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Rezumat: 

Automobilele moderne sunt dotate cu subsiteme din ce în ce mai 
complexe menite să îmbunătățească siguranța și confortul utilizatorilor. 
Creșterea complexității subsistemelor, aduce însă și vulnerabilități noi crescând 
numărul suprafețelor de atac în sistem precum și cel al modurilor în care un 
adversar poate să le exploateze (lucru demonstrat de o serie de articole 
recente). În mare parte, atacurile vizează infiltrarea magistralelor interne de 
comunicare ale automobilelor care, în lipsa unor măsuri de protecție, pot fi 
folosite pentru a manipula funcționarea sistemului. 

Lucrarea de față propune și analizează o serie de soluții pentru 
asigurarea autentificării în comunicarea pe rețele Controller Area Network (CAN), 
acestea fiind cele mai des utilizate rețele în aplicații automotive. Constrângerile 
dispozitivelor embedded utilizate în autovehicule exclud asigurarea autenticității 
prin utilizarea unor soluții clasice din criptografia cu cheie publică (de ex. 
semnături digitale). Soluțiile propuse în lucrare au fost proiectate pentru a 
funcționa în prezența acestor constrângeri și se încadrează în două categorii: 
protocoale de autentificare împlementate la nivelul aplicației și identificarea 
folosind semnale de la nivelul fizic. 

În ceea ce privește autentificarea la nivelul de aplicație, soluțiile propuse 
au la bază diferite concepte de utilizare a primitivelor criptografice simetrice 
(cheie secretă) urmărind reducerea costului computațional dar și a lățimii de 
bandă. Binecunoscutul protocol TESLA respectiv semnăturile one-time sunt 
utilizate în două protocoale, ambele bazate pe folosirea lanțurilor one-way. O a 
treia soluție, protocolul LiBrA, propune asigurarea autenticității prin utilizarea a 
două paradigme: partajarea de chei în grupuri de noduri și mixarea MAC-urilor.  

La nivelul fizic, teza propune și o abordare inovatoare pentru asigurarea 
autenticității pe baza caracteristicilor unice ale semnalelor CAN generate de 
fiecare nod (transceiver). Rezultatele experimentale arată că este fezabilă 
identificarea nodurilor CAN cu un nivel ridicat de certitudine. 
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1 Introduction

In our fast paced world, intelligent electronics are continuously evolving to make
our day-to-day life easier by bringing improvements in all areas of activity. Automo-
biles have become ubiquitous and just like any other devices, have benefited from
the enhancements brought by electronics. Car manufacturers work to offer better
performance as well as improved comfort and safety aiming at an overall better us-
age experience for vehicle owners. This makes automotive systems more and more
complex. Individual functionalities available in today’s car are usually provided by
separate electronic control units (ECUs) which have to interact in order to fulfill their
purpose. However, the increasing number of functionalities and connectivity options
bring vulnerabilities that can be exploited to cause damage in the absence of security
mechanisms.

1.1 Problem statement

Due to the growing complexity of modern automobiles, vehicular communication
became an essential topic in the automotive industry. A wide range of solutions (wired
buses as well as wireless approaches) were adopted to fulfill the communication needs
of the automotive systems. The rapid evolution of these came at the cost of intro-
ducing a series of new possible attack surfaces, e.g., multimedia devices, wireless
channels such as Bluetooth.

Until recently, the security of vehicular systems was not considered to be a major
concern. This, however, changed as a series of attacks were reported by the scien-
tific community. The increasing number of reported vulnerabilities and their impact
on driver/passenger safety underline the importance of the subject and call for the
development of secure communication inside vehicles.

Assuring the security of modern cars is not a straight-forward task. The develop-
ment process involves the evaluation of attacker capabilities and a thorough analysis
of potential vulnerabilities. This can be achieved by including penetration testing as
a step of the development. Security mechanisms should be then employed to allevi-
ate the identified vulnerabilities and vulnerable communication channels need to be
secured to prevent malicious actions. However, the applied security techniques must
comply with a series of constraints related to their implementation cost and effect on
the system reliability. After security has been implemented the bus, CPU and memory
loads should not be significantly increased.

Buses used for building in-vehicle networks were designed to offer reliable com-
munication, thus they are fitted with efficient mechanisms for error detection and
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error recovery. However, they are lacking support for assuring basic security objec-
tives. Obviously, the best solution, from the security point of view, would be to devise
a dedicated bus with built-in mechanisms for assuring security at the network layer
rather than by the application layer. As such an approach would involve longer time
for introduction and high costs (for creating specifications of the new protocol, pro-
ducing corresponding transceivers and testing them properly) it is not considered as
a viable option in the short term. In order to keep costs down and avoid the long pro-
cess of adopting new protocols, currently used buses could be retrofitted with security
mechanisms implemented at the application level.

Implementing security on microcontrollers used to build ECUs without increasing
costs can be challenging as they are resource-constrained devices in what regards
available memory and maximum working frequency. Due to low tolerance margins
most of the automotive microcontrollers employed by the industry would likely sup-
port only algorithms based on lightweight cryptography. Employing microcontrollers
enhanced with cryptographic co-processors can enhance the use of public key cryp-
tography but this might not be acceptable as automotive component manufacturers
try to keep production costs low to provide affordable end-products. Work has been
done in developing specialized hardware security modules for vehicular systems [124]
which might reduce costs if such modules would get to be used at a large scale in the
automotive industry. However, it is not sure if such a solution will be adopted by the
industry.

Secure communication is a crucial component needed for providing safety in au-
tomotive systems. However, assuring it is a difficult task as any solution has to fulfill
a series of intrinsic constraints (related to the device itself) and a series of extrinsic
constraints (related to the system), e.g., delays.

In this context, the purpose of this thesis is to address the subject of authenticated
in-vehicle communication.

1.2 Thesis objectives

In general terms, the main goal of this thesis was to bring new and relevant con-
tributions in the field of in-vehicle security. The contributions presented in this thesis
correspond to several different research directions which will be described in what
follows.

The study of reported vulnerabilities of in-vehicle networks was set as a first ob-
jective. Attacker models were first studied to create a sketch of the adversaries that
have to be counteracted in the given context. Next, a comprehensive survey on re-
ported attacks and attack surfaces was done to emphasize the relevance of the rest
of objectives.

As the devices commonly used in automotive applications are known to come with
a series of constraints, to depict them we start from analyzing the capabilities of
these devices. Several automotive-type microcontrollers were selected to depict the
computational performance achievable using this type of devices for implementing

BUPT



14 Introduction - 1

security. On-chip features such as parallelism and hardware acceleration present on
the employed platforms are used to present performance enhancements.
The third objective was to identify solutions for providing authentication on CAN

buses at the application layer. Both existing approaches and new ones are investi-
gated and experimental results are presented for the designed solutions. The effect
of introducing these authentication protocols to CAN communication was also in our
focus as it is of significant importance for the correct functioning of the vehicle system.
Finally, since the results achievable by using the application layer are bounded

by microcontroller’s performance and bandwidth, we investigate the possibilities of
achieving authentication at the physical layer. This could be done by identifying unique
characteristics in the physical signal produced by each transceiver.

1.3 Thesis outline

The thesis starts by presenting the background and motivation of this work in
Chapter 2. Here, details about in-vehicle networks and buses employed in automotive
applications are first given before proceeding to a comprehensive survey of adver-
sary models and attacks reported in this type of networks. The remainder of the
thesis holds the main contributions of the author and the conclusions. A performance
analysis of automotive-specific microcontrollers along with performance improvements
achievable when using chip-specific features are presented in Chapter 3. Chapter 4
presents three categories of authentication protocols for CAN networks and the per-
formance achievable when using them. Next, a physical layer approach to achieving
authentication of CAN sender nodes is described in Chapter 5. Finally, Chapter 6 is
dedicated to the conclusions of this work.
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2 Background and motivation

2.1 Controller Area Network

2.1.1 In-vehicle networks

Sensors, actuators and ECUs inside a car need to communicate to fulfill their pur-
pose. The initial approach was to provide a direct wired connection between each two
components that have to exchange information. However, since the introduction of
electronics in the automotive domain, the number of wired connections needed inside a
car quickly increased making it clear that a more efficient solution was needed. There-
fore, a more structured approach was adopted for building the in-vehicle network by
using dedicated buses. The complexity of the in-vehicle network also increased due to
the growing number of features made available inside the car. A car being built today
can have an average of 20 network nodes and this average is estimated to increase to
25 just by the end of 2014 [18]. In high-end cars the number of network nodes can
increase to 80-100 such as the case of the Audi A8 which contains 100 ECUs [6].The
architecture of in-vehicle networks used in nowadays cars reunites a wide range of
wired communication buses and even wireless channels that are utilized to fulfill the
industry’s needs.
Figure 2.1 depicts the wired (wireless channels not included) network topology

of an Audi A8 adapted after [6]. As most of in-vehicle networks, it is divided in
several sub-networks dedicated to different categories of vehicle systems such as:
powertrain, infotainment or comfort. These main sub-networks are connected to a
central gateway along with the diagnostics interface. While the network complexity
will vary from low-end to high-end vehicles, this example illustrates the range of buses
that can be employed in a single automotive network. Some communication buses
were specially designed to be used for in-vehicle communication while others were
”borrowed” from other domains such as avionics. Some of the most commonly used
vehicle buses are presented in what follows.
Local Interconnect Network (LIN) is a low cost, serial broadcast bus with a single

master/multiple slave network topology. With a maximum data rate of 19.2 kbaud
and single wire operation capability, this bus is used to bridge communication be-
tween ECUs and peripherals (sensors and actuators) which are usually implemented
as ASICs.
Controller Area Network (CAN) is a differential serial broadcast bus which allows

communication speeds of up to 1 Mbaud. More details about this bus will be given in
the next section.
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Figure 2.1: Topology of the Audi A8 (2010) in-vehicle network adapted after [6]
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FlexRay was designed by a consortium comprised of automotive manufacturers
and suppliers as a high speed (up to 10 MBaud), fault tolerant, serial communication
bus that can hold a maximum payload of 254 bytes. FlexRay provides deterministic
behavior along with time-triggered and event-triggered capabilities. The downside of
using FlexRay is represented by its increased cost and complexity.

Media Oriented Systems Transport (MOST), as suggested by its name, is a bus
designed for multimedia applications which can assure bit rates up to 150 Mbaud in
latest generation devices.

As the complexity of in-vehicle networks is ever-increasing along with the need
for higher bandwidth, introducing Ethernet in automotive applications is starting to be
considered as an alternative [18].

Wireless in-vehicle communication is also being employed for applications such
as tire pressure monitoring, remote keyless entry, immobilizers or multimedia. De-
pending on the features available, several wireless communication channels may be
present in an automobile.

Even though a great variety of network types is available for in-vehicle communi-
cation, CAN is currently the most widely used in automobiles and it is likely that its
use will remain widely spread due to its reliability and reduced cost. Therefore, the
results presented in this thesis are focused on CAN communication. The next section
holds a more detailed description of the CAN protocol.

2.1.2 CAN technical details

Since its first official release, in 1986 by Robert Bosch GmbH., and the production
of the first controller chips, CAN was adopted by all major car manufacturers and
became a standard for in-vehicle communication in the automotive industry. Version
2.0 of the CAN specification [107] was published by Bosch in 1991. Starting from
2003 a multipart ISO standard (ISO 11898-1 through 5 [64]) describes the physical
and data link layer of CAN.

CAN was designed as a multi-master broadcast serial bus with efficient error de-
tection and arbitration mechanisms. Signals on the bus can have one of two values:
dominant or recessive. The dominant level is represented by a logical ’0’ while a logi-
cal ’1’ will be used to specify a recessive level. CAN is a message oriented bus which
means that each message has an identifier assigned to it that is used to define its pri-
ority. When 2 or more nodes begin to transmit a message at the same time, a bit by
bit comparison is done (this is the arbitration phase). A dominant bit will always win
arbitration, therefore, when a node puts a recessive bit on the bus and reads back a
dominant bit it will stop sending and wait until the bus is idle again. As a consequence
of this mechanism, lower message IDs will always win arbitration.

The efficient error detection mechanisms implemented in CAN are based on mes-
sage monitoring, cyclic redundancy check (CRC), bit stuffing and message frame
checks. The probability of an undetected error on CAN is extremely low, informally one
undetected error occurs at about one thousand years for each vehicle that operates
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eight hours a day with an error each 0.7 seconds. Upon detection, an error is signaled
on the bus by the node that detects it so that the fault confinement mechanisms can
be applied. To assure that the bus communication is not disturbed by defective nodes,
CAN has built-in mechanisms for switching off faulty nodes.
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Figure 2.2: Structure of a CAN data frame

The structure of a CAN data frame is depicted in Figure 2.2. It begins with a
dominant bit marking the start of the frame followed by the arbitration field which
consists of the message identifier (11 bits in standard frames and 29 bits for extended
frames) and a dominant RTR (Remote Transmission Request) bit. The control field
holding two bits reserved for further extensions and a 4 bit representation of the
actual message length comes next followed by a maximum of 64 bits of data. A 15 bit
CRC is appended next followed by a recessive CRC delimiter and a two bit ACK field.
The frame end is marked by a sequence of 7 recessive bits.
The typical CAN topology consists of a two wire differential bus as depicted in Fig-

ure 2.3. A low value resistor (e.g. 120 ohms) is connected between the two bus
wires, called CAN-Low (CAN-) and CAN-High (CAN+), to alleviate noise. In fault-
tolerant/low-speed CAN networks, each device on the line needs a terminator resistor
for each line and the communication can be switched to single-wire mode in the pres-
ence of faults.
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Figure 2.3: Typical CAN bus topology
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2.1.3 CAN in networked control systems

Systems in which control loops are closed through a network are classified as net-
worked control systems (NCS). The defining characteristic of an NCS is that informa-
tion exchanged among its components (sensors, actuators, controllers, etc.) is sent
through a network shared with nodes that are not necessarily part of the control sys-
tem. The communication channels used to provide real-time communication in these
control systems are implemented by industrial network protocols known as fieldbuses.
CAN is one of the fieldbus standards commonly used in various NCS applications [50].
CAN may not offer the best data rate among the commonly employed fieldbuses but
it is preferred in some applications due to its reliability. An extensive performance
evaluation of CAN along other buses regarding their use in control applications can be
found in [74].

In 1992 an organization named CAN in Automation (CiA) was founded with the
intent of promoting CAN and its usage in various fields. About 560 companies with
different fields of activity are currently members of this organization pointing out
the multiple applications of CAN. Automotive control systems are probably the main
application area for CAN buses. However, CAN is used in a wide range of other control
systems such as home automation [73], [112] and industrial applications [72], [3].
Some example of relevant applications of CAN in networked control systems will be
presented in what follows.

In [72] Lawrence presents detailed examples of CAN application in general such as
in an universal industrial process control systems or more specific examples such as
textile, construction or mining machines.

Control systems for mobile robots were built on CAN-based architectures in the
case of wheeled robots [16] as well as for humanoid robots [66]. CAN-based control
is also employed in systems with robotic arms that perform complex tasks such as
surgery [128]. In all these cases CAN was preferred due to its high reliability.

Subsea instrumentation used in the offshore oil and gas industry has to provide
reliable control of the production process. Subsea production control systems are
designed to operate on the seabed, at depths in excess of 1000 meters, without
maintenance for periods between 25 and 30 years. The remote environment in which
these systems have to function require the usage of reliable components to prevent
faults that could lead to financial loses, human injuries or environmental disasters.
Due to its efficient error management, CAN was adopted as an interface standard in
subsea control applications [26]. More specifically, the fault tolerant version of CAN
was considered as it is capable of providing operation even in the presence of a partial
system fault. CAN’s role in these systems is to transport information between sensors
and subsea control modules.

Another use case for CAN is in marine automation systems which have complex
structures usually partitioned into several process segments [31]. Each process seg-
ment is dedicated to the control of a certain subsystem like power management,
pumps and valve or auxiliary systems. The process data transfer within each subsys-
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tem is done over a local communication system implemented using CAN. The global
process bus that interconnects main process controllers of each automation subsys-
tem is also implemented on CAN. The communication protocol employed in these
systems is an extension of the CANopen standard, a higher layer protocol based on
CAN physical and data link layer [30].

As different applications have specific protocol requirements, other higher layer
protocols were developed on top of CAN. One of these is DeviceNet [95] which was
used in various industrial control applications. DeviceNet is mainly used in factory
automation applications, e.g. the control of composite wood panels manufacturing
process presented in [68].

Process control systems also bring benefits to the food industry. For example
the conservation and maturation of fruits has to be done in controlled environments.
In [78] a distributed control system for citric fruit conservation and maturation is
presented. This system is equipped with a main CAN backbone that connects several
nodes, each of which is in charge of a cold store chamber. Sensors and actuators
are connected to the node controlling a each cold store via a CAN subnetwork. The
system is accessible through the internet to allow remote monitoring and control of
the running processes.

CAN connectivity is available in various off-the-shelf automation solutions from
manufacturers such as Siemens, dSPACE, National Instruments, etc. emphasizing the
relevance of this bus system in the process control industry.

While this thesis studies the case of CAN usage in automotive control systems,
security mechanisms may be required in other industrial process control applications
where CAN is employed. Also, recent incidents of international level, such as the
Stuxnet worm, have shown that industrial control systems are not as isolated as once
thought and can become vulnerable targets [32]. Stuxnet was designed to infiltrate
industrial control systems and reprogram Siemens programmable logic controllers
(PLCs) to sabotage an uranium enrichment system by slowing down or speeding up
centrifuge motors to different rates at different times [81]. The targeted system used
Profibus communication which, like CAN, provides only a CRC based mechanism for
assuring data integrity without assuring source authentication. However, Siemens
PLCs can also use CAN communication modules making this kind of attacks a real
threat also in CAN based systems.

2.1.4 CAN security

No intrinsic security mechanism was included in the CAN protocol specification
apart from the 15 bit CRC that only assures data integrity. This makes CAN vulnerable
to simple sniff and replay attacks. Thus, if the authenticity or confidentiality of the
transmitted data has to be assured this must be implemented at a higher level.

The design of the CAN arbitration mechanism makes it susceptible to DoS attacks.
As stated before, messages with lower IDs have higher priority. Therefore, a mali-
cious node could continuously send a message with id 0x000 to prevent other nodes
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gaining access to the bus. In addition, by sending several well-directed error flags, an
attacker could disconnect target CAN nodes by using CAN automatic fault localization
and confinement mechanisms [125]. These problems have no solution except from
redesigning the bus architecture. Nevertheless, since all these cause a DoS which is
the logical equivalent of cutting the wires they are not considered as relevant as the
sniff and replay attacks that can insert adversary packages at will.

2.1.5 CAN with Flexible Data-Rate

As a result of the increasing demand for bandwidth there were many attempts to
improve and extend the CAN protocol. One approach employed was to use a star
topology [20] while other research was focused on using higher bit rates for the data
segment of the CAN frame [130]. Recently, new efforts have been made to develop
and standardize a new CAN extension that can provide data rates higher than 1 Mbaud
and payloads up to 64 bytes. The new specification, called CAN FD (CAN with Flexible
Data-Rate) [108], states that messages in the CAN frame format and messages in
CAN FD frame format can coexist in the same network. This means that CAN FD
nodes will be able to receive messages from CAN nodes while CAN nodes would have
to be passively disconnected during FD communication because they would otherwise
report errors on the bus.

The CAN FD frame structure introduces three new control bits: EDL (Extended Data
Length), BRS (Bit Rate Switch) and ESI (Error State Indicator). A recessive EDL bit
denotes a CAN FD frame while for a standard CAN frame this bit is set to dominant. A
recessive BRS bit switches to the higher bit rate when sending the data field. The ESI
bit was introduced for signaling an error state. The message length field is composed
of 4 bytes, as in the case of standard CAN frames, but can specify data fields longer
than 8 bytes: 12, 16, 20, 24, 32, 48 and 64 bytes. The size of the CRC field varies
depending on the length of the data field: 15-bit CRC for standard CAN frames, 17-bit
CRC for a data field up to 16 bytes in length and 21-bit CRC for a data field longer
than sixteen bytes.

The higher bit rate is only available during the data phase, i.e. the frame space
bounded by the BRS and CRC delimiter bits. Bit rates of up to 15 MBit/s were achieved
in the data phase during the development of CAN FD using FPGA implementations
[53]. However, it is not expected for such data rates to be achieved in automotive
conditions using existing transceivers. CAN FD is rather viewed as an intermediary
solution between CAN and FlexRay.

While the automotive industry manifests an active interest in CAN FD it is not yet
clear how fast will this bus technology be adopted.

2.2 Security issues for in-vehicle networks

Many new features were introduced to modern automobiles with the purpose of
increasing reliability, safety and user experience, e.g.: passive keyless entry, immobi-
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lizers, multimedia, tire pressure monitoring, telematics, vehicle diagnostics. However,
recent research [23, 36, 70, 110] has shown that some of these systems have vulner-
abilities that can be exploited by parties looking for financial gains or even having the
malicious intent to cause accidents. In-vehicle networks evolved as a consequence of
the continuously increasing system complexity. Unfortunately, once infiltrated, these
networks provide little to no protection against attacks [23, 55, 56, 69, 70, 110]. With
the increase in the complexity of vehicular embedded systems comes an increase in
the overall code size and, inevitably, a greater value of the intellectual property [103].
This is why vehicle manufacturers have focused on devising methods for preventing
unauthorized software changes in the marketed components. However, it is common
knowledge that chip tuning services can be bought from unauthorized individuals for
the majority of car makes and models.

The impact that existing vulnerabilities may have when they are used by attackers,
to endanger driver safety or to induce financial losses, underline the necessity of
increasing the focus on the security of these systems. In order to counteract possible
attacks it is essential to have a clear idea on who the adversaries are, what they can
do and what is their purpose. The answer to these questions can be the result of a
design time attack analysis as suggested in [43].

2.2.1 Attacker model

Various attacker models have been presented as part of published work in the
area of automotive security. However, to the best of our knowledge, there exists
no comprehensive paper on this subject. Most of the models are either too general,
such as the Dolev-Yao attacker [27], and can be applied in any branch of information
security, either too limited fitting only a particular case. We present some of these
models next.

Nilsson and Larson [93], [94] use a model that gives an attacker the ability to
access the in-vehicle network and to read, spoof, drop, modify, flood, steal, and replay
messages. Koscher et al. [70] consider two categories of attackers. On one side
there are attackers that have physical access to the vehicle for a long enough period
to introduce a malicious element in the vehicle network or to compromise one of
the existing network nodes. On the other side they consider attackers that use the
available in-vehicle wireless communication channels as an attack surface. The same
research group later performs a threat modeling on automotive attack surfaces [23]
and identifies several entry points.

Wolf et al. identified four groups of attackers in the automotive area [126]: thieves,
car owners, garage personnel and a fourth group consisting of organized crime, com-
petitors or counterfeiters. Their risk assessment points to the last category as being
the most powerful and dangerous one. In [55], Hoppe and Dittmann propose an
adapted CERT taxonomy for use in the automotive environment. This taxonomy con-
tains 11 kinds of attackers: hackers, spies, terrorists, corporate raiders, professional
criminals, vandals, voyeurs, security scans, tuners, thieves and competing manufac-
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turers. They also mention a series of tools, vulnerabilities, actions, possible targets,
results and objectives that can be used to classify an incident.
Another approach, employed by Müter and Freiling [89], is to define an attacker

by selecting relevant security components in the vehicular system model. They con-
sider that the strengths and abilities of an attacker are specified by the selection of
component properties that are relevant for this attacker.
In order to have an understanding of the attacker behavior we first have to identify

the assets of the automotive system. Probably the most commonly affected asset is
the car itself along with valuable objects left inside the car. Systems like smart keys,
remote keyless entry and immobilizers were introduced to protect these assets but
they proved to be insecure [79], [33]. Even car components, especially the expensive
electronic parts, are a significant target for thieves. On the other hand, human safety
is the most important asset that can be targeted by an attack. Privacy can also be
an issue for example when using the integrated hands free functionality via bluetooth.
The great variety of counterfeit vehicle parts available on the market point to another
asset, namely intellectual property. The discovery of security flaws means bad pub-
licity for the involved manufacturer, therefore we consider manufacturer reputation as
being another important asset.
We define the attacker as being a malicious entity characterized by a set of four fea-

tures: motivation (M), access level (A), capability (C) and purpose (P). By motivation
we refer to the reason or reasons that drive an attacker to perform a malicious action.
The access level feature illustrates the category in which the attacker fits based on the
access he has to the target vehicle while the capability considers everything related
to the level of knowledge, skills, technical competences and technology available to
the attacker. Finally, the purpose represents the effect expected by the attacker as a
result to his actions. Each features can be described by one or more items from a set
of possible values. We give some examples below:

• M = {financial, reputation, revenge, scientific, ...}

• A= {vehicle owner, insider,outsider, ...}

• C = {programming,electronics,well equipped, ...}

• P = {car theft, component theft, cause accident, ...}

These features can be further detailed to fit the desired level of abstraction. For the
remainder of this work we will consider an attacker which has full access to the vehi-
cle with all its components and also possible knowledge about the security protocols
employed. This attacker also has relevant technical expertise and is equipped with
state-of-the-art equipment which would allow him to perform complex attacks.

2.2.2 Attacks

In recent years, the scientific community manifested an increasing interest on the
topic of automotive security. Some of the research done in this area was focused on
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finding vulnerabilities that can enable malicious actions to be performed on vehicle
systems. As a result, it was shown that in most cases security mechanisms are
either missing or susceptible to attacks. Attacks aimed at electronic components
from virtually all vehicle functional domains using various attack surfaces such as the
OBD port, wireless communication channels and multimedia devices were reported.
The results published shed a light on the techniques currently available to malicious
parties such as car thieves or persons selling unauthorized chip tuning services.
Table 2.1 holds a compilation of the attacks reported in recent scientific literature

organized by the affected functional domains as described in [113]. For each table
entry, the affected system, attack effect, attack surface and required access are given.
While this is not meant to be an exhaustive study of recently reported attacks, it is
comprehensive enough to illustrate vulnerabilities present in contemporary automo-
biles.
As the table illustrates, the CAN bus was the most used attack surfaces in the

security analyses published so far. This implies that physical access to the OBD port
or directly to the CAN bus lines must be achieved. If the attacker is the owner himself
then he has unlimited access to the vehicle. We find this prerequisite to be achievable
also for parties other than the owner as there are various situations in which this
access can be gained in his absence, e.g. auto service, car wash, valet parking,
etc. Wireless communication channels are also employed to launch a considerable
number of attacks with significant impacts. However, as wired buses are still prevalent
in automotive applications we focus our attention to devising methods of protecting
against attacks on these surfaces, and more specifically the CAN bus.

