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Abstract: Groundwater flow in shallow aquifer (i.e. 
groundwater reservoir with large plane extension in 
relation to the depth) containing lake, pond, 
groundwater recharge or drainage pit, foundation pit 
etc., referred further as groundwater 
extraction/recharge cavity or cavern represent a very 
important practice-oriented topics. 
In this regard in a former paper a general mathematical 
representation of groundwater flow in shallow aquifer is 
deduced, considering a cavity of arbitrary form bounded 
by a permeable contour, using the theory of the 
analytical functions of a complex variable.  
In the present paper an extension of this problem will be 
presented, considering a cavity of arbitrary form 
bounded by a partially permeable contour. This 
extension allows approach of new aspects and issues of 
groundwater management. The mathematical 
representations consider asymptotic conditions 
determined by a pre-existing initial uniform 
groundwater flow which has an important influence on 
the flow processes especially in neighbourhood of cavity. 
It will be deduced formulas which allow a rapid analysis 
of the groundwater balance in the modelled region 
considering the dependence of the recharge/discharge 
rate of the cavity from and the extension of the 
impermeable part of the contour and from the pre-
existing uniform groundwater flow.  
The obtained mathematical representations and 
formulas can be applied for cavities of different shape 
using conformal mapping defined through analytical 
functions of a complex variable. 

 
1. INTRODUCTION  
 
The main purpose in this paper is to present a 

mathematical method for two-dimensional 
groundwater flow in shallow aquifer (i.e.large plane 
extension in relation to the depth) containing a cavity 
of arbitrary shape bounded by a closed contour C 
which consist of a permeable portion C0 and an 
impermeable portion C∑ (defined through the points 
A1 and B1 Fig.1). In the cavity (i.e. inside of the 
contour C) there are free water table and a 
discharge/recharge (i.e. extraction/infiltration) rate of 
Q will be extracted or supplied. The cavity can be 
referred/represent in practical view a groundwater 
recharge/discharge system (e.g. groundwater recharge 
trench/pit, ecologic lake, pond, foundation pit, well 
with laterals and so on). The undisturbed flow state in 
aquifer a uniform groundwater flow, having a velocity 

of v0, will be considered (v0 = 0 correspond to an 
motionless groundwater basin). 

  
  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Scheme of a recharge/discharge cavity 

in shallow aquifer (plan view) 
 
In a former paper [1] a general mathematical 

representation of groundwater flow in shallow aquifer 
containing a cavity of arbitrary form, bounded by a 
fully permeable contour (i.e. the impermeable portion 
C∑ of the contour is missing) was discussed. Several 
other mathematical representation of groundwater 
flow one can see also in [3], [4],[5], [6], [7]. 

It is to mention also, that in opposite to the 
numerical methods the analytical solutions are 
expressed with mathematical functions (e.g. formulas) 
between of parameters that describe the modelled 
processes and, as a result, allow a faster and more 
efficient analysis regarding the influence of the 
different parameters. In case of groundwater flow 
modelling there are very performant numerical 
programs based on FDM [8] or FEM [9]. But, in 
special cases when the flow has singularities (e.g. well 
or endpoint of drainage trench) the numerical methods 
ca leaves to significant errors [6], [7]. That means that 
analytical methods stay up to date. 

 
In the present paper an extension of this problem 

will be presented, considering also a cavity of 
arbitrary form which is bounded by a partially 
permeable contour (Fig.1), using the same theoretical 
basics (i.e. analytical functions of a complex variable) 
and the validity of Darcy's law.  
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2. MATHEMATICAL MODELLING OF 
GROUNDWATER FLOW BY MEANS OF 
ANALYTICAL FUNCTIONS OF A COMPLEX 
VARIABLE 

 
The basic equations of groundwater flow can be  

expressed using the scalar potential function Φ(x,y) of 
the velocity or the complex potential F(z) and the 
complex velocity W(z) both analytically functions of 
a complex variable (z=x+iy) [1],[2],[4]. 

 
The Darcy law for the flow velocity  
v grad (x, y) ;     x,y D         (1)−= Φ = ∇Φ ∈

where Φ is the scalar potential function. 
 

(x, y) k h(x, y) c                               (2)Φ = − ⋅ +
k – the Darcy hydraulic conductivity  

h – piezometric head of aquifer 
c – an undetermined constant. 
 
