u} \\ \Phi_{0}M_{m} \end{pmatrix}^{3}}{\begin{pmatrix} V_{u} \\ \Phi_{0}V_{m} \end{pmatrix}^{3}} + 1 \right]^{-1_{3}}$ (3.148)

$$\Phi_0 M_n = \Phi_0 V_n \left(\frac{M_u}{V_u}\right) = \Phi_0 M_m \left[\frac{\begin{pmatrix} V_u \\ \Phi_0 V_m \end{pmatrix}^3}{\begin{pmatrix} M_u \\ \Phi_0 M_m \end{pmatrix}^3} + 1\right]^{-1_3}$$
(3.149)

Valorile coeficientului de corecție Φ_0 de mai sus, sunt stabilite de Darwin și Lucas [16], din 1990 și aceste valori corespund cu valorile lui Φ_0 din norma AISC.

3.4.4.4 Calculul momentului rezistent maxim M_m

În metoda ASCE indicată în normele americane, sunt prezentate relații de calcul atât pentru grinzile din oțel, cît și pentru cele compuse oțel-beton, cu goluri în inimă.

Relațiile de calcul se bazează pe ecuațiile din metoda Darwin [5] și pe figura 3.18, pe baza cărora a fost calculat momentul capabil M_m (momentul rezistent), determinat cu formulele următoare:

1. Dacă $P_c = T$, P_c fiind rezultanta eforturilor din dala de beton iar T a celor din grinda metalică, sunt valabile ecuațiile (3.52) pentru dale pline și (3.53) pentru dale nervurate, care sunt de forma:

$$M_{m} = T\left(\frac{h}{2} + h_{c} - \frac{a}{2}\right) \qquad \text{la dale pline} \qquad (3.150)$$

$$M_m = T\left(\frac{h}{2} + h_n + h_c - \frac{a}{2}\right) \quad \text{la dale nervurate}$$
(3.151)

unde:

h : este înălțimea profilului metalic (fig.3.12 și fig.3.18)

 h_{c} : este înălțimea dalei de beton la dale pline și a celei de deasupra nervurilor la dale nervurate

 h_n : este înălțimea nervurilor la dale nervurate

a : este înălțimea blocului de eforturi de compresiune din beton (fig.3.12)

Relațiile acestea sunt valabile în situația când axa neutră plastică ANP se găsește în dala de beton (fig.3.18.a).

2. Dacă $P_c < T$, axa neutră plastică ANP se situează în profilul metalic, existând două posibile situatii:

a. Axa neutră plastică ANP se găsește în talpa profilului de oțel la distanța z (fig.3.18.b), dată de relația (3.102), când momentul maxim rezistent se calculează cu formula:

$$M_{m} = T \left[\frac{h}{2} - \frac{b_{f} \cdot z^{2}}{A_{sn}} \right] + P_{c} \left(h_{n} + h_{c} - \frac{a}{2} \right)$$
(3.103)

b. Axa neutră plastică ANP se situează în inima profilului metalic la distanța z (fig.3.18.c), dată de relația (3.104), iar momentul maxim rezistent rezultă din relația:

$$M_{m} = T' \left[\frac{h}{2} - \frac{(b_{f} - t_{w})t_{f}^{2} + t_{w} \cdot z^{2}}{A_{sn}} \right] + P_{c} \left(h_{n} + h_{c} - \frac{a}{2} \right)$$
(3.105)

3.4.4.5 Calculul forței tăietoare V_m

Capacitatea maximă la forfecare, în dreptul golurilor, este calculată ca și suma capacităților la forfecare ale celor două profile T, superior și inferior golului.

Pentru calculul lui V_m se adoptă criteriul Von Misses sub forma simplificată liniară:

$$\overline{f_y} = \sqrt{2}f_y - \sqrt{3}\tau \tag{3.152}$$

relație care este similară cu relația (3.108), în care s-a luat $\lambda = \sqrt{2}$ în loc de $\lambda = 1.207$. În relația (3.152) mărimile ce intervin reprezintă:

 f_v : este limita de curgere redusă

fy : este limita de curgere a oțelului

 τ : este efortul tangențial din inima profilului metalic (relația 3.109)

Pentru distribuția eforturilor în dreptul golurilor, din forfecare a fost adoptată în această metodă, distribuția prezentată în metoda Darwin (fig.3.13), cu simplificările din figura 3.15. În metoda ASCE, capacitatea la forfecare pentru profilul T superior și inferior, se poate calcula cu relațiile date de Darwin:

- pentru T-ul superior:

$$V_{mt} = V_{pt} \left(\frac{\sqrt{3\lambda + \mu}}{\nu + \sqrt{3}} \right) = V_{pt} \cdot \alpha_{\nu} \le V_{pt}$$
(3.153)

- pentru T-ul inferior:

$$V_{mb} = V_{pb} \left(\frac{\sqrt{3\lambda}}{\nu + \sqrt{3}} \right) \le V_{pb}$$
(3.154)

deoarece $\mu = 0$ în profilul T inferior, căci acesta se calculează cu relația (3.72) în care $P_{ch} = P_{cl} = 0$ (doar pentru profilul T inferior).

Valoarea lui V_{mt} , pentru profilul T superior, se limitează la valoarea lui $V_{mt}(sh)$, dată de Darwin în relația (3.78).

$$V_{ml}(sh) = V_{pl} + 0.29A_{w}\sqrt{f_{ck}}$$
(3.78)

şi

V

$$(3.155) \tag{3.155}$$

Toate mărimile din aceste relații au semnificațiile descrise în metoda Darwin și LRFD. În metoda ASCE, valoarea lui λ se ia egală cu $\lambda = \sqrt{2}$, relațiile devenind:

$$V_{mt} = V_{pt} \frac{\sqrt{6 + \mu}}{\nu + \sqrt{3}} \le V_{pt}$$
(3.156)

$$V_{mb} = V_{pb} \frac{\sqrt{6}}{v + \sqrt{3}} \le V_{pb}$$
(3.157)

unde:

$$V_{pt} = \frac{f_y \cdot t_w \cdot s_t}{\sqrt{3}} \qquad \text{si} \qquad V_{pb} = \frac{f_y \cdot t_w \cdot s_b}{\sqrt{3}} \qquad (3.158)$$

Dacă golul este amplasat în dreptul axei longitudinale a grinzii metalice, înălțimile profilelor T sunt egale $s_t = s_b$ și capacitățile la forfecare, corespunzătoare, sunt de asemenea egale $V_{pt} = V_{pb}$ Astfel forța tăietoare rezistentă (capabilă) V_m se calculează cu relația:

$$V_m = V_{mt} + V_{mb}$$
(3.159)

În această metodă, normele americane impun efectuarea verificării și a altor recomandări, după cum urmează:

- Raportul dintre înălțimea și grosimea inimii trebuie să fie:

$$\frac{h - 2t_f}{t_w} \le \frac{1365}{\sqrt{f_y}} \qquad (\text{ cu } f_y \text{ în MPa}) \qquad (3.160)$$

- Dacă:

$$\frac{h - 2t_{f}}{t_{w}} \le \frac{1100}{\sqrt{f_{y}}} \qquad (\text{ cu } f_{y} \text{ în MPa}) \qquad (3.161)$$

atunci:

$$\frac{l_0}{h_0} \le 3.0$$
 (3.162)

și în acest caz forța tăietoare maximă V_m pentru grinzi mixte, trebuie să satisfacă condiția:

$$V_m \le \frac{2}{3}\overline{V_p} + \overline{V_c} \tag{3.163}$$

unde:

$$\overline{V_p} = \frac{f_y \cdot t_w \cdot h}{\sqrt{3}} \tag{3.164}$$

care reprezintă rezistența la forfecare a întregii inimi a profilului metalic, în zone fără goluri.

$$\overline{V_c} = V_{pt} \left(\frac{\mu}{\nu} - 1\right) \qquad \text{sau} \qquad \overline{V_c} = V_{mt} \left(sh\right) - V_{pt} \qquad (3.165)$$

Dintre cele două valori din relația de mai sus se va lua valoarea cea mai mică, V_{pt} fiind cel calculat cu relația (3.158).

3.5 COMPARAȚII ÎNTRE METODELE DE CALCUL ALE GRINZILOR MIXTE OȚEL-BETON CU GOLURI DREPTUNGHIULARE ÎN INIMĂ

- 1. În general toate metodele prezentate au la bază aceleași ipoteze și limite de aplicare, sau cel puțin similare.
- 2. Câteva ecuații prin care se calculează momentele rezistente (capabile) M_m și forțele tăietoare rezistente (capabile) V_m , sunt identice în mai multe metode sau destul de apropiate.
- Toate metodele prezentate, ca şi alte studii ale altor autori, au la baza verificării grinzilor mixte oțel-beton în dreptul golurilor dreptunghiulare din inimă, procedeul interacțiunii dintre moment şi forță tăietoare.
- 4. Unele din metodele analizate sunt mai puțin securitare decât altele, dar diferențele de la o metodă la alta sunt în general neînsemnate.

Studiul comparativ al siguranței în exploatare, a grinzilor mixte oțel-beton cu goluri în inimă, poate fi cel mai bine ilustrat pe un exemplu practic de calcul ,al unei grinzi mixte prevăzute cu două goluri dreptunghiulare în inima profilului metalic.

3.6 EXEMPLU PRACTIC DE VERIFICARE A UNEI GRINZI MIXTE OȚEL-BETON, CU GOLURI ÎN INIMĂ

Se consideră o grindă mixtă având deschiderea L = 12m, fiind încărcată cu două încărcări uniform distribuite: G = 24 KN/m ca încărcare permanentă și Q = 9 KN/m ca încărcare variabilă.

Secțiunea grinzii mixte este cea din figura 3.22, unde este indicată și poziția, respectiv dimensiunile golurilor, precum și conectorii de tip gujon pentru o conexiune totală.

Fig.3.22 Exemplu de calcul al grinzii mixte oțel-beton

Coeficienții parțiali de siguranță privind încărcările au fost considerați conform normelor EUROCODE 1 și 4, egali cu : $\gamma_G = 1.35$ pentru încărcările permanente și $\gamma_Q = 1.5$ pentru încărcări variabile.

Betonul folosit este un beton C 25/30 (B400) cu $f_{ck} = 25 \text{ N/mm}^2$, iar profilul metalic este un profil IPE 600 din oțel Fe 360 (OL 37), cu limita de curgere $f_y = 235 \text{ N/mm}^2$.

3.6.1 Verificarea grinzii mixte din exemplul practic, folosind metoda Darwin

Calculul solicitărilor maxime și a celor din secțiunea situată în dreptul golului

Forța tăietoare maximă (pe reazeme) și momentul încovoietor maxim (la mijlocul grinzii), au valorile:

$$V_{\text{max}} = \gamma_G \frac{GL}{2} + \gamma_Q \frac{QL}{2} = 275.4 \text{KN}$$
$$M_{\text{max}} = \gamma_G \frac{GL^2}{8} + \gamma_Q \frac{QL^2}{8} = 826.2 \text{KNm}$$

Forța tăietoare și momentul încovoietor în secțiunea din dreptul golului (la 4 m de reazem), sunt egali cu:

$$V_u = 91.8KN$$
$$M_u = 734.4KNm$$

Verificarea recomandărilor privind dimensiunile

a.
$$\frac{b_f}{2t_f} \le \frac{170}{\sqrt{f_y}} \implies \frac{220}{2 \cdot 19} = 5.8 < \frac{170}{\sqrt{235}} = 11$$
 OK
b. $p_0 = \frac{l_0}{h_0} + \frac{6h_0}{h} \le 6.0 \implies p_0 = \frac{600}{350} + \frac{6 \cdot 350}{600} = 5.2 < 6$ OK
c. $h_0 \le 0.7d \implies h_0 = 350 < 0.7 \cdot 548 = 383.6$ OK
d. $s_t > 0.15d \implies s_t = 125 > 0.15 \cdot 548 = 82.2$ OK
e. $s_b > 0.12d \implies s_b = 125 > 0.12 \cdot 548 = 65.8$ OK
f. $v = \frac{l_0}{s} \le 12 \implies v = \frac{600}{125} = 4.8 < 12$ OK

Calculul capacității maxime la încovoiere M_m

Pentru început se determină poziția axei neutre plastice ANP, pentru secțiunea plină fără gol. Se calculează efortul din beton:

$$P_{c} = 0.85 f_{ck} / \gamma_{c} \cdot b_{ef} \cdot h_{c} = 0.85 \cdot \frac{25}{1.5} \cdot 2500 \cdot 120 \cdot 10^{-3} = 4250 KN$$

și cel din profilul metalic:

 $T' = A_s \cdot f_y = 15104 \cdot 235 \cdot 10^{-3} = 3549 KN$

Deoarece $P_c > T'$ axa neutră plastică ANP se situează în dala de beton armat, la distanța a de la marginea superioară a grinzii mixte, care se determină scriind conform figurii 3.12.a, relația:

 $P_c = 0.85 f_{ck} / \gamma_c \cdot b_{ef} \cdot a = T' = A_s \cdot f_y \qquad (\text{ cu } A_s : \text{ aria profilului IPE 600})$

De unde rezultă:

$$a = \frac{A_s \cdot f_y}{0.85 \frac{f_{ck}}{\gamma_c} \cdot b_{ef}} = \frac{15104 \cdot 235}{0.85 \cdot \frac{25}{1.5} \cdot 2500} = 100.2mm < h_c = 120mm$$

Pentru secțiunea cu gol se calculează rezultanta eforturilor din beton P_c, cu relațiile:

$$P_{c} = 0.85 f_{ck} \cdot b_{ef} \cdot h_{c} = 4250 KN$$

$$P_{c} = N \cdot Q_{n} = 40 \cdot 75 = 3000 KN$$

$$P_{c} = T = f_{y} \cdot A_{snet} = 235(15104 - 12 \cdot 350) \cdot 10^{-3} = 2562 KN$$

Dintre cele trei valori se ia valoarea cea mai mică , $P_c = T$, ceea ce arată că toată secțiunea de oțel este întinsă. În această situație momentul maxim va fi:

$$M_m = T\left(\frac{h}{2} + h_c - \frac{a}{2}\right) = 2562\left(\frac{600}{2} + 120 - \frac{100.2}{2}\right) \cdot 10^{-3} = 981KNm$$

Calculul capacității maxime la forfecare V_m

Se calculează coeficientul α_v din relația (3.73):

$$\alpha_v = \frac{\sqrt{6} + \mu}{v + \sqrt{3}} \le 1$$

- Pentru profilul T inferior: $\mu = 0$ (rel.3.75) iar:

$$v = \frac{l_0}{s_b} = \frac{600}{125} = 4.8$$

şi

$$\alpha_{vb} = \frac{\sqrt{6}}{4.8 + \sqrt{3}} = 0.375 < 1$$

cu care se calculează forța tăietoare capabilă a profilului T inferior V_{mb}, cu relația (3.82):

$$V_{mb} = V_{pb} \cdot \alpha_v$$
 cu $V_{pb} = \frac{f_v \cdot t_w \cdot s_b}{\sqrt{3}}$

deci:

$$V_{pb} = \frac{235 \cdot 12 \cdot 125}{\sqrt{3}} \cdot 10^{-3} = 203.5 KN$$

şi

$$V_{mb} = 203.5 \cdot 0.375 = 76.3 KN$$

Pentru profilul T superior: -

$$v = \frac{l_0}{s_1} = \frac{600}{125} = 4.8$$

Se calculează μ cu relația (3.72):

$$\mu = \frac{P_{ch} \cdot d_h - P_{cl} \cdot d_l}{s_l \cdot V_{pt}}$$
(3.72)

unde: P_{ch} se ia cea mai mică valoare dintre:

$$P_{ch} \le 0.85 f_{ck} \cdot b_{ef} \cdot h_c = 4250 KN$$

$$P_{ch} \le N \cdot Q_n = 40 \cdot 75 = 3000 KN$$

$$P_{ch} \le f_y \cdot A_{snet} = 235(15104 - 12 \cdot 350) \cdot 10^{-3} = 2562 KN$$

$$i \quad P_{ch} = P_{ch} \min = 2562 KN$$

Dec ch min

 P_{cl} se ia din relația (3.64): iar: $P_{cl} = P_{ch} - N_0 \cdot Q_n = 2562 - 4 \cdot 75 = 2262KN$

unde: $N_0 = 4$: două perechi de conectori, câte sunt deasupra golului

 $Q_n = 75 \text{ KN}$: este capacitatea portantă a unui singur conector Se calculează apoi distanțele d_h (relația 3.65) și d_l (relația 3.66):

$$d_{h} = h_{c} - \frac{P_{ch}}{2 \cdot 0.85 f_{ck} \cdot b_{ef}} = 120 - \frac{2562 \cdot 10^{3}}{2 \cdot 0.85 \cdot \frac{25}{1.5} \cdot 2500} = 83.8mm$$
$$d_{l} = \frac{P_{cl}}{2 \cdot 0.85 f_{ck} \cdot b_{ef}} = \frac{2262 \cdot 10^{3}}{2 \cdot 0.85 \cdot \frac{25}{1.5} \cdot 2500} = 31.9mm$$

Cu acestea, aplicând relația (3.72), rezultă μ egal cu:

$$\mu = \frac{2562 \cdot 83.8 - 2262 \cdot 31.9}{125 \cdot 203.5} = 5.6$$

V_{pt} = V_{pb} = 203.5KN

şi

$$\alpha_{\rm vr} = \frac{\mu}{v} = \frac{5.6}{4.8} = 1.17 > 1$$

Forța tăietoare V_{mt} rezultă deci:

$$V_{mt} = V_{pt} \cdot \alpha_{st} = 203.5 \cdot 1.17 = 238.1 KN$$

Se verifică condiția:

$$V_{mt} \le V_{mt}(sh) = V_{pt} + 0.29A_{w}\sqrt{f_{ck}}$$
(3.85)

unde: $A_{vc} = 3h_c^2 = 3 \cdot 120^2 = 43200 mm^2$

$$V_{mt}(sh) = 203.5 + 0.29 \cdot 43200 \sqrt{\frac{25}{1.5} \cdot 10^{-3}} = 254.6KN$$

Deci: $V_{mt} = 238.1KN < V_{mt}(sh) = 254.6KN$ OK

Forța tăietoare totală va fi:

$$V_m = V_{mb} + V_{mt} = 76.3 + 238.1 = 314.4KN$$

Această valoare trebuie verificată cu relația (3.87):

$$V_{m} \leq \frac{2}{3} \overline{V_{p}} + \overline{V_{c}}$$

unde: $\overline{V_{p}} = \frac{t_{w} \cdot h \cdot f_{y}}{\sqrt{3}}$ (3.88)
 $\overline{V_{p}} = \frac{12 \cdot 600 \cdot 235}{\sqrt{3}} \cdot 10^{-3} = 976.8KN$
iar $\overline{V_{c}} = \min\left\{V_{pl}\left(\frac{\mu}{v} - 1\right) \ge 0.5iV_{ml}(sh) - V_{pl}\right\}$
 $\overline{V_{c}} = \min\left\{203.5(1.17 - 1) = 34.6KN; 254.6 - 203.5 = 51.1KN\right\} = 34.6KN$

iar

$$\overline{V_c} = \min\{203.5(1.17 - 1) = 34.6KN; 254.6 - 2$$

Deci: $V_m = 314.4KN < \frac{2}{3} \cdot 976.8 + 34.6 = 685.8KN$

OK

Verificarea interacțiunii în metoda Darwin

Eforturile în dreptul golului, calculate la începutul paragrafului 3.5.1.1, sunt:

 $V_{u} = 91.8 KN$ $M_{u} = 734.4 KNm$

Se calculează :

$$\frac{V_u}{\Phi V_m} = \frac{91.8}{0.85 \cdot 314.4} = 0.343$$

şi

$$\frac{M_u}{\Phi M_m} = \frac{734.4}{0.85 \cdot 981} = 0.881$$

În acest caz se vede în fig.3.9 dacă punctul A $\left(\frac{V_u}{\Phi V_m}si\frac{M_u}{\Phi M_m}\right) = A(0.343;0.881)$ cade în

interiorul sau exteriorul curbei cu R = 1. Se observă că punctul este în interiorul curbei pline cu R = 1, deci golul satisface condițiile (3.26) și (3.27).

Se calculează $\Phi V_n din (3.31)$ și $\Phi M_n din (3.32)$:

Se verifică relația de interacțiune (3.28):

$$\left(\frac{\Phi M_n}{\Phi M_m}\right)^3 + \left(\frac{\Phi V_n}{\Phi V_m}\right)^3 \le R^3 = 1$$
$$\left(\frac{818.06}{833.85}\right)^3 + \left(\frac{102.07}{267.24}\right)^3 = 0.999 < 1$$
OK

3.6.2 Verificarea grinzii mixte din exemplul practic, folosind metoda L.R.F.D.

Se verifică aceeași grindă dată în figura 3.22, cu solicitările calculate la începutul paragrafului 3.6.1.

Calculul momentului rezistent plastic M_m

Momentul maxim M_m se calculează în același mod ca și la metoda Darwin, fiind deci egal cu: $M_m = 981$ KNm

Calculul capacității maxime la forfecare V_m

Forța tăietoare rezistentă V_m se calculează cu relația (3.106):

$$V_m = V_b(\max) + V_t(\max)$$

Forțele tăietoare din relația de mai sus se determină în cele trei soluții din metoda L.R.F.D.

141

Soluția I

Admitând criteriul simplificat Von Misses (relația 3.108), se calculează forțele tăietoare din profilele T inferior $V_b(max)$ și superior $V_t(max)$.

- pentru profilul T inferior $V_b(max)$ se calculează cu relația (3.111):

$$V_{b}(\max) = f_{y}\left(\frac{\beta_{b} - \sqrt{\beta_{b}^{2} - 4\alpha_{b} \cdot \gamma_{b}}}{2\alpha_{b}}\right) \le V_{pb}$$
(3.111)

Se determină mărimile ce intervin:

$$\alpha_{b} = 3 + 2\sqrt{3} \frac{l_{0}}{s_{b}} = 3 + 2\sqrt{3} \frac{600}{125} = 19.62$$

$$\beta_{b} = 2\sqrt{3} \left(b_{f} - t_{w} \left(s_{b} - t_{f} + \frac{t_{f}^{2}}{s_{b}} \right) + 2\sqrt{3}\lambda t_{w}s_{b} + 2l_{0} \left[b_{f} + (\lambda - 1)t_{w} \right] =$$

$$\overline{3} (220 - 12) \left(125 - 19 + \frac{19^{2}}{3} \right) + 2\sqrt{3} \cdot 1 207 \cdot 12 \cdot 125 + 2 \cdot 600 \left[220 + (1207 - 1)12 \right] = 3517$$

$$= 2\sqrt{3}(220 - 12)\left(125 - 19 + \frac{19^2}{125}\right) + 2\sqrt{3} \cdot 1.207 \cdot 12 \cdot 125 + 2 \cdot 600[220 + (1.207 - 1)12] = 351710$$

$$\gamma_b = \left(b_f - t_w\right)^2 \cdot t_f^2 + \lambda^2 t_w^2 s_b^2 + 2\lambda t_w \left(b_f - t_w\right) \left(s_b^2 - s_b t_f + t_{ef}^2\right) =$$

 $= (220 - 12)^{2} \cdot 19^{2} + 1.207^{2} t 12^{2} 125^{2} + 2 \cdot 1.207 \cdot 12(220 - 12)(125^{2} - 125 \cdot 19 + 19^{2}) = 100907170$ Cu acestea:

$$V_b(\max) = 235 \left(\frac{351710 - \sqrt{351710^2 - 4 \cdot 19.62 \cdot 100907170}}{2 \cdot 19.62} \right) = 68.537 KN$$

şi

$$V_{pb} = \frac{f_y \cdot t_w \cdot s_b}{\sqrt{3}} = \frac{235 \cdot 12 \cdot 125}{\sqrt{3}} \cdot 10^{-3} = 203.5 KN$$

Deci condiția (3.111) este satisfăcută:

$$V_b(\max) = 68.537 KN < V_{pb} = 203.5 KN$$
 OK

- pentru profilul T superior $V_t(max)$ se calculează cu relația (3.116):

$$V_{t}(\max) = f_{y}\left(\frac{\beta_{t} - \sqrt{\beta_{t}^{2} - 4\alpha_{t} \cdot \gamma_{t}}}{2\alpha_{t}}\right) \le V_{pt}$$
(3.116)

Pentru a calcula această valoare se determină:

$$\alpha_t = 3 + 2\sqrt{3} \frac{l_0}{s_t} = 3 + 2\sqrt{3} \frac{600}{125} = 19.62$$
(3.117)

$$\beta_{t} = 2\sqrt{3} \left(b_{f} - t_{w} \left(s_{t} - t_{f} + \frac{t_{f}^{2}}{s_{t}} \right) + 2\sqrt{3}\lambda t_{w} s_{t} + 2l_{0} \left[b_{f} + (\lambda - 1)t_{w} \right] + \frac{2\sqrt{3}}{s_{t} f_{y}} \left(P_{ch} d_{h} - P_{cl} d_{l} \right) + \frac{\sqrt{3}}{f_{y}} \left(P_{ch} - P_{cl} \right)$$
(3.118)

În scopul determinării lui β_t trebuie calculate (3.122....3.124):

$$P_{ch} \le 0.85 f_{ck} \cdot b_{ef} \cdot h_c = 4250 KN$$

$$P_{ch} \le N \cdot Q_n = 40 \cdot 75 = 3000 KN$$

 $P_{ch} \le f_y \cdot A_{st} = 235 \cdot 5452 \cdot 10^{-3} = 1281.2 KN$

unde: $A_{st} = s_t \cdot t_w + (b_f - t_w)t_f = 125 \cdot 12 + (220 - 12)19 = 5452mm^2$: este secțiunea profilului T superior

În acest caz valoarea minimă dintre cele trei valori este:

$$P_{ch} = 1281.2 \text{ KN}$$
 cu care se determină cu (3.125):
 $P_{cl} = P_{ch} - N_0 \cdot Q_n = 1281.2 - 4 \cdot 75 = 981.2KN > 0$ OK

rezultă deci β_t din (3.118), în care primii termeni sunt egali cu β_b :

$$\beta_{t} = 351710 + \frac{2\sqrt{3}}{125 \cdot 235} (1281200 \cdot 110.95 - 981200 \cdot 6.93) + \frac{\sqrt{3}}{235} (1281200 - 981200) = 369882$$

unde:

$$d_{h} = (h_{n} + h_{c}) - \frac{0.5P_{ch}}{0.85f_{ck} \cdot b_{cf}} = 120 - \frac{0.5 \cdot 1281200}{0.85 \cdot \frac{25}{1.5} \cdot 2500} = 110.95mm$$

$$d_{l} = \frac{0.5P_{cl}}{0.85f_{ck} \cdot b_{cf}} = \frac{0.5 \cdot 981200}{0.85 \cdot \frac{25}{1.5} \cdot 2500} = 6.93mm \quad \text{pt. dala plină}$$

și γ_t care se determină din relația (3.119), în care primii termeni sunt egali cu γ_b :

$$\gamma_{t} = (b_{f} - t_{w})^{2} \cdot t_{f}^{2} + \lambda^{2} t_{w}^{2} s_{t}^{2} + 2\lambda t_{w} (b_{f} - t_{w}) (s_{t}^{2} - s_{t} t_{f} + t_{f}^{2}) + \frac{2[b_{f} + (\lambda - 1)t_{w}]}{f_{y}} (P_{ch} d_{h} - P_{cl} d_{l}) - \frac{P_{ch}^{2} + P_{cl}^{2}}{2f_{y}^{2}} + \frac{[(b_{f} - t_{w})t_{f} + \lambda t_{w} s_{t}]}{f_{y}} (P_{ch} - P_{cl}) =$$

$$= 100907170 + \frac{2[220 + (1.207 - 1)12]}{235}(1281200 \cdot 110.95 - 981200 \cdot 6.93) - \frac{1281200^{2} + 981200^{2}}{2 \cdot 235^{2}} + \frac{[(220 - 12)19 + 1.207 \cdot 12 \cdot 125]}{235}(1281200 - 981200) = 340966760$$

Cu acestea se obține din (3.116):

$$V_t(\max) = 235 \left(\frac{369882 - \sqrt{369882^2 - 4 \cdot 19.62 \cdot 340966760}}{2 \cdot 19.62} \right) = 228.357 KN$$

Se observă că nu este satisfăcută condiția (3.116):

$$V_t(\max) = 228.357 KN > V_{pt} = 203.5KN$$
 NOT OK

În acest caz se ia :

 $V_t(max) = V_{pt} = 203.5 \text{ KN}$ Forța tăietoare maximă $V_m \text{ din } (3.106)$ va fi, deci: $V_m = V_b (max) + V_t (max) = 68.537 + 203.5 = 272 \text{ KN}$

Verificarea interacțiunii în metoda LRFD

Pentru verificarea interacțiunii se iau valorile calculate:

 $V_m = 272KN$, $M_m = 981KNm$

$$V = V_u = 91.8KN, M = M_u = 734.4KNm$$
,

cu care se determină apoi interacțiunea eforturilor maxime, cu relația (3.94), pentru care se calculează:

$$V_{n} = V_{m} \left[\frac{\left(\frac{M}{V}\right)^{3}}{\left(\frac{M}{V_{m}}\right)^{3} + 1} \right]^{-3} = 272 \left[\frac{8^{3}}{3.6^{3}} + 1 \right]^{-\frac{1}{3}} = 119KN$$
$$M_{n} = M_{m} \left[\frac{\left(\frac{M}{W_{m}}\right)^{3}}{\left(\frac{M}{V_{m}}\right)^{3}} + 1 \right]^{-\frac{1}{3}} = 981 \left[\frac{3.6^{3}}{8^{3}} + 1 \right]^{-\frac{1}{3}} = 952.8KNm$$
$$\frac{M}{V} = \frac{734.4}{91.8} = 8 \qquad \text{si} \qquad \frac{M_{m}}{V_{m}} = \frac{981}{272} = 3.6$$

cu:

În acest caz interacțiunea conduce la:

$$\left(\frac{M_n}{M_m}\right)^3 + \left(\frac{V_n}{V_m}\right)^3 = \left(\frac{952.8}{981}\right)^3 + \left(\frac{119}{272}\right)^3 = 0.999 < 1$$
 OK

Soluția II

În acest caz forța tăietoare maximă din ecuația (3.106) se calculează asemănător, calculând $V_b(max) din (3.128)$ și $V_t(max) din (3.130)$.

$$V_{b}(\max) = V_{pb} \left(\frac{\alpha}{1+\alpha}\right)^{1_{2}} = 203.5 \left(\frac{0.13}{1+0.13}\right)^{1_{2}} = 69KN$$

unde: $\alpha = 3 \left(\frac{s_{b}}{l_{0}}\right)^{2} = 3 \left(\frac{125}{600}\right)^{2} = 0.13$

şi

cu

$$V_{t}(\max) = V_{pt} \left[\frac{2\mu v + \sqrt{12v^{2} - 12\mu^{2} + 36}}{2(3 + v^{2})} \right]$$
$$\mu = \frac{P_{ch}d_{h} - P_{cl}d_{l}}{s_{t} \cdot V_{pt}} = \frac{1281200 \cdot 110.95 - 981200 \cdot 6.93}{125 \cdot 203500} = 5.32$$
$$v = \frac{l_{0}}{s_{t}} = \frac{600}{125} = 4.8$$

Cu acestea V_t(max) devine:

$$V_{t}(\max) = 203.5 \left[\frac{2 \cdot 5.32 \cdot 4.8 + \sqrt{12 \cdot 4.8^{2} - 12 \cdot 5.32^{2} + 36}}{2(3 + 4.8^{2})} \right]$$

Această valoare este imaginară deoarece sub radical apare o valoare negativă ($\sqrt{-27.15}$).
Pentru a avea o mărime reală trebuie ca $\Delta = 12v^2 - 12\mu^2 + 36$ de sub radical, să fie pozitivă.

$$\Delta = 12\nu^2 - 12\mu^2 + 36 \ge 0$$

 $\Delta = 12k^2\mu^2 - 12\mu^2 + 36 \ge 0$

Dacă se exprimă $v = k\mu$ se obține:

sau

$$12k^{2}\mu^{2} \ge 12\mu^{2} - 36$$

 $k^{2} \ge 1 - \frac{3}{\mu^{2}}$ si $k \ge \sqrt{1 - \frac{3}{\mu^{2}}}$

sau înlocuind se obține:

$$v \ge \mu \sqrt{1 - \frac{3}{\mu^2}}$$

Pentru a avea o valoare reală trebuie ca:

$$1 - \frac{3}{\mu^2} \ge 0$$
 sau $\frac{\mu^2 - 3}{\mu^2} \ge 0$

Rădăcinile inecuației sunt $\mu = \pm \sqrt{3}$ și $\mu = 0$, iar tabelul de discuție este:

μ	- ∞	$-\sqrt{3}$	0	$\sqrt{3}$	œ
μ^2-3		0 ++++	++++++	++++ 0	
μ^2	+++++	+ + + + + + + -	++ 0 ++	+++++++++	++++
$\frac{3-\mu^2}{\mu^2}$		- 0 ++++-	++/+++	++++ 0	

Pentru a avea o valoare reală trebuie ca:

$$\mu \in \left[-\sqrt{3},0\right] \cup \left(0,\sqrt{3}\right]$$

Soluția valabilă este doar pentru μ pozitiv, deci $\mu \in (0, \sqrt{3}]$, dar în exemplul de față

 $\mu = 5.32 > \sqrt{3} = 1.73$

Cu această valoare reală a lui μ , acesta nu se poate înscrie în intervalul posibil, decât în cazul în care golurile sunt foarte lungi și au înălțimea mai mică, adică dacă golurile ar fi mult mai alungite.

