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Rezumat: Scopul prezentei teze este de a rezolva problema  

tomografiei binare folosind reprezentarea unei imagini digitale 
utilizând rețeaua de celule triunghiulare. Sunt prezentate 
proprietățile și structura rețelei de celule triunghiulare precum și 
reprezentarea imaginilor digitale folosind rețeaua de celule 

triunghiulare. De asemenea este definit conceptul de imagine 

binară având formă hexagonală. Se extinde suportul matematic 

referitor la transformata Radon, având ca bază rețeaua de celule 
triunghiulare. Teza propune reducerea problemei reconstrucției 
imaginilor binare reprezentate pe rețeaua de celule triunghiulare 

la problema flux maxim de cost minim într-un graf, folosind trei 
unghiuri diferite pentru măsurarea proiecțiilor. Folosind această 
modelare sunt propuși doi algoritmi de reconstrucție a imaginilor 
binare reprezentate folosind rețeaua de celule triunghiulare, și 
anume un algoritm memetic și unul iterativ. 
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ABSTRACT 

Binary tomography is hard and challenging task in image processing. The 
usage of non-traditional grids such as the triangular grid may have several benefits. 
This thesis focuses on the problem of reconstruction of binary hexagon-shaped 
images, represented on the triangular grid, from projections measured along few 

different angles. The directions along which there projections are measured are the 

ones corresponding to the natural directions of a triangular grid. We have explored 
two different approaches for reconstruction of binary hexagon-shaped images, 
represented on the triangular grid. The proposed approaches use the formulation of 
the reconstruction problem on the triangular grid using three projections as the 
minimum cost maximum flow problem. We offer two new solutions, a memetic 

algorithm and an iterative one, both based on the representation of images on the 
triangular grid. 

As the first solution we propose a memetic algorithm. In this algorithm the 
initial population is generated using the minimum cost maximum flow algorithm for 
the case of hexagon-shaped images. We introduced new mutation and crossover 
operators for hexagon-shaped images. Also a new compactness operator and a 
minimal hill climb operator, based on the switching components are defined. The 

compactness and the switching components are two important components of 
discrete tomography. 

The second solution is an iterative one. In each iteration, of the proposed 
algorithm, a new triplet of projection angles is selected. The reconstruction problem 
that depends on the selected triplet of projection angles and on the reconstruction 
from the previous iteration is solved. This reconstruction problem is equivalent with 
the problem of finding a flow with minimum cost in a graph. In our approach, we 

used the minimum cost maximum flow algorithm in order to solve the 
reconstruction problem. 

We implemented the two solutions and tested them using a variety of binary 
hexagon-shaped test images. The test images were chosen of three types: hv-
convex polyominoes, generic regular hexagon-shaped images and non-convex 
regular hexagon-shaped images resampled with different dimension. All test images 

were resampled from images represented on the square grid. The evaluation results 
show that the proposed two algorithms are robust enough, producing good quality 
reconstruction results in a relatively short time. The results of the memetic 

algorithm were compared with the results obtained with simulated annealing 
algorithm. The memetic algorithm results are comparable to that obtained with the 
simulated annealing, in quality, for the test cases which satisfy some topological or 
geometrical properties. However, the main advantage of the proposed memetic 

algorithm is the computational saving time. 
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In this thesis, I am concerned with the development of discrete tomography 

reconstruction methods for images represented on the triangular grid using few 
projections. Taking into consideration the different ways the plane can be covered 
with various figures, we can make use of the triangular grid, which became an 
important tool utilized in digital image processing, digital geometry and also in other 
related fields. The advantage of using triangular grid is that it has better symmetric 
properties than the square grid. Tomography is used in several fields in practice, 
when data about the inner structure of the object is needed without breaking it. It is 

applied in different areas of daily life, from scientific phenomena and industrial 
applications to medical applications. 

With this purpose, the focus of this work is to design efficient methods for 
solving the discrete tomography problem of reconstruction of objects from a few 
numbers of projections on triangular grid. In this context, the “minimum cost-
maximum flow” algorithm is employed in different phases of the proposed methods. 
Main theory and related algorithms are developed on the framework of binary 

tomography on the triangular grid. 

1.1. MOTIVATION 

In digital image processing, the triangular grid can be considered of real 
interest. Triangular grids have been of interests to humans from some time. 
Triangles have been studied from a long time and have been found to have special 

properties. These properties include the fact that triangles are part of the three 
regular polygons with which a plane can be tiled with. The other two are the square 

and the hexagon. The triangular grid plays an increasing role in geometric modeling. 
The human retina is often modeled by a Delauney triangulation and many 3D-
scanners also produce triangulations. Also computer graphic algorithms use the 
triangular grid [Deu72][Shi81]. 

Digital signal processing plays an increasing role in the field of image 
processing. An important imaging method is the so called tomography. Tomography 
deals with reconstruction of images from projections. Mathematically, the image 
corresponds to a function and the problem is to reconstruct this function from its 
integrals or sums over subsets of its domain. In general, the topographic problem 
can be continuous or discrete.  In discrete tomography (DT) the domain of the 
function is discrete, and the range of the function is a finite set of real numbers, 

usually nonnegative numbers. In practice, discrete tomography deals with the 
reconstruction of objects from a few numbers of projections [Haj01]. The simplest 
case of discrete tomography is the binary tomography (BT) that deals with the 

problem of the reconstruction of a binary image (i.e., an image containing only 

1. INTRODUCTION 
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black and white pixels represented by 0’s and 1’s) from few projections.  These 
problems are considered hard to solve due to the fact that there solution is usually 

undetermined thus means that there is more than one solution for every case.  The 
same problem is NP-hard when three or more than three projections are considered. 
The field of tomography is still an active area of research, being implemented in 
numerous domains, where data about the inner structure of the object is needed 
without breaking it. External radiation sources and sensors are used to collect data 
that will be utilized to reconstruct or predict the shape of the object using various 

algorithms. These techniques are applied in metal industry, and in medical 

applications. Some examples are: Positron Emission Tomography (PET), Computer 
Tomography (CT) [Her99][Kub99][Her07]. 

The basic problem of tomography is the following: having a set of 1-D 
projections and the corresponding angles at which these projections were taken, 
how do we reconstruct the original 2-D image considering the projections that were 
taken. Due to the hardware limitation the image generated via reconstruction from a 
sinogram is always defined on a square grid. Because the sinogram contains 

information about a continuous or discrete structure, this can be back projected 
onto any grid. The first studied grids in discrete tomography, traditionally, were the 
square grid and the cubic grid, because of the widespread usage of the Cartesian 
coordinate system. In 1957, Ryser [Rys57] proposed an algorithm for solving the 
problem of reconstruction of a binary matrixes from its row and column sums. After 
that, Gale [Gal57] placed the two-projection reconstruction problem in the context 

of flows in networks.  
Like stated before, there are two other regular 2D grids used in digital 

geometry [Ros86][Ros89] and image processing: the hexagonal and the triangular 
grid. There is a wide literature on binary tomography using the 
square[Kon87][Mel91] and the hexagonal grids [Her07][Mid05][Mat98]. The 
advantage of using a non-traditional grid is that it has better symmetric properties 
than the square grid. Due to its symmetry, the triangular grid can elegantly be 

described by the help of three coordinate axes [Nag03a][Nag04b]. Using three 
coordinate values one can define lanes and diamond-chains (somewhat similar 
concepts to rows and columns on the square grid). A lane contains a set of pixels 
that have a fixed coordinate value; it is orthogonal to one of the coordinate axes. A 
diamond-chain contains a set of pixels according to a line that is parallel to one of 
the coordinate axes. It is known that two directions are not enough to identify a 
pixel, and thus (at least) three projection directions are necessary to be used in 

reconstructions on the triangular grid. Apart from the three lane-directions, three 
diamond-chain directions are also natural. In [Her95][Nag04][Nag03b][Wut91] a 
connection of the cubic, hexagonal and triangular grids can be found. 

1.2. THESIS OBJECTIVES 

The aim of this thesis is to study the effect of changing the sampling grid 
from square to triangular one and to find efficient methods for solving the binary 
tomography reconstruction problem. Based on its geometry, the triangular grid has 
some advantage over the square grid which can help in processing images defined 
on this grid. The main advantage of the triangular grid is that it has better 

symmetric properties, a rotation by 
2π

3
 moves the grid to itself.  

BUPT



16     Introduction – 2. 

The problem we propose to solve is the reconstruction of binary hexagon-
shaped images represented on the triangular grid, where the object is represented 

in white and the background in black, using projections of the image from few 
different angles. In order to solve this problem, the following objectives of the thesis 
have been established. 

The first objective of the thesis is to develop fundamental bases, such as 
data structures, definitions and properties for the triangular grid and digital image 
representation using the triangular grid.  

The binary tomography reconstruction presumes two main phases: firstly, 

the generation of the set of projections and secondly the combination of images to 
reconstruct an approximation of the original image. 

The first phases of the binary tomography reconstruction problem, the 
generation of the set of projections of a hexagon-shaped image measured along the 
projection angles, mathematically, is accomplished using the Radon transform. In 
this context, the second objective of the thesis is to extend de mathematical support 
of the Radon transform to the case of using a triangular grid bases.  

The second phase of the binary tomography reconstruction problem, 
mathematically, consists of image reconstruction algorithms.  

Our first step towards developing algorithms to reconstruct hexagon-shaped 
images on the triangular grid is to reduce the binary tomography reconstruction 
problem of hexagon-shaped images on triangular grid, from two projections using a 
third projection as a restriction, to the problem of minimum cost maximum flow in a 

graph. This represents the third objective of the present thesis. 
The fourth objective of the thesis is to develop a hexagon-shaped binary 

image reconstruction algorithm based on an optimization method, in which the 
initial population is generated using the minimum cost maximum flow algorithm for 
the case of hexagon-shaped images.  

The fifth objective of the present thesis is to develop an iterative method for 
solving the binary tomography reconstruction problem for hexagon-shaped images 

on the triangular grid. 

1.3. THESIS STRUCTURE 

This thesis is divided into eight chapters and two appendices. 
Chapter 2 provides an overview of the relevant background in the field of 

discrete tomography. It focuses on square grid image reconstruction methods using 

network flow and evolutionary algorithm and summarizes the work that has been 
done in the literature until now. 

Chapter 3 is concerned with presenting the aspects related to the triangular 
grid and the triangular grid image representation, addressing and processing. 
Fundamental aspects of discrete tomography reconstruction problem using 
projections are described. The main point of this chapter is the definition of a 

hexagon-shaped binary image on the triangular grid, its representation and 
addressing, as this is used in the remaining chapters of the thesis. This chapter 
fulfills the first objective of the thesis. 

Chapter 4 is concerned with developing the mathematical framework for 
projection representation and acquisition on the triangular grid. Mathematically, 
projections are generated applying the Radon transform. This chapter extends the 
formulation of the Radon transform to the case of triangular grid bases, based on 
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the triangular grid representation of a digital image, achieving the second objective 
of the thesis. 

Chapter 5 provides a method in which binary tomography reconstruction 
problem of hexagon-shaped images on triangular grid is reduced to the problem of 
minimum cost maximum flow in a graph. This chapter fulfills the third objective of 
the present thesis. 

Chapter 6 provides a solution for the problem of binary tomography by 
proposing a memetic algorithm, in which the initial population is generated using 

the minimum cost maximum flow algorithm on the triangular grid. A detailed 

description of its steps is included. Also experimental results are presented. In this 
way the fourth objective of the thesis is achieved. 

Chapter 7 provides an iterative algorithm for solving the discrete 
tomography reconstruction problem from few projections in case in which images 
are sampled using the triangular grid, fulfilling the fifth objective of the thesis. The 
proposed solution uses in each iteration the minimum cost maximum flow algorithm. 
Experimental results and conclusions are also included. 

The final chapter provides conclusions and a discussion of the future works 
related to discrete tomography problem on triangular grid. 

Appendix A provides mathematical formulas used for converting triangular 
grid coordinates into corresponding square grid coordinates. Appendix B provides 
the derivation for the rotation transformation on the triangular grid. 
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This chapter presents an overview of the discrete tomography problem using 

the square grid representation of an image. This will be used as a starting point in 
different parts of this thesis, and in particular for the description of the binary 

tomography approach and for the reconstruction of a 2D discrete image from its 
projections on the triangular grid.  

2.1. INTRODUCTION 

Tomography is an imaging process where the shape and dimensional 
information of an object are determined from its projections. The projections are 

created by beams or rays that are emitted from a source, transmitted across the 
object and detected by an array of detectors. The pixels corresponding to the 
projections represent the total absorption of the beams along the lines between the 
source and the detector. Mathematically, the object corresponds to a function and 
the problem is to reconstruct this function from its integrals or sums over subsets of 
its domain. Using Beers’ law, and considering the X-ray case, the projections can be 

measured as: 

 
 

d

0

μ x dx

0I I e

 

   (2.1) 

where I0 is the intensity of the X-ray source, I is the detected X-ray intensities, μ  is 

the absorption coefficient of the object and d is the distance between the source and 
the detector.  

 Discrete tomography (DT) is a research area of tomography that is applied 
for the reconstruction of objects that are discrete (such as crystals) or homogenous 
(such as metal). Mathematically this means that the domain of the function that 
corresponds to an object is discrete, and the range of the function is a finite set of 
real numbers, usually nonnegative numbers. In practice, discrete tomography deals 
usually with the reconstruction of objects from a small number of projections 
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[Haj01]. The objects that have to be reconstructed consist of a few discrete or 
homogenous materials. Incorporating this information about the object to be 

reconstructed, simple objects can be reconstructed from a smaller number of 
projections than more complex objects. This is the reason why discrete tomography 
is important in applications where the object is simple and lots of projections cannot 
be acquired or it is too costly to do it. Such area of application of discrete 
tomography is in medicine, electron microscopy and non-destructive testing.  

The simplest case of discrete tomography is the binary tomography (BT) 

that deals with the problem of the reconstruction of a binary image (i.e., an image 

containing only black and white pixels represented by 0’s and 1’s) from a small 
number of projections. 

The necessary projections can be acquired basically in two ways, depending 
on the way in which the beams or rays are emitted, parallel or non-parallel (fan-
beam/cone-beam) to each other. Figure 2.1 shows the parallel (a) and fan beam 
acquisition technique (b). In this thesis only the parallel beam case is considered 
and discussed. 

 
 

 
 The technique of image processing using the parallel beam tomography 

works as follows: a source is used to emit/transmit parallel beams, called X-rays in 
computer tomography (CT), that pass through an object which attenuates the 

beam. The intensity of the attenuated beam is detected and recorded as an image 
on a parallel array detector surface situated behind the object. 

As the beams pass through the object, their intensity attenuates. The value 
for the intensity of a beam depends on the materials from which the object is made 
of, and on the length of the intersection between the beam and the object. The 
attenuation of a beam occurs due to the fact that different types of materials absorb 

different amount of radiation.  

source 

detector 

source 

detector 

Figure 2.1. Left: (a) Parallel beam tomography; Right: (b) Fan beam tomography. 

(a) (b) 
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In parallel beams tomography, thin parallel beams are transmitted across a 
section of an object at a specific angle. When the beams hit the detector on the 

other side of the object, the flux is recorded. This flux represents the projection of 
the cross section at the specified angle. Incrementing the angle another projection 
of the same object section is obtained. In this way a number of projections from 
different angles are generated. These projections are used to reconstruct a 2D 
image of a section of the object. Figure 2.2 illustrates the way in which the 
projection data is acquired using a parallel beam source. 

 

 
Figure 2.2. Components of a parallel beam tomography (X-ray CT) system [Abb08] 

 

 There are two main phases in tomography. The first phase is the generation 

of the set of projections and the second one is the combination of images to 
reconstruct an approximation of the original 2D image. Mathematically speaking, the 
first phase of tomography is accomplished by using the Radon transform and the 
second one using image reconstruction algorithms. 

2.2. RADON TRANSFORM 

All tomography types use Radon transform (RT) as the basic principal for 
generating the projections. The transformation was named after the Australian 
mathematician Johann Radon, who introduced it in 1917 [Rad17]. The Radon 

transform is the integral of a function over straight lines at different angles. In his 
work, Johann Radon showed how a function can be described in terms of its 
projections. The Radon transform is the mapping of the function on the projections. 
The inverse Radon transform is used to reconstruct images from their projections 

[Nat01][Nat011].  
The Radon transform (RT) of a function f(x, y) is (see Figure 2.3): 

         R f x,y p r ,θ f x,y δ x cos y sin r dxdy 

 

 

      (2.2) 

Where p(r, θ) is the integral of function f(x, y) at angle θ for all x and y 
which satisfy the equation x · cos θ+ y · cos θ – r = 0, and r is the perpendicular 

distance of a line from the origin. δ is the Dirac delta function [Dir27], which is 

a generalized function that can be defined as the limit of a class of delta sequences.  
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 Interpreting the Radon transform as projection of function f(x, y) at angle θ 

onto the axis s at a discrete value r, the coordinate(r, s) are related to (x, y) by a 

rotation matrix [Neh12]: 

 
r cos sin x

s sin cos y

 

 

     
     

     
 (2.3) 

 
x cos sin r

y sinθ cosθ s

      
     

     
 (2.4) 

Using the relationship from equations (2.3) and (2.4), equation (2.2) can be 
written as: 

    p r ,θ f r cosθ s sinθ,r sinθ s cosθ ds





    (2.5) 

Sampling this projection function, the discrete sinogram p(ri, θk) is obtained 
(see Figure 2.4). The term sinogram comes from the fact that the Radon transform 

of an impulse function is a sine wave. In practice, the projection p(r, θ) is a discrete 
function obtained from the mapping of the function f(x, y) to a distance r and angle 

θ. 