Affected
system

Attack Attack
surface

Required access

Power Train (longitudinal propulsion: engine, transmission...)

Engine

Increase Idle RPM [70] CAN bus OBD port - diagnostics mode
Temporary RPM increase [70] CAN bus OBD port - diagnostics mode
Initiate crankshaft re-learn (disturbs engine
timings) [70]

CAN bus OBD port - diagnostics mode

Disable cylinders [70] CAN bus OBD port - diagnostics mode
Kill Engine [70] CAN bus OBD port - diagnostics mode
Grind starter [70] CAN bus OBD port - diagnostics mode
Remote car start [70] CAN bus OBD port
Cannot turn on (DoS to/from BCM) [70] CAN bus OBD port
Cannot turn off (while turned on, cause BCM
to activate ignition output) [70]

CAN bus OBD port

Accelerate for short periods of time [83] CAN bus Internal CAN bus
Kill engine at any speed [83] CAN bus OBD port - diagnostics mode

Chassis (wheels and their relative position and movement: steering, braking...)

Power
steering

Disable [70] CAN bus OBD port - diagnostics mode
DoS attack - limits steering capability [83] CAN bus OBD port
Steer the wheels to any given position [83] CAN bus OBD port

Parking As-
sistance

Induce sporadic wheel jolts [83] CAN bus OBD port

Lane Keep
Assistance

Turn the wheel while driving [83] CAN bus OBD port
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Brakes

Disable [70] CAN bus OBD port - diagnostics mode
Engage front left [70] CAN bus OBD port - diagnostics mode
Engage front right, unlock front left [70] CAN bus OBD port - diagnostics mode
Unevenly engage right brakes [70] CAN bus OBD port - diagnostics mode
Release brakes (prevent braking) [70] CAN bus OBD port - diagnostics mode
Engage brakes while the car is stopped [83] CAN bus OBD port - diagnostics mode
Disable while running at low speeds [83] CAN bus OBD port - diagnostics mode

Pre-Collision
System

Induce autobraking [83] CAN bus OBD port
Engage seat belt pre-tightening motor [83] CAN bus OBD port - diagnostics mode

TPMS

Tracking automobiles by sensor IDs [110] RF Close proximity (6-40m)
Packet spoofing from a neighbor car - fake
low tire pressure warning [110]

RF Close proximity (6-40m)

Battery drain [110] RF Close proximity (6-40m)
Crash TPMS ECU - repeated spoofing [110] RF Close proximity (6-40m)

Body (entities not related to vehicle dynamics: wipers, lighting, window lifter, air conditioning, seats...)

Electric
window lift

Open window - sniff and replay attack (sim-
ulation CANoe) [55]

CAN bus Internal CAN bus

DoS - for each command send opposite com-
mand message [56]

CAN bus Internal CAN bus

Disable window relays [70] CAN bus OBD port

Windshield
Wipers

Turn wipers on continuously [70] CAN bus OBD port
Turn fluid shot continuously [70] CAN bus OBD port
Force wipers off & shots fluid continuously
[70]

CAN bus OBD port

Lights

All lights off (brake and auxiliary) [70] CAN bus OBD port
All auxiliary lights off [70] CAN bus OBD port
Disable headlights in auto light control [70] CAN bus OBD port
Turn headlights on or off while in auto light
control [83]

CAN bus OBD port - diagnostics mode

Dome light Control brightness [70] CAN bus OBD port
Trunk door Pops open [70] CAN bus OBD port

Doors

Unlock all (while at speed) [70] CAN bus OBD port
Lock/Unlock car [70] CAN bus OBD port
Continuously activate lock relay [70] CAN bus OBD port
Lock/unlock all while driving [83] CAN bus OBD port - diagnostics mode

Horn
Activates permanently [70] CAN bus OBD port
Change Frequency [70] CAN bus OBD port
Turn horn on and off [83] CAN bus OBD port - diagnostics mode

Instruments

Control brightness [70] CAN bus OBD port
Falsify speedometer reading [70] [83] CAN bus OBD port
Speedometer drops to 0 (DoS to/from ECM)
[70]

CAN bus OBD port

Panel freezes (DoS to/fromBCM) [70] CAN bus OBD port
Falsify fuel level [70] CAN bus OBD port
Control various fields on the dashboard [54] CAN bus OBD port
Force odometer value increase [83] CAN bus OBD port
Falsify fuel level [83] CAN bus OBD port - diagnostics mode

Smart
Junction Box

Shut down causing several systems (lights,
radio, HVAC etc.) to stop [83]

CAN bus OBD port - diagnostics mode

Start reprogramming causing interior lights
to flash [83]

CAN bus OBD port - diagnostics mode

Remote dis-
able system

Disable cars and sound horn continuously
[80]

Remote
disable
system

Main remote access system
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Remote
Keyless
Entry

Breaking KeeLoq authentication by key re-
covery - cryptanalysis: known plaintexts,
slide attack & meet-in-the-middle [60]

key RF Within key RF range

Breaking KeeLoq authentication by key re-
covery (both remote transmitter and manu-
facturer key) - side channel: DPA, SPA [97]

key RF Within key RF range

Jamming attack - lock signal is jammed and
car remains open [36]

key RF Within car RF range

Replay attack - unlock message is recorded
and replayed [36]

key RF Within key/car RF range

Passive
Keyless
Entry

Wired relay attack - open car door & start
engine [36]

key RF Within key/car RF range

Wireless relay attack - open car door & start
engine [36]

key RF Within key/car RF range

Immobilizer

Tracking of the key fob using Atmel immobi-
lizer protocol stack [118]

RFID Within key RF range

DoS Atmel immobilizer protocol stack - Over-
write keys in open and secure mode => key
will not work with car [118]

RFID Within key RF range

Relay attack on Atmel immobilizer protocol
stack [118]

RFID Within key/car RF range

Replay attack on authentication for keys
based on Atmel immobilizer protocol stack
[118]

RFID Within key/car RF range

Spoofing attack to lock the EEPROM in Atmel
immobilizer protocol stack [118]

RFID Within key/car RF range

Retrieve secret key and start engine for
Hitag2-based transponders [121]

RFID Within key/car RF range

Car Alarm Honk horn [70] CAN bus OBD port
Key lock Disable relays [70] CAN bus OBD port
HVAC Turn fans, A/C or heat on/off [70] CAN bus OBD port

Multimedia, Telematics and HMI (information exchange: display, switches, radio, navigation, internet...)

Media player
Modify song title tags to fake a warning text
on the display. Warning sounds can be also
added [56]

CD Plant altered CD

CD-based firmware update [23] CD Plant altered CD
Play special song to send CAN messages [23] CD Plant altered CD

Navigation
system

Inject fake RDS-TMC traffic info [10] RDS-TMC Reach car radio range
Manipulate direction reading [83] CAN bus OBD port

Radio
Increase volume [70] CAN bus OBD port
Change display [70] CAN bus OBD port
Ticking sound [70] CAN bus OBD port

DIC Change display of Driver Info Center [70] CAN bus OBD port

Telematics

Buffer overflow with paired Android phone
and Trojan app [23]

Bluetooth Within Bluetooth range

Sniff MAC address, brute force PIN, buffer
overflow [23]

Bluetooth Within Bluetooth range

Call car, authentication exploit, buffer over-
flow (using laptop) [23]

Cellular Achievable remotely

Call car, authentication exploit, buffer over-
flow (using iPod with exploit audio file, ear-
phones and a telephone) [23]

Cellular Achievable remotely

Digital video
recorder on
police cars

Tap into live feeds from police cars and con-
trol individual hard drives [80]

FTP, telnet Achievable remotely
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Active/Passive Safety (airbags, warnings, seat belt, ABS, ESP, cruise control...)
Airbag Suppress missing airbag warnings by emu-

lating its function with another board [56]
CAN bus Internal CAN bus

ABS
Disrupt ABS sensor reading by superimpos-
ing malicious magnetic field [111]

ABS sen-
sor

Plant malicious device

Spoof ABS sensor reading by inducing pre-
cise speed reading [111]

ABS sen-
sor

Plant malicious device

Diagnostics (OBD...)
Central
Gateway

Force subnetwork message leak on the diag-
nostic bus by sniffing and spoofing [57]

OBD OBD port

PassThru
device

Obtain WiFi control offer PassThru device and
access to reprogramming [23]

WiFi Within WiFi range of
PassThru device

WiFi or wired malicious code injection [23] WiFi Within WiFi range of
PassThru device

Security Ac-
cess

Authenticate against various ECUs after ob-
taining keys and algorithm trough reverse
engineering [83]

CAN bus OBD port

Table 2.1: Reported attacks on various in-vehicle systems

2.3 Cryptographic components for checking integrity and au-
thenticity

Cryptographic protocols are built by combining cryptographic primitives as funda-
mental building blocks. Cryptographic primitives are commonly divided in two main
categories: symmetric and asymmetric. Symmetric primitives (e.g. hash functions,
message authentication codes, symmetric-key encryption) are characterized by an
even set of capabilities between the communicating parties. Usually, the symmetry
mainly consists in the usage of identical keys both on the sender and receiver side.
In the case of asymmetric primitives (e.g. asymmetric-key encryption, digital signa-
tures) the capabilities of senders and receivers are uneven, a characteristic that is
pointed out by the use of different keys: public and private.
Based on the security objectives that they provide, primitives can be further divided

into several classes. As this thesis focuses on assuring authenticity we present details
for primitives commonly employed for assuring this security objective, namely: hash
functions, message authentication codes and digital signatures.

2.3.1 Hash functions

A hash function is a deterministic function that computes a small fixed length
digest from a variable length input data. Hash functions must assure a set of security
objectives. Having an input message x and the hash value for this input denoted as
H(x), the following properties must be satisfied: preimage resistance (for a given H(x)
it should be impossible to find the input message x),second preimage resistance (for
a given pair {x1,H(x1)} it should be impossible to find an input message x2,x1 6= x2
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such that H(x1) = H(x2)) and collision resistance (it should be impossible to find a
pair {x1,x2} ,x1 6= x2 such that H(x1) = H(x2)).
Hash functions are used in various applications. Their main use is in verifying

data integrity as checksum generators. Another major use of hash functions is in the
construction of digital signature schemes or as the main building block of message
authentication codes. They are also used in various computer applications for data
indexing by building hash tables.

2.3.2 Message authentication codes

A message authentication code (MAC) is used to check the authenticity (which
implies integrity) of data. MAC algorithms take a key and an arbitrary length message
as inputs to generate a fixed length MAC. MACs are sometimes called message integrity
codes (MIC) usually to alleviate confusion when using MAC as an acronym for media
access control. However, in some cases, MICs are presented as algorithms that do not
use secret keys, in this case they cannot provide authentication.

MACs are usually built based on other cryptographic primitives. Due to the often
use of hash functions in their construction (e.g. HMAC [11]), MACs are sometimes
called keyed hash functions. MAC algorithms such as CBC-MAC are built on block
ciphers.

In terms of security objectives, MACs must resist forgery based on chosen-plaintext
attacks. In other words, if an attacker has access to an oracle that knows the secret
key and can generate MACs for any message chosen by the attacker, the attacker
should not be able to guess MACs for messages other than those which have already
been processed by the oracle.

In practice, MAC usage requires several steps. During an initialization phase, the
secret keys must be shared between all communication participants in a secure man-
ner. When a sender wishes to deploy a message, it computes the MAC over this
message using the secret key and appends it to the sent message. Upon receiving
a message, in order to verify message authenticity, the recipient must compute the
MAC over the message and compare it to the received MAC.

The advantage of using MACs is that they are fast and built upon some of the
simplest hash functions (or block cipers, see CBC-MAC) but on the downside they
require sharing a secret key.

2.3.3 Digital signatures

Digital signatures are the building block for providing non-repudiation. Along with
this property, they implicitly provide authenticity.

A digital signature scheme is composed of the following algorithms: an algorithm
for key generation, that randomly chooses a private key and has the private and public
keys as output, a signing algorithm that generates the signature based on the message
and the private key and a signature verifying algorithm that checks the signature using
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the message and the public key.
Signatures have the advantage that they require a single public key that can be

used by any receiver to validate the authenticity of the message (not to mention
that they also provide non-repudiation over the long run), however they are more
computational intensive then simple MAC codes (ie. 100-1000 times)

BUPT



3 Improving algorithm performance using chip-
specific features

This chapter presents a performance evaluation of microcontrollers specific to the
automotive industry along with improvements that can be achieved by using on-chip
features such as parallelism and hardware cryptographic support. The details pre-
sented here cover results published in [85] and extended in [86]. Personal contribu-
tions to this work consists of the implementations, including parallelization as well as
the performance evaluation and comparison of these implementations. To illustrate the
performance of these embedded platforms we evaluate a series of hash functions. Our
choice is motivated by the ubiquitous nature of hash functions in security mechanisms.
Several practical scenarios in which hash functions are involved can be imagined, e.g.,
software validation, embedded communications, etc. In particular firmware updates in
embedded platforms (which require cryptographic hash functions for the protection of
intellectual property, data integrity or non-repudiation) can directly benefit from per-
formance improvements. Notably, digital signatures are employed to ensure that only
an authentic firmware is programmed on a certain embedded device [92]. Verifying
signatures on a constrained embedded device can be a time consuming task especially
as the size of the applications is continuously increasing [102]. The bigger the size
of data to be flashed, the longer it will take to compute its hash value needed for
signature verification, consequently deploying the framework on thousands of devices
delays component delivery for days or even longer. Thus minimizing the overhead of
security mechanisms on the production process is beneficial. At the very least, se-
cure communication between embedded devices relies on secure gateways [125] that
share secret keys and ultimately rely on MACs , i.e., keyed hashes. Obviously, many
examples for the use of hash functions can be envisioned.
The reminder of this chapter is organized as follows. Section 3.2 presents formal

approaches for parallelizing hash functions followed by specific implementation details
for a set of selected hash functions in section 3.3. The performance analysis comes
next in section 3.4.

3.1 Security on resource constrained devices

Assuring secure in-vehicle communication is not a straight-forward task. Besides
the constraints given by the bus speed and payload, computational power and avail-
able memory also have to be taken into consideration. Microcontrollers that stand at
the heart of ECUs are resource constraint devices in terms of speed and memory. Al-
though more and more advanced microcontrollers are becoming available, the needs
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of the industry are also continuously increasing making these constraints a persistent
issue.

Implementing cryptography on resource constrained devices is a well and contin-
uously investigated subject for which several solutions were successfully employed in
practice. One category focuses on devising secure protocols which require little com-
putational power and reduced variants of cryptographic functions. A good example in
this area comes as a result of the intense research activity in sensor networks which
produced solutions ranging from efficient protocol design to efficient cryptographic
primitives [67]. Small scale variants of hash functions were also proposed for use in
RFID environments which can be even more constrained than sensor networks [77].
However, collisions on these functions were already reported [114].

Another category of solutions are based on hardware implementations. Using ASIC
or FPGA-based cryptographic hardware to perform the computation of required prim-
itives increases performance along with the costs of production. Dedicated crypto-
graphic coprocessors were developed to accelerate the execution of different primi-
tives. Examples of such hardware implementations can be found in [96] and [115].
Some efforts were also made in enhancing the performance of general-purpose mi-
crocontrollers by extending their instruction set with application-specific instructions
used in cryptographic algorithms [42]. Although they reach good performances, these
hardware-based solutions are application dependent and require extra time to be spent
on designing them in comparison to a software-based solution. A possible approach
would be to use a standardized hardware security module such as the one developed
for automotive platforms by the EVITA project [124]. As it is not clear if such solu-
tions will be adopted by the automotive industry in the near future software, solutions
based on microcontrollers that are already available on the market may be preferred
in various contexts. Coming to the aid of developers, microcontroller manufacturers
have also produced microcontrollers with integrated hardware support for well known
cryptographic primitives [38]. These so-called cryptographic acceleration modules can
implement the whole functionality of a certain primitive or only the segments that are
more computationally intensive.

Microcontrollers are constantly evolving to handle the need for increased perfor-
mance. Different manufacturers are already offering microcontrollers with on-chip
general purpose coprocessors or even multi-core microcontrollers [104], [37]. This
category of microcontrollers could be used to enhance cryptographic performance by
using parallelism. One way to put this into practice is by running multiple instances
of a function in parallel on each core to achieve high throughput. However, not all
applications can rely on this kind of parallelism. Frequently, a single execution of a
cryptographic primitive is needed at a certain time; so in order to attain speedups
we have to search inside each individual algorithm for steps that can be parallelized.
Some frequently used cryptographic algorithms were studied in this respect for the im-
plementation of an FPGA-based crypto processor [19] and similar solutions are needed
for multicore microcontrollers.
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3.2 Using parallelism to improve algorithm performance

The performance of cryptographic algorithms can be improved by making platform
specific code optimization. However, these optimizations only offer limited improve-
ments and largely depend on the individual features of each microcontroller: instruc-
tion set, bit size, endianness, etc. Features that characterize each microcontroller
lead to a performance bottleneck for sequential implementations. Therefore, where
possible, techniques such as parallelism should be used in order to obtain further
performance improvements.

Most cryptographic algorithms were not designed for parallel implementation and
they mainly consist of chained steps, meaning that the output O of step Si−1 is used
as an input for step Si. However, some of the steps still can be executed in parallel.
Even though in many cases only coarse-grained parallelism can be obtained, this is
suitable for use on dual core microcontrollers.

In order to identify steps that can be executed in parallel the algorithm has to be
divided in basic steps and input/output dependencies have to be determined. If the
output of a step SA is not needed in order to start execution of the next step SB then
the former can be run on a parallel processor. Another case for applying parallelism
is when the output of a substep SAi is only needed by the corresponding SBi, i.e.,
SBi = f (OAi). Figure 3.1 shows how sequential steps in a) can be executed in parallel
in b). We use these two observations in what follows to identify parallelizable steps
which are specific for hash function. An illustration of how we apply these techniques
on hash functions is depicted in Figure 3.2.b and a detailed explanation for this follows
in the next section.

Step A

SA1

SA2

SAn

Step B

SB1

SB2

SBn

k

Step B

SB1

SB2

SBn

Step A

SA1

SA2

SAn

k1

k2

kn

a b

Figure 3.1: Transforming sequential execution (a) into parallel execution (b)
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3.2.1 Parallelizing hash functions

Hash functions are probably the most commonly used cryptographic primitives.
They generate a fixed length binary output for a variable length binary input. We
focus on iterated hash functions as they are the most prevalent in this category.
Although they accept arbitrary length input, hash functions work generally on fixed
length blocks. Therefore the input message first has to be padded so that its length
is a multiple of the hash block size. An initialization step follows and after it the input
is passed through the compression function one block at a time. Figure 3.2.a shows
the basic construction of an iterated hash function.

Pad message m

Original input m

Compression

function

Padded

m=m1m2···mt

Set initial hash 

value

H0

Byte swap

F(mi,Hi-1)

mi

Hi-1

Ht

Output

Pad message m

Original input m

Compression

function

Padded

m=m1m2···mt

Set initial hash 

value

H0

Byte swap m1

F(m1,H0)

Output

Byte swap m2

m1

Byte swap m2F(m2,H1)

H1 m2

Byte swap mtF(mt-1,Ht-2)

F(mt,Ht-1)

mt

Ht-2

Ht-1

mt-1

Ht

a b

Figure 3.2: General construction of an iterated hash function. Sequential (a) and
parallel (b)

Some parallelism is possible for this general hash function algorithm model. The
padding step for example does not have to be executed sequentially. The only con-
straint here is that each padding byte has to be added to the input string before the
compression function needs to start processing it. Performance gains obtained by
parallelizing the padding step will obviously be negligible in the case of very long input
messages but will make a difference when using short messages. A common substep
of the compression function is one related to the endianness on which the algorithm

BUPT



34 Improving algorithm performance using chip-specific features - 3

is based and the endianness of the used microcontroller. If the endianness differs,
a byte swap to the correct endianness has to be made before processing the input
and this can also be done in parallel with the main compression substeps. Further
improvements could be made on the compression function depending on each design
and we detail this in following sections for several chosen hash functions. Figure 3.2.b
depicts the general parallelized construction for iterated hash functions.

Strongly related to hash functions are the message authentication codes (MAC),
i.e., cryptographic primitives built for the purpose of providing message authentica-
tion. Given an input message of variable length and a key, these algorithms generate
a fixed length output called MAC. Some of the most commonly used MAC constructions
are based on other cryptographic primitives such as hash functions or block ciphers.
Whether parallelism can be used in MAC algorithm implementations in general mainly
depends on their individual construction and since they are quite differently built a rule
of thumb cannot be stated. However, since most MAC algorithms are based on other
cryptographic primitives, parallelism comes from the algorithms used as a building
block where the rules given previously for hash functions apply. This also holds in the
case of HMAC which is the most commonly used MAC construction and is built upon
hash functions.

3.3 Implementation details

3.3.1 Parallelization within the SHA-3 candidates

Given the recent contest for designing the new hash standard, we included the
SHA-3 candidates in our performance analysis. One evaluation criteria in the contest
announced in 2007 by NIST for the next secure hash standard was the computa-
tional efficiency (referring to the speed of the algorithm). Therefore, the candidates
were built so that they best fit this requirement. Some algorithms also exploited
parallelism of different granularities suitable for hardware and/or software implemen-
tations [119]. We studied the candidates accepted for the final round of the SHA-3
contest in search for parallelism. Reference implementations available at [28] were
used for benchmarking and as a starting point for our parallel implementations.

BLAKE [7] is based on the HAIFA iteration mode having a compression function
which receives as inputs: a message block, a chain value, a salt and a counter repre-
senting the number of hashed bits so far and generates a new chain value. An inner
round of the BLAKE compression function is a modified version of the ChaCha stream
cipher and operates on a 4 × 4 state matrix of words. Independent operations are
made on all four columns followed by operations on distinct disjoint diagonals. As
the BLAKE specification states, this construction allows four-way parallelism so that
operations on all four columns can be computed in parallel and identically for the di-
agonals. It is clear that for two core architectures (both cores equal in computational
power) each core will take care of updating two columns and diagonals respectively.
In our particular case, due to the increased speed of the coprocessor, we were able to
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execute one column/diagonal update on the main CPU in parallel with updating three
columns/diagonals on XGATE.
The developers of BLAKE, recently proposed a modified version called BLAKE2 [8].

The changes included in BLAKE2 were aimed at bringing performance improvements
without reducing security. BLAKE2 comes in two versions: BLAKE2b optimized for
64-bit architectures and BLAKE2s built for 8- to 32-bit platforms. We focus on the
latter since it fits our target platforms. Changes present in BLAKE2 include: a reduced
number of rounds and constants, speed-optimized rotations, minimized padding and
endianness change. Due to the design similarities between the two versions the paral-
lel implementation techniques previously presented for BLAKE also apply for BLAKE2.

P Q

hi-1 mi

hi

Figure 3.3: Grøstl compression function

Grøstl [40] is another iterated hash function which borrows some components
from the AES construction. The Grøstl compression function is based on two fixed
permutations. The two underlying permutations P and Q are combined as illustrated
in Figure 3.3. These two permutations are completely independent of each other.
Thus, implementing the compression function on two-way parallel architectures is
quite straightforward especially as P and Q involve the same amount of computation.
More in depth optimizations, by exploiting platform specific features, were done in [4].
JH [127] was built around a compression function F8 which employs a large block

cipher structure E8. The first half of the 2m bit state is XORed with the current
message block before feeding it to the E8 permutation. The second half of the state
computed by E8 is also XORed with the current message block as shown in Figure
3.4. The E8 construction uses 4× 4 bit S-boxes, a linear 8-bit transformation L and a
permutation P. An efficient implementation of JH utilizes the bit-slicing technique. In
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E8

hi-1

hi

mi

mi

Figure 3.4: The F8 compression function of JH

the bit-slice implementation, the 1024-bit input of E8 is split in eight 128-bit words
on which seven round functions (two S-boxes, one linear transformation L and four
permutations ω) are applied. On a 128-bit processor, basic operations on each word
would be done with one instruction while on a smaller bit size processor they will have
to be constructed out of multiple instructions operating on smaller words. As the S-
box and L functions can be executed independently on each corresponding bit of the
eight words, parallelism can be used to speed-up the computation. The ω permutation
swaps bits in a 128-bit word depending on the round number. This prevents bit level
or nibble level parallelism for the full E8 permutation. Therefore, we can only use
nibble level parallelism in each round. Additionally, although not resulting in a large
speed gain, the two XOR operation of the state and message block can also be made
in parallel with other computations (E8 round function for the first XOR and message
truncation for the second).

Keccak [14] is defined as a family of sponge functions built on a set of seven
permutations. Permutations are applied in two phases: one called absorbing phase,
the second called squeezing phase, each based on the sponge construction. The
Keccak − f [1600] studied here consists of 24 rounds that operate on a state matrix of
5 × 5 lanes, where a lane is considered to be a 64-bit word. Keccak − f [b] is a per-
mutation over Zb2. Each round consists of five steps designated by five Greek letters:
θ, ρ, π, χ and ι. Some of these steps (ρ, π and χ) allow parallel execution as they
are applied independently over distinct elements of the state matrix. More specifically,
these steps can be independently applied overs sections of the state matrix by differ-
ent cores. When using interleaving, as in the optimized implementation submitted by
the Keccak designers (on which we based our implementation), the process of setting
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bytes into interleaved words and vice versa can be also parallelized as it is applied on
each word independently.

Skein [34] uses Threefish, a tweakable block cipher, running in Unique Block It-
eration mode (UBI) to build its compression function. The core of Threefish employs
three mathematical operations (one addition, one rotation by a constant and an XOR)
to construct a simple mixing function called MIX on 128 bits. One round of Threefish in
Skein-512 corresponds to the application of four MIX functions followed by a permuta-
tion of all 64-bit words in the state as depicted by Figure 3.5. Once every four rounds
a subkey is injected in the current state. Skein-256 and Skein-1024 are similar, the
only difference being that two mix functions are applied for a 256-bit state and eight
for 1024. For parallel implementations each of the MIX functions in one round could
be computed on a separate processor as they operate on independent 64-bit words of
the state. As stated before, XGATE can handle several iterations of a certain block of
code during a single execution of the same block on the S12X CPU. This allowed us to
run 3 MIX functions on XGATE in parallel with one on S12X.