Soluția III

În a treia soluție $V_b(max)$ se determină cu relația (3.136) iar $V_t(max)$, cu relația (3.137):

$$V_{b}(\max) = V_{pb} \left(\frac{\lambda \sqrt{3}}{\sqrt{3} + \nu} \right) \le V_{pb}$$

$$V_{b}(\max) = 203.5 \left(\frac{1.207\sqrt{3}}{\sqrt{3} + 600} \right) = 65.13 KN < V_{pb} = 203.5 KN \quad OK$$

$$V_{t}(\max) = V_{pt} \left(\frac{\mu + \lambda \sqrt{3}}{\nu + \sqrt{3}} \right) \le V_{pt}$$

şi

$$V_t(\max) = 203.5 \left(\frac{5.32 + 1.207\sqrt{3}}{4.8 + \sqrt{3}}\right) = 230.87 > V_{pt} = 203.5 KN$$
 NOT OK

Dacă $V_t(max) > V_{pt}$, inima curge și trebuie verificată condiția (3.135):

$$V_{t}(\max) = V_{tc} = \frac{P_{ch}d_{h} - P_{cl}d_{l}}{l_{0}} \ge V_{pt}$$
$$V_{t}(\max) = V_{tc} = \frac{1281200 \cdot 110.95 - 981200 \cdot 6.93}{600} = 225.5KN > V_{pt} \qquad \text{OK}$$

În acest caz se recalculează P_{ch} cu relația (3.138) și P_{cl} cu (3.139): $P_{cl} \leq f_{cl} \leq (b_{cl} + c_{cl}) = 235 \cdot 10(220 - 12) \cdot 10^{-3} = 028 \cdot 72 \text{ KN}$

$$P_{ch} \le f_y \cdot t_f (b_f - t_w) = 235 \cdot 19(220 - 12) \cdot 10^{-3} = 928.72KN$$

$$P_{cl} = P_{ch} - N_0 Q_n = 928.72 - 4 \cdot 75 = 628.72KN$$

$$d_l = \frac{0.5 \cdot 628720}{0.05 \cdot 628720} = 8.88mm$$

iar

$$\frac{1}{0.85 \cdot \frac{25}{1.5} \cdot 2500} = 8.6$$

Cu aceste mărimi calculate, rezultă noua valoare a lui µ:

$$\mu = \frac{P_{ch}d_h - P_{cl}d_l}{s_t \cdot V_{pt}} = \frac{928720 \cdot 110.95 - 628720 \cdot 8.88}{125 \cdot 203500} = 3.83$$

 $\begin{array}{l} \text{si} \quad \nu = 4.8 \\ \text{cu care} \end{array}$

$$V_t(\max) = V_{pt}\left(\frac{\mu + \lambda\sqrt{3}}{\nu + \sqrt{3}}\right) = 203.5\left(\frac{3.83 + 1.207\sqrt{3}}{4.8 + \sqrt{3}}\right) = 184.45KN$$

Se verifică condiția:

 $V_t(\max) \leq V_t(sh)$

unde:
$$V_t(sh) = V_{pt} + 489A_{vc}\sqrt{f_{ck}} = 203500 + 489 \cdot 43200\sqrt{\frac{25}{1.5}} = 86445KN$$

Se vede că relația de verificare de mai sus este satisfăcută, deci $V_t(max) = 184.45$ KN Forța tăietoare maximă finală, va fi:

 $V_m = V_b(\max) + V_t(\max) = 65.13 + 184.45 = 250KN$

Verificarea interacțiunii

Pentru verificare se scriu întâi eforturile găsite:

 $V_m = 250KN, M_m = 981KNm$ $V = V_u = 91.8KN, M = M_u = 734.4KNm$,

cu care se determină :

$$V_{n} = V_{m} \left[\frac{\binom{M}{V}}{\binom{M}{N}^{3}} + 1 \right]^{-\frac{1}{3}} = 250 \left[\frac{8^{3}}{3.924^{3}} + 1 \right]^{-\frac{1}{3}} = 118.15KN$$
$$M_{n} = M_{m} \left[\frac{\binom{M}{N}}{\binom{M}{N}^{3}} + 1 \right]^{-\frac{1}{3}} = 981 \left[\frac{3.924^{3}}{8^{3}} + 1 \right]^{-\frac{1}{3}} = 945.19KNm$$
$$\frac{M}{V} = \frac{734.4}{91.8} = 8 \qquad \text{si} \qquad \frac{M_{m}}{V_{m}} = \frac{981}{250} = 3.924$$

cu:

În acest caz interacțiunea se verifică cu aceeași relație, rezultând:

$$\left(\frac{M_n}{M_m}\right)^3 + \left(\frac{V_n}{V_m}\right)^3 = \left(\frac{945.19}{981}\right)^3 + \left(\frac{118.15}{250}\right)^3 = 0.999 < 1$$
 OK

3.6.3 Verificarea grinzii mixte din exemplul practic, folosind metoda ASCE

Se verifică tot aceeași grindă din figura 3.22, cu solicitările calculate la începutul paragrafului 3.6.1.

Calculul momentului rezistent plastic M_m

Momentul maxim M_m se calculează în același mod ca și la metoda Darwin, fiind deci egal cu: $M_m = 981 \text{ KNm}$

Calculul forței tăietoare rezistente V_m

Pentru cele două profile T superior și inferior, ale grinzii mixte, forțele tăietoare se calculează în metoda ASCE, cu formulele propuse de Darwin.

- pentru profilul T superior, relația (3.153):

$$V_{mt} = V_{pt} \left(\frac{\sqrt{3\lambda + \mu}}{\nu + \sqrt{3}} \right) \le V_{pt}$$
(3.153)

în care λ se ia $\lambda = \sqrt{2}$ și rezultă :

$$V_{mt} = V_{pt} \left(\frac{\sqrt{6} + \mu}{\nu + \sqrt{3}} \right)$$
(3.156)

în care

 $V_{pt} = V_{pb} = 203.5 \text{ KN}$

Se calculează:

$$P_{ch} \le 0.85 f_{ck} \cdot b_{ef} \cdot h_c = 4250 KN$$
$$P_{ch} \le N \cdot Q_n = 40 \cdot 75 = 3000 KN$$

146

$$P_{ch} \le f_y \cdot A_{st} = 235 \cdot 5452 \cdot 10^{-3} = 1281.2 KN$$

Valoarea minimă a lui P_{ch} este $P_{ch} = 1281.2$ KN, care este efortul din dală, în dreptul secțiunii de la capătul din dreapta al golului, cu moment încovoietor mai mare.

Efortul din dala de beton, la capătul din stânga al golului, cu moment mai mic, P_{cl} , se calculează cu relația:

$$P_{cl} = P_{ch} - N_0 Q_n = 1281.2 - 4.75 = 981.2KN$$

Cu valorile eforturilor din dală calculate mai sus, rezultă distanțele:

$$d_{h} = h_{c} - \frac{0.5P_{ch}}{0.85f_{ck} \cdot b_{cf}} = 120 - \frac{0.5 \cdot 1281200}{0.85 \cdot \frac{25}{1.5} \cdot 2500} = 110.95mm$$

$$d_{l} = \frac{P_{ch}}{2 \cdot 0.85 f_{ck} \cdot b_{ef}} = \frac{1281200}{2 \cdot 0.85 \cdot \frac{25}{1.5} \cdot 2500} = 9.04mm$$

Parametrul µ devine:

$$\mu = \frac{P_{ch}d_h - P_{cl}d_l}{s_l \cdot V_{pl}} = \frac{1281200 \cdot 110.95 - 981200 \cdot 9.04}{125 \cdot 203500} = 5.24$$

si v = 4.8

Cu relația (3.156) rezultă:

$$V_{mt} = 203.5 \left(\frac{\sqrt{6} + 5.24}{4.8 + \sqrt{3}} \right) = 239.56 KN > V_{pt} = 203.5 KN$$
 NOT OK

Se calculează valoarea limită:

$$V_{mt}(sh) = V_{pt} + 0.29A_{w}\sqrt{f_{ck}} = 203.5 + 0.29 \cdot 43200\sqrt{\frac{25}{1.5}} \cdot 10^{-3} = 254.64KN$$

cu care se verifică condiția:

$$V_{mt} = 239.56KN < V_{mt}(sh) = 254.64KN$$
 OK

Deci, în profilul T superior forța tăietoare rezistentă se ia:

 $V_{mt} = 239.56 \text{ KN}$

În profilul T inferior forța tăietoare rezistentă V_{mb} se determină cu relația (3.154):

$$V_{mb} = V_{pb} \left(\frac{\sqrt{3}\lambda}{\nu + \sqrt{3}} \right) = 203.5 \left(\frac{\sqrt{6}}{4.8 + \sqrt{3}} \right) = 76.3 KN < V_{pb} = 203.5 KN$$
 OK

Forța tăietoare totală este:

 $V_m \leq \frac{2}{2}\overline{V_n} + \overline{V_c}$

$$V_m = V_{mt} + V_{mb} = 239.56 + 76.3 = 315.86KN$$

Se verifică condiția (3.87):

unde:

iar

e:
$$\overline{V_p} = \frac{t_w \cdot h \cdot f_y}{\sqrt{3}}$$

$$\overline{V_p} = \frac{12 \cdot 600 \cdot 235}{\sqrt{3}} \cdot 10^{-3} = 976.8KN$$

$$\overline{V_c} = \min\left\{V_{pt}\left(\frac{\mu}{\nu} - 1\right) \ge 0.5iV_{mt}(sh) - V_{pt}\right\}$$
(3.88)

$$\overline{V_c} = \min\left\{203.5\left(\frac{5.24}{4.8} - 1\right) = 18.65KN; 254.6 - 203.5 = 51.1KN\right\} = 18.65KN$$

Deci: $V_m = 315.86KN < \frac{2}{3} \cdot 976.8 + 18.65 = 669.8KN$ OK

Verificarea interacțiunii

Eforturile maxime determinate, precum și cele din dreptul golului, sunt:

 $V_m = 315.86 KN$, $M_m = 981 KNm$

$$V_u = 91.8KN, M_u = 734.4KNm$$
,

cu care se verifică interacțiunea, cu relația (3.147):

$$\left(\frac{M}{\Phi_0 M_m}\right)^3 + \left(\frac{V}{\Phi_0 V_m}\right)^3 \le 1$$
(3.147)

în care M și V sunt eforturile rezistente din axul golului, determinate cu relațiile:

$$V = \Phi_0 V_n = \Phi_0 V_m \left[\frac{\begin{pmatrix} M_u \\ \Phi_0 M_m \end{pmatrix}^3}{\begin{pmatrix} V_u \\ \Phi_0 V_m \end{pmatrix}^3} + 1 \right]^{-3} = 0.85 \cdot 315.86 \left[\left(\frac{0.88}{0.34} \right)^3 + 1 \right]^{-1_3} = 101.8KN$$
$$M = \Phi_0 M_n = \Phi_0 M_m \left[\frac{\begin{pmatrix} V_u \\ \Phi_0 V_m \end{pmatrix}^3}{\begin{pmatrix} M_u \\ \Phi_0 M_m \end{pmatrix}^3} + 1 \right]^{-1_3} = 0.85 \cdot 981 \left[\left(\frac{0.34}{0.88} \right)^3 + 1 \right]^{-1_3} = 818.4KNm$$

Relația de verificare a interacțiunii este:

$$\left(\frac{818.4}{0.85 \cdot 981}\right)^3 + \left(\frac{101.8}{0.85 \cdot 315.86}\right)^3 = 0.999 < 1$$

După cum rezultă din prelucrarea datelor pentru exemplul de calcul studiat, diferențele dintre cele trei metode sunt de 0.1%, ele bazându-se pe cele mai competente studii, efectuate în special de Darwin.

Pentru alte exemple de calcul, funcție de deschiderea grinzii mixte, precum și de natura și de mărimea încărcărilor, aceste diferențe pot fi ceva mai mari, fără a depăși însă (2....3)%, ceea ce este neglijabil.

3.7 CONCLUZII ȘI CONTRIBUȚII PERSONALE LA CAPITOLUL 3

În cadrul celui de-al treilea capitol a fost făcută o prezentare a principalelor metode de calcul a grinzilor mixte oțel-beton, cu goluri în inima profilului metalic.

La sistematizarea acestor metode au fost luate în considerare mai multe studii ale unor autori din Statele Unite ale Americii și Canada, care s-au ocupat de acest subiect, în mod special datorită faptului că aceste grinzi mixte cu goluri în inimă, s-au folosit pe scară mai largă în aceste țări.

Dintre principalele contribuții personale la acest capitol, pot fi enumerate următoarele:

1. Definirea formei și a dimensiunilor golurilor practicate în inima profilelor metalice a grinzilor mixte oțel-beton, cu prezentarea rolului acestora de a permite trecerea canalelor de ventilație, a conductelor pentru instalații și a oricărui tip de elemente ce se montează în clădirile cu multe etaje și care se înglobează în grosimea planșeelor.

2. Prezentarea modului de comportare a grinzilor cu goluri în inimă, bazat pe studiile teoretice ale lui Clawson și Darwin [3] și pe studiile experimentale ale acestor autori [4] și ale altor cercetători.

Pe această bază au fost sistematizate și explicitate mecanismele de distrugere, întâi pentru grinzile metalice cu goluri în inimă și apoi a grinzilor mixte oțel-beton cu goluri în inima profilului metalic. Deformațiile grinzilor în stadiul de distrugere apar datorită acțiunilor simultane a momentului încovoietor și a forței tăietoare în dreptul golurilor.

Sunt prezentate mecanismele de capotare a grinzii mixte pentru cazul încovoierii pure, pentru forfecare pură și pentru solicitarea combinată a celor două eforturi: încovoiere cu forfecare. Sunt prescrise recomandările ce trebuie avute în vedere la alegerea dimensiunilor și a poziției golurilor dreptunghiulare ca și a numărului acestora în lungul grinzilor mixte, dar și a naturii și a poziției încărcărilor pe grindă.

În lucrare am făcut pe baza încercărilor experimentale [4], și o descriere a rezultatelor acestor încercări asupra betonului din dala grinzii mixte, cu modul de apariție și de dezvoltare a fisurilor în aceasta. De asemenea sunt enumerate sistematizat, și concluziile obținute în urma încercărilor experimentale și a studiilor teoretice, privind modul de comportare a grinzilor mixte cu goluri în inima profilului metalic, sub acțiunea sarcinilor exterioare.

3. Pe baza bibliografiei pe care am studiat-o, am făcut o prezentare concisă a recomandărilor și indicațiilor privind alcătuirea și calculul grinzilor mixte oțel-beton, dintre care cele mai importante se referă la:

- alegerea înălțimii profilului metalic în limite rezonabile, funcție de deschiderea grinzii, după cum s-a arătat în capitolul 2.

- alegerea grosimii dalei de beton armat, cu valori de (8....15) cm în cazul dalelor pline și (6.5....10) cm deasupra nervurilor tablei cutate, la dalele nervurate.

- alegerea calității oțelului și a betonului folosit la alcătuirea grinzilor mixte oțel-beton, și anume:

- pentru profilul metalic al grinzii mixte, se pot folosi cele trei calități de oțeluri Fe360(OL37), Fe430(OL44) și Fe510(OL52), fabricate curent în toate țările, sub forma diferitelor tipuri de profile laminate I, IPE, HEA, HEB sau compuse sudate cu tălpi egale, sau cu talpa inferioară mai dezvoltată.

- pentru dala de beton se poate folosi un beton normal cu densitatea de 2300 kg/m³, de calitate superioară, având rezistența la compresiune $f_{ck} = 20$ MPa, care corespunde la un beton C20/25(B350), sau $f_{ck} = 25$ MPa, care se referă la un beton C25/30(B400), dar poate fi folosit și un beton ușor cu densitatea de 1850 kg/m³.

- alegerea sistemului de conexiune a dalei, pe grinda de otel recomandându-se conexiunea completă, pentru care se folosesc fie conectori ductili de tip gujon, sudați pe talpa superioară a profilului metalic (care se folosesc în general la clădirile civile multietajate), fie conectori rigizi de tip bară sau din profile (care se folosesc în general la poduri cu grinzi mixte).

- alegerea formei, a dimensiunilor și a poziției golurilor, care se referă în general numai la goluri dreptunghiulare, studiate de toți autorii care s-au ocupat de acest subject.

4. Pe baza mai multor studii ale profesorului David Darwin [3], [4], [5] și [9], în colaborare și cu alți cercetători, a fost propusă metoda lui Darwin. Deoarece această metodă a fost elaborată și perfecționată în mai multe studii, în prezenta lucrare am făcut o legătură între aceste studii și cercetări, prezentând într-o formă unitară și ușor de înțeles, (pentru cei ce doresc să utilizeze această metodă), modalitatea de calcul și de verificare a grinzilor mixte

oțel-beton cu goluri în inimă. Autorul recomandă folosirea acestei metode numai în cazul grinzilor mixte la care limita de curgere a oțelului din profilul metalic nu depășește $f_y \le 450$ N/mm², care este satisfăcută de toate oțelurile folosite în construcții metalice.

5. Folosind starea de eforturi din stânga și din dreapta golurilor, propusă de Darwin, precum și ecuațiile de echilibru (3.21)...(3.25), a fost apoi scrisă condiția de verificare bazată pe interacțiunea dintre momentul încovoietor M_n și forța tăietoare V_n , pe baza relației cubice (3.28), din acest capitol. Cu acestea s-au putut scrie relațiile pentru calculul momentului și a forței tăietoare maxime M_m și V_m .

Pe baza stărilor de eforturi și a ecuațiilor de echilibru au fost scrise ecuațiile pentru calculul momentului maxim rezistent M_m , pentru grinzi mixte oțel-beton, cu dale pline, relația (3.52) și cu dale nervurate, relația (3.53), scrise în funcție de poziția axei neutre plastice ANP, exprimată prin înălțimea blocului de eforturi din dala de beton.

În aceleași condiții au fost scrise având la bază starea de eforturi din grinzile mixte cu dale pline (fig.3.13.a) și cu dale nervurate (fig.3.13.b), ecuațiile pentru calculul forței tăietoare rezistentă maximă V_m . La scrierea acestor relații s-a ținut cont de interacțiunea dintre forța tăietoare și efortul axial din profilele T inferior și superior, din dreptul golurilor, pe baza relației dată de criteriul de curgere Von Misses (relația 3.57), sau a celei liniare simplificate (relația 3.58).

Forța tăietoare maximă V_m este calculată ca suma forțelor tăietoare a profilului T inferior V_{mb} și superior V_{mt} (relația 3.55). La scrierea acestor formule, o contribuție personală o reprezintă scrierea sistematizată a unor relații ușor de folosit și chiar prin scrierea unor relații care în lucrările lui Darwin nu erau prezentate explicit, ceea ce permite o utilizare mai ușoară a relației (3.55), de calcul a lui V_m și apoi de verificare a interacțiunii moment-forță tăietoare, relația (3.28).

6. Profesorul Darwin împreună cu alți cercetători au propus metoda L.R.F.D., care într-o

traducere liberă nu este altceva decât Metoda Stărilor Limită, din normele europene și cele din țara noastră, care se aplică în prezent în SUA, pentru grinzile mixte oțel-beton.

Și în acest caz sunt prezentate sub o formă sistematizată și ușor de folosit, sistemele de eforturi care sunt similare cu cele de la metoda Darwin, precum și relațiile de calcul ale mărimilor care intră în ecuația de interacțiune moment-forță tăietoare.

În această metodă, pentru calculul forței tăietoare rezistente maxime V_m ca sumă a eforturilor din profilul T inferior V_{mb} și a celui superior V_{mt} , din dreptul golului din inima profilului metalic, sunt prezentate sistematic trei soluții particulare pentru calculul acestor componente V_{mb} și V_{mt} , fiind ușor de utilizat. Personal, printr-un exemplu practic am arătat că la grinzile cu dimensiuni uzuale ale golului, termenii de sub radical la calculul lui $V_t(max)$ fiind negativi,

soluția a II-a nu este acceptabilă. Pentru a rezulta o soluție reală, am arătat că este necesar ca factorul μ să fie cuprins în intervalul $\mu \in (0; \sqrt{3})$, care este satisfăcută numai de goluri foarte lungi și cu înălțime foarte mică, adică la goluri alungite, care nu se folosesc în general în practică.

Soluțiile I și III conduc la valori diferite ale lui V_m , dar ținând cont că și valorile lui V_n sunt diferite, ele conduc la valori egale sau foarte apropiate pentru valoarea interacțiunii dintre moment și forță tăietoare.

7. Ultima metodă prezentată este metoda dată în regulile americane ASCE, din 1993, care se bazează pe studiile mai multor cercetători [3], [4], [6], [7], [8], [9], [10], [12].

Și în cadrul acestei metode se folosește interacțiunea dintre moment și forță tăietoare, iar relațiile de calcul ale momentelor maxime și ale forțelor tăietoare maxime, sunt asemănătoare. În cadrul acestei metode, am reușit să ordonez și să sistematizez relațiile de calcul, cu unele completări la scrierea acestor relații, care să poată fi ușor de folosit în practică, la verificarea grinzilor mixte oțel-beton, cu goluri în inima profilului metalic.

8. În final în acest capitol am prezentat un exemplu practic de verificare a unei grinzi mixte oțel-beton, cu două goluri dreptunghiulare în inima profilului metalic, verificând aceeași grindă cu toate cele trei metode propuse.

Diferențele între cele trei metode de verificare în dreptul golurilor grinzilor mixte, este de (1.0....1.5)%, ceea ce dovedește că la baza celor trei metode stau aceleași studii și cercetări, iar acestea asigură aceeași siguranță în exploatare a grinzilor mixte.

CAPITOLUL 4

STUDIUL GRINZILOR MIXTE OŢEL-BETON CU METODA ELEMENTELOR FINITE

4.1 METODA ELEMENTELOR FINITE

4.1.1 Bazele calculului liniar elastic, cu metoda elementelor finite

Calculul liniar elastic admite unele ipoteze simplificatoare cu privire atât la comportamentul materialelor care alcătuiesc grinzile mixte, cât și a structurii în ansamblu:

- se consideră că fiecare material care compune grinda mixtă, este continuu, omogen și izotrop

- materialele au un comportament liniar-elastic, satisfăcând legea lui Hooke

- deplasările structurii sunt mici în comparație cu dimensiunile geometrice ale structurii și ecuațiile de echilibru static se scriu pe structura nedeformată

- relațiile între deformațiile specifice și deplasări sunt liniare, iar eforturile și deplasările rezultante sunt funcții liniare de mărimea acțiunilor

- rigiditatea și flexibilitatea structurii depind de caracteristicile structurii și natura materialelor

- se admite ipoteza secțiunilor plane la structurile din bare și ipoteza Kirchoff-Love la calculul structurilor din plăci plane

4.1.2 Prezentarea generală a metodei elementelor finite

Metoda elementelor finite este o metodă modernă de calcul, bazată pe analiza numerică pentru obținerea unor soluții aproximative, ce servesc la determinarea variației parametrilor (deplasări, eforturi) ce caracterizează câmpuri (medii) continue [41], [42], [43], [44]. La început metoda elementului finit a fost utilizată în paralel cu metoda diferențelor finite, în final impunându-se datorită avantajelor mari, comparativ cu alte metode numerice de aproximare:

- formularea soluțiilor pentru elemente individuale și asamblarea acestora pentru reprezentarea întregului domeniu

- varietatea căilor de rezolvare a problemei pe element

- abordarea directă (prin metoda rigidității directe) a analizei structurale

Metoda elementelor finite reduce numărul de necunoscute ale problemei la un număr finit, prin împărțirea (discretizarea) structurii în elemente cu dimensiuni finite, denumite elemente finite [45]. Elementele finite sunt continue în interiorul lor și sunt legate între ele numai în noduri. Procedura discretizării în elemente finite reduce problemele cu un număr infinit de necunoscute ale câmpului continuu (presiune, deplasare, efort, temperatură), la un număr finit de necunoscute, divizând domeniul în elemente și exprimând variabilele necunoscute prin 153

funcții de interpolare în interiorul fiecărui element. Funcțiile de interpolare se exprimă prin valorile câmpului variabil în punctele rețelei (noduri), definind perfect comportarea variabilei în interiorul elementului. Astfel, valorile nodale ale variabilei devin necunoscutele problemei. Prin asamblarea elementelor finite se obține sistemul de ecuații pentru structura completă. Deoarece numărul de ecuații este foarte mare, și implicit volumul de calcul, metoda recurge la utilizarea calculatorului, mai ales că metoda folosește formularea matriceală, necunoscutele fiind deplasările nodurilor elementelor finite [46], [47], [48].

Interpretarea matematică a metodei elementului finit generalizează definiția unui element, gândind elementele în afara interpretării fizice, astfel încât elementul este o parte din domeniul studiat. Nodurile elementelor finite sunt puncte în spațiu, în care se cunosc atât deplasarea cât și posibilitățile acesteia de derivare. După ce se găsește rețeaua de elemente finite, comportarea câmpului variabil pentru fiecare element este aproximat prin funcții continue, exprimate în funcție de derivatele valorilor nodale. Funcțiile astfel definite pe fiecare element finit, sunt chiar funcțiile de interpolare.

Natura soluției și gradul de aproximare depind de:

- numărul și mărimea elementelor utilizate
- funcțiile de interpolare

Metoda elementelor finite folosește elemente de forme și dimensiuni diferite: triunghiuri, dreptunghiuri, patrulatere pentru structuri plane bidimensionale, respectiv prisme, tetraedre pentru structuri spațiale. De asemenea proprietățile elastice ale elementelor finite pot diferi de la un element la altul.

Datorită avantajelor de incontestat ale metodei elementului finit și a varietății mari de programe de calcul automat care folosesc această metodă, metoda elementului finit reprezintă un instrument eficient de analiză și de calcul al structurilor, atât în construcții cât și în alte domenii.

4.1.3 Etapele de rezolvare ale unei probleme de calculul structurilor cu metoda elementelor finite

În rezolvarea unei structuri folosind metoda elementelor finite se parcurg următoarele etape:

- 1. Discretizarea, ceea ce reprezintă stabilirea elementelor finite și a nodurilor structurii. Se aleg elemente finite având forma și numărul de noduri adecvat specificului problemei de rezolvat.
- 2. Alegerea funcțiilor de interpolare (aproximare), pentru a reprezenta variabila (deplasarea) pe element. Acestea se aleg ca funcții polinomiale, gradul lor depinzând de numărul de noduri ale elementului, de natura și numărul necunoscutelor în fiecare nod și de continuitatea cerută în nod și în suprafața de contact dintre elemente. Încărcarea de pe structură se aproximează prin concentrarea forțelor în nodurile elementelor finite, după direcțiile deplasărilor nodale.
- 3. Evaluarea matricei de rigiditate a elementului finit și vectorul forțelor nodale echivalente, folosind una din următoarele abordări:

- abordarea directă (prin metoda rigidității directe) a analizei structurale - folosește metoda deplasărilor

- abordarea variațională - folosește minimizarea energiei potențiale totale a structurii, pentru a determina ecuațiile de echilibru ale elementului finit

- abordarea matematică (a valorilor reziduale) - folosește condiția ca diferența dintre soluția reală și cea aproximativă (diferență numită eroare sau reziduu), să fie minimă, pentru determinarea ecuațiilor de echilibru ale elementului finit

- abordarea prin balanța energetică

Sistemul de ecuații corespunzător unui element finit, cuprinde atâtea ecuații câte grade de libertate are acel element și este de forma [45]:

$$[k] \cdot \{d_n\} = \{Q\} \tag{4.1}$$

unde: [k] : este matricea de rigiditate a elementului finit, care conține caracteristicile geometrice și elastice ale elementului, fiind o matrice pătrată simetrică

 $\{d_n\}$: vectorul deplasărilor nodale (necunoscutele) pe elementul finit

 $\{Q\}$: vectorul forțelor nodale (forțele aplicate în nodurile elementelor finite); acest vector are atâtea elemente câte are și vectorul deplasărilor nodale $\{d_n\}$

4. Asamblarea matricelor de element pentru formularea problemei pentru întreaga structură discretizată. Asamblarea se bazează pe condiția de compatibilitate: valoarea variabilei (deplasarea nodală) într-un nod, este aceeași pentru toate elementele interconectate în acel nod. Prin asamblare se satisface condiția de echilibru static și condiția de compatibilitate pentru structură. Prin însumarea matricelor de rigiditate, deplasărilor nodale și forțelor nodale ale tuturor elementelor finite, se obțin ecuațiile de echilibru pentru întreaga structură [45]:

$$[K] \cdot \{D\} = \{P\} \tag{4.2}$$

După asamblare se efectuează modificările prin considerarea condițiilor de margine.

5. Rezolvarea sistemului de ecuații (calculul deplasărilor nodale ale structurii), prin metode numerice liniare sau neliniare, obținându-se valorile deplasărilor în noduri. În continuare se calculează deformațiile specifice, eforturi, tensiuni normale, tangențiale, principale, echivalente, rezultate furnizate direct de calculator, atunci când calculul cu metoda elementelor finite se face automat. Aceste rezultate vor fi prezentate în paragrafele următoare.

4.2 APLICAREA METODEI ELEMENTELOR FINITE LA GRINZI MIXTE OȚEL-BETON

Calculul grinzilor mixte oțel-beton, este un calcul foarte laborios, pe de-o parte datorită faptului că grinzile mixte sunt realizate din două materiale cu proprietăți fizice și elastice diferite: betonul și oțelul, iar pe de altă parte discretizarea cu metoda elementului finit conduce la un sistem de ecuații cu mii sau chiar zeci de mii de ecuații și implicit necunoscute. Din aceste motive, calculul grinzilor mixte, folosind metoda elementului finit, nu se poate efectua decât cu ajutorul programelor de calcul automat [53], [54]. În lucrarea de față se prezintă calculul grinzilor mixte oțel-beton, cu programul de calcul ANSYS 5.0.

Noutatea problemei constă în faptul că dala de beton a fost discretizată în elemente finite de tip SOLID65, iar grinda metalică în elemente finite de tip SOLID45, prezentate în continuare.

4.2.1 SOLID65 – solid tridimensional, folosit pentru betonul armat

SOLID65 este un element finit folosit pentru modelarea tridimensională a blocurilor cu sau fără armături. Blocul (solidul) este capabil să fisureze la întindere și să se strivească la compresiune. Elementul este definit prin 8 noduri având trei grade de libertate în fiecare nod: translații în direcțiile nodale x, y, z. Fiecare element poate fi definit și prin până la trei tipuri diferite de armătură.

Fig.4.1 SOLID65 3-D Solid beton armat

4.2.1.1 Prezumții și restricții

1. Fisurarea betonului este permisă în 3 direcții ortogonale în fiecare punct de integrare.

2. Dacă fisura apare într-un punct de integrare, fisura este modelată prin ajustarea

proprietăților materialului care afectează efectiv fisura, ca o bandă dispersată de fisuri, mai curând decât fisuri independente.

3. Betonul este considerat inițial izotropic.

4. Atunci când se utilizează capacitatea de armare a elementului finit, armătura se consideră a fi dispersată în tot cuprinsul elementului.

5. Pe lângă fisurare și strivire, betonul poate să se plasticizeze, suprafețele de cedare(rupere) Drucker-Prager fiind folosite cel mai uzual. În acest caz, plasticizarea se produce înaintea apariției fisurilor de crăpare și strivire.