 

 

y 

x 

s 

Figure 2.3. Radon transform of a function f(x, y) 

p(r, θ) 

θ 

f(x, y) 
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2.3. IMAGE RECONSTRUCTION PROBLEM FOR PARALLEL-BEAM 

PROJECTIONS 

In tomography, the image reconstruction problem is an inverse problem, 

where for a given projection p(r, θ), one has to recover f(x, y). In the next 
paragraph the image reconstruction problem for parallel beam projections is 
presented.  The theoretical aspects considered for the image reconstruction problem 
using the case scenario of parallel beam projections, are similar with those 
presented in [Bat06a] and [Cie11]. 

Considering r as being the source points and v a unit vector in direction θ Є 

[0,2π), the integral of f along a line starting from r in direction v can be written as: 

  
0

Rf (r ,θ) f r t v dt



    (2.6) 

Given a set of source points r, the reconstruction problem using parallel 
beam projections can be stated in the following way: 

 
PB(r) RECONSTRUCTION PROBLEM 
 INPUT: A function p: r × [0,2π) →  

 TASK: Construct a function f such that Rf(r, θ) = p(r, θ) for all r   
         corresponding to the angle θ Є [0,2π). 

 
 In this chapter, the reconstruction of a special type of f function from 

parallel beam projections is considered. Further it is assumed that f is a m×n lattice 
with constant values at each 1×1 square of the lattice, that could be either 0 or 
1.That means that f can be represented as a binary matrix or a binary image on the 

Figure 2.4. (a) Shepp-Logan brain phantom (b) the sinogram p(r, θ) of (a) with 180 discrete 
radial and angular samples. Taken from [Neh12]. 
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square grid. The binary matrix can also be considered as a binary vector x Є 
{0,1}mn. In practice, the projections are acquired from a finite number of angles θk, 

k=1,…,d. The ith projection bi for the angle θk can be described as a linear equation: 

 
mn

ij j i

j 0

a x b , i 1,2, , I



   (2.7) 

where aij is the length of the intersection of the ith line with the jth unit square and I 

is the number of lines for the projection angles. Using equation (2.7) the projections 
are obtained by measurements. Using the information about the positions of the 
squares on the square grid and of the lines starting from the source points, one can 
easily compute the elements of the matrix (aij), i=1,..,I, j=1,…,mn. 

 In the case of the parallel beam tomography, the sources rk are located on 

the circle with center in the origin O,   2 2 2
RC x,y | x y R   . The radius R is big 

enough so that the image to be covered with the beams starting from the source. 
Usually in discrete tomography, a small number of projections are available, the 

reconstruction being influenced by the position of the sources and the number of 
beams.  

 

 
Depending on the way in which the projections are measured, using the line 

or strip integrals, the values of aij are computed in different ways. In the case of line 
integrals (Figure 2.5a) the value of aij is the length of the intersection of line I with 
unit square j. In the case of strip integrals Figure 2.5.b) the values of aij is the 
common area between the beam i and unit square j. In the following sections it is 
considered that aij=1. 

detector detector 

source 

Figure 2.5. (a) Left: Parallel beam tomography using line integrals; (b) Right: Parallel beam 
tomography using strip integrals 

(b) 

source 

(a) 

BUPT



24     Discrete Tomography on the Square Grid. An Overview – 2. 

Now let r={r0,…,rN} be a set of real numbers in the interval 
πR πR

,
2 2

 
 
 

satisfying r0<r1<…<rN called the parallel beam parameters. The equation of a line L 
which depends on r, the distance L from the origin, and θ is: 

     2L r ,θ x,y : x cosθ y sinθ r     (2.8) 

and the equation of the strip  θS r ,r  is: 

     2S r ,r ,θ x,y : r x cosθ y sinθ r       (2.9) 

Any point (x, y) on the line L, that depends on a specified r and θ, satisfies 
the equation x · cos θ+ y· cos θ = r.  

Figure 2.6 shows the parallel beam geometry. Line x · cos θ+ y· cos θ = r 
has the angle θ with the x-axis and has distance r to the origin.  

 
In real situation the projections are usually acquired with an error. The noise 

projection data can be added to the computed projections generating a Gaussian 
noise.  

The solution of the PB(r) reconstruction problem in the parallel beam model 

is equivalent to finding a solution of the linear equation system 

 Bx b  (2.10) 

where x is a binary vector, B is the projection matrix and b is the vector of 
prescribed line sums.  

Because of the measurement errors, equation (2.10) has no exact solution. 

This is why it is better to find a binary vector x which satisfies at least 

 

r 

O L(0, θ) 

L(r, θ) 

Figure 2.6. Parallel beam geometry. 

x 

y 
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approximately equation (2.10). Actually, a possible way of solving (2.10), at least 
approximately, is to reformulate it as an optimization problem and as an iterative 

reconstruction problem that uses the two-projection network flow problem. In the 
next sections the reconstruction will be tackled as a network flow problem and as an 
optimization problem, more exactly as an evolutionary algorithm. 

2.4.  RECONSTRUCTION AS A NETWORK FLOW PROBLEM 

There exists a correspondence between the reconstruction problem of binary 

images represented on square grid using two of its projections and the problem of 
finding a maximum flow in a certain graph. In this chapter we describe how the 
network flow algorithms can be used to solve the image reconstruction problem on 
square grids. Firstly we describe the network flow algorithm for two projections of 
the image. Then we describe an algorithm for reconstructing binary images from 
more than two projections. 

The first to describe the two-projection reconstruction problem in the 

context of flows in network was Gale, in 1957 [Gal57]. In 1956 Ford and Fulkerson 
[For56], in their seminar paper presented an algorithm for computing a maximum 
flow in a network, which can be used to solve the two-projection reconstruction 
problem. Starting from their description, Batenburg [Bat06b][Bat08] proposed an 
iterative algorithm for reconstructing binary images from a small number of discrete 

and continuous X-rays. The algorithm considers that the reconstruction problem for 

two projections on the square grid can be efficiently solved, as a case of the 
network flow problem in graph, in polynomial time. The proposed reconstruction 
procedure is an iterative one, and in each iteration a new reconstruction is obtained 
using two projections together with the result obtained in the previous 
reconstruction. Section 2.4.1 presents the two projection reconstruction problem in 
the context of network flows. Using the network flow algorithm to resolve the two 
projection problem, in section 2.4.2, an iterative algorithm that uses a small number 

of projections is described.     

2.4.1. TWO PROJECTION RECONSTRUCTION 

Firstly the two projection reconstruction algorithm based on weighted 
network flow approach was presented in [Slu82][Bat06b][Bat08]. The approach of 

reconstruction of binary images from two projections as a network flow method was 
studied by several authors [Gal57][For56][Slu82][Ans83]. Next, the two-projection 

reconstruction problem is presented. 
A binary two projection image is considered to be a mapping 

{1,…,m}×{1,…,n}→{0,1} which assigns the value 0 or 1 to each grid cell of a two-
projection grid. Let X be a binary two-projection image, and |X| the cardinality of 
the image A. Let θ1, θ2Є [0,2π) be two projection angles, and p1 : L1→  and  p2 : 

L2→ two given functions (the projections associated to the projection angles θ1, 

θ2), where L1=(L1,1,…,L1,|L1|)and L2=(L2,1,…,L1,|L2|)are the set of line projections 
associated to angle θ1, θ2. The problem that has to be solved is the construction of 
an image X such that P1=p1and P2=p2, where Pk, k=1,2 are the projections of image 
X along the projection angles θ1and θ2. 

 The representation of a binary image as a two-projection image is an 
approximated one because there are cases when there is no two-projection image 

corresponding to the scenario – the value of the projections equals the measured 
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projections. That is why it is necessary to be found a solution that corresponds 
approximately to the acquired projection values. So, let Tk=∑pk, k=1,2, be the 

projection sum for projection angle θk. One has to construct a binary image X such 

that Tk=|X| and 1 1 2 21 1
P p P p   is minimal, where 

1
 means the sum-norm.  

The network flow problem in a particular graph can be efficiently used to 
solve the previously presented reconstruction problem, by incorporating prior 
knowledge about the unknown image in the reconstruction using a weight function 

[Slu82][Bat08]. In this way considering two line projection values p1 and p2 that 

correspond to the two projection angles 1θ and 2θ respectively, considering Tk, 

k=1,2 as being the projection sum and W:X→  as a weight map, one has to 

construct X such that P1=p1 and P2=p2 and the total weight ∑xЄXW(x) is maximal 
[Bat07a]. The weighted network flow approach was used first in [Slu82] for the 

reconstruction of a medical image of the left ventricle using a prior information. This 
weights map is often utilized for reconstruction of an image making use of more 
than two projections. Such an algorithm that uses more than two projections will be 
presented in the next section. 

For describing the image reconstruction problem in the context of flows in a 

graph, with the triplet (X, θ1, θ2) a direct graph  G V ,E , where V is the set of 

nodes or vertices and E is the set of edges or lines, is associated. Figure 2.7 shows 
the basic structure of such a graph. The set V contains a nodes, the source, a node 

t, the sink, one node for each strip projection angles 1 2θ ,θ . The so called line nodes 

nk,i corresponds to Lk,i. The set of edges E of G contains the pixels edges, the 
connections between every pair (n1,i,n2,j) of nodes, and the lines that connect the 
source s to the line nodesn1,i and the line nodes n2,j to the sink t. 

The book [Ahu93] offers an accurate introduction to the network flow 
problem. 

The capacity function 0C : E   assigns to each edge e E a positive 

real value as follows: 

 

  
  

  

1,i 2, j 1 2

1,i 1i 1

2, j 2 j 2

C n ,n 1 for 1 i | L |,1 j | L |

C s,n p  for 1 i , j | L |,

C n ,t p for 1 i , j | L | .

    

  

  

 (2.11) 

The flow in G is a mapping 0F : E  such that    F e C e for all e E

and such that for all  v V \ s,t :      
 w:w,v E w: v ,w E

F w,v F v ,w

 

  . The size of 

a flow F is equal to 

        
1 2 1

2

1,i 2, j 1,i 2, j

1 i L 1 j L 1 i L

1 j L

F F s,n F n ,t F n ,n

     

 

     . A flow is an 

integral flow if   0F e  for all e Є E. For any integral flow F in the associated 

graph, for all e Є E\{(s,n1,i),(n2,j,t)}, F(e) Є {0,1}, because the capacity of all edges 

(n1,i,n2,j) is 1. 
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Let Ф be the edge to point mapping of G. 
The flow corresponding to a binary image X is defined as a mapping 

XF : E {0,1} which has the values: 

      1,i 2, j
X 1,i 2, j

1               if n ,n X
F n ,n

0 otherwise

 
 


 (2.12) 

The cost function assigned for each edge determines the cost of sending a 
certain amount of flow through that edge. The cost function depends on the weight 
map W and has the values: 

Figure 2.7. Basic structure of the associated graph [Bat08]. 
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     
  

  

1,i 2, j 1,i 2, j 1 2

1,i 1

2, j 2

U n ,n W( n ,n )  for 1 i | L |,1 j | L |

U s,n 0                       for 1 i | L |,

U n ,t 0                       for 1 j | L | .

     

  

  

 (2.13) 

Using the fact that the two-projection reconstruction problem can be solved 

efficiently with the network flow method using two projections, an iterative 
algorithm can be considered, to reconstructed images using more than two 

projections. In the iterative algorithm, in each iteration, a new reconstruction is 
obtained using two projections and the result obtained in the previous 
reconstruction. In this way, the obtained reconstruction becomes closer to the 
original image. Next section describes briefly such an iterative algorithm for the case 
of more than two projections.  

2.4.2. ITERATIVE RECONSTRUCTION USING MORE THAN TWO PROJECTIONS 

The previous section presents the formulation of the two projection 
reconstruction problem as a network flow problem that leads to a good binary 
solution in the case of parallel beam projections. Considering more than two 
projections, let θ1,…,θd be the given different projection angles and pk:Lk→  given 

functions. The reconstruction problem consists of constructing an image X such that 

Pk=pk fork=1,…,d. 
 In [Bat06b][Bat07a] an iterative algorithm to solve the binary image 

reconstruction problem using more than two projections, is presented. The proposed 
approach uses the fact that the two projection problem can be effectively solved as 
a network flow problem. In each iteration the algorithm solves the two projection 
problem using a new pair of projection angles each time. Also the concept of the 
weight map is used, that is computed using the reconstruction from the previous 

iteration, in this way the new reconstruction incorporates the previous one. A similar 
approach was also described in [Gri00] but in this approach the smoothness 
assumption is not used. The basic steps of the algorithm proposed by Batenburg are 
presented in the Pseudocode sequence 2.1 [Bat07a]. 

The first step of the algorithm is the generation of a starting solution. The 
starting solution can be generated in different way and it has to offer a good 

approximation of the image to be reconstructed. The first step is to find a real-
valued solution. One way in which a real-valued solution can be found, is by using a 
Simultaneous Iterative Reconstruction Algorithm (SIRT) [Kak01]. Another solution 
can be to solve a real-valued relaxation of the binary tomography problem, using an 
iterative method considering a fix number of iterations [Tan71]. Besides these 
algorithms, the initialization of the initial image with equal values [Bat06a] can also 
be considered as a good solution. After finding a real-valued starting solution the 

binary starting solution is computed by solving a min-cost max-flow problem for the 
selected pair of projections for the first iteration. The values of the real-valued 
solution are used as pixel weights for the corresponding network flow problem. 
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 The pixel weights for all the pixels in the image are computed, in each 

iteration, depending on the value of the pixel obtained in the reconstruction from 

the previous iteration and on the values of the pixels in a neighborhood. There can 
be several ways in which one can compute the pixel weight. In 
[Bat06b][Bat07a][Bat08], the author proposed different possibilities in which the 

weight function can be defined. 
In every iteration a new pair of projection angle different from the one used 

in the previous iteration is selected. When the number of projections is small there 
are considered all the possible pairs of two projection angles, in order to avoid 
cycling. If there is a bigger number of projection angles not all the projection angles 
are suitable for solving the two-projection problem. There can be several criteria for 

choosing the projection pair in a new iteration. In [Bat07a][Bat08] there are some 
criteria presented for choosing the new pair of projections in the case of discrete 
and continuous X-rays. 

The stopping criteria used imply the computation of the distance between 
the prescribed projection and the values of the projections in the current 

reconstructed image: 

  
d

k k

k 1

X P p



   (2.14) 

 The algorithm terminates if no improvements has been made in the 
projection distance during a constant number of iterations. Moreover if the 
projection distance becomes less than a certain constant the algorithm will 

terminate after a number of default iterations.  

 

Compute the real-valued start solution  * *
ijX x  

Compute the binary start solution 
0X  by solving a min-cost max-flow problem for angles 

θ1 and θ2, using  *
ij ijw x  

i:= 0; 

While (stop criterion is not met) do 

            i := i + 1; 

           Select a new pair of angles θa and θb    1 a b k , 

           Compute a new solution X
i 
by solving the min-cost max-flow problem for directions  

            θa and  θb, using a weight function; 

End While 

 

Pseudocode sequence 2.1. Basic steps of the algorithm [Bat07a] 
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2.5. RECONSTRUCTION AS AN OPTIMIZATION PROBLEM 

As described in the previous section, the solution of the reconstruction 
problem is equivalent to find a solution that minimizes as much as possible the 
distance between the prescribed projections and the values of the projections in the 
reconstructed image.  

The iterative method provides a binary solution but a big number of 
projection values are needed in order to obtain the solution.  

In discrete tomography applications, an important property of binary images 
is that that the number of projections is usually much less than the number of 
unknowns. This means that several solutions exist. A possible way to solve the 
reconstruction problem using a small number of projections, at least approximately 
is to reformulate it as an optimization problem. Optimization techniques search the 
best of the solution, by measuring the quality of the solution using an evaluation 
function. 

An evaluation function f : D   is defined over a domain D with values in 

the set of real numbers. The best solution means finding a value x Є D which gives 
the minimum of the function f: 

 min
x D

f (x) min f (x)


  (2.15) 

If the evaluation function does not reflect the goodness of the solution, 
optimization algorithms cannot guarantee finding a good solution to the problem. On 
the square grid, the reconstruction problem was efficiently solved by using genetic 
algorithm [Nak94][Val08], naïve genetic algorithm [DiG10], or memetic algorithm 
[Bat05][DiG08]. In the proposed solutions, the authors proposed more types of 
evaluation functions. In the case of the memetic algorithm, one should find the 

minimum of the objective function defined as the distance between the prescribed 
projections and the values of the projections in the reconstructed image. In the 
following section the memetic algorithm approach is considered. 

2.5.1. OVERVIEW OF MEMETIC ALGORITHM APPROACH 

Memetic algorithms (MA) [Mos89] were introduced by Moscato in his 
technical report in 1989. MA’s are inspired by Darwinian principals of natural 

evolution [Daw83], that provides a unifying framework governing the evolution of 
any complex system, and Dawkins’ notion of a meme [Daw76] that is “the basic unit 
of cultural transmission, or imitation”. A memetic algorithm can be considered as a 
combination between population-based hybrid genetic algorithm (GA) and individual 
learning procedure that performs local search. A presentation of the memetic 
algorithm is included in [Gar09]. 