MIX MIX MIX MIX

Permutation

State i

State i+1

Figure 3.5: One basic round of Threefish-512

3.3.2 Parallelization within old hash standards

MD5 is a 128 bit output hash function developed by RSA Inc. as an improved
version of MD4 [106]. It is still used in many applications although MD5 was proven
to be insecure and collisions have been found since 2005 [122]. The MD5 algorithm is
based on the general iterative hash function construction depicted in Figure 3.2. The
compression function of MD5 operates on 512 bit message blocks divided in 16 4-byte
words which have to be set in little-endian order before processing. As each step of
the compression function uses the output of the previous step the construction is not
suitable for parallelism. Thus, in general only the padding can be done in parallel.
Also, on big-endian machines the words can be swapped to their little-endian form in
parallel with the compression round.

SHA-1 [91] was deployed in various protocols and security standards since its
release by NIST as a Federal Information Processing Standard. The construction of
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SHA-1 is similar to the one of MD5 so the remarks on parallelism for MD5 also applies
to SHA-1. The main differences are represented by the size of the message digest,
the functions used by the compression function and initial hash value. Additionally
in each compression round, the 64 bytes message block is expanded to a block of
320 bytes or 80 words. As the words in the message schedule obtained by expansion
are processed one by one this expansion is independent of the compression process.
Therefore the message expansion can be executed in parallel with the compression
function.

SHA-2 consists of a set of four hash functions each having a message digest size
denoted by its suffix: SHA-224, SHA-256, SHA-384 and SHA-512. The block size
on which they operate is 512 bits for the first two and 1024 for the last two. As the
algorithm structure of the SHA-2 family components is similar to the structure of SHA-
1 (including the message expansion step) the same approach is to be used for adding
parallelism.

3.3.3 Synthetical prediction of performance improvements

After identifying the steps that can be parallelized it is important to get an esti-
mation on the improvement that could be obtained in order to decide whether or not
to implement the changes. To be more accurate with our exposition, we first define
what a step is. A step Si corresponding to a logical part of an algorithm is a sequence
of instructions that operate together as a group on a given input I = (I1I2 · · · In) to
generate an output O = (O1O2 · · ·Om). Each step can be comprised of one or more
substeps Sij.

If we consider TCPU as the time (measured in clock cycles) needed by the main CPU
to execute a certain step then a coprocessor CPU will execute that same step in s ·TCPU
clock cycles. Here s > 0 is a constant defining the coprocessor speed factor in relation
to the main CPU. This element is influenced by a number of processor-specific features
like: operation frequency, instruction set, type of memory used, etc. We denote the
execution time of a step Si on the main processor as Ti and on the coprocessor as s ·Ti.
Let ci be the maximum number of clock cycles that can be spent until the output of Si
is needed on the main processor and τi the time needed for exchanging data between
the processors. We can assert that if ci ≥ s · Ti the entire step can be executed on the
coprocessor, hence a speed gain of Ti − τi. Otherwise, if ci < s · Ti then only a fraction
of ci/s from the step was executed on the coprocessor while the rest can be executed
either on the main CPU or further parallelized, etc. So we can summarize this gain as:

¨

Ti − τi for ci ≥ s · Ti
ci/s− τi for ci < s · Ti

(3.1)

However, in a two core environment such as S12X it is not efficient to swap the exe-
cution of a particular code sequence from the main CPU to the coprocessor. Therefore,
in the case that a particular step once assigned to the coprocessor must be finalized
there, we have to change this relation to:
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¨

Ti − τi for ci ≥ s · Ti
Ti − (s · Ti − ci)− τi for ci < s · Ti

(3.2)

Therefore, in the best case scenario the speed gain is Ti if the coprocessor can
execute Si in up to ci cycles. Otherwise, if s · Ti > ci the main processor will have to
wait until the step is finished but still with a certain speed gain. It is clear that for very
slow coprocessors the gain will be a negative number denoting that executing Si on
the coprocessor can’t bring a speedup. Relation (3.2) can thus be written in a more
compact form as:

min (Ti, ci + Ti (1− s))− τi (3.3)

Next by considering that each Si is executed ri times on the coprocessor, we can
calculate the overall computational time reduction as:

∑

i=0,n

ri (min (Ti, ci + Ti (1− s))− τi) (3.4)

As an example let us take BLAKE and try to estimate the speed gain for an input of
length 0. Let s be 1/4 as XGATE is approximately 4 times faster than the main CPU.
We identify four basic steps that can be parallelized on BLAKE: Byte Swapping (BS),
Message Padding (MP), Round Operation (RO) on a column or a diagonal. On the main
S12X CPU the computation time is:

• TMP = 2213 cycles for message padding,

• TBS = 2005 cycles for byte swap,

• TRO = 1020 cycles for one round function.

The corresponding repetition times for each of these steps is: rMP = 1 as the padding
is only done once, rBS = 1 because we have only one block and rRO = 14 · 6 because
we have 14 rounds in which 3 columns and 3 diagonals are computed on XGATE. The
execution time for all steps satisfies: ci ≥ s ·Ti. Therefore the actual speed gain can be
computed as TMP + TBS +84 · TRO which gives 89898 cycles. This is close to the value
presented in the experimental results, the difference coming from the τi which we did
not consider in our calculus. We underline that this synthetic evaluation can provide
only a rough measure of the speedup and only careful measurements can give the
exact gain which depends on several other aspects such as memory, instruction set,
etc.

3.4 Performance analysis and comparison

First, all cryptographic primitives described in the previous section were imple-
mented on our automotive platforms in the sequential form. Then parallelism and
hardware acceleration were used on platforms that allowed it. The block size of each
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hash function implementation was selected to be 512 bits in order to allow compar-
ative evaluation. bKeccak [r = 1088, c = 512]c256, which we denote by Keccak-256,
was used for Keccak. These implementations were analyzed in relation to two met-
rics: execution time and memory utilization. The next section presents the platforms
employed before proceeding with the results obtained. Two of these platforms (S12X
ad TriCore) are presented in more detail as they are used in other experimental setups
throughout this thesis.

3.4.1 Employed platforms

3.4.1.1 The S12X platform

We used a SofTec Microsystems ZK-S12-B development board shipped with a Freescale
16-bit automotive microcontroller from the S12X family, MC9S12XDT512 [37]. All
members of this family are equipped with a co-processor called XGATE. This co-
processor was used to assess the performance that can be achieved for each function
by employing parallelism.

The S12X microcontroller that was used has 512kBytes of flash memory and
20kBytes of RAM. Both FLASH and RAM memories are banked. Thus, a total of 8kBytes
of RAM space can be used for continuous allocation while the rest of the RAM can be
accessed in a 4kByte window. The data-sheet specifies that the maximum bus fre-
quency that can be set using the PLL module is 40MHz. We configured the PLL for
frequencies beyond this specified value and were able to go up to 80MHz without
introducing any noticeable abnormal behavior.

The XGATE module has a built in 16-bit RISC core with instructions useful for
data transfers, bit manipulations and basic arithmetic operations. The registers and
instruction set of the XGATE differ from the ones available on the S12X core. The RISC
core can access the internal memories and peripherals of the microcontroller without
blocking them from the main S12X CPU. The S12X CPU always has priority when the
two CPUs access the same resource at the same time. To assure data consistency, the
access priority can be controlled by using the hardware semaphores available on the
microcontroller. Figure 3.6 shows how the S12X core interacts with XGATE.

XGATE S12X CPU

Peripherals

RAM

Software requests

Peripheral interrupts

XGATE interrupts

Figure 3.6: Interaction between the S12X core and XGATE
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Interrupts can be routed to the XGATE module in order to decrease the interrupt
load of the main S12X CPU. Additionally, up to 8 software triggered channels can be
used by the S12X CPU to request software execution on XGATE.
In order to obtain the maximum XGATE CPU speed, the code can be executed from

RAM. Because RAM is a volatile memory, XGATE code is being stored into the FLASH
memory and copied into RAM after each reset. Having a better RAM access speed and
a speed-optimized instruction set, a typical function can run up to 4.5 times faster
on XGATE than on the S12X CPU [84]. Because it was designed for quick execution
of small code requested by interrupts, the flash memory available for storing XGATE
code is limited. For controllers in the S12XD family this limit is 30 kBytes.
The CAN module from the S12X chip can be programmed to function at bit-rates

up to 1 Mbps. The limitation for the maximum achievable CAN speed on the S12
development board is given by the on-board low speed fault tolerant transceiver which
can only run at speeds up to 125 kbps.

3.4.1.2 The K60 platform

To evaluate the performance improvements of a crypto accelerator the Kinetis K60 mi-
crocontroller was used. This Freescale device is built around a 32-bit ARM Cortex-M4
core and has 512 Kbytes of FLASH and 128 Kbytes of RAM allowing for a maximum
working frequency of 100 MHz. The K60 features on-chip hardware support for CRC
and random number generation as well as a cryptographic acceleration unit for speed-
ing up execution for a set of well known ciphers and hash functions: DES, 3DES, AES,
MD5, SHA-1 and SHA-256. In terms of connectivity, the K60 is capable of Ethernet
and high-speed CAN communication.

3.4.1.3 The TriCore platform

We also used Infineon TriCore microcontrollers from the AUDO (AUtomotive unifieD
processOr) family. All members of this family are 32 bit microcontrollers built for
computational performance. Experiments were done using two members of this fam-
ily: TC1797 and TC1782. The TC1797 microcontroller [62] is a member of the AUDO
Future family and can work at frequencies up to 180MHz, with a program flash mem-
ory of 4MB and a 64kB data flash along with 176kB of SRAM. The TC1782 [61] is a
mid range automotive microcontroller and a member of the newer AUDO MAX family
(but it is still based on the same 1.3.1 core version as TC1797). TC1782 has the same
operating frequency and SRAM size as TC1797 while the program flash memory is
reduced to 2,5MB and the data flash is double in size to hold 128kB. Due to the similar
architectures, the computational performance of these two microcontrollers is almost
identical. Thus, in this section we only present results obtained from the TC1797
whenever referring to the TriCore platform.
Both TriCore controllers have CAN and FlexRay modules enabling communication

on these special bus types. The development boards are equipped with high speed
CAN transceivers that can be configured to run at a maximum speed of 1 Mbps.
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3.4.2 Execution speed

As a first measure of performance we chose to evaluate the execution speed of the
algorithms in their normal versus improved implementations. The execution time was
measured as the number of clock cycles needed to hash input messages of different
lengths. The range of input lengths were selected to illustrate the performance of
each function for both small and big messages. A finer grained evaluation was made
for input sizes up to 256 bytes to reflect the typical step shape of the performance
curve that depends on the way that each hash function handles message blocks. For
each implementation we show a graph containing hash function performance curves
for comparison. Next the speed is presented as cycles per byte in a tabular form along
with the performance gains for a selection of input lengths. An estimation for very
long messages, synthetically computed [29], is also added. Finally we compare our
results with data from related work.

S12X. Figures 3.7 and 3.8 show performance curves for the S12X sequential and
parallel implementations. Values on the X axis represent message input lengths and
the Y axis corresponds to the number of clock cycles spent to hash the message. In
the case of the S12X sequential implementation, the superimposed curves show that
BLAKE is the best SHA-3 performer followed by Grøstl and Skein while Keccak and JH
are positioned last following SHA-256. The ranking is slightly changed in the parallel
implementation with Keccak and JH following BLAKE and Grøstl. SHA-256 is next
while Skein is the last ranked. In both cases BLAKE2s proves to be faster than the
SHA-3 candidates and comparable in speed with MD5 for the parallel implementation.
Table 3.1 shows cycle/byte representations of our experimental data for selected input
values and summarizes the improvements obtained for parallel implementations of
each function. The best improvement, around 73%, was obtained for BLAKE and JH,
followed by BLAKE2 and Keccak. Grøstl comes next with a gain comparable with the
ones obtained for SHA-1 and SHA-256 for small inputs, but it increases for larger
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Figure 3.7: Runtime of sequential implementation (S12X)
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Figure 3.8: Runtime of parallel implementation (S12X)

inputs. From the SHA-3 candidates Skein had the smallest speedup. MD5 comes last
in terms of improvement as the compression function does not offer significant means
for applying parallelism.

For all the hash functions we wanted to see if the effect of the padding step over
the total runtime can be alleviated through parallel implementations. Hence the input
sizes were selected so that best/worst cases (minimum/maximum number of padding
bytes needed) are covered in the tests. Table 3.2 shows the execution time for the
chosen inputs. It can be easily observed that the parallel implementations spend the
same amount of time for all inputs with the same block count after padding since the
padding step is not done sequentially anymore. As the padding rules differ from one
hash function to another, the block count changes at different input sizes. For example
in JH each message is padded so that its length is a multiple of 512 bits adding at least
512 bits (when the message is already a multiple of 512) and at most 1023 bits are
added to the message. However, some exceptions from this rule exist in the case of
BLAKE which contains an additional step in the compression function executed if the
last block only contains padding bytes, hence the results obtained.

Kinetis K60. All the hash functions analyzed on the S12X platform were also eval-
uated on the Kinetis K60 microcontroller. We investigated the possibility of enhancing
the performance of hash functions included in this study with the K60 Memory Mapped
Cryptographic Acceleration Unit (MMCAU). Each MMCAU command is called by write
operations at locations in a specially designated memory space. Up to three com-
mands can be written with a write operation (to reduce the time spent for command
calling), commands will, however, be executed sequentially. Results are obtained by
similar read operations. In the case of MD5 and previous SHA standards the use of
MMCAU is straight forward since it provides specialized commands for each of their
round function operations. To identify possible uses of the MMCAU for the other hash
functions we have to analyze their algorithms.

As previously described, Grøstl is one of the SHA-3 contest finalists which ben-
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efits from the use of AES transformations. The P and Q permutations that are at
the core of the Grøstl round function consist of several rounds in which four AES-like
transformations are applied: AddRoundConstant, SubBytes, ShiftBytes and MixBytes.
SubBytes applies the AES S-box to each byte in the state matrix, while ShiftBytes and
MixBytes are variations of the corresponding ShiftRows and MixColumns steps in AES.
Therefore, in the case of K60 we can use the MMCAU AES SubBytes command. Our
MMCAU implementation based on the Grøstl reference code only showed an improve-
ment of 3.4%. The 32-bit optimized implementation submitted by the Grøstl team
which is based on look-up tables has a much better performance (60% faster than
our MMCAU-based implementation) at the cost of a greatly increased code size (our
implementation needs 85% less code memory).
The rest of the studied hash functions were not built using building blocks of pre-

vious primitives. The MMCAU commands could not be used to improve their perfor-
mance.
Figure 3.9 offers a graphical representation of these results. All K60 implementa-

tions of SHA-3 finalists are slower than old SHA standards. Keccak, Skein and BLAKE
closely follow SHA-256 while Grøstl and JH rank last at a significant distance. Here
BLAKE2 proves to be slightly faster than SHA-256. Table 3.3 backs up the plots with
hashing speeds represented as cycles per byte. MD5, SHA-1 and SHA-256 were also
implemented using HW support and Table 3.3 also provides performance data for these
implementation. As mentioned before, the fastest Grøstl implementation could not be
outranked by using HW support on the K60 platform. In what concerns the other hash
functions, they could also not benefit from speed-ups using the K60 MMCAU. How-
ever, for the three presented MMCAU implementations adding hardware acceleration
resulted in smaller speedups for smaller and faster hash functions such as MD5 and
SHA-1 than for the more time-consuming ones like SHA-256.
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Figure 3.9: Runtime without HW support (K60)

TriCore. On the TriCore platform, the performance of hash functions was investi-
gated for the standard sequential implementations. Execution speeds for various input
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sizes are summarized in Table 3.4 and illustrated in Figure 3.10. As depicted by these
results, on the TriCore platform, MD5 and SHA-1 are the best performers followed by
BLAKE2 and BLAKE. SHA-2 and Keccak come next with similar performances, while
Skein, JH and Grøstl come last.
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Figure 3.10: Runtime of sequential implementation (TriCore)

Comparison with related work. To create a more accurate image on the per-
formance of the SHA-3 candidates on low performance platforms we put our results
alongside related results obtained on similar platforms. We chose the XBX bench-
marks [123] as they are based on a variety of 8-, 16- and 32 bit platforms close in
performance to ours. Figures 3.11 and 3.12 show performances measured on differ-

128

512

2048

8192

32768

131072

MD5
SHA-1
SHA-256
Blake
Groestl
JH
Keccak
Skein
Blake2

C
yc

le
s 

p
er

 b
yt

e 
(l

og
 s

ca
le

)

Platform

Figure 3.11: Performance comparison on different platforms for 8 byte inputs
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Figure 3.12: Performance comparison on different platforms for very long inputs

ent platforms for an 8 byte and very long inputs respectively. The X axis holds the
platforms added for comparison ordered by microcontroller register width. The first
(from left to right) is an 8-bit microcontroller followed by our S12X platform and one
other 16-bit architecture. The rest of the platforms are 32-bit. The Y axes represents
the hashing speed in cycles per bytes on a logarithmic scale, thus the lowest points
on the graph indicate the fastest algorithms on each platform.
As the graphs show, BLAKE remains the best performer from the five SHA-3 fi-

nalists. Grøstl is the second in line for the 8- and 16-bit platforms but occupies one
of the last places for the 32-bit architectures. Keccak and Skein have comparable
performances across all platforms, the only exceptions being in the case of the 8-bit
microcontroller and that of the TriCore platform. Finally, JH comes last or second-to-
last in the majority of cases. SHA-2 shows similar performances to BLAKE for 32-bit
platforms but it is surpassed by some of the SHA-3 candidates on the other 8 and
16-bit platforms.

3.4.3 Memory utilization

Table 3.5 illustrates the code size of our implementations on both presented plat-
forms. From the SHA-3 finalists, BLAKE and JH show the lowest memory consumption
in S12X sequential implementation followed by Skein, Grøstl and Keccak. For parallel
execution BLAKE remains the best performer as it requires the smallest amount of
memory. Where it was permitted, without compromising performance, we took ad-
vantage of the increased speed of XGATE to optimize code not for speed but for size.
For example, in the case of MD5, SHA-1, SHA-256 and Skein (since XGATE finishes
parallel computations faster than the main S12X core anyway and then it will have
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Function Code size S12X Code size K60 Code size TriCore
Sequential Parallel No HW support HW support Sequential

MD5 4243 3701 2634 1858 3476
SHA-1 8323 4144 4454 3362 6040

SHA-256 17145 5437 10580 1010 1294
BLAKE-32 5073 6685 11090 - 4107
Grøstl-256 15434 27414 25372 - 13012
JH-256 5912 17675 9432 - 5766

Keccak-256 22205 27132 3490 - 14398
Skein-512-256 13726 11079 19850 - 50158

Blake2s 6457 6425 10678 - 8966

Table 3.5: Memory consumption (bytes)

to wait) we gave up loop unrolling resulting in a smaller overall memory consumption
than in the sequential implementation. Otherwise, code size for parallel implementa-
tion is generally larger, primarily due to the differences between the S12X main core
and XGATE instruction set. If we take JH as example, the exact same code for the E8
compression function needs approximately three times more space on XGATE than on
the main S12X core due to the reduced instruction set.

On the Kinetis K60 side, Keccak has the smallest code size followed by JH and
BLAKE while Skein and Grøstl come last at almost double the size of BLAKE. When
using hardware acceleration the code size also decreases. Similarly to the case of
speedups, SHA-256 has the biggest gain in regard to memory consumption.

When using the TriCore platform, the SHA-256 implementation has the lowest
memory consumption. MD5, BLAKE, JH and SHA-1 come next followed at a distance
by Grøstl and Keccak. Skein is last with the highest memory consumption from the
set of studied functions.

3.4.4 Discussion

Experimental results derived from our implementations showed that, when using
parallelism, the execution speed can be improved with factors in the range of 10 -
70% depending on the algorithm and coprocessor used. In particular, parallel imple-
mentations of the SHA-3 finalists can run 18% to 73% faster. These values hold for a
scenario on which the XGATE coprocessor is up to 4.5 times faster than the CPU (the
actual speed of XGATE depends on various parameters: memory type used for storing
code and data, instructions used, etc.). In most cases this improvement comes at the
cost of a tradeoff in what concerns the used memory. However for some algorithms
and on coprocessors that run faster than the main CPU, speedups can be obtained
along with a decrease in code utilization when applying code size optimizations. When
using hardware accelerated implementations speedups come along with a reduction
of the code size. For the K60 implementation of SHA-256 we were able to obtain an
improvement of up to 80%.

As expected, MD5 stands out as the best performer in terms of fast execution as
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well as low memory requirements. Although proven to be insecure MD5 is still widely
used in various applications. Due to the real-time nature of automotive systems we
consider MD5 as being sufficiently secure. Moreover, due to its increased performance
we subsequently use it in all our constructions to achieve a bottom line for protocol
performance.
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4 Application layer authentication

To withstand threats, in-vehicle networks, more specifically, those based on CAN
buses can be protected by implementing security at the application level as the com-
munication protocol has no intrinsic security mechanism. This chapter looks at so-
lutions for achieving authenticated communication on CAN. First we go through the
related work in this area and present existing solutions for broadcast authentication
in section 4.1. Next, three approaches for assuring higher layer authentication are
described and evaluated. The first one is based on the TESLA protocol and presented
in section 4.2 which holds results published in [44, 46, 47]. The second approach
employs one-time signatures based on lightweight cryptography and is presented in
section 4.3. This section holds results published in [45] and [48]. The third proto-
col, called LiBrA, uses keys which are split between groups of nodes and lightweight
cryptographic primitives to achieve authentication. Section 4.4 contains details on
the LiBrA protocol and its performance based on results published in [49]. Personal
contributions consist of all implementations and evaluation of protocol performance
on chosen platforms.

4.1 Related work

4.1.1 Related work on secure broadcast protocols

Although digital signatures provide an elegant method for signing broadcast data,
they are not the solution in our context because of both the computational and com-
munication overhead. As messages are short in CAN networks, usually fitting in the
64 bits of data carried by one CAN frame, using a public-key primitive such as the
RSA requires thousands of bits and causes a significant overhead. Elliptic curves can
significantly reduce the size of the messages, but still the computational overhead is
too much to assure small authentication delays. While the computational overhead
can be alleviated by using dedicated circuits, such as ASICs and FPGAs, this would
increase the cost of components, an issue that is largely avoided by manufacturers.
One alternative to digital signatures such as RSA, or ECDSA is the use of one-time sig-
natures which were initially proposed by Merkle in [82]. Although they are frequently
mentioned in the literature as a cheaper alternative to conventional signatures, they
are quite unused in practice, mostly because of their one-time nature. Using Merkle
trees makes them viable for multiple uses, but it requires sending an entire path of a
tree, and generating, potentially storing all this tree on the signer side, which requires
even more resources. There is good literature available on the subject but this line of
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research appears to have a reduced practical impact as one-time signatures are not
so common in practice.

In contrast, symmetric primitives were efficiently employed for authentication in
constrained environments such as sensor networks [75, 76, 100]. Due to the broad-
cast nature of CAN, protocols similar to the well known TESLA protocol [101], [99]
can be used in this context as well. Indeed, some of the constraints are similar. For
example, computational power is also low and, although high speed microcontrollers
are also available on the market, low speed microcontrollers are preferred to reduce
costs.

While TESLA like protocols introduce delays that could be unsuitable for all real-
time CAN based applications, there is a broad area of applications where they could be
tolerated in exchange for security. In particular, delays in the order of milliseconds, or
even below as proved to be achievable by our proof-of-concept implementation, are
suitable for a broad range of in-vehicle control tasks. A version of the scheme that
achieves immediate authentication is in fact available from Perrig et al. in [99] but
this scheme addresses the case in which the MAC on the message is sent before the
key disclosure while the message itself is sent afterwards (allowing to authenticate
the message when it is received). Here by immediate authentication we mean that,
as soon as a principal knows the value of the message, he can broadcast it and its
authenticity can be checked by receivers as soon as the authentication tag is received.

There is an extensive bibliography related to the TESLA protocol. Its history can
be traced back to Lamport’s scheme which uses one-way chains to authenticate users
over an insecure network [71]. The work of Bergadano et al. [13] proposes several
variants of one-way chain based protocols, with or without time synchronization. Pre-
vious work which inspired this family of protocols is the Guy Fawkes protocol from [1].
The context which is more related to our setting here is that of the application of such
protocols in sensor networks. In particular, several trade-offs for sensor networks
were studied by Liu and Ning in [75], [76] and several variants of the protocols are
presented by Perrig et al. as well in [101], [99].

Also several papers addressed hybrid versions in which asymmetric primitives are
mixed with key-chains in order to obtain trade-offs [12], [21], [5]. However, these
variants have a bigger communication or computational overhead and do not appear
to be appropriate for our application setting.

4.1.2 Related work on authentication in controller area networks

While most of previous research in the automotive area was focused on vehicle to
vehicle and vehicle to infrastructure communication there seem to be only a few results
for assuring security on communication buses inside vehicles. Most of the approaches
to in-vehicle security advocate the use of secure gateways between different ECUs
(Electronic Control Unit) or subnetworks [9], [125] and rely on basic building blocks
from cryptography (encryptions, signatures, etc.). However, none of these approaches
is meant specifically for assuring broadcast authentication on CAN which is still the
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most common communication bus in automotives.

In this respect, two main results in assuring CAN security can be found so far, one
of them proposes a new paradigm which closely follows CAN specifications [120] while
the other introduces a validity voting scheme in [116] and [117].

CANAuth. CANAuth [120] is a protocol that has the merit to follow in great detail
the specifications of CAN, its security is specifically designed to meet the requirements
of the CAN bus. In particular, CANAuth is not intended to achieve source authentica-
tion as the authentication is binded to the message IDs and messages may originate
from different sources which will be impossible to trace. This fits the specification of
CAN which has a message oriented communication. However, a first issue is that the
number of CAN IDs is quite high, in the order of hundreds (11 bits) or even millions
in the case of extended frames (29 bits) and storing a key for each possible ID does
not seem to be so practical. For this purpose, in [120] a clever solution is imag-
ined: the keys are linked to multiple ID codes using masks, which greatly reduces the
required amount of keys. But still, this leads to some security concerns, which we
discuss next. Traditionally, keys are associated to entities to ensure that they are not
impersonated by adversaries, but the effect of associating keys to messages is less
obvious. For example, any external tool (assume On-Board Diagnostics (OBD) tools
which are wide spread) that is produced by external third parties will have to embed
the keys associated for each ID that it sends over or even just listens to on CAN,
provided it needs to be able to authenticate those IDs. It is thus unclear which keys
can be shared with different manufacturers and how or what the security outcomes
of this are. Obviously, if a third party device, even an innocuous one such as passive
receiver, is easy to compromise then all the IDs which it was allowed to authenticate
are equally compromised.