4.2.1.2 Descriere

SOLID65 permite prezența a 4 materiale diferite în interiorul fiecărui element finit: un material matrice (de exemplu betonul) și maximum 3 materiale independente de armare. Betonul este capabil de direcționare a punctului de integrare la fisurare și strivire, și de asemenea de a incorpora comportamentul plastic și fluajul. Armătura (care încorporează de asemenea plasticizarea și fluajul) are doar rigiditate uniaxială și se presupune că este dispersată în tot elementul finit. Orientarea direcțională a armăturii se face prin folosirea unghiurilor specifice.

4.2.1.3 Comportamentul liniar – Generalități

Matricea efort-deformație [D] folosită pentru acest element, este definită ca [53]:

$$[D] = \left[1 - \sum_{i=1}^{N_r} V_i^R\right] \cdot [D^c] + \sum_{i=1}^{N_r} V_i^R \cdot [D^r], \qquad (4.3)$$

unde:

 N_r : este numărul materialului de armare (maximum 3, toată armătura fiind ignorată dacă MAT1 este egal cu zero. De asemenea dacă MAT1, MAT2 sau MAT3 este egal cu numărul materialului beton, armătura cu acel număr de material este ignorată)

 V_i^R : este raportul dintre volumul armăturii I și volumul total al elementului finit

 $|D^{c}|$: este matricea efort-deformație pentru beton, definit prin ecuația (4.4)

 D^{r} : este matricea efort-deformație pentru armătura i, definit prin ecuația (4.5)

MAT1, MAT2, MAT3: sunt numerele de material asociate cu comportamentul materialului de armare

4.2.1.4 Comportamentul liniar – Betonul

Matricea $[D^c]$ este obținută dintr-o relație ortotropică efort-deformație, scrisă pentru cazul unui material izotropic.

$$\left[D^{c}\right] = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} (1-\nu) & \nu & \nu & 0 & 0 & 0\\ \nu & (1-\nu) & \nu & 0 & 0 & 0\\ \nu & \nu & (1-\nu) & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{(1-2\nu)}{2} & 0 & 0\\ 0 & 0 & 0 & 0 & \frac{(1-2\nu)}{2} & 0\\ 0 & 0 & 0 & 0 & 0 & \frac{(1-2\nu)}{2} \end{bmatrix} (4.4)$$

unde: E: este modulul lui Young pentru beton v : este coeficientul Poisson pentru beton

4.2.1.5 Comportamentul liniar – Armătura

În figura 4.2 se arată modul de orientare al armăturii i față de sistemul de axe al elementului finit, folosit de programul ANSYS 5.0.

Sistemul de axe al elementului finit este notat cu (X,Y,Z), iar cel al armăturii este notat cu (x'_i, y'_i, z'_i) .

Matricea efort-deformație scrisă față de fiecare sistem de axe (x'_i, y'_i, z'_i) , are forma:

unde: E_i^r : este modulul lui Young pentru armătura de tip i

Figura 4.2 Orientarea armăturii

Se poate vedea că singurul efort component diferit de zero este σ'_{x} , efortul axial din armătura i pe direcția x'_{i} . Direcția armăturii x'_{i} este legată de coordonatele elementului finit X,Y,Z, prin relația:

$$\begin{cases} X \\ Y \\ Z \end{cases} = \begin{cases} \cos\theta_i & \cos\phi_i \\ \sin\theta_i & \cos\phi_i \\ \sin\phi_i \end{cases} \cdot x_i^r = \begin{cases} e_1^r \\ e_2^r \\ e_3^r \end{cases} \cdot x_i^r$$
(4.6)

unde: θ_i : este unghiul dintre proiecția axei x'_i pe planul XY și axa X

 ϕ_i : este unghiul dintre axa x'_i și planul XY

 e_i^r : sunt cosinușii directori dintre axa x_i^r și axele X,Y,Z

Atât timp cât matricea materialului armătură este definită în coordonatele aliniate în direcția orientării armăturii, este necesar să construim o transformare de forma:

$$\begin{bmatrix} D^R \end{bmatrix}_{\mu} = \begin{bmatrix} T^r \end{bmatrix}^T \cdot \begin{bmatrix} D^r \end{bmatrix} \cdot \begin{bmatrix} T^r \end{bmatrix}$$
(4.7)

pentru a exprima comportamentul materialului armătură în coordonate globale. Forma acestei transformări, dată de Schnobrich, este:

$$\left[T^{r}\right] = \begin{bmatrix} a_{11}^{2} & a_{12}^{2} & a_{13}^{2} & a_{11}a_{12} & a_{12}a_{13} & a_{11}a_{13} \\ a_{21}^{2} & a_{22}^{2} & a_{23}^{2} & a_{21}a_{22} & a_{22}a_{23} & a_{21}a_{23} \\ a_{31}^{2} & a_{32}^{2} & a_{33}^{2} & a_{31}a_{32} & a_{32}a_{33} & a_{31}a_{33} \\ 2a_{11}a_{21} & 2a_{12}a_{22} & 2a_{13}a_{23} & a_{11}a_{22} + a_{12}a_{21} & a_{12}a_{23} + a_{13}a_{32} & a_{11}a_{23} + a_{13}a_{21} \\ 2a_{21}a_{31} & 2a_{22}a_{32} & 2a_{23}a_{33} & a_{21}a_{32} + a_{22}a_{31} & a_{22}a_{33} + a_{23}a_{32} & a_{21}a_{33} + a_{13}a_{21} \\ 2a_{11}a_{31} & 2a_{12}a_{32} & 2a_{13}a_{33} & a_{11}a_{32} + a_{12}a_{31} & a_{12}a_{33} + a_{13}a_{32} & a_{11}a_{33} + a_{13}a_{31} \end{bmatrix} (4.8)$$

unde, coeficienții a_{u} sunt definiți ca:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} e_1^r & e_2^r & e_3^r \\ m_1^r & m_2^r & m_3^r \\ n_1^r & n_2^r & n_3^r \end{bmatrix}$$
(4.9)

Vectorii $\begin{bmatrix} e_1^r & e_2^r & e_3^r \end{bmatrix}^T$ sunt definiți prin ecuația (4.6), în timp ce vectorii $\begin{bmatrix} m_1^r & m_2^r & m_3^r \end{bmatrix}^T$ și $\begin{bmatrix} n_1^r & n_2^r & n_3^r \end{bmatrix}^T$ sunt vectori unitari disjuncți (fără elemente comune), ortogonali pe $\begin{bmatrix} e_1^r & e_2^r & e_3^r \end{bmatrix}^T$, astfel definind coordonate carteziene referitoare la direcțiile armăturii. După ce s-au efectuat operațiile prezentate în ecuația (4.7), înlocuind ecuațiile (4.5) și (4.8), matricea rezultantă a materialului armătură, în coordonatele elementului, devine:

$$\left[D^{r}\right]_{i} = E_{i}^{r} \cdot \left\{A_{d}\right\} \cdot \left\{A_{d}\right\}^{T}$$

$$(4.10)$$

unde: $\{A_d\} = \begin{bmatrix} a_{11}^2 & a_{21}^2 & \dots & a_{11}a_{13} \end{bmatrix}^T$

De aceea, singurul cosinus director folosit în $[D^r]$, implică vectorul unitar definit unic $\begin{bmatrix} e_1^r & e_2^r & e_3^r \end{bmatrix}^T$.

4.2.1.6 Date de intrare

Geometria, localizarea nodurilor și sistemul de coordonate ale elementului SOLID65, sunt arătate în Figura 4.1. Elementul este definit prin 8 noduri și proprietățile izotropice ale materialului. Elementul este alcătuit dintr-un material solid și până la 3 materiale folosite pentru armare (aici incluzând și conectorii caracteristici grinzilor mixte oțel-beton). Specificațiile materialului de armare cuprinde:

- numărul materialului (MAT)
- raportul volumelor (VR)
- unghiurile de orientare ale armăturii (THETA, PHI)

Tot ca date de intrare, se introduc proprietățile materialelor (betonul și respectiv armătura) modulul lui Young E, coeficientul Poisson v și densitatea materialului ρ . Se mai pot adăuga și alte caracteristici speciale ale materialelor, legate de plasticitate, fluaj, fisurare, strivire, deformații și deplasări mari, etc. Încărcarea (considerată ca presiune) poate fi introdusă ca încărcare pe suprafață, respectiv temperatura ca încărcare în noduri.

4.2.1.7 Date de ieșire

Soluțiile de ieșire asociate fiecărui element, rezultate în urma calculului automat realizat de calculator, sunt de două feluri:

- 1. deplasări nodale incluse în soluția nodală globală:
 - deplasări după x: ux
 - deplasări după y: uy
 - deplasări după z: uz
 - deplasare rezultantă: usum
- 2. elemente adiționale, cum ar fi:
 - tensiune normală după X: SX (σ_x)
 - tensiune normală după Y: SY (σ_v)
 - tensiune normală după Z: SZ (σ_z)
 - tensiunile tangențiale: SXY (τ_{xy}), SYZ (τ_{yz}) și SXZ (τ_{xz})
 - tensiunile principale: $S_1(\sigma_1), S_2(\sigma_2), S_3(\sigma_3)$
 - tensiunea echivalentă: SEQV ($\sigma_{ech} = \sigma$ Von Misses)

$$\sigma_{ech} = \sqrt{\frac{1}{2} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right]}$$
(4.11)

- intensitatea tensiunii: SINT (σ_{int})

$$\sigma_{\text{int}} = MAX \left(\left| \sigma_1 - \sigma_2 \right|, \left| \sigma_2 - \sigma_3 \right|, \left| \sigma_3 - \sigma_1 \right| \right)$$
(4.12)

4.2.2 SOLID45 - solid structural tridimensional

SOLID45 este un element finit folosit pentru modelarea tridimensională a structurilor solide (în prezenta lucrare, a fost folosit pentru modelarea oțelului din grinda metalică).

Elementul este definit prin 8 noduri având fiecare 3 grade de libertate : translații în direcțiile nodale x, y, z. Elementul permite producerea : plasticizării, fluajului, umflării, deformațiilor și deplasărilor mari.

Fig.4.4 SOLID45 3-D Solid structural

Toate aspectele legate de comportamentul liniar al elementului finit SOLID45, datele de intrare și datele de ieșire, sunt similare cu cele prezentate la elementul finit SOLID65.

4.3 STUDIUL UNEI GRINZI MIXTE OȚEL-BETON AVÂND DOUĂ GOLURI DREPTUNGHIULARE ÎN INIMA PROFILULUI METALIC, CUMETODA ELEMENTELOR FINITE

Proiectanții construcțiilor multietajate se întâlnesc deseori cu cerința limitării înălțimii acestora, impusă de încadrarea în zonă, cerințe economice și estetice sau necesitatea de a uniformiza înălțimile etajelor față de clădirile existente. Folosirea golurilor în inima profilului metalic al grinzii mixte, este o soluție foarte avantajoasă pentru a obține sisteme de planșee de înălțime redusă, care se pot folosi pentru a reduce înălțimile etajelor. Golurile plasate în inima secțiunii metalice permite de asemenea trecerea conductelor și a tevilor de instalații.

4.3.1 Geometria grinzii mixte oțel-beton, cu două goluri dreptunghiulare în inima profilului metalic

Grinda mixtă studiată este alcătuită din următoarele părți componente:

- o grindă metalică având dimensiunile unui profil laminat IPE 600 (pentru simplificare, s-a considerat că tălpile profilului sunt sudate de inima acestuia), având deschiderea de 12 m, conform figurii 4.5.a și b.

- o placă de beton de greutate normală, având grosimea de 12 cm, conform figurii 4.5.a și b. - armătura transversală și longitudinală realizată din bare de diametru 14 mm , dispuse la 200 mm distanță unele față de altele, conform figurii 4.5.b

- conectori ductili de tip gujon cu cap sudat, având diametrul de 20 mm și înălțimea totală de 80 mm, conform figurii 4.5.b.

Fig.4.5 Geometria grinzii mixte cu goluri dreptunghiulare în inimă

Grinda mixtă studiată face parte dintr-un ansamblu de grinzi, situate la o distanță B = 2.5m, una față de alta, conform figurii 4.5.c.

După cum se vede, pentru verificarea veridicității rezultatelor prezentate în continuare cu metoda elementului finit, folosind programul de calcul automat ANSYS 5.0, s-a studiat și s-a calculat aceeași grindă mixtă oțel-beton având aceleași goluri dreptunghiulare, care s-a calculat și în capitolul 3, paragraful 3.6, unde s-a făcut verificarea grinzii după cele trei metode de calcul prezentate.

4.3.2 Optimizarea dimensiunilor grinzii mixte și a golurilor

Pentru a asigura respectarea condițiilor de rigiditate, dimensiunile grinzii mixte s-au ales astfel încât să satisfacă următoarele condiții:

$$\frac{L}{d} \le 30$$
 și $15 \le \frac{L}{d+h_c} \le 24$ (4.13)

unde: L: este deschiderea grinzii mixte

d: este înălțimea inimii grinzii din oțel, măsurată între sudurile de prindere a tălpilor profilului metalic de inima acestuia

h_c : este grosimea dalei de beton

Cele două goluri dreptunghiulare sunt dispuse concentric (mijlocul înălțimii golului coincide cu mijlocul înălțimii grinzii metalice). Fiecare gol este dispus la o treime din deschiderea L a grinzii (deci nu în zonele de eforturi maxime).

Dimensiunile golurilor s-au ales astfel încât să îndeplinească următoarele condiții [1]:

$$h_0 \le (0.5...0.7)h$$
 (4.14)

şi

$$\frac{l_0}{h_0} = (1.2...2.0) \tag{4.15}$$

unde: l_0 și h_0 : sunt lungimea și respectiv înălțimea golului

h: este înălțimea grinzii metalice

Grosimea dalei este limitată la grosimea uzuală întâlnită în practică ($h_c = 120mm$). Lățimea dalei a fost calculată conform prescripțiilor normativului EUROCODE 4, rezultând lățimea efectivă $b_{eff} = 2500mm$. Numărul de conectori a fost calculat (tot în concordanță cu EUROCODE 4) astfel încât acesta să asigure o interacțiune completă între dala de beton și profilul metalic. S-au folosit conectori de forfecare de tip gujon cu cap sudat, ale căror dimensiuni s-au ales tot conform normei EUROCODE 4.

4.3.3 Discretizarea domeniului de analiză

Grinda mixtă oțel-beton cu două goluri dreptunghiulare în inima grinzii metalice, a fost discretizată utilizând cele două tipuri de elemente finite tridimensionale cu 8 noduri, și anume elementele SOLID65 pentru dala de beton armat cu conectori și SOLID45 pentru profilul metalic.

Elementele finite sunt definite într-un plan de referință a cărui origine este în centrul de greutate al suprafeței de contact dintre dală și grinda metalică.

Originea sistemului de axe fiind stabilită, s-au considerat axele după cum urmează:

- x și z: axele planului dalei de beton (x: după latura scurtă, iar z: după latura lungă)
 - y: axa perpendiculară pe planul plăcii de beton

În originea acestui sistem de axe (aflat în axa de simetrie al grinzii mixte), s-a construit secțiunea transversală a grinzii mixte. Coordonatele nodurilor s-au introdus în metri, doar pentru simplificarea introducerii datelor. După crearea nodurilor și a liniilor, s-au creat suprafețele, care apoi au generat volume.

În acest mod s-a construit o jumătate de grindă mixtă oțel-beton, compusă din grinda metalică și dala de beton armat cu conectori.

Apoi s-a trecut la discretizarea propriu-zisă în elemente finite, fiecare linie care alcătuiește volumele componente fiind împărțită în elemente finite prin comanda mesh.

Discretizarea aceasta s-a făcut astfel încât elementele grinzii metalice au fost atașate la elementele plăcii de beton în lungul suprafeței de contact, pentru a permite dezvoltarea și scrierea matricii elementelor finite și matricea globală de rigiditate.

Elementele finite de tip SOLID65 au fost folosite pentru discretizarea dalei de beton armat cu conectori. Dala de beton a fost subdivizată în mai multe straturi, fiecare strat având proprietăți ale materialelor și rigidități diferite, astfel încât relațiile efort-deformație sunt definite separat pentru fiecare strat. În fiecare strat se consideră că starea de tensiune este plană.

Fig.4.6 Elevația cu elementele finite pe grindă

Fig.4.7 Secțiunea transversală cu elementele finite pe grindă

Împărțirea aceasta a dalei de beton armat în diferite straturi, a dat naștere la trei tipuri de elemente finite SOLID65 (acest tip de element finit permițând introducerea pe lângă betonul ca material de bază, a încă până la trei tipuri de armături, aici incluzând și conectorii):

- element din beton simplu
- element din beton cu armătură și conectori
- element din beton cu armătură transversală și longitudinală

Pentru fiecare s-au introdus următoarele date de intrare: tipul elementului, valoarea unghiurilor de orientare a armăturii, raportul volumelor (volumul materialului de armare, inclusiv conectorul, acolo unde este cazul, împărțit la volumul total al elementului finit), constantele elastice ale materialelor ce intervin în respectivul element finit (modulul de elasticitate longitudinal E, coeficientul lui Poisson v și densitatea materialului ρ).

În același mod s-au introdus și datele de intrare pentru elementul de tip SOLID45, folosit pentru discretizarea grinzii de oțel.

Fig.4.8 Vedere generală a grinzii mixte discretizată în elemente finite

După construirea unei jumătăți de grindă mixtă discretizată în elementele finite precizate mai sus, s-a generat prin simetrie cealaltă jumătate a grinzii mixte.

Având grinda mixtă întreagă, s-a trecut la introducerea rezemărilor, introducându-se blocaje ale nodurilor după cum urmează:

- în toate nodurile grinzii metalice, s-au blocat deplasările după toate cele trei direcții
- în nodurile de pe latura scurtă a plăcii de beton, s-a blocat doar deplasarea după direcția perpendiculară pe placă, y
- în nodurile de pe latura lungă a plăcii de beton, s-au blocat doar deplasările în lungul laturii scurte a plăcii, după axa x

În final s-a introdus încărcarea ca o încărcare utilă, uniform distribuită pe placă, totodată programul introducând automat și încărcarea adusă de greutatea proprie a tuturor elementelor ce compun grinda mixtă.

Grinda mixtă finală discretizată în elemente finite este prezentată în figura 4.8.

4.3.4 Prezentarea rezultatelor

Toate etapele prezentate în paragraful anterior reprezintă procesul de preprocesare a datelor de intrare. Calculul structurii cu metoda elementelor finite, are ca efect determinarea câmpului de deplasări și a eforturilor unitare în toate nodurile discretizării, din încărcările introduse și ținând cont de rezemările din noduri. Obținerea datelor de ieșire, a rezultatelor, reprezintă procesul de postprocesare, rezultând deformațiile și eforturile unitare sub forma unor imagini sintetice, care dau informații legate de starea de deformații și de tensiuni în nodurile studiate. Pentru a evidenția mai ușor aceste aspecte, reprezentarea deformațiilor și a tensiunilor apare colorat, în partea dreaptă a fiecărei capturi existând o legendă care explică intervalul de valori (maximă și minimă) corespunzător fiecărei culori evidențiate, pentru fiecare mărime în parte. Toate mărimile prezentate în legendele reprezentărilor grafice, sunt exprimate în: metri pentru deformații, respectiv kN/m² pentru eforturile unitare.

Fig.4.9 Deformațiile grinzii mixte

În figura 4.9 se evidențiază deformațiile după cele trei direcții: u după x, v după y și w după z, la fel ca și deformația componentă totală, pentru fiecare nod al structurii. Se observă că deformația totală maximă a rezultat $\delta_{max} = 19.68$ mm, care respectă condiția (2.246), din capitolul 2:

$$\delta_{\max} = 19.68mm < \frac{L}{300} = 40mm$$

Figura 4.10 prezintă eforturile unitare normale σ_x , σ_y și σ_z , iar în figura 4.11 este prezentată tensiunea echivalentă σ_{ech} (σ Von Misses), calculată conform relației (4.11). În figura 4.11.a este prezentată tensiunea echivalentă în toată grinda mixtă, evidențiindu-se valoarea maximă $\sigma_{ech max} = 179.5 \text{ N/mm}^2$. Această valoare maximă este evidențiată mai bine în figura 4.11.b, figură care prezintă doar o jumătate de grindă mixtă, de la care a fost deselectată o jumătate de placă de beton. Valoarea maximă $\sigma_{ech max} = 179.5 \text{ N/mm}^2$, este poziționată în dreptul golului dreptunghiular, spre marginea mai apropiată de momentul încovoietor maxim. După cum se vede în figurile 4.11.a și b în dala de beton gama de culori referitoare la tensiunea echivalentă este una singură, datorită faptului că eforturile în dală sunt mult mai mici decât cele din grinda de oțel. Pentru acest motiv, în figura 4.11.c sunt prezentate eforturile σ_{ech} , doar pe o jumătate de placă de beton; grinda de oțel fiind deselectată, s-a putut pune în evidență variația eforturilor în dală. Se observă că efortul echivalent maxim în dală este tot în dreptul golului, având valoarea $\sigma_{ech max} = 6.194 \text{ N/mm}^2$.

Conform paragrafului 2.9.1 al capitolului 2, golurile se găsesc în zonă de moment pozitiv, mai apropiate de secțiunea în care momentul încovoietor se anulează. Făcând un calcul rapid referitor la poziția axei neutre elastice (deoarece calculul automat cu calculatorul, se referă la o analiza liniară a structurii), aceasta rezultă în grinda metalică.

Verificarea tensiunilor echivalente maxime se face, conform paragrafului 2.9.1.1, cu relația (2.112) pentru profilul metalic:

$$\sigma_{ech.\,max.ol} = 179.5N / mm^2 < \frac{f_y}{\gamma_u} = \frac{235}{1.1} = 213.6N / mm^2$$

respectiv cu relația (2.113) pentru beton:

 $\sigma_{cch.max.het} = 6.194N / mm^{2} < \frac{0.85 f_{ck}}{\gamma_{c}} = \frac{0.85 \cdot 25}{1.5} = 14.16N / mm^{2}$ $SX \qquad (AUG)$ RSYS=0 DMX = 0.01968 SHN = -11950 SHN = -72713 SMX = 9045 SHXB = 55887 = -11950 SHXB = 55887 = -11950

Fig.4.10 Eforturile normale σ_x , σ_y și σ_z pe întreaga grindă

-7285 -4952 -2619 -286.012 2047 4380 6713 9045

a.

b.

C.

Fig.4.11 Tensiunea echivalentă σ_{ech}

Figura 4.12 prezintă tensiunile tangențiale τ_{xy} , τ_{yz} și τ_{xz} , reprezentate pe toată grinda mixtă, iar figura 4.13, tensiunile principale σ_1 , σ_2 și σ_3 .

Fig.4.12 Tensiunile tangențiale τ_{xy} , τ_{yz} și τ_{xz}

170

Fig.4.13 Tensiunile principale σ_1 , σ_2 și σ_3

Pentru a pune în evidență tensiunea tangențială τ_{xz} (a cărei rezultantă este forța de lunecare, din care se calculează conectorii), în dala de beton, s-a deselectat din nou grinda metalică, rămânând doar placa de beton, ca în figura 4.14. Și în acest caz, tensiunea tangențială maximă τ_{xz} a rezultat în dreptul golului, având valoarea $\tau_{xz max} = 1.228$ N/mm².

Fig.4.14 Tensiunea tangențială τ_{xz} în dala de beton

Calculând forța de lunecare aferentă suprafeței de deasupra golului, ca rezultantă a tensiunii tangențiale maxime $\tau_{xz max} = 1.228 \text{ N/mm}^2$, rezultă o valoare de:

L = 162.1 kN

172

Conform relațiilor (2.203) și (2.204), rezistența de calcul la forfecare a unui gujon având capul sudat rezultă:

 $P_{Rd l} = 90.477 \text{ kN}$ si respectiv:

 $P_{Rd\,2} = 75 \text{ kN}$

Dintre cele două valori de mai sus, se ia valoarea minimă:

 $P_{Rd min} = 75 kN$

Cu care se calculează numărul de conectori necesar deasupra golului:

$$N = \frac{L}{P_{Rd\min}} = 2.16 \text{ conectori} \Rightarrow N = 4 \text{ conectori}$$

număr suficient ținând cont de faptul că deasupra golului și din geometria grinzii rezultă tot 4 conectori.

Fig.4.15 Detaliu de reprezentare a tensiunilor în jurul golului

În figura 4.15 sunt puse în evidență unele detalii privind distribuția eforturilor în jurul golului; se poate observa că în colțurile golului sunt concentrate eforturile maxime. Figura 4.16 arată o reprezentare a deformatei structurii comparativ cu structura inițială nedeformată.

Fig.4.16 Deformata structurii

4.4 CONCLUZII ȘI CONTRIBUȚII PERSONALE LA CAPITOLUL 4

4.4.1 Concluzii

Prezentul capitol începe prin prezentarea metodei elementelor finite, ca metodă eficientă de calcul a structurilor, bazată pe analiza numerică pentru obținerea unor soluții aproximative cu care se determină parametrii: deplasări și eforturi, ce caracterizează câmpuri continue, care sunt elementele finite. Metoda elementelor finite este mult mai avantajoasă decât alte metode numerice, prin aceea că reduce numărul de necunoscute ale problemei, la un număr finit de elemente prin discretizarea structurii în elemente finite. Prin folosirea funcțiilor de interpolare, valorile nodale ale deplasărilor devin necunoscutele problemei. Prin asamblarea elementelor finite se obține sistemul de ecuații al structurii complete. Datorită numărului mare al acestor ecuații, sistemul este practic imposibil de rezolvat pe altă cale decât printr-un calcul automat. Etapele de rezolvare a unei structuri în metoda elementelor finite, sunt:

- 1. Discretizarea structurii
- 2. Alegerea funcțiilor de interpolare
- 3. Evaluarea matricei de rigiditate a elementului finit și vectorul forțelor nodale echivalente
- 4. Asamblarea metricei de element pentru întreaga structură
- 5. Rezolvarea sistemului de ecuații, rezultând deplasările nodurilor

Datorită avantajelor importante ale metodei elementului finit, am ales folosirea acestei metode pentru calculul automat al unor structuri mixte oțel-beton.

Avantajele folosirii acestei metode sunt pe de-o parte datorită faptului că în grinzile mixte discutăm de două tipuri de materiale cu proprietăți fizice și elastice diferite : oțelul și betonul armat, iar pe de altă parte datorită numărului foarte mare de ecuații care intervin în calculul unei asemenea structuri.

În prezentul capitol se prezintă calculul unei structuri mixte oțel-beton, cu două goluri dreptunghiulare în inima profilului metalic, cu ajutorul programului de calcul automat ANSYS 5.0. La calculul acestei structuri, pentru discretizarea dalei de beton au fost folosite elemente finite tridimensionale de tip SOLID65, iar pentru grinda metalică, SOLID45. Sunt prezentate cele două tipuri de elemente finite:

SOLID65 este un element finit foarte avantajos pentru modelarea tridimensională a dalei de beton armat, deoarece permite introducerea, pe lângă materialul de bază: betonul, a încă până la 3 tipuri diferite de armătură (incluzând aici și conectorii). Este prezentat comportamentul liniar al acestui element finit, elementul de noutate în matricea efort – deformație fiind cel care introduce raportul dintre volumul armăturii din elementul respectiv și volumul total al elementului finit ca atare (relația 4.3). Deoarece există elemente finite diferite (doar beton, beton + armătură, beton + armătură + conectori), se introduce pentru fiecare element, numărul materialului de armare corespunzător comportamentului acestuia. Pentru fiecare material de armare se introduc pe lângă numărul materialului, raportul volumelor și unghiurile de orientare ale acesteia (scrise în raport cu sistemul de axe al elementului finit și cel al materialului de armare). Pentru ambele tipuri de materiale: beton și armătură (inclusiv conectori), se introduc proprietățile materialului : modulul lui Young E, coeficientul Poisson v și densitatea materialului ρ . După rezolvarea sistemului de ecuații se obțin deplasările nodale (după fiecare axă, respectiv deplasarea rezultantă) și tensiunile corespunzătoare (tensiuni normale, tangențiale, principale și tensiunea echivalentă).

SOLID45 este tot un element finit prin care se modelează tridimensional o structură solidă, fiind însă mult mai simplu, deoarece există un singur material: oțelul din grinda metalică.

Toate celelalte aspecte referitoare la acest element finit sunt similare celor de la SOLID65.

Pentru exemplificarea folosirii metodei elementului finit la grinzi mixte otel-beton, s-a studiat o grindă mixtă cu 2 goluri dreptunghiulare, prevăzute în inima profilului metalic. Pentru verificarea rezultatelor s-a calculat aceeași grindă mixtă care a fost verificată în capitolul 3, paragraful 3.6, cu cele trei metode prezentate în acel capitol. S-a studiat o grindă mixtă otelbeton, având 12 m deschiderea și prevăzută cu câte un gol dreptunghiular, la fiecare treime a grinzii, gol situat centric în inima profilului metalic al grinzii mixte. Dala de beton a fost discretizată în elemente finite de tip SOLID65 iar grinda metalică în elemente finite de tip SOLID45. S-au introdus toate datele de intrare, ce reprezintă etapa de preprocesare. După rularea exemplului de calcul pe calculator, s-au obtinut datele de iesire. S-au exemplificat deformațiile după cele trei direcții, cât și deformația totală rezultantă. Exemplificarea grafică este făcută prin culori, valorile fiind date în metri. Pentru determinarea veridicității calculului automat, s-a verificat deformația rezultantă comparând-o cu deformația maximă permisă de normele EUROCODE 4. Totodată s-au arătat tensiunile normale și tangențiale, iar apoi tensiunea echivalentă. Aceasta din urmă a fost exemplificată atât pe toată grinda mixtă, cât și separat pe dala singură, deselectând grinda metalică. Tot conform normelor europene EUROCODE 4, s-a verificat efortul echivalent maxim, atât din grinda metalică, cât și din dala de beton, toate verificările fiind îndeplinite. De asemenea s-a verificat faptul că numărul de conectori situati deasupra golului, sunt suficienti, aplicând tot regulile prevăzute în normativul menționat mai sus. Toate reprezentările și verificările de mai sus, reprezintă o contribuție personală la studiul grinzilor mixte cu goluri în inima profilului metalic.

Verificând exemplul grinzii mixte cu cele două goluri dreptunghiulare, acest lucru m-a făcut să extind studiul și asupra grinzilor mixte cu mai multe goluri și de diferite forme, studiu ce va fi prezentat în capitolul care urmează.

4.4.2 Contribuții personale la studiul cu metoda elementelor finite a grinzilor mixte

Dintre cele mai importante contribuții la acest capitol, ar fi de remarcat următoarele:

1. Prezentarea teoretică generală a principiilor metodei elementelor finite, cu descrierea etapelor de rezolvare a problemei pentru diferite structuri

2. Descrierea și particularizarea metodei elementului finit pentru calculul grinzilor mixte oțel-beton, prin folosirea programului de calcul automat ANSYS 5.0

3. Studierea grinzii mixte oțel-beton cu metoda elementului finit, printr-un procedeu nou de discretizare a dalei de beton în elemente finite de tip SOLID65, iar a grinzii metalice în elemente finite de tip SOLID45.

4. Se face apoi o descriere a celor două tipuri de elemente finite : SOLID65, pentru betonul armat, indicându-se relațiile pentru matricile de rigiditate efort-deformație pentru beton și pentru armătura din dală (inclusiv conectorii), și SOLID45 pentru profilul metalic al grinzii mixte, ambele fiind elemente de tip solid tridimensional.

5. După prezentarea teoretică a problemei, este descris studiul unei grinzi mixte oțel-beton, având două goluri dreptunghiulare în inima profilului metalic, cu metoda elementului finit, care se referă la prezentarea geometriei grinzii și a golurilor din inimă, cu dimensiunile acestora și la discretizarea grinzii mixte cu goluri dreptunghiulare, în elemente finite.

6. O contribuție importantă se referă la prezentarea rezultatelor obținute în urma calculului grinzii cu metoda elementului finit, care cuprind: valorile deformațiilor grinzii și condițiile de verificare a acestora, valorile eforturilor unitare normale σ_x , σ_y și σ_z , a tensiunilor tangențiale τ_{xy} , τ_{yz} și τ_{xz} , a tensiunilor principale σ_1 , σ_2 și σ_3 și a tensiunii echivalente σ_{ech} și σ_{int} pentru aceste rezultate prezentate, s-au făcut verificările de rezistență, conform EUROCODE 4, atât în profilul metalic, cât și în dala de beton.