In the memetic algorithm the population is initialized randomly or using a 

heuristic. For selecting the new population a selection algorithm identical to those 
from genetic algorithms is used. Also in the generation of new individuals from two 
selected parents, classical operators of crossover and mutation are used. For 
improving the fitness each individual makes local search using a local hill climbing. 
Using the local search in memetic algorithm, the local optimum is more efficiently 
found. Pseudocode sequence 2.2 presents the steps of the memetic algorithm, and 

respectively shows the basic steps for a hill climbing local search [Gar09]. 
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Memetic algorithms search for the best solution using a population of 
agents, not a single agent. In each step a population of solutions is processed, 

considering agents from many points in the search space, in this way being assured 
a better chance to find the global optimum. The generation of the new population 
with better solutions depends on the values of the evaluation function called fitness 
in genetic algorithms. Better agents, which represent better solutions, have a higher 
probability to survive the evolution process than agents with worse fitness. In the 
case of reconstruction methods using memetic and genetic algorithms the 

(approximate) global optimum of the fitness function is found but it is not sure that 

the evaluation function is relevant to the problem, describing the goodness of a 
particular agent. 

 

  
As in the case of reconstruction of binary images, the measured projections 

are known, it is advantageous to generate the initial population of agents by using 

this information so that the agents to be as fit as possible and the search for the 

 

Encode solution space; 

Set population_size, generation_size, generation=0; 

Set crossover_rate and mutation_rate; 

Initialize population; 

While(generation <generation_size) do 

         Evaluate fitness; 

         For(i=1 to population_size) 

                Select parents; 

                If(random(0,1) <= crossover_rate) then 

                         Child = crossover(parents); 

                End if 

                If(random(0,1) <= mutation_rate) then 

                          Child = mutation(); 

                End if 

                Repair child if necessary; 

                While (termination condition is not satisfied) do  
                           New solution = neighbors(best solution);  
                           If new solution is better than actual solution then  
                                   Best solution = actual solution  
                            End if  
                End while 

           End for 

           Add offspring to new generation 

           Generation=generation+1; 

End while 

 

Pseudocode sequence 2.2. Steps of a generic memetic algorithm [Gar09] 
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optimum to be easier. Among the algorithms used are the network flow algorithm 
[Gal57] and Ford-Fulkerson algorithm [For56]. 

The operators used in the case of memetic algorithms are the one specific 
for the genetic algorithm, crossover and mutation operators which lets the solution 
evolve toward an optimal or close to optimal solution. Beside these operators local 
search is performed by using the switch and compactness operators that improve 
the quality of the reconstructed images from a generation. 

The selection operator leads the evolution to an optimal solution by assuring 

the survival of the fittest solutions. The operator creates a new population 

containing agents with the best fitness values. This operation is usually a 
probabilistic one. The probability that an agent will be part of the new population, 
will survive, is given of its relative fitness in the current population. In the new 
population there may exists agents that have the same fitness value.  

For the crossover operator there are many possibilities. The basic idea is to 
combine randomly selected pairs of agents choosing different parts from each of the 
agents. In the end not all the agents from the population are used in the crossover 

process. Usually a random number of pairs of agents are selected for the crossover 
process. 

Selection together with crossover is the main power of genetic algorithms. 
However there is another operator called mutation which is used to protect the lost 
of local configurations of elements of an agent as a result of selection and crossover. 
The main principal of the mutation operator is to randomly change one element of 

an agent.  
Memetic algorithms perform a local search by using a hill climb operator 

based, in the case of discrete tomography, on the compactness and switching 
operators. 

The criteria used for stopping the evolution process is to use besides the 
verification if the solution is found, a generation size, or a condition in which it is 
verified if the best fitness in the population improved substantially in a number of 

previous generations. 
 Description of such algorithms used in the discrete tomography can be 

found in [Bat05][DiG08][DiG10]. Descriptions and related techniques are included 
such as implementation of crossover and mutation operators, hill climbing operator 
generation of the initial population, etc. 

2.6. CONCLUSIONS 

The chapter presents an overview of the problem of discrete tomography for 
images represented on the square grid. The first studied grid in discrete tomography 
was the square grid, because it uses Cartesian coordinate system. Optimization 
algorithms and iterative reconstruction based on network flow algorithm are two 
common methods in reconstructing images from the acquired projections presented 

above. In the following chapter another grid that can be used efficiently for the 
discrete tomography problem, the triangular grid is presented. 
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There are three possible regular grids, in the Euclidean space. Among these, 

the triangular grid can be used, in an efficient way, for image representation. In this 
chapter we describe the triangular grid and the image representation on the 

triangular grid, with their structure and properties. Subsequently, we illustrate what 
we mean by projections of an image represented on the triangular grid. Also we 

describe the binary tomography reconstruction problem for images represented on 
the triangular grid.    

3.1. INTRODUCTION 

In digital geometry (DG), the space consists of discrete points with integer 
coordinates. The Euclidean plane has three possible regular tiling or grid: square, 
triangular and hexagonal [Gru90] (see Figure 3.1). The square grids are widely used 
in digital geometry [Gon07][Bat06a][DiG10]. The hexagonal grid is also well-known 
[Her95]. In[Fay12] the hexagonal grid is described presenting the features of the 
hexagonal sampling scheme and the way in which hexagonal structures can be 
addressed to. Her [Her95], described the hexagonal grid using three coordinates of 

sum zero, because of its symmetric properties. The triangular grid is the third 
regular grid. Because of the triangular symmetry we will also refer to the triangular 

grid using three coordinates [Nag01][Nag03a][Nag02]. In the next sections the 2D 
triangular grid based on Nagy’s description in [Nag01][Nag03a][Nag02][Nag03b] 
and Grunbaum’s description in [Gru90] are described. 

In this chapter an overview of the triangular grid and its properties is 

presented. First some features and the coordinate representation of the triangular 
grid are described, introducing then the concept of images on this grid. A topological 
description and definitions for lanes and diamond-chains on the triangular grid are 
also presented.  

 
 
 

 
 
 

 

3. TRIANGULAR GRID 
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3.2. FEATURES OF TRIANGULAR GRID 

A digital image may be considered as a binary representation of a two-
dimensional image. Digital images can be mapped on a triangular grid, containing 
more information in the same image than in the case in which are mapped on the 
square grid.  

The triangular grid is formed by tiling the plane regularly with equilateral 
triangles. Triangular grids began to play an important role in geometric modeling. 
Many 3D scanners produce generally non regular triangular grids which at high 
resolution become close to the regular triangular grid. Also human retina is often 
modeled using a triangulation, namely the Delaunay triangulation [Cel00][Pac05]. 
Many studies and algorithms in computer graphics are made on the triangular grid. 
Also in digital geometry [Nag01][Nag04] many studies are made using the 

triangular grid. Nagy presented some properties of the triangular grid and defined a 
distance based on neighborhood relations in this grid [Nag02][Nag03a].  

In [Fon98][Fon01], Fontana and Rocchesso have demonstrated that a 2D 
medium modeled by a square grid can be also modeled by a triangular grid using 
13.4% less samples per unit area. This means that triangular grid sampling requires 
a less number of samples to represent the same information than square grid, 

reducing the storage data space. 
In the triangular grid the internal angle of the equilateral triangle is 60 

degrees. In consequence six triangles at a point cover 360 degrees. The Schläfli 
symbol of the triangular tiling is {3, 6}, 6 triangles around every vertex. The 
triangular grid gives a tighter arrangement than the square tiling [Xia05]. The nodes 
of the triangular grid are the centers of the densest possible circle packing. The 

packing density is 
π

12
 or 90.69%. Adjacent pixels in triangular grid are separated 

by one hundred twenty degree instead of ninety degree which permits a better 
representation of curved images. 

a b 

c 

Figure 3.1. Euclidean plane tiling with regular polygons (a) square (b) triangular (c) 
hexagonal. 
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The triangular tilling has a 6-fold rotational symmetry which means that it 
has higher symmetry than the square grid [Fay12]. Figure 3.2 shows the rotational 

symmetry of square and triangular grid sampling. Due to additional rotational 
symmetry an image sampled on a triangular grid suffers less interpolation error 
under rotation as an image defined on a square grid. The elementary vectors of a 

regular triangular tilling are given by 
1 / 21

,
0 3 / 2

  
    

   
 . 

 
 
The dual of the triangular grid is the hexagonal grid, the grid of triangular 

regions being equivalent with the grid of hexagonal nodes (see Figure 3.3). In the 
triangular grid there are three types of connectivity: three way connectivity, nine 

way connectivity and twelve way connectivity. One pixel has only one common edge 
and two common corners, having three 1-neighbors, nine 2-neighbors (the three 1-
neighbors and six more 2-neighbors) and twelve 3-neighbors (nine 2-neighbors and 
three more 3-neighbors) [Nag03b]. In Figure 3.3 the dark gray points represent the 
1-neighbors, the light gray points represent the 2-neighbors and the white points 
represent the 3-neighbors.  

 

 
 
 

 
In the triangular grid there are three types of distance measures; the 

distance between the pixel and the 1-neighbors, the distance between the pixel and 

the 2-neighbors which is 3 times than the distance between the pixel and the 1-

1 

2 3 

4 

5 
6 

1 

2 

3 

4 

0 0 

Figure 3.2. Rotation symmetry of (left) square and (right) triangular grid nodes. 

Figure 3.3. Neighborhood relations in the triangular grid of regions and the hexagonal grid of 
nodes. 
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neighbors and the distance between the pixel and the 3-neighbors which is 2 times 
than the distance between the pixel and the 1-neighbors (see  Figure 3.3). 

3.3. TRIANGULAR GRID IMAGE REPRESENTATION 

For the representation of points in the triangular grid three coordinates x, y, 
z are used. These coordinates depend one of the other since the point is part of a 

two dimensional plane. The coordinate system used for representing the triangular 

data is based on the coordinate system for the hexagonal grid denoted with 3* , 

proposed by Her [Her95]. The procedure for assigning the coordinate values to the 
points of the triangular grid is described by Nagy in [Nag01][Nag03a].  

Procedure 3.1.  (from [Nag03a]): Choose a point for the origin, whose coordinate 
values are (0, 0, 0). Take the three lines through the center of the origin triangle, 

which are orthogonal to its sides. Fix these lines as the coordinate axes x, y and z, 
as shown in Figure 3.4. The coordinate values are assigned to the points inductively. 
Let the coordinate values of a triangle A be known. Consider a triangle B, which has 
not coordinate values yet and has a common side with A. This common side is 
orthogonal to one of the coordinate axes. According to the direction of this axis, the 
corresponding coordinate value of A is increased or decreased by 1 to get the 

corresponding coordinate of B. The other two values of A and B are equal. 

In the triangular grid there are two types of grid-points, called triangle-
pixels, based on the orientation of the triangle, even points ▲ and odd points ▼.For 
the even points the coordinate sum is zero and for the odd points the coordinate 
sum is one (see  Figure 3.4). 

 
Figure 3.4. Coordinate system of the triangular grid. 
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In [Nag03a], Nagy gave the description of the neighborhood relation on the 
triangular grid by using the coordinate values. 

Definition 3.1.: (from [Nag03a]): Let p and q be two points on the triangular grid. 
The ith coordinate of the point p is indicated by p(i) (i=1,2,3), and similarly for q. 
Then the points p and q are m-neighbors (m=1,2,3),  if the following conditions 
hold: 

 
p(i) q(i) 1, for 1 i 3,

p(1) q(1) p(2) q(2) p(3) q(3) m.

   

     
 (3.1) 

3.4. TOPOLOGY OF THE TRIANGULAR GRID 

 In digital geometry and image processing, topology plays an important role. 

The topological description of a grid contains more information about the image than 
the usual description. Using the topological description not only the pixels of the two 
dimensional image can be stored, but also the lower dimensional segments, the 
edges and the points separating the pixels. Nagy proposed in [Nag12] a description 
of cellular topology on the triangular grid. For topological calculations regarding the 

cell complex concept he made a modification for a two dimensional image, which 

contains not only two-dimensional pixels, but one dimensional edges and zero 
dimensional points. For addressing the zero and one dimensional cells of the 
triangular grid, beside the triangle pixels, the edges between two neighbor triangles 
and their endpoints are used. The elements of the triangular grid are addressed   
using coordinate triplets similar to the method given by Kovalevsky 
[Kov04][Kov08]. In order to define a coordinate system that will address the edges 
between two neighbor triangles and their endpoints, the (x, y, z) coordinates triplet 

is replaced by (2x,2y,2z). In this coordinate system, the coordinate sum of the 
even-triangles (▲) is zero and the coordinate sum of the odd-triangles (▼) is two 

(see Figure 3.5).  
The coordinate triplet for an edge between two 1-neighbor triangles 

 1 1 1x ,y , z and  2 2 2x ,y , z is 1 1 1 2 1 2x x y y z z
, ,

2 2 2

   
 
 

. In the triplet there are 

two even and one odd values and the sum of the coordinate values of every edge is 

one. Considering the gridlines orthogonal to the coordinate axis the edges are 
situated on these gridlines, in the way that for the edges orthogonal to axis x the 
odd coordinate is the first element, for the edges orthogonal to axis y the odd 
coordinate is the second element and for the edges orthogonal to axis z the odd 
coordinate is the third element [Nag12].  

The nodes of a triangular grid, form a hexagonal grid and so they can be 

addressed with triplets that have a fixed coordinate sum 
[Nag03b][Nag08a][Nag08b]. For an endpoints, the nodes, coordinate triplet has 
only odd values and there sum is one [Nag12].  
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3.5. LANES AND DIAMOND-CHAINS ON THE TRIANGULAR GRID 

The definition for the lanes on the triangular grid was given by Nagy in 
[Nag03a]. In this section, the definition for the diamond-chains on the triangular 
grid is also given. 

Definition 3.2.: The points, which have the same value for a corresponding 

coordinate, form a lane. 

Definition 3.3: The points, for which two coordinate values, have a fixed 

difference, form a diamond-chain. 

A lane consists of even and odd triangle pixels alternately for which a 
coordinate value is fixed, e.g., x 2  form a lane. Figure 3.6.a shows a lane in y 

orthogonal direction (green) and a lane in z orthogonal direction (pink). Also 
diamond-chains of y parallel direction (yellow) and diamond-chains of x parallel 
direction (blue) are shown in Figure 3.6.b.  

The points of a lane, direction that is orthogonal to the coordinate axes, 
have one fix coordinate value and the other two coordinate values vary with  1 

unit. The coordinates of the point from a diamond-chain, direction that is parallel to 

the coordinate axes, fulfill the condition that two coordinate values have a fixed 

Figure 3.5. The topological coordinate system for a segment of the triangular grid, 
from [Nag12]. 
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difference. For example, Figure 3.6.b the yellow diamond-chain has the points 
{(p(1), p(2), p(3))|p(1)-p(3)=1}. 

 
 
 
 
 

 
Considering the three lanes, for the directions orthogonal to the coordinate 

axes, there are two points in the intersections of two lanes (Figure 3.6.a),and only 

the third lane can distinguish these two points since two of their coordinate values 
are common. In the case of the three diamond-chains, for the directions parallel to 

the coordinate axes, there is one or no point in the intersection of two diamond-
chains. 

A lane of the triangular grid can be described using the pixel coordinates. A 
more easy way of addressing and constructing the lanes and diamond-chains of a 
triangular grid is by using the topological description from [Nag12], and address to 
the points that separate the pixels.  

3.6. CAPTURING AND DISPLAYING OF TRIANGULAR SAMPLED 

IMAGES 

Since devices usually capture square sampled images, these images have to 

be manipulated using software tools to obtain triangular sampled images. 
Resampling is the manipulation of data sampled on one grid to produce data 
sampled on a different grid. Resampling methods were proposed especially for the 
hexagonal grid. Watson and Ahumada [Wat89] proposed the hexagonal orthogonal-
oriented pyramid method for resembling, in which the affine relationship between 
the square and hexagonal lattice points is used. Another approach was of Fitz and 
Green [Fit96] whom approximated the hexagonal lattice with a brick wall obtained 

by shifting by half a pixel the pixels in alternate rows. Her [Her94] proposed an 
interpolation method that halves the vertical resolution. Also other least squares 
approximation of splines methods were proposed for resampling square images onto 
hexagonal ones [Van02][Van03][Van04]. Since the triangular grid is the dual of the 
hexagonal grid these sampling methods can also be adapted for the triangular grid. 
Refer to Appendix A for detailed description of the formulas used for converting 
coordinates of pixels on a triangular grid into corresponding pixel coordinates on a 

square grid and vice-versa. Hartman and Tanimoto [Har84] approach resample in 

(b) (a) 

Figure 3.6. Examples of (a) lanes orthogonal to coordinate axes and(b) diamond-chains parallel 
to coordinate axes. 
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the best way a triangular grid. In the approach a hexagonal lattice is constructed by 
generating triangular pixel from two square pixels that are vertically adjacent. The 

triangular pixels obtained in this way are almost perfectly equilateral triangles. The 
triangles have a base angle of 63.4o and a top angle of 53.2o.  Figure 3.7 shows the 
resampling scheme proposed by Hartman and Tanimoto. The black squares indicate 
the square grid pixels. 

 
 

 

 
 
 
 
 
 
 

 
 
 
 
 
 

3.7. TRIANGULAR GRID IMAGE RECONSTRUCTION PROBLEM USING 

PROJECTIONS 

In this section it is illustrated what means the hexagon-shaped image and 

how this image should be represented using the triangular grid. In order to 
understand the reconstruction problem of hexagon-shaped images on triangular 
grid, a brief presentation of the triangular grid projections is made.  

A binary hexagon-shaped image represented on the triangular grid is a 
binary hexagonal set of size m×m×m.  The number of pixels in such a hexagonal 
set is 6m2.  Because discrete tomography and digital image processing are strongly 
related, the binary hexagonal sets are called images and the entries of the sets are 

called pixels with values black (0) and white (1). Using the triangular grid 

representation of the image, there are two types of pixels which depend on the 
orientation of the triangles, even (▲) and odd (▼). Since the grid is a 2D one, the 

coordinate values are not independent of each other, but each triangle of the shape 
▲ is addressed with a triplet having sum 0, and each triangle of the shape ▼is 

addressed with a triplet with sum 1. Figure 3.8 shows the coordinate representation 
of a hexagon-shaped image of size m=3 represented on the triangular grid.  