Voting. Szilagyi and Koopman introduce a validity voting scheme in [116] and [117].
The scheme is intended for generic time-triggered communication such as TT-CAN,
FlexRay, etc. The core part of the protocol relies on the classical paradigm of sharing
keys between each sender and receiver then authenticating packets on a one MAC
per receiver basis. Further, to make it feasible to embed the MACs in a single frame,
the tags are truncated and concatenated (e.g., 3 MACs each of 8 bits are fitted at the
end of a single frame). The communication is time triggered, each receiver releasing
his message and his vote on previous messages in fixed time slots. Both the new
message and his vote, along with all previously received messages, are authenticated
under the same array of MACs to other receivers. The scheme appears to be a trade-
off between computational time, authentication delays and bandwidth in order to fit
the authentication bits in one frame. Indeed, if the frame would be larger, and the
sender could fit more MAC bits in each frame, then authentication could be done at
once within a single frame without needing to wait for the votes of the other nodes.
This would improve both on delays (as nodes will not need to wait for the vote of other
nodes) and computational power since, indeed, the nodes that subsequently vote are
re-authenticating messages that were previously authenticated with a small amount
of bits. The procedure leads to a drawback as stated in [117]: for frames that are
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lost, the receive history of the nodes does not match and authentication will fail for
these frames. As suggested in [117] this can be fixed by adding additional bits for
lost packets, but sufficient votes from other nodes would still be required to deem the
frame authentic.

4.2 TESLA-based CAN authentication

As a first approach we look at the well known TESLA broadcast authentication pro-
tocol. The main argument for choosing a TESLA like protocol in our research is that
there is no better solution to perform broadcast authentication without secret shared
keys or public key primitives. Also, there is no result so far, to best of our knowledge,
that points out clear technical limits on using TESLA like protocols on CAN networks.
Thus, we provide clear experimental results on two automotive microcontrollers lo-
cated somewhat on the extremes of computational power in terms of memory and
bus speed: a Freescale S12 equipped with an XGATE coprocessor and an Infineon
TriCore.

The results presented here are relevant as the authentication delay is critical for
control scenarios. This is different to the usual sensor-network scenario where TESLA
like protocols are frequently used because in sensor networks other constraints are
more prevalent. For example, energy consumption is a critical issue in sensor net-
works, but usually for ECUs inside a car this is not a main concern since controllers do
not strongly rely on small batteries. The most critical part, in control systems where
this protocol is mostly used, is the authentication delay, i.e., how fast a packet can be
deemed as authentic. In particular we must assure that a node, if the bus is not taken
by a higher priority message, is able to transmit the message and the message can be
checked for authenticity as soon as possible. This condition is initially limited by the
computational power (as shown in Chapter 3), but as checking for authenticity can
happen only as soon as the disclosure delay expires and the next element of the chain
is committed, this also depends on the structure of the chain which is determined by
the amount of memory available, and also by the bandwidth. While in sensor networks
the disclosure interval is usually in the order of tens or hundreds of milliseconds here
we bring this delay lower by 2 to 3 orders of magnitude. Depicting an optimal protocol
setting in this context is not straight forward and we study several trade-offs in what
follows.

4.2.1 Environment and Protocol Description

As specified in the CAN protocol specification, CAN is a message oriented bus
while TESLA appears to be source oriented, i.e., it assures that a message originates
from a particular sender. We emphasize that there are many practical scenarios in
which the source of a particular CAN message does matter and in practice identifiers
are frequently uniquely associated to a particular node. Thus the message oriented
nature of CAN should not be interpreted in a strict sense, where the source of the
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message is irrelevant. Even for the case of an ID oriented authentication (where
authentic messages with the same ID can originate from different nodes) a TESLA like
protocol will prove to be more suitable for adding new nodes on the bus since they can
authenticate messages via the broadcast scheme without needing to share the secret
key for a particular ID.

From an upper view, the design paradigm is the following. Memory, computational
speed, bandwidth, initialization time and the synchronization error give bounds on the
structure of the chains that we can use. This further bounds the authentication delay,
i.e, the delay at which authentication keys arrive on the bus, which is crucial to us
as messages cannot be authenticated faster than the disclosure delays. To improve
on this delay, we design several variants of the protocol that are presented in section
4.2.2.

All protocol variants use multiple levels of one-way key chains with the structure
suggested in Figure 4.1. The relevant notations with respect to the chain structure
are: ℓ the number of chain levels, σi, i = 1..ℓ the length of the chain on level i, δi, i = 1..ℓ
the disclosure delay on level i, ξ the safety margin for releasing authentication packets
and δnorm the normalized disclosure delay which will be clarified in the next section
along with other details. Informally, bullets depict keys from the key chains and the
horizontal black arrows denote that they are derived from a previous key. As usual in
such protocols, keys are generated and consumed in a reverse order, thus the time
arrow on the bus points in opposite direction to the arrows that generate the keys.
Packets arriving on the communication bus are depicted as well, the dotted lines from
an element of the chain to the packet denotes that the element was used as a key,
and for the re-initialization packets in particular one element of the key chain was also
used as a message. Packets containing keys are marked by K and commitments, i.e.,
MAC codes that authenticate forthcoming key chains, are marked by C.
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Figure 4.1: Broadcast sequence with normalized time δnorm.

Before the broadcast protocol can run, we need an initialization protocol. Its role
is to allow each unit to commit or retrieve its initialization values and to achieve
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time synchronization with the sender. This part of the protocol can also rely on more
expensive algebraic operations required by public-key cryptography. For example,
each principal can authenticate itself by using a public key certificate that is signed
by a trusted authority. Initial authentication based on public-key infrastructure can be
preferable to assure composability. Thus we require that each node must store the
public key of a trusted authority. Although public key certificates are larger and will
require more than one frame (which can carry at most 64 bits) in general it should not
be a problem to transport them over CAN if this does not happen too often and just in
the initialization stage. If public keys are not a feasible alternative, then initialization
keys can be hardcoded in an off-line manner.

Time synchronization is done with respect to a central node, which will play the role
of a communication master. As usual, synchronization between two nodes is loose and
it requires a handshake and counting the round trip time until it is below a tolerance
margin. This is usually achieved in two protocol steps as follows: A → B : NA;B →
A : SigB(tB,NA). Here NA denotes a nonce generated by principal A and tB denotes
the current time at principal B when sending its response. Afterwards, the round trip
time εAB becomes the synchronization error. If the nonce was sent by A at time t0
and now A’s clock points to t1 then A knows that the time on B side is in the interval
[tB + t1 − t0, tB + t1 − t0 + εAB]. However, in our scenario a digital signature costs
tens, or hundreds of milliseconds, which will result in an even larger disclosure delay.
Because of this, instead of a digital signature we will use a message authentication
code which is several orders of magnitude faster. In particular, in our experiments,
the round-trip-time was less in the order of several hundreds micro-seconds as shown
in the section dedicated to experimental results.

4.2.1.1 Sender’s Perspective

For the sender side, we first define the structure of the key chain with respect to each
level and then we define the precise timings for the disclosure of each key. We make
use of a timing template which is used to compute the timings for each level (based on
chain lengths and disclosure delays) and a function template which is used to generate
the keys on each level (based on a one-way function). Different to previous work, we
use the function template to allow the generation of chains from different levels, with
different functions, that will provide good speed-ups in the following variants.

Definition 1. We define the timing template as a ℓ-tuple of positive integer pairs
denoting the chain length and disclosure delay for each particular level, i.e., Tℓ =
{(σ1, δ1), (σ2, δ2), ..., (σℓ, δℓ)}.

Definition 2. We define the function template as a ℓ-tuple of functions that are
used to generate the keys on each level, i.e., Fℓ = {F1, ..., Fℓ}.

Definition 3. We define the indexed key collection KT,F as a tuple of time-indexed
keys Kτ, i.e., keys entailed by a vector τ with ℓ elements that defines the exact
disclosure time for the key. Given timing template Tℓ, function template Fℓ a time-
indexed key is generated as: Kτeƒ t |τi |0 = Fi(Kτeƒ t |τi+1|0),∀i ∈ [1, ℓ], τi ∈ [0, σi − 1].
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Here Kτeƒ t |σi |0 is the initialization key for the particular key-chain, computed via a
key-derivation process from some random fresh material generated at each initializa-
tion as Kτeƒ t |σi |0 = KD(Krnd, τeƒ t), Krnd is some fixed random value and KD is a key
derivation function. Here τeƒ t is a placeholder for any left part of the index vector τ
and the right part, denoted by 0, is always zero.

The previous definition allows the generation of chains on multiple levels with the
specified length as suggested in Figure 4.1.

Now we can establish the exact disclosure time for each key. For this we let tstart
denote the time at which the broadcast was started on the sender side and assuming
there are no clock drifts for the sender the exact release time of the keys follows.

Definition 4. Let DT (Kτ ,Tℓ) denote the disclosure time of the indexed key Kτ based
on timing template Tℓ. Given a broadcast started at tstart the disclosure time of Kτ is:
DT (Kτ ,Tℓ) = tstart +

∑

i=1..ℓ(δi · τi).

4.2.1.2 Receiver’s Perspective

We consider the case of a receiver R and sender S with synchronization error εS,R.
Now we define the security condition that must be met by all packets that contain
authentication information, i.e., MAC codes, produced with an indexed key Kτ.

Definition 5. Given synchronization error εS,R and tS the time value reported by
S on a synchronization performed at tsync with R, the minimum and maximum time
on the S’s side, estimated by R having local clock pointing at tR are: ET min(tR) =
tR − tsync + tS , ET max(tR) = tR − tsync + tS + εS,R.
Definition 6 (Security Condition). Given timing template Tℓ, an authentication

packet computed with Kτ received at time tR must be discarded unless: ET max(tR) ≤
DT (Kτ ,Tℓ).
This condition ensures that an authentication packet is not accepted after the au-

thentication key was already disclosed.

4.2.1.3 Generic Description of the Protocol

The generic description of the protocol now follows. We underline that this description
does not include particular optimizations that are presented in the section dedicated
to practical variants. It works only as a high level description for the forthcoming
protocols.

Definition 7. Given indexed key collection KT,F and two roles called sender and
receiver denoted by S and R each having the synchronization error εS,R, proto-
col BrodcstS,R[KT,F] is defined by the following two rules for the two roles: i)
S sends Kτ at DT (Kτ) and MAC(Kτ ,M) in any empty time-slot with the condition that
MAC(Kτ ,M) is released no latter than DT (Kτ) + ξ. Message M can be released at any
time, ii) R discards all MAC(Kτ ,M) received at tR for which ET max(tR) ≤ DT (Kτ ,Tℓ)
does not hold and deems authentic all other messages for which MAC(Kτ ,M) can be
verified with an authentic key. A key Kτeƒ t |τi |0 is authentic if and only if Kτeƒ t |τi |0 =
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F(Kτeƒ t |τi+1|0) and Kτeƒ t |τi+1|0 is a previously received authentic key (note that Kτeƒ t |0|0
must be committed via a MAC).

Here ξ denotes a tolerance margin for the time at which a MAC with a particular key
can be sent. Indeed, sending MACs too close to the disclosure time may be useless
because the receiver may have to discard them if the security condition cannot be
met. Thus ξ must be fixed as initial setup parameter for the protocol. In time interval
[DT (Kτ),DT (Kτ) + ξ] the sender can safely disclose any kind of data packet, but not
MACs.

BrodcstS,R[KT,F] is a secure broadcast authentication protocol. The security
of this family of protocols is well established, formal proofs of security can be found
in [13] and [101]. The informal argument is that from MACK(M) and F(K) an ad-
versary cannot produce MACK(M′) for any M′ 6= M since K is not known as well as it
cannot be found from F(K). By the time K is released it is already too late for the
adversary to send a MAC and a message as they will not be anymore accepted by the
receiver due to the time constraint. A more formal proof sketch can be done by using
random oracles. It is commonly acknowledged that although random oracles do not
give an absolute proof they can be used at least as a sanity check to prove the security
of protocols. If we assume that oracle OF that computes function F can be replaced
by a random oracle OR, which outputs k bits, the proof is straight forward. Assume
that the adversary has witness polynomially many queries p(k) to oracle OR. Suppose
at some point the adversary is forced to produce MACK(MAd) for some message of
its choice. The adversary knows just OR(K) which is the output of the random oracle
and K is unpredictable subject to the fact that it may have been already asked by
the adversary to OR. This means he can guess it and produce a valid MAC only with
probability 1/(2k − p(k)) - which is negligible.

4.2.1.4 Efficiency parameters

The efficiency of the protocol can be evaluated with respect to memory, CPU and
bandwidth. This evaluation has to be done over the entire time horizon of the protocol
which can be divided in two parts: initialization time Tnt and runtime Trn. However,
bus loads and CPU utilizations, that are going to be defined next, are more relevant
only over Trn as it is natural to expect that during Tnt the initialization can takeover
the entire bus and CPU but only for a very short period of time. We will use the
following notations: MEM, CPU, BUS and their capacities are depicted in the number
of keys that can be stored, computed or sent.

For all of these notations, a subscript indicates whether they refer to the initial-
ization stage or the runtime stage. Thus CPUnt refers to the amount of work during
initialization and CPUrn during runtime. By MEMtot, CPUtot and BUStot we refer
to the total available computational power and bus capacity during the entire run-time
of the protocol - we use these measures to define CPU and bus loads during runtime.
To indicate whether a resource is needed for computing keys or commitments through
MAC codes we use key and com as superscripts.
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Definition 8. Given key collection KT,F we let ‖ KT,F[i] ‖ denote the total number
of keys on level i disclosed during protocol lifetime and 〈〈KT,F[i]〉〉 the number of key
chains from level i.

Obviously we have ‖ KT,F[i] ‖= σi · 〈〈KT,F[i]〉〉 since the total number of keys is the
number of chains multiplied with the chain length. We will use both notations, although
it is easy to derive one from the other, in order to make the following relations more
intuitive.

Definition 9. Let {(c0,m0), (c1,m1), ..., (cℓ,mℓ)} define the CPU and memory re-
quirements for all elements of the function template F. For protocol BrodcstS,R[KT,F]
we define the following overheads caused by key-chains:

MEMkey

nt
=MEMkey

rn
=
∑

i=1,ℓ

σi ·mi (4.1)

CPUkey

nt
=
∑

i=1,ℓ

σi · ci CPUkey

rn
=
∑

i=2,ℓ

ci · (‖ KT,F[i] ‖−σi) (4.2)

CPUcom

nt
=
∑

i=1,ℓ

ci CPUcom

rn
=
∑

i=2,ℓ

ci · (〈〈KT,F[i]〉〉 − 1) (4.3)

BUSkey

rn
=
∑

i=1,ℓ

mi· ‖ KT,F[i] ‖ (4.4)

BUScom

nt
=
∑

i=1,ℓ

mi BUScom

rn
=
∑

i=2,ℓ

mi · (〈〈KT,F[i]〉〉 − 1) (4.5)

Equation 4.1 gives the memory requirements which is the sum of the lengths of
the chains. In the case of memory there are no variations during initialization and
runtime. More, we do not need additional memory to store commitments on the
sender as commitments can be sent as soon as they are computed.

Equation 4.2 gives computational time required for keys at runtime and initial-
ization. In the initialization one chain is computed on each level. At runtime, there
are 〈〈KT,F[i]〉〉 key-chains on each level, and each of them has to be computed ex-
cept the first one which was computed during initialization which gives CPUkey

rn
=

∑

i=2,ℓ ci ·σi · (〈〈KT,F[i]〉〉 − 1). Replacing σi · 〈〈KT,F[i]〉〉 with ‖ KT,F[i] ‖ we get the claimed
number of keys computed at runtime.

In Equation 4.3 commitments are measured: one commitment on each level during
initialization, and later for each chain on each level (except for the first one which was
committed during initialization) one commitment is needed.

Bus requirements for keys during runtime is given in Equation 4.4. All keys from
all levels are sent on the bus, while there are no keys (just commitments) sent during
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initialization. Commitments are given in Equation 4.5. One chain on each level is
committed in the initialization, and later at runtime all chains are committed except
for the first one, same as in the case of computational requirements.
To complete the view on efficiency, we should also define the CPU and bus loads

over the entire lifetime of the protocol.
Definition 10. Given RES ∈ {MEM,CPU,BUS}, stte ∈ {rn, nt} we define the

protocol overheads as:

RESod
stte

=
RESkey

stte
+REScom

stte

REStot
stte

(4.6)

One can add to these the overhead induced by the message authentication codes
associated to each data packet that is sent over the bus. This is however application
dependent, not protocol dependent as in some applications the size of the data packets
can be small, and thus adding a MAC to each data packet will greatly increase the
overhead while in other applications it may be the reverse, and data packets can be
large and the MAC will not significantly increase the overhead. Thus, this measure can
be done only on practical case studies.

4.2.2 Practical Variants

Now we discuss practical variants of the main scheme. We proceed with the anal-
ysis of the single and multi master case. Then go to the equidistant timing scheme,
which provides uniform delays on the bus, and improve it by using reduced variants of
hash functions in two schemes that provide ad hoc security in order to minimize the
overhead and delays.
Obtaining a variant that is adequate, possibly optimal, for practical use means to

satisfy the constraints of the environment. The generic calibration criteria for the
scheme parameters is the following. Having fixed Trn and δnorm we determine chain
structure (lengths and levels) and timings which give Tℓ, Fℓ and KT,F. Then, we
determine bus, CPU and memory loads for comparison.

4.2.2.1 The Multi Master and Single Master Case

CAN must allow each node to be a potential sender. The case of k senders can be
easily derived from the previous formalism. We can multiplex the senders by using
δnext which we call the next sender delay. By this, we can modify the disclosure
timings to DT k(Kτ) = DT (Kτ) + k · δnext and the security condition accordingly for the
case of k senders.
However, allowing more than one sender will result in a bus that is heavily loaded

by keys and commitments. To avoid this, having only one communication master is
preferable. In the case when one of the slave nodes needs to broadcast authentic
information it can perform a request to the communication master under the assump-
tion that each slave node shares a secret key with the master that can be used for
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authentication. We can take advantage of the CAN nature as each slave can place its
data frame on the bus, along with a message authentication code computed with the
shared key. The communication master can verify this MAC and, if correct, it will send
a next frame that contains the broadcast authentication information, i.e., the MAC
with the current key according to the broadcast protocol. The rest of the protocol is
unchanged, we do not give a methodology to compute parameters as this is going to
be discussed for the next variants. This approach will not increase the authentication
delay if the slave nodes are able to send the message and its MAC during the same
disclosure period in which the master can continue to broadcast the authentication
MAC.

4.2.2.2 Equidistant Timing (Delayed) Authenticated CAN (ETA-CAN)

For practical reasons, a solution which assures a uniform bus load is preferable. This is
mostly because packets carrying data must be delayed until all keys and commitments
are sent since they have priority on the bus (otherwise the protocol will succumb and
have to be re-initialized).

For this, we use a procedure which we call equidistant timing by which all keys
are disclosed at moments of time separated by equal delays. This is relevant also
because we can use upper layer chains not only to authenticate the commitments of
keys from the lower levels but also to authenticate information packets as well. The
same equidistant release will be used for key commitments. Thus, we will normalize
the disclosure time on the last level and then compute the disclosure delays on the
upper levels. These disclosure timings are suggested in Figure 4.1.

Definition 11. For the ETA-CAN we define the disclosure delays as:

δℓ = δnorm =
Trn

∑

i=1,ℓ ‖ KT,F[i] ‖
=

Trn
∏

i=1,ℓ(σi +1)− 1
(4.7)

δi = δnorm ·
∏

j=i+1,ℓ

(σj +1),1 ≤ i < ℓ (4.8)

It is easy to note that given a fixed amount of memory which must accommo-
date the chains and a fixed number of levels ℓ, the disclosure delay δnorm and the
overheads for CPU and bus have an inverse variation. Thus: the minimal disclo-
sure delay is achieved if chains are of equal size while the minimal computational
and communication overhead is achieved if upper level chains are smaller. This is
intuitively since the product of two values whose sum is fixed is maximal if the two
values are equal and minimal if one of the values is 1.Note that if x + y = z then
∀k ≥ 1, z/2 · z/2 > (z/2− k) · (z/2+ k) = z2/4− k2. To achieve the minimum delay, the
product of the chain lengths

∏

i=1,ℓ(σi + 1) must be maximal while the sum of these
values is restricted to the amount of available memory. If we split this product exactly
into the half left and half right terms, assuming an even number of terms which is
without loss of generality, then the maximum product is achieved if: the left and right
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Figure 4.2: Chain structure for the BETA scheme with ℓ = 4, σnorm = 3, δnorm =
Trn/255.

are maximal and they are equal, and so on. On the contrary, having upper chains
of smaller size means less commitments since each element from the upper chains
commits one chain on all lower levels. Also, in general, the authentication overhead
will increase with the number of levels for the same reason.

4.2.2.3 Balanced Equidistant Timing delayed Authenticated CAN (BETA-CAN)

Based on the previous remark on efficiency we explore the variant with chains of equal
sizes on all levels. To clarify previous notations Figure 4.2 shows an example of chain
structure for the case of σ = 3 (note that the same key-chain size is on all levels).

Since the entire run-time of the protocol is T
rn
= δnorm ·[(σ+1)ℓ

BETA−1] the number
of levels follows as:

ℓBETA =

�

logσ+1

�

Trn

δnorm
+1

��

(4.9)

The disclosure delay of the last level is δnorm while for the upper levels the delay
can be computed as:

δBETAi = δnorm · (σ +1)ℓ
BETA−i (4.10)

Having these defined the performance indicators for memory, CPU and bus can be
derived. These indicators are summarized for all variants in Table 4.1.

Figure 4.3 shows the influence of chain length and levels on various parameters.
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Plots are taken for a time range Trn = 24 hours while the bus speed is approximated
to about 6000 packets per second. In the case of variations with chain lengths, plots
(i) and (ii) are given for three and four levels of key chains. We note that the delays
drop rapidly by increasing the number of levels in plot (i), but in the same manner the
overhead increases (ii) (at 100% the bus is locked and communication halted). Plot
(iii) shows the variation of memory requirements, which is the same as the initializa-
tion time, and plot (iv) of commitments with the number of chain levels. The same
drop of memory requirements and increase in commitment packets can be seen. For
plots (iii) and (iv) the delay is fixed to 5 ms.
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Figure 4.3: Various overheads and delay variation with length or levels: (i) disclosure
delay , (ii) overhead caused by keys and commitments on the bus, (iii) keys stored in
memory and (iv) commitments on the bus (per second).

BETA-CAN Ad-BETA-CAN Ad-GETA-CAN

MEM?
key

ℓ · σ ·m σ ·
∑

i=1,ℓmi
∑

i=1,ℓ−1mi + σℓ ·mℓ

CPUnt

key
ℓ · σ · c σ ·

∑

i=1,ℓ ci
∑

i=1,ℓ−1 ci + σℓ · cℓ
CPUnt

com
ℓ · c c0 +

∑

i=1,ℓ−1 ci c0 +
∑

i=1,ℓ−1 ci
BUSnt

com
ℓ ·m m0 +

∑

i=1,ℓ−1mi m0 +
∑

i=1,ℓ−1mi

CPUrn

key
[(σ +1)ℓ − σ · ℓ − 1] · c σ ·

∑

i=2,ℓ[(σ +1)
i−1 − 1] · ci

∑

i=2,ℓ−1(2
i−1 − 1) · ci + (2ℓ−1 − 1) · σℓ · cℓ

BUSrn
key

[(σ +1)ℓ − 1] ·m σ ·
∑

i=1,ℓ(σ +1)
i−1 ·mi

∑

i=1,ℓ−1 2
i−1 ·mi +2ℓ−1 · σℓ ·mℓ

CPUrn

com
[ (σ+1)

ℓ−1
σ − ℓ] · c

∑

i=2,ℓ[(σ +1)
i−1 − 1] · ci

∑

i=2,ℓ(2
i−1 − 1) · ci

BUSrn
com

[ (σ+1)
ℓ−1

σ − ℓ] ·m
∑

i=2,ℓ[(σ +1)
i−1 − 1] ·mi

∑

i=2,ℓ(2
i−1 − 1) ·mi

Table 4.1: Overheads at initialization and run-time for MEM, CPU and BUS
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4.2.2.4 Ad hoc secure Balanced levels ETA-CAN (Ad-BETA-CAN)

To increase performance we will use reduced versions of hash functions. The following
definition is informal and will serve only as a heuristic for the security of the schemes.
We call function Fk ad hoc secure with respect to time interval δ if given y = Fk(x),

with Fk(x) publicly known, it is infeasible to find an x′ in time δ such that y = Fk(x′)
(note that x′ does not necessary need to be same as x since any x′ which has the
same image under Fk will suffice to break the protocol). Here k plays the role of
an index for function F. More concrete, in our practical implementation we use for
function Fk truncated versions of hash functions in order to reduce the overhead on
the bus. However, since the image of F is reduced, for example to 32 bits in the worst
case, it can be feasible for an adversary to mount a pre-computed dictionary attack.
To avoid this, we compute the α-bit truncated hash chain in the following manner: at
each step we compute Kτeƒ t |τi |0 = bFk(kd||Kτeƒ t |τi+1|0)cα. Here kd stands from some
material derived from the key template, i.e., previously released keys, in order to
assure sufficient entropy against pre-computed attacks, similar to salting. Note that
the same truncation can be done for MAC codes under the restriction that messages
and keys are not released later than the security lifetime δ (if the message or key is
to be released later, then the appropriate size for the MAC is to be chosen).
Note that the disclosure delays are now needed to establish the exact security level

that must be met by functions on each level of the chains. Therefore, these delays
determine the function template that can be used. For reduced variants of the hash
functions, only heuristic arguments can be given, that is, protocol BrodcstS,R[KT,F]
is ad hoc secure with respect to the corresponding disclosure timings.
Same as in the previous scheme, we use chains of equal sizes to minimize the

number of layers but we select different functions on each level such that the function
is ad hoc secure with respect to the disclosure delay on the particular level. Thus, given
δnorm we first select the less intensive function that is ad hoc secure with respect to
δnorm. Then we assume that this function is going to be used on all levels, take the
constraints on memory and CPU and successively try the smallest value of ℓ until they
are satisfied. Then, we proceed from the ℓ-th chain upward to change the function to
one that is ad hoc secure with the respective delay. If the constraints are not fulfilled
we chose a bigger ℓ and so on. The number of levels and the delays are computed
in the same manner as previously while performance indicators are summarized as
well in Table 4.1. An explanatory example follows after the introduction of the next
scheme.