CAPITOLUL 5

STUDIUL CU METODA ELEMENTELOR FINITE A GRINZILOR MIXTE OȚEL-BETON CU GOLURI HEXAGONALE, CIRCULARE ȘI GOLURI AVÂND O FORMĂ ALUNGITĂ, ÎN INIMĂ

5.1 ASPECTE GENERALE

5.1.1 Profilele metalice cu goluri dese în inimă – o soluție eficientă pentru realizarea grinzilor mixte oțel-beton

Profilele metalice (ce alcătuiesc alături de dala de beton armat, grinzile mixte) prevăzute în inimă cu goluri de diferite forme: dreptunghiulare, hexagonale, circulare sau de o formă alungită, obținute din profile laminate , sau sudate, dublu T, găsesc o întrebuințare tot mai largă în domeniul construcțiilor, în special pe plan mondial, dar și în țara noastră.

Utilizarea profilelor cu goluri dese în inimă, pentru grinda metalică a grinzii mixte oțel-beton, permite optimizarea spațiului și a deschiderii lucrării, reducând greutatea structurii și asigurând flexibilitatea construcției. Totodată ele permit trecerea conductelor pentru instalații sanitare, de încălzire, de ventilație sau electrice.

Folosirea acestor profile metalice cu goluri dese în inimă, ca parte componentă a grinzii mixte, prin diminuarea greutății și câștigul în înălțime, reduce costul construcției, realizând proiecte estetice.

Grinzile mixte oțel-beton, care au grinda metalică prevăzută cu goluri dese în inimă, oferă deci următoarele avantaje:

- estetică : prin utilizarea judicioasă a proprietăților geometrice
- *flexibilitatea* : permițând trecerea conductelor și a țevilor de instalații prin inima grinzii metalice
- scăderea greutății : construcții ușoare datorită rigidității mari a grinzii, permițând chiar și realizarea de grinzi asimetrice
- optimizarea volumului (a spațiului) : prin reducerea numărului necesar de stâlpi, rezultând deschideri mai mari și de asemenea prin creșterea spațiului dintre pardoseală și tavan (a înălțimii libere)
- rapiditate în asamblare : facilitează reducerea timpului efectiv de construcție

5.1.2 Obiectivul capitolului 5

În ceea ce privește lucrarea de față, în capitolul anterior s-a prezentat un caz special de grindă mixtă cu goluri în inima profilului metalic, și anume grinda era prevăzută cu doar două goluri dreptunghiulare, situate la o distanță suficient de mare unul față de celălalt, pentru a nu putea considera grinda metalică ca un profil cu goluri dese. S-a ales acel exemplu deoarece acea

grindă mixtă a fost verificată în capitolul 3, cu cele trei metode prezentate în acel capitol, deci grinda a fost calculată după toate cerințele acelor principii de proiectare. În capitolul 4, aceeași grindă a fost calculată folosind metoda elementului finit, cu ajutorul calculatorului, cu programul de calcul automat ANSYS 5.0. În urma acestui calcul automat au fost verificate unele rezultate obținute, reieșind veridicitatea calculului cu acest program.

Acest fapt a condus la extinderea calculului cu ajutorul calculatorului, și pentru alte grinzi mixte oțel-beton, cu goluri în inima profilului metalic, prin folosirea acestor profile metalice la care golurile sunt dispuse mai des.

Din multitudinea de forme de goluri, am ales pentru studiul următor, golurile hexagonale, circulare și având o formă alungită, golurile dreptunghiulare nemaifiind reconsiderate în varianta profilelor cu goluri dese.

5.1.3 Prezentarea formei și a dimensiunilor golurilor

După modul de tăiere a inimii profilelor dublu T și după forma golurilor, profilele metalice, cu goluri dese pot fi de diferite tipuri: profile cu goluri dreptunghiulare, hexagonale, octogonale, circulare, ovale, sau goluri de formă alungită, etc.

După cum a fost explicat în paragraful anterior, studiul prezentului capitol s-a oprit doar la golurile hexagonale, circulare și cele cu forma alungită în direcția longitudinală a grinzii. Pentru a păstra o continuitate cu studiul grinzilor mixte cu goluri dreptunghiulare, s-a lucrat în continuare tot cu aceeași grindă metalică, având caracteristicile geometrice ale unui profil cu înălțimea finală H = 600mm, în care au rezultat printr-o tăiere și resudare goluri de forma menționată anterior. Din acest considerent vor fi prezentate în continuare doar profilele metalice cu aceste tipuri de goluri, exemplificând alegerea dimensiunilor:

1. Profile metalice cu goluri hexagonale (figura 5.1):

Fig.5.1 Dimensiunile profilelor metalice cu goluri hexagonale

Caracteristicile dimensionale ale golurilor hexagonale, s-au ales în funcție de înălțimea inițială a profilurilor metalice h, conform [75], ținând totodată cont și de condițiile de rezemare, care s-au ales identice cu cele prezentate în capitolul 4, la grinda mixtă prevăzută cu cele două goluri dreptunghiulare.

- Pornind de la profile metalice cu înălțimile h = 500mm, h = 475mm și h = 450mm și considerând *înălțimile profilelor T, de deasupra și de dedesubtul golurilor* :

$$a = \frac{h}{3} \div \frac{h}{2.5} \tag{5.1}$$

au rezultat valorile lui a, cuprinse în intervalul:

 $a = (150 \div 200)mm$

Acest domeniu posibil de variație a înălțimii profilelor T de deasupra și de sub gol, a făcut să se aleagă trei valori pentru această înălțime, astfel realizând și o optimizare a înălțimii golului. După cum se va vedea în continuare, s-au ales valorile lui *a* egale cu :

a = 200, 175 și 150 mm.

- Din figura 5.1.a se observă că înălțimea inițială h este egală cu:
 h = 2a + v
 (5.2)
- Înălțimea finală a profilului obținut după tăiere și sudare, este egală cu: H = 2(a + v)

Astfel pentru profilul cu înălțimea inițială cea mai mare h = 500mm, luând a = h/2.5, conform (5.1), se obține a = 200mm și aplicând relația (5.2) rezultă v = 100mm. Înălțimea finală a acestui profil, din relația (5.3), rezultă H = 600mm.

(5.3)

Pentru profilul cu înălțimea inițială cea mai mică h = 450mm, luând a = h/3, conform (5.1), rezultă a = 150mm și din relația (5.2) v = 150mm. Calculând cu relația (5.3) înălțimea finală pentru acest profil, se observă că această rezultă tot H = 600mm.

- Înălțimea golurilor $h_g = 2v$, a rezultat egală cu: $h_g = 200, 250$ și 300 mm.

- Lungimea de contact b, dintre cele două părți sudate ale secțiunii pline, egală cu lungimea porțiunii de secțiune constantă a profilelor T, s-a luat tot în funcție de înălțimea totală h, a profilului metalic:

$$b = \frac{h}{2} \div \frac{h}{1.5} \tag{5.4}$$

Înlocuind în relația de mai sus valorile lui h menționate, s-a luat o valoare constantă pentru b, (variind doar înălțimea golurilor și a profilelor T de deasupra și de sub gol), egală cu:

b = 300 mm.

- Pasul profilelor p, egal cu distanța dintre axele verticale a două goluri sau plinuri consecutive:

$$p = (1.9 \div 2.2)h$$
 (5.5)

De asemenea pentru pasul \boldsymbol{p} , s-a luat tot o valoare constantă egală cu:

p = 960 mm.

- Lungimea porțiunii cu secțiune variabilă a golurilor c, măsurată paralel cu axa grinzii se calculează cu relația:

$$c = \frac{p - 2b}{2} \tag{5.6}$$

rezultând valoarea constantă:

c = 180 mm.

2. Profile metalice cu goluri circulare (figura 5.2):

-

Pentru a putea utiliza rezultatele obținute la cele trei tipuri de grinzi mixte studiate în acest capitol (cu goluri hexagonale, circulare și alungite), prin compararea rezultatelor obținute, realizând o optimizare a dimensiunilor și a formelor golurilor, s-au ales dimensiunile golurilor circulare pornind de la cele ale golurilor hexagonale.

Fig.5.2 Dimensiunile profilelor metalice cu goluri circulare

- Înălțimea a, a profilelor T de deasupra și de dedesubtul golurilor, s-a păstrat aceeași ca în cazul golurilor hexagonale (tot pentru trei variante de înălțime a golurilor), și anume :
 a = 200, 175 și 150 mm.
- Înălțimea golurilor $h_g = 2R$, a fost luată tot la fel: $h_g = 200, 250$ și 300 mm.

Deci, raza golului a rezultat cu cele trei valori variabile: R = 100, 125 și 150 mm.

- Pasul profilelor p, egal cu distanța dintre axele verticale a două goluri sau plinuri consecutive, s-a păstrat de asemenea neschimbată, rezultând valoarea constantă:
 p = 960 mm.
- Lungimea de contact b, dintre cele două părți ale secțiunii pline, egală cu lungimea porțiunii de secțiune constantă a profilelor T, se calculează în acest caz cu relația: b = p - 2R (5.7)

Deoarece lungimea b este funcție de raza golului R, care are o valoare variabilă în cele trei cazuri studiate, și distanța b a rezultat cu valorile variabile:

b = 760, 710 și 660 mm.

3. Profile metalice cu goluri de formă alungită (figura 5.3):

Golurile având forma alungită în sensul longitudinal al grinzii, s-au dimensionat pornind de la cele hexagonale, considerând că golurile alungite sunt înscrise în hexagoanele corespunzătoare.

Tot pentru a putea compara rezultatele obținute, s-au păstrat mai multe dimensiuni similare cu cele de la golurile hexagonale, după cum urmează:
Înălțimea a, a profilelor T de deasupra și de dedesubtul golurilor, s-a păstrat aceeasi ca în cazul golurilor hexagonale (tot pentru trei variante de înălțime a golurilor), și anume : a = 200, 175 si 150 mm.

1

1

Fig.5.3 Dimensiunile profilelor metalice cu goluri alungite

- *Înălțimea golurilor* h_g , a rezultat identic: $h_g = 200, 250$ şi 300 mm.
- Pasul profilelor p, egal cu distanța dintre axele verticale a două goluri sau plinuri consecutive, s-a păstrat de asemenea neschimbată, rezultând valoarea constantă: p = 960 mm.

Toate celelalte dimensiuni au rezultat din condiția de înscriere a golului alungit în hexagonul corespunzător, și vor fi prezentate în continuare.

Înainte de a prezenta studiul propriu-zis al grinzilor mixte otel-beton cu goluri dese în inimă, se precizează că pentru a folosi aceeași grindă mixtă pentru toate trei tipurile de goluri alese, (hexagonale, circulare și alungite) se prezintă întâi o grindă mixtă cu inima plină, (deci fără goluri în inimă), cea cu înălțimea inițială maximă a profilului metalic, h = 500mm.

GRINDA MIXTĂ OȚEL-BETON, CU INIMA PLINĂ, CA 5.2 STRUCTURĂ DE BAZĂ PENTRU GRINZILE CU GOLURI ÎN INIMĂ

5.2.1 Considerații generale privind aplicarea metodei elementelor finite, la calculul structurilor mixte

După cum s-a prezentat și în capitolul 4, stabilirea stării de eforturi și de deformație într-o grindă mixtă oțel-beton, printr-un calcul manual, ar fi practic imposibilă, datorită pe de-o parte faptului că intervin materiale având proprietăți fizice și mecanice diferite, iar pe de altă parte (si de fapt acest motiv este primordial), datorită faptului că în urma calculului cu metoda elementului finit rezultă un număr foarte mare de ecuații și necunoscute, de ordinul miilor sau zecilor de mii.

Din considerentele arătate mai sus, toate structurile analizate în prezenta lucrare au fost calculate cu ajutorul programului de calcul automat ANSYS 5.0.

Structura discretizată în elemente finite este o structură spațială. Din acest motiv elementele finite s-au luat de tip SOLID, acestea fiind cele care se apropie cel mai bine de comportamentul real al structurii, modelând grinda mixtă cât mai aproape de realitate.

Datorită faptului că atât structura cât și încărcările și rezemările, sunt spațiale, determinarea stării de eforturi unitare și deformații, s-a obținut prin integrarea unui sistem de ecuații cu derivate parțiale, respectând condițiile de margine impuse la extremitățile domeniului în zonele de interacțiune.

Starea de eforturi unitare este modelată prin ecuațiile generale cu derivate parțiale (ecuațiile lui Navier), [43], [44]:

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + \overline{X} = 0$$

$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + \overline{Y} = 0$$

$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_z}{\partial z} + \overline{Z} = 0$$
(5.8)

unde: σ_x , σ_y , σ_z , τ_{xy} , τ_{yz} , τ_{zx} : sunt eforturile unitare $\overline{X}, \overline{Y}, \overline{Z}$: sunt componentele masice

La aceste ecuații se atașează următoarele relații de legătură:

 relațiile generale de legătură dintre vectorul deformațiilor specifice și vectorul deplasărilor:

$$\{\varepsilon\} = \begin{cases} \varepsilon_{x} \\ \varepsilon_{y} \\ \varepsilon_{z} \\ \gamma_{xy} \\ \gamma_{yz} \\ \gamma_{zx} \end{cases} = \begin{bmatrix} \frac{\partial}{\partial x} & 0 & 0 \\ 0 & \frac{\partial}{\partial y} & 0 \\ 0 & 0 & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial x} & 0 \\ 0 & \frac{\partial}{\partial z} & \frac{\partial}{\partial y} \\ 0 & \frac{\partial}{\partial z} & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} & 0 & \frac{\partial}{\partial x} \end{bmatrix} \cdot \begin{cases} u \\ v \\ w \end{cases} = [\partial] \cdot \{d\}$$
(5.9)

unde:

 $\{\varepsilon\}$: este vectorul deformațiilor specifice

 $\{d\}$: este vectorul componentelor deplasărilor

 $[\partial]$: este o matrice operator

- relațiile de legătură dintre eforturi și deformațiile specifice din domeniul liniar al comportării materialului, exprimate prin legea generalizată a lui Hooke:

$$\{\sigma\} = [E] \cdot \{\varepsilon\} \tag{5.10}$$

în care:

 $\{\sigma\}$: este vectorul componentelor eforturi unitare: σ_x , σ_y , σ_z , τ_{xy} , τ_{yz} , τ_{zx}

 $\{\varepsilon\}$: este vectorul deformațiilor specifice, definit conform relației (5.9)

[E]: este o matrice simetrică a constantelor elastice, care are următoarea formă, în cazul materialelor izotrope, pentru starea de deformație spațială:

$$[E] = \frac{E(1-\mu)}{(1+\mu)(1-2\mu)} \begin{bmatrix} 1 & \frac{\mu}{1-\mu} & \frac{\mu}{1-\mu} & 0 & 0 & 0\\ \frac{\mu}{1-\mu} & 1 & \frac{\mu}{1-\mu} & 0 & 0 & 0\\ \frac{\mu}{1-\mu} & \frac{\mu}{1-\mu} & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{1-2\mu}{2(1-\mu)} & 0 & 0\\ 0 & 0 & 0 & 0 & \frac{1-2\mu}{2(1-\mu)} & 0\\ 0 & 0 & 0 & 0 & 0 & \frac{1-2\mu}{2(1-\mu)} \end{bmatrix}$$
(5.11)

unde:

E și μ : sunt modulul de elasticitate longitudinal (Young) și respectiv coeficientul Poisson al materialului

Pornind de la ecuațiile generale prezentate mai sus, ecuațiile particulare folosite pentru calculul structurilor mixte oțel-beton cu metoda elementului finit, au fost prezentate în capitolul 4.

Astfel, considerând dala de beton armat discretizată în elemente finite de tip SOLID65, prezentate în paragraful 4.2.1, matricea efort-deformație în cazul unui calcul liniar, pentru acest element tridimensional, este dată de relația (4.3).

Profilul metalic a fost discretizat tot în elemente finite tridimensionale de tip SOLID45, prezentate în paragraful 4.2.2.

5.2.2 Prezentarea grinzii mixte oțel-beton, cu inima plină

În calculul grinzilor mixte oțel-beton cu goluri dese în inimă, s-a pornit de la o grindă mixtă cu inimă plină, având înălțimea profilului metalic h (conform paragrafului 5.1.3), profilul fiind considerat pentru simplificare ca având tălpile sudate de inimă (figura 5.4.b). Deschiderea grinzii este de 12 m, ea făcând parte dintr-un ansamblu de grinzi, situate la o distanță de 2.5 m una față de alta. Dala de beton având greutatea specifică normală, are grosimea de 12 cm , conform figurii 5.4. Armătura transversală și longitudinală este realizată din bare de diametru 14 mm ,dispuse la 200 mm distanță unele față de altele, după cum se vede în figura 5.4.b. Conectorii ductili de tip gujon cu cap sudat, au diametrul de 20 mm și înălțimea totală de 80 mm , conform figurii 5.4.b.

Toate condițiile de rezemare și de încărcare, se vor lua identice cu exemplul prezentat în capitolul 4.

Considerând că grinda mixtă prezentată face parte dintr-un ansamblu de grinzi secundare, care reazemă la capete pe grinzi principale, se va considera că profilul metalic este prins de grinda principală printr-o legătură perfectă, impunându-se blocarea deplasărilor pe cele trei direcții. În schimb, plăcii de beton i se va împiedica posibilitatea de deplasare doar pe direcție verticală, în sensul axei y. Din acest motiv, ansamblul este considerat din punct de vedere static într-o situație intermediară între o grindă simplu rezemată și o grindă dublu încastrată. În cele ce urmează, se va vedea că datorită celor arătate mai sus, eforturile maxime rezultă în secțiuni situate mai aproape de reazeme, chiar dacă este vorba de eforturi unitare normale σ (stiut fiind faptul că la grinda dublu încastrată momentele maxime sunt pe reazeme).

Discretizarea structurii, pentru exemplele ce vor urma, va fi făcută tot cu elemente finite tridimensionale de tip SOLID65, pentru dala de beton armat (rezultând aceleași tipuri de elemente ca în cazul exemplului cu golurile dreptunghiulare), iar pentru grinda metalică, elemente de tip SOLID45.

Încărcarea va fi considerată tot la fel cu cea din exemplul anterior, distribuită tot pe suprafața dalei, iar rezemarea de asemenea identică.

Se va lucra în același sistem de axe, cu originea în centrul de greutate al secțiunii de contact dintre talpa superioară a profilului metalic și dala de beton armat.

BUPT

Dimensiunile liniare vor fi introduse tot în metri, iar forțele în kN.

5.3 STUDIUL STĂRII DE EFORTURI ȘI DEFORMAȚII LA GRINZI MIXTE OȚEL-BETON, CU GOLURI HEXAGONALE

184

5.3.1 Discretizarea domeniului de analiză pentru grinzile mixte cu goluri hexagonale

Ansamblul grinzilor mixte oțel-beton, cu goluri, studiate în continuare, fie că sunt goluri hexagonale, sau circulare, sau de formă alungită, pornesc de la grinda mixtă cu inimă plină, arătată în paragraful 5.2.

Toate elementele componente: grinda metalică, dala de beton armat, conectorii și armătura flexibilă, sunt identice cu cele ce alcătuiesc grinda mixtă cu inimă plină, prezentate în paragraful 5.2.2.

Diferența față de acel exemplu constă în prezența golurilor în inima profilului metalic.

S-au ales pentru studiu trei grinzi cu goluri hexagonale, la care dimensiunile golurilor s-au ales conform paragrafului 5.1.3, figura 5.1, luând înălțimea golului egală cu $h_g = 200$ mm (fig. 5.5.a), 250mm și 300mm (fig. 5.5.b).

Fig.5.5 Elevația și secțiunea transversală a grinzii mixte, cu goluri hexagonale

Pentru grinda mixtă oțel-beton cu goluri hexagonale, este prezentată în figura 5.5.a, o vedere în elevație a grinzii, pentru înălțimea golului $h_g = 200$ mm (cel mai mic gol), iar în figura 5.5.b, pentru $h_g = 300$ mm (cel mai mare gol).

În figura 5.5.c se poate vedea secțiunea transversală a grinzii mixte cu goluri hexagonale, unde diferă de la un caz la altul doar înălțimea golului h_g .

În figura 5.6 este prezentată o vedere longitudinală a grinzii mixte cu golul de $h_g = 200$ mm, dar pentru a se putea vizualiza mai bine discretizarea grinzii metalice cu goluri în inimă, în elemente finite, este arătată numai o jumătate de grindă.

Fig.5.6 Elevația grinzii mixte oțel-beton, cu goluri hexagonale pentru $h_g = 200 \text{ mm}$

5.3.2 Optimizarea dimensiunilor golurilor hexagonale, la grinzile mixte

Exemplul prezentat în paragraful 5.3.1, se referă la o grindă mixtă oțel-beton, prevăzută cu goluri hexagonale în inima profilului metalic, înălțimea golului fiind $h_g = 200$ mm și 300mm.

După ce a fost rulat exemplul cu $h_g = 200$ mm, obținând starea de eforturi și de deformații în grinda mixtă cu goluri hexagonale în inimă, s-a modificat înălțimea golului, de două ori, aceasta rezultând $h_{g,2} = 250$ mm și $h_{g,3} = 300$ mm (dacă considerăm pentru primul exemplu, înălțimea golului notată cu $h_{g,1} = 200$ mm).

În următoarele două exemple s-au modificat deci înălțimile golului hexagonal h_g , dar pasul golurilor (distanța dintre centrele de greutate ale golurilor) a rămas același: p = 960 mm

(după cum se vede în figura 5.5.a și b). Evident că, crescând înălțimea golului s-au modificat și alte dimensiuni longitudinale, păstrând însă dimensiunea pasului dintre goluri.

Tot ceea ce ține de elementele componente ale grinzii mixte, de rezemări și de încărcări, au rămas neschimbate, conform paragrafului 5.2. Secțiunea transversală și elevația grinzii mixte, este similară cu cea din primul exemplu, modificându-se doar mărimile dimensionale de care s-a pomenit mai sus.

Pentru a putea face o comparație a rezultatelor obținute și a trage niște concluzii referitoare la optimizarea dimensiunilor golurilor hexagonale, în tabelele de mai jos, 5.1 și 5.2, se prezintă principalele mărimi obținute în cazul celor trei exemple de grinzi cu goluri hexagonale.

Var.	h _g	h _g /H	σ _{x max}	σ _{y max}	σ _{z max}	τ _{xy max}	τ _{yz max}	τ _{xz max}
-	mm	-	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²
Hex 1	200	0.333	47.015	44.067	116.077	2.297	84.15	7.663
Hex 2	250	0.416	47.112	49.409	122.291	2.224	81.05	7.614
Hex 3	300	0.5	47.185	72.328	153.544	5.118	85.476	10.111

Tensiunile normale și tangențiale, la cele trei grinzi cu goluri hexagonale	Tabelul 5.1
---	-------------

Tensiunile principale, tensiunea echivalentă, intensitatea tensiunii și deformația componentă, la cele trei grinzi cu goluri hexagonale Tabelul 5.2

Var.	h _g	h _g /H	σ _{1 max}	σ _{2 max}	σ _{3 max}	σ _{ech max}	σ _{int max}	δ _{max}
-	mm	-	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²	mm
Hex 1	200	0.333	104.489	47.638	146.37	152.318	168.312	5.78
Hex 2	250	0.416	107.511	47.712	145.97	152.102	162.161	6.017
Hex 3	300	0.5	115.173	47.755	171.472	161.02	172.038	6.312

În ambele tabele 5.1 și 5.2, în coloana 3 este dată valoarea raportului dintre înălțimea golului și înălțimea profilului metalic al grinzii mixte, h_g / H .

Pentru fiecare raport, sunt date în tabelul 5.1, tensiunile normale și tangențiale, maxime, evident acestea rezultând într-o secțiune metalică, situată spre reazemele grinzii, după cum se va vedea în figurile următoare.

În tabelul 5.2 sunt date, tot pentru aceleași rapoarte h_g / H, tensiunile principale maxime, tensiunea echivalentă maximă, intensitatea tensiunii maxime și deformația componentă totală, pentru cele trei grinzi cu goluri hexagonale.

Valorile tensiunilor sunt exprimate în tabele, în N/mm² iar ale deformațiilor în mm.

Pentru a compara rezultatele obținute, ele s-au reprezentat în graficele din figurile următoare.

În figura 5.7 este prezentată variația fiecărei tensiuni normale σ_x , σ_y și σ_z (notate în diagramă cu Sx, Sy și Sz, la fel ca și în capturile obținute în urma calculului automat cu programul ANSYS), prin blocuri rectangulare de culori diferite, fiecare culoare însemnând un alt raport h_g / H (după cum se vede în legenda situată în dreapta diagramelor).

Fig.5.7 Variația tensiunilor normale, pentru cele trei grinzi mixte cu goluri hexagonale

Din diagramele de mai sus se poate observa că în vreme ce tensiunea normală σ_x este practic constantă pentru cele trei variante de goluri, nefiind influențată de modificarea înălțimii acestora, tensiunile σ_y și σ_z cresc simțitor ca valoare, în cazul celui de-al treilea gol, la care de fapt înălțimea golului reprezintă mai mult de 50% din înălțimea inimii profilului metalic. Figura 5.8 prezintă în mod similar, diagramele de tensiuni tangențiale τ_{xy} , τ_{yz} și τ_{xz} (notate cu Sxy, Syz și Sxz). După cum s-a putut vedea și din tabelul 5.1, valorile tensiunilor τ_{xy} și τ_{xz} sunt mici și practic de valori aproximativ egale pentru cele trei tipuri de goluri, în vreme ce tensiunea τ_{yz} are valori mai mari (tot în profilul metalic, după cum se va vedea în continuare). De asemenea, se vede o creștere mai semnificativă a tensiunilor tangențiale, în cazul celui de-al treilea tip de gol.

Fig.5.8 Variația tensiunilor tangențiale, pentru cele trei grinzi mixte cu goluri hexagonale

Fig.5.9 Variația tensiunilor principale, a celei echivalente și a intensității tensiunii, pentru cele trei grinzi mixte cu goluri hexagonale

Și în figura 5.9, se pot trage concluzii similare; aici sunt reprezentate diagramele tensiunilor principale σ_1 , σ_2 , σ_3 , a tensiunii echivalente σ_{ech} și a intensității tensiunilor σ_{int} . Se mai poate verifica și valoarea maximă a tensiunii echivalente, care corespunde celui de-al

treilea gol, de înălțime $h_g = 300 \text{ mm}$:

$$\sigma_{ech, max} = 161.02 N / mm^2 < \frac{f_y}{\gamma_a} = \frac{235}{1.1} = 213.6 N / mm^2$$

S-a mai arătat și diagrama de variație a deformatei (săgeții – notată cu usum în grafic) totale componente δ_{max} , în figura 5.10, care după cum este firesc are o creștere aproximativ liniară, odată cu creșterea înălțimii golului. Reprezentarea s-a făcut de data aceasta sub forma unui grafic, unde în abscisă se găsesc rapoartele h_g / H, iar în ordonată valorile deformațiilor δ_{max} , în milimetri.

Fig.5.10 Variația deformațiilor componente, pentru cele trei grinzi mixte cu goluri hexagonale

Din diagramele prezentate se poate trage o concluzie și anume că dacă înălțimea golului h_g se situează în intervalul:

$$h_g = \left(\frac{H}{3} \div \frac{H}{2.5}\right) \tag{5.12}$$

unde: H : este înălțimea profilului metalic,

variația eforturilor este practic inexistentă, eforturile fiind aproximativ egale în acest interval. Când înălțimea golului crește, cum este pentru cel de-al treilea exemplu, unde $h_g = \frac{H}{2}$, se observă o creștere substanțială a eforturilor, în cazul grinzilor mixte cu goluri hexagonale.

5.3.3 Prezentarea rezultatelor

Simularea numerică prin metoda elementului finit are ca rezultat determinarea câmpului de deplasări și a eforturilor unitare în toate nodurile în care a fost discretizată structura. Prin operația de postprocesare s-au obținut imaginile sintetice, care se pot vedea cu ajutorul procedeelor de captare a acestora.

Pentru a putea folosi rezultatele, prin verificarea unor valori maxime determinate, imaginea deplasărilor și a tensiunilor este prezentată colorată, fiecare imagine fiind însoțită de legenda care arată pentru fiecare culoare, intervalul în care se situează mărimea verificată (eforturi sau deformații). Totodată este precizată valoarea maximă și minimă a mărimii studiate (cu semne algebrice), precizare importantă ținând cont că în general suntem interesați să facem verificarea structurii (atât din punct de vedere al rezistenței cît și cel al rigidității).

Mărimile prezentate în legende sunt exprimate în: metri pentru deformații, respectiv kN/m^2 pentru tensiuni (eforturi).

După cum s-a văzut în tabelele 5.1 și 5.2, eforturile maxime pe toată grinda au rezultat, după cum este și firesc, în profilul metalic.

Pentru a putea evidenția și eforturile în dala de beton, trebuie deselectat profilul metalic, rămânând doar placa de beton. În această situație gama de culori va permite prezentarea stării de eforturi și în dală (situație explicată și în cazul celeilalte grinzi mixte studiate anterior, cea cu golurile dreptunghiulare). Acest studiu al eforturilor din dală va face obiectul unui subcapitol separat, în care se vor prezenta eforturile de la acest nivel și printr-o comparație între goluri de diferite forme.

În acest paragraf vor fi prezentate câteva rezultate, în cazul unei singure grinzi mixte cu goluri hexagonale, și anume cea la care înălțimea golului este $h_g = 300 \text{ mm}$, pentru celelalte două grinzi starea de eforturi fiind similară.

Toate eforturile prezentate se referă după cum s-a spus, la grinda metalică, pe toată grinda mixtă acestea având valori maxime.

Pentru a vizualiza eforturile mai bine, acestea sunt prezentate întâi pe toată grinda mixtă oțelbeton și apoi imediat, este arătat un detaliu din grindă, spre reazem, unde eforturile sunt maxime.

Au fost alese să fie prezentate doar eforturile mai importante și anume: tensiunile normale σ_x , σ_y și σ_z , apoi tensiunea tangențială τ_{yz} (care după cum se vede din diagramele prezentate în figura 5.8, are valori semnificativ mai mari decât celelalte două tensiuni tangențiale, în profilul metalic), și în final tensiunea echivalentă σ_{ech}

În final se va prezenta și deformata grinzii mixte.

Figurile 5.11 și 5.12 prezintă starea de eforturi în ceea ce privește tensiunea normală σ_x observându-se în detaliul din figura 5.12 și secțiunile în care efortul este maxim (notat pe imagine cu MX), respectiv minim (notat cu MN).

Valorile extreme ale tensiunii sunt în tălpile profilului metalic.

Evident efortul care se verifică, este cel minim, situat în talpa inferioară a profilului metalic, care luat în valoare absolută are valoarea maximă :

 $\sigma_{x max} = 47.185 \text{ N/mm}^2$

care verifică condiția de rezistență impusă de EUROCODE 4.

Fig.5.11 Tensiunea normală σ_x , în grinda mixtă cu goluri hexagonale de h_g = 300mm

Fig.5.12 Detaliu de reazem al tensiunii σ_x , în grinda cu goluri hexagonale de h_g = 300mm

Fig.5.13 Tensiunea normală σ_y , în grinda mixtă cu goluri hexagonale de h_g = 300mm

Fig.5.14 Detaliu de reazem al tensiunii σ_y , în grinda cu goluri hexagonale de h_g = 300mm

Figurile 5.13 și 5.14 arată variația tensiunii normale σ_y , care după cum se vede în detaliu, are valorile extreme în inima profilului metalic, mai precis în colțurile golului care este cel mai apropiat de reazem, valoarea maximă în valoare absolută, fiind de fapt chiar în colțul dinspre reazem, $\sigma_{y max} = 72.328 \text{ N/mm}^2$.

În imaginile următoare se poate vedea starea de eforturi, referitoare la cea mai importantă tensiune normală, σ_z , dacă ne gândim la valorile acestei tensiuni care sunt mult mai mari decât celelalte două.

Fig.5.15 Tensiunea normală σ_z , în grinda mixtă cu goluri hexagonale de $h_g = 300$ mm

Fig.5.16 Detaliu de reazem al tensiunii σ_z , în grinda cu goluri hexagonale de $h_g = 300$ mm

Se poate observa că tensiunile extreme sunt tot în secțiunile situate spre reazemul grinzii mixte, unde momentul încovoietor este maxim, dar de asemenea valori semnificative sunt și la mijlocul grinzii.

Valoarea maximă a tensiunii σ_z (în valoare absolută), a rezultat în colțul inferior al golului cel mai apropiat de reazem :

 $\sigma_{z \max} = 153.544 \text{ N/mm}^2$

care verifică condiția de rezistență impusă de EUROCODE 4.

Valoarea maximă rezultă în secțiunea slăbită de gol, dar în fibra inferioară, care este mai îndepărtată de axa neutră elastică.