Figure 3.7. Hartman and Tanimoto resampling scheme 
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A binary hexagon-shaped image is a set of pixels A={aijk}, i, k Є [-m+1,m], 

j Є [-m,m-1]  and i, j, k satisfy the following constrain i+j+k=0 or i+j+k=1, 
depending on the orientation of the triangle pixel. 

As an example, a simple 2D binary hexagon-shaped image of six pixels and 
some values is considered (see Figure 3.9). The image shown in Figure 3.9 is a 2D 
binary hexagon-shaped image and represents a simplification of the cross section of 
an object when the scanner beams pass through. 

 
 
 
 
 
 
 

 

 
 
 
 
 
 Three projections for the considered image are obtained pointing the beam 

source at three angles and generating the projections as shown in the Figure 3.10. 
In Figure 3.10, the three projection angles are π/6 (a), π/2 (b) and 5π/6 (c) degree 
with the x-axis.  

Figure 3.9. 2D binary hexagon-shaped image of six pixels, represented on the triangular 
grid. 

0 

1 

0 

1 

1 

0 

Figure 3.8. Coordinate representation of a hexagon-shaped image of size m=3. 
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These projections are the sum of the pixel values encountered by the beam 
along the path. After obtaining these 3 projections, the problem that has to be 

solved is how to determine the original hexagon-shaped image using the projections 

measured along the considered projection angles Figure 3.11. 

 
The reconstruction problem of a hexagon-shaped image from its projections 

is one that can have more than one solution for the same entering data. This means 
that for a specific set of projections corresponds more than one image.  

Taking into consideration the existing methods for the square grid, there are 
many possible methods that can be used to solve the image reconstruction problem. 
These methods are not studied and used, yet, for the triangular grid case. Images 
can be reconstructed from projections using reconstruction algorithms like algebraic 
reconstruction, Fourier central Slice theorem, filtered backprojection, network flow 

algorithm, optimization algorithms or other algorithms.  

Figure 3.11. Three projections of a hexagon-shaped image represented on the triangular grid 
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Figure 3.10. (a) First projection at angle π/6 degrees with the x-axis; (b) Second projection 
at angle π/2 degrees with the x-axis; (c) Third projection at angle 5π/6 degrees with the x-

axis. 
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3.8. CONCLUSIONS 

In image processing and computer graphics, triangular and hexagonal grids 
are used more and more fervently [Nag03b][Luk12][Fay12][Mid05].  

The aim of this chapter is to provide an overview of the triangular grid, its 
representation and some properties. The three coordinate representation of the 
triangular grid and also some topological aspects were presented. Because the 
structure of the grid contains two types of triangles - even-triangles and odd-

triangles-, a three coordinate system is used to address the points in a triangular 
grid. Also some important aspects concerning lanes orthogonal to coordinate axes 
and diamond-chains parallel to coordinate axes are introduced and explained.  

Traditionally, hardware for image capturing and displaying images has been 
based on the square grid. Unfortunately, for the moment there is no hardware 
equipment available for capturing and displaying triangular grid based images and, 
from our knowledge, there are no databases with images on the triangular grid that 

can be used to test image processing algorithms.  
In the next chapters a deeper mathematical analysis of the representation 

of projections and of the generation of a solution using binary tomography 
approaches based on triangular grid, are proposed.  
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The Radon transform represents the projection data obtained after a 

tomography scan considered for an unknown object. The inverse of the Radon 
transform can be used to reconstruct the original object from the measured data. 

This represents the mathematical support for tomography reconstruction, also 
known as image reconstruction. In this chapter the Radon transform mathematical 
formulation for the triangular grid is derived by the author. 

4.1. INTRODUCTION 

In tomography, the first phase is the generation of the set of projections, 

which mathematically is accomplished using the Radon transform. In this chapter 
the mathematical framework concerning the projections which are generated 
applying the Radon transform on  non-orthogonal basis, respectively with triangular 
grid basis, is described.  

The Radon transform is used for object detection from 1965 [Baz65].Then in 
1969, Rosenfeld describes this technique in his work [Ros69].  But neither of the 

authors identifies this technique as the Radon transform. As mentioned in section 
2.2, the Radon transform, named after the Austrian mathematician Johann Radon, 
is an integral transform consisting of the integral of a function over straight lines. In 
his work, Johann Radon showed how a function can be described in terms of its 
projections [Rad17]. The Radon transform is the mapping of the function on the 
projections. The inverse Radon transform is used to reconstruct images from their 

projections [Nat01][Nat011]. 

The proposed problem is to reconstruct an image or object using the 
triangular grid. In order to mathematically describe the projections on the triangular 
grid, the Radon transform is revised and modeled for the triangular grid. 

4.2. THE RADON TRANSFORM 

The basis vector that underlies the triangular grid is 

T
T 1 3

1 0 ,
2 2

 
    

  
, 

which means that there is one vector parallel to the x axis and a second one rotated 
with 120o clockwise from the first one considered. In order to address a triangular 
grid, three axes of symmetry of the triangle are used instead of two. The third one 

is  a linear combination of the other two axes. The corresponding coordinate scheme 

4. RADON TRANSFORM ON TRIANGULAR GRID 

BASIS 
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uses a triplet of coordinates (i, j, k) Є 3* corresponding to the distance from the 

lines x = 0, y = 0, and z = 0 respectively, and they obey the following rule: 
i+j+k=0 or i+j+k=1. 

A 2D object in the xyz triangular grid reference frame is considered and a 
beam L going through the object at angle θ, as shown in Figure 4.1The equation of 
the beam L-, is: 

           * 3 o
o

1
L r ,θ x,y,z : x z sinθ y z sin 60 θ r

sin60

  
       
  

 (4.1) 

where r is the distance of L from the origin and θ is the angle the normal 
vector L makes with the x axis. 

Any point (x, y, z) on the line L, with specific r and θ, satisfies the equation 

  0
0

1
(x z)sinθ (y z)sin 60 θ r

sin60
     where x+y+z=0 or x+y+z=1. 

 

 
 

If a function f(x, y, z) represents an unknown object, then its integral  over 
the line L(r, θ) is: 

  
L

I f x,y , z ds   (4.2) 

with (x, y, z) Є 3*  , x+y+z=0 or x+y+z=1, where ds is the differential 

element of the line. Figure 4.2 shows the differential element of the line L. 

y 

x 
 

θ 

 

 

 

Figure 4.1. Parallel beam, L, going through an object at an angle θ. 

L 
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 In order to write the equation (4.2) in terms of x, y and z, the Dirac delta 

function is used, in this way the above equation can be rewritten as: 

     0
0

1
I f x,y,z δ (x z) sinθ (y z) sin 60 θ r dxdy

sin60

 

 

 
      

 
   (4.3) 

with (x, y, z) Є 3*  , x+y+z=0 or x+y+z=1. 

In mathematics, the Dirac delta function [Dir27] or δ function is a 
generalized function that can be defined as the limit of a class of delta sequences. 
Function (4.3) is known as the Radon transform (or sinogram) of the 2D object f(x, 
y, z) over the line L(r, θ). In mathematics, the projection-slice theorem states that 

having an infinite number of one-dimensional projections of an object taken at an 
infinite number of angles, the original object f(x, y, z) can be perfectly 
reconstructed. So to get f(x, y, z) back, from the above equation means finding the 
inverse Radon transform. The result of the formula (4.3) is a numerical value, 

representing the line integral value. Figure 4.3 shows a projection line in which the 
results of these line integrals are accumulated. 

Considering many parallel lines and performing the same line integral of f(x, 

y, z) over each line, many radon transform integrals are obtained as shown in 
Figure 4.4. Since all the considered lines are parallel to line L, all of them have the 
same angle θ and different r’s. 

The projection shown in Figure 4.4 is a discrete function which depends on 
rand θ, called the total attenuation, and is denoted by: 

          
 

 

 
      

 
 

0
0

1
p r ,θ f x,y,z δ x z sinθ y z sin 60 θ r dxdy

sin60
(4.4) 

 

Figure 4.2. The differential element of the line L 
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Figure 4.3. A projection line - the line integral of f(x, y, z) on line L. 
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Figure 4.4. Radon transform integrals 
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The Radon transform p(r, θ) at angle θ is defined as the integral of function  

f(x, y, z) with (x, y, z) Є 3*  ,z=-x-y or z=1-x-yfor all x, y and z which satisfy the 

equation   0
0

1
(x z)sinθ (y z)sin 60 θ r 0

sin60
      . The coordinates (r, s) 

are related to (x-z, y-z) by a rotation matrix: 

 
 

 

0

0 0

sinθ sin 60 θ
r x z1

s y zsin60 sin 60 θ sinθ

 
     

     
     

 

 (4.5) 

 
 

 

0

0 0

sin 60 θ sinθ
x z r1

y z ssin60 sinθ sin 60 θ

 
     

     
     

 

 (4.6) 

Since (x-z, y-z) and (r, s) are related by a rotation transformation, shown in 
equation (4.5) and (4.6) (refer to Appendix B for detailed derivation), equation (4.4) 
can be written as: 

       0 0
0

1
p r ,θ f r sin 60 θ s sinθ, r sinθ s sin 60 θ ds

sin60





 
      

 
  (4.7) 

Sampling this projection function produces the discrete sinogram p(ri, θk). 

4.3. CONCLUSIONS 

The aim of this chapter is to derive the mathematical formulation of the 
Radon transform for the triangular grid. This transformation, that represents the 
equation of the projection, is used in the second phase of tomography, in the 
reconstruction of the hexagon-shaped images represented on the triangular grid. 

In the following chapter it is considered that the obtained projections are 
discrete functions and each projection is the flux of the beam on the object. 

Considering as an input the projections obtained using the Radon transform, in the 

next chapter a mathematical analysis of the solution using the minimum cost 
maximum flow algorithm for solving the reconstruction problem on triangular grid 
from three projections is proposed.  
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 The aim of this chapter is to formulate the problem of reconstruction of 

binary hexagon-shaped images represented on the triangular grid from two 
projections and using a third projection as a restriction, by reducing the problem to 

the minimum cost maximum flow problem.  

5.1.  INTRODUCTION 

The problem of reconstruction of binary images from few projections was 
studied by many authors. Most of the results use images that are defined on square 
grids and square lattices. The problem of binary image reconstruction can be 
modeled efficiently as a network flow problem. The first to describe the two-
projection reconstruction problem in the context of flows in network was Gale, in 
1957 [Gal57]. In his approach, he proposed a network flow algorithm for 

reconstructing matrices from their row and column sums. In 1956 Ford and 
Fulkerson [For56], in their seminar paper presented an algorithm for computing a 
maximum flow in a network, which can be used to solve the two-projection 
reconstruction problem. Several mathematical properties of the reconstruction 

problem on the square grid were derived using the network flow approach, by 
Anstee [Ans83]. The generalization of Gale’s results to the case of square lattices 
from any pair of directions was presented in [Bat06b]. 

In this chapter we develop a minimum cost maximum flow approach for the 
triangular grid case starting from the generalization of the basic two-projection 
problem from the square grid. Since a triangular grid can be associated with a three 
direction coordinate system, the proposed approach for the minimum cost maximum 
flow algorithm tries to incorporate three projections. In this way the method uses 
two basic projections and a third projection as a restriction. Moreover, since the 

intersection of a direction with a lane can result in two points, as shown in section 
3.5, in the next sections some special cases for modeling the reconstruction problem 
on triangular grid as minimum cost maximum flow problem are considered and 
described. 

5. MODELING THE RECONSTRUCTION PROBLEM ON 

TRIANGULAR GRID FROM THREE PROJECTIONS 

AS MINIMUM COST MAXIMUM FLOW PROBLEM  
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5.2. PRELIMINARIES 

The input of the reconstruction is the discrete function 

      0
0

1
p r ,θ f x,y,z δ (x z) sinθ (y z) sin 60 θ r dxdy

sin60

 

 

 
      

 
  , with 

(x, y, z) Є 3*  , which means that x+y+z=0 or =0 or x+y+z=1, where θ is the 

angle that each projection is generated at. This angle belongs to the interval [0, π). 

Considering that the number of the generated projections is d, then 
π

θ
d

  . Using 

these notations, p(r, θk) represents the projection at angle θk which is equal to 
π

k
d

. 

 

 
 

 
 
 

 

f(x,y,z) 

r 

y 

x 
z 

θ  

N/2 

N/2-1 

N samples 

p1 

p2 

pN 
R/2 

Radon transform 

p(r, θ) 

Projection at angle θ 
sampled at spatial 

frequency 2/R 

 

Figure 5.1. Radon transform representation 
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Let R be the smallest distance between 2 adjacent repeating cycles of 

intensities, and 
1

B
R

 be the largest spatial frequency present in the projection 

data. The Nyquist sampling theory states that the frequency at which the projection 
is sampled is no less than 2B. Using the sampling theory, the sampling frequency is 
fs=2B, so that p(r, θk) is sampled at an interval of width R/2. Let N be the number 

of samples obtained from the sampling frequency and 
N N

t , ,0,1, , 1
2 2

   . The 

result of sampling p(r, θk) is the sequence of numbers k
t

p ,θ
2B

 
 
 

, having different 

frequencies for different angle (see Figure 5.1). 

 
 

 
The equation of a line which depends on r and  θ is: 

       3 0
0

1
L r ,θ x,y,z * : (x z)sinθ (y z)sin 60 θ r

sin60

  
       
  

 (5.1) 

 This means that any point (x, y, z) on the line L satisfies the equation 

  0
0

1
(x z)sinθ (y z)sin 60 θ r

sin60
     . 

x 

z 

y 

Figure 5.2. Parallel beam geometry which contains the projection lines. 
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Figure 5.2 shows the parallel beam geometry which contains the projection 
lines for a projection angle θ. 

  In this chapter, the problem of reconstruction of a hexagon-shaped image 
from its projections measured along three projection angles, θ1, θ2 and θ3, is 
considered. 

The unknown image is considered as an hexagon-shaped image A={ai,j,k}, 

of dimension m×m×m, where i,k Є [-m+1, m], j Є [-m, m-1] and (i, j, k,) Є 3*  

with i+j+k=0 or i+j+k=1. Let Lk, k=1,2,3 be the set of projection lines for projection 

angle θk and the finite set Lk={LЄLk | LՈA≠Ø}. The elements of a line Lk are Lk,i, 

i=1,…,|Lk |. The image area represents the set of all points in 3*  which are 

between Lk,1 and Lk,N, N=|Lk |. 
 The projections Pk:Lk→  of image A for angle θk are defined as: 

  k
a L

P (L) A L f a


      (5.2) 

where f  is the characteristic function of A. 
 

5.3. THREE PROJECTION RECONSTRUCTION  

 The binary reconstruction problem from three projections on the triangular 
grid can be stated as follows: 

Problem 5.1: Let θ1, θ2 and θ3 be three different projection angles and p1, p2 and 
p3 the measured projection data for the angles θ1, θ2 and θ3. Construct a hexagon-
shaped image A such that  Pk=pk, k=1,2,3. 

 The function 
m m m

S : 0,1
 

    denoted by   i , j ,k

i , j ,k

S A a  with i, k Є 

[-m+1, m], j Є [-m, m-1] where (i, j, k) Є 3*  is the total projection of the 

hexagon-shaped image. 

When the measured projections are obtained from physical experiments, 
usually they contain errors. That is why, using three projections for the 

representation of the hexagon-shaped image it is possible to have zero images that 
correspond to the measured projections. In this case a solution, that has the 
projections as close as possible to the measured projections, for the reconstruction 
problem, is needed. 

The reconstruction problem from few projections, in particular for our 
hexagon-shaped image from three projections is usually undetermined. Because it is 

important for the reconstruction to closely resemble the original image, prior 
knowledge has to be included in the reconstruction algorithm. The prior knowledge 
about the unknown image is incorporated by using a weight for each triangular 
pixel. By using the pixel weight, the reconstruction problem can be stated as: 
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Problem 5.2: Let θ1, θ2 and θ3 be three different projection angles and p1, p2 and 
p3 the measured projection data for the angles θ1, θ2 and θ3. Let W:A→ be a given 

function. Construct a binary hexagon-shaped image A such that Pk=pk, k=1,2,3 and 

the total weight ∑aЄAW(a) is maximal. 

The basic idea used for the reconstruction of binary images represented on 
the square grid, from two projections as a minimum cost maximum flow algorithm 

was described by Gale in 1975 [Gal57]. In his approach, he proposed a network flow 
algorithm for reconstructing matrices from their row and column sums. 

Unfortunately there is no generalization of the minimum cost maximum flow 

approach considering the case of three projections.. For the above reconstruction 
problem stated for the case of a hexagon-shaped image represented on the 
triangular grid, our new approach is based on the idea to reduce it to the 
reconstruction problem from two projections with restrictions imposed by the third 
projection. In this way, the obtained reconstruction has similar projections with two 
of the measured projections and also has some similar values with the third 
measured projection.  

With the quadruplet (A, θ1, θ2, θ3) a directed graph G = (V, E) is associated, 
where V is the set of vertices and E represents the set of edges (see Figure 5.3).  
The set of vertices V contains a source vertex s, a sink vertex t, one vertex for each 
line of projection angle θ1and one vertex for each line of projection angleθ2. The 

vertex with label vk,i corresponds to Lk,i. Every pair of vertices (v1,i, v2,j), for which 
the vertices intersect each other in the image domain, is connected by an edge. This 
set of edges is denoted by Ep. Besides this set there are two other set of edges 

Es={(s,v1,i): i=1,…,|L1|} and Et={(v1,i,t): i=1,…,|L2|}. 