The complex potential of the flow F(z) has the 

property 
  

}{
}{

Re F(z) (x, y),                                (3)

Im F(z) (x, y),     z D                  (4)−

= φ

= ψ ∈
where Ψ(x,y) is the stream function  

 
The balance equation of steady groundwater 

flow: 
div v v 0                          (5)= ∇ ⋅ =  

 Both functions Φ(x,y) and Ψ(x,y) satisfied  
the Laplace equation in the flow domain D-: 

  
0  and     0                  (6)

where   is the Laplace operator
ΔΦ = ΔΨ =

Δ   

Consequently, for mathematical representations 
of the groundwater flow can be used one of analytical 
functions of a complex variable F(z) or W(z). The 
complex plane (z) is called also as physical plane of 
the considered groundwater flow. 

Further on the complex velocity function W(z) as 
basic solution for the considered groundwater flow 
will be determined.  

The mathematical relationship between the 
functions F(z) and W(z) is given as:  

 

x y
d F ( z )W ( z ) v i v  ,  z D       ( 7 )

d z
−= = − ∈

vx şi vy are the components of flow velocity. 
 
Consequently, for mathematical representation of 

the groundwater flow it is enough to know one of the 
functions ∅ (x, y), F (z) or W (z).  

Further on in the present paper the velocity 
potential W(z) will be determined as first and after 
that the other both functions (i.e. the complex 
potential F(z) and its real part the potential function ∅ 
(x, y). Knowing ∅ (x, y) the velocity distribution and 

the cavity discharge can be determine using the 
relations (1) and (2) and as well the given piezometric 
head in the cavity and at the influence range of cavity. 

To determine of the complex velocity W(z) 
boundary conditions are necessary which assure the 
uniqueness of the solution function:  

• W(z) should be a holomorphic 
function of a complex variable in D−. This 

condition can be expressed as: 
 

( )W z
0,    z D ,     z=x+iy,   z=x-iy   (8)

z
−∂

= ∈
∂

  

• The permeable part C0 of the cavity contour 
C is an equipotential line i.e. the tangential component 
Vτ of the flow velocity on C0 is 0: 

( ){ } 0v Re W z dz 0, z C       (9)τ
∂φ= = = ∈
∂τ

The impermeable part C∑ of the cavity contour C is a 
streamline i.e. the normal component vn of the 
velocity on C∑ is 0: 

 

( ){ }nv Im W z dz 0, z C       (10)
n Σ

∂φ= = − = ∈
∂

The asymptotic condition i.e. the groundwater flow 
velocity at large distances from the cavity is equal to 
undisturbed groundwater flow velocity and is 
expressed as (Fig. 1): 

( ) i
0

z
   W z =W  =V  e           (11)lim − α

∞
→∞

                               

 The recharge/discharge flow rate Q (i.e. 
injection or extraction flow rate) of the cavity is 
constant expressed as: 

( )
0C
W z dz iQ                  (12)= ±∫  

To determine the complex velocity W(z) which 
satisfied the above-mentioned conditions a new 
complex plan (ζ) will be considered. In this plane the 
cavity C become a canonical form i.e. a circle K 
having a radius ρ0 (Fig.2a, b). The flow domain D- 

from the physical complex plane  
(z) will be conform mapped on the exterior 

domain Δ- of the circular cavity K in the complex plan 
(ς) (Fig.2 a,b):  

 
 
 
 
 
 
 
 
 
 
 
Figure 2. Scheme of conformal mapping of the 

flow domain in the complex plane (z) on the external 
domain of a circle   in the complex plan (ς) 
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This mapping can be made using holomorphic 
function of a complex variable and is called 
conformal mapping [1], [4], [5]: 

 

( )f z                                   (13)ζ =   
This function is invertible having an inverse: 

( )1z f                                      (13 )ζ− ′=  
So we have the following correspondence 

between the complex plans (z) and (ς): 
 

0 0

z

D
C K
C K

− −

Σ Σ

↔ ζ

↔ Δ
↔
↔

    (14) 

 
The relationship between the complex flow 

velocity in both complex plans, original physical 
complex plane (z) and her image plane (ζ):  

 

( ) ( ) ( ) ( )dz d   W =W z    and  W z W     (15)
d dz

ζζ = ζ
ζ

  
  
On the contours C and K is valid: 
 

( ) ( )

( ) ( )
C

K

C
z D z C

K
K

 W z W z   and  

 W W                               (16)

lim

lim
ζ ς

ζ ς
−

−

∈ → ∈

∈Δ → ∈

=

=

With these correspondences between both complex 
plans we can rewrite the boundary conditions (8)-(12) 
for the complex velocity W (ζ) as follow: 