4.2.2.5 Ad hoc secure Greedy last level ETA-CAN (Ad-GETA-CAN)

This variant uses a greedy strategy in order to minimize memory overheads. Given
δnorm and Tnt we first select the less intensive function that is ad hoc secure with
respect to δnorm. Then we use the entire Tnt time to compute a chain from the last
level, subject only to memory constraints, i.e., if memory exhaust before Tnt we stop.
For example, given σℓ the length of the chain on the last layer we choose the number
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Figure 4.4: Chain structure for the GETA scheme with ℓ = 5, σnorm = 16, δnorm =
Trn/255.

of levels ℓ. Then we set to 1 the length of each chain from level 1 to ℓ − 1. In this
way we minimize the memory and computational time for the upper layers. Since
the number of upper layers is maximum, due to the reduced chain length, this also
increases initialization overhead on the bus. Tnt should be only slightly overloaded
since the initialization time is minimum when the number of levels is maximum. If
memory is also exhausted by the first layer, we cut down as many elements as are
needed to fit the upper layers.

Figure 4.4 depicts the structure of the chains in this case while an explanatory ex-
ample follows in the next subsection. The parameters of the scheme can be computed
as follows. Having Trn = δnorm · [2ℓ

GETA−1 · (σ + 1) − 1] the number of levels and the
disclosure delay are:

ℓGETA =

�

log2
Trn + δnorm

δnorm · (σ +1)

�

+1 (4.11)

δGETAi = δnorm · 2ℓ
GETA−i−1 · (σ +1) (4.12)

Note that the same relations hold for the GETA scheme with or without ad hoc se-
curity. For simplicity, in the discussion that follows we will omit the prefix ad whenever
it is clear from the context whether we refer to the standard scheme or to the ad hoc
secure scheme.
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4.2.2.6 Comparison and limitations

We now give an explanatory example for the ad hoc secure schemes. Consider the
following truncated versions of the MD5 hash function with the corresponding security
level SL and performance descriptor PD:

SL :











bMD5c32 10−3

bMD5c48 1
bMD5c64 103

bMD5c128 ∞











PD :











32 11× 10−6

48 11× 10−6

64 11× 10−6

128 11× 10−6











That is, for ad hoc security with respect to a delay of 10−3 seconds a truncated ver-
sion of MD5 can be used, requiring only 32 bits, etc. The computational timings are
according to the experimental results from the next section and they serve here as
a calibration example. Note that computational speed is the same for all truncated
versions and the gain is only in the bus load and memory requirements.

Let us fix for our example the disclosure delay to δnorm = 1ms with a one year
runtime of the protocol Trn = 31× 106s and Tnt = 1s.

With the GETA scheme, by using computational power as restriction we can com-
pute up to 90.000 elements in Tnt which is far too much for the memory, so we limit
σℓ to 1000 which is reasonable to fit in memory and would ease the computation.
This gives ℓ = 26 with length 1000 on level 26 and 1 on the other levels. The dis-
closure delay on level 26 is 10−3s so we can use the 32 bit version. On level 25
the disclosure delay is around 2s so we skip to the 48 bit version which can be used
up to level 23 that has a delay of 8s. Levels up to 16 can use the 64 bit version
and the rest of the levels will use the 128 bit version. The overall memory load is
1000 × 32 + 3 × 48 + 7 × 64 + 15 × 128 = 34512 bits. The commitments on the bus
reach up to 11× 109 bits in a year.
With the BETA scheme, by fixing σ = 1000 we get ℓ = 4 but this is due to the

ceiling which increased the value from the actual 3.5. With chains of 1000 elements
this will increase Trn too much and will require too much memory as well. Note that
the delay on level 4 is 10−3 and it increases on each level with a factor of 1000,
which means that roughly level 1 uses the 128 bit version, level 2 the 64 bit version,
level 3 the 48 bit version and level 4 the 32 bit version. For chains of length 1000
this gives a memory load of 1000 × 32+ 1000 × 48+ 1000 × 64+ 1000 × 128, that is
272000 bits which is almost 8 times more than for the GETA scheme but Trn has also
increased about 30 times. By empirical test we get that σ = 428 will not change Trn

and will require only 116416 which is just 3 times more than for GETA scheme. For
the commitments on the bus its the reverse as they reach up to 3.7×109 bits in a year
which is 3 times less than for GETA. Having a lighter bus load should be preferable
for practical applications, therefore BETA seems to be better.

We note that larger chains can be stored if time-memory trade-offs are used.
Such trade-offs, based on storing only some elements of the chain from which the
rest of the chain is rebuilt, were extensively studied in [65], [25], [35], [58]. Still,
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Figure 4.5: Comparison between BETA (continuous line) and GETA (dotted line)
schemes at MEM and BUS requirements for: fixed σ = 1000 and variable δnorm in
(i) and (iii), variable δnorm and fixed σ = 1000 in (ii) and (iv).

so far we refrained from using them since this will load the CPU which leads to an
implementation that is not energy efficient. However, studying such a trade-off can
be subject of future work.
Figure 4.5 shows the generic difference between the BETA and GETA schemes

assuming fixed delay and variable length or the reverse. As already shown in the
previous example, the relevant aspect is that BETA gives a lighter bus due to fewer
chain commitments. However, GETA is much better in terms of memory requirements,
also a relevant constraint of our environment.

4.2.2.7 Security considerations for the ad hoc secure scheme

It is not easy to define rigorous parameters for ad hoc security. Here we used 32 bits
as the minimum recommended for authentication tags against "real-time" attacks by
the most recent ECRYPT recommendations on key sizes [59]. This security level is cer-
tainly enough against common equipments, such as standard CPU’s, that can perform
hashes in the order of 106 per second. Dedicated equipments, built on FPGAs and
more recently on GPU accelerators, can reach billions, i.e., 109, of crypto-operations
per second which is close to the 32 bit security bound. However, such equipments are
not cheap, their cost is usually in the order of tens of thousands of dollars and thus
they are not available to average adversaries. Even for the case of such adversaries,
with dedicated hardware and high financial resources, we believe that 48 bits should
still be infeasible to invert in less than a second.
These considerations are helpful to asses the security of the protocol from a quan-

titative perspective. Further, for validating the security of large scale systems, where
such protocols can be part of, automatic verification with specialized tools is an al-
ternative. Using such techniques has become more frequent in industrial systems, a

BUPT



4.2 - TESLA-based CAN authentication 69

case study on fieldbus is available in [24].

4.2.2.8 Synchronization issues

The synchronization error achieved by the loose time synchronization mechanism is
small enough to accommodate the disclosure delays of the protocol. Even for the
smallest disclosure delay in our practical implementation this error is still less than
half of it. Indeed, this can be further improved by using more specialized protocols.
A good start point could be the Precision Time Protocol (PTP) but this protocol is not
cryptographically secure so further developments would be necessary.

Clock drifts between oscillators can lead to more frequent resynchronizations.
Common recommendations for CAN bit timings are a minimum oscillator tolerance
of 1.49% at 125 kbps and 0.49% at 1 Mbps. These tolerances are enough to elimi-
nate frequent resynchronization for most disclosure delays. However, if we push the
disclosure delays to their lower limit this can become a relevant issue.

We consider an example to clarify this. Around 300μs is the minimum delay
achieved in our application setting for a 1Mbps CAN bus. A tolerance of 0.49% will
result in a maximum of 2 × 0.49% ≈ 1% drift between the sender and the receiver
(considering the worst scenario in which oscillators drift apart in opposite directions).
This means that at each 300μs the receiver clock drifts with 3μs which means that
after 100 packets the receiver will either drop all subsequent packets (if its clock is
faster), or an adversary may be able to forge packets (if its clock is slower). However,
such a clock drift results from using oscillator tolerances that are quite at the edge.
Let us emphasize that in our practical setting the two Infineon TriCore controllers had
a drift of around 2.73 seconds after 24 hours when running at maximum speed. This
leads to a drift of 3.15ns at each 100μs and even after 1 second of broadcast the drift
is around 3μs which will keep the protocol secure if we set ξ = 3μs. Thus, the first
and the most natural solution is to use better oscillators which are available on the
market and already present in most of the devices. In case they are not available in
a particular setting, higher authentication delays should be considered.

Nevertheless, resynchronization can and should be performed in a more efficient
manner by using the broadcast protocol as long as the node is not yet completely
desynchronized. Thus, nodes that have weak oscillator tolerances must send a resyn-
chronization request by placing a nonce on the bus and the sender will answer with
the usual MACK(tme, nonce) which will be authenticated with the forthcoming key
K released in the broadcast protocol. More concrete, for security reasons, we en-
force such a resynchronization to be performed when it is expected that the clock of
the sender and receiver drifted by ξ. This leads in our practical scenario to send a
resynchronization packet in the worst case at each minute (depending on the exact
disclosure delay, safety margin and microcontroller speed). Also note that for effi-
ciency synchronization can be in this way processed for more than one receiver at
once in the sense that different nonces from different receivers can be merged by the
broadcast master in one response. Care should be taken since this will increase the
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synchronization error while it is still mandatory for each receiver to send its own fresh
nonce. The resynchronization procedure shouldn’t raise scalability problems if it is not
triggered too often.

4.2.2.9 Coexistence with other traffic

The influence of the broadcast traffic on already existent real-time CAN bus traffic and
vice-versa is a relevant topic. First, let us underline that from the authentication point
of view, timing is critical only for keys and MAC codes (keys are disclosed at precise
moments and MACs must be released no later than the corresponding key), while the
authenticated messages can be released at any point. There are two cases that need
to be considered.

In the first case, the broadcast authentication traffic has higher priority than the
real time real-time traffic existent on the bus (which can be disturbed in this way). By
construction of the equidistant timing protocol, we assure that the keys are uniformly
distributed over the life-time of the protocol. Thus, a scenario with periods of burst,
with more keys than usual on the bus, will not occur. The only burst may be due to
MACs that also need to be sent before the keys are disclosed. To avoid disturbance of
the real time traffic on CAN, we enforce the use of the same priority for the MAC as
for the message they authenticate, and not a higher one. Thus, real-time constraints
will not be violated - each MAC has the same priority as the message it authenticates.

In the second case, the broadcast authentication protocol has lower priority than
some of the existent traffic. Indeed, it is not our main intention to use the protocol
in such scenarios, but tweaks in the protocol are possible to accommodate it with
already existent higher priority traffic. For this case we propose the following strategy
concerning the keys and the MACs. As MACs cannot be released later than the keys
but their precise release time is not critical, they will be released as quick as possible
(roughly short after the release of the previous key) which gives higher chances for a
MAC to be released in time. For the keys however, as premature release is not feasible
since this will change the timings of the scheme, they will be released at the precise
time they are scheduled or as soon as the bus is free afterwards. Note that releasing
the keys later doesn’t cause any insecurity. An exception is the ad hoc variant were
the security level of the key and MACs should be chosen according to the expected
delays. For safety reasons, in the case of lower priority for the broadcast protocol, one
can also enforce a key-recovery procedure. As re-initialization of the protocol will be
too expensive, for this purpose one can use safety-chains, i.e., another upper layer of
key-chains that are computed a-priori by the sender to allow recovery after an error
has occurred. This allows a trade-off between traffic priority and computational power.

Indeed, in the case of a heavily loaded bus, disturbances between different types
of traffic are unavoidable. In such situations, physical separation between the two
kinds of traffic may be the best alternative.
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4.2.3 Experimental Results

A proof-of-concept implementation was done in order to determine the behavior of
the proposed solution in a real environment. Our test setup consists of a master node
and multiple slave nodes. The communication master holds the key chains which are
used to send authenticated messages to slave nodes.

We made tests on Freescale S12X and Infineon TriCore, two different classes of
microcontrollers used in automotive and industrial applications. Detailed controller
specifications were presented in Chapter 3.4.1. When using the TriCore platform, the
TC1797 was used as the maser while TC1782 served as the slave node. For timing
issues, we used the 56 bit free-running timer available on TriCore. Running at the
highest speed, with one tick every 11.11 ns, this timer will overflow after 25.39 years
which is enough to fit the life-time of many industrial devices and automotive products.

4.2.3.1 Computational performance

To evaluate protocol performance we have to start from the performance of the micro-
controllers for computing cryptographic primitives. In addition to the results presented
in Chapter 3.4.2, Table 4.2 holds actual execution times on our microcontrollers. The
SHA-512 reference implementation is based on 64 bit variables which are not sup-
ported by the S12 compiler. As adapting this implementation to fit the S12 compiler
would lead to an additional decrease in performance we opted not to evaluate the
execution speed for this function. The S12X results were obtained for a frequency of
40 MHz (when overclocking at 80 MHz the execution speed is doubled) while TriCore
microcontrollers were running at 180 MHz. The two TriCore microcontrollers have
the same core version thus identical performances. These measurements show that
on average the primitives were performed approximately 2.12 times faster on XGATE
than on S12X while the TriCore implementations are, as expected, much faster (1 to
almost 2 orders of magnitude).

Length
(bytes)

S12X execution time (μs) XGATE execution time (μs) TriCore execution time (μs)
MD5 SHA-1 SHA-256 MD5 SHA-1 SHA-256 MD5 SHA-1 SHA-256 SHA-512

0 732 2285 5510 312.5 1000 3155 10.16 17.27 36.75 119.2
1 736 2290 5520 314.5 1002 3155 10.58 17.23 36.42 122.2
8 737 2290 5520 314.5 1002 3155 11.77 17.22 36.18 122.0
16 738 2290 5500 316.0 1004 3150 11.77 17.23 35.35 121.0
32 739 2295 5490 317.5 1004 3145 11.77 17.23 34.58 120.4
64 1414 4510 10860 605 1976 6240 16.56 25.82 64.39 117.6

Table 4.2: Performance of S12X, XGATE and TriCore in computing cryptographic prim-
itives.

The computation speed, memory and the low speed CAN transceiver offer a con-
siderable bound to the communication speed achievable on the S12X implementa-
tion. The overall computation time can be decreased by computing all cryptographic
primitives on the XGATE co-processor. While the cryptographic functions are being
computed on the XGATE side, the main CPU is free to execute other tasks, such as
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Nonce MAC size (bytes)

size 1 2 4 8 1 2 4 8

(bytes) S12X (ms) TriCore (μs)

1 3.680 3.740 3.860 4.115 161.4 171.4 191.4 230.5

2 3.740 3.810 3.935 4.185 172.4 182.4 205.5 241.5

4 3.870 3.935 4.055 4.295 189.4 199.5 219.5 258.5

8 4.160 4.220 4.355 4.620 225.5 236.5 256.5 295.5

Table 4.3: S12X and TriCore round trip time.

receiving messages or sending messages that have been already built. After the pro-
gram implementation, the total RAM memory left for storing key chains can hold 1216
elements (16 bytes each). Having this upper limit for MEM, ℓ and σ have to be de-
termined for best performances based on the bus speed and the wanted disclosure
delay. If we consider packets of 16 bytes in size the measured bus speed for sending
authenticated packets is 578 packets/second (one packet each 1.73ms) which could
be considered too slow in a time critical system.

To determine the effect of the bus speed on the synchronization procedure, we
measured the round-trip time for a short message exchange. The slave node that
wants to start communication with the master first sends a nonce to the master. Upon
receiving this request, the master sends it’s response containing the MAC computed
over the nonce. The measured round-trip time is the time span between the moment
in which the slave sends the nonce and the moment the reception of the response
from the master is over. Table 4.3 holds or measurements for different nonce and
MAC sizes. For these measurements, the CAN bus speed was set to 125kbps for
the S12X and 1Mbps for TriCore while HMAC-MD5 with an 8 byte key was used for
computing the MAC. The length of the computed MAC is 16 bytes and we obtained the
smaller MACs by truncating this original value to the desired length.

As Table 4.3 shows there is little difference in round-trip time if we change the
nonce or MAC size from 1 to 8 bytes, since only one CAN frame is sent in both cases.
When we change these sizes to 16 bytes the increase in round-trip time is greater due
to the overhead caused by having to send two CAN frames instead of only one as the
case for 1 and 8 bytes messages.

4.2.3.2 Adjusting parameters

Choosing the best combination of parameters highly depends on the application and
on the devices used for implementation. We therefore tried different values for the
protocol parameters on the TriCore implementation to find the best suited setup. The
parameters were chosen so that they fit for authenticated communication over a time
span of 10 years without the need of reinitialization. Table 4.4 contains some of the
parameter combinations we tried for our TriCore implementation. The aim was to
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Key size 3 levels 3 levels 3 levels
(bytes) δ(ms) M(bytes) σ δ(ms) M(bytes) σ δ(μs) M(bytes) σ

4 10 37704 3142 1 81216 6768 315.24 120024 10002
mixed 10 75408 3142 1 162432 6768 318.08 239304 9971
16 10 150816 3142 1 324864 6768 471.44 419808 8746

Key size 4 levels 5 levels
(bytes) δ(μs) M(bytes) σ δ(μs) M(bytes) σ
4 329.44 15840 990 340.8 4960 248

mixed 332.28 39520 988 343.64 13832 247
16 479.96 57664 901 497 18400 230

Table 4.4: Some parameters choices for the Infineon TriCore platform.

find the best parameter combinations to obtain small authentication delays (equidis-
tant timing was used in all variants). The key chains were computed using MD5 and
HMAC-MD5 was used for MACs. We underline that although MD5 does not offer colli-
sion resistance anymore it is still secure enough for our application that requires only
secondary pre-image resistance. Using stronger hash functions from the SHA-2 family
or from the SHA-3 candidates will impair performances without much practical justi-
fication. As computational results for these functions are available in Table 4.2, the
protocol performance can be easily deduced for these cases as well. For the case of
the S12X microcontrollers, due to the reduced computational power and mostly due
to the bus speed reduced to 125 kbps, delays in the order of 10ms were the best we
could achieve.

In the case of the Infineon TriCore, as the greatest communication overhead was
caused by the CAN frame format and maximum transfer speed, we tried different
key sizes. When using the whole 16 bytes of the MD5 generated key, the smallest
authentication delay we could obtain was 471.44μs for 3 levels. By using smaller keys
(which we obtained by truncating the 16 bytes output of MD5), the communication
overhead is reduced at the cost of a lower security level. A 4 byte key used on all levels
would enable an authentication delay of 315.24μs for a 3 level setup and 340.8μs for 5
levels. A better trade-off can be made by assigning different length keys to each level
in order to provide enough security for the key lifetime. As an example, we assigned
a 4 byte key to the first level, an 8 byte key for the second level, 12 bytes for the
third level and 16 bytes for all the other levels. For a 5 level setup, each 4 byte key
will have to last for 343.64μs while the 8 byte keys on the second level will have a
life time of 84.88ms. We underline that these delays show the minimum achievable
with our implementation and, since they are on the extreme side, reaching them is
quite consuming for the computational resources of the devices as well as for the bus
load. For practical settings, delays from 1 to 10ms should be easily handled by the
TriCore controllers and will result in a clean deployment without consuming much of
the controller’s resources or communication bandwidth.
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4.3 One-time signatures

Here we explore the possibility of using one-time signatures for assuring broadcast
authentication at the application layer of CAN based. We find the enhanced Merkle
and HORS [105] signatures to offer different trade-offs, the first is more efficient in
terms of memory, while the second is more efficient in terms of signature size and
verification time. Indeed, with the HORS signature we exhibit good improvements in
the authentication delay. The enhanced Merkle signature also has certain advantages.
More concrete, the size of the messages is quite small in most broadcast scenarios
since CAN frames carry small data from sensors and actuators and this signature
allows message recovery, thus small messages can be embedded in the signature.
Finally, both signature schemes can be efficiently paired with time synchronization to
reduce the overhead to re-initialize the public keys, which would otherwise require
expensive authentication trees.

4.3.1 Signature schemes and broadcast protocol

We employ the now classical procedure of using a one-way key chain with time
synchronization to commit the public keys that are used to verify the signatures. We
stress that the intention is to use these public keys to authenticate the broadcast
and not to assure non-repudiation. Because of this we can renounce on the classi-
cal structure of Merkle trees to authenticate them, which will be more memory and
bandwidth consuming. If one wants to assure non-repudiation at some point, at the
cost of extra-memory, then eventually any number of the released public keys could
be signed afterwards. The signature schemes are flexible and their parameters can
be used to adjust the consumed computational power, memory and bandwidth. These
are discussed in detail after the protocols description.

4.3.1.1 The signature schemes

We first review the one-time signature schemes that we are going to use and give an
example to underline its efficiency. In the next section we integrate this in the protocol
that we are going to use. The generic principle behind both one-time signatures is
to apply a simple on-way function, e.g., a hash function, over some input that plays
the role of secret key and use the output as public key. However if bits are signed
individually this results in an inefficient scheme, not necessarily due to the number of
hash computations since these are cheap, but mainly due to the size of the signature
itself, e.g., in worst case on hash for each bit. For this purpose, several improvements
were proposed in the literature. The enhanced Merkle signature and HORS [105] that
we discuss next employ the one-way chains in two highly distinctive fashions, a reason
for which we choose to evaluate both of them in out CAN broadcast scenario.

Enhanced Merkle Signature Scheme (EMS). Given one-way function f , signature
scheme EMS is a triplet of polynomial time algorithms Gen, Sgn, Ver where:
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1. Gen is a probabilistic algorithm that takes as input the security level k along
with two integers λ, μ and outputs the public-private key pair pk,pv, i.e., pb =
{(fλ(uμ), fλ(vμ)) ,..., (fλ(u2), fλ(v2)), (fλ(u1), fλ(v1))}, pv = {(uμ,vμ), ..., (u1,v1)}
← Gen(1k , λ, μ) (here all ui,vi are random values of k bits each),

2. Sgn is a deterministic algorithm that takes as input the private key pv, a mes-
sage m of b log2(λ)c ·μ bits which can be written as m=mμ...m2m1 (where each
mi has b log2(λ)c bits), and outputs a signature s, i.e., s= {(fλ−mμ(uμ), fmμ(vμ)),
... , (fλ−m2(u2), fm2(v2)), (fλ−m1(u1), fm1(v1))},

3. Ver is a deterministic algorithm that takes as input the signature and the public
key and outputs message m = mμ...m2m1 if and only if ∀i = 1..μ, fλ−mi(si) =
fλ(ui), fmi(si) = fλ(vi) or ⊥ otherwise.

Security. The previous scheme is an improvement of the classical Merkle, but as
we couldn’t find proof for its security we consider to give a proof sketch here. First
note that signing each component of the message is independent from another, thus
it is sufficient to prove that the adversary is unable to forge any part of the signature.
Let Ad be an adversary that manages to forge a signature on some message blockm′

with non-negligible probability εAd. We use Ad to make an algorithm that inverts f
with non-negligible probability on some target y = f (x). The inverter chooses random
l ≤ λ and random r then flips a bit b. If b = 0 then the inverter computes the pair
f l(y), fλ(r) which is set as the public key otherwise he computes and sets the public
key as fλ(r), f l(y). Now the adversary is allowed to make a query to the signing
oracle. Let PrBad denote the probability that Ad asks for mAd > l and b = 0, or else
mAd < l and b = 1 which will make the oracle fail to answer and abort. Obviously
PrBad = 1 − l/λ. Otherwise, the oracle succeeds and the adversary must output the
forgery with probability εAd for somem′ 6=mAdv. Ifm′ >mAdv as l is also random with
probability (λ− l)/λ we havem′ > l and with probability 1/2 we have b= 0 which means
that we can use the adversary output to invert f with probability 1/2 · (λ − l)/λ · εAd.
Otherwise, if m′ <mAdv with the same probability we can invert f in the second case
if b= 1. Summing up, the probability to invert the function is non-negligible.

HORS Signature Scheme. Given one-way function f , signature scheme HORS is a
triplet of polynomial time algorithms Gen, Sgn, Ver where:

1. Gen is a probabilistic algorithm that takes as input the security parameters l,k
and integers λ, μ then generates λ random k-bit values s1, s2, ..., sλ then com-
putes vi = f (si) and outputs the public-private key pair pk,pv, i.e., pb= {μ, f (s1)
,..., f (sλ)}, pv = (k, s1, ...,vλ)← Gen(1k , l, λ),

2. Sgn is a deterministic algorithm that takes as input the private key pv and
message m then computes h = hsh(m) and splits h into k substrings h1, ...,hμ
each of log2(t) bits and outputs s= (sh1 , ..., shμ) (where each hi is interpreted as
an integer index),
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3. Ver is a deterministic algorithm that takes as input the signature s, the public
key pb and message m the outputs 1 if and only if f (s′i ) = vi for each i extracted
as integer index from h(m).

Security. The security proofs for this scheme can be found in the original pa-
per [105]. We mention here that the security level of this signature scheme is
μ(logλ − logμ − log r) if the adversary obtains r signed messages of its choice.