 

Figure 5.3. General representation of a graph G for the minimum cost maximum flow problem 
using three projection angles. 

s t 

 v1,1 

 v1,2 

 v1,|L1| 

 v2,1 

 v2,2 

 v2,|L2| 

. 

. 

. 

. 

. 

. 

(p3,1,…,p3,|L3|) 

capacity=p1,i, cost=0  capacity=p1,i, cost=0  

capacity(e) Є {0,1,2}, cost(e)=-w(e)  
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Each edge (u,w) Є E, u, w Є V, of G has associated a capacity c(u,w)≥0, a 
flow h(u,w)and a cost b(u,w). The third line of projection angle θ3 is used in the 

computation of the capacity associated to each edge (u,w). The value of the cost of 
each edge in Ep depends on the weight function. The cost of sending the flow 
through the network is h(u,w)·b(u,w). The proposed amount of flow to be sent from 

s to t is 
kL3

k ,i

k 1i 1

p / 3

 

 
 
 
 
 

 . 

For using the associated graph G for solving the reconstruction problem, a 

capacity function c :V V   is defined for the vertices from the source and to 

the sink, as: 

 
 

 
1,i 1,i 1

2, j 2, j 2

c s,v p for i 1,..., L

c v ,t p for j 1,..., L

 

 
  (5.3) 

The capacity of the edges between the layer of verticesv1,i and v2,j can has 
the values {0,1,2}, depending on the two projection lines orientation and on the 
values of the third projection measured for the projection angle θ3.The specific 
values of the capacity for some cases are detailed in the following sections. 

A flow in a graph is a function h:V×V→ with the following properties: 

Capacity constraints. For all u and w Є V, the flow along an edge (u,w) 
cannot exceed its capacity: h(u,w)≤c(u,w) 

Skew symmetry. For all u and w Є V\{s,t}, the flow from u to w must be the 
opposite of the flow from  w to u:h(u,w)=-h(w,u) 

Flow conservation. For all uЄ V\{s,t}the flow to a vertex is zero, except 
from the source and sink: ∑wЄVh(u,w)=0. 

The flow conservation implies that for all vertex u Є V\{s,t}

   
v V w V

h v,u h u,w
 

   . 

For solving the weighted version of the reconstruction problem, a cost 
function b:V×V→ is defined as: 

  
 

    

s t

p

0        for u,w E E
b u,w

W u,w for u,w E

  
 

 

 (5.4) 

where W is the weight function that associates to each pixel a weight value and Ф is 
a mapping which associates a pixel, or a set of two pixels, to each edge. 

Considering the upper constraints, the requirement of the problem is to 
minimize the total cost of the flow: 

    
u,w V

b u,w h u,w



  (5.5) 

In the construction of the associated graph G, the features of an image 
represented on the triangular grid are taken into consideration. Using as  support 
the triangular grid, the resulting bipartite graph is not complete, because not all the 

pairs of vertices are connected one to each other. The connection between two 
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vertices, v1,i and v2,j, depends on the intersection of the vertices in the image 
domain. The Pseudocode sequence 5.1 describes the basic steps in the construction 

of the minimum cost maximum flow graph which is associated with the quadruplet 
(A, θ1, θ2, θ3). In the graph, the cost function is computed using the values from the 
pixels weight map. 

 

 
 
Considering the coordinate axes for a triangular grid, six natural directions 

are possible, three directions orthogonal and three directions parallel to the 
coordinate axes. These six directions correspond to the six projection angles 

π π π 2π 5π
θ 0, , , , ,

6 3 2 3 6

 
  
 

 . In the next sections we describe the properties of the 

associated graph, considering the possible combination of two main directions: two 
parallel directions (parallel-parallel), two orthogonal directions (orthogonal-

orthogonal) and one orthogonal and one parallel direction to the coordinates axes 
projection, the third direction being chosen in a random way from the unconsidered 
projection angles. 

5.3.1. PARALLEL-PARALLEL TO COORDINATE AXES PROJECTION 

Considering the directions parallel to the coordinate axes it can be seen that 
they contain points for which the difference of the two coordinate values is the 

same.  In this case the direction is called diamond-chain; for example, the light blue 
color diamond-chain on Figure 5.4 is formed by the set {(i, j, k)|i- k=0}. 

Using for the two considered directions the directions parallel to the 
coordinated axes, two cases are possible, one in which the intersection of the two 
diamond-chains is one pixel (see Figure 5.4.a), and one in which the diamond-
chains do not intersect each other (see Figure 5.4.b). Mathematically, the three 
equations of the coordinate value are not independent of each other defining a 

subset of triplets, where the difference of two coordinates has a constant value. For 
example, considering a set {(u,u+l,u+q)|u,l,qЄ } where the first coordinate value 

uis given, the other two coordinate values depend on the first one.  However the 
sum of the values in these triplets can be divisible by 3, can have a remainder of 1 
by dividing with 3, being 1 mod 3, or can have a remainder of 2 by dividing of 3, 

 

Input: A compatible set of projections pk, k=1,2,3 
Step 1: Compute the vertices: 1 source vertex s, 1 sink vertex t, verticesv1,iand v2,j,  i, j = 
1,..,|Lk| 
Step 2: Compute the possible edges between the layers v1,iand v2,jbased on the features of 
the hexagon-shaped image. 
              k0=-i-j+2m-1; k1=-i-j+2m; 
              If k0 Є [-m+1,m] or k1 Є [-m+1,m] set the edge (v1,i,v2,j) 
Step 3: For each edge compute the capacity 
Step 4:  For each edge compute the cost   

Step 5: Output graph G 

 

 

Pseudocode sequence 5.1. Algorithm for computing graph G. 
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being 2 mod 3. In the first case, when the sum of the values in these triplets is 
divisible by 3, the intersection of the two diamond-chains consists of an even pixel 

(having sum 0) (0,0,0) by choosing u = 0 as  presented in Figure 5.4.a. In the 
second case, when the sum of the values in these triplets has a remainder of 1 by 
dividing with 3, being 1 mod 3, the intersection is an odd pixel (having sum 1);  for 
example (u, u + 2, u - 4) by fixing u = 1 gives the point (1, 3, -3). In the third 
case, when the sum of the values in the triplet has a remainder of 2 by dividing with 
3, being 2 mod 3, there is no intersection pixel; for example Figure 5.4.b: (u,u-1,u). 

 

 

 
 
 

 
 
For the generation of the three projections parallel to the coordinate axes, 

the following three angles are considered 1θ 0 , 2
π

θ
3

  and 3
2π

θ
3

 . In this case 

there are N=4m-1 projection lines for an angle θ , where m is the side length of the 

hexagon-shaped image (see Figure 5.5). 
Considering a hexagon-shaped image A={ai,j,k}, i, k Є [-m+1, m], j Є [-m, 

m-1] where (i, j, k) Є 3* , its projections P1,P2,P3:[0,1]N×N×N→ N  for the angles θ1, 

θ2 and θ3 are computed by summation of all entries in a x, y and z parallel to the 
axes direction of A. Figure 5.5 shows an example of a hexagon-shaped image with 
its projection values computed along the three diamond-chains.   

Using the associated graph G for solving the reconstruction problem a 
capacity is associated to each edge from Ep as follows: 

    1,i 2, jc v ,v 0,1 for i , j 1, ,N   (5.6) 

The capacity values over the edges (v1,i, v2,j) depend on the values of the 
third projection measured for the projection angle θ3. So, the value of the capacity 
is zero if the value from the third projection is zero. In all the other cases, the edge 
has a capacity value of 1. 

 

(a) (b) 
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For a given flow the size of the flow is  


 
1,i

1,i

s ,v V

h h s,v . Using the flow 

conservation constraint the size of the flow is also   
2, j

2, j

v ,t

h h v ,t  . In this 

case, in graph G all flow that leaves the source must pass through the edges v1,i and 

v2,j, which implies that the size of the flow is  
1,i 2, j

1,i 2, j

v ,v V

h h v ,v



  . Using this 

property, the flow in G has the values h(v1,i,v2,j)Є{0,1} for any edge (v1,i, v2,j) Є Ep, 
as the capacity is also {0, 1}.  

The value of the cost for any edge (v1,i, v2,j) Є Ep is given by: 

    1,i 2, j 1,i 2, jb v ,v W L L for i , j 1, ,N      (5.7) 

whereL1,iand L2,j are the lines from the two diamond-chains associated to the 
projection angles θ1 and θ2. The intersection of the two diamond-chains, if exists, is 

one pixel. 
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Figure 5.6 shows the construction of a graph associated to the hexagon-
shaped image from Figure 5.5 using the measured projection at projection angles 

corresponding to the parallel directions to the coordinate axes.  The lines between 
the two layers of vertices v1,i and v2,j,  represent flow 1. 

 

5.3.2. ORTHOGONAL-ORTHOGONAL TO COORDINATE AXES PROJECTION 

Considering, for the chosen set of three projections the directions 
orthogonal to the coordinate axes all the points on such a direction have the same 
value for a corresponding coordinate. These points form a line which is called lane.  

Two lanes that are not parallel have exactly two common triangles. So 
besides the two fixed coordinate values, they have the third coordinate value such 

that the sum of the three values become 0 and 1: i.e. one even pixel and one odd 
pixel, having two identical coordinates (the ones used for the network problem) and 
the third differs with one unit; e.g. considering directions x and y there are two 
points ai,j,k0 and ai,j,k1 where |k0-k1|=1 (see Figure 5.7).  
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Figure 5.6. The corresponding graph associated to the hexagon-shaped image from Figure 
5.5. The lines represent flow 1. 
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In the case of orthogonal direction to the coordinate axes there are N=2m 
projection lines for an angle θ, where m is the side length of the hexagon-shaped 
image. We developed an approach for solving the reconstruction problem for 
hexagon-shaped images on triangular grid using a maximum flow minimum cost 
graph representation model for three directions orthogonal to the coordinate axes in 
[Moi13a]. 

Considering a hexagon-shaped image A={ai,j,k}, i, k Є [-m+1, m], j Є [-m, 

m-1] where (i, j, k) Є 3* ,its projections for the 1
π

θ
6

 , 2
π

θ
2

  and 3
5π

θ
6

 , are 

computed by summation of all entries in a x, y and z orthogonal to the axes 

direction of A as presented in [Moi11]. In this way P1,P2,P3:[0,1]N×N×N→
N

, the 

reconstructed image projections, are defined as: 

 

i , j ,k 1,i

j m i , ,m 1

k m 1 i , ,m

i , j ,k 1,i

j m, ,m i

k m 1, ,m 1 i

a P     ,for i m 1, ,0

a P ,for i 1, ,m

     
     

    
      

    





 







 (5.8) 

 

i , j ,k 2, j

i m j , ,m

k m j, ,m

i , j ,k 2, j

i m 1, ,m j

k m 1, ,m j

a P     ,for j m, , 1

a P ,for j 0, ,m 1

    
    

     
     

    
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

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


 (5.9) 

Figure 5.7. Examples for orthogonal projection to coordinate axes 
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i , j ,k 3,k

i m 1 k , ,m

j m k , ,m 1

i , j ,k 3,k

i m 1, ,m 1 k

j m, ,m k

a P     ,for k m 1, ,0

a P ,for k 1, ,m

     
     

      
    

    





 







 (5.10) 

Assuming that the projection values are consistent, this implies that 

1,i 2, j 3,k

i m 1,m j m,m 1 k m 1,m

P P P

                  

    . Figure 5.8 shows an example of 

image with its corresponding orthogonal projections.  

A representation of a graph  G V ,E and its properties for the projections 

orthogonal to the axes are proposed in [Moi13a]. Considering the graph G = (V, E), 
the capacity value of each edge (v1,i,v2,j) Є {0,1,2}. The capacity of an edge 
(v1,i,v2,j) is 0, 1 or 2 because on the triangular grid the projection orthogonal to the 
coordinate axes for a specified direction contains both even and odd pixels (see 
Figure 5.7) and it depends on the third projection of projection angle θ3. Knowing 

that each possible edge corresponds either to one pixel or to two pixels for the 
hexagon-shape image A, the capacity of the edge is set to: 

 0 – if the intersection between the projection line at angle θ1 and the 

projection line at angle θ2 correspond two pixel, and the two values for the 
two possible measured projection for third projection angle θ3are both zero; 

 1 – if the edge corresponds only to one pixel, which implies two possible 

cases: 
(1) the first one is when the intersection between the projection line at 

angle θ1and the projection line at angle θ2 is one pixel and the value for the 
measured projection for third projection angle θ3is not zero (only one triangle shape 
is element of the image for a given pair of two coordinates, see Figure 5.7, e.g. 
pixel (3,0,-2)); 

(2) the second case is when the intersection between the projection line at 

angle θ1and the projection line at angle θ2 are two pixel, but one of the two values 
for the two possible measured projection for third projection angle θ3is zero (both 
triangle shapes are elements of the image for a given pair of two coordinates and 
the projection corresponding for one of the third coordinate is zero); 

 2 – if the intersection between the projection line at angle θ1 and the 
projection line at angle θ2 correspond two pixel, and the two values for the 
two possible measured projection for third projection angle θ3are not zero 

(see Figure 5.7); 
The flow and the cost functions are defined for a hexagon-shaped image, 

considering as the two main directions the directions orthogonal to x and y 
coordinate axes, and the third direction the one orthogonal to z coordinate axis. For 
the other two cases, the functions can be defined in a similar way. 

For a hexagon-shaped image A, in the case of orthogonal directions to the 

coordinate axes projections, the corresponding flow is defined by: 

  
0 11,i 2, j i m, j m 1,k i m, j m 1,kh v ,v a a        (5.11) 
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where i, j=1,…,N and k0=-i-j+2m-1, k1=-i-j+2m and i-m,k0,k1Є [-m+1, m], j-m+1Є 
[-m, m+1]. 

Figure 5.8 shows an example of a 2×2×2 regular hexagon-shaped image 

with its projections corresponding to the projection angles: 1
π

θ
6

 ., 2
π

θ
2

 , 

3
5π

θ
6

 , corresponding to the three lanes. 

 

 
To each edge (u, v) Є Ep a cost function is associated. This function 

determines the cost of sending a certain amount of flow through the edge. The cost 
depending on the weight map W and is defined as: 

    0 11,i 2, j i m, j m 1,k i m, j m 1,kb v ,v w w         (5.12) 

where i, j=1,…,N and k0=-i-j+2m-1, k1=-i-j+2mand i-m,k0,k1Є [-m+1, m], j-m+1Є 
[-m, m+1].   

The cost is computed using the weight function taking into consideration the 
fact that for the intersection of the projection line at angle θ1 and the projection line 
at angle θ2 consists of two pixels that lay on two different projection lines associated 
to the third projection angle θ3. 
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Figure 5.8. A 2×2×2 hexagon-shaped image with its projections corresponding to the 
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Figure 5.9 shows the associated graph for a hexagon-shaped image using 

the measured projection at projection angle 1
π

θ
2

 , 2
5π

θ
6

 , 3
π

θ
6

 which 

correspond to the orthogonal direction to the coordinate axes projections. The black 
lines between the two layers of vertices v1,i and v2,j,  represent flow 1 and dashed 
lines between the two layers of vertices v1,i and v2,j,  represent flow 2. 

 
  

 

5.3.3.  PARALLEL-ORTHOGONAL TO COORDINATE AXES PROJECTION 

In the case of considering the main two projection directions as one 
orthogonal and one parallel to the coordinate axes, two possible cases exits. Here a 
lane and a diamond-chain intersect each other. In this case, for the chosen pair of 

angles there are N1=2m projection lines for an angle θ1and N2=4m-1 projection 
lines for an angle θ1, where m is the side length of the hexagon-shaped image. 

The first possible case is when the lane is orthogonal and the diamond chain 
is parallel to the same coordinate axis (see Figure 5.10.a). In this case there is one 

intersection point. By fixing a coordinate value, and the difference of the other two 
values, there is only one way to obtain points with coordinate triplets with 0 or 1 
sum, there is no way to obtain both of them.  

 
For the generation of the associated graph G, one of the following pair of 

angles 1 2
π

θ 0, θ
2

   or 1 2
π 2π

θ ,θ
6 3

  or 1 2
π 5π

θ ,θ
3 6

  is considered as a first 

step, meanwhile the third angle 3θ  is randomly generated from the remaining 

angles. The associated capacity, flow and cost values respect the properties 
presented in section 5.3.1.   
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Figure 5.9.The corresponding graph associated to the hexagon-shaped image from Figure 
5.8. The black lines represent flow 1 and dashed lines represent flow 2. 
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The second case is when the lane is orthogonal to another axis than the one 

parallel with the diamond-chain (see Figure 5.10.b), when there are two intersection 
points, one even and one odd point, that differs by the parallel direction axes 
coordinate with one unit. Here there is a fixed coordinate, and the difference of that 
and another coordinate value is fixed: therefore having two fixed coordinate values, 
the third coordinate has two possible values so that their sum to be 0 or 1. For 
example, if the case of y parallel direction and z orthogonal direction is considered 

(see Figure 5.10.b.) there are two intersection points ai,j,k and ai,j+1,k.Considering an 
hexagon-shape image, the associated graph G, is generated using one of the pairs 

of angles 1θ 0 , 2
2π

θ
3

  or 2
5π

θ
6

 , or 1
π

θ
6

  , 2
π

θ
2

  or 2
5π

θ
6

  , or 1
π

θ
3

 , 

2
π

θ
2

  or 2
2π

θ
3

 meanwhile the third angle θ3 is randomly generated from the 

remaining angles. 

The associated capacity for the edges (v1,i, v2,j) has the values {0, 1, 2}. For 
a detailed description see section5.3.2.  