Figurile 5.17 și 5.18 reprezintă cea mai însemnată tensiune tangențială τ_{yz} , care este maximă în secțiunile din reazemele grinzii, unde și forța tăietoare este maximă.

Fig.5.17 Tensiunea tangențială τ_{yz} , în grinda mixtă cu goluri hexagonale de h_g = 300mm

Fig.5.18 Detaliu de reazem al tensiunii τ_{yz} , în grinda cu goluri hexagonale de h_g = 300mm

În detaliul din figura 5.18 se poate vizualiza tensiunea tangențială maximă :

 $\tau_{yz max} = 85.476 \text{ N/mm}^2$

care se găsește în inima profilului metalic, în colțul golului care este cel mai apropiat de reazem.

Colțul golului unde tensiunea τ_{yz} este maximă, este situat în lungul axei centrului de greutate al profilului metalic, cel mai apropiat de axa neutră elastică, unde tensiunea tangențială în lungul inimii, se cunoaște că este maximă.

Fig.5.19 Tensiunea echivalentă σ_{ech} , în grinda mixtă cu goluri hexagonale de h_g = 300mm

Tensiunea echivalentă σ_{ech} este prezentată în figurile 5.19 și 5.20, remarcându-se tensiunea maximă în aceeași secțiune în care este și σ_z maximă.

Această valoare maximă a tensiunii echivalente:

 $\sigma_{ech max} = 161.02 \text{ N/mm}^2$

verifică de asemenea condiția de rezistență impusă de EUROCODE 4, după cum s-a arătat anterior.

S-a mai prezentat în figura 5.21 și o vedere a structurii deformate (în paralel cu structura nedeformată), unde este indicată și deformația (săgeata) totală maximă :

 $\delta_{\text{max}} = 6.312 \text{ mm}$

care se poate vedea și în figura 5.22, unde se reprezintă variația deformației totale componente, în lungul grinzii mixte.

Fig.5.21 Deformata grinzii mixte cu goluri hexagonale, de $h_g = 300$ mm

Fig.5.22 Săgeata totală componentă a grinzii mixte cu goluri hexagonale, de $h_g = 300$ mm

5.4 STUDIUL STĂRII DE EFORTURI ȘI DEFORMAȚII LA GRINZI MIXTE OȚEL-BETON, CU GOLURI CIRCULARE

5.4.1 Discretizarea domeniului de analiză pentru grinzile mixte cu goluri circulare

Pentru continuarea studiului, s-a lucrat pornind tot de la grinda mixtă cu inima plină prezentată în paragraful 5.2.

Elementele componente sunt identice, cu diferența că în inima profilului metalic sunt prevăzute goluri circulare, având diametrul alternant. Astfel, primul exemplu a fost cu diametrul golului egal cu D = 200mm, apoi acesta s-a mărit la D = 250mm iar în final s-a luat diametrul D = 300mm.

Golurile circulare s-au ales conform paragrafului 5.1.3 și figurii 5.2, luându-se diametrele golurilor la fel ca și înălțimea golurilor hexagonale, din paragraful 5.3. Tot la fel pasul golurilor (distanțele dintre centrele de greutate ale golurilor circulare), s-a păstrat același pentru cele trei exemple de grinzi cu goluri circulare p = 960mm.

198

Fig.5.23 Elevația și secțiunea transversală a grinzii mixte, cu goluri circulare

În figura 5.23 se prezintă o jumătate de grindă mixtă cu goluri circulare în inima profilului metalic, într-o vedere longitudinală și anume cele mai mici goluri, de diametru D = 200mm, în figura 5.23.a, iar pentru cele mai mari goluri, de D = 300mm, în figura 5.23.b, respectiv secțiunea transversală a acestora în figura 5.23.c.

Tot ce ține de rezemări și de încărcări este identic cu celelalte exemple.

Fig.5.24 Discretizarea grinzii mixte, cu goluri circulare D = 200mm

În figura 5.24 se poate vedea modul în care a fost discretizată structura în elemente finite, la fel ca și în exemplele anterioare, elemente tridimensionale de tip SOLID65 pentru dala de beton armat, respectiv SOLID45 pentru grinda metalică.

5.4.2 Optimizarea dimensiunilor golurilor circulare, la grinzile mixte

Modificând diametrul golurilor circulare, pentru D = 200, 250 și 300mm, se obțin cele trei variante de grinzi mixte cu goluri circulare, pentru care starea de eforturi și de deformație diferă de la un exemplu la altul.

Pentru a putea face o comparație a rezultatelor obținute și a trage niște concluzii referitoare la optimizarea dimensiunilor golurilor circulare, în tabelele de mai jos, 5.3 și 5.4, se prezintă principalele mărimi obținute în cazul celor trei exemple de grinzi mixte oțel-beton cu goluri circulare.

Var.	D	D/H	σ _{x max}	σ _{y max}	σ _{z max}	τ _{xy max}	τ _{yz max}	τ _{xz max}
-	mm	-	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²
Cerc 1	200	0.333	55.175	50.85	115.964	7.026	45.538	11.146
Cerc 2	250	0.416	55.187	59.454	137.763	7.002	51.665	11.136
Cerc 3	300	0.5	55.199	72.667	153.237	6.978	60.072	11.124

Tensiunile normale și tangențiale, la cele trei grinzi cu goluri circulare Tabelul 5.3

Tensiunile principale, tensiunea echivalentă, intensitatea tensiunii și deformația componentă, la cele trei grinzi cu goluri circulare

Tabelul 5.4

Var.	D	D/H	σ _{1 max}	σ _{2 max}	σ _{3 max}	σ _{ech max}	σ _{int max}	δ _{max}
-	mm	-	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²	mm
Cerc 1	200	0.333	116.521	55.673	139.442	123.267	126.109	5.67
Cerc 2	250	0.416	116.249	55.686	146.82	142.302	147.67	5.836
Cerc 3	300	0.5	115.932	55.699	175.079	171.539	177.872	6.083

În ambele tabele 5.3 și 5.4, în coloana 2 este dat diametrul golului D, în mm, pentru fiecare grindă mixtă, iar în coloana 3 este dată valoarea raportului dintre înălțimea (diametrul) golului și înălțimea profilului metalic al grinzii mixte, D / H.

Pentru fiecare raport, sunt prezentate în tabelul 5.3, tensiunile normale și tangențiale, maxime, acestea rezultând de asemenea într-o secțiune metalică, situată spre reazemele grinzii, după cum se va vedea în figurile următoare.

În tabelul 5.4 sunt date, tot pentru aceleași rapoarte D / H, tensiunile principale maxime,

tensiunea echivalentă maximă, intensitatea tensiunii maxime și deformația componentă totală, pentru cele trei grinzi cu goluri circulare.

Valorile tensiunilor sunt exprimate în tabele, în N/mm² iar ale deformațiilor în mm.

Pentru a compara rezultatele obținute, s-a reprezentat variația acestora în diagramele din figurile următoare. În figura 5.25 este prezentată variația fiecărei tensiuni normale σ_x , σ_y și σ_z (la fel ca și la golurile hexagonale), prin blocuri rectangulare de culori diferite, fiecare culoare desemnând un alt raport D / H (după cum se vede în legenda situată în dreapta diagramelor).

Fig.5.25 Variația tensiunilor normale, pentru cele trei grinzi mixte cu goluri circulare

Din diagramele de mai sus se poate observa că în vreme ce tensiunea normală σ_x este practic constantă pentru cele trei variante de goluri (la fel ca și la variantele cu goluri hexagonale), nefiind influențată de modificarea înălțimii acestora, tensiunile σ_y și σ_z cresc simțitor ca valoare, în cazul celui de-al doilea și al treilea gol, la care de fapt diametrul (deci înălțimea) golului reprezintă mai mult de 50% din înălțimea inimii profilului metalic. Creșterea mărimii tensiunilor normale σ_y și σ_z prezintă o variație practic liniară, după cum se poate vedea în graficele prezentate în figura 5.26. Aici în abscisă apare raportul D / H iar în ordonată sunt date valorile tensiunilor pentru fiecare raport, în N / mm².

Figura 5.27 prezintă în mod similar, diagramele de tensiuni tangențiale τ_{xy} , τ_{yz} și τ_{xz} . După cum s-a putut vedea și din tabelul 5.3, valorile tensiunilor τ_{xy} și τ_{xz} sunt mici și practic de valori aproximativ egale pentru cele trei tipuri de goluri, în vreme ce tensiunea τ_{yz} are valori mai mari (tot în profilul metalic, mai precis în inima acestuia, după cum se va vedea în continuare).

Fig.5.26 Graficele tensiunilor σ_y și σ_z , pentru cele trei grinzi mixte cu goluri circulare

Fig.5.27 Variația tensiunilor tangențiale, pentru cele trei grinzi mixte cu goluri circulare

De asemenea, se observă o creștere practic liniară a tensiunilor tangențiale τ_{yz} , în cazul celui de-al doilea și al treilea tip de gol, suficient de sugestivă, spre deosebire de golurile hexagonale, la care creșterea importantă apărea doar în cazul celui de-al treilea gol (fig.5.28).

Fig.5.28 Variația tensiunii tangențiale τ_{yz} , pentru cele trei grinzi mixte cu goluri circulare

Fig.5.29 Variația tensiunilor principale, a celei echivalente și a intensității tensiunii, pentru cele trei grinzi mixte cu goluri circulare

Și în figura 5.29, se pot trage unele concluzii, aici fiind reprezentate diagramele tensiunilor principale σ_1 , σ_2 , σ_3 , a tensiunii echivalente σ_{ech} și a intensității tensiunilor σ_{int} . În vreme ce tensiunile principale σ_1 și σ_2 au valori practic constante pentru cele trei variante de goluri circulare, tensiunea principală σ_3 prezintă o creștere mai importantă în cazul golului de diametru maxim D = 300mm. Tensiunea echivalentă σ_{ech} și σ_{int} prezintă tot o creștere aproximativ liniară de la un gol la altul.

Se mai poate verifica și valoarea maximă a tensiunii echivalente, care corespunde evident celui de-al treilea gol, de înălțime $h_g = D = 300 \text{ mm}$:

$$\sigma_{ech, \max} = 171.539 N / mm^2 < \frac{f_y}{\gamma_a} = \frac{235}{1.1} = 213.6 N / mm^2$$

Din tabelele 5.3 și 5.4 și din diagramele prezentate se poate trage o concluzie importantă, și anume că forma circulară a golurilor permite o distribuție mult mai convenabilă a eforturilor. Se observă că tensiunile de valori semnificative: σ_z , τ_{yz} , σ_{ech} și σ_{int} , prezintă o creștere liniară a eforturilor, direct proporțională cu creșterea diametrului golului.

De altfel și distribuția eforturilor în jurul golurilor se face mai uniform în cazul golurilor circulare, nemaiexistând colțuri unde să existe concentrări de tensiune. Această observație va fi exemplificată în paragraful următor.

5.4.3 Prezentarea rezultatelor

După cum s-a văzut în tabelele 5.3 și 5.4, eforturile maxime pe toată grinda mixtă au rezultat, după cum este și firesc, în profilul metalic. Din acest motiv (după cum am remarcat și la grinda cu goluri hexagonale), starea de eforturi de pe toată grinda mixtă, se referă de fapt la profilul metalic, datorită eforturilor mult mai mari de aici (datorită gamei limitate de culori, din acest motiv, dala apare într-o singură culoare, ca și cum eforturile în ea ar fi constante). Descrierea stării de eforturi din dală va face obiectul unui alt paragraf, unde se deselectează grinda metalică, rămânând doar placa de beton armat , dar evident cu eforturile și deformațiile obținute dintr-un calcul făcut asupra întregii structuri mixte (realizată din dala de beton armat și grinda metalică).

Pentru grinda mixtă cu goluri circulare, vor fi prezentate câteva rezultate doar în cazul unei singure grinzi, și anume cea la care diametrul golului este D = 300 mm, pentru celelalte două grinzi starea de eforturi fiind similară.

Dintre eforturile care se prezintă, s-au ales doar tensiunile normale σ_x , σ_y și σ_z care produc încovoierea, apoi tensiunea tangențială τ_{yz} , care are și valorile mult mai mari comparativ cu celelalte două tensiuni tangențiale (conform tabelului 5.3) dar este și importantă deoarece produce forfecarea în inima profilului metalic și apoi se prezintă tensiunile echivalentă σ_{ech} și σ_{int} , fiind tensiunile rezultante și având și valorile cele mai semnificative în verificarea din punctul de vedere al rezistenței grinzii mixte.

În figurile 5.30 și 5.31, este prezentată variația efortului σ_x , care în vederea de pe toată grinda nu are o reprezentare spectaculoasă datorită valorii mici a acestei tensiuni normale (conform tabelului 5.3).

Pentru a se pune totuși în evidență valorile extreme ale tensiunii σ_x , acestea se pot vedea în detaliul de la reazemul grinzii (fig.5.31), observându-se că în tălpile profilului metalic apar aceste valori maxime și minime (notate pe figură cu MX și MN).

Valoarea maximă a tensiunii σ_x , în valoare absolută se găsește tot în talpa inferioară a profilului metalic, având valoarea :

 $\sigma_{x \max} = 55.199 \text{ N/mm}^2$

Fig.5.30 Tensiunea normală σ_x , în grinda mixtă cu goluri circulare D = 300mm

Fig.5.31 Detaliu de reazem al tensiunii σ_x , în grinda cu goluri circulare D = 300mm

În continuare, tensiunea normală σ_y este arătată în figurile 5.32 și 5.33, într-o vedere longitudinală a grinzii și apoi într-un detaliu în zona de reazem a grinzii, unde de asemenea această tensiune este maximă.

Fig.5.32 Tensiunea normală σ_y , în grinda mixtă cu goluri circulare D = 300mm

Fig.5.33 Detaliu de reazem al tensiunii σ_y , în grinda cu goluri circulare D = 300mm

Figura care prezintă detaliul din zona de reazem a grinzii mixte (fig.5.33), subliniază o observație importantă și anume că eforturile maxime σ_y se găsesc pe conturul golului care este cel mai apropiat de reazem, fiind situate în apropierea axului vertical al golului, dar fiind influențate și de forța tăietoare se găsesc într-o secțiune înclinată față de acest ax, cu un unghi de până la 20 de grade.

206

Acest efort maxim este: $\sigma_{y max} = 72.667 \text{ N/mm}^2$

Fig. 5.34 Tensiunea normală σ_z , în grinda mixtă cu goluri circulare D = 300mm

Fig. 5.35 Detaliu de reazem al tensiunii σ_z , în grinda cu goluri circulare D = 300mm

Tensiunea normală σ_z , este arătată în figurile 5.34 și 5.35, are cea mai mare valoare dintre toate tensiunile normale σ , această valoare situându-se în inima profilului metalic, pe conturul golului care este cel mai apropiat de reazem.

Valoarea maximă a tensiunii σ_z este: $\sigma_z = 153.237 \text{ N/mm}^2$ care verifică condiția de rezistență impusă de EUROCODE 4.

Fig.5.36 Tensiunea tangențială τ_{yz} , în grinda mixtă cu goluri circulare D = 300mm

Fig.5.37 Detaliu de reazem al tensiunii τ_{yz} , în grinda cu goluri circulare D = 300mm

Figurile 5.36 și 5.37 pun în evidență variația tensiunii tangențiale τ_{yz} , care este maximă tot în secțiunile din reazemele grinzii, în inima profilului metalic, mai precis în jurul golului cel mai apropiat de reazem.

Valoarea maximă este:

 $\tau_{yz max} = 60.072 \text{ N/mm}^2$

Fig. 5.38 Tensiunea echivalentã σ_{ech} , în grinda mixtă cu goluri circulare D = 300mm

Fig. 5.39 Detaliu de reazem al tensiunii σ_{ech} , în grinda cu goluri circulare D = 300mm

Figurile 5.38 și 5.39 prezintă starea de eforturi în ceea ce privește tensiunea echivalentă σ_{ech} . În detaliul din figura 5.39 se pun în evidență valorile extreme, evident valoarea maximã:

 $\sigma_{\rm ech\ max} = 171.539\ \rm N/mm^2$

fiind în inima profilului metalic, în marginea ultimului gol înainte de reazem.

Fig. 5.40 Deformata grinzii mixte, cu goluri circulare D = 300mm

Fig. 5.41 Deformata grinzii mixte, cu goluri circulare D = 300mm

5.5 STUDIUL STĂRII DE EFORTURI ȘI DEFORMAȚII LA GRINZI MIXTE OȚEL-BETON CU GOLURI ALUNGITE

5.5.1 Discretizarea domeniului de analiză pentru grinzile mixte cu goluri alungite

Studiul grinzilor mixte oțel-beton cu goluri în inima profilului metalic se încheie în acest paragraf cu golurile de formă alungită, lucrând tot cu elementele prezentate la grinda mixtă cu inimă plină, în paragraful 5.2.

Toate elementele componente: grinda metalică, dala de beton armat, conectorii și armătura flexibilă, la fel ca și rezemările și încărcările, sunt identice cu cele corespunzătoare grinzii mixte cu inimă plină, prezentate în paragraful 5.2.2.

Diferența față de acel exemplu constă în prezența golurilor alungite (în lungul grinzii mixte), în inima profilului metalic.

La fel ca și în paragrafele 5.3 și 5.4 s-a ales întâi pentru studiu o grindă cu goluri alungite, la care dimensiunile golurilor s-au determinat conform paragrafului 5.1.3, figura 5.3, luând înălțimea golului egală cu $h_g = 200$ mm. Golul s-a construit pornind de la golul hexagonal (cu linie punctată) de aceeași înălțime, conform figurii 5.42 (unde se arată și construcția golului cu înălțimea $h_g = 300$ mm).

Fig.5.42 Construcția golului alungit, de înălțime $h_g = 200 \text{ mm}$ și 300 mm

Cealaltă grindă cu goluri alungite a rezultat, pornind de la grinda din figura 5.43.a, cu golul de înălțime $h_g = 200 \text{ mm}$, crescând înălțimea acestuia la $h_g = 250 \text{ mm}$ (la fel ca și la grinzile cu goluri hexagonale și circulare).

Pasul golurilor (distanța dintre centrele de greutate ale golurilor), s-a păstrat cu o valoare constantă, p = 960mm, pentru toate cele trei variante de goluri (identic cu grinzile studiate în paragrafele anterioare, 5.3 și 5.4).

Fig.5.43 Elevația și secțiunea transversală a grinzii cu goluri alungite

În figura 5.44 este arătată o vedere a unei jumătăți de grindă mixtă cu goluri alungite, cea la care înălțimea golului este de 200mm.

Fig.5.44 Discretizarea grinzii mixte cu goluri alungite, de $h_g = 200 mm$

Pentru o mai bună vizualizare s-a deselectat o jumătate de placă, putându-se pune mai bine în evidență discretizarea în elemente finite a grinzii de oțel.

Pentru discretizare s-au folosit aceleași elemente tridimensionale ca și pentru exemplele anterioare, elementul SOLID65 pentru dala de beton armat cu conectori, respectiv elementul SOLID45 pentru profilul metalic.

5.5.2 Optimizarea dimensiunilor golurilor alungite, la grinzile mixte

Pentru a putea face o comparație a rezultatelor obținute și a trage niște concluzii referitoare la optimizarea dimensiunilor golurilor alungite, în tabelele de mai jos, 5.5 și 5.6, se prezintă principalele mărimi obținute în cazul celor trei exemple de grinzi mixte oțel-beton cu goluri alungite, obținute prin creșterea înălțimii golului.

Tensiunile normale și tangențiale, la cele trei grinzi cu goluri alungite Tabelul 5.5

Var.	h _g	h _g /H	σ _{x max}	σ _{y max}	σ _{z max}	τ _{xy max}	T _{yz max}	T _{xz max}
-	mm	-	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²
Oval 1	200	0.333	65.96	110.373	178.039	8.607	85.348	24.478
Oval 2	250	0.416	66.03	114.361	178.21	8.235	86.022	24.354
Oval 3	300	0.5	66.108	119.93	178.413	7.857	85.85	24.211

Tensiunile principale, tensiunea echivalentă, intensitatea tensiunii și deformația componentă, la cele trei grinzi cu goluri alungite

Tabelul 5.6

Var.	hg	h _g /H	σ _{1 max}	σ _{2 max}	σ _{3 max}	σ _{ech max}	σ _{int max}	δ _{max}
-	mm	-	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²	mm
Oval 1	200	0.333	142.435	65.67	186.866	180.529	189.711	6.213
Oval 2	250	0.416	148.327	65.747	187.725	182.037	190.367	6.428
Oval 3	300	0.5	152.991	65.833	186.226	181.286	188.332	6.692

În ambele tabele 5.5 și 5.6, în coloana 2 este dată înălțimea golului h_g , în mm, pentru fiecare grindă, iar în coloana 3 este dată valoarea raportului dintre înălțimea golului și înălțimea profilului metalic al grinzii mixte, h_g / H .

Pentru fiecare raport, sunt prezentate în tabelul 5.5, tensiunile normale și tangențiale, maxime, acestea rezultând de asemenea într-o secțiune metalică, situată spre reazemele grinzii, după cum se va vedea în figurile următoare.

În tabelul 5.6 sunt date, tot pentru aceleași rapoarte h_g / H , tensiunile principale maxime, tensiunea echivalentă maximă, intensitatea tensiunii maxime și deformația componentă totală, pentru cele trei grinzi cu goluri alungite.

Valorile tensiunilor sunt exprimate în tabele, în N/mm², iar ale deformațiilor în mm.

Pentru a compara rezultatele obținute, acestea s-au reprezentat în diagramele din figurile următoare. În figura 5.45 este prezentată variația tensiunilor normale σ_x , σ_y și σ_z (la fel ca și la golurile hexagonale și circulare), prin blocuri rectangulare de culori diferite, fiecare culoare desemnând un alt raport h_g / H (după cum se vede în legenda situată în dreapta diagramelor).

Fig.5.46 Variația tensiunilor tangențiale, pentru cele trei grinzi mixte cu goluri alungite

În figura 5.46 sunt reprezentate diagramele care indică variația tensiunilor tangențiale maxime τ_{xy} , τ_{yz} și τ_{xz} , iar în figura 5.47 diagramele tensiunilor principale σ_1 , σ_2 și σ_3 , și apoi tensiunea echivalentă σ_{ech} și σ_{int} .

Toate reprezentările tensiunilor sunt făcute prin blocuri rectangulare corespunzătoare câte unui raport h_g / H , diferențiate prin culorile indicate în dreapta diagramelor.

Fig.5.47 Variația tensiunilor principale, a celei echivalente și a intensității tensiunii, pentru cele trei grinzi mixte cu goluri alungite

Ceea ce este foarte important de semnalat este faptul că, dacă privim atât tabelele 5.5 și 5.6 cât și diagramele din figurile 5.45, 5.46 și 5.47, observăm că starea de eforturi în cele trei grinzi mixte cu goluri alungite, studiate, este practic aceeași.

Se vede că toate tensiunile de același tip, fie că sunt tensiuni normale σ , sau tangențiale τ , sau echivalente, ele sunt practic constante, indiferent de înălțimea golului h_g , respectiv de raportul h_g / H (în unele cazuri există o variație a tensiunilor, de la un gol la altul, dar mică).

Golurile studiate în oricare dintre variantele din paragrafele 5.3, 5.4 sau 5.5 (goluri hexagonale, circulare sau alungite), se găsesc în intervalul:

$$h_g = \left(\frac{H}{3} \div \frac{H}{2}\right)$$

În vreme ce pentru golurile hexagonale, s-a observat o creștere semnificativă a eforturilor importante în cazul golului cel mai mare de $h_g = \frac{H}{2}$, pentru golurile circulare, este de remarcat creșterea eforturilor importante treptat pentru fiecare gol în parte, iar pentru golurile alungite, această creștere este practic inexistentă, valorile eforturilor fiind practic constante.
5.5.3 Prezentarea rezultatelor

După cum s-a precizat anterior, eforturile maxime pe toată grinda mixtă au rezultat, ca și valori, după cum este și firesc, în profilul metalic.

Se vor prezenta în continuare, câteva dintre cele mai importante eforturi, cu variația acestora, întâi în lungul grinzii mixte, apoi cu un detaliu în zona din vecinătatea reazemului, unde aceste eforturi sunt maxime. Deoarece starea de eforturi pentru cele trei variante de goluri alungite, este similară, aceasta este arătată prin imaginile sintetice, următoare, numai pentru grinda mixtă cu golurile cele mai mari, adică cea la care înălțimea golului este h_g = 300mm.

Fig.5.48 Tensiunea normală σ_x , în grinda mixtă cu goluri alungite, $h_g = 300$ mm

Fig.5.49 Detaliu de reazem al tensiunii σ_x , în grinda cu goluri alungite, $h_g = 300$ mm

În figurile 5.48 și 5.49, se vede tensiunea normală σ_x , evidențiindu-se și în cazul golurilor alungite, că are valoarea cea mai mică dintre toate eforturile normale din grindă, eforturile extreme fiind și de data aceasta, în tălpile profilului metalic. Valoarea maximă, în valoare absolută se află tot în talpa inferioară, fiind egală cu:

 $\sigma_{\rm x max} = 66.108 \text{ N/mm}^2$

Fig. 5.50 Tensiunea normală σ_y , în grinda mixtă cu goluri alungite, $h_g = 300$ mm

Fig. 5.51 Detaliu de reazem al tensiunii σ_y , în grinda cu goluri alungite, $h_g = 300$ mm

În imaginile prezentate în figurile 5.50 și 5.51 putem observa tensiunea normală σ_y , care spre deosebire de celelalte două tipuri de goluri (hexagonale și circulare), are valori mult mai mari. Valorile extreme se găsesc pe marginea golului care este cel mai apropiat de reazem, fiind situate în apropierea axului vertical al golului, într-o secțiune înclinată față de acest ax, cu un unghi de până la 20 de grade (similar cu golul circular). Valoarea maximă a acestui efort este:

 $\sigma_{x} = 119.93 \text{ N/mm}^2$

Fig. 5.52 Tensiunea normală σ_z , în grinda mixtă cu goluri alungite. $h_g = 300$ mm

Fig. 5.53 Detaliu de reazem al tensiunii σ_z , în grinda cu goluri alungite, $h_g = 300$ mm

Figurile 5.52 și 5.53 permit vizualizarea tensiunii normale σ_z , care este tensiunea normală care are valoarea cea mai mare. Este de asemenea maximă în profilul metalic și anume în talpa inferioară a acestuia, fiind fibra cea mai îndepărtată de axa neutră elastică. Și în cazul acestei tensiuni se pot vedea eforturi destul de mari și pe conturul golului cel mai apropiat de reazem. Valoarea maximă a tensiunii σ_z este:

 $\sigma_{z max} = 178.413 \text{ N/mm}^2$

Fig. 5.54 Tensiunea tangențială τ_{yz} , în grinda mixtă cu goluri alungite, h_g = 300mm

Fig. 5.55 Detaliu de reazem al tensiunii τ_{yz} , în grinda cu goluri alungite, $h_g = 300$ mm

În figurile 5.54 și 5.55 este prezentată tensiunea tangențială cea mai importantă (în ceea ce privește valoarea maximă a acesteia, care este în inima profilului metalic). Din detaliul din figura 5.55 se vede această valoare maximă, egală cu:

 $\tau_{yz max} = 85.845 \text{ N/mm}^2$

situată în inima profilului metalic, la marginea golului cel mai apropiat de reazem, dar și la nivelul inimii, care se găsește cel mai aproape de axa neutră elastică.

Fig. 5.56 Tensiunea echivalentă σ_{ech} , în grinda mixtă cu goluri alungite, h_g = 300mm

Fig. 5.57 Detaliu de reazem al tensiunii σ_{ech} , în grinda cu goluri alungite, $h_g = 300$ mm

Tensiunea echivalentă σ_{ech} este prezentată în figurile 5.56 și 5.57, ea are valoarea maximă tot la marginea golului care este cel mai apropiat de reazem, unde și tensiunile normale și tensiunea tangențială τ_{yz} , sunt maxime. De altfel, relația cu care programul ANSYS calculează tensiunea echivalentă, este (în capitolul 4, relația 4.11):

$$\sigma_{ech} = \sqrt{\frac{1}{2} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right]}$$

Dacă reprezentăm și tensiunile principale ce intervin în relația de mai sus, conform figurilor 5.58, 5.59 și 5.60, unde după cum s-a văzut și în tabelul 5.6, σ_1 și σ_3 au valori mult mai mari decât σ_2 , tragem concluzia că starea de eforturi a tensiunii echivalente σ_{ech} este cea reală, observând că și tensiunile maxime principale σ_1 și σ_3 sunt maxime tot în aceeași zonă ca și σ_{ech} , și anume la marginea golului care este cel mai apropiat de reazem (unde atât forța tăietoare cât și momentul încovoietor sunt maxime).

Fig.5.58 Tensiunea principală σ_1 , în grinda cu goluri alungite, $h_g = 300$ mm

Pentru a se vedea mai bine variația tensiunilor principale, în figurile 5.58, 5.59 și 5.60 s-a deselectat o jumătate de grindă mixtă, iar la jumătatea de grindă ce a rămas, s-a deselectat de asemenea o jumătate de placă.

Fig.5.59 Tensiunea principală σ_2 , în grinda cu goluri alungite, h_g = 300mm

Fig.5.60 Tensiunea principală σ_3 , în grinda cu goluri alungite, $h_g = 300 mm$

În figura 5.61 este prezentată deformata grinzii mixte cu goluri alungite, cu înălțimea golului $h_g = 300$ mm, iar figura 5.62 prezintă și variația deplasării totale componente δ_{max} .

Valoarea maximă a deplasării este:

 $\delta_{max} = 6.692 \text{ mm}$

223

care verifică condiția de rigiditate cerută de EUROCODE 4:

$$\delta_{\max} = 6.692mm < \frac{L}{300} = 40mm$$

Fig.5.61 Deformata grinzii mixte cu goluri alungite, $h_g = 300$ mm

Fig. 5.62 Deformația totală în grinda mixtă cu goluri alungite, $h_g = 300$ mm

5.6 STUDIUL STĂRII DE EFORTURI ÎN DALA DE BETON A GRINZII MIXTE OȚEL-BETON, CU GOLURI HEXAGONALE, CIRCULARE ȘI ALUNGITE

După cum s-a arătat în paragrafele anterioare 5.3, 5.4 și 5.5, eforturile în dala de beton armat, după cum este și firesc, sunt mult mai mici decât cele din profilul metalic al grinzii mixte oțelbeton.

Din acest motiv, starea de eforturi prezentată în paragrafele anterioare, corespunzătoare întregii grinzi mixte, se referă (ca reprezentare grafică, prin gama de culori existentă la fiecare imagine captată în urma calculului pe calculator) doar la grinda metalică.

Eforturile din profilul metalic fiind mult mai mari decât cele din dală și gama de culori fiind limitată, placa de beton apare în toate imaginile prezentate, într-o singură culoare, ca și cum eforturile în dală ar fi constante, lucru neadevărat.

Pentru a evidenția eforturile în dala de beton armat, s-a deselectat grinda metalică, rămânând ca imagine doar cu placa, dar cu starea de tensiune și de deformație obținută în urma calculului întregii grinzi mixte oțel-beton.

Imaginile prezentate în continuare, se referă la dala de beton corespunzătoare tuturor tipurilor de grinzi mixte cu goluri studiate anterior.

Reprezentarea variației eforturilor se va face doar pentru eforturile cele mai importante, și anume tensiunile normale σ_x , σ_y și σ_z , precum și tensiunea tangențială τ_{xz} (a cărei rezultantă este forța de lunecare, din care se calculează conectorii), ele generând de fapt toate celelalte eforturi (tensiuni principale, tensiunea echivalentă și intensitatea tensiunii).

Fiecare efort menționat mai sus, este prezentat în continuare în două moduri:

- într-o reprezentare plană
- într-o reprezentare spațială, care permite calculul volumelor asociate de tensiuni

Prezentarea în plan a eforturilor este similară cu cea făcută anterior, în paragrafele în care se arată starea de tensiune în toată grinda (paragrafele 5.3, 5.4 și 5.5)

Prezentarea în spațiu a eforturilor se face cu ajutorul utilitarului SURFER [67], care permite atât vizualizarea variației eforturilor, printr-o gamă largă de culori, cât și calcularea volumelor asociate fiecărei tensiuni, prin trei metode de evaluare aproximativă a acestor volume (metoda trapezelor, metoda Simpson și metoda Simpson 3/8). Utilitarul SURFER calculează astfel, volumul cuprins între un plan de referință având normala paralelă cu axa z, suprafața spațială de interpolare a eforturilor și patru plane care limitează marginile rețelei de puncte (pentru o vizualizare mai bună am selectat doar o jumătate de placă). Planul de referință ales (pentru care se citesc volumele de tensiuni – denumit în imaginile prezentate *LOWER SURFACE*), se numește *suprafață de referință inferioară* și reprezintă nivelul de bază față de care s-a calculat volumul corespunzător, de efort.