4.3.1.2 The broadcast protocol

For each of the signature schemes we use a broadcast protocol that relies on one-way
key chains. In the case of the EMS signature, the key chain is used to commit future
public keys, while in the case of the HORS signature each element of the key chain
forms a public key for the signature (this happens in a similar fashion to the BiBa
protocol from Perrig [98]).
Time synchronization is loose and is done with synchronization error εR,S which

is the round-trip time of a handshake between the receiver and the sender. Usually
this handshake has two steps as 1.R → S : NR, 2.S → R : SgS(tSsync,NR) where
tsync denotes time on the sender side and NR is a nonce chosen by the receiver.
However, as we need to keep the synchronization error as small as possible, we will
not use a digital signature and instead we will use a MAC which is several order of
magnitudes cheaper. By using it, the synchronization error gets to the order of several
milliseconds, which is accurate enough for high speeds of the broadcast. Afterwards,
the receiver R can estimate at any point tcrrent that the time on the sender’s side S
is TS,R(tcrrent) ∈ [tSsync + tcrrent − t

R
sync

, tS
sync

+ tcrrent − tRsync + εR,S].
Broadcast with EMS. Given signature scheme EMS and the roles sender S and

receiver R we define protocol Broadcast-EMSS,R[λ, μ, δ] as the following actions per-
formed by S:

1. Initialization: S generates a key chain by using a random K0 and computing
Kn = f (Kn−1),∀i = 1..n, then he commits the tip of its top level-chain, i.e., Kn,
the disclosure delay δ and the public key obtained by running Gen(1k , λ, μ),

2. Commitment: S sends at any point in time interval [tstart+i ·δ, tstart+(i+1) ·δ−ξ]
(here ξ is a tolerance value to prevent the sender to commit a MAC to close to the
disclosure point which will increase the chance for a receiver to drop the packet)
a fresh public key pb generated by using Gen(1k , λ, μ) and a MAC computed with
Ki+1 on it, i.e, MACKi+1(pb),

3. Key Disclosure: S sends at time tstart + i · δ the corresponding key from the key
chain, i.e., Ki,

4. Authentic Broadcast: S sends at any time in [tstart + i · δ, tstart + (i + 1) · δ − ξ]
messagem as a signature with message recovery s= Sgn(m,pvst) (here pvst
is the most recently generated private key);
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and R respectively:

1. Initialization: R receives the initialization information of the sender, i.e., Kn, the
disclosure interval δ and the public key pk,

2. Time Synchronization: R performs a loose time synchronization with S, such
that the synchronization error εR,S << δ,

3. Receive Keys and Commitments: R receives Ki and checks if f (Ki) = Ki−1 and
discards it otherwise. Any MAC computed with Ki that is received after TS,R(i ·δ)
is discarded. Any public key for which there exists a valid MAC and key K that
can verify it is deemed authentic,

4. Message Verification: R runs Ver(pki, sigi) for any valid public key and deems
authentic any output different from ⊥.

Security. The signature scheme was proved to be secure while the security of such
protocols based on time synchronization is well known. The informal argument is that
from MACK(M) and f (K) an adversary cannot produce MACK(M′) for any M′ 6=M since
K is not known as well as it cannot be found from f (K). By the time K is released it
is already too late for the adversary to send a MAC and a message as they will not
be anymore accepted by the receiver due to the time constraint. For completeness
we can give a more formal proof sketch here. It is commonly acknowledged that
although random oracles do not give an absolute proof they can be used at least as a
sanity check to prove the security of protocols. If we assume that the oracle Of that
computes function f can be replace by a random oracle OR, which outputs k bits, the
proof is straight forward. Assume that the adversary has witness polynomially many
queries p(k) to oracle OR. Suppose at some point the adversary is forced to produce
MACK(MAd) for some message of its choice. But the adversary knows just OR(K)
which is the output of the random oracle and K is unpredictable subject to the fact
that it may have been already asked by the adversary to OR. This means he can guess
it and produce a valid MAC only with probability 1/(2k − p(k)) - which is negligible.
Broadcast with HORS. Given signature scheme HORS and the roles sender S and

receiver R we define protocol Broadcast-HORSS,R[λ, μ, δ] as the set of following ac-
tions performed by S:

1. Initialization: S generates a key chain starting from random K0, ...,Kλ and com-
puting Kij = f (K

j−1
i ),∀i = 1..λ, j = 1..μ, then he commits the tip each chain, i.e.,

Kμ
i ,

2. Authentic Broadcast: S sends at any time in [tstart + i · δ, tstart + (i + 1) · δ − ξ]
message m along with its signature computed with HORS having as secret key
input the keys from the current disclosure interval Ki0,K

i
1, ...,K

i
λ
(the number

of messages signed in each time interval depends on the security level and
signature parameters);
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3. Key Disclosure: S sends at time tstart + i · δ all the keys from the current interval
that were not disclosed as HORS signature (to save some bandwidth, sending
these keys can be skipped since the receivers can validate future signatures with
previously received keys, but note that this will increase verification time on
receivers)

and R respectively:

1. Initialization: R receives the initialization information of the sender, i.e., Kμ
i ,∀i =

1..λ and the disclosure interval δ,

2. Time Synchronization: R performs a loose time synchronization with S, such
that the synchronization error εR,S << δ,

3. Receive Keys and Commitments: R receives keys Kji and checks if f (K
j−1
i ) = Kji

and discards it otherwise.

4. Message Verification: R runs Ver(pki, sigi) for any signature that is received in
the correct time interval and deems authentic any input that is correctly verified.

Security. The security can proved by simply constructing a forger for the HORS
signature. In this case a challenger can simply use the public key of the signature
to be forged to build key chains and further simulate the broadcast protocol with the
hope that an adversary will forge the target signature.

4.3.1.3 Efficiency

We start by analyzing various trade-offs that can be achieved with the enhanced Merkle
signature then we compare it to RSA signatures and finally to HORS. The main con-
clusion is that in general HORS would be more efficient in terms of verification speed
and bus load (while it is less efficient in terms of memory requirements) and in the
experimental section we provide the computational and communication bounds that
we reached for HORS.

Enhanced Merkle Signature. To judge efficiency it is relevant to consider the num-
ber of bits that can be signed with a committed public key. Since the length of the
chains, i.e., λ, and their number, i.e., μ, is bounded by the computational power in
time δ we could write λ = σ · δ/μ, where σ denotes computational speed, i.e., the
number of function computations per second. Having a fixed σ it is relevant to decide
which will be more efficient from a computational point of view: to have larger μ and
shorter λ or vice-versa.

Figure 4.6 depicts the variation of signed bits and signature size with parameter
μ of the signature scheme. The plot is depicted for a speed fixed to 2000 one-way
function computations per second, which is around the average of our experimental
results presented in the next section. As can be seen, larger μ means more bits can
be signed, but require much more bandwidth.
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Figure 4.6: Variation of signed bits and signature size with μ ∈ [0,350]

Figure 4.7 shows the variation of the number of signed bits with computational
speed σ and μ. Clearly computational speed cannot compensate enough the decrease
in the chain length as it results in division with a logarithmic factor. However, decreas-
ing the chain length results in the same expense of bandwidth as can be seen from
figure 4.6. Thus, higher computational speeds certainly help up to some point when
one needs to decrease the length λ in order to allow an increase in μ.

Figure 4.8 shows the variation of the number of signed bits with computational
speed σ and busload B. The plot is given for μ ∈ [0,500] and B ∈ [0,1]. The maximum
number of signed bits is achieved by taking μ equal to half the maximum number of
packets that can be send on the bus and then computing λ according to the compu-
tational speed and the disclosure delay which is fixed to 1s in this plot. As can be
seen, the main limitation for the number of signed bits is given by the bus speed.
For example in a fault tolerant CAN with 128kbps, the number of signed bits will not
exceed 1.2kbps even if a hash computation does not exceed 100μs. If the bus speed
is increased to 1 Mbps, as in high speed CAN, then the number of signed bits can get
up to 2.5 kbps. These results hold for the EMS signature, for HORS we discuss the
performance in the experimental results section.

Comparison with RSA. A relevant thing about this signature in the way it was pre-
sented before is that it allows message recovery. In an environment with constrained
bandwidth this becomes relevant with respect to performance. We consider to out-
line the efficiency of this scheme by a short comparative example with an RSA based
signature. If a k bit message is to be signed with fixed λ then 2 · λ · dk/ log2λe one-
way function computations are needed and the signature size is 2 · dk/ log2λe. Now
consider an 1024 bit RSA compared to an MD5. Indeed these primitives are not very
strong for today requirements but the proportion gets even worse for the RSA as big-
ger public keys are used. By taking timings from OpenSSL, on a notebook with an
Intel Core2Duo processor at 1.4 Ghz, we get that MD5 is 3670 times faster than the
RSA private key operation which is done at signing. Now to sign a 128 bit message
assuming λ = 64 we can process 8 bits at a time which results in 2 · 64 · 16 = 2048
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computations of MD5. That is still almost half the time required by RSA. But indeed it
results in a signature that is 2 · 16 · 128 = 4096 bit long, which is 4 times larger than
for RSA. But remember that in our scenario short messages are more common and
consider a message is 32 bits. With length λ = 64 again 8 bits can be processed at a
time and we get a signature of the same size as the RSA, i.e., 24̇ ·128 = 1024, but only
2 ·4 ·64 = 512 MD5 computations are needed which is 7 times faster than the RSA. For
shorter messages, this improves even more, a more detailed analysis is done after the
complete description of the protocol. It is commonly known that one can improve on
this even more by signing the bits of m only by using the f i(u) values from the above
signature scheme and using the f j(v) values to sign the sum

∑

i=1,μ(2
λ −mi). In the

worst case this will require the same computational costs and size for the signature
while in the best case it requires only half the size. To keep the following description
simple we leave this just as potential improvement in a practical application.
Comparison with HORS. If we assume the message to be signed is k bits then

having length λ for the chains in the enhanced Merkle signatures and HORS then the
following constraints hold. The size of the signature, which gives the bus load, is
2k/ log2 λ in case of EMS and twice as short in case of HORS, i.e., k/ log2 λ. However,
in terms of memory HORS requires λ key chains to be stored, while EMS requires
only k/ log2 λ key chains which is obviously less. In terms of verification speed HORS
is again superior to EMS requiring only k/ log2 λ as opposed to λk/ log2 λ required by
EMS. In the experimental section we give practical data on the efficiency of both these
schemes.

4.3.1.4 Further improvements: recycling unused keys

Recycling Public keys that were authenticated but unused can be safely used in forth-
coming time intervals. The only restriction that must be taken into account is to avoid
memory exhaustion attack on the receiver. This is because and adversary may inten-
tionally break the communication channel between R and S which will determine the
sender to further store public keys until its resources will exhaust. To avoid these a
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Hash
function

Execution time
@ 40MHz @ 80MHz

S12X XGATE S12X XGATE
MD5 738μs 316μs 367.5μs 156.8μs
SHA1 2285μs 1000μs 1144μs 501μs
SHA-256 5490μs 3145μs 2740μs 1572μs

Table 4.5: Performance of S12X and XGATE in computing hashes.

maximum life-span of the public keys can be fixed.
It may be also tempting to recycle unused parts of the chains corresponding to the

public keys. If the new tips are authenticated this can be done but combining this with
the previous procedures results in an unsafe protocol. For example consider that S
decides to use an unused part of a public key and authenticates it using the top level
chain. Now an adversary that has intentionally broken the communication between S
and R can use the newly committed tips to forge a signature. Because of this, reusing
parts of the public keys should be avoided.

4.3.2 Experimental results

In order to confirm our theoretical results we made some tests on the Freescale
S12X microcontroller. For an improvement of the overall performance of the imple-
mented protocols we took advantage of the XGATE co-processor to compute crypto-
graphic primitives. Additionally we observed that the operating bus frequency of the
microcontroller can be pushed beyond the 40 MHz limit stated by the datasheet with-
out affecting its functionality. We were able to successfully use a maximum frequency
of 80 MHz at which the microcontroller was stable.

4.3.2.1 Computational performance

Using the main S12X CPU for computing cryptographic primitives, communication and
all other necessary operations would lead to a poor performance even if the micro-
controller is overclocked at 80 MHz. To compensate for the small frequency we had to
reduce the load of the main CPU and we did this by using the XGATE co-processor for
executing all cryptographic computations. When a hash for example has to be exe-
cuted, the main S12X CPU has to issue a software request to the XGATE co-processors.
Until the computation is done on XGATE, the main CPU will be free to execute other
tasks.
Three well known hash functions have been implemented: MD5, SHA1 and SHA-

256. The execution speed for each of these functions was tested both on the S12X CPU
and XGATE. The results are presented in Table 4.5 for the case of using the maximum
documented frequency and the overclocked one. The input for each hash function was
equal in length to each specific hash output.
As the overall authentication overhead is also affected by the commitment of the

public keys we also evaluate the time needed to perform a MAC on S12X. We used
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Input length
Execution time

@ 40MHz @ 80MHz
S12X XGATE S12X XGATE

HMAC-MD5
64 5.39ms 2.310ms 2.695ms 1.154ms
128 6.02ms 2.580ms 3.010ms 1.288ms
256 7.27ms 3.110ms 3.635ms 1.558ms
512 9.78ms 4.185ms 4.890ms 2.090ms
1024 14.78ms 6.33ms 7.39ms 3.165ms

HMAC-SHA1
64 17.78ms 7.79ms 8.89ms 3.895ms
128 19.95ms 8.74ms 9.96ms 4.375ms
256 24.25ms 10.64ms 12.14ms 5.32ms
512 32.95ms 14.44ms 16.48ms 7.22ms
1024 50.4ms 22.05ms 25.15ms 11.04ms

HMAC-SHA256
64 43.1ms 24.80ms 21.55ms 12.42ms
128 48.4ms 27.90ms 24.20ms 13.94ms
256 59.0ms 34.00ms 29.55ms 17.00ms
512 80.1ms 46.2ms 40.05ms 23.15ms
1024 122.4ms 70.7ms 61.20ms 35.35ms

Table 4.6: Performance of S12X and XGATE in computing MACs.

HMAC together with the three hash functions presented above and a 128 byte key.
Table 4.6 holds the execution time we obtained for different message sizes.

4.3.2.2 Protocol performance

As shown in the previous section (Table 4.5), the computation of one MD5 is done
in 156.8μs on XGATE at a frequency of 80 MHz. With this speed, considering data
blocks of 64 bits with λ = 64 and μ = 47 (bounded by the computational speed) we
get a bus load of around 16% and approximately 286 bits can be authenticated in
one second. For a bus load of 50%, having λ = 21 and μ = 147, the authentication
speed increases to 652 bps. To reach an authentication speed of 1000 bps we can
use λ = 10 and μ = 294 but at the cost of a bus load of 100%. This may not seem
much, but it allows a flexible tradeoff between the length and the number of signed
messages. For example, in the first case, at a bus load of only 16% a number of 47
messages of 8 bits can be signed in each second which is enough to hold critical data
from analog-to-digital converters, etc., while 74% of the bus is free and can be used
for other non-critical tasks. This amount of messages cannot be signed with a public
key primitive such as the RSA, which requires hundreds of milliseconds on S12. This
contrast shows the efficiency of the employed mechanism.

For implementing the HORS protocol we looked for a suitable way of adapting it for
devices with lower computational powers. We adapted our setup by adding a master
node which has the sole purpose of authenticating messages that are broadcasted on
the CAN bus. To allow this, each of the other participants to the communication (which
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will be called slave) has to share a secret key with the master. In this way, when a
slave wishes to send an authenticated message, it will put one frame on the bus
containing the message and a counter, followed by another frame which will contain a
MAC computed using the preshared key over the message-counter pair. The master
checks the authenticity of the message using the key associated with the sender ID
and if it succeeds it will send the HORS authentication information to all nodes. We
chose to use a master node because HORS involves using a high number of key chains
which would need a considerable amount of memory for storing. Since the bus nodes
are constrained even in what regards the available memory, the most cost effective
solution would be to have only one device with higher computational speed and storage
that plays the role of a master.

Even in this master-slave setup it is not an easy task to find a suitable parameter
combination that will consume as little as possible from the slave constrained resources
and in the same time allow for a good communication speed. We tested a setup that
uses t = 1024 key chains of k = 48 bits each as the signature chain and MD5 as our f
function. The result of the MD5 is split into k = 7 substrings of 10 bit each (log2(t)). As
the master node, we used a laptop (Intel Core2Duo CPU T7700@2.4GHz) along with a
CANcardXL (PCMCIA device) and CANcab 1054mag to enable the PC to communicate
over CAN. Using these parameters in the master-slave setup described above we were
able to reach an authentication delay of 30ms when setting the S12X chip frequency
to 40MHz without employing the XGATE coprocessor. By increasing the frequency to
80MHz and using XGATE to perform the cryptographic computations this delay can be
decreased to around 15ms. Alternatively, this leads to 30–60 authentic packets each
second while the size of each packet is not bounded by any parameters (different to
the case of the EMS scheme) except for bus speed.

4.4 LiBrA-CAN

Our third approach to providing authentication at the application layer is LiBrA
(which stands for Lightweight Broadcast Authentication). We begin with a description
of the frame structure employed in our protocol. Then we outline the main authentica-
tion scheme which builds upon keys shared between groups of receivers, a procedure
which we call key splitting. Further, we discuss some variations of the main scheme
that can be used for different trade-offs. Subsequently we introduce a construction
which we call Linearly Mixed MAC (LM-MAC) which gives additional security benefits.

4.4.1 Protocol description

4.4.1.1 Frame structure

As a general procedure, we separate between frames that carry messages and frames
that carry authentication tags. This seems to be a correct option due to a widely em-
ployed CAN mechanism which is ID filtering that is used to restrict certain frames to
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Figure 4.9: Data frames and authentication frames

arrive to a particular node. While we do want to keep this feature, we want the node
to be able to carry additional authentication tasks, e.g., in the case of the two-stage
authentication discussed further, a reason for which we must assure that the authen-
tication frames are able to reach the node and thus they may need to have a different
ID than the message frame. The last bit of the identifier field specifies whether a
frame carries an authentication tag or message, a procedure that is employed in our
experimental setup.

Larger data blocks or authentication tags can be split across multiple frames with
the same ID field and counter. Other adjustments can be done at the implementation
level. For example, since the ID field is quite short, both the node and window iden-
tifiers (which denote the source and the number of the authentication frame) can be
moved in the data field. We preferred to place these identifiers in the ID field since it is
a frequent choice of developers to place a unique ID for each node in the CAN ID field.
But indeed, such an option can affect real-time requirements and for this purpose
placing these IDs in the data field is safer. The size of the counter c could be roughly
around 20–40 bits but this greatly depends on the bus speed (which determines the
number of packets released each second).

4.4.1.2 The main scheme: centralized authentication

A master oriented communication makes sense since it is practical to have one node
with higher computational power that can take care of the most intensive part of the
authentication. Figure 4.10 shows the master node and the slave nodes connected to
the bus, it also outlines the keys that are shared between nodes. For the key sharing
procedure, all slaves register to the master which distributes the keys. In practice
associating nodes to a group and sharing the keys is done by standard techniques,
e.g., key-exchange protocols, we do not insist on this since such issues are straight-
forward to solve.

In the main scheme we make use of Mixed Message Authentication Codes (M-MAC)
which amalgamate more MACs into one. Here we give an abstract definition for this
construction while in a forthcoming section we provide a more elaborate instance with
additional security properties. Indeed, the easiest way to build an M-MAC is simply
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Figure 4.10: Master and slave microcontrollers (μC) in a setting for centralized au-
thentication

by concatenating multiple tags, such a construction is fine for our protocol and can
be safely embodied in the main scheme (still, we can achieve more security with the
LM-MAC introduced in an upcoming section).

Construction 1. (Mixed Message Authentication Code) A mixed message au-
thentication code M-MAC is a tuple (Gen, Tg,Ver) of probabilistic polynomial-time
algorithms such that:

1.K ← Gen(1ℓ, s) is the key generation algorithm which takes as input the security
parameter ℓ and set size s then outputs a key set K= {k0, k1, ..., ks} of s keys,

2.τ ← Tg(K,M) is the MAC generation algorithm which takes as input the key set K
and message tuple M= (m0,m1, ...,ms) where each mi ∈ {0,1}∗ then outputs a tag τ
(whenever needed, to avoid ambiguities on the message and key, we use the notation
M-MACK(M) to depict this tag),

3.v ← Ver(k,m, τ) is the verification algorithm which takes as input a key k ∈ K, a
message m ∈ {0,1}∗ and a tag τ and outputs a bit v which is 1 if and only if the tag
is valid with respect to the key k, otherwise the bit v is 0. For correctness we require
that if k ∈ K and m ∈M then 1← Ver(k,m, Tg(K,M)).

The centralized scheme is summarized by the next construction. For simplicity of
the exposition, since the main scheme is used to authenticate the same message to
all nodes (rather than authenticate a tuple of messages as in the cumulative authen-
tication scheme), we replace M with a simple array that points out the values that are
authenticated, e.g., dnode, dn, c,m, etc. Obviously in this case the M-MAC receives
as input a message tuple of s identical messages.

Construction 2. (Centralized Authentication) Given a mixed message authenti-
cation code algorithm M-MAC for some security parameter ℓ, size s and a group of n
nodes, we define protocol CN-CAN-LBrAM,S∗(M-MAC, ℓ, s,n,b,w) as the following set
of actions for the masterM:

1.Setp(ℓ,n, s) on which master M generates all subsets of s slaves out of n slaves,
let t =

�n
s

�

be the number of subsets, and randomly picks t keys, each of ℓ bits, then
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places them in the keyset KM = {k1, k2, ..., kt}. Subsequently masterM uses a secure
channel to send each node the corresponding keys (alternatively these keys can be
distributed in an off-line manner). Let KiS = {k1, k2, ..., kt′} with t

′ =
�n−1
s−1

�

denote the
key set received by each slave S.
2.RecMes(dnode, dn, c,m) on which master M receives a data frame containing
message m from slave S checks if the counter is up-to-date then stores the packet in
a queue of messages to be authenticated.
3.RecTg(dnode, dn, c,M-MACKiS (dnode, dn, c,m)) on which master M receives
an authentication frame containing tag M-MACKiS (dnode, dn, c,m) from slave S.
Further, the master retrieves the packet matching the identifiers and counter from the
queue and if the message proves to be authentic, i.e., 1← Ver((dnode, dn, c,m), k,
M-MACKiS (dnode, dn, c,m)), ∀k ∈ K

i
S , he proceeds to authenticating the tag to other

nodes with SendTg(dnode, dn,m,Ki). If the message is not available in the queue
then the tag is discarded (subsequently an error message can be sent).
4.SendTg(dnode, dn,m,Ki) on which masterM after receiving a message and its
valid tag, groups all the remaining keys KM\KiS in sets of size v then for each such set
eK
j
S computes M-MACeKjS

(dnode, j,m) and broadcasts it in authentication frames with
node identifier dnode and window identifier set to j (obviously there are |KM \KiS |/v
windows).

and for each of the slaves S∗:

1.Setp(ℓ,n, s) on which slave Si obtains its key set KiS = {k1, k2, ..., kt′} with t
′ =

�n−1
s−1

�

from masterM (either offline or via a secure channel).
2.RecMes(dnode, dn, c,m) on which slave S receives a data frame containing mes-
sage m from another slave Sj and proceeds similarly to master M by storing it in a
queue of messages to be authenticated.
3.RecTg(dnode, dn, c,M-MACKjS

(dnode, dn, c,m)) on which Si receives an au-
thentication frame containing tag M-MACKiS (dnode, dn, c,m)) from the master M
or another slave Sj and verifies for all keys k ∈ Ki ∩Kj if the tag is correct. If for all
keys in its keyset a correct tag was received
then message m is deemed authentic.
4.SendMes(m,Ki) on which slave Si whenever wants to broadcast a message m in-
crements its local counter, computes the tag M-MACKiS (dnode,0, c,m) with its keyset
Ki and sends the data frame containing m and an authentication frame containing the
tag on the bus (note that in the case of slaves dn is set to 0).

Example 1. The key allocation done by the Setp procedure allows the keys to be
split between groups of n slaves. Here we clarify our intentions with the key splitting
procedure by giving an example. Table 4.7 shows the groups that can be formed in
the case of 4 nodes. If we consider groups formed by exactly 2 nodes we have

�4
2

�

= 6

groups and each two nodes share exactly
�2
0

�

= 1 group. Table 4.7 outlines the groups
shared by S1, i.e., G9,G10,G12, and those shared by S2, i.e., G5,G6,G12. Note that
they intersect in one group G12. In Table 4.8 the case of n = 4 and n = 8 nodes are
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G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15

S1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
S2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
S3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
S4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 4.7: Possible groups with 4 nodes, groups of size 2 outlined in gray

Authentication bits from one M-MAC (%)
n k groups sub-groups l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7
4 1 4 1 25 25 25 25 - - - -
4 2 6 3 50 33 33 16 - - - -
4 3 3 75 25 0 0 - - - -
8 1 8 1 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5
8 2 28 7 25 21 17 14 10 7 3.5 0
8 3 56 21 37.5 26 17 10 5 1.7 0 0
8 4 70 35 50 28 14 5 1.4 0 0 0
8 5 56 35 62 26 8.9 1.7 0 0 0 0
8 6 28 21 75 21 3.5 0 0 0 0 0
8 7 8 7 87 12.5 0 0 0 0 0 0

Table 4.8: Authentication rate in the case of n= 4,8 participants, groups of size k and
l corrupted nodes

explored, with complete groups of all sizes k and any number of corrupted nodes l.
The total number of groups and the subgroup shared by each node as well as the
percentage of secure bits, i.e., bits that cannot be forged by an adversary, from each
M-MAC are outlined. Indeed, the percent of authenticated bits from each tag is higher
and decreases significantly with the number of corrupted nodes.

4.4.1.3 Variations of the main scheme: two-stage and cumulative authenti-
cation

For practical reasons we discuss two variations of the main scheme. In the experi-
mental results section, the first variation is shown to have certain advantages in front
of the main scheme for scenarios when nodes have equal computational power.

In the case of two-stage authentication we assume a scenario in which only slave
nodes are present, i.e., nodes with equal computational power. In this case each node
can start broadcasting by sending a tag which includes only a part of the keys for
the subgroups that he is part of and a second slave (pointed out by some flag, or
predefined in protocol actions) continues with the authentication. The procedure is
repeated until the desired number of authentication frames is reached. Various ways
for tag allocation can be imagined. Consider the case of 8 nodes in subgroups of
size 3 and 4 authentication frames (codenamed TS-8S3F4). If M-MACs are used then
these can be set up to work in GF(216) or GF(232). Subsequently each node sends
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an M-MAC with keys for 4 of the nodes (or 2 in case GF(232)) and the nodes reply
in a round-robin fashion (note that a frame carries at most 64 bits). To save some
computational power and have even more flexibility in tag allocation it is also possible
to skip the use of the M-MAC. In Table 4.9 we give an example for this case. Each
row corresponds to one of the 8 slaves and each column to one of the 56 groups that
are formed with 3 slaves, × is used as placeholder to denote that a node is part of
a group. Here f ij denotes the j-th part of frame i and the authentication is started

by slave S1 with frame f1∗ followed by S2 with f2∗ then again S1 with f3∗ but this time
followed by S3 with f4∗ (here ∗ is a placeholder for any of the frame components). We
can set the size of each tag in f2

∗
and f2

∗
to 16 bits and for f1

∗
and f3

∗
use around 5-7

bits for each tag. This will result in a security level of around 64 bits for each node.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 G24 G25 G26 G27 G28
S1 f11 f12 f13 f14 f15 f16 f17 f18 f19 f110 f31 f32 f33 f34 f35 f36 f37 f38 f39 f310 f311
S2 × × × × × × f21 f22 f23 f24 × × ×
S3 × × × × × × × × × × ×
S4 × × × × × × × × ×
S5 × × × × × × × ×
S6 × × × × × × × ×
S7 × × × × × × ×
S8 × × × × × × ×

G29 G30 G31 G32 G33 G34 G35 G36 G37 G38 G39 G40 G41 G42 G43 G44 G45 G46 G47 G48 G49 G50 G51 G52 G53 G54 G55 G56
S1
S2 × × × × × × × ×
S3 f41 f42 f43 f44 × × × × × ×
S4 × × × × × × × × × × × ×
S5 × × × × × × × × × × × × ×
S6 × × × × × × × × × × × × ×
S7 × × × × × × × × × × × × × ×
S8 × × × × × × × × × × × × × × ×

Table 4.9: Example of tag scheduling with two-stage authentication TS-8S2F4 (8
nodes with groups of size 3)

Since in some scenarios small delays may be acceptable, we can take benefit of
them and increase the efficiency of the main scheme. In the cumulative authentication
scheme a timer can be used and all messages are accumulated by the master over
a predefined period δ then authenticated at once (this procedure can be employed in
the slave-only settings as well). While this introduces an additional delay δ, similar to
the case of the TESLA protocol, this delay can be chosen as small as needed to cover
application requirements. Different to the case of the delay from TESLA like proto-
cols, this delay is not strongly constrained by external parameters (such as oscillator
precision, synchronization error, bus speed, etc.).