 
( )W

0, −∂ ζ
= ζ ∈ Δ

∂ζ   (8’) 

( ){ }0 0

'
0 0

v Re W d 0,

K                                        (9 )

ς == ς ξ =

ς ∈
 

 

( ){ }n

'

v Im W d 0,

K                                  (10 )

Σ

Σ Σ

= − ς ξ =

ς ∈  

 
and  
 

( )
0K
W d iQ= −∫ ζ ζ              

(12’) 
 
The asymptotic condition is expressed as 
 

( ) ( )*

z

i '
0 0 0

0 z

dzW  W  W z ( )=
d

           = b W =b V  e                  (11 )
where  

dz            b ( )
d

lim lim
ζ

α

ζ
ζ

ζ

∞
→∞ →∞

−
∞

→∞

= =

=

  

In the complex plane (ς) in which the cavity C 
became a circle K as canonic cavity one can be 
determine the complex velocity  W(ζ) using Cauchy 
integral theory for holomorphic functions in the same 
way as in [1], [4] applied for a cavity with entire 
permeable contour.  

 By means of mathematical developments, which 
are not reproduced here, the following mathematical 
expression is finally obtained for the function W(ς): 

 

( )

( )

( )

( )

*
0 0

2
*0

0 02
0 0

0

2 2
0 0 0 0 0

0

- cos

1 - cos - (16)
( , , )

1
2

( , , ) 2 cos

(17)

e

W

W W   
A

Q

where

A

dzW W   and     f z C       
d

ζ ρ θ

ρζ ρ ζ θ
ς ρ θ ζ

ρ
π ζ

ς ρ θ ζ ζρ θ ρ

ρ
ζ

∞

∞

∗
∞ ∞

∞

⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞⎢ ⎥+⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

= − +

⎛ ⎞= ⋅ = ∈⎜ ⎟
⎝ ⎠

  
 
By means of the conformal mapping (13), (13') 

and (15) from W(ς) can be obtain the complex 
velocity in the physical plane W(z) by replacing ς 
with f(z) resulting: 

 
 

 
 

 
 

 
The 

complex velocity W(z) is the searched basic 
mathematical representations of the considered 
groundwater flow in shallow aquifer containing a 
cavity bounded with a counter C which consist of two 
parts, a  

( ) ( )( )

( )

( )

( )

( )

( ) ( )

0 0

0 0

2
0

0 02

0

2 2
0 0 0 0 0

1

18

1
2

2

e

dW z W f z
dz A(z, , )

W f z cos

df z
W f z cos         ( )

f ( z ) dz

Q
f z

where

A( z, , ) f z f z cos

ς
ρ θ

ρ θ

ρ ρ θ

ρ
π

ρ θ ρ θ ρ

∗
∞

∗
∞

= = ⋅

⎧ ⎫
⎪ ⎪

− ⋅ +⎡ ⎤⎪ ⎪⎣ ⎦
⎪ ⎪⎪ ⎪⋅ ⋅ ⋅ − ⋅⎡ ⎤⎨ ⎬⎣ ⎦
⎪ ⎪
⎪ ⎪⎛ ⎞
⎪ ⎪− ⋅ +⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

= − ⋅ ⋅ ⋅ +
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 permeable part C0 and an impermeable part C∑ 
(Fig. 1). 

From W(z) one obtain the complex potential F(z) 
using the relationships (7) between these functions: 

  
 

 
 
 

 
 
 

From 
the complex potential one can be determine its real 
part i.e. the flow potential function Φ(x,y) which 
allows the determination of hydraulic flow parameters 
like velocity distribution, discharge/recharge rate of  
the cavity (i.e. Qe/Qi) and so on. 

In the next paragraph an example will be 
discussed. 

It is to mention also that for θ0=π the 
mathematical representations (18) and (19) coincide 
with results discussed in [1] in the case of a cavity 
with fully permeable contour (C=C0) which is thereby 
a simplified case of that considered in the present 
paper: 

 
 
 
 

 
 
 

Knowing the complex potential of the 
groundwater flow, one can proceed to determine the 
calculation formula for the most important hydraulic 
parameters like discharge/recharge rate of cavity 
Qe/Qi). 

 
3. EXAMPLE  
 
A drainage trench of length 2L, depicted in Fig.3, 

will be as example considered. The impermeable 
portion of the trench is situated on its downstream 
side and has the same length of 21e =2L. The drainage 
trench is placed in a parallel groundwater flow (i.e. 
α=π). 