5.6.1 Starea de eforturi în dala de beton a grinzii mixte oțel-beton, cu goluri hexagonale

Pentru a prezenta starea de eforturi din dala de beton a grinzii mixte oțel-beton, (prezentarea grafică a stării de deformații nu este afectată de gama limitată de culori de care am menționat, datorită valorilor dimensionale mult mai mici, a deformațiilor față de eforturi), s-a făcut acest lucru ca reprezentare grafică, doar pentru grinda cu goluri hexagonale, având înălțimea golurilor cea mai mare $h_g = 300$ mm.

Pentru celelalte înălțimi de goluri $h_g = 200$ mm și respectiv 250mm, starea de eforturi este similară și se vor arăta doar valorile maxime ale volumelor asociate eforturilor, în tabele, pentru a putea face comparație și în acest caz.

Fig.5.63 Tensiunea normală σ_x , în dala grinzii mixte cu goluri hexagonale, h_g = 300mm

Fig.5.64 Volumul asociat tensiunii σ_x , în dala grinzii cu goluri hexagonale, $h_g = 300 mm$

Fig.5.65 Tensiunea normală σ_y , în dala grinzii mixte cu goluri hexagonale, $h_g = 300$ mm

Fig.5.66 Volumul asociat tensiunii σ_y , în dala grinzii cu goluri hexagonale, $h_g = 300$ mm

Fig.5.67 Tensiunea normală σ_z , în dala grinzii mixte cu goluri hexagonale, $h_g = 300$ mm

Fig.5.68 Volumul asociat tensiunii σ_z , în dala grinzii cu goluri hexagonale, $h_g = 300$ mm

Fig.5.69 Tensiunea tangențială τ_{xz} , în dala grinzii mixte cu goluri hexagonale, h_g = 300mm

Fig.5.70 Volumul asociat tensiunii τ_{xz} , în dala grinzii cu goluri hexagonale, $h_g = 300$ mm

În imaginile prezentate, în figurile din partea superioară a fiecărei pagini (fig.5.63, 5.65, 5.67 și 5.69) se arată starea de eforturi a tensiunilor normale σ_x , σ_y și σ_z și tangențială τ_{xz} , într-o reprezentare plană, iar în partea de jos a aceleași pagini (fig.5.64, 5.66, 5.68 și 5.70) sunt indicate volumele asociate fiecărei tensiuni corespunzătoare.

În ceea ce privește valorile maxime ale tensiunilor prezentate, ele se pot vedea sintetic în tabelul următor:

Valorile maxime ale eforturilor în dala grinzii mixte cu goluri hexagonale, $h_g = 300$ mm

Tabel :	5.7
---------	-----

Den. grindă	σ _{x max}	σ _{y max}	σ _{z max}	τ _{iz max}
-	N/mm ²	N/mm ²	N/mm ²	N/mm ²
Hexagon 3	3.215	6.15	9.245	1.424

Se vede din tabelul de mai sus că cea mai mare tensiune normală este $\sigma_{z,max,bet} = 9.245 \text{ N/mm}^2$, care verifică condiția impusă de EUROCODE 4:

$$\sigma_{z, \max, bet} = 9.245 N / mm^2 < \frac{0.85 f_{ck}}{\gamma_c} = \frac{0.85 \cdot 25}{1.5} = 14.17 N / mm^2$$

Totodată, dacă privim imaginile referitoare la tensiunile $\sigma_x \pm \sigma_y$, se vede că acolo unde în imaginea în plan sunt precizate valorile maxime şi minime, în reprezentarea spațială apar vârfuri de tensiune, în reazem, unde tensiunea este maximă, respectiv găuri în adâncime, în dreptul primului gol de la reazem, unde tensiunea este minimă.

Tensiunea tangențială τ_{xz} prezintă valori antisimetrice față de axa longitudinală a dalei, materializată în reprezentarea spațială prin vârfuri și găuri de aceeași mărime, tensiunile fiind egale în valoare absolută față de axa z.

Pentru a putea compara eforturile din dala de beton a grinzii mixte cu goluri hexagonale, pentru cele trei variante de goluri, în tabelul 5.8 sunt date volumele tensiunilor normale σ_x , σ_y și σ_z și tangențială τ_{xz} , pentru cele trei înălțimi de goluri hexagonale $h_g = 200, 250$ și 300mm, calculate similar cu cele din figurile 5.64, 5.66, 5.68 și 5.70.

Volumele eforturilor în dala de beton a grinzilor cu goluri hexagonale Tabel 5.8

Varianto	ь /H	Volume			
v al lanta	шд / 11	σ	σ _y	σ₂	τ ₁₂
Hexagon 1	0.333	29456	29728	25993	30002
Hexagon 2	0.416	29474	29848	25936	30011
Hexagon 3	0.5	29490	29848	26010	30011

Pentru a putea vizualiza mai bine starea de eforturi în dala de beton a grinzilor mixte cu goluri hexagonale, s-au reprezentat aceste valori sub forma unor diagrame prezentate în figura 5.71.

Fig.5.71 Volumele asociate tensiunilor σ_x , σ_y , σ_z şi τ_{xz} , în dalele grinzilor mixte cu goluri hexagonale

Din diagramele prezentate în figura de mai sus, la fel ca și din tabelul 5.8, se poate observa că volumele asociate tensiunilor studiate, sunt practic constante, nefiind influențate de golurile practicate în inima profilului metalic.

Totuși, reprezentarea volumelor asociate de tensiuni, pune în evidență vârfurile de tensiuni în secțiunile unde acestea sunt extreme, respectiv găurile (unde tensiunea este negativă) sau vârfurile de tensiuni (unde tensiunea este pozitivă), în dreptul golurilor, deși ele sunt practicate în inima profilului metalic.

5.6.2 Starea de eforturi în dala de beton a grinzii mixte oțel-beton, cu goluri circulare

Aceeași reprezentare grafică făcută la grinda cu goluri hexagonale, se va face în continuare pentru grinda cu goluri circulare, având înălțimea golurilor cea mai mare $h_g = D = 300$ mm. Pentru celelalte diametre de goluri D = 200mm și respectiv 250mm, starea de eforturi este similară și se vor arăta tot la fel ca și în paragraful anterior, doar valorile volumelor asociate eforturilor, în tabele, pentru a putea face comparație și în acest caz.

În imaginile arătate în continuare, în figurile de la partea de sus a fiecărei pagini (fig.5.72, 5.74, 5.76 și 5.78) se poate vedea starea de eforturi a tensiunilor normale σ_x , σ_y și σ_z și tangențială τ_{xz} , într-o reprezentare plană, iar în partea de jos a aceleași pagini (fig.5.73, 5.75, 5.77 și 5.79) sunt prezentate volumele asociate fiecărei tensiuni corespunzătoare.

Fig.5.72 Tensiunea normală σ_x , în dala grinzii mixte cu goluri circulare, D = 300mm

Fig.5.73 Volumul asociat tensiunii σ_x , în dala grinzii cu goluri circulare, D = 300mm

Fig.5.74 Tensiunea normală σ_y , în dala grinzii mixte cu goluri circulare, D = 300mm

Fig.5.75 Volumul asociat tensiunii σ_y , în dala grinzii cu goluri circulare, D = 300mm

Fig.5.76 Tensiunea normală σ_z , în dala grinzii mixte cu goluri circulare, D = 300mm

Fig.5.77 Volumul asociat tensiunii σ_z , în dala grinzii cu goluri circulare, D = 300mm

Fig.5.78 Tensiunea tangențială τ_{xz} , în dala grinzii mixte cu goluri circulare, D = 300mm

Fig.5.79 Volumul asociat tensiunii τ_{xz} , în dala grinzii cu goluri circulare, D = 300mm

În ceea ce privește valorile maxime ale tensiunilor prezentate în figurile anterioare, ele se pot vedea sintetic în tabelul următor:

cu goluri circulare,	Tabel 5.9				
Den. grindă	σ	G ., mar	(Ja mar	Ť]

Den. grinda	σ _{x max}	σ _{y max}	σ _{z max}	τ _{xz max}
-	N/mm ²	N/mm ²	N/mm ²	N/mm ²
Cerc 3	4.168	9.553	11.681	1.401

Se poate observa din tabelul de mai sus că valorile tensiunilor normale σ sunt mai mari decât cele din dala grinzii cu goluri hexagonale, cea mai mare tensiune normală fiind tot σ_z , având valoarea $\sigma_{z.max.bet} = 11.681 \text{ N/mm}^2$, care verifică condiția impusă de EUROCODE :

$$\sigma_{z, \max, ber} = 11.681 N / mm^2 < \frac{0.85 f_{ck}}{\gamma_c} = \frac{0.85 \cdot 25}{1.5} = 14.17 N / mm^2$$

Tot la fel ca la golurile hexagonale, dacă privim imaginile referitoare la tensiunile σ_x , σ_y și σ_z , se vede că acolo unde în imaginea în plan sunt precizate valorile extreme, în reprezentarea spațială apar vârfuri de tensiune, mai precis în reazem. În restul dalei tensiunile normale au valoare foarte mică.

Tensiunea tangențială τ_{xz} prezintă valori antisimetrice față de axa longitudinală a dalei, materializată în reprezentarea spațială prin vârfuri și găuri de aceeași mărime, tensiunile fiind egale în valoare absolută față de axa z.

Pentru a putea compara eforturile din dala de beton a grinzii mixte cu goluri circulare, pentru cele trei variante de goluri, în tabelul 5.10 sunt date volumele tensiunilor normale σ_x , σ_y și σ_z și tangențială τ_{xz} , pentru cele trei diametre de goluri circulare D = 200, 250 și 300mm, volume calculate similar cu cele din figurile 5.73, 5.75, 5.77 și 5.79.

Volumele eforturilor în da	a de beton a grinzilor cu golur	i circulare Tabel 5.10
----------------------------	---------------------------------	------------------------

Varianta	D/H		ume		
	D/II	σ	σ _y	σz	τ _{xz}
Cerc 1	0.333	29588	29857	25573	30022
Cerc 2	0.416	30402	30141	34373	28983
Cerc 3	0.5	29610	29859	25688	30016

Pentru a putea vizualiza mai bine starea de eforturi în dala de beton a grinzilor mixte cu goluri circulare, s-au reprezentat aceste valori sub forma unor diagrame prezentate în figura 5.80.

Fig.5.80 Volumele asociate tensiunilor σ_x , σ_y , σ_z și τ_{xz} , în dalele grinzilor mixte cu goluri circulare

Din diagramele prezentate în figura de mai sus, la fel ca și din tabelul 5.10, se poate observa că spre deosebire de grinzile cu goluri hexagonale, unde volumele asociate eforturilor erau practic de aceeași valoare, în acest caz al golurilor circulare, volumele asociate tensiunilor normale σ au valori sensibil mai mari în cazul grinzii mixte de mijloc (la care diametrul golului este D = 250mm). Chiar în cazul tensiunii normale maxime σ_z această creștere este semnificativă față de golurile de D = 200 și 300mm. În mod contrar , volumul tensiunii tangențiale studiate τ_{xz} , are valori mai mici pentru grinda de mijloc.

5.6.3 Starea de eforturi în dala de beton a grinzii mixte oțel-beton, cu goluri alungite

În același mod cu grinda cu goluri hexagonale și circulare, se va face în continuare o reprezentare grafică a eforturilor în dala grinzii cu goluri alungite, având înălțimea golurilor cea mai mare $h_g = 300$ mm.

Pentru celelalte înălțimi de goluri $h_g = 200$ mm și respectiv 250mm, starea de eforturi este similară și se vor arăta tot la fel ca și în paragraful anterior, doar valorile volumelor asociate eforturilor, în tabele, pentru a putea face comparație și în acest caz.

În imaginile arătate în continuare, în figurile de la partea de sus a fiecărei pagini (fig.5.81, 5.83, 5.85 și 5.87) se poate vedea starea de eforturi a tensiunilor normale σ_x , σ_y și σ_z și tangențială τ_{xz} , într-o reprezentare plană, iar în partea de jos a aceleași pagini (fig.5.82, 5.84, 5.86 și 5.88) sunt prezentate volumele asociate fiecărei tensiuni corespunzătoare.

Fig.5.81 Tensiunea normală σ_x , în dala grinzii mixte cu goluri alungite, $h_g = 300 mm$

Fig.5.82 Volumul asociat tensiunii σ_x , în dala grinzii cu goluri alungite, $h_g = 300 mm$

Fig.5.83 Tensiunea normală σ_y , în dala grinzii mixte cu goluri alungite, h_g = 300mm

Fig.5.84 Volumul asociat tensiunii σ_y , în dala grinzii cu goluri alungite, h_g = 300mm

Fig.5.85 Tensiunea normală σ_z , în dala grinzii mixte cu goluri alungite, h_g = 300mm

Fig.5.86 Volumul asociat tensiunii σ_z , în dala grinzii cu goluri alungite, $h_g = 300$ mm

Fig.5.87 Tensiunea tangențială τ_{xz} , în dala grinzii mixte cu goluri alungite, $h_g = 300$ mm

Fig.5.88 Volumul asociat tensiunii τ_{xz} , în dala grinzii cu goluri alungite, $h_g = 300$ mm

Valorile maxime ale tensiunilor prezentate în figurile 5.81, 5.83, 5.85 și 5.87, sunt indicate sintetic în tabelul următor:

Valorile maxime ale	eforturilor	în dala	grinzii	mixte
cu goluri alungite, h _e	s = 300 mm			

Tabel 5.11

Den. grindă	σ _{x max}	σ _{y max}	σ _{z max}	τ _{sz max}
-	N/mm ²	N/mm ²	N/mm ²	N/mm ²
Oval 3	3.988	8.497	11.075	1.398

Se poate observa din tabelul de mai sus că valorile tensiunilor normale σ sunt mai mari decât cele din dala grinzii cu goluri hexagonale, dar mai mici decât cele din dala grinzii cu goluri circulare, cea mai mare tensiune normală fiind tot σ_z , având valoarea $\sigma_{z.max.bet} = 11.075$ N/mm², care verifică condiția impusă de EUROCODE :

$$\sigma_{z.\max,bet} = 11.075 N / mm^2 < \frac{0.85 f_{ck}}{\gamma_c} = \frac{0.85 \cdot 25}{1.5} = 14.17 N / mm^2$$

La fel ca la golurile hexagonale și circulare, dacă privim imaginile referitoare la tensiunile σ_x , σ_y și σ_z , se vede că acolo unde în imaginea în plan sunt precizate valorile extreme, în reprezentarea spațială apar vârfuri de tensiune, mai precis în reazem. În restul dalei tensiunile normale au valoare foarte mică (cu unele creșteri ușoare a intensității acestora în dreptul golurilor, mai mari spre reazem și descresc spre centrul plăcii).

Tensiunea tangențială τ_{xz} prezintă de asemenea, valori antisimetrice față de axa longitudinală a dalei, tensiunile fiind egale în valoare absolută față de axa z. Se observă în figurile 5.87 și 5.88 că tensiunea tangențială are valorile extreme deasupra tălpii profilului metalic, în secțiunea de lângă reazem, unde forța tăietoare este de fapt maximă. De asemenea se pot vedea creșteri (unde τ este pozitiv), respectiv descreșteri (unde τ este negativ) în volumele de tensiune τ (conform figurii 5.88), în secțiunile în care există golurile.

Pentru a putea compara eforturile din dala de beton a grinzii mixte cu goluri alungite, pentru cele trei variante de goluri, în tabelul 5.12 sunt date volumele tensiunilor normale σ_x , σ_y și σ_z și tangențială τ_{xz} , pentru cele trei înălțimi de goluri alungite $h_g = 200, 250$ și 300mm, volume calculate similar cu cele din figurile 5.82, 5.84, 5.86 și 5.88.

Varianta	h. / H		Vol	ume	
		σι	σ _y	σz	τ ₁₂
Oval 1	0.333	29672	29835	26032	30139
Oval 2	0.416	29659	29821	25997	30132
Oval 3	0.5	29696	29979	25953	30137

Volumele eforturilor în dala de beton a grinzilor cu goluri alungite Tabel 5.12

Pentru a putea vizualiza mai bine starea de eforturi în dala de beton a grinzilor mixte cu goluri alungite, s-au reprezentat aceste valori sub forma diagramelor prezentate în figura 5.89.

Fig.5.89 Volumele asociate tensiunilor σ_x , σ_y , σ_z și τ_{xz} , în dalele grinzilor mixte cu goluri alungite

Din diagramele prezentate în figura de mai sus, la fel ca și din tabelul 5.12, se poate observa că , în mod foarte asemănător cu dalele grinzilor cu goluri hexagonale , volumele asociate tensiunilor studiate, au practic valori constante, nefiind influențate de golurile practicate în inima profilului metalic.

5.7 CONCLUZII

Capitolul de față face o prezentare amănunțită a studiului a 3 tipuri de grinzi mixte oțel-beton cu goluri în inima profilului metalic, studiu făcut cu ajutorul metodei elementului finit.

La grinzile mixte oțel-beton, utilizarea profilelor metalice cu goluri dese în inimă prezintă o serie de avantaje, cum ar fi: estetică, flexibilitate, scăderea greutății, optimizarea spațiului, rapiditate în asamblare.

Ca urmare a avantajelor prezentate, în acest capitol s-au studiat 3 tipuri de grinzi mixte cu goluri dese în inima profilului metalic, și anume cu goluri hexagonale, circulare și alungite în sensul longitudinal al grinzii.

Datorită faptului că grinda mixtă studiată în capitolul 4 cu metoda elementului finit, a demonstrat că modul de abordare a acestor tipuri de structuri cu programul de calcul automat ANSYS (care folosește metoda elementului finit), este corect, s-a extins acest calcul și pentru grinzile mixte, cu cele trei tipuri de goluri prezentate mai sus.

În ceea ce privește dimensiunile golurilor, acestea s-au ales mai întâi pentru golurile hexagonale, conform [83], în funcție de înălțimea inițială a profilului metalic h, rezultând pe lângă alte dimensiuni și înălțimea golului, notată în lucrare cu h_g .

Pentru a realiza o optimizare a înălțimii golurilor, aceasta s-a luat în trei variante de înălțime:

 $h_g = 200 mm$,

 $h_g = 250 mm$,

 $h_g = 300 mm$.

Pentru a putea face comparație între cele 3 forme de goluri (hexagonale, circulare și alungite) în continuare s-au luat și golurile circulare și alungite, tot cu cele trei variante de înălțime. Astfel, variind și înălțimea golului, dar și forma acestuia, s-au studiat în final 9 grinzi mixte, cu goluri în inimă. La toate grinzile prezentate, pasul golurilor (distanța dintre centrele de greutate a 2 goluri consecutive) s-a păstrat identic.

La calculul grinzilor mixte cu goluri hexagonale, circulare și alungite, s-a pornit de la o grindă mixtă cu inima plină, prezentată separat. Ea este alcătuită dintr-un profil metalic de înălțime h, din care s-au obținut prin tăiere și resudare grinda metalică a grinzii mixte, de înălțime H și o dală de beton de greutate normală, de 12cm grosime (identică cu cea din exemplul grinzii mixte cu cele 2 goluri dreptunghiulare).

Folosind metoda elementului finit, calculul cu ajutorul calculatorului, folosind un program de calcul automat, este practic obligatorie în calculul structurilor mixte, datorită pe de-o parte faptului că intervin materiale cu proprietăți mecanice și fizice diferite (oțelul structural, betonul, armăturile, conectorii), iar pe de altă parte datorită numărului mare de ecuații și necunoscute care apar în urma discretizării structurii în elemente finite.

Structurile studiate fiind structuri spațiale, elementele finite cu care s-a lucrat sunt de tip SOLID, acestea apropiindu-se cel mai bine de comportamentul real al grinzii mixte.

Starea de eforturi din structură este exprimată prin ecuațiile Navier (relațiile 5.7), la care se adaugă relațiile de legătură între deformațiile specifice și deplasări (relațiile 5.8), precum și legea lui Hooke (relația 5.9).

Elementele finite cu care s-au calculat structurile sunt de tip SOLID65 pentru betonul cu armături și conectori, respectiv SOLID45 pentru oțelul structural din profilul metalic. Elementele sunt tridimensionale, fiind definite ambele, prin 8 noduri având trei grade de libertate în fiecare nod: translații în direcțiile nodale x, y, z.

Toate aspectele ce țin de încărcări, rezemări, constante ale materialelor, sunt identice cu cele prezentate în capitolul 4, la grinda mixtă cu golurile dreptunghiulare.

S-a studiat pentru început grinda mixtă cu goluri hexagonale, variind înălțimea golului h_g de la 200mm, la 250mm și în final la 300mm.

Pentru fiecare grindă mixtă obținută cu aceste înălțimi de gol, s-a determinat starea de eforturi și deformații (deformațiile după x, y, z și deformația componentă totală , apoi tensiunile normale σ_x , σ_y și σ_z , tensiunile tangențiale τ_{xy} , τ_{yz} și τ_{xz} , tensiunile principale σ_1 , σ_2 și σ_3 , tensiunea echivalentă σ_{ech} și σ_{int}).

Pentru a realiza o optimizare a dimensiunilor golurilor, s-au prezentat în tabelele 5.1 și 5.2 valorile maxime ale eforturilor menționate mai sus, precum și a deformației maxime componente. Variația eforturilor a fost prezentată și sub forma unor diagrame arătate în figurile 5.7, 5.8 și 5.9.

Din aceste diagrame s-a putut trage o concluzie foarte importantă și anume că, atunci când înălțimea golului are valoarea cea mai mare, $h_g = 300$ mm (ceea ce reprezintă mai mult de 50% din înălțimea inimii profilului metalic), valorile tensiunilor cresc semnificativ. Deci intervalul cel mai avantajos în care este indicat să se situeze înălțimea golului h_g este cel din relația (5.12), între H/3 și H/2.5 (unde H : este înălțimea totală a profilului metalic), deoarece în acest interval eforturile sunt practic constante.

Pentru grinda cu golurile hexagonale cele mai mari ($h_g = 300 \text{ mm}$), în care toate condițiile de rezistență și rigiditate sunt verificate, în stadiul elastic, conform normativului EUROCODE 4, sunt prezentate imagini sintetice cu principalele eforturi, atât în imagini de ansamblu, cât și în detaliu, pentru a se vizualiza secțiunile de eforturi maxime. Totodată în aceste detalii s-au evidențiat valorile maxime ale eforturilor în colțurile golului situat în zona cea mai apropiată de reazem (unde conform rezemării considerate, forța tăietoare și momentul încovoietor sunt maxime).

Următoarea grindă mixtă studiată a fost grinda mixtă cu goluri circulare . Păstrându-se aceeași înălțime a golurilor ca și la grinda cu goluri hexagonale, suprafața inimii profilului metalic a fost mai puțin slăbită. S-au parcurs aceeași pași ca și la grinda cu goluri hexagonale.

După rularea celor 3 grinzi cu înălțimea golurilor $h_g = D = 200, 250$ și 300mm, s-au prezentat valorile maxime ale eforturilor în tabelele 5.3 și 5.4 și variația eforturilor în diagramele din figurile 5.25, 5.26 și 5.27.

Spre deosebire de golurile hexagonale, unde s-a observat o creștere bruscă a eforturilor în cazul celei de-a treia grinzi cu $h_g = 300$ mm, la grinzile cu goluri circulare, creșterea eforturilor se face după o variație liniară, de la o înălțime de gol la alta.

În continuare s-au prezentat pentru grinda cu golurile de diametru maxim D = 300mm, eforturile cele mai însemnate, pe rând, întâi într-o vedere generală a grinzii mixte și apoi într-un detaliu cu zona unde eforturile sunt maxime (în reazem).

În imaginile în care sunt prezentate detalii ale eforturilor, s-a observat că tensiunile de intensitate maximă (σ_y , σ_z , τ_{yz} și σ_{ech}) prezintă valori maxime pe conturul golului care este cel mai apropiat de reazem), într-o secțiune înclinată cu un unghi de până la 20°, față de axul vertical al golului.

În final s-a studiat grinda mixtă cu goluri alungite. Golurile alungite în sensul longitudinal al grinzii, au fost luate la fel ca și în cazul golurilor hexagonale și circulare, cu cele trei variante de înălțimi $h_g = 200, 250$ și 300mm.

S-a obținut pentru fiecare grindă cu goluri alungite, starea de eforturi și deformații. În tabelele 5.5 și 5.6 sunt date eforturile maxime obținute pentru grinzile cu cele trei variante de înălțimi de gol, iar în figurile 5.45, 5.46 și 5.47 este arătată variația fiecărui efort, în funcție de raportul h_g / H (înălțimea golului / înălțimea profilului metalic).

Spre deosebire de golurile hexagonale și circulare, din diagramele de variație a eforturilor, se poate trage o concluzie foarte importantă, și anume că la golurile alungite indiferent de

înălțimea golului (pentru cele trei variante de înălțimi, luate în calcul), eforturile rezultă aproximativ egale, fiind practic constante.

Datorită faptului că eforturile din profilul metalic sunt, în mod firesc, mult mai mari decât cele din placa de beton armat, starea de eforturi din grinda mixtă vizualizată prin reprezentarea acestora într-o gamă largă de culori (10-15 culori), permite citirea tensiunilor doar în profilul metalic (în dală, eforturile fiind mult mai mici, gama de culori se reduce la una, astfel încât pare că eforturile sunt constante în placă).

Din acest motiv, s-a deselectat grinda metalică, păstrând doar dala de beton armat, în care s-a arătat la fel, starea de eforturi din ea, tot în cele trei variante de goluri (fiecare tip de gol, luându-l la rândul lui cu cele trei variante de înălțime h_g). Starea de deformații nu este afectată, ca reprezentare grafică, de această gamă limitată de culori.

Prezentarea stării de eforturi în dală, s-a făcut în două moduri:

- într-o reprezentare plană, prin capturi obținute în urma rulării grinzii respective, pe calculator

- într-o reprezentare spațială, prin calculul automat (cu ajutorul unui utilitar numit SURFER [67]) a volumelor asociate de tensiuni

Sunt prezentate doar eforturile cele mai importante în ce privește dala de beton armat, cu conectori, și anume σ_x , σ_y , σ_z și τ_{xz} , pentru cele trei tipuri de goluri, dar pentru fiecare tip numai în varianta înălțimii maxime $h_g = 300$ mm (pentru celelalte înălțimi, starea de eforturi fiind similară). De fapt în grinzile la care înălțimea golului este cea mai mare, rezultă eforturile cele mai mari, dar toate verificând condițiile de rezistență impuse de EUROCODE 4, la nivelul dalei de beton armat.

Prin reprezentarea în spațiu a volumelor asociate de tensiuni, sunt indicate mai sugestiv variațiile eforturilor atât în secțiunile unde acestea sunt maxime, cât și în secțiunile situate în dreptul golurilor.

Subcapitolele 5.3, 5.4 și 5.5 pun în evidență starea de eforturi și deformații din întreaga grindă mixtă (de unde se evidențiază starea de eforturi doar din grinda metalică), iar în subcapitolul 5.6 se prezintă și starea de eforturi din dala de beton armat, cu conectori.

Toate diagramele prezentate în aceste subcapitole, au dat posibilitatea obținerii unor concluzii vis-a-vis de optimizarea dimensiunilor golurilor de același tip (hexagonal, circular sau alungit) și de starea de eforturi în grinzi mixte, având în inima profilului metalic goluri de aceeași formă, dar de înălțimi diferite a golurilor.

Pentru a evidenția și avantajele unui gol față de altul (în ceea ce privește forma acestora), la aceeași valoare a raportului h_g / H (cu h_g : înălțimea golului și H : înălțimea profilului metalic), se vor prezenta și diagramele din figurile care urmează în continuare.

Dintre toate eforturile studiate, se vor prezenta doar tensiunile normale σ_x , σ_y , σ_z şi tensiunea echivalentă σ_{ech} .

Deoarece ordinul de mărime al eforturilor, dintre efortul de pe întreaga grindă mixtă (care este de fapt efortul în grinda metalică) și cel din dala de beton, este semnificativ diferit, se prezintă pentru fiecare efort, separat pentru fiecare raport h_g / h , în stânga eforturile din grinda metalică (de ordinul zecilor sau sutelor de N/mm² – maximul este $\sigma_{ech.oval3} = 182 \text{ N/mm}^2$), iar în dreapta eforturile din dala de beton armat (de ordinul unităților sau zecilor de N/mm² – maximul este $\sigma_{ech.cerc3} = 16 \text{ N/mm}^2$).

În diagramele următoare, este prezentată tensiunea din diagrama respectivă, cu verde pentru golurile hexagonale, cu galben pentru golurile circulare iar cu bleumarin pentru golurile alungite.

Fig.5.90 Tensiunea σ_x , în grinda metalică și în dala de beton a grinzii mixte

Fig.5.91 Tensiunea σ_y , în grinda metalică și în dala de beton a grinzii mixte

Fig.5.92 Tensiunea σ_z , în grinda metalică și în dala de beton a grinzii mixte

Tensiunea echivalentã

Fig.5.93 Tensiunea echivalentă, în grinda metalică și în dala de beton a grinzii mixte

În ceea ce privește tensiunea normală σ_x , prezentată în figura 5.90, valorile cele mai mici ale acesteia rezultă în grinda metalică a grinzii mixte cu goluri hexagonale, în timp ce, cele mai mari, rezultă în cea cu goluri alungite (la același raport h_g/H). Efortul σ_x din dala de beton nu este influențat nici de forma golurilor, nici de raportul h_g/H, el fiind practic același.

În privința tensiunii normale σ_y , prezentată în figura 5.91, în vreme ce pentru golurile hexagonale și circulare rezultă eforturi apropiate ca și mărime, pentru grinda metalică a grinzii mixte cu goluri alungite rezultă valori ale tensiunii σ_y aproximativ duble decât pentru celelalte goluri. În dala de beton, efortul σ_y are valori destul de apropiate.

Tensiunea σ_z este arătată în figura 5.92. În grinda metalică a grinzilor mixte, situația este similară cu cea de la tensiunea σ_y , doar că tensiunea σ_z în grinda mixtă cu goluri alungite este de 1.5 ori mai mare decât cea din grinzile cu golurile hexagonale și circulare, pentru rapoarte $h_g/H = 0.333 \div 0.416$, și aproximativ de 1.25 ori mai mare, în cazul raportului $h_g/H = 0.5$. În dală, tensiunile σ_z sunt practic egale, nefiind influențate nici de forma nici de înălțimea golurilor.

Variația tensiunii echivalente σ_{ech} (care include atât tensiunile normale cât și cele tangențiale) este indicată în figura 5.93. Este interesant de semnalat faptul că pentru golurile circulare rezultă cel mai mic efort σ_{ech} , în grinda metalică, pentru rapoarte $h_g/H = 0.333 \div 0.416$, în vreme ce în dala de beton a grinzii mixte cu goluri circulare, rezultă cea mai mare tensiune echivalentă. În grinda metalică, cel mai mare efort σ_{ech} este în grinda mixtă cu goluri alungite.

Starea de deformație s-a sintetizat în figura 5.94. Se poate observa că indiferent de raportul h_g/H , săgețile maxime rezultă în grinzile mixte cu goluri alungite, în timp ce cele mai mici săgeți rezultă în grinzile mixte cu goluri circulare.

Fig.5.94 Variația deformației totale maxime δ_{max}

5.8 CONTRIBUȚII PERSONALE LA CAPITOLUL 5

Se poate spune că întreg capitolul 5 este o noutate și el reprezintă în întregime contribuția personală, cea mai importantă, la studiul grinzilor mixte oțel-beton, cu goluri dese în inima profilului metalic.

Explicit, contribuțiile personale cuprinse în acest capitol, pot fi rezumate la următoarele aspecte:

1. În deschiderea capitolului se face o prezentare a profilelor metalice, ce formează elementul principal al grinzii mixte, cu goluri dese în inimă, și a avantajelor pe care le prezintă acestea, la execuția planșeelor pentru clădiri etajate.