4.4.1.4 Increasing security with LM-MACs (Linearly Mixed MACs)

As outlined in our abstract description, M-MACs use an array of keys to build a tag
which is verifiable by any of the keys. The first security property which we require
for an M-MAC is unforgeability and is a standard property for any MAC code, thus it
merely derives from the main building block. We do develop on this by requiring a new
property which we call strong non-malleability and which we show to be achievable by
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our more advanced LM-MAC construction.
Construction 3. (Linearly Mixed MAC) We define the LM-MAC as the tuple of

probabilistic polynomial-time algorithms (Gen, Tg,Ver) that work as follow:

1.K ← Gen(1ℓ, s) is the key generation algorithm which flips coins and returns a key
set K = {k0, k1, ..., ks} where each key has ℓ bits (ℓ is the security parameter of the
scheme),
2.τ ← Tg(K,M) is the mac generation algorithm which returns a tag τ = {x1,x2,
...,xs} where each xi is the solution of the following linear system in GF(2b):























KD1(k1,m1) · x1 + KD2(k1,m1) · x2 + ...+ KDs(k1,m1) · xs ≡ MACk1(m1)

KD1(k2,m2) · x1 + KD2(k2,m2) · x2 + ...+ KDs(k2,m2) · xs ≡ MACk2(m2)

...

KD1(ks,ms) · x1 + KD2(ks,ms) · x2 + ...+ KDs(ks,ms) · xs ≡ MACks(ms)

Here b is polynomial in the security parameter ℓ and KD stands for a key derivation
process. If such a solution does not exist, then the M-MAC algorithm fails and returns
⊥.
3.v ← Ver(k,m, τ) is the verification algorithm which returns 1 if and only if having
τ′ =MACk(m) it holds τ′ ≡ KD1(k,m)·x1+KD2(k,m)·x2+...+KDs(k,m)·xs. Otherwise
it returns 0.

Let us emphasize that the probability that the M-MAC fails to return a solution is
negligible in the security parameter (if proper b and s are chosen). As shown in [22]
the probability that an n by n matrix with random elements from GF(q) is non-singular
converges to

∏∞
i=1(1 − 1/q

i) as n → ∞. For example in case when s = 4 we have a
chance of around 10−5 for b= 16 and 10−10 for b= 32 for the M-MAC to fail.
Example 2. We want to clarify here our intentions on M-MACs with respect to

the protocol design. Consider a case when master M broadcasts messages m1 and
m2 to slaves S1, S2 along with the authentication tag. To increase efficiency of our
protocol we want to authenticate both messages with the same mixed MAC and more,
since only a portion of each tag is disclosed (reducing the bus overhead but also the
security level), we want one of the slaves to be able to carry out the authentication
further with a new part of a valid tag (note that this is what happens in the case of
the two-stage authentication). Consider that the following packets arrive on the bus:
message m1, message m2 and the mixed tag obtained by simply concatenating the
two tags MACk1(m1)||MACk2(m2). However, due to the message filtering of the CAN
bus it may be that the two messages do not reach both slaves. Assume message m1
reaches S1 and m2 reaches S2. Now neither S1 or S2 can carry the authentication
further, even in the case when they both have k1 and k2 they are not in possession
of the message that reached the other slave and thus they can not validate the other
part of the tag. More relevant, note that the nodes are unable to detect if the other
part of the tag is compromised. Now consider the case of the LM-MAC. In this case
the tag is obtained by mixing the two tags via the linear equation system, e.g., the two
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components of the tag x1,x2 verify a relation of the form α1x1 + α2x2 = MACk1(m1)
and β1x1 + β2x2 = MACk2(m2) (here α’s and β’s are derived from the secret keys k1,
k2). If an adversary compromises any part of the tag, i.e., either x1 or x2, then both
equations will fail to verify and any of the receivers can detect this (indeed, we assume
that the adversary is not in possession of the secret keys k1 and k2 since in such case
he can compute correct LM-MACs anyway). Consequently, with the LM-MACs any of
them can check the tag for correctness and this validation will also hold for the other
receiver, this is inherited from the strong non-malleability property for M-MACs.

We now sketch a more formal account of the properties that we require for our
building blocks. These are mediated by two attack games against unforgeability, i.e.,
GmeUF

M-MAC, and strong non-malleability, i.e., GmeSNM
M-MAC. Both games are defined

for a generic M-MAC construction and in particular the LM-MAC can be proved to
resist such attacks. The attack game on strong non-malleability GmeSNM

M-MAC against
an M-MAC requires an adversary to be able to construct an M-MAC in such way that
verification fails with at least one of the keys but succeeds with another. An M-MAC
that is resilient to such an attack is called strongly non-malleable.

Definition 1. (Unforgeability Attack Game) We define the M-MAC unforgeability
game GmeUF

M-MAC as the following five stage game between challenger C and adver-
sary Ad:

1.Challenger C runs the key generation algorithm Gen(1ℓ, s) to get a key set K =
{k0, k1, ..., ks}.

2.Adversary Ad is allowed to requests C any subset of the keyset K′ = {kj0 , kj1 , ..., kjt},
t < s where ∀ji ∈ [1..s]. That is, the adversary is always missing at least 1 of the keys.
3.Adversary Ad is allowed to make queries to the MAC generation oracle OTg(K,M)
for any message tuple M to obtain the corresponding tag τ ← Tg(K,M) and to the
verification oracle OVer(i, τ,m) with any key index i, tag τ and message m and the
oracle will return 1 if and only if τ is a correct tag under key ki for message m.

4.Eventually, the adversary outputs the tuple (m◊, τ◊, i) for some index i such that he
is not in possession of ki.

5.The game output is 1 if the following two conditions hold: Ver outputs 1 on (τ,m, ki)
and the adversary never queried m to the Tg oracle. Otherwise the game output is
0.

Definition 2. (Unforgeability) We say that a mixed message authentication code
M-MAC is unforgeable if: Pr

�

GmeUF
M-MAC(1

ℓ, s) = 1
�

< negl(ℓ).

Definition 3. (Strong Non-malleability Attack Game) We define the M-MAC strong
non-malleability game GmeSNM

M-MAC as the following five stage game between chal-
lenger C and adversary Ad:

1.Challenger C runs the key generation algorithm Gen(1ℓ, s) to get a key set K =
{k0, k1, ..., ks}.

2.Adversary Ad is allowed to requests C any subset of the keyset K′ = {kj0 , kj1 , ..., kjt},
t < s − 1 where ∀ji ∈ [1..s]. That is, the adversary is always missing at least 2 of the
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keys.

3.Adversary Ad is allowed to make queries to the MAC generation oracle OTg(K,M)
for any message tuple M to obtain the corresponding tag τ ← Tg(K,M) and to the
verification oracle OVer(i, τ,m) with any key index i, tag τ and message m and the
oracle will return 1 if and only if τ is correct tag under key ki for message m.

4.Eventually, the adversary outputs the pair (m◊, τ◊).

5.The game output is 1 if there are at least two keys k, k′ ∈ K such that the following
two conditions hold: Ver outputs 1 on (τ,m, k) but outputs 0 on (τ,m, k′) and the
keys k, k′ are not part of the adversary keyset K′. Otherwise the game output is 0.

Definition 4. (Strong Non-malleability) We say that a mixed message authentica-
tion code M-MAC is strongly non-malleable if: Pr

�

GmeSNM
M-MAC(1

ℓ, s) = 1
�

< negl(ℓ).

Due to space limitations, a proof of this theorem in the random oracle model is
deferred for the extended version of this work.

4.4.2 Experimental results

To evaluate the performance of the proposed protocol suite, we used several setups
with different hardware components to determine the minimum authentication delay.
Automotive grade embedded devices from Freescale and Infineon as well as a note-
book equipped with an adapter for CAN communication from Vector were employed to
build the nodes of our experimental CAN network. The embedded platforms that we
used are representatives for industry’s low-end and high-end edges.

4.4.2.1 Test beds

Using the aforementioned components we built several test beds. First, the case of
a system using the centralized authentication approach with one master node and 4
slave nodes was considered:

• Testbed 1: S12X+4×S12X. Both master and slave nodes are built on identical
S12X development boards with CAN communication speed set to 125kbps.

• Testbed 2: TC1782+4×TC1797. Master and slave nodes are built on similar
TriCore development boards having the same computational and communication ca-
pabilities. CAN communication speed is set to 1Mbps.

• Testbed 3: nte T7700+4×S12X. The master node is implemented on a PC (Intel
Core2Duo CPU T7700@2.4GHz) while slave nodes are built on the S12X boards. The
master-slave CAN communication is done through the CANcardXL using a low speed
CANcab for 125kbps.

• Testbed 4: nte T7700+4×TC1797. The master node is implemented on the same
PC as in the previous case while slave nodes are built on the TriCore platform. This time
a high speed CANcab is used with the CANcardXL to enable a 1Mbps communication
speed.
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A different testbed was set up to compare the various proposed variants of the key
splitting protocol on a system with 8 slaves based on S12X nodes. Two variants were
considered as we further discus: centralized authentication (in this case one extra
node was added to act as the master) and two-stage authentication.

4.4.2.2 Protocol performance

Centralized authentication was implemented on the four testbeds prepared for this
purpose. Our implementation considers 6 groups of two nodes each formed by com-
bining the four available nodes. Messages and authentication tags are always sent
as separate frames and the message size is always 8 bits. The MAC size for each
group is set to 21 bits so that 3 authentication tags fit a single 64 bit CAN frame. The
MAC is computed using the MD5 hash function over an input formed by concatenating
the group key to the message. The resulting hash is then truncated to the desired
size. Table 4.10 holds the timings and bus loads for each test bed. Here δ is the
authentication delay, i.e., the time needed by a node to authenticate the message
once it receives it. For the bus load we considered the fraction of traffic caused by the
authentication tags over the entire bandwidth.

Master Slave δ Bitrate Bus load
S12X 4xS12X 2.54 ms 125 kbps 53.84%
PC 4xS12X 1.848 ms 125 kbps 72.22%
TriCore 4xTriCore 267 μs 1 Mbps 54.31%
PC 4xTriCore 378 μs 1 Mbps 42.54%

Table 4.10: Centralized authentication with 4 nodes

As expected, scenarios in which high end devices played the role of master nodes
(PC, TriCore) showed better performance than in the case of low end master nodes.
The case of a PC master with TriCore slaves does not perform better, despite the
considerable difference in computational power between master nodes (TriCore vs.
Intel Core2Duo) due to limitations of CAN adapters. Because of their internal hard-
ware/software design, these adapters introduce some limitations, e.g., the average
response time specified by Vector for the CANcardXL is 100μs.
To evaluate the protocol behavior when using different trade-offs we implemented

different variants of the key splitting authentication protocol on a system with 8 slaves
built on S12X nodes. By grouping the eight nodes two by two we obtain a total of 28
groups. The size of the authentication tags and the truncated MAC size differ in each
variant. We set up the implementations as follows:

• Centralized: The message sending node computes and sends one MAC for each
group that he is part of. The master computes and sends one MAC for each of the other
21 groups (if groups of size 2 are used). If the master is to perform the authentication
in only 2 frames then each MAC can be truncated to 5 bits and this will lead to a total of
35 security bits for each node. But if we increase the number of authentication frames
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from the master to 3, then each MAC can be truncated to 9 bits giving a total of 63
authentication bits for each node which is a reasonable level for real-time security.
• Two-stage: The master node is missing in this implementation, therefore we use
two helper nodes for computing and sending the complete authentication tag. In
the two-stage variant, the sender node will first put one authentication tag on the bus
which contains the full 36 authentication bits for one of the helper nodes, 20 bits for the
second one and 8 extra bits for another node. This first tag is followed by a second tag
generated by the first helper node which contains the remaining 16 authentication bits
for the second helper node and 48 bits equally distributed for three of the remaining
nodes. To complete the 36 authentication bits for each of the remaining nodes, the
sender node and the second helper node will each put an authentication tag on the
bus. As discussed previously, the security level can be raised to around 64 bits by
using groups of size 3 and the described tag allocation procedure.
Table 4.11 holds the results achieved with these two implementations. The worst

performer in terms of authentication delay is the implementation of the centralized
authentication variant as it involves computing MACs for each of the 28 groups in
a sequential manner. In the other implementation, a smaller number of MACs are
computed some of which are done by different nodes in parallel. A smaller authenti-
cation delay is obtained when using the two-stage implementation at the cost of an
increased CPU load on the sender side. However, this cost is somewhat compensated
by the higher level of security offered by the fact that the sender node offers more
authentication bits.

Variant Master Slave δ Bus load
Centralized S12X 8xS12X 22.624 ms 11.27%
Two-stage - 8xS12X 6.806 ms 46.21%

Table 4.11: Centralized & Cascade with 8 nodes

4.4.2.3 Computational performance with linearly mixed tags

The results from Tables 4.10 and 4.11 use the simple concatenation of individual
MACs computed with MD5 as the underlying hash function. We now take a brief
account of the impact of mixing tags using linear systems of equations, complete
experimental results on this will be available in the extended version of our work, here
we make an accurate estimation of the computational costs. To begin with, in Table
4.12 we give an overview on the computational timings for various hash functions
and input sizes on both of the employed platforms. For the Linearly Mixed MACs, in
addition to the computation of the MACs, two supplemental computational tasks are
required: solving the linear system of equations on the sender side (a task which
should be usually done by the master which has higher computational power) and
reconstructing the MAC on the receiver side. Our experimental results obtained on the
communication master equipped with the Intel 2.4GHz core with the well known NTL
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Hash function
Input size (bytes)

S12 TriCore
0 16 64 0 16 64

MD5 371μs 374μs 1414μs 10.16μs 11.00μs 18.34μs
SHA-1 1.144ms 1.148ms 4.510ms 14.64μs 15.10μs 27.60μs
SHA-256 2.755ms 2.755ms 5.440ms 41.70μs 42.35μs 80.80μs

Table 4.12: Computational performance of employed embedded platforms

library (http://www.shoup.net/ntl/) showed that the computational cost of solving the
system for 2 nodes in GF(28) up to GF(232) are around 3–6 times more intensive than
an MD5 computation and this increases to 10–20 times the MD5 computation in the
case of 4 nodes. Since this task should be done by the master node it shouldn’t raise
computational issues. The reconstruction of the MAC was around 10 times cheaper
compared to the linear mixing procedure and compared to MD5 it was in the range of
0.5–5 times more intensive, the later in the case of 8 nodes and GF(232). All these
are reasonable amounts of computations and we believe that they can be significantly
improved with platform dependent tweaks.
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5 Physical layer authentication

Alternatives for assuring source identification on CAN are limited. To alleviate this,
here we take an entirely distinct approach by trying to identify CAN nodes based on
their signal patterns and present results contained in [87]. Personal contributions
consists of identifying detection mechanisms and evaluating their capabilities on two
chosen CAN transceiver models. This opens road to the possibility of building an
intrusion detection system (IDS), an instrument that has been successfully used in
computer networks.

Most IDSs built for computer networks focus on the data layer and need databases
of considerable size to fulfill their purpose. These kind of IDSs would not be suitable
for automotive networks given the usual memory and computational constraints of
microcontrollers used in automotive applications. We therefore have to find other
means of detecting the presence of intruders. The answer may be in the unique
physical characteristics of electronic circuits that have been frequently used to identify
individual devices. By fingerprinting all network nodes that send messages on the bus,
the authenticity of sent messages could be assured and rogue nodes could be spotted
since their pattern would not match any of the known fingerprints.

Establishing the identity of a node based on signal characteristics has obviously
both pros and cons. The great advantage behind this technique, is in the fact that
it doesn’t require any modification of the protocol that is already running. Clearly,
any crypto-based solution requires modifications at the protocol layer which triggers
backward compatibility issues. Computational and communication constraints would
be also encountered (as shown in previous chapters), a main cause for the current
absence of cryptography from in-vehicle networks. The alternative that we investigate
here would simply require the presence of an additional node that is able to analyze
signal patterns and trigger an alarm whenever something goes wrong. This alarm can
either be used immediately, or it can serve as a clue for forensic purposes. Using
this method to aid forensics may prove to be very useful for building an efficient event
data recorder (EDR), a device that resembles the airplane black box which will become
mandatory in all new U.S. cars starting from 2015. Another advantage is that, while
the aim of our work here is to analyze whether the technique is feasible or not on CAN
networks, the same technique may be applied to other bus types inside vehicles, e.g.,
LIN, FlexRay, etc. Thus the approach is general and can be easily applied to other
communication buses. On the down side, the technique is vulnerable to changes in
the circuitry, e.g., power fluctuations, overloads, etc. Here we made our experiments
in a laboratory setup that is clearly less exposed to the environment than a real-world
automotive network. But as the results that we obtained are positive, i.e., they show
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that we could clearly distinguish between certain CAN nodes, this gives us motivation
to pursue as future work an analysis for the behaviors of nodes inside a real car (such
experiments are currently out of reach for us).

This chapter is organized as follows. In section 5.1 we start with presenting related
work before proceeding in section 5.2 with the description of the methods employed
for source identification. Section 5.3 holds experimental results for using the proposed
methods.

5.1 Related work

The subject of intrusion detection was intensively studied in areas like computer
networks, wireless sensor networks [63] or vehicular ad-hoc networks (VANETs) [129].
However, until recently, the subject was neglected in relation to in-vehicle networks.

When considering the type of analysis done on collected data, existing IDSs can be
classified as signature-based or anomaly-based. A signature-based IDS [2] looks for
sequences of events or data patterns in the analyzed data. Their efficiency depends
on the constant updating of their rule database, so they will not be able to detect novel
attacks. An anomaly-based IDS [39] attempts to detect anomalies in the behavior of
the system based on an estimation on what should be the normal behavior.

Depending on the source of information used for detection, IDSs can be classified
as host or network-based. Host-based IDSs work by analyzing system events (e.g.,
system calls) on the monitored device, while network-based IDSs look at network
related events (e.g., network traffic). Most network-based IDSs collect their data
starting from the data link layer up to higher layers.

Solutions, similar to the ones used in computer network IDSs, were applied for
CAN bus traffic. These approaches involve analyzing the network traffic in search for
abnormal behavior (e.g. additional or incorrect traffic) [90], [88], [17]. Adequate
processing power and memory space have to be provided for these methods to be
effective, making their usability in constraint environments questionable on the short
term.

Hard to control manufacturing inconsistencies generate minute differences in the
signals generated by identical electronic circuits and this aspect can be used for de-
vice identification which in turn stands as a basis for intrusion detection. Hall et al.
[51] used the transient portion of radio signals to build transceiver fingerprints, while
Hotelling’s T2 and a threshold were used to determine if the transceiverprint matches
the profile of any known transceiver. Similar techniques were also applied in other
areas where wireless communication is employed such as sensor networks [15] and
bluetooth communications [52]. Beamforming and artificial noise were used in wire-
less networks in a physical layer approach to provide secure communication in the
presence of eavesdroppers [109]. Device identification based on physical signal char-
acteristics was investigated in the case of wired buses as well. The work done by
Gerdes [41] focused on identifying Ethernet cards by studying the synchronization
signal (found at the beginning of each Ethernet frame) with the help of a matched
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filter. Reported experimental results show that Ethernet cards of different models
can be easily distinguished while for cads of the same model an acceptable degree of
accuracy can be achieved with adequate preprocessing of input data. This is strong
evidence that physical characteristics can be exploited on in-vehicle buses as well.
However, to the best of our knowledge, dedicated automotive buses, such as CAN,
were not studied in this regard.

5.2 Methodology

The physical representation of an actual CAN messages consists in the signal that
is generated by a dedicated transceiver. These transceivers are produced by vari-
ous manufacturers according to the CAN specifications [64]. This specification allows
great freedom in the implementation of the physical layer signaling behavior in order
to allow application dependent optimizations. As a consequence, signals produced by
transceivers from different manufacturers are not identical. Moreover, as each elec-
tronic component gathers unique physical characteristics (even when produced by the
same manufacturer), the signals generated by CAN transceivers show up a unique
behavior.

5.2.1 Data acquisition

For fingerprinting CAN transceivers based on their signaling behavior a common
portion of the CAN frame has to be chosen as a basis for comparison. The CAN ID
that can be found in the arbitration field of each CAN frame could be suitable for this
purpose. This field is used to reflect the type of data contained in the message or
to denote the sender node. Hence, for a given application, the CAN IDs that can
be sent by a particular node are known in advance. Any rogue device that wants to
impersonate a honest node will have to send a message with an already allocated ID.
Therefore, we chose the portion of the CAN frame representing the message identifier
to be stored as fingerprint data. By correlating signal fingerprints with CAN IDs an
IDS could detect if the sender of the CAN frame is indeed authorized to transmit such
messages.

Figure 5.1 illustrates a set of four oscilloscope plots showing the first bit of several
CAN frames. This bit represents the start of frame which is marked by a rise in the
voltage level on the bus and is followed by the message identifier. The captured frames
have the message identifier set to 000h and were sent at a baudrate of 10KBit/s. The
plot covers a period of 100 μs during which 1000 samples were taken. Two frames
(Frame 1 and 2) are sent by the same transceiver and a third one (Frame 3) is sent by
a different transceiver but of the same type (a PCA82C251 transceiver from NXP). The
fourth frame (Frame 4) is sent by a third transceiver of a different model (a TJA1054T
also from NXP). As expected, CAN signals generated by distinctly built transceivers are
easy to separate (Frames 1–3 vs. Frame 4) but this is not the case for frames from
identical transceivers (Frames 1–3) that are very similar and distinguishing between
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Figure 5.1: Section of arbitration fields from CAN frames produced by three
transceivers

them is not straightforward (note that these signals greatly overlap). On a basic
visual inspection, differences between signals produced by the same transceiver have
the same magnitude with the ones by different transceivers from the same make and
model.

5.2.2 Signal processing tools

We briefly describe the mathematical tools that we used in order to obtain a finer
grain analysis of transceiver’s characteristics. In what follows we will use the following
notations: the fingerprint F is the reference data stored for each device, the signature
Sg represents a fresh data pending for verification, ℓ is the length of the previous two
vectors. Indexes of F and Sg denote a particular dataset on which they are computed.

5.2.2.1 Low-pass filtering

Signatures extracted from CAN frames have to be compared with stored fingerprints.
As shown in Figure 5.2(a) the signal is noisy and a simple bit-by-bit comparison
between two signals may not be even possible as signals greatly overlap. As a
first step, we filter the acquired signal in order to remove, as much as possible,
from the unwanted noise. Figure 5.2 illustrates signals representing the start of
the arbitration fields (frames have the same characteristics as the ones in Figure
5.1) from 3 transceivers with very similar behavior both in an unfiltered and fil-
tered form. The overlapping is abundant with the unfiltered signals. The filtering
that we use is a low-pass filter as described by the following equation: àSgα[i] =
λ · Sgα[i] + (1 − λ) ·àSgα[i − 1], i = 1..ℓ, (λ is the smoothing factor). This basic filter-
ing technique produces a noticeable difference between the signals, but it is not yet
enough to distinguishing between very similar ones.

While we used a software implementation, the low-pass filtering also has the ad-
vantage that it can be implemented in hardware, thus reducing the computational
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Figure 5.2: Arbitration fields from three transceivers before low-pass filtering (left)
and after low-pass filtering (right)

costs. The following techniques will be also applied on the unfiltered signal (in this
case the tilde notation is omitted).

5.2.2.2 Mean squared error

The mean squared error (MSE) is a method of quantifying the difference between two
sets of values.
For applying MSE in our case we consider the stored fingerprint as the reference set

and the signal to be checked as the second set. The mean squared error is computed
as: MSE(Sgα,Fβ) =

1
ℓ

∑ℓ
i=1

�

Sgα[i]− Fβ[i]
�2. MSE can either be computed over the

signal to be verified for all the stored fingerprints corresponding to the specified CAN
ID, or else, the signature can be compared with the average of the stored fingerprints.
If the signal being verified comes from one of the authorized nodes then the MSE
computed with the node’s fingerprint should have the lowest value while all other MSE
computations should result in greater values.

5.2.2.3 Convolution

One common issue in signal processing is signal misalignment. Even when using a
costly oscilloscope (as we did for our tests) one cannot guarantee that the sampled sig-
nals are perfectly aligned. This problem can be alleviated by convolving the two com-
pared signals. The convolution operation is equivalent with the multiplication of two
polynomials. In our case, the signal sample vector holds the polynomial coefficients.
The result of this operation is a vector of length n+m−1, wherem and n are the lengths
of the two input vectors. The input vectors have the same length ℓ in our case thus the
length of the result is 2ℓ−1. Each element of the resulted vector (CONV) is defined as:
CONVk(Sgα,Fβ) =

∑ℓ
i=1 (Fβ[i] · Sgα[k − i+1]). We consider the maximum value of

the convolution vector as the measure of the signal similitude to the reference because
this represents the point of best alignment between the two signals. Therefore, the
value used for comparison is: MAXCONV =max2ℓ−1k=1 (

∑ℓ
i=1 (Fβ[i] · Sgα[k − i+1])).

To identify sender nodes, a large set of training data should be gathered to define
variation intervals as fingerprints for each known transceiver. Upon receiving a new
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frame, its signature will be checked to see if it fits one of the stored intervals.

5.3 Experimental results

We performed our tests on CAN frames produced by transceivers mounted on two
different types of devices: USB-to-CAN adapters and embedded development boards.
These are described next along with the results.

5.3.1 Experimental setup

The SYS TEC USB-CANmodul1, a single channel USB to CAN interfacing device
equipped with a PCA82C251 transceiver, was used as the USB-to-CAN adapter. The
PCA82C251 is a CAN transceiver built for 24 volt systems and capable of high speed
communication (up to 1MBaud). To minimize the influence of computer components
on the CAN signal (due to power fluctuations) we assured a fixed 5V external power
supply for the USB-CANmoduls.