 

 
Figure 3. Scheme of drainage trench disposed in a 

parallel groundwater flow 
 
The conformal mapping function (13) has the 

form 
 

( ) 2 2f z =z+ z L                           (21)ζ = +
 

 
Consequently, 
 

2

0 0

2
0

0

0

2 2

1 1
2 2

1
2

1 22

0

i

e

L dzz ( )
d

dzW V e V
d

lcos ( )                    ( )

f(z)   z ,  = =L
Along the ox axis is valid

f(z x) x x L

α

ς
ς ς

ζ

θ
ρ

ρ ρ ρ

ρ

∞

∗ − ⋅
∞

∞

⎛ ⎞= − → =⎜ ⎟
⎝ ⎠

⎛ ⎞= ⋅ ⋅ = −⎜ ⎟
⎝ ⎠

= ± −

= → =

= = = + +
 

 
For calculation of the discharge rate it is enough 

to know the potential function Φ (i.e. the real part of 
the complex potential F(z)) along of the ox axis (y=0). 
Considering these particularities, the potential 
function along the x axis is expressed as 

 

( ) ( )
( ) ( )

( )

( ) ( )

0
0 0

0 0 0 0

0 0 0 0 0

2 2
0 0 0 0 0

0 0

19
2

2

e

i

F z W W A( z , , )
f z

f z A( z , , ) f z cosQ ln   ( )
A( z , , ) f z cos

where

A( z , , ) f z f z cos

dzW b V e   where b =
d

W  is complex conjgate

α

ρ ρ θ

ρ θ ρ θ
π ρ ρ θ θ ρ

ρ θ ρ θ ρ

ζ

∗ ∗
∞ ∞

∗ − ⋅
∞ ∞

∞

∗
∞

⎡ ⎤
= − ⋅ ⋅⎢ ⎥
⎣ ⎦

⋅ + − ⋅⎡ ⎤⎣ ⎦− ⋅
− ⋅ +⎡ ⎤⎣ ⎦

= − ⋅ ⋅ ⋅ +

⎛ ⎞= ⋅ ⎜ ⎟
⎝ ⎠

 of  W ∗
∞

( ) ( )
( )

0

0

0

19
2

e

i

F z W W
f z

f zQ ln                                         ( ')

where
dzW V e and  
d

W  is complex conjgate of W

α

ρ

π ρ

ζ

∗ ∗
∞ ∞

∗ − ⋅
∞

∞

∗ ∗
∞ ∞

⎡ ⎤
= − ⋅ ⋅⎢ ⎥
⎣ ⎦

− ⋅

⎛ ⎞= ⋅ ⋅ ⎜ ⎟
⎝ ⎠
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0
0 0 0

0 0 0 0

0 0 0 0

2 2
0 0 0 0 0

( , y 0) 1 ( , , )

( , , ) cosln 23)
2 ( , ) cos

( , , ) 2 cos

e

x V A

Q A     (
A

where

A

ρΦ ρ ρ θ
ρ

ρ ρ θ ρ ρ θρ
π ρ ρ ρ ρ θ ρ

ρ ρ θ ρ ρ ρ θ ρ

⎛ ⎞= = − ⋅ − ⋅ −⎜ ⎟
⎝ ⎠

+ − ⋅⋅ ⋅
− ⋅ +

= − ⋅ ⋅ ⋅ +
 

Knowing the potential function Φ(x,y) one can 
proceed to determine the calculation formula for the 
most important hydraulic size of the catches which is 
the discharge (i.e. extraction) or recharge (i.e. 
infiltration) rate of cavity (Qe/Qi). For this purpose, the 
hydraulic boundary conditions will be used (see 
relationship 2): 

 h = H0   the piezometric head in the drain (x=0) 
implying the relationship 

0 0 24f(z )  =L               ( )ρ ρ= = =
 

h=HR the piezometric head at the influence range 
x=R of the drain implying the relationship 

2 2 24R f(z R)  =R+ R L     ( *)ρ ρ= = = +  
 
The parallel flow velocity V0 can be also 

expressed with the help of the groundwater slope I0 
and the hydraulic conductivity k: 

0 0 25V kI                             ( )=  
Th piezometric height difference in the drain will 

be denoted as  

0 26RH H H                       ( )− = Δ  
Using the notations above from the potential 

function (23) one can express the drainage trench flow 
rate Qe as follow:  

 

0

0
0 0

0 0

0 0 0 0

2 1
27)

lnG

1 ( , , ) (28)
2

( , , )
( , , )

e
e

R
e R

R

R RR

R

I R U
Q H                  (

k T H

where

U A              
R

AG
A

π
Δ

Δ

ρ ρ ρ ρ θ
ρ

ρ ρ θ ρρ
ρ ρ ρ θ ρ

⎛ ⎞− ⋅⎜ ⎟
⎝ ⎠=

⋅ ⋅

−= ⋅ ⋅

+= ⋅
+

 

   
A special case is when the impermeable part 

extends on entire length of the drainage trench i.e. 
le=L. Consequently   in (27), (28) θ0=π/2 and are valid 
the following relationships. 