2. Pentru efectuarea studiului, au fost descrise modalitățile de alegere a formei și a dimensiunilor golurilor dese din inima profilelor metalice. Au fost alese trei tipuri de profile metalice cu goluri dese, cu forme diferite ale golurilor, după cum urmează:

- profile metalice cu goluri hexagonale (fig.5.1)
- profile metalice cu goluri circulare (fig.5.2)
- profile metalice cu goluri de formă alungită (fig.5.3)

3. La efectuarea studiului au fost alese pentru fiecare din cele trei forme ale golurilor, trei mărimi ale înălțimii golurilor $h_g = 200, 250, 300$ mm, pentru un profil metalic de înălțime h, din care provine grinda cu goluri dese în inimă.

4. Pentru pregătirea studiului grinzilor mixte oțel-beton cu goluri dese în inimă, au fost descrise în paragraful 5.2, considerațiile teoretice de ordin general, privind aplicarea metodei elementelor finite, prezentată în capitolul 4.

5. Sunt scrise relațiile (5.7)....(5.10), privind starea de eforturi unitare în elementele grinzilor, exprimată prin ecuațiile generale cu derivate parțiale – ecuațiile Navier (5.7), la care se atașează relațiile generale de legătură dintre vectorul deformațiilor specifice și vectorul deplasărilor (5.8), precum și relațiile de legătură dintre eforturi și deformațiile specifice, din domeniul comportării liniare a materialului, exprimate prin legea generalizată a lui Hooke (5.9) și (5.10).

6. La studiul grinzilor mixte cu goluri dese în inima profilului metalic, au fost folosite elemente finite tridimensionale de tip SOLID, descrise în capitolul 4.

7. La grinzile mixte cu goluri hexagonale, circulare și alungite, s-au folosit pentru discretizarea dalei de beton, elemente finite de tip SOLID65, iar pentru grinda metalică, elemente SOLID45

8. Prima grindă studiată a fost grinda mixtă cu goluri hexagonale. După ce este prezentată schema grinzii mixte în elevație, cu golurile cele mai mici $h_g = 200$ mm și cu golurile cele mai mari $h_g = 300$ mm, precum și secțiunea transversală a acestora, este arătată în figura 5.6 discretizarea în elemente finite a unei jumătăți de grindă, pentru golurile de $h_g = 200$ mm. 9. Pentru optimizarea dimensiunilor golurilor, au fost rulate aceste grinzi la calculator cu

ajutorul programului ANSYS 5.0, obținând valorile maxime ale tensiunilor normale $\sigma_{x max}$ (x fiind axa maximă de inerție a secțiunii transversale, normală la planul inimii), $\sigma_{y max}$ (y fiind axa minimă de inerție a secțiunii transversale, din planul inimii) și $\sigma_{z max}$ (z este axa longitudinală a grinzii mixte) și tensiunile tangențiale maxime $\tau_{xy max}$, $\tau_{yz max}$ și $\tau_{xz max}$, prezentate în tabelul 5.1. În tabelul 5.2 sunt indicate valorile rezultate din calculul automat, pentru tensiunile principale $\sigma_{1 max}$, $\sigma_{2 max}$ și $\sigma_{3 max}$, ca și tensiunea echivalentă σ_{ech} , intensitatea tensiunii σ_{int} și deformația componentă maximă δ_{max} .

10. Rezultatele obținute prin acest nou mod de abordare a calculului cu programul ANSYS,

arată că tensiunea normală $\sigma_{z max}$ din lungul grinzii are, după cum era și firesc, valoarea cea mai mare $\sigma_{z max} = 153.544 \text{ N/mm}^2$ (tabelul 5.1), valorile acestor tensiuni fiind sugestiv reprezentate în diagrama originală din figura 5.7. De asemenea, tensiunea echivalentă maximă σ_{max} ech, din efectul combinat al tensiunilor normale și tangențiale, are valoarea cea mai mare pentru grinzile având goluri de $h_g = 300$ mm, care verifică condiția dată în EUROCODE 4:

$$\sigma_{ech,max} = 161.02 N / mm^2 < \frac{f_y}{\gamma_a} = \frac{235}{1.1} = 213.6 N / mm^2$$

11. Pe baza diagramelor axonometrice din figura 5.7, care se referă la tensiunile σ_x (notată ca și în programul rulat pe calculator, cu Sx), σ_y (notată cu Sy) și σ_z (notată cu Sz), se arată că tensiunea normală σ_x este practic constantă pentru cele trei variante de goluri, în schimb tensiunile normale σ_y și σ_z au valori sensibil mai mari pentru grinda cu golurile cele mai mari, cu $h_g = 300$ mm

12. Diagramele din figura 5.8 arată că tensiunile tangențiale τ_{xy} , τ_{xz} au valori foarte mici și apropiate pentru cele trei tipuri de înălțimi ale golului, în vreme ce tensiunea τ_{yz} are valori mult mai mari, având valorile maxime pentru grinda cu golurile cele mai mari $h_g = 300$ mm 13. În mod asemănător diagramele din figura 5.9 prezintă variația tensiunilor principale și a celei echivalente, de unde se vede că valorile acestora sunt mai mari pentru grinzile cu golurile având înălțimea cea mai mare, dar diferențele nu sunt prea mari. La golurile de înălțime $h_g =$ 200 și 250mm, tensiunile σ_{ech} sunt aproape egale, acestea fiind deci dimensiunile optime. 14. În diagrama din figura 5.10 este prezentată variația deformațiilor componente, pentru cele trei înălțimi de goluri, care este practic liniară, deformațiile maxime fiind, în mod evident, pentru grinda cu golurile cele mai mari.

15. Pentru a se vizualiza mai bine modul de variație a tensiunilor normale , tangențiale și echivalente, precum și deformata grinzii mixte oțel-beton, se prezintă starea de eforturi și deformații, în imagini care prezintă grinda mixtă având golul cel mai mare ($h_g = 300$ mm), atât imagini de ansamblu, pe toată lungimea grinzii, cît și în detaliu, în dreptul ultimelor goluri dinspre reazem, unde tensiunile sunt maxime. Prin prezentarea colorată a variației tensiunilor, s-a obținut o vizualizare originală și sugestivă a acestor eforturi, care confirmă rezultatele obținute, pe detaliile grinzii fiind indicate și valorile extreme ale efortului respectiv, notate cu MX maximele și MN minimele. Detaliile privind eforturile din grinda mixtă, prezintă prin curbe de nivel colorate, variația eforturilor în jurul golurilor, cu indicarea în legendele situate în dreapta figurilor, a valorilor eforturilor de compresiune cu nuanțe spre albastru , respectiv eforturile de întindere cu nuanțe spre roșu (conform figurilor 5.12, 5.14, 5.16, 5.18, 5.20).

16. De asemenea este prezentată sugestiv în figura 5.21, deformata grinzii (arătată comparativ cu structura nedeformată) și în figura 5.22 săgeata totală a aceleiași grinzi mixte, cu golul având $h_g = 300$ mm. În imaginea care prezintă variația deformației maxime, fig.5.22, din legenda din dreapta figurii se pot citi valorile deformației, în orice zonă a grinzii. Săgeata maximă a rezultat la mijlocul deschiderii, $\delta_{max} = 6.312$ mm, vizualizată pe zona colorată în roșu.

17. Același procedeu a fost aplicat la grinda mixtă oțel-beton cu goluri circulare, având diametrul golului de 200, 250 și 300mm, deci aceleași valori ca la înălțimea golurilor hexagonale, după cum se arată în figura 5.23. Și în acest caz, s-a făcut discretizarea structurii în elemente finite, care se prezintă în figura 5.24.

18. Și în acest caz, pentru a determina starea de eforturi în cele trei grinzi cu înălțimi diferite ale golurilor, s-au determinat în urma calculului cu programul ANSYS 5.0, eforturile unitare normale, tangențiale, principale, tensiunea echivalentă și evident, deformațiile. Aceste mărimi sunt înscrise în tabelele 5.3 și 5.4, de unde se poate vedea de asemenea că pentru golurile de

diametru D = 200 și 250mm, tensiunile sunt relativ apropiate, deci acestea sunt cele mai indicate diametre ale golurilor.

19. Așa cum este arătat din calculul făcut, și din tabelul 5.4, tensiunea echivalentă maximă verifică condiția din EUROCODE 4:

$$\sigma_{cch, max} = 171.539 N / mm^2 < \frac{f_y}{\gamma_a} = \frac{235}{1.1} = 213.6 N / mm^2$$

20. La fel ca și pentru grinda cu goluri hexagonale, sunt prezentate rezultatele și în cazul golurilor circulare, cu tensiunile pe grinda întreagă, respectiv pe detaliile cu golurile de capăt din zona reazemului. Detaliile prezentate arată că tensiunile maxime din jurul golurilor nu sunt în axul vertical al acestora, ci într-o secțiune înclinată cu un unghi de până la 20° față de axul golului , lucru ce este confirmat și de bibliografia de la grinzile ajurate [75], [79], [80], [85], care arată că în grinzile metalice cu goluri în inimă eforturile sunt maxime la un unghi de 10-20°, funcție de natura încărcărilor.

21. Este prezentată și deformata structurii cu goluri circulare, precum și valoarea săgeților

(fig. 5.40 și 5.41), de unde se vede că săgeata maximă este $\delta_{max} = 6.083$ mm, care se observă că este cu aproximativ 3.8% mai mică decât săgeata grinzii cu goluri hexagonale. Aceasta arată că grinzile cu goluri circulare sunt mai rigide decât cele cu goluri hexagonale, aspect favorabil pentru planșeele clădirilor etajate.

22. Aceleași studii de până acum au fost extinse și la grinzi mixte cu goluri alungite

(apropiate de o elipsă), goluri înscrise în golurile hexagonale corespondente (fig.5.42 și 5.43), pentru care s-a prezentat discretizarea din figura 5.44. La aceste grinzi mixte cu goluri alungite, tabelele cu valorile maxime ale eforturilor (tabelul 5.5 și 5.6) arată că atât tensiunile normale maxime $\sigma_{z max}$ cât și tensiunile echivalente maxime $\sigma_{ech max}$, sunt foarte apropiate la cele trei înălțimi de goluri, diferențele fiind de 0.8%, valoare neglijabilă. În plus, valorile intabulate arată că tensiunile echivalente sunt maxime la golurile cu înălțime mijlocie, de 250mm, care verifică condiția din EUROCODE 4:

$$\sigma_{ech, \max} = 182.037 N / mm^2 < \frac{f_y}{\gamma_a} = \frac{235}{1.1} = 213.6 N / mm^2$$

23. Și pentru grinda cu goluri alungite, au fost trasate graficele cu variația axonometrică a tensiunilor, care arată sugestiv că tensiunile nu diferă teoretic și practic, de la o înălțime la alta a golului.

24. La fel ca celelalte grinzi cu goluri hexagonale și circulare, sunt trasate variațiile eforturilor din jurul golurilor, deosebit de interesant vizualizate pe figurile cu detalii de la 5.48 la 5.60 și în acest caz eforturile unitare echivalente σ_{ech} fiind maxime pe conturul golului, nu în axul golului, ci într-o secțiune orientată cu un unghi de circa 35-40°.

25. Din figura 5.62, care prezintă săgețile maxime ale grinzii, reiese că aceasta are o săgeată maximă la mijloc $\delta_{max} = 6.692$ mm, cu aproximativ 6% mai mare ca la grinda cu goluri hexagonale și cu aproximativ 10% mai mare decât la cea cu goluri circulare.

26. Toate rezultatele cercetărilor întreprinse personal în teza de doctorat, prin stările de eforturi evidențiate în culori, pe figurile prezentate anterior, arată că eforturile din dala de beton sunt foarte mici și variază puțin, reprezentate în ansamblul profil metalic-dală de beton, cu o singură culoare în gama de culori existentă. Pentru a scoate în evidență eforturile în dala de beton, s-a făcut un lucru original prin deselectarea (separarea) grinzii metalice de dală, rămânând în imaginile de studiu doar placa de beton armat, dar cu starea de tensiune și de deformație obținută din calculul întregii grinzi mixte oțel-beton.

27. La studierea stării de eforturi din dala de beton armat au fost evidențiate tensiunile normale
σ_x , σ_y și σ_z , precum și cea tangențială τ_{xz} , din care se obține forța de lunecare din dală, la care se calculează conectorii. Aceste eforturi menționate, sunt prezentate pentru dală, în două moduri distincte:

- printr-o reprezentare plană a tensiunilor, în planul dalei
- printr-o reprezentare spațială a eforturilor, determinându-se volumele asociate tensiunilor studiate

28. Reprezentarea în planul dalei a eforturilor, este similară cu cea făcută în paragrafele anterioare, care au prezentat starea de tensiune în toată grinda, doar că aceste eforturi vor fi acum vizualizate cu starea de tensiune corespunzătoare, prin gama completă de culori din dală.
29. Reprezentarea in spațiu a volumelor de tensiuni, a fost făcută cu ajutorul utilitarului

SURFER [67], care permite atât vizualizarea variației eforturilor, printr-o gamă mai largă de culori, cât și calcularea volumelor asociate fiecărei tensiuni, prin trei metode de evaluare aproximativă a acestor volume: folosind metoda trapezelor, metoda Simpson și metoda Simpson 3/8. Acest utilitar SURFER care a fost folosit, calculează volumul de tensiuni cuprins între un plan de referință ce are normala paralelă cu axa z, suprafața spațială de interpolare a eforturilor și patru plane ce limitează marginile rețelei de puncte. Planul de referință ales pentru reprezentarea volumelor de tensiuni, denumit în imaginile obținute din utilitarul SURFER, prin Lower Surface, poartă denumirea de suprafața de referință inferioară.

30. Studiul stării de eforturi din dala de beton armat a fost efectuat cu aceste metode originale, pentru toate grinzile mixte, cu cele trei tipuri de goluri: hexagonale, circulare și alungite, și cele trei înălțimi h_g , pentru fiecare tip de gol. Din lipsă de spațiu s-au prezentat rezultatele pentru fiecare formă de gol, dar doar pentru înălțimea maximă de gol $h_g = 300$ mm.

31. În figurile 5.63....5.70, sunt prezentate pentru fiecare efort, variația acestuia în planul

dalei, în spectrul celor 14 nuanțe de culori, precum și volumul de efort asociat, reprezentat față de planul de referință tot într-o gamă variată de culori, precizându-se și valoarea volumului calculat cu toate cele trei metode menționate anterior.

32. Aceste reprezentări sugestive, originale și personale, în plan și în spațiu, prezintă tensiunile σ_x , σ_y , σ_z și τ_{xz} , pentru grinda cu goluri hexagonale, iar valorile maxime ale acestora sunt date în tabelul 5.7 doar pentru grinda cu $h_g = 300$ mm, respectiv în tabelul 5.8 sunt date volumele asociate acestor eforturi.

33. În figura 5.71 au fost reprezentate prin diagrame, volumele asociate tensiunilor σ_x , σ_y , σ_z și τ_{xz} , din dala grinzii mixte, care arată că indiferent de mărimea golurilor, $h_g = 200, 250$ sau 300mm, eforturile din dală sunt aproape egale.

34. În același mod sunt prezentate aceleași eforturi σ_x , σ_y , σ_z și τ_{xz} , pentru dala grinzii mixte cu goluri circulare având diametrul D = 300mm. Ca și la grinzile cu goluri hexagonale, și în cazul acestei dale apar vârfuri de tensiuni în reazemul grinzii, iar în lungul grinzii se evidențiază vârfuri și găuri în volumele de tensiuni. În mod similar cu cazul anterior, eforturile din dală nu sunt afectate de modificarea înălțimii golurilor.

35. În final, același procedeu se aplică și la dala grinzii mixte cu goluri alungite. Observațiile sunt similare cu cele două cazuri prezentate, evidențiindu-se și în cazul dalei tensiunea normală maximă din beton, în cazul grinzii mixte cu goluri alungite, care verifică condiția din EUROCODE:

$$\sigma_{z.\max,bet} = 11.075 N / mm^2 < \frac{0.85 f_{ck}}{\gamma_c} = \frac{0.85 \cdot 25}{1.5} = 14.17 N / mm^2$$

CAPITOLUL 6

CONCLUZII ȘI CONTRIBUȚII PERSONALE

6.1 CONCLUZII

Structurile mixte oțel-beton câștigă tot mai mult teren în domeniul construcțiilor multi-etajate, industriale sau al podurilor, în fața construcțiilor tradiționale (din beton sau oțel).

La planșeele mixte oțel-beton, grinzile metalice de susținere se pot realiza fie ca și grinzi cu inimă plină, fie ca și grinzi cu goluri dreptunghiulare, hexagonale, octogonale, circulare, ovale sau alungite.

Utilizarea profilelor metalice cu goluri dese în inimă, la grinzile mixte oțel-beton, permite optimizarea spațiului și a deschiderii lucrării, reduce greutatea structurii datorită rigidității mari a acestor profile, asigură flexibilitatea construcției, permițând trecerea conductelor și a țevilor de instalații prin inima profilului metalic.

Nu în ultimul rând, grinzile metalice cu goluri dese în inimă asigură estetica lucrării și rapiditate în asamblare, reducând implicit și costul construcției.

Până la ora actuală au fost studiate în principal grinzile mixte oțel-beton cu goluri dreptunghiulare în inima profilului metalic (chiar dacă în prezent se construiește în această variantă de alcătuire, grinzile metalice fiind prevăzute cu goluri circulare, dar calculate ca și grinzi metalice simple, nu ca și grinzi metalice ca parte componentă a grinzii mixte oțel-beton).

Lucrarea de față își propune să studieze în principal grinzile mixte oțel-beton cu goluri dese în inima profilului metalic, goluri având și alte forme decât cele dreptunghiulare, ca: hexagonale, circulare și alungite. În aceste sens, teza de doctorat și-a conturat următoarele obiective, care se speră că au fost realizate prin abordarea propusă de autoare:

- Prezentarea sistematizată a alcătuirii grinzilor mixte oțel-beton cu goluri în inimă şi definirea diferitelor forme de goluri şi a dimensiunilor acestora.
- Folosirea metodei elementelor finite la determinarea stării de eforturi şi deformații în grinzile mixte oțel-beton, cu goluri dreptunghiulare, hexagonale, circulare şi alungite, în inima profilului metalic.
- Realizarea optimizării dimensiunilor golurilor, prin studierea repartiției eforturilor în jurul acestora și a intensității lor în diferite puncte de pe conturul lor.
- Studiul comparativ al stării de eforturi şi deformații, din grinzile compuse oțel-beton, cu goluri dese în inima profilului metalic, golurile având formă: hexagonală, circulară şi alungită

Pentru realizarea obiectivelor abordate mai sus, s-a început prin prezentarea grinzilor mixte oțel-beton, în general.

În *Capitolul 2*, au fost descrise toate aspectele legate de alcătuirea și calculul grinzilor mixte oțel-beton, acestea bazându-se pe norma europeană EUROCODE 4 și pe alte lucrări din bibliografia studiată. Au fost sistematizate toate calculele și verificările necesare în cazul

grinzilor compozite, descrierea acestora venind în sprijinul proiectanților acestor tipuri de structuri.

După prezentarea calculului grinzilor mixte oțel-beton cu inimă plină, s-a trecut la obiectul propriu-zis al lucrării de față: grinzile mixte cu goluri în inima profilului metalic.

Capitolul 3 sintetizează aspecte legate de stadiul actual al problemei și prezintă câteva metode de calcul al acestor grinzi, cu goluri dreptunghiulare sau pătrate, în inimă. Totodată este atașat în finalul capitolului, și un exemplu practic de calcul al unei grinzi mixte oțel-beton cu două goluri dreptunghiulare în inimă, grindă ce a fost verificată cu cele trei metode descrise în acest capitol.

Originalitatea acestei lucrări constă în abordarea calculului grinzilor compuse oțel-beton cu goluri în inimă, folosind metoda elementelor finite.

În *Capitolul 4* se prezintă principiile metodei elementelor finite și avantajele folosirii ei la calculul structurilor mixte. Evident, datorită numărului mare de elemente finite în care se discreditează structura, dar și datorită existenței a mai multor materiale care compun grinda mixtă oțel-beton, calculul manual cu metoda elementelor finite este practic imposibil. Din acest motiv, s-a ales calculul automat cu ajutorul programului de calcul ANSYS 5.0. Pentru o continuare a studiului descris în capitolul 3 și totodată o verificare a veridicității rezultatelor, s-a ales pentru început grinda mixtă cu cele două goluri dreptunghiulare în inimă, calculată în finalul capitolului 3. Prin rularea acestei grinzi cu programul de calcul automat ANSYS, s-au obținut stările de eforturi și deformații, atât pe întreaga grindă, cât și în zonele aflate în vecinătatea golurilor.

Datorită faptului că rezultatele obținute prin rularea grinzii mixte cu goluri dreptunghiulare au fost corecte, studiul făcut cu ajutorul programului de calcul automat ANSYS 5.0, s-a extins și în Capitolul 5, la alte 3 tipuri de grinzi mixte oțel-beton, prevăzute cu goluri dese în inimă, având formă hexagonală, circulară și alungită în sensul longitudinal al grinzii. Pentru fiecare formă de gol s-au luat diferențiat trei înălțimi de gol, pentru a studia starea de eforturi și deformații la fiecare gol de formă și înălțime diferită. Golurile de la grinzile mixte oțel-beton cu goluri dese în inima profilului metalic, au fost luate ceva mai mici ca înălțime decât cele de la grinda mixtă cu goluri dreptunghiulare (la care înălțimea golurilor s-a luat pe baza relației (3.2)), deoarece datorită numărului mare de goluri din inima profilului de oțel, scade mult sectiunea grinzii ceea ce conduce la eforturi mai mari în grinda metalică și mai ales la reducerea rigidității grinzii mixte. Acesta a fost motivul pentru care cele trei înălțimi ale golurilor hexagonale, circulare și alungite hg, au fost luate de 200, 250 și 300mm, în loc de 300....400mm, cât ar rezulta în urma aplicării relației (3.2). S-a arătat că pentru toate înăltimile de gol, grinzile metalice cu goluri (ca parte componentă a grinzii mixte), s-au obținut din profile metalice cu inimă plină de înălțime h, existente în literatura de specialitate. Profilele metalice cu goluri, obținute, au rezultat toate cu înălțimea H = 600mm. Pentru a se putea face comparație între grinzile mixte, având profilul metalic prevăzut cu goluri de forme și dimensiuni diferite, s-a lucrat în calculul propriu-zis pe calculator, cu caracteristicile geometrice ale profilului IPE 600, care compune și grinda mixtă cu goluri dreptunghiulare studiată în capitolul 4. Astfel s-a realizat o optimizare a dimensiunilor golurilor, putându-se trage concluzii referitoare la comportamentul grinzilor compozite cu goluri în inimă. Modul de prezentare a rezultatelor s-a făcut în imagini în care starea de tensiune sau de deformație este arătată în culori, fiecărei imagini fiindu-i asociată o legendă, în care la rândul ei fiecărei culori îi corespunde un interval de valori ale mărimii studiate.

Prezentarea imaginilor referitoare la întreaga structură mixtă, nu permite observarea stării de eforturi în dala de beton, deoarece eforturile în dală sunt mult mai mici decât în grinda metalică și numărul culorilor în care se prezintă mărimile este limitat (10-15 culori). Din

acest motiv, după prezentarea rezultatelor pe întreaga grindă mixtă (de unde se pot trage concluzii doar în ceea ce privește starea de tensiune din grinda metalică), se deselectează profilul de oțel, păstrând doar dala de beton armat, dar în care acum se poate vedea starea de eforturi, evident stare de eforturi obținută în urma calculului întregii grinzi mixte, formată din dală și grinda metalică.

Cu titlu de originalitate, reprezentarea variației eforturilor în dala de beton a grinzii mixte constituie un alt mod de abordare al acestui aspect. În placă, eforturile sunt prezentate atât în

plan, pe dala de beton singură (grinda metalică fiind deselectată), dar și în spațiu, prin vizualizarea sugestivă a volumelor asociate de tensiuni în placă.

Din diagramele prezentate în finalul capitolului 5 (fig. $5.90 \div 5.93$), se pot concluziona următoarele:

- Din toate mărimile studiate (tensiuni şi deformații), indiferent de mărimea raportului dintre înălțimea golului şi înălțimea profilului metalic h_g/H, cele mai mari eforturi şi deformații au rezultat în grinzile mixte cu goluri alungite, deci la aceleaşi dimensiuni ale secțiunii şi ale golurilor, această variantă de grindă mixtă cu goluri alungite este cea mai defavorabilă. Aceasta se explică prin faptul că în comparație cu grinzile cu goluri hexagonale prezentate, la care lungimea înălțimii constante a golului este de 300mm, la cele circulare diametrul golului este de asemenea 300mm, pe când la cele cu goluri alungite, lungimea golului este de 540mm, motiv pentru care se reduce rigiditatea grinzii şi cresc valorile eforturilor.
- În grinzile mixte cu goluri hexagonale și circulare, valorile tensiunilor au rezultat destul de apropiate, chiar tensiunea echivalentă (care însumează efectul tensiunilor normale și tangențiale) a rezultat mai mică în grinzile cu goluri circulare.
- În ceea ce priveşte dala de beton armat, eforturile în aceasta au rezultat mult mai mici decât în grinda metalică (ceea ce este evident) şi destul de apropiate între ele ca valori, indiferent de forma golurilor şi de raportul hg/H, ceea ce înseamnă că starea de eforturi din dală nu este afectată decât într-o mică măsură de prezența golurilor din inima profilului metalic.
- În ceea ce privește deformațiile, la aceleași rapoarte h_g/H, cele mai mici săgeți au rezultat în grinzile cu goluri circulare iar cele mai mari în cele cu goluri alungite, de unde se poate concluziona că dintre cele trei grinzi mixte studiate, grinzile cu goluri circulare au rigiditatea cea mai mare, în vreme ce grinzile cu goluri alungite sunt cel mai puțin rigide.
- Acest studiu nu se aplică la grinzile mixte cu profile metalice ajurate, la care golurile, din modul de fabricare al acestora din profile laminate printr-o tăiere specială, sunt foarte apropiate. Acest lucru se datorează faptului că golurile fiind foarte apropiate, eforturile se interferează, conducând la vârfuri de tensiuni mai pronunțate decât la grinzile metalice ajurate necompozite.

6.2 CONTRIBUȚII PERSONALE

Teza de doctorat prezentată și-a propus să studieze grinzile mixte oțel-beton cu goluri în inima profilului metalic, dintr-o perspectivă și o abordare nouă, propusă de autoare.

Datorită avantajelor remarcabile pe care le prezintă grinzile compuse oțel-beton, având profilul metalic prevăzut cu goluri dese în inimă, s-a abordat pe larg acest domeniu, fiind studiat teoretic în ceea ce privește starea de eforturi și de deformații din aceste grinzi mixte.

Înainte de a se studia propriu-zis aceste grinzi mixte cu goluri, s-au prezentat în *Capitolul 2*, în mod detaliat, toate aspectele legate de alcătuirea și calculul grinzilor mixte oțel-beton, fără goluri în inimă. Dintre principalele contribuții personale la acest capitol, se pot menționa:

- Prezentarea aspectelor legate de predimensionarea grinzilor mixte otel-beton, adică stabilirea principalelor dimensiuni ale acestora
- Descrierea succintă a principalelor elemente ce compun grinzile mixte: dala de beton armat, profilul metalic, conectorii și armăturile din dală
- > Calculul lățimii eficace (conlucrătoare) a dalei de beton armat
- S-au definit clasele secțiunilor transversale ale grinzilor, pe baza prevederilor din EUROCODE 3, care se referă la secțiunile grinzilor metalice, dar se aplică și la grinzile compuse oțel-beton. Clasele secțiunii transversale dau posibilitatea alegerii modului de abordare a calculului grinzilor mixte oțel-beton, printr-un calcul liniar, în domeniul elastic, sau neliniar, în domeniul plastic.
- Prezentarea conexiunii dintre grinda metalică și placa de beton armat (conexiune totală sau parțială).
- Calculul neliniar al grinzilor compuse, la încovoiere, care cuprinde întâi determinarea poziției axei neutre plastice, luându-se în calcul atât secțiunile solicitate de moment încovoietor pozitiv, cât și cele sub moment negativ, iar apoi determinarea momentelor rezistente plastice și verificarea rezistenței la încovoiere, în cazul când secțiunea se calculează în domeniul plastic.
- În cazul în care nu se permite abordarea unui calcul neliniar al structurii, grinzile mixte se calculează în domeniul elastic, printr-un calcul liniar. În acest sens, este prezentat pentru început calculul caracteristicilor geometrice ale secțiunii mixte, necesare atât pentru calculul liniar cât și pentru calculul de rigiditate. Apoi este explicat modul de determinare a poziției axei neutre elastice, dintr-un calcul de încovoiere produsă de moment pozitiv, dar și negativ, iar în final calculul momentului rezistent elastic și verificarea de rezistență în acest domeniu.
- Prezentarea altor verificări impuse în calculul grinzilor mixte, cum sunt: verificarea la tăiere, la solicitarea compusă de încovoiere şi tăiere, verificarea rezistenței la deversare, cât şi la voalare prin forfecare.
- Calculul conexiunii de forfecare, pentru determinarea numărului de conectori necesari la realizarea legăturii dintre grinda metalică și dală, dar și a armăturilor transversale.
- Determinarea deformațiilor grinzilor mixte oțel-beton, în Starea Limită de Serviciu, cu precizarea unor relații practice de calcul al acestora.

Toate aspectele descrise în capitolul 2, reprezintă o metodologie practică de lucru, în proiectarea grinzilor compuse oțel-beton.

De la grinzile mixte cu inimă plină s-a trecut la grinzile mixte cu goluri în inima profilului metalic, prezentate în *Capitolul 3*, la care autoarea lucrării aduce importante contribuții personale, după cum urmează:

- Sistematizarea definirii formei şi a dimensiunilor golurilor practicate în inima profilelor metalice a grinzilor mixte, precum şi a rolului acestor goluri.
- Prezentarea modului de comportare a grinzilor cu goluri în inimă, bazat pe studiile teoretice și experimentale ale unor autori studiați din bibliografia prezentată. Sunt descrise mecanismele de distrugere a grinzilor metalice și a grinzilor mixte, în diferite cazuri de solicitare, deformațiile grinzilor în stadiul de distrugere și rezultatele încercărilor experimentale asupra betonului din dala grinzii mixte, cu modul de apariție și de dezvoltare a fisurilor în acesta.

- Enumerarea recomandărilor privind alcătuirea şi calculul grinzilor mixte oțel-beton cu goluri în inimă, cum sunt: criterii dimensionale, criterii de alegere a materialelor (oțelul şi betonul), modul de alegere a conexiunii dintre grindă şi dală, precum şi a tipurilor şi dimensiunilor golurilor.
- Prezentarea metodei de calcul propusă de D.Darwin, printr-o descriere succintă a paşilor pe care trebuie să îi parcurgă un proiectant în verificarea unei grinzi mixte cu goluri în inimă.
- Metoda americană LRFD, descrisă în continuare, fiind de fapt Metoda Stărilor Limită conform normelor europene, reprezintă o continuare a studiilor făcute de Darwin şi de alți cercetători, cu privire la grinzile mixte oțel-beton cu goluri în inimă. Se prezintă în mod asemănător, calculul eforturilor şi verificarea interacțiunii moment-forță tăietoare, pentru grinzile cu goluri în inimă.
- Metoda ultimă prezentată este metoda ASCE, bazată pe studiile a numeroşi cercetători. Ca scop final şi în această metodă se verifică interacțiunea momentului cu forța tăietoare.
- La toate cele 3 metode enumerate mai sus, au fost sistematizate relațiile de calcul necesare în munca de proiectare, făcându-se unele completări acolo unde nu era prezentat explicit.
- Pentru ca prezentarea metodelor de calcul să fie completă, în finalul capitolului 3 am arătat și un exemplu de calcul al unei grinzi mixte oțel-beton, considerată ca o grindă secundară, având două goluri dreptunghiulare în inima profilului metalic, grindă ce a fost verificată cu toate cele trei metode prezentate teoretic.