The ZK-S12-B development board was the second type of device used in our ex-
periments. It is built around a Freescale automotive type microcontroller from the
S12 family and fitted with two TJA1054T fault tolerant low speed (up to 125kBaud)
transceivers for CAN communication.

Sets of frames produced by each individual device were collected using an oscil-
loscope based automatic acquisition setup. The acquisition of the frames was done
using an Agilent MSO6012A oscilloscope with a sample rate of 2 GSa/s and a resolu-
tion of up to 12 bits. The oscilloscope probes were connected to the CAN-H and CAN-L
bus lines as depicted in Figure 5.3. The sampled differential CAN signals were saved
using Matlab and Agilent device drivers on a PC connected to the oscilloscope. Each
captured signal is composed of a number of 1000 sample points as this was the maxi-
mum achievable in the normal acquisition mode. The sample sets were acquired over
a period of several hours (approximately 4 hours and 40 minutes for 100k signals)
in which the target device was set to continuously send the same message ID on the
bus. Between 20000 and 100000 signals were saved during each acquisition session.
Multiple acquisition sessions were made for the same devices to test the stability of
the signal characteristics over time.

5.3.2 Source identification

In order to test the source identification techniques, we collected thousands of
CAN frames from a series of 10 USB-to-CAN devices and 5 S12 development boards
(each board has 2 transceivers and each of them was sampled). Before collecting the
signals, each device was labeled for convenient identification. Differences between
the signals produced by different types of transceivers are clearly visible even without
applying additional processing techniques. For transceivers of the same type, signal
similarities are considerable and require additional processing of the acquired data.
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(a) (b)

Figure 5.3: Experimental Setup: oscilloscope acquiring CAN frames from the bus (a)
and close-up with the USB-CANmodul and S12 board connection (b)

The main set of signals was generated having the CAN ID set to 0x000 and at a speed
of 10Kbaud.

In some cases, we tried to filter the noise in order to enhance specific signal par-
ticularities. Unfortunately, instead of being easier to differentiate, filtered signals
produced by different transceivers were at times more similar as the filtering dimmed
specific signal characteristics along with the noise. To facilitate a visual analysis we
built plots holding the resulted signatures of all transceivers of a certain type. In what
follows we show a set of such plots which mark the worst case scenario, i.e., the ref-
erence signal is very similar to signals produced by several other transceivers. The
collected signal data was processed in Matlab for computing the signal signature using
both the MSE and convolution approaches as discussed next.

5.3.2.1 MSE based separation

Figure 5.4 presents MSE values computed for a series of PCA82C251 transceivers (from
the USB-to-CAN modules), numbered from 1 to 10, using as a reference the fingerprint
for T4USB (which is the fourth module). For each of the transceivers 20000 frames
were captured. The band containing MSE values for signals produced by T4USB (red)
is situated in the lower part of the plot suggesting good similarities. The majority of
transceivers, with two exceptions, produce less similar signals. One exception comes
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Figure 5.4: 20000 MSE values computed for each PCA82C251 transceiver having the
signature of T4USB as the reference

from T1USB (purple) which generates signatures that overlap with values from the band
for T4USB. The signature band for T

6
USB (orange) is situated lower on the graph and

could be falsely deemed as the better fitting for the fingerprint of T4USB. In the case of
TJA1054T transceivers (Figure 5.5) there are three transceivers that produce signals
very similar to the reference signal (produced by T2

′′

S12 which is the second transceiver
from the second development board) as seen in the zoomed window. The difference
between the signals from the other four transceivers and the reference is in this case
greater than for the USB-to-CAN modules.

Figure 5.5: 20000 MSE values computed for each TJA1054T transceiver having the
signature of T2

′′

S12 as the reference
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5.3.2.2 Convolution based separation

Figure 5.6 shows values obtained using convolutions over the same data set as in
the previous section. The band containing values for signals produced by T4USB is
constantly overlapped by the one generated for T6USB while the band for T

7
USB is just

occasionally overlapping it. The rest of the transceivers produce results that can be
clearly distinguished from the target T4USB. When applying the convolution on the
signals from the S12 board, results are similar as in the MSE case. Three transceivers
are hard to distinguish from the true target based on the signals they generate, while
the other six transceivers clearly generate different signals as can be seen in Figure
5.7.

Figure 5.6: 20000 convolved values computed for each PCA82C251 transceiver having
the signature of T4USB as the reference

Figure 5.7: 20000 convolved values computed for each TJA1054T transceiver having
the signature of T2

′′

S12 as the reference
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5.3.2.3 Mean-value based separation

As reflected by the plots presented above, in some cases the signature of a single
signal might not be enough to accurately determine its source. To increase detection
accuracy we tested identification based on multiple signal signatures by computing
a signature mean value and comparing it with a fingerprint obtained in the same
manner. We superimposed a line representing the mean value of collected signatures
over each set presented in the previous plots. Figures 5.8 through 5.11 contain signal
signatures of the reference signals and signatures very similar to them along with the
mean values for each data set. In the case of USB-to-CAN modules, data mean values

Figure 5.8: Mean of MSE values computed for PCA82C251 transceivers with signatures
similar to the T4USB reference fingerprint

Figure 5.9: Mean MSE values computed for TJA1054T transceivers with signatures
similar to the T2

′′

S12 reference fingerprint
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Figure 5.10: Mean of convolved values computed for PCA82C251 transceivers with
signatures similar to the T4USB reference fingerprint

Figure 5.11: Mean of convolved values computed for TJA1054T transceivers with sig-
natures similar to the T2

′′

S12 reference fingerprint

makes it easier to distinguish between overlapping signatures. However, the plots
holding TJA1054T data show signature mean values to be much closer to each other,
making source identification difficult. The actual identification accuracy depends on
the number of signatures used to compute the mean value and the signal stability
over time.

5.3.3 Identification success rate

As the identification success rates for using MSE are very similar to the ones ob-
tained when using convolution based separation we include only results for the MSE
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case.
Tables 5.1 and 5.2 illustrate the identification rates obtained in our tests when

using MSE based detection. Each cell contains the identification result for a transceiver
against a target transceiver designated as the first entry in each row. Cell values range
from 0 (transceiver was not identified as being the target transceiver) to 1 (tested
transceiver is the target) and were computed from 20000 signals for each transceiver.
For easy reading, we use the mark Ø whenever there was no confusion between
the two transceivers. Thresholds were empirically defined for each target transceiver
based on the MSE value ranges so that the detection rate of each target transceiver
is not smaller than 90%. We allowed rates smaller than 100% for transceivers with
similar behavior when the bands of MSE values overlapped.

Target T1
USB

T2
USB

T3
USB

T4
USB

T5
USB

T6
USB

T7
USB

T8
USB

T9
USB

T10
USB

T1
USB

0.995 Ø Ø 0.001 Ø Ø Ø Ø Ø Ø

T2
USB

Ø 0.920 Ø Ø Ø Ø Ø Ø 0.695 0.003
T3
USB

Ø Ø 1 Ø Ø Ø Ø Ø Ø Ø

T4
USB

0.001 Ø Ø 0.985 Ø 0.151 Ø Ø Ø Ø

T5
USB

Ø Ø Ø Ø 1 Ø Ø 0.002 Ø Ø

T6
USB

Ø Ø Ø 0.001 Ø 0.999 Ø Ø Ø Ø

T7
USB

Ø Ø Ø Ø Ø Ø 0.941 0.004 Ø Ø

T8
USB

Ø Ø Ø Ø Ø Ø 0.002 0.967 Ø Ø

T9
USB

Ø 0.437 0.001 Ø Ø Ø Ø Ø 0.994 Ø

T10
USB

Ø 0.047 Ø Ø Ø Ø Ø Ø Ø 0.997

Table 5.1: Identification rates for PCA82C251 (ID set to 0x000) when using MSE

Target T1
′
S12

T1
′′
S12

T2
′
S12

T2
′′
S12

T3
′
S12

T3
′′
S12

T4
′
S12

T4
′′
S12

T5
′
S12

T5
′′
S12

T1
′
S12

1 Ø Ø Ø Ø Ø Ø Ø Ø Ø

T1
′′
S12

Ø 1 Ø Ø Ø Ø Ø Ø Ø Ø

T2
′
S12

Ø Ø 0.908 0.876 Ø 0.204 Ø 0.029 Ø Ø

T2
′′
S12

Ø Ø 0.831 0.901 Ø 0.118 Ø 0.121 Ø Ø

T3
′
S12

Ø Ø Ø Ø 1 Ø Ø Ø Ø Ø

T3
′′
S12

Ø Ø 0.999 0.991 Ø 0.901 Ø 0.300 Ø Ø

T4
′
S12

Ø Ø Ø Ø Ø Ø 1 Ø Ø Ø

T4
′′
S12

Ø Ø 0.527 0.934 Ø 0.029 Ø 0.900 Ø Ø

T5
′
S12

Ø Ø Ø Ø Ø Ø Ø Ø 1 Ø

T5
′′
S12

Ø Ø Ø Ø Ø Ø Ø Ø Ø 1

Table 5.2: Identification rates for TJA1054T (ID set to 0x000) when using MSE

The results shown in these tables come as a support for the previously depicted
graphical representations. The batch of PCA82C251 transceivers seem to be easier to
distinguish with a maximum false detection rate of 69.5% (T2USB vs. T9USB) while in

the case of some of our TJA1054T transceiver this range can go up to 99.9% (T2
′

S12
vs. T3

′′

S12) which means that similarities in signaling behavior are too big to make
a correct identification. However, this confusion can be apparently circumvented by

BUPT



5.3 - Experimental results 107

clever allocation of the IDs as we discuss in the next section.
Using mean-value based separation increases the identification accuracy but only

at the cost of more signal acquisitions which makes it less appealing for practical
scenarios. For example, in the case of TJA1054T, computing the mean on only 100
signals (Table 5.3) did not bring major improvements, these were more obvious for
mean values computed on 1000 frames (Table 5.4) or more. However, due to great
similarities it is still hard to distinguish between some transceivers such as the case of
T2

′

S12 and T
2′′
S12.

Target T1
′
S12

T1
′′
S12

T2
′
S12

T2
′′
S12

T3
′
S12

T3
′′
S12

T4
′
S12

T4
′′
S12

T5
′
S12

T5
′′
S12

T1
′
S12

1 Ø Ø Ø Ø Ø Ø Ø Ø Ø

T1
′′
S12

Ø 1 Ø Ø Ø Ø Ø Ø Ø Ø

T2
′
S12

Ø Ø 0.900 0.959 Ø 0.308 Ø 0.007 Ø Ø

T2
′′
S12

Ø Ø 0.567 0.900 Ø 0.003 Ø 0.008 Ø Ø

T3
′
S12

Ø Ø Ø Ø 1 Ø Ø Ø Ø Ø

T3
′′
S12

Ø Ø 0.811 0.973 Ø 0.900 Ø 0.222 Ø Ø

T4
′
S12

Ø Ø Ø Ø Ø Ø 1 Ø Ø Ø

T4
′′
S12

Ø Ø 0.277 0.968 Ø Ø Ø 0.900 Ø Ø

T5
′
S12

Ø Ø Ø Ø Ø Ø Ø Ø 1 Ø

T5
′′
S12

Ø Ø Ø Ø Ø Ø Ø Ø Ø 1

Table 5.3: Identification rates for TJA1054T (ID set to 0x000) when using MSE median
of 100 signals

Target T1
′
S12

T1
′′
S12

T2
′
S12

T2
′′
S12

T3
′
S12

T3
′′
S12

T4
′
S12

T4
′′
S12

T5
′
S12

T5
′′
S12

T1
′
S12

1 Ø Ø Ø Ø Ø Ø Ø Ø Ø

T1
′′
S12

Ø 1 Ø Ø Ø Ø Ø Ø Ø Ø

T2
′
S12

Ø Ø 0.900 0.927 Ø 0.160 Ø Ø Ø Ø

T2
′′
S12

Ø Ø 0.037 0.905 Ø Ø Ø Ø Ø Ø

T3
′
S12

Ø Ø Ø Ø 1 Ø Ø Ø Ø Ø

T3
′′
S12

Ø Ø 0.300 0.512 Ø 0.900 Ø 0.160 Ø Ø

T4
′
S12

Ø Ø Ø Ø Ø Ø 1 Ø Ø Ø

T4
′′
S12

Ø Ø 0.130 0.927 Ø Ø Ø 0.900 Ø Ø

T5
′
S12

Ø Ø Ø Ø Ø Ø Ø Ø 1 Ø

T5
′′
S12

Ø Ø Ø Ø Ø Ø Ø Ø Ø 1

Table 5.4: Identification rates for TJA1054T (ID set to 0x000) when using MSE median
of 1000 signals

5.3.4 Behavior for various IDs and baud rates

To determine if the message ID has any influence on the source identification
process we also acquired sets of signals with different CAN IDs. By applying the
above mentioned methods on these sample sets, most of the results were similar
to the case of CAN ID 0x000. However, both advantageous and disadvantageous
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modifications can appear as the set of nodes whose signatures overlaps is subject to
change. For example, in the case when we set the ID to 0x555, we still had three
transceivers that have signatures similar to the one of T2

′′

S12 but not the same ones as
when using ID 0x000. This can be exploited in a constructive manner: the signature
similarities between a target and other transceivers can be minimized by selecting
an appropriate set of IDs. Figure 5.12 illustrates MSE values for signals produced by
TJA1054T transceivers with the CAN ID set to 0x555.

Figure 5.12: 20000 MSE values computed for each TJA1054T transceiver having the
signature of T2

′′

S12 as the reference and the ID set to 0x555

Communication speed can also influence signaling behavior. In Figure 5.13 the
MSE values were computed for the same CAN messages as in our previous example
(i.e., with the ID set to 0x555) but at a different speed, i.e., 125kbaud. In this case

Figure 5.13: 20000 MSE values computed for TJA1054T with the signature of T2
′′

S12 as
the reference, the ID set to 0x555 and the baudrate configured to 125kbaud
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the picture drawn by transceiver signatures is similar with the one obtained when
using lower communication speeds suggesting that the ID alone is responsible for
the change in results. On the downside, the similar signatures are now even harder
to distinguish indicating that, at higher speeds, detection capabilities are decreased
but this can be compensated by employing faster ADCs to achieve smaller sampling
periods.
As a consequence of the influence of changing message IDs on transceiver signaling

behavior the identification rate is also affected. Table 5.5 shows the identification rate
obtained for TJA1054T transceivers when using the ID to 0x555 and the baud-rate to
125k. At a glance, identification rate seems to worsen, however, on a closer inspection
it turns out that for transceivers T2

′

S12 and T3
′′

S12, that were hardly distinguishable, the
confusion rate now drops to 0%. This strongly suggests that clever allocation of IDs
for specific transceivers can yield extremely high identification rates.

Target T1
′
S12

T1
′′
S12

T2
′
S12

T2
′′
S12

T3
′
S12

T3
′′
S12

T4
′
S12

T4
′′
S12

T5
′
S12

T5
′′
S12

T1
′
S12

1 Ø Ø Ø Ø Ø Ø Ø Ø Ø

T1
′′
S12

Ø 0.916 Ø 0.004 Ø 0.369 Ø Ø Ø Ø

T2
′
S12

Ø Ø 0.950 0.250 Ø Ø Ø 0.452 Ø Ø

T2
′′
S12

Ø 0.078 0.263 0.950 Ø 0.777 Ø 0.767 Ø 0.722

T3
′
S12

Ø Ø Ø Ø 1 Ø Ø Ø Ø Ø

T3
′′
S12

Ø 0.426 Ø 0.784 Ø 0.950 Ø 0.527 Ø 0.817

T4
′
S12

Ø Ø Ø Ø Ø Ø 1 Ø Ø Ø

T4
′′
S12

Ø Ø 0.545 0.817 Ø 0.580 Ø 0.950 Ø 0.510

T5
′
S12

Ø Ø Ø Ø Ø Ø Ø Ø 1 Ø

T5
′′
S12

Ø 0.002 0.003 0.750 Ø 0.879 Ø 0.484 Ø 0.950

Table 5.5: Identification rates for TJA1054T (ID set to 0x555)

Since collisions between transceiver patterns appear to be random, they should
be precisely linked to the resolution of the measurements (in our case, a 12-bit res-
olution). Consequently, this will bound the success probability of an adversary that
inserts its own device on the network. If the available resolution is too low, one
should consider increasing the size of the ID or even extending the identification to
other portions of the frames.

5.3.5 Signal drift in time

The signaling behavior of electronic circuits may exhibit slight changes over time.
To address potential issue, we repeated our experiments over a period of several
months and found the signatures to remain within certain boundaries. In Figure 5.14
we draw plots containing the multiple signature bands of the same transceiver that
were acquired on different dates (roughly separated by weeks or even months) along
with bands of transceivers with very similar signaling behavior. Our tests included
continuous signal acquisition from devices over a period of roughly one month of
uninterrupted functioning. No noticeable drift was visible during these tests. Indeed,
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over longer periods of time, it is possible for drifts to appear but we consider that this
effect can be compensated by continuously updating the fingerprint of each device by
using newly received signals.

Figure 5.14: Signature variation in time

Additional drifts in signal characteristics can be induced by other electronic cir-
cuits that are part of the system equipped with CAN transceivers. However, these
influences, provided that they are constant, can even benefit the identification pro-
cess for the case of similar transceivers that are placed on distinct circuits. Even if
all vehicle subsystems are equipped with transceivers from the same manufacturer,
these subsystems should be different enough to bring unique influences to the CAN
signal produced. On the downside, if the neighbouring electronic circuits only cause
temporary disturbances in the signaling behavior of the device this can have negative
influences on the identification capabilities.
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6 Conclusions

In-vehicle security is an emerging topic in the broader context of information se-
curity, its importance stems from the numerous reported attacks. Protection must
be assured for various assets such as human safety, intellectual property, car com-
ponents or even the car itself. In some cases security mechanisms are completely
absent while in other even mechanisms that already exist are vulnerable to attacks.
Usually, the security mechanisms inside cars are aimed at preventing unauthorized ac-
cess to in-vehicle buses. Once penetrated in-vehicle buses offer little to no protection
against attacks. This threat can be alleviated by introducing authentication protocols
to in-vehicle networks such as the widely used CAN.

The performance analysis in Chapter 3 illustrates the constraint nature of some
automotive-specific microcontrollers by evaluating their performance in relation to
hash functions. The execution speed is bounded by the CPU architecture and reduced
frequencies that characterize these platforms. Memory is also an issue as it is usually
too limited to hold both the ECU firmware and a memory consuming cryptographic pro-
tocol. The performance can be enhanced when using devices equipped with multiple
cores or cryptographic co-processors. Still, the overall performance of automotive mi-
crocontrollers is still too low to enable the deployment of mechanisms commonly used
in computer networks without affecting system timing constraints. System constraints
can be compensated by devising lightweight cryptographic primitives.

As the CAN protocol provides no support for authenticating communication our first
contribution exhibits mechanisms at the application layer. We found the well known
TESLA protocol to be a suitable candidate and different trade-offs and schemes were
studied in order to determine an optimal choice of parameters. By the nature of
this family of authentication protocols, authentication delays are introduced. In the
best case we were able to obtain authentication with delays in the order of several
hundreds micro-seconds (these are not very realistic due to various limitations of
underlying electronics, e.g. oscillator tolerance). Obviously the performance greatly
depends on the microcontrollers being employed, e.g. the TriCore microcontroller
clearly outperformed the S12X and the authentication delays dropped by almost two
orders of magnitude. This approach may not be suitable for some applications but
we do expect that the delays achieved here are suitable in many practical real-time
scenarios.

One-time signatures are the alternative for assuring immediate authentication in
CAN networks. This is more prominent in the case of messages with reduced size. The
main purpose of our work was to assess which are the limitations of such a solution in
CAN networks and our experimental results showed up to several kilobits of authen-
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ticated traffic can be achieved while the delay at which messages are authenticated
can be lower to tens of milliseconds.

LiBrA, the third approach that we employed is based on splitting keys between
groups of nodes. The proposed protocol is efficient when the number of nodes is low
and the corrupted nodes are in minority. We expect this to be the case in many auto-
motive scenarios where, although the number of ECUs may be high, the numbers of
manufacturers from which they come may not be high and distributing trust between
several groups is an acceptable solution. If the number of nodes is too high we see
only two resolutions: public key cryptography (with the drawback of high computa-
tional requirements, at least 2 orders of magnitude) or TESLA like protocols with the
drawback of authentication delays.

When the application layer approach is not a viable alternative, the physical layer
may be used to provide source authentication. The methodology we described here
proved to be usable in distinguishing the source of messages without any modifications
on the software that the node is running or of the network that it is part of. This may
set a distinct perspective on assuring broadcast authentication in CAN networks, an
environment where cryptographic techniques are currently absent and will be hard to
implement due to the various constraints. Besides detecting intrusions, this technique
may also be useful for forensic purposes as event data recorders are closer to be
mandatory for newly produced automobiles.

While the approaches presented here were tested on CAN buses they could also be
used on other buses such as FlexRay or BroadR-Reach (emerging Ethernet physical
layer standard designed for use in automotive applications).

The results presented here were published in a series of papers co-authored by the
author of this thesis. The author’s contributions are summarized in what follows:

1. Comprehensive survey of adversary models, attack surfaces and re-
ported attacks on in-vehicle networks. To establish a solid background and
justification for the thesis proposal we investigate existing literature on in-vehicle
security issues and present a compilation of reported attacks in section 2.2.

2. Performance analysis of automotive-specific microcontrollers for secu-
rity applications. The performance achievable when using automotive embed-
ded devices to implement hash functions is illustrated by Chapter 3 which holds
the results published in [85] and [86].

3. Performance improvements trough parallelism and hardware accelera-
tion. Implementation details on how parallelism and cryptographic co-processors
can be used to enhance the performance of a series of hash functions are also
presented in Chapter 3 and [85, 86].

4. Proof of concept implementation of several TESLA-based protocols to
obtain concrete results on a CAN setup. A first evaluation of broadcast au-
thentication using TESLA-based protocols on CAN buses is given. The minimum
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achievable authentication delay should fit the constraints of most in-vehicle sys-
tems but it may be too high for some safety critical systems such as the airbag.
Section 4.2 is dedicated to this topic and holds results published in [44], [46],
[47].

5. Implementation and performance evaluation of LiBrA-CAN protocols. A
new protocol based on key splitting between groups of nodes is implemented in
several variants and their performance is presented. The authentication delays
are improved compared to the case of using TESLA. Section 4.4 holds details of
these results which were published in [49].

6. Development of a method for identifying sender nodes in CAN networks
by analyzing physical signal characteristics. Analyzing signal character-
istics proves to be an efficient method when comparing signals from different
types of transceivers and can also offer acceptable results in case CAN nodes
are implemented using transceivers of different makes and models. The thesis
covers this subject in Chapter 5 and the results are published in [87].

A decision on what protocol should be used in real-world vehicular applications can
be taken only by manufacturers and by means of consortium. The results presented
here open road in this direction by proposing new protocols or trade-offs and giving
clear hints on the constraints and performances that can be achieved.
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A Appendix A - Results obtained during the PhD
studies

A.1 Papers published in ISI indexed publications

• Groza, B., Murvay, P.-S., Broadcast Authentication in a Low Speed Controller Area
Network, E-Business and Telecommunications, pp. 330-344, Springer Berlin
Heidelberg, 2012.

• Groza, B., Minea, M., Cristea, M., Murvay, P.-S., Iacob, M., Protocol vulnerabili-
ties in practice: Causes, modeling and automatic detection, Proceedings of the
Romanian Academy Series A - Mathematics, Physics, Technical sciences, Infor-
mation science, Vol. 13, Issue 2, pp. 167-174, 2012. (Impact Factor - 0.537,
Relative Influence Score - 0.191)

• Groza, B., Murvay, P.-S., Efficient Protocols for Secure Broadcast in Controller
Area Networks, IEEE Transactions on Industrial Informatics, Vol. 9, Issue 4, pp.
2034-2042, 2013. (Impact Factor - 3.381, Relative Influence Score - 1.607)

• Murvay, P.-S., Groza, B., Source Identification Using Signal Characteristics in
Controller Area Networks, Accepted for publication in IEEE Signal Processing
Letters, 2014. (Impact Factor - 1.674, Relative Influence Score - 1.910)

A.2 Papers published in other indexed publications

• Groza, B., Murvay, P.-S., Higher Layer Authentication for Broadcast in Controller
Area Networks (CAN), The Sixth International Conference on Security and Cryp-
tography (SECRYPT’11), 2011.

• Groza, B., Murvay, P.-S., Secure Broadcast With One-Time Signatures In Con-
troller Area Networks, The Sixth International Conference on Availability, Relia-
bility and Security (ARES’11), 2011.

• Murvay, P.-S., Groza, B., Performance improvements for SHA-3 finalists by ex-
ploiting microcontroller on-chip parallelism, The Sixth International Conference
on Risks and Security of Internet and Systems (CRiSIS’11), 2011.

• Groza, B., Murvay, P.-S., van Herrewege, A., Verbauwhede, I., LiBrA-CAN: a
Lightweight Broadcast Authentication protocol for Controller Area Networks, The
11th International Conference on Cryptology and Network Security (CANS’12),
2012.
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A.3 - Papers published in other non-indexed volumes 115

• Groza, B., Murvay., P.-S., Secure Broadcast with One-Time Signatures in Con-
troller Area Networks, International Journal of Mobile Computing and Multimedia
Communications, Vol. 5, Issue 3, pp. 1-18, 2013.

• Murvay. P.-S., Groza, B., Performance Evaluation of SHA-2 Standard vs. SHA-3
Finalists on two Freescale Platforms, International Journal of Secure Software
Engineering, Vol. 4, Issue 4, 2013, pending publication.

A.3 Papers published in other non-indexed volumes

• Murvay, P.-S., Cryptography on embedded devices with application to in-vehicle
communication, Advanced Computer Architecture and Compilation for High-Performance
and Embedded Systems summer school (ACACES’11), pp. 309-312, 2011.

A.4 Other activities

• Attended the Advanced Computer Architecture and Compilation for High-Performance
and Embedded Systems (ACACES) 2011 summer school, at Fiuggy, Italy, in july
2011

• Reviewer for the 7th International Conference on Risks and Security of Internet
and Systems (CRiSIS), 2012.

• Invited reviewer for Journal of Loss Prevention in the Process Industries, Elsevier,
2012.
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