 

0 0 0 0

2 2
0 0

0
0

0

0 0 0

( , , ) ( , , / 2)

( , )

1 ( , ) (28')
2

( , )
( , )

R R

R R

R
e R

R

R RR

R

A A

A

U A       
R

AG
A

ρ ρ θ ρ ρ θ π

ρ ρ ρ ρ

ρ ρ ρ ρ
ρ

ρ ρ ρρ
ρ ρ ρ ρ

= = =

= +

−= ⋅ ⋅

+= ⋅
+

 

 
From these expressions on can obtained the case 

of the drain trench with entire permeable contour (i.e. 
2le=0) discused discussed in [1]: 

0

2

2
0

2 1
27 '')

lnG

1 1 28'')

e

R

I R U
Q H              (

k T H

where

R RU   and G = +       (
L L

π
Δ

Δ

ρ
ρ

⎛ ⎞− ⋅⎜ ⎟
⎝ ⎠=

⋅ ⋅

= = +

 
Comparing (27) and (27’’) one cane analyse the 

influence of the impermeable length (2le) of the 
drainage trench. For a comparative calculation, the 
ratio of the discharge rate of both drainage trenches 
Qe/Q is considered (Qe for the drainage trench with 
impermeable part and Q for the entire permeable drain 
trench) can be expressed from (27) and (27’) as 
follow: 

     
 
 
 
 
 
 
As representative example of this ratio is depicted 

in Fig. 4 as function of drainage trench relative 
influence range (λ=R/L) 

0

0

0 0

1
29

1

R

e
e

I R lnUQ H            ( )I RQ lnGU
H

ρ
ρ− ⋅

Δ= ⋅
− ⋅

Δ
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Figure 4. Discharge rate ratio Qe/Q of both 

drainage trenches: with impermeable downstream side 
(le=L) and entire permeable drain (le=0) 

 
On can see, that the impermeabilized downstream 

side (le=L) can strongly influence of the discharge rate 
especially for increased slope of the groundwater 
flow.  

This result is important for the practical case of 
an interception drainage trench provided for the 
defence of a construction objective located 
downstream of the drain. 

 
4. CONCLUSIONS 
 
In the present paper an analytical solution, based 

calculus formula for plane groundwater flow 
containing an extraction/infiltration cavity of arbitrary 
shape, bounded with contour which contains an 
impermeable part is presented. 

There are deduced mathematical representation of 
the groundwater flow using the complex functions 
theory. These representations refer to the complex 
velocity, the complex potential and the potential. 
Based on these representations a general formula for 
calculus of the discharge rate is deduced for 
groundwater flow system, consisting of a cavity of 
arbitrary shape, bounded with a counter which contain 
an impermeable part. The cavity is situated in a pre-
existing parallel groundwater. These representations 
generalized those obtained in a former paper related to 
a cavity bounded with an entire permeable contour. 

The solutions obtained for an extraction cavity of 
arbitrary form can be applied for several practical 

shapes which currently are used in technical 
applications. In the paper a drainage trench of length 
2L, depicted in Fig.3, as representative example was 
considered. The impermeable portion of the trench is 
situated on its downstream side and has the same 
length of 21e. The general representations as well as 
the discharge calculus formula are particularized for 
this cavity shape. 

As numerical example a comparative analyse is 
performed comparing the discharge rate of a drainage 
trench with an impermeable side and of an entire 
permeable drainage trench as function of drainage 
trench influence radius. 

 In paper obtained results can used in engineering 
planning and management of a large number of 
groundwater flow problems like groundwater balance 
in ecologic lakes, ponds, groundwater recharge pits, 
drainage pits, foundation pits, wells or wells with 
laterals etc. which can be modelled as extraction 
cavities or recharge cavities. For each practical case 
first must determine the complex mapping function 
which mapped 

the given cavity on the canonic cavity (i.e. a 
circle). Knowing this function one cane expressed all 
analytical representations and calculus formulas for 
the considered groundwater flow problem.   
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