For a hexagon-shape image A, the flow in a graph corresponds to: 

    1,i 2, j 1,i 2, jh v ,v A L L   (5.13) 

whereL1,iis the lane associated to the projection angle θ1 and L2,j is the 
diamond-chain associated to the projection angle θ2. The intersection of the lane 
and diamond-chain is contains two pixels from the image A. 

 The value for the cost in a graph is given by the weight function W values 
for the two pixels obtained through the intersection of a lane L1 and diamond-chain 
L2: 

    1,i 2, j 1,i 2, jb v ,v W L L    (5.14). 

(a) (b) 

Figure 5.10: Two direction combinations (a) parallel-orthogonal same axes direction;               
(b) parallel-orthogonal different axes direction; 
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5.4. CONCLUSIONS 

In this chapter we modeled the reconstruction problem of hexagon-shape 
images on triangular grid using three projections using the problem of finding a 
maximum flow with minimum cost in a graph. For the case of triangular grid, the 
proposed minimum cost maximum flow approach, starts from the algorithm using 

two projections and incorporates a restriction generated from a third projection. 

Considering the natural directions of the triangular grid, six projection angles can be 
considered for the orthogonal and parallel to the coordinate axes directions. Using 
these six projection angles three main cases are possible in the generation of the 
associated graph. In the previous sections these three cases are described.  

Based on the proposed minimum cost maximum flow algorithm for the 
triangular grid, in the next chapters we propose two algorithms for solving the 
binary tomography reconstruction problem on triangular grid from the measured 

projections along few projection angles. Usually, the reconstruction problem from 
few projections is undetermined; the number of solutions can be very large. In 
order to solve this problem, we develop a memetic algorithm and an iterative 
approach for finding the reconstruction which minimizes an evaluation function. The 
evaluation function measures the quality of the reconstruction. The memetic 
algorithm uses the minimum cost maximum flow algorithm in the generation of the 

initial population. In the case of the iterative algorithm, in every iteration the 

minimum cost maximum flow algorithm is computed for a different triplet of 
projection angles. 
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One of the main problems in binary tomography on triangular grid is the 

reconstruction of a hexagon-shape image from acquired projection along few 

different projection angles. In this chapter we develop an original memetic 
algorithm, for reconstruction of binary hexagon-shape images from only six 
projections. The quality of the reconstruction is measured by the evaluation 

function. The proposed algorithm finds the reconstruction that minimizes an 
evaluation function. The algorithm generates an initial population using the 
minimum cost maximum flow algorithm. The reconstructed images evolve towards 
an optimal solution or close to the optimal solution, by using new crossover 

operators and guided mutation operators. The quality of the images is improved by 
using a new local search operators based on switching components and 
compactness. The benefits of the proposed algorithm were tested regarding the 
correctness, robustness and time of the reconstruction by generating hexagon-
shaped images from public available datasets of images. 

6.1. INTRODUCTION 

Binary tomography is one special case of discrete tomography, which aim is 

to reconstruct a binary image using projections from few different angles. These 

6. MEMETIC ALGORITHM FOR IMAGE 

RECONSTRUCTION IN DISCRETE TOMOGRAPHY 

ON THE TRIANGULAR GRID FROM SIX 

PROJECTIONS 
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problems are usually hard problems, meaning that the solution of the problem is 
usually undetermined; there are several solutions for the same problem. Also, if 

more than three projections are considered, the reconstruction problem is NP-hard. 
In order to handle this problem, optimization algorithms, such as evolutionary 
algorithms can be used. Evolutionary algorithms are generic population-
based metaheuristic optimization algorithms. In particular, in this chapter a memetic 
algorithm is proposed by the author, for resolving the binary tomography 
reconstruction problem on triangular grid for hexagon-shaped images. The proposed 

algorithm is somewhat analogous to the method given by Di Gesu in [DiG08]. 

Memetic algorithm represents a method bases on the concept of having a population 
of possible solutions that evolve towards a possible solution using genetic operators, 
crossover, mutation selections and local-search operators. 

In the following sections, we define our mutation and crossover operators 
for the case of hexagon-shaped images. Also, we propose the so-called switching 
components and a compactness operator, which are used in the local search 
operator for improving the quality of the solutions. A switching component consists 

of a set of points such that inverting their values the projection data do not change. 
A compactness operator eliminates some of the isolated points of an image. It also 
changes some of the projection values. In the case of the triangular grid data from 
six projection angles for the reconstruction of images are used. The used directions 
are the natural directions of the triangular grid, based on the symmetry of the grid 
and thus, they can easily be described by the symmetric coordinate frame. Three 

natural directions are orthogonal to the coordinate axes, using projections that 
gather the information from pixels sharing a coordinate value (projections by lanes) 
and the other three directions are parallel to the symmetry axes (projections by 
diamond-chains). We developed specific operators using the orthogonal directions to 
the coordinate axes in [Moi11][Moi13b]. Also, for the case of parallel to the 
coordinate axes directions we developed specific operators and presented them in 
[Nag14]. Using the developed operators for the orthogonal and parallel to the 

coordinate axes, in this chapter we propose a memetic algorithm that uses all the 
six natural projection directions of the triangular grid. 

6.2. PRELIMINARIES 

This section introduces some notations and defines aspects regarding the 
discrete tomography problem for hexagon-shaped binary images represented on 

triangular grid. The introduction of the discrete tomography problem on the 
triangular grid is based on the well known theoretical results [Her99][Her07]. 

A hexagon-shaped binary image represented on the triangular grid is 
considered to be a set of size m x m x m, as presented in Section 3.3. The number 
of pixels in such a hexagonal set is 6m2.  The pixels of an image have value 0, if the 
pixel is black which means that it belongs to the background and value 1, if the pixel 

is white it means that it belongs to the foreground. As the triangular grid is used for 
the representation of the images, there are two types of pixels even (▲) or odd 
(▼). The two orientations of the pixels are also called parities of the triangles 

[Nag07]. Since the grid is a 2D one, the coordinate values are not independent of 
each other, but each triangle of the shape ▲ is addressed with a triplet having sum 

0, and each triangle of the shape ▼ is addressed with a triplet with sum 1. In the 

triangular grid, the directions orthogonal to the coordinate axes are called lanes and 
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the directions parallel to the coordinate axes are called diamond-chains. A lane is a 
set of points that share a coordinate value.  

Given an angle θ and a direction r, the projection at the given angle is

      0
0

1
p r ,θ f x,y,z δ (x z) sinθ (y z) sin 60 θ r dxdy

sin60

 

 

 
      

 
   

where (x, y, z) Є 3*  , which means that x+y+z=0 or x+y+z=1. 

A projection of the triangular grid in a direction is a function that gives the 
number of points on each line which is parallel to that direction. Considering Lk, 
k=1,…,d as the number of samples obtained from a sampling frequency, the vectors 
p1,…,pd of nonnegative values measure the projection at angles θ1,…,θd where d is 
the number of generated projections.  

An example of image with its projections taken along the directions 
orthogonal to the coordinate axes is presented in Figure 6.1. 

 

 
 
 

 

6.3. ALGORITHM DESCRIPTION 

In the next sections the reconstruction problem considering the case of 

triangular grid representation of images, is formulated as a memetic algorithm. The 
proposed algorithm tries to reconstruct hexagon-shaped binary images that satisfy 

six projections, by creating an initial population generated using the minimum cost 
maximum flow algorithm. The reconstructed solution is obtained by using memetic 
algorithm operators designed for the case of hexagon-shaped binary images. In the 
following sections it is supposed that the reader is familiar with the concepts of a 
memetic algorithm. A description of it can be found in [Mos89] [Mos10].  

   Pseudocode sequence 6.1. Basic steps of the memetic algorithm.   
Pseudocode sequence 6.1 shows the basic steps of the method proposed by the 

author in this thesis.  

(a) (b) 

Orthogonal 

direction 
Projections 

x 2 2 5 0 
y 2 2 4 1 
z 0 3 5 1 

 

Figure 6.1. A hexagon-shaped binary image (a) and its representation (b), with its projections 
measured along the orthogonal to the axes directions. 
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As an input of the memetic algorithm the measured projections along the 

projections angles are considered. The first step is the initialization of the initial 
population of individuals by using the minimum cost maximum flow algorithm (see 
Section6.3.1). The stopping criteria of the main loop depend on the best found 
solution and on the number of generations. In the computation of the next 

generation, the crossover operator is applied using a random number of parents. 
The crossover operator is presented in Section 6.3.3. Subsequently, the guided 
mutation operator, described in Section 6.3.4, is applied. After applying the guided 
mutation, the compactness operator, described in Section 6.3.5, is used to improve 
the obtained individuals. To further improve the quality of the individuals a minimal 
hill climb operator based on the switching operators, proposed by the author in 

Section 6.3.6, are used. The order of the operators in the proposed memetic 

algorithm was experimentally established. 

 

Input: Projections measured along the considered projections angles 
Steps: 
Create initial population using the minimum cost maximum flow algorithm for 
triangular grid 
While (solution is not found or number of generations is not met) 
           While (number of children are not created) 
                      Generate children by lane and diamond-chain directions crossovers 
           End While 
Select new population from the union of the current population and the  
generated children 
           For (all images in the population) 
                  Apply a random guided mutation operator 
                  If ( fitness improved) then 
                       Replace image with its mutated version 
                  End If 
           End For 
           For (all images in the population) 
                  Apply compactness operator 
                  If (fitness improved) then 
                     Replace image with its compacted version 
                  End If 
            End For 
            For (all images in the population) 
                   Apply minimal hill climb operator based on rhombus switching 
                   Apply minimal hill climb operator based on hourglass switching 
                   Apply minimal hill climb operator based on rotation switching 
            End For 
End While 
Output: Reconstructed image 

 

      Pseudocode sequence 6.1. Basic steps of the memetic algorithm. 

BUPT



6.3. – Algorithm description    69 

The next sections describe in detail the basic steps of the proposed 
algorithm. The fitness function and the new operators are defined. Also the 

generation of the initial population is presented. 

6.3.1. INITIAL POPULATION 

 As we have discussed in Chapter 5,  a hexagon-shaped image A, to which 

three direction projections are associated, can be represented in a convenient way 
by using a graph G associated to a minimum cost maximum flow problem. This 
graph has a source s, a sink t and two layer of vertices between s and t, one layer 

of vertices v1,i for the first direction projection and one layer of vertices v2,j for the 
second direction projection. To each edge of G a capacity, a flow and a cost are 
associated. The value of the capacity depends on the values of the measured 
projections for the third direction. The obtained maximal flow corresponds to an 
image that satisfies the projections along the two main directions and some of the 
projections from the third direction.  

To compute the maximal flow of the graph the minimum cost maximum flow 

algorithm for the case of triangular grid can be used as shown in Chapter 5. The 
diversity in the initial population is guaranteed by the use of a binary randomly 
generated weight map which values are used in the computation of the cost. 

6.3.2. FITNESS FUNCTION 

The computation of the fitness function does not use any prior information 

about the image to reconstruct, only its projections are used; the following 
formulation [DiG08] of the fitness function on all considered directions d is used: 

    
d

1 k k

k 1

A l P ,p



 F  (6.1) 

  
kL

1 k k k ,i k ,i

i 1

l P ,p P p



   (6.2) 

where kp  is the measured projection along the projection angle θk and 

pk=(pk,1,…,pk,|Lk|) is the projection of the reconstructed image A calculated along the 

projection angle kθ . The value l1 is the distance of two same-dimensional vectors 

and is defined as the (norm of the) difference of the projections Pk of the 
reconstructed image and the measured projections pk along the projection angle θk. 
The goal of the algorithm is to minimize the function defined in equation (6.1). 
Actually, an error function is used to measure the fitness, there for the aim is to 
achieve images with 0 (or with very small) “fitness” value. 

6.3.3. CROSSOVER OPERATOR 

The crossover operator is applied on all the six natural directions to the 

axes. The crossover can be applied to the orthogonal and parallel direction to any of 
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the axes x, y and z. In the following paragraph the crossover applied on the 
direction parallel to y axis is defined. The crossover operators for the other 

directions can be defined in a similar way.  
Given two parents A1, A2, their y|| offspring C1, C2are obtained by swapping 

the diamond-chains parallel to axis y,
 j
1

A  and 
 j
2

A  , where j is the position of 1’s in 

the random binary mask M=(M1,…,MN), N=4m-1 (see Figure 6.2) as defined in the 
formulas from equation (6.3). 

  
 

 

 
 

 

j j
j jj j1 2

1 2j j
j j12

A if M 0 A if M 0
C and C

A if M 1 A if M 1

 
  

  
  
 

 (6.3) 

 

 

Figure 6.2. Two parents (first row) and their y|| and y

offsprings (second, third row). 
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Figure 6.2 shows an example for the crossover operator using directions 
parallel to y coordinate axis. In the first row two parents are represented. On the 

second row their y|| offsprings for the two parents, obtained through the mask M 
=(0; 1; 0; 1; 0; 1; 0; 0; 0; 1; 1)are represented. The third row represents the two 

y offsprings, obtained through the mask M = (0; 1; 0; 1; 1; 0). The arrows, on the 

second and third rows, indicate the 1’s in the binary mask M. 

The main steps of the crossover procedure are presented in Pseudocode 
sequence 6.2. 

The crossover operator mix the projection values of the parents in the 
chosen direction and usually changes the projection values in other directions. 

 

6.3.4. GUIDED MUTATION OPERATOR 

Guided mutation is applied on all three orthogonal directions. Given a 
hexagon-shaped binary image A its mutated version is obtained by changing the 
color of two neighbor black and white pixels. The pixels have the property that two 
coordinates have the same value and the third one differs by 1 unit and their color 
is different [Moi11]. The operator locates such pair of black and white pixels and 
chooses randomly the pairs of pixels inverting their color. 

Figure 6.3 shows the mutated image, on the left-hand-image, which is 

obtained by inverting the color of two neighboring black and white pixels, the pixel 
pairs marked by the stars in the right-hand-side. 

 

 
 
The main steps for the guided mutation operator are presented in 

Pseudocode sequence 6.3. 

Figure 6.3. The mutated image (left) and the parent image (right). 

 

Select two parents A1, A2 
Generate a random binary mask M=(M1,…,MN), N=4m-1  
Compute C1 and C1 

 

Pseudocode sequence 6.2. Main steps for the crossover operator 
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6.3.5. COMPACTNESS OPERATOR 

Until now the operators described are suitable to reconstruct images with 
more components and holes, without using any prior information. The previously 
presented operators may introduce isolated pixels which usually worsen the 
solution. A pixel is called isolated if it is surrounded by 12 elements with opposite 

value. 
Let A be a hexagon-shaped binary image. The compactness operation on A 

is an operation that eliminates some of the isolated points (independently of their 

original values). 
Let σ=min(α, β) where α is the number of isolated white pixels and β is the 

number of isolated black pixels. The compactness operator randomly locates σ 
isolated white pixels and σ isolated black pixels and sets them to the same value of 
their neighbors. Using the min function the availability of pairs of isolated black and 
white pixels is guaranteed.  

Figure 6.4 shows two isolated pixels with their neighborhoods, on the left-

hand-side. The image on the right-hand-side of the figure is obtained by setting the 
isolated pixels (on the left) to the same value of their neighbors. 

 

 
Pseudocode sequence 6.4 presents the main steps for the compactness 

operator. 

Figure 6.4. Two isolated pixels (a white and a black) and their neighborhoods. Image after 
applying compactness operator (right). 

 

Initialize the list of pairs of black and white pixels, that have two coordinates with 
the same value and the third one differs by 1 unit  
While (there are elements in the list ) 
           Generate a random number smaller than the number of elements from the list 
           If (applying the random pair get better fitness value) then 
                Apply the randomly selected pair 
               Delete the pair and other pairs that contain elements of the selected pair 
               from the list 
            End If 
End While 

 

Pseudocode sequence 6.3. Main steps for the guided mutation operator 
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6.3.6. MINIMAL HILL CLIMB OPERATOR 

The minimal hill climb operators apply sequences of small modifications 
which increase the quality of the image. The proposed operators are based on the 

switching components which we define in the following sections. 
The switching components maintain the three orthogonal projections of the 

image while swapping the values of pixels. Generally the operators change the 
values of the parallel direction projections. 

In discrete tomography the concepts of switching components are important 
for finding reasonable solutions as a hexagon-shaped image can be transformed into 

another hexagon-shaped image that satisfies the same set of three projections by a 

finit sequence of switching components. For the triangular grid we define three type 
of switching components. Switching components have the properties that, by 
interchanging the values 0 and 1 of these pixels, the projection values do not 
change. We introduced the presented switching components for hexagon-shaped 
images in [Moi11]. In the following paragraphs, we propose a mathematical 
formulation of the switching components. After that, we describe the minimal hill 

climb operators based on the proposed switching components. 

6.3.6.1. Rhombus switching component 

Let A be a hexagon-shaped binary image. The rhombus switching 
component on A can be applied for the three directions orthogonal to the axes.  

Considering the direction orthogonal to coordinate axis y, the rhombus 

switching component swaps ai,j,k with al,j,h and ai,j+1,k with al,j+1,h, where the following 
conditions must be satisfied:  

 
i , j ,k l , j 1,h i , j ,k l , j 1,h

l , j ,h i , j 1,k l , j ,h i , j 1,k

a a 0 a a 1
or

a a 1 a a 0

 

 

     
 

     

  (6.4) 

Considering the direction orthogonal to coordinate axis x, it swaps ai,j,k with 
al,j,h and ai-1,j,k with ai-1,l,h, where the next condition holds for these pixels of the 
image 

 
i , j ,k i 1,l ,h

i ,l ,h i 1, j ,k

a a 0

a a 1





 


 

or
i , j ,k i 1,l ,h

i ,l ,h i 1, j ,k

a a 1

a a 0





 


 

 (6.5). 