O contribuție originală la studiul grinzilor mixte oțel-beton cu goluri în inima profilului metalic, care este de fapt esența lucrării de față, constă în calcularea acestor grinzi folosind metoda elementelor finite, prezentată în *Capitolul 4*, pe baza unui calcul automat făcut cu ajutorul programului ANSYS 5.0. Sunt de subliniat următoarele contribuții personale:

- Prezentarea teoretică generală a metodei elementelor finite şi necesitatea folosirii acesteia în calculul structurilor mixte oțel-beton.
- Particularizarea calculului bazat pe metoda elementelor finite, cu ajutorul programului de calcul automat ANSYS 5.0, calcul imperios necesar atât datorită materialelor diferite (fizic şi mecanic) ce compun grinzile mixte, dar şi datorită numărului mare de ecuații ce rezultă în urma discretizării structurii în elemente finite.
- Noutatea și originalitatea problemei constă în folosirea elementelor finite tridimensionale de tip SOLID, pentru discretizarea structurii. Elementele finite sunt diferite pentru fiecare parte componentă a grinzii mixte. Astfel pentru dala de beton armat s-au ales elemente de tip SOLID65, iar pentru profilul metalic elemente de tip SOLID45.
- Prezentarea elementului finit SOLID65 constituie un aspect de noutate, datorită posibilității folosirii acestuia pentru discretizarea dalei de beton armat, în care există 3 materiale diferite : betonul, armăturile şi conectorii. Programul ANSYS, prin acest tip de element SOLID65, permite introducerea în calcul a materialului de bază (betonul) şi până la 3 alte materiale de armare (armăturile şi conectorii). Acest lucru este posibil atât prin introducerea constantelor elastice, dar în principal, în matricile efort-deformație pe care le folosește acest program, în calculul folosind acest tip de element finit, se introduce şi raportul dintre volumul materialului de armare şi cel al betonului, care alcătuiesc elementul finit studiat.
- După descrierea teoretică a modului de calcul automat cu programul ANSYS, folosind metoda elementelor finite, se trece la rularea propriu-zisă a grinzii mixte cu cele două goluri dreptunghiulare, studiată și în capitolul 3.
- Prezentarea rezultatelor după rularea grinzii cu goluri dreptunghiulare, este făcută sugestiv prin capturi ale imaginilor, referitoare la: deformațiile grinzii și tensiunile normale,

tangențiale, principale, tensiunea echivalentă și intensitatea tensiunii. Se pun în evidență valorile extreme ale eforturilor, verificându-se din punctul de vedere al rezistenței grinzii, dar si vârfurile de tensiune în vecinătatea golurilor.

Extinderea calculului grinzilor mixte cu goluri, cu metoda elementelor finite, utilizând programul de calcul automat ANSYS 5.0, constituie principala contribuție a autoarei la această lucrare. Această extindere este prezentată în *Capitolul 5* și se referă la calculul altor 3 tipuri de grinzi compozite oțel-beton, cu goluri dese hexagonale, circulare și alungite.

Golurilor considerate pe rând în una dintre formele menționate, li s-au modificat alternativ dimensiunile, pentru a se putea trage concluzii vis-a-vis de starea de eforturi și deformații în aceste grinzi. În acest mod s-a ajuns de fapt la studiul a 9 grinzi mixte, cu goluri în inimă. Cele mai importante contribuții aduse la acest capitol, pot fi rezumate după cum urmează:

- Definirea golurilor care se vor prevedea în inimile grinzilor mixte studiate, prin importanța lor și alegerea dimensiunilor acestora. S-au ales goluri hexagonale, circulare și alungite, la care a fost modificată înălțimea golurilor h_g, pentru trei variante de înălțime.
- Descrierea relațiilor teoretice pe care se bazează calculul liniar al structurilor mixte, printrun calcul automat, de unde rezultă valorile deformațiilor şi ale tensiunilor, în orice nod al structurii discretizată în elemente finite.
- Folosirea elementelor finite tridimensionale de tip SOLID65 pentru discretizarea dalei de beton, respectiv SOLID45 pentru grinda metalică a grinzii mixte.
- Optimizarea dimensiunilor golurilor, prin modificarea înălțimii acestora, în toate variantele de alcătuire: grindă mixtă cu goluri hexagonale, circulare și alungite.
- Eforturile normale maxime σ_z la fel ca și tensiunea echivalentă σ_{ech} , rezultă în vecinătatea secțiunii de moment maxim, mai precis pe conturul golului care este cel mai apropiat de aceasta.
- Prezentarea variației eforturilor se face atât pe întreaga grindă în ansamblu, cât şi într-un detaliu situat în vecinătatea reazemului, unde eforturile sunt maxime. Starea de eforturi şi deformații se poate vizualiza într-o manieră originală şi foarte sugestivă, prin culori, fiecărei culori fiindu-i asociat un interval de valori corespunzător mărimii prezentate. Mai mult de atât, programul cu care s-au rulat grinzile, indică exact secțiunile unde eforturile şi deformațiile au valori extreme, adică unde sunt maxime sau minime.
- În varianta cu goluri hexagonale, pentru primele două valori ale înălțimilor golurilor, h_g = 200, 250mm, eforturile rezultă practic constante, în vreme ce pentru înălțimea cea mai mare a golului h_g = 300mm, se observă o creştere semnificativă a eforturilor. Se remarcă vârfuri de tensiune în colțurile golurilor hexagonale.
- În varianta cu goluri circulare, creșterea eforturilor are o variație practic liniară de la o înălțime a golului la alta. De semnalat aici este concluzia care rezultă în urma vizualizării stării de eforturi din jurul golului și anume că tensiunile maxime nu se găsesc în axul vertical al golului, ci într-o secțiune înclinată cu un unghi de aproximativ 20° față de acest ax, deci se observă aceeași situație ca și la grinzile metalice ajurate.
- În cazul grinzilor mixte cu goluri alungite, important de menționat este faptul că indiferent de înălțimea golurilor, toate tensiunile maxime au rezultat aproximativ egale, dar cu valori mai mari decât la grinzile cu goluri circulare şi hexagonale.
- Prezentarea stării de eforturi în dala de beton a grinzilor mixte oțel-beton, prin deselectarea grinzii metalice și reprezentarea variației eforturilor într-o vizualizare plană, respectiv spațială prin indicarea volumelor asociate de tensiuni corespunzătoare dalei de beton. Reprezentarea spațială este foarte sugestivă, punând în evidență vârfurile de tensiuni, dar și variațiile spațiale ale eforturilor în dreptul golurilor din inima profilului metalic al grinzii mixte.

Pentru concluzionarea finală asupra comportamentului grinzilor mixte oțel-beton cu goluri în inimă, s-au prezentat diagrame care indică eforturile în grinda metalică și în dala de beton, în cele trei variante de goluri și de înălțimi de gol.

Întregul studiu din teza de doctorat prezentată, cu privire la grinzile mixte oțel-beton cu goluri dese în inimă, se referă doar la calculul liniar al acestora, în domeniul elastic. Din cauza volumului foarte mare de calcul, abordarea subiectului în domeniul plastic, printr-un calcul neliniar, nu a putut fi luată în considerare și el face obiectul unor alte studii și lucrări viitoare. Consider că rezultatele obținute în cadrul tezei de doctorat, vor putea fi folosite în practica proiectării grinzilor mixte oțel-beton cu goluri în inimă, folosite la realizarea planșeelor construcțiilor multi-etajate, care au început să fie folosite și la noi în țară, pe scară tot mai largă.

BIBLIOGRAFIE

1.	A. Picard, D. Beaulieu	Constructions mixtes acier-beton, Institut Canadian
2	D Tool D Coores	pour le Construction d'acter, 1991
2.	D. Tood, P. Cooper	Strength of Composite Beams with web Openings, Journal
3	W Clawson D Darwin	Strength of Composite Beams at Web Openings
5.	W. Clawson, D. Darwin	Journal of the Structural Division vol 108 ST2 1082
1	W Clauson D Dorwin	Test of Composite Pears with Web Openings, Journal
4.	w. Clawson, D. Darwin	of the Structural Division well 109 STL 1092
5		Debauian and Design of Composite Deams with Web
5.	D. Darwill	Openings Department of Civil Engineering University of
		Veneral Leurence Veneral
6	M. Danashua	Composite Deame with Web Openings, Design
0.	M. Donagnue	Composite Beams with web Openings. Design,
7		Journal of the Structural Division, vol. 108-5112, 1982
1.	R.Redwood, G.Poumbouras	Analysis of Composite Beams with webs Openings.
		Design, Journal of the Structural Division, vol. 110-1009,
0		
ð.	Soon Ho Cho	Slab Benaviour in Composite Beams at web Openings,
		I nese de doctorate, Mc.Gil University, Montreal-Canada,
0		1990 Starland Commerciae Decimentation Web Original Decime of
9.	D. Darwin	Steel and Composite Beams with web Openings. Design of
		Steel and Composite Beams with web Openings, American
10		Institute of Steel Construction AISC, 1991
10.	D. Darwin, R. Donaney	LRFD for Composite Beams with unreinforced web
1 1		Openings, Journal of Structural Engineering, vol. 114, 1988
11.	D. Darwin and commission	Web Opening Learney of Structural Steel Beams with
		web Openings, Journal of Structural Engineering, vol. 118,
10	D.D. J	1992 Design of Steel and Composite Desma with Web Openings
12.	. R.Redwood, Soon Ho Cho	Leural of Constructional Steel Beasanch, vol 25, 1002
12	Seen He Che	Analysis of Composite Deems with Web Openings
13.	. Soon Ho Cho	Analysis of Composite Bearis with web Openings, Canadian Institute for Steel Construction 1002
11	C. Maraga	Canadian institute for Steel Constituction, 1995
14.	. G. Mercea	Tempus Dhare Droject IED 4502/03 1004
15	Al Diton	La sistematisation de comportement de poutres ques des
15.	. Al. Bitar	La sistematisation de comportement de pouries avec des
14	D. Domin M. Lucos	Steel and Composite Beams with Web Openings for AISC
10	. D. Darwin, M. Lucas	1000
17	* * *	FUROCODE 1 Actiuni în construcții
17.	* * *	FUROCODE 2 Structuri din beton armat si beton
10	•	nrecomprimat
10	* * *	FUROCODE 3 Structuri metalice
17. 20	* * *	EUROCODE 4 Structuri mixte otel-beton
20	•	

21. C.Bob, A.Ghersi, A.Plumier	EUROCODE 2 Exemple de calcul pentru structuri din beton, beton armat și beton precomprimat, Tempus Phare Project 01198 Timisoara 1997
22. V. Păcurar, J-M. Aribert	EUROCODE 4 Exemple de calcul pentru structuri mixte otel-beton. Tempus Phare Project 01198. Timisoara 1997
23. * * *	STAS 10107/0-90 Calculul construcțiilor din beton, beton
24. * * *	STAS 10108/0-78 Calculul construcțiilor din oțel,
75 * * *	STAS 10101/20 02 Încărcarea din vânt
	STAS $10101/20-72$ incarca can value state $310101/20-72$ incarca can value state $310101/2102$ incarca reaction reaction value state $310101/2102$ incarca reaction reaction value state $310101/20-72$ incarca reaction value state 310101000 incarca reaction value state 3101000000 incarca reaction value state $31000000000000000000000000000000000000$
20. 77 * * *	STAS $10101/21-92$ incarcarca din zapada STAS $10101/1-78$ Încărcări permanente
27. 78 * * *	STAS $10101/1-78$ incarcait permanente STAS $10101/2 \wedge 1.78$ incarcait utile
20. 20 M. Litan	Grinzi cu sectiune mixtă atel betan Calculul și
27. WI. LITAN	comportarea consectorilor la colicitări dinamica. Teră de
	doctorat Chui-Napoca 1995
30 P. P. Johnson	Composite Structures of Steel and Concrete Volume 1
50. K.I . JOHISON	Crosby Lockwood Staples London 1004
31 I.M. Aribert	Notions de calcul des noutres mixtes agier beton aux etats
51. J -MI. AHOCH	limites ultimes Stage de perfectionement CTICM 1002
32 IC Rivel	Conception et calcul des constructions mixtes acier beton
52. J.C. Kivai	INSA Rennes 1995
33 I-M Aribert	Exemple de verification aux etats limites ultimes d'une
55. 5 Wi. 7 Wieere	noutre mixte continue selon l'Eurocode 4 Revue
	Construction Metalique nr 3-1998
34 M Crisinel	Calcul des dalles mixtes acierateton. Conferinta a VII ^{-a} de
	Construcții Metalice Timisoara 1994
35 A Caracostea D Cretu s a	Analiza stării de tensiune prin metoda elementelor finite
55. M. Curucosteu, D. Crețu, ș.u.	într-o grindă mixtă Conferința a IV ^{-a} de Construcții
	Metalice Timisoara 1985
36 C Avram V Bota	Structuri compuse otel-beton si beton precomprimat-beton
so. c. minin, v. botu	armat. Editura Tehnică, București, 1975
37 D Mateescu I Caraba	Construcții metalice. Calculul și projectarea elementelor
ST. D. Matecsea, I. Caraoa	din otel Editura Tehnică București 1980
38 D Mateescu	Clădiri înalte cu schelet din otel. Editura Academiei
50. D. Matoosoa	Române București 1997
39 D Mateescu	Construcții metalice speciale. Editura Tehnică, București
	1962
40. Gh. Buzdugan	Rezistenta materialelor. Editura Tehnică. Bucuresti. 1980
41. M. Jeremia	Elasticitate, plasticitate, neliniaritate, Editura Printech.
	Bucuresti, 1998
42. M. Blumenfeld	Introducere în metoda elementelor finite, Editura Tehnică,
	Bucuresti, 1995
43. D. Stematiu	Calculul structurilor hidrotehnice prin metoda elementelor
	finite, Editura Tehnică, București, 1988
44. O.C. Zienkiewics	The Finite Element Method in Engineering Science,
	Mc.Graw-Hill, London, 1972
45. M. Ivan	Bazele calculului liniar al structurilor, Editura Facla,
	Timişoara, 1985

261

46. E. Cuteanu, R. Marinov	Metoda elementelor finite în proiectarea structurilor, Editura Facla, Timisoara, 1980
47. D. Gârbea	Analiză cu elemente finite, Editura Tehnică, București, 1990
48. C. Avram, C. Bob,	Structuri din beton armat. Metoda elementelor finite,
R. Fridrich, V.Stoian	Editura Academiei, București, 1984
49. A. Caracostea	Manual pentru calculul construcțiilor, Editura Tehnică, București, 1977
50. S.Timoshenko, K.Winowsky	Teoria plăcilor plane și curbe, Editura Tehnică, București, 1968
51. C. Avram	Grinzi continue, Editura Tehnică, București, 1981
52. I. Tertea	Proiectarea betonului armat, Editura Didactică și
	Pedagogică, Bucuresti, 1985
53. * * *	ANSYS Theory Reference 000656 Seventh Edition, SAS
	IP, INC
54. W.L. Wilson, A. Habibulah	SAP 90 Manual de utilizare și o serie de programe de
	analiză statică și dinamică a structurilor prin metoda
	elementelor finite, Berkeley, California, 1978-1988
55. R. Friedrich	Bazele metodei elementelor finite, IPT, Timişoara, 1972
56. M. Soare	Aplicarea ecuațiilor cu diferențe finite la calculul plăcilor
	curbe subtiri. Editura Academiei, Bucuresti, 1968
57. S. Timoshenko	Strength of Materials, Van Nostrand Company, Inc. New
	York 1956
58 Gh Buzdugan A Beles	Culegere de probleme din rezistenta materialelor. Editura
50. On. Duzdugun, 11. Deneş	Didactică și Pedagogică Rucurești 1070
50 NM Release	Didactica și redagogica, Ducurești, 1977 Pazistanta materialelor, Editura Tahnică, Ruguresti, 1057
60 N Desse Al Anghel a c	Rezistența materialelor, Editura Tellinea, București, 1957
ou. n. rosea, Al. Alighei, ș.a.	Rezistență inaternateror, Eultura Știniținea Și Encielenedică, Ducumenti, 1096
	Design for Openings in the Webs of Composite Desma
01. K.W. Lawson	Design for Openings in the webs of Composite Beams,
	Steel Construction Institute, 1988
62. J.K. Ward	Design of Composite and Non-composite Cellular Beams,
	Steel Construction Institute, 1990
63. G.W. Owens	Design of fabricated Composite Beams, Steel Construction
	Institute, 1989
64. J-M. Aribert, H. Xu,	Etude critique des methodes de redistribution des moments
E.Ragneau	a l'ELU selon l'Eurocode 4, Revue Construction
	Metalique, nr.1, 1996
65. J.E. Bower	Ultimate Strength of Beams with rectangular Holes, ASCE
	Journal of the Structural Division, 1968
66. S.S. Morcos, R. Bjorhovde	Fracture modeling of Concrete and Steel, Joural of
······································	Structural Engineering, 1995
67. * * *	Surfer Version 5.00, Mar 1 1944, Golden Software Inc.
	Golden Colorado USA
68 A Bazile	Etude de la resistance des poutrelles ajourees. Construction
	Metalique Nr 3 1964
69 A Bazile I Texier	Essais de poutres ajourees Construction Metalique Nr 3
OF The Durine, I. Texter	1968
70 C Dalban S Dima	Construcții cu structură metalică. Editura Didactică ci
V. C. Daluali, S. Dillia,	Dedegogiaă Dugurget: 1007
E. Unesaru, U. Şerdescu	reuagogica, București, 1997

71. R. Delesques	Le calcul des poutres ajourees, Construction Metalique, Nr.4, 1969
72. F. Faltus	Contribution au calcul des poutres a ame evidee, Acier Stahl Steel Nr 5, 1966
73. I. Kolosowski	Stresses and Deflections in Castelated Beams, The structural Engineering, Nr 1, 1964
74. D. Mateescu, Gh. Mercea	Profile ajurate cu goluri circulare și ovale, Construcții, Nr 3 1979
75. Gh. Mercea	Profile ajurate cu goluri circulare și ovale. Un nou tip de profile ajurate Teză de Doctorat Timisoara 1975
76. * * *	Stahl im Hochbau Handbuch, Verlag Stahleisen, M.B.H., Dusseldorf 1967
77. D. Mateescu, Gh. Mercea	Profile ajurate cu goluri circulare în inimă, Conferința I de Construcții Metalice, Timisoara, 1973
78. D. Mateescu, Gh. Mercea	Instrucțiuni tehnice pentru proiectarea construcțiilor metalice ajurate, din profile cu goluri în inimă, Construcții, Nr.6, 1974
79. D. Mateescu, Gh. Mercea	Studiul variației eforturilor în jurul golurilor la profile ajurate cu goluri circulare, Conferința a II ^{-a} de Construcții Metalice, Timisoara, 1979
80. D. Mateescu, Gh. Mercea	Un nouveau type de poutres ajourees, Construction metalique, Nr.3, 1981
81 * * *	Wabentrager Merkhlat-Stahl Nr 361 1965
82. Gh. Mercea	Une nouvelle modalite de calcul des poutres ajourees a evidements circulaires, Buletin IPT Tom 35(49), 1990
83. Gh. Mercea	Construcții metalice din profile ajurate, Editura Academiei Române, București, 2000
84. Gh. Mercea	Studii privind eficiența profilelor ajurate cu goluri circulare, față de profilele cu goluri hexagonale, Buletin IPT Tom 26(40), 1981
85. Gh. Mercea	L'etat de contrainte autour des evidements dans les poutres ajourees a evidements circulaire, Buletin IPT Tom 30(44), 1985
86. Gh. Mercea, Z. Regen.	Une nouvelle modalite d'abordation du calcul des poutres
M. Achim	ajourees et des caracteristiques geometriques, Conferința a III ^{-a} de Construcții Metalice, Timisoara, 1981
87. Gh. Mercea, D. Florescu	Calculul caracteristicilor geometrice a profilelor cu goluri, folosind calculatorul electronic, Conferința a II ^{-a} de Construcții Metalice, Timisoara, 1979
88. Gh. Mercea, M. Achim	Analysis Method for Composite Beams with Web Openings, Steel Structures-Eurosteel'95, Athens, 1995
89. M. Achim	Aspects concernant l'analyse des methodes de calccule des poutres mixtes avec des ouvertures en ame, Conferința a VII ^{-a} de Construcții Metalice, Timisoara, 1994
90. Gh. Mercea, M. Achim	Aspecte legate de proiectarea grinzilor mixte oțel-beton, Conferința a VIII ^{-a} de Construcții Metalice, Timisoara, 1997
91. M. Achim	Rezistența materialelor - vol.I, Editura UPT, Timișoara, 1996

CUPRINS

	Pag.
1. ASPECTE GENERALE PRIVIND	1
CONSTRUCTILE MIXTE OTEL-BETON	
1.1 INTRODUCERE	1
1.2 NOTIUNI GENERALE PRIVIND DEFINIREA	2
CONSTRUCTIILOR MIXTE	
1.3 MATERIALE FOLOSITE LA REALIZAREA GRINZILOR	3
MIXTE	
1.3.1 Betonul din placa grinzii mixte otel-beton	3
1.3.2 Oțelul pentru armătura flexibilă	6
1.3.3 Oțelul de construcție pentru profilul metalic al grinzii mixte	7
1.3.4 Table cutate (profilate) din otel, pentru dale mixte otel-beton	9
1.3.5 Mijloace de legătură între grinda metalică și dala de beton	11
1.4 ELEMENTE DE CONSTRUCȚII MIXTE	12
1.4.1 Grinzile cu secțiune mixtă oțel-beton	13
1.4.2 Stâlpii cu secțiune mixtă oțel-beton	15
1.5 AVANTAJELE CONSTRUCȚIILOR MIXTE OȚEL-BETON	16
1.6 DEZAVANTAJELE CONSTRUCȚIILOR MIXTE OȚEL-BETON	17
1.7 OBIECTUL TEZEI DE DOCTORAT	17
2. GRINZILE MIXTE OTEL-BETON. FĂRĂ	18
GOLURI ÎN INIMA PROFILIULII METALIC	
2 1 ASDECTE CENEDALE	18
2.1 ASFECTE GENERALE	10
2.2 STABILIREA DIMENSIONILOR GRINZILOR MIXTE OŢEL-	10
DEIUN 22 ELEMENTELE CDINZILOD MIXTE OTEL DETON	21
2.3 ELEMENTELE GRINZILOR MIXTE OŢEL-BETON	21
2.3.1 Dala de beton a grinzii mixte	22
2.3.2 Orinda metalica a grinzii mixte otel-beton	22
2.3.4 Armăturile dalei de beton	25
2 A I ĂTIMEA FEICACE A DAI EI DE RETON ARMAT	26
2.5 CLASIFICAREA SECTIUNILOR TRANSVERSALE ALE	29
GRINZII OR	- /
2.5.1 Clasificarea tălnilor comprimate de otel	30
2.5.1 Clasificarea inimilor din otel	30
	50

2.6 NOTIUNI PRIVIND CONEXIUNEA GRINZILOR MIXTE	33
2.6.1 Conexiunea totală	33
2.6.2 Conexiunea partială	33
2.6.3 Tipuri de conectori folositi	34
2.7 PRINCIPII DE CALCUL A GRINZILOR MIXTE OTEL-BETON	38
2.7.1 Încărcările luate în calculul grinzilor mixte otel-beton	38
2.7.2 Calculul și verificarea la starea limită ultimă de rezistentă	39
2 8 MOMENTUL REZISTENT PLASTIC	39
2.8.1 Poziția axei neutre plastice ANP	30
2.8.1.1 Determinarea pozitiei axei neutre plastice, în cazul unei sectiuni	40
solicitate de un moment încovoietor pozitiv	
2.8.1.2 Determinarea poziției axei neutre plastice, în cazul unei secțiuni	45
solicitate de un moment încovoietor negativ	
2.8.2 Ipoteze pentru calculul momentului rezistent plastic	48
2.8.3 Calculul momentului rezistent plastic în secțiunile de moment pozitiv și	49
verificarea condiției de rezistență la încovoiere	
2.8.4 Calculul momentului rezistent plastic în secțiunile de moment negativ și	52
verificarea condiției de rezistență la încovoiere	
2.9 MOMENTUL REZISTENT ELASTIC	54
2.9.1 Calculul elastic în cazul unei secțiuni mixte aflată în zonă de moment	55
pozitiv	
2.9.2 Calculul elastic în cazul unei secțiuni mixte aflată în zonă de moment	61
negativ	
2.9.3 Calculul momentului rezistent elastic și verificarea acestuia	63
2.10 ALTE VERIFICĂRI ALE GRINZILOR MIXTE OȚEL-BETON	65
2.10.1 Verificarea la actiunea fortei tăietoare	65
2.10.2 Verificarea secțiunii la moment încovoietor cu forță tăietoare	65
2.10.3 Rezistența la deversare (flambaj lateral) a grinzilor mixte oțel-beton	66
2.10.4 Momentul rezistent la deversare	68
2.10.5 Rezistența la voalare prin forfecare	71
2.11 CALCULUL CONEXIUNII GRINZILOR MIXTE OTEL-	73
BETON	
2.11.1 Calculul efortului longitudinal de forfecare	74
2.11.2 Determinarea rezistentei de calcul a conectorilor de tip guion	74
2.11.3 Determinarea rezistentei de calcul a conectorilor tip bloc, în dale pline	76
de beton armat	
2.11.4 Determinarea rezistentei de calcul a conectorilor de tip cârlig sau ancoră	77
si de tip arc, la dale pline	
2.11.5 Determinarea rezistenței de calcul a conectorilor de tip bară, prevăzuți	78
cu cârlig sau arce, la dale pline	
2.11.6 Determinarea rezistenței de calcul a conectorilor din corniere sau profile	78
U așezate în picioare, la dale pline	
2.11.7 Determinarea numărului de conectori N	79
2.11.8 Stabilirea distanței dintre conectori	80
2.11.9 Prescripții pentru alegerea conectorilor	81

2.12 CALCULUL ARMĂTURILOR TRANSVERSALE ALE	82
GRINZILOR MIXTE OTEL-BETON	
2.12.1 Aspecte generale	82
2.12.2 Valorile eforturilor de calcul	83
2.12.3 Determinarea rezistenței de calcul la forfecare	84
2.12.4 Secțiunile minime ale armăturilor transversale	87
2.13 CALCULUL ȘI VERIFICAREA SĂGEȚILOR LA GRINZILE	88
MIXTE	
2.13.1 Calculul săgeților din încărcări permanente δ_1	88
2.13.2 Calculul săgeților din încărcări variabile δ_2	89
2.13.3 Condiții de verificare a săgeților	90
2.14 CONTRIBUȚII PERSONALE LA CAPITOLUL 2	90
2.15 CONCLUZII	92
	02
3. CALCULUL GRINZILOR MIXTE OŢEL-	93
BETON CU GOLURI ÎN INIMA PROFILULUI	
METALIC . STADIUL ACTUAL AL	
PROBLEMEI	
$\frac{1}{2} \frac{1}{4} \frac{1}{2} \frac{1}$	02
3.1 ASPECTE GENERALE	95
3.2 DEFINIREA KOLULUI ȘI A DIMENSIUNILOR GOLURILOR	94
DIN INIMA PROFILULUI DE OȚEL AL GRINZILOR MIXTE	
3.3 COMPORTAMENTUL GRINZILOR CU GOLURI IN INIMA	98
3.3.1 Comportamentul grinzilor din oțel cu goluri în inimă	98
3.3.2 Comportamentul grinzilor mixte oțel-beton cu goluri în inimă	99
3.3.3 Modul de cedare al grinzilor mixte oțel-beton	100
3.4 STADIUL ACTUAL AL PRINCIPALELOR METODE DE	103
CALCUL A GRINZILOR MIXIE OȚEL-BEION CU GOLURI IN	
3.4.1 Unele recomandări și indicații generale privind realizarea și calcului	104
3.4.2 Metoda hui David Darwin de calcul a grinzilor mixte etal beton eu goluri	105
în inima profilului metalic	105
3 4 3 Metoda LRFD, a lui D. Darwin si R. Donahey	120
3.4.4 Metoda dată în REGULILE AMERICANE ASCE 1993	131
3.5COMPARATII ÎNTRE METODELE DE CALCUL A	135
GRINZILOR MIXTE OTEL-BETON CU GOLURI	
DREPTUNGHIULARE ÎN INIMĂ	
3 6 EXEMPLU PRACTIC DE VERIFICARE A UNEI GRINZI	136
$MIXTE OTEL_RETON CU GOLURI ÎN INIMĂ$	
$\frac{3}{7} CONCI 1711 SI CONTRIRUTI PERSONALE LA CADITOLUL 2$	148
J. / CONCLUZII ȘI CONTRIDUȚII I ERSONALE LA CAFII OLUL J	1 70

266

4. STUDIUL GRINZILOR MIXTE OŢEL-¹⁵² BETON , CU METODA ELEMENTELOR FINITE

4.1 METODA ELEMENTELOR FINITE	152
4.1.1 Bazele calculului liniar elastic cu metoda elementelor finite	152
4.1.2 Prezentarea generală a metodei elementelor finite	152
4.1.3 Etapele de rezolvare ale unei probleme de calculul structurilor cu metoda	153
elementelor finite	
4.2 APLICAREA METODEI ELEMENTELOR FINITE LA GRINZI	154
MIXTE OȚEL-BETON	
4.2.1 SOLID65 – solid tridimensional folosit pentru betonul armat	154
4.2.2 SOLID45 – solid structural tridimensional	159
4.3 STUDIUL UNEI GRINZI MIXTE OȚEL-BETON AVÂND	160
DOUĂ GOLURI DREPTUNGHIULARE ÎN INIMA PROFILULUI	
METALIC, CU METODA ELEMENTELOR FINITE	
4.3.1 Geometria grinzilor mixte otel-beton cu două goluri dreptunghiulare în	160
inima profilului metalic	
4.3.2 Optimizarea dimensiunilor grinzii mixte și a golurilor	162
4.3.3 Discretizarea domeniului de analiză	162
4.3.4 Prezentarea rezultatelor	165
4.4CONCLUZII ȘI CONTRIBUȚII PERSONALE LA CAPITOLUL 4	174
5. STUDIUL CU METODA ELEMENTELOR	176
FINITE A GRINZILOR MIXTE OTEL-BETON	
CU GOLURI HEXAGONALE, CIRCULARE ȘI	
GOLURI AVÂND O FORMĂ ALUNGITĂ, ÎN	
INIMĂ	
5.1 ASPECTE GENERALE	176
5.1.1 Profilele metalice cu goluri dese în inimă – o soluție eficientă pentru	176
realizarea grinzilor mixte oțel-beton	
5.1.2 Obiectivul capitolului 5	176
5.1.3 Prezentarea formei și a dimensiunilor golurilor	177
5.2 GRINDA MIXTĂ OȚEL-BETON, CU INIMA PLINĂ, CA	180
STRUCTURĂ DE BAZĂ PENTRU GRINZILE CU GOLURI ÎN	
INIMĂ	
5.2.1 Considerații generale privind aplicarea metodei elementelor finite, la	180
calculul structurilor mixte	
5.2.2 Prezentarea grinzii mixte oțel-beton, cu inimă plină	182
5 3 STUDIUI STĂRII DE FEORTURI ȘI DEFORMAȚII I A	184

5.3 STUDIUL ŠTĂRII DE EFORTURI ȘI DEFORMAȚII LA GRINZILE MIXTE OȚEL-BETON, CU GOLURI HEXAGONALE

267

5.3.1 Discretizarea domeniului de analiză pentru grinzile mixte cu goluri	184
hexagonale	
5.3.2 Optimizarea dimensiunilor golurilor hexagonale, la grinzile mixte	186
5.3.3 Prezentarea rezultatelor	190
5.4 STUDIUL STARII DE EFORTURI ȘI DEFORMAȚII LA	197
GRINZILE MIXTE OȚEL-BETON, CU GOLURI CIRCULARE	
5.4.1 Discretizarea domeniului de analiză pentru grinzile mixte cu goluri	197
circulare	
5.4.2 Optimizarea dimensiunilor golurilor circulare, la grinzile mixte	199
5.4.3 Prezentarea rezultatelor	203
5.5 STUDIUL STĂRII DE EFORTURI ȘI DEFORMAȚII LA	210
GRINZILE MIXTE OȚEL-BETON, CU GOLURI ALUNGITE	
5.5.1 Discretizarea domeniului de analiză pentru grinzile mixte cu goluri	210
alungite	
5.5.2 Optimizarea dimensiunilor golurilor alungite, la grinzile mixte	213
5.5.3 Prezentarea rezultatelor	216
5.6 STUDIUL STĂRII DE EFORTURI ÎN DALA DE BETON A	224
GRINZII MIXTE OȚEL-BETON, CU GOLURI HEXAGONALE,	
CIRCULARE SI ALUNGITE	
5.6.1 Starea de eforturi în dala de beton a grinzii mixte otel-beton, cu goluri	224
hexagonale	
5.6.2 Starea de eforturi în dala de beton a grinzii mixte oțel-beton, cu goluri	230
circulare	
5.6.3 Starea de eforturi în dala de beton a grinzii mixte oțel-beton, cu goluri	236
alungite	
5.7 CONCLUZII	243
5.8 CONTRIBUȚII PERSONALE LA CAPITOLUL 5	249
6. CONCLUZII SI CONTRIBUTII	253
DEDSONALE	
	252
0.1 CONCLUZII	253
6.2 CONTRIBUȚII PERSONALE	255
BIBLIOGRAFIE	260