 

Select  a parent A 
Identify α the number of white isolated points  
Identify β  the number of white isolated points and black 
Compute σ=min(α, β) 
Randomly locate σ isolated white pixels and σ isolated black pixels 
Sets the σ isolated pixels  to the same value of their neighbors 

 

Pseudocode sequence 6.4. Main steps for the compactness operator 
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Finally, considering the direction orthogonal to coordinate axis z, it swaps 
ai,j,k with al,j,h and ai,j,k-1 with al,h,ki1,, where the next condition holds for these pixels 

of the image 

 
i , j ,k l ,h,k 1

l ,h,k i , j ,k 1

a a 0

a a 1





 


 

or
i , j ,k l ,h,k 1

l ,h,k i , j ,k 1

a a 1

a a 0





 


 

 (6.6). 

Actually, these rhombuses can appear in the images, for the direction 
orthogonal to coordinate axis y, as follows: 

 
with the restriction that on the first row there are even parity points meanwhile on 

the second row we have odd parity points. The elements of these switching 
components form two rhombuses. Notice that the two neighbor pixels of a rhombus 
share two of their coordinate values and, consequently, by interchanging their pixel 
value (from 0 to 1 and vice-versa) data from two of the projection directions do not 
change. Only projection data of the direction orthogonal to the coordinate axis in 
which the coordinate values of the pixels differ is changed. In this way by having 

another rhombus that gives the opposite change a switching component is obtained. 

Figure 6.5 shows an example for the rhombus switching component for 
direction orthogonal to coordinate axis y. The right-hand-image is obtained by a 
rhombus switching, the values of the pixels marked by the stars, in the left-hand-
image, are inverted. For the other two directions the rhombus switching component 
works in the same way, actually one can obtain them by rotating the locations of 

the pixels of the previously shown components by 
2π

3
in both directions, 

respectively. 
 

 

6.3.6.2. Hourglass switching component 

The hourglass switching operator on a hexagon-shaped binary image A can 

be applied for a subhexagon by swapping ai,j,k with ai+1,j,k or ai+1,j,k-1 and ai+1,j+1,k-1 
with ai,j+1,k or ai,j+1,k-1. The other two switching possibilities in the subhexagon 

consist of choosing two other pixels as the hourglass that has to be switched 

Figure 6.5. Rhombus switching operation for direction orthogonal to coordinate axis y. 

or 
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(rotated) ai+1,j,k with ai,j,k or ai+1,k,k-1 and ai,j+1,k-1 with ai,j+1,k or ai+1,j+1,k-1.The other 
switching possibility is to swap ai+1,j,k-1 with ai,j,k or ai+1,j,k and ai,j+1,k with ai,j+1,k-1 or 

ai+1,j+1,k-1. The pixels from the subhexagon considered for the hourglass switching 
must satisfy one of the following constrains: 

 

i , j ,k i 1, j 1,k 1 i , j ,k i 1, j 1,k 1

i 1, j ,k i , j 1,k 1 i 1, j ,k 1 i , j 1,k

i 1, j ,k i , j 1,k 1
i 1, j ,k i , j 1,k 1

i 1, j ,k 1 i , j 1,k
i , j ,k i 1, j 1,k 1

i 1, j ,k

a a v a a w
or

a a w a a v

a a w
a a v or

a a v
a a w

a

     

     

  
  

  
  



     
 

     

   
   

i 1, j ,k 1 i , j 1,k
1 i , j 1,k

i 1, j ,k i , j 1,k 1
i , j ,k i 1, j 1,k 1

a a w
a v or

a a v
a a w

  
 

  
  

   
   

 (6.7) 

where v, w Є {0,1}, v ≠ w. 
Actually, the hourglass switching components, for example, can appear in  
 

 
the images as follows: that can be switched to subhexagons of the 

  
 

 
form where g, q  Є {0,1}. In the case g = q the hourglass can be 
 

 
rotated both in ‘clockwise’ and ‘anticlockwise’ directions. 

The combination of the triangles in an hourglass switching component is: 3 
even-triangles and 3 odd-triangles, in the following way: first line even-odd-even 
triangles and second line odd-even-odd triangles. 

Figure 6.6 shows the subhexagons of the hourglass switching for the three 
combinations from equation (6.7), where v, w Є {0,1}, v ≠ w and g, q  Є {0,1}. 

 

 
 
Figure 6.7 shows an example for the hourglass switching component using 

the first combination from equation (6.7). The right-hand-image is obtained by 
using hourglass switching for the initial white pixels with their neighbors marked by 

the stars, in the left-hand-image. 
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Figure 6.6. Subhexagons of the hourglass switching for the three combinations from equation 
(6.7). 
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6.3.6.3. Rotation switching component 

 The rotation switching component on a hexagon-shaped binary image A can 
be applied for a subhexagon with size r≤m and it swaps ai,j,k with  ai,j+2r-1,k-2r+1, 
ai+r,j+r,k-2r+1 with ai-r+1,j+r,k and ai-r+1,j+2r-1,k-r+1 with ai+r,j,k-r+1, where the pixels have to 
satisfy the following constraint: 

 

i , j ,k i r , j r ,k 2 r 1 i r 1, j 2 r 1,k r 1

i , j 2 r 1,k 2 r 1 i r 1, j r ,k i r , j ,k r 1

i , j ,k i r , j r ,k 2 r 1 i r 1, j 2 r 1,k r 1

i , j 2 r 1,k 2 r 1

a a a 0

a a a 1

                                     or

a a a 1

a

           

           

           

     

  


  

  

i r 1, j r ,k i r , j ,k r 1a a 0     




  

 (6.8) 

 
and each element of a pair (ai,j,k,ai,j+2r-1,k-2r+1), (ai+r,j+r,k-2r+1, ai-r+1,j+r,k),                  
(ai-r+1,j+2r-1,k-r+1, ai+r,j,k-r+1)  has the same parity. The pixels of such a pair are located 
at the opposite corners of the hexagon. 

Actually, the rotation switching components can appear in the images as a  
 
triplet of 0’s and a triplet of 1’s in the corner of subhexagons, as follows:  

 

 
that changes into , where a corner of the hexagon is formed by two  
 

 
neighbor pixels and only one of them is used in the given switching component, as it 
is shown in Figure 6.8. 

Figure 6.8 illustrates possible positions of the initial triplets in the rotation 
switching component for a hexagon of size 6 (r = 3). As one can see at any corner 
of the hexagon any of the two neighbor triangles can be used depending also on the 
other corners, so that in every direction (horizontal and directions / and \) exactly 
those lanes have a pixel with value 1 that have a  pixel with value 0. Thus at each 
case, by switching the values of the pixels marked by 0 and 1 to their opposite 

value, the projections by lanes do not change. 
 

Figure 6.7. Example for the hourglass switching operation. 
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Considering a binary subhexagon image, the black and white pixels from the 
rotation switching component can be situated in 3! + 2 = 8 ways at the corners of 
one subhexagon based on their parities, with sizer≥2 (see Figure 6.8). The possible 

combinations of the triangles in a rotation switching component are: 6 even-
triangles, 6 odd-triangles, 3 possibilities in which there are 4 even-triangles and 2 
odd-triangles and 3 possibilities in which there are 2 even-triangles and 4even-

triangles. 

Figure 6.8. Possible positions of the initial triplets in the rotation switching component for a 
hexagon of size 6 (r = 3). 
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Based on the three previously proposed switching components, in the 
following paragraph we describe our minimal hill climb operators, considering a 

generalized case. 
Because, using three directions of projections, a hexagon-shaped image can 

be transformed into another image with the same projection values using switching 
components, the minimal hill climb operators are used in the proposed memetic 
algorithm for local search. To each individual from the current population a list with 
each type of switching components is associated. A list contains the switching 

components that improve the quality of the reconstructed image. After applying 

randomly one switching component from the list, this is removed from the 
associated list, taking care to remove also the other switching components that 
contain an element from the considered switching component. Pseudocode sequence 
6.5 shows the main steps for the generalized minimal hill climb operator, based on 
any of the three switching components. Usually the diamond-chain projections 
change their values. 
 

 

6.4. EXPERIMENTAL RESULTS 

Regarding the proposed memetic algorithm we tested its benefits in terms of 
correctness, robustness and runtime. For the experimental session different 
databases of hexagon-shaped images were used. From the robustness point of view 
we will show that the presented approach produces stable results even if we use 
only six projection angles. The reconstructed solutions are obtained in a relatively 
low time even in the case of images with a big number of pixels. 

For our tests we used regular hexagon-shaped images of dimension 

m×m×m. From our knowledge, there is not any database with hexagon-shape 
images represented on the triangular grid to test image processing algorithms. For 
this reason we used resampling methods to create our test images. The test images 
represented on the square grid were taken from the publicly available databases 
[Pat][MPE]. Images from these databases are resampled to images on the triangular 
grid. After resampling the image on the triangular grid, a number of pixels are 

suppressed, in order to obtain a hexagon-shaped image having triangular pixels. 
The dimension of the resampled images is m×m×m. The formed data-bases consist 
of hv-convex polyominoes, generic regular hexagon-shaped images and of non-
convex/non-connected hexagon-shaped images resampled at different dimensions. 

The algorithm was implemented in C#. Experiments were carried out on a 
system equipped with Intel(R)Core(TM) i5-2500 (3.30 GHz), 4 GB of RAM and 
operating system Windows 8.For the network flow problem which is used for the 

generation of the initial individuals in the population the MCF class [Ber04] is used. 

 

Initialize the lists with the switching component 
Randomly select one switching component from the list 
If (applying the switching component fitness improved) then 
          Apply the selected  switching component 
          Remove the switching component from the list 
End If 

 

Pseudocode sequence 6.5. Main steps of a generalized minimal hill climb operator 
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To evaluate the reconstruction quality of our memetic algorithm the pixel 
difference (l1-distance) between the original image and the reconstructed image 

normalized by the number of the pixels of the image multiplied by 100 to obtain it in 
percentage (%), is computed. In the experiments various values of the parameter: 
number ng of generations and the size np of the population are used. For each 
session of runs we measured the average computation time in seconds. The 
computation time of our algorithm includes also the generation of the initial 
population. 

In the next sections we consider the three classes of hexagon-shaped 

images. The first class contains 30 hv-convex polyominoes. The second one consists 
of 30 generic hexagon-shaped images. Images of both classes are generated from 
the database [Pat] and have a dimension of 26x26x26 which means that have 4056 
pixels. The dimension of such a hexagon-shaped image is very close to the 
dimension of a 64x64 square image in terms of the used pixels. The third 
considered class contains images from [MPE] database, resampled at dimensions of 
4×4×4, 8×8×8, 13×13×13 and 26×26×26.   

In order to validate our method, different experimental sessions were made. 
In the experimental session, different combinations of population size {50, 75, 100} 
and number of generations {50, 100, 150} is used. The algorithm runs as long as 
the number of generations is not met or a solution is found. In each generation a 
random number of pairs of individuals are selected for the crossover operator. 
Because pixel errors result in errors in each of the projections, when the number of 

projections is large, one pixel error in the reconstruction results in a large distance 
from the measured projections. Note that, for instance, replacing a pixel of the 
solution with one of its 1-neighbor pixels using projections by lanes and diamond-
chains the projection values are changing in one direction on two consecutive lanes 
and in two diamond-chain directions on two-two consecutive diamond-chains. In 
this way, this small pixel error can cause 6 error points in fitness using six 
projection angles. 

6.4.1. HV-CONVEX POLYOMINOES 

Firstly we consider the data set of 30 hv-convex polyominoes having the 
dimension of m=26. Example of images from this class  can be seen in Figure 6.10.   

In order to lower the effect of randomness, the average of the error ε and 
the average of the fitness function f on all test cases, are computed. Also the 

number of solutions, nε, with the pixel error less than the average pixel error ε is 

computed. For example, 74% of the hv-convex solutions obtained using a 
population of 100 and generation 150 has an error less than the average error of 
0,0122%.  

Table 6.1 shows the results for the considered hv-convex polyominoes with 
dimension 26×26×26, using different combinations between the number of 
populations and generations.  
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Table 6.1. HV-convex polyominoes with dimension 26×26×26. 

 
Parameters Quality of reconstruction Computation time 

np ng f ε(%) nε (seconds) 

50 50 33 0,2195 71% 209 
50 100 13 0,0717 68% 285 
50 150 13 0,0653 69% 333 
75 50 32 0,2060 72% 299 
75 100 7 0,0389 76% 382 
75 150 6 0,0291 76% 428 
100 50 29 0,1817 73% 388 
100 100 5 0,0238 76% 476 
100 150 3 0,0122 74% 524 

 
We studied the effect of our algorithm considering different number of 

populations and generations. We found that for some cases we obtained even 76% 
of the solutions with an error less than the average error. The best obtained 
average error is of 0,0122%, with an average fitness value of 3 and the average 
computation time of 524 seconds. This means that almost all the 30 images from 
our database were perfectly reconstructed using a population of 100 and generation 
of 150.  

Figure 6.9 shows the average results of the reconstruction error, fitness and 

computation time values for the 30 hv-convex polyominoes from our database. 
Average reconstruction error, fitness and computation time values are shown by 
color, blue, red and green, respectively. 

 

 
Figure 6.9. Average results for hv-convex polyominoes of dimension 26×26×26. 
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np=100, ng=150 
f=22 

ε=0,0986 
time=1274 sec 

Figure 6.10. Five 26x26x26 hv-convex polyomino (left) and their reconstruction (right). 

np=75, ng=100 
f=6 

ε=0,0247 
time=594 sec 

 

np=100, ng=150 

f=18 
ε=0,0740 

time=918 sec 
 

np=50, ng=150 
f=12 

ε=0,0493 
time=458 sec 

 

np=100, ng=50 
f=10 

ε=0,0493 
time=725 sec 
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Figure 6.10 shows, on the left, five examples of hv-convex polyominoes with 
dimension 26×26×26, taken from our test database. On the right hand side the 

reconstructions for the five considered examples of images are shown having 
different error and fitness values. Errors are shown by color: missing pixels are blue, 
additional pixels of the reconstructed image are red. Our test results show that 
using a population of 100 and generation of 150 for almost all the cases we 
obtained at least a perfect reconstruction in our 10 runs. But in case of other 
population and generation numbers like population of 50, 75 and 100 with 

generation of 100 and 150 we obtained in almost all the cases one perfect 

reconstruction. 
Figure 6.11 - Figure 6.13 show the complete test results for the hv-convex 

polyominoes. The small blue circles indicate the fitness, reconstruction error and 
computation time less than the average values, for the test images. The small red 
circles indicate the fitness, reconstruction error and computation time greater than 
the average values. 

 

 Figure 6.12. Error results for hv-convex polyominoes of dimension 26×26×26. 

Figure 6.11. Fitness results for hv-convex polyominoes of dimension 26×26×26. 
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In conclusions even choosing a reasonable number for the population and 

for generations, the proposed memetic algorithm leads us to robust solutions that 
are very close to the original images. 

6.4.2. GENERIC REGULAR HEXAGON-SHAPED IMAGES 

 The second class of images is the one of 30 generic images that does not 
present any particular topological or geometrical properties resampled from [Pat] 

database, with dimension of 26x26x26.  
Table 6.2 shows the results for the considered set of images. In order to 

lower the effect of randomness, the average of the error ε and the average of the 
fitness function f on all test cases, are computed. Also the number of solutions, nε, 
with the pixel error less than the average pixel error ε is computed. Experimental 
results show that for the considered data set we obtained more than 53% solutions 
that have the reconstruction error less than the average error ε=6,0360%, for a 

population number of 100 and generation number 150. 
 

Table 6.2. Generic hexagon-shaped images with dimension 26×26×26. 

 
Parameters Quality of reconstruction Computation time 

np ng f ε nε (seconds) 

50 50 363 8,9528 49% 1055 
50 100 311 7,6783 51% 1413 

50 150 283 6,9889 55% 1614 
75 50 355 8,7528 49% 1504 
75 100 293 7,2299 52% 1965 
75 150 360 6,4121 55% 2194 
100 50 341 8,4153 50% 1951 
100 100 278 6,8497 52% 2501 
100 150 245 6,0360 53% 2835 

 

Figure 6.13. Computation time results for hv-convex polyominoes of dimension 26×26×26. 
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Figure 6.14 shows the average results of the error, fitness and computation 
time values for the 30 generic regular hexagon-shaped images from our database. 

Average error, fitness and computation time values are shown by color, blue, red 
and green, respectively. 

 

 
Figure 6.15 shows, on the left, five examples of generic hexagon shaped 

images with dimension 26×26×26, taken from our test database. On the right hand 
side the reconstructions for the five images are shown having reconstruction error 
and fitness values equal to the one shown. Errors are shown by color: missing pixels 
are blue, additional pixels of the reconstructed image are red. Our results show that 
the proposed memetic algorithm manages to reconstruct in a robust manner objects 

in such a way that the shape of objects can be distinguished even in more complex 
images. 

Figure 6.16 shows the fitness results for the 30 generic hexagon-shaped 
images case. Figure 6.17 shows the reconstruction error results for the 30 generic 
hexagon-shaped images. The average computation time for each case is shown by 
Figure 6.18. The small blue circles indicate the fitness, reconstruction error and 
computation time less than the average values, for the test images. The small red 
circles indicate the fitness, reconstruction error and computation time greater than 

the average values.  
 
 

Figure 6.14. Average results for 30 generic hexagon-shaped images of dimension 26×26×26. 
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Figure 6.15. Five 26x26x26 generic hexagon-shaped images (left) and their reconstruction 
(right). 

np=100, ng=150 
f=326 

ε=4,4625% 
time=3119 sec 

 

np=50, ng=150 
f=224 

ε=4,3886% 
time=872 sec 

 

np=50, ng=150 
f=256 

ε=4,6598% 
time=825 sec 

 

np=100, ng=150 
f=6 

ε=0,0247% 
time=1604 sec 

 

np=100, ng=150 
f=210 

ε=1,6026% 
time=3030 sec 
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Figure 6.17. Reconstruction error results for generic hexagon-shaped images of dimension 
26×26×26. 

Figure 6.16. Fitness results for generic hexagon-shaped images of dimension 26×26×26. 
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Experiments show that our memetic algorithm is effective even in the cases 

in which we consider non-convex or non-connected hexagon shaped images which 
do not satisfy any topological or geometrical properties. Our algorithm is efficient 

mainly in terms of computation time. The experiments show that for images that 
contain compact objects, for example the first and fourth image from Figure 6.15, 
our algorithm performs a very good reconstruction in a relatively short computation 

time. For images that contain more complex non-convex or non-connected objects 
our algorithm performs a good reconstruction, in terms that the shape of the object 
or objects contained in the image can be clearly distinguished. 

6.4.3. NON-CONVEX REGULAR HEXAGON-SHAPED IMAGES 

In order to validate our memetic algorithm we consider a class of 10 non-
convex regular hexagon-shaped images resampled at dimension of m={4, 8, 13, 

26}. The number of pixels in the test images varies from 96 to 4056, respectively. 
Figure 6.19 shows five non-convex images of dimension 26x26x26 

generated from database [MPE]. Even if, there are cases for the shown images 
when the reconstruction is perfect, there is no reconstruction error, in Figure 6.19 
we present reconstructed images that have small reconstruction errors and fitness 
values. On the right hand side the reconstructions for the five images are shown 
with their reconstruction error and fitness values for the specified population and 

generation number. Errors are shown by color: missing pixels are blue, additional 
pixels of the reconstructed image are red.  

In order to lower the effect of randomness, the average of the error ε and 
the average of the fitness function f on all test cases, are computed. Also the 
number of solutions, nε, with the pixel error less than the average pixel error ε is 
computed. 

Table 6.3 shows the average reconstruction results for the 10 considered 
non-convex hexagon shaped images having a size of 4×4×4, which means 96 
pixels. For this size of images our results show that for all the cases we obtained 

perfect reconstruction only in some seconds. 

Figure 6.18. Computation time results for generic hexagon-shaped images of dimension 
26×26×26. 
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Figure 6.19. Five examples of 26x26x26 non-convex regular hexagon-shaped images (left) and 
their reconstruction (right). 

 

np=100, ng=150 
f=10 

ε=0,0493% 
time=1506 sec 

 

np=50, ng=150 
f=118 

ε=1,6026% 
time=766 sec 

 

np=100, ng=100 
f=26 

ε=0,1479% 
time=2145 sec 

 

np=100, ng=150 
f=194 

ε=2,5641% 
time=1844 sec 

 

np=75, ng=150 
f=522 

ε=9,0696% 
time=2421 sec 
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Table 6.3. Non-convex regular hexagon-shaped images with dimension 4×4×4. 

 

 
Figure 6.20 shows the average results of the reconstruction error, fitness 

and computation time values for the 10 non-convex regular hexagon-shaped images 

from our database. Average reconstruction error are shown in the blue color chart. 
The average fitness errors are shown in the chart of red color and the average 
computation time values are illustrated in the chart of green color. 

 
 

 
 

Table 6.4 shows the reconstruction results for the 10 on-convex hexagon-
shaped imaged having a size of 8×8×8, which means 384 pixels. Experimental 

results show that for the considered data set we obtained more than 82% solutions 

that have the reconstruction error less than the average error ε=1,5000% and 

Parameters Quality of reconstruction Computation time 
np ng f ε nε (seconds) 

50 50 0 0,0000 100% 1 
50 100 0 0,0000 100% 2 
50 150 0 0,0000 100% 2 
75 50 0 0,0000 100% 4 
75 100 0 0,0000 100% 4 
75 150 0 0,0000 100% 4 
100 50 0 0,0000 100% 5 
100 100 0 0,0000 100% 5 
100 150 0 0,0000 100% 5 

Figure 6.20. Average results for 10 non-convex regular hexagon-shaped images of dimension 
4×4×4 
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fitness value f=6, for a population number of 100 and generation number 150, with 
a computation time of some seconds. 

 
Table 6.4. Non-convex regular hexagon-shaped images with dimension 8×8×8. 

 

 
Figure 6.21 shows the average results of the reconstruction error, fitness 

and computation time values for the 10 non-convex regular hexagon-shaped images 
with a size 8×8×8. Average reconstruction error, fitness and computation time 
values are shown in the blue, red and green color chart, respectively.  

 

 

 
Table 6.5 shows the reconstruction results for the 10 on-convex hexagon-

shaped imaged having a size of 13×13×13, which means 1014 pixels. Experimental 
results show that for the considered data set we obtained more than 80% solutions 

Parameters Quality of reconstruction Computation time 
np ng f ε nε (seconds) 

50 50 10 2,4922 78% 8 
50 100 9 2,2526 79% 14 
50 150 8 1,9896 78% 16 
75 50 10 2,4818 77% 18 
75 100 7 1,8620 80% 20 
75 150 6 1,5938 82% 21 
100 50 10 2,5026 79% 23 
100 100 8 1,9635 80% 25 
100 150 6 1,5000 82% 28 

Figure 6.21. Average results for 10 non-convex regular hexagon-shaped images of dimension 
8×8×8 
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that have the reconstruction error less than the average error ε=2,0148% and 
fitness value f=20, for a population number of 100 and generation number 150, 

with a computation time of 136 seconds. For the other cases we obtained more than 
77% solutions that have the reconstruction error less than the average error 
computed for the considered population and generation number. 

 
Table 6.5. Non-convex regular hexagon-shaped images with dimension 13×13×13. 

 
Parameters Quality of reconstruction Computation time 

np ng f ε nε (seconds) 

50 50 33 3,2278 77 40 
50 100 24 2,3314 79 67 
50 150 23 2,2258 78 79 
75 50 33 3,2288 78 74 
75 100 22 2,2041 78 92 
75 150 20 1,9280 80 106 
100 50 33 3,2643 80 94 
100 100 22 2,2022 80 120 
100 150 20 2,0148 80 136 

 
Figure 6.22 shows the average results of the reconstruction error, fitness 

and computation time values for the 10 non-convex regular hexagon-shaped images 

with a size 13×13×13. Blue, red and green color charts represent the average 

reconstruction error, fitness and computation time values. 
 

 
 

 

Figure 6.22. Average results for 10 non-convex regular hexagon-shaped images of dimension 
13×13×13 
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Table 6.6 shows the reconstruction results for the 10 on-convex hexagon-
shaped imaged having a size of 26×26×26, which means 4056 pixels. Experimental 

results show that for the considered data set we obtained more than 71% solutions 
that have the reconstruction error less than the average error ε=3,2040% and 
fitness value f=130, for a population number of 100 and generation number 150, 
with a computation time of some minutes. More than 68% solutions that have the 
reconstruction error less than the average error computed for the considered 
population and generation number was obtained for the other cases too. 

 

 
Table 6.6. Non-convex regular hexagon-shaped images with dimension 26×26×26. 

 
Parameters Quality of reconstruction Runtime 

np ng f ε nε (seconds) 

50 50 186 4,5811 68 807 
50 100 150 3,7029 69 1018 
50 150 140 3,4440 71 1165 
75 50 182 4,4931 71 1125 
75 100 144 3,5621 70 1404 
75 150 130 3,2061 70 1599 
100 50 179 4,4019 68 1462 
100 100 142 3,5096 70 1829 
100 150 130 3,2040 71 2035 

 
 

 
 

Figure 6.23. Average results for 10 non-convex regular hexagon-shaped images of dimension 
26×26×26 
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Figure 6.23 shows the average results of the reconstruction error, fitness 
and computation time values for the 10 non-convex regular hexagon-shaped images 

with a size 26×26×26. The blue color chart illustrates the average reconstruction 
error values for the considered combinations of population and generation numbers. 
The red color chart illustrates the average reconstruction fitness values for the 
considered combinations of population and generation numbers. The green color 
chart shows the average computation time values for the considered combinations 
of population and generation numbers. 

Figure 6.24 shows the complete test results for the 10 non-convex regular 

hexagon-shaped test images of dimension 4×4×4. The small blue circles indicate 
the fitness, reconstruction error and computation time less than the average values 
for the considered test images. The small red circles indicate the fitness, 
reconstruction error and computation time greater than the average values. 

 
 

 
 

Figure 6.25 shows the complete test results for the 10 non-convex regular 
hexagon-shaped test images of dimension 8×8×8. The small blue circles indicate 

the fitness, reconstruction error and computation time less than the average values 

Figure 6.24. Results for non-convex regular hexagon-shaped mages of dimension 4×4×4. 
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for the considered test images. The small red circles indicate the fitness, 
reconstruction error and computation time greater than the average values. 

 

 
Figure 6.26 shows the complete test results for the 10 non-convex regular 

hexagon-shaped test images of dimension 13×13×13. The small blue circles 
indicate the fitness, reconstruction error and computation time less than the 
average values for the considered test images. The small red circles indicate the 
fitness, reconstruction error and computation time greater than the average values. 

Figure 6.25. Results for non-convex regular hexagon-shaped mages of dimension 8×8×8 
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Figure 6.27 shows the complete test results for the 10 non-convex regular 

hexagon-shaped test images of dimension 26×26×26. The small blue circles 

indicate the fitness, reconstruction error and computation time less than the 
average values for the considered test images. The small red circles indicate the 
fitness, reconstruction error and computation time greater than the average values. 

 

Figure 6.26. Results for non-convex regular hexagon-shaped mages of dimension 13×13×13. 
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For the non-convex regular shaped images, experimental results show that 

the proposed memetic algorithm is able to reconstruct in a robust manner images, 
in such a way that the shape of objects can be distinguished in each case. The 
computation time for such images is lower than an hour. 

We tested our memetic algorithm on three test classes that contain sets of 
binary hexagon-shaped images. Experimental results show that the proposed 
memetic algorithm is robust enough, although hexagon-shaped images that satisfy 

prior knowledge, like the hv-convex polyomino constraint returned better results.  
In the case of considering different dimension hexagon-shaped images, 

experimental results show that images that satisfy topological or geometrical 
constraints returned better results. It should be noted that the generic hexagon-

Figure 6.27. Results for non-convex regular hexagon-shaped mages of dimension 26×26×26. 
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shaped images are pretty difficult to reconstruct since they do not satisfy any 
particular implicit constraint and are pretty different from each other. 

In the case of classes of hexagon-shaped images that we considered, the 
introduced guided mutation and minimized hill climb operators significantly 
decreases the average fitness and reconstruction error. This is clearly shown in all 
the experimental results that by using a significantly high number of generations the 
average values of the fitness and reconstruction error significantly improved.  

Experimental results also show that computation time needed to reconstruct 

a considered hexagon-shaped image increases in a quasi linear manner, because it 

depends on the number of population and generations. Also the gap of the 
algorithm, regarding the run time, is the computation of all the switching 
components implied in the hill climb operators, which depends also on the 
dimension of the image and the population number. 

6.5. PERFORMANCE ANALYSIS 

In this section we briefly describe and compare our results to the results of 
the reconstruction based on simulated annealing (SA) introduced for the triangular 
grid case [Luk12][Nag13a]. Simulated annealing is a stochastic optimization 
algorithm based on the simulation of physical process of slow cooling of the material 
in a heat bath [Kir83]. 

The considered problem to be solved is the binary tomography 

reconstruction problem where the imaging process is represented by the linear 
system of equations: 

  
nm n mAx b, A , x 0,1 , b      (6.9) 

where A is the projection matrix, b contains the detected m projection values and x 
represents the unknown-image. 

For the simulated annealing case the considered binary tomography image 

reconstruction problem is reformulated into an energy-minimization problem given 
by [Luk12]: 

 

 
n

x 0,1

min E(x)



  (6.10) 

where the energy function is: 

  
22

i j

i j (i)

1
E(x) Ax b λ x x

2


 
    
 
 
 

    (6.11) 

where Υ(i) is the set of indices of 3-neighborhood pixels of xi; if xi is even pixel then 

Υ(i) contains indices of neighborhood pixels in directions parallel to x and y 

coordinate axes, else, when xi is odd pixel, it contains indices of neighborhood pixels 
in direction parallel to z axis. The parameter λ>0 is the balancing parameter 
between data fitting and smoothing terms. The first term is called data fitting and 
the second one smooth regularization [Luk12]. 
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 The energy function is the fitness function considered for the minimization 
task in the Simulated Annealing (SA) algorithm. Pseudocode sequence 6.6 shows 

the steps of the simulated annealing algorithm. 
 

 
For the experimental part we consider two test images of size 26×26×26, 

hawing 4056 pixels. Images used for the test part are presented in Figure 6.28. 
 

 

PH1 
PH2 

Figure 6.28. Images used in tests. 

PH3 

 

Parameters supplied by the user: 
Tstart > 0 {start temperature}, 
Tmin > 0 {minimum temperature}, 

Tfactor ∈ (0, 1) {multiplicative factor for reducing the temperature}, 

NoChgLimit ∈ N {number of required successively reduced temperature levels  
                                without accepted change attempts}. 
Initial settings: 
x = [0, 0, . . . , 0]

T
 , T = Tstart, 

NoChg = 0, Ecurrent = E(x). 

while (T ≥ Tmin) ∧ (NoChg <= NoChgLimit) 
           for i = 1 to sizeof(x), 
                 choose a random position j in the vector x; 

                x
’
 = x; _x

’
 j = 1− xj ; 

                Eattempt = E(x
’
); 

                ΔE = Eattempt − Ecurrent; 

                z = rand (U(0, 1)); 

                if (ΔE < 0) ∨ (Exp(−ΔE/T ) > z), then 
                     x = x

’
 ; {accept change} 

                    Ecurrent = Eattempt; 
                   NoChg = 0; 
                end if 
            end for 

            T = T ∗ Tfactor; 
            NoChg = NoChg + 1; 
end while. 
 

Pseudocode sequence 6.6. Simulated Annealing algorithm [Luk12]. 

BUPT



6.6. – Conclusions   99 

For the simulated annealing algorithm the following parameters were used 
Tstart=4, Tmin=0.001, Tfactor=0.97, NoChgLimit=10 and λ=5. 

That algorithm was written in MathLab. Smooth regularization term also was 
used, and the pixel error using six projections was usually below 2 percentages for 
any tested image. Figure 6.29 shows the reconstruction results for the two test 
images from Figure 6.28. The values under the reconstructed results show the 
number of reconstructed pixel error. Also the pixel errors are shown.  

 

 
 
Results show that using six projections the values are very close to 100%. 

These very small errors for the reconstructed images were due to the smooth 
regularization term that helped a lot to obtain solution with connected parts (without 

random noise). However the algorithm was used to do numerous number of 
iterations (usually it did more than a half million iterations) and thus its runtime was 
at least 15 hours, but usually was about or more than a day to obtain these results.  

For the memetic algorithm the following parameters were used np={50, 75, 
100} and ng={50, 100, 150}. The tests were run 10 times for each test image. 
Figure 6.30 shows the best reconstruction results obtained for the test images from 

PE = 0 

PE = 27 

PE = 82 

Figure 6.29. Reconstruction results for the three test images using simulated annealing. 
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Figure 6.28. The values under the reconstructed results show the number of 
reconstructed pixel error value. The memetic algorithm was written in C#. 

 

 
Table 6.7 shows the reconstruction results illustrated in Figure 6.29 and 

Figure 6.30 using the simulated annealing and the memetic algorithm, respectively. 
The error ε and the percentage, in which the reconstructions correspond to the 

original image, are computed. Also the pixel error PE is shown. 
 

Table 6.7. Reconstruction results for the test images 

 

Image 
Simulated annealing Memetic algorithm 

PE ε pε PE ε pε 

PH1 0 0,0000 100% 0 0,0000 100% 

PH2 27 0,6657 99,33% 17 0,4191 99,58% 
PH3 82 2,0216 97,97% 828 20,4142 79,60% 

 
Figure 6.31 shows the percentage, in which the reconstructions correspond 

to the original image using the simulated annealing and the memtic algorithm. The 

PE = 0 

PE = 17 

PE = 828 

Figure 6.30. Reconstruction results for the three test images using memetic algorithm. 
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blue columns correspond to the percentage obtained using the simulated annealing 
algorithm, for each image. The red columns, correspond to the percentage obtained 

using the memetic algorithm for each of the three images. 
 

 
 

The considered fitness function for the memetic algorithm computes the 
difference between the measured projections and the projections of the 
reconstructed image. This function does not take into consideration any prior 
knowledge about the images, so the smoothness of images is not considered. This 
leads to not so good reconstruction in the case of images like PH3 from Figure 6.28. 

Our experiments show that the more complex test image PH3, have unacceptable 
bad reconstructions using the memetic algorithm, see Figure 6.29. 

However for the simple test images that satisfy some topological or 
geometrical properties, like PH1 and PH2, the reconstruction results using the 
memetic algorithm are comparable or even better then reconstruction results 
obtained using the simulated annealing algorithm. Also in terms of computation time 
the memetic algorithm gave better results than the simulated annealing algorithm. 

For example for PH2 the results obtained with memetic algorithm, shown in Figure 
6.30, have a computation time of 4137 seconds; meanwhile the results obtained 
with simulated annealing, see Figure 6.29, have a computation time of approximate 

123h which means 442800 seconds.  
Experimental results show that our memetic algorithm is much faster and its 

reconstruction results are comparable with the results obtained by simulated 

annealing in test cases which satisfy some topological or geometrical properties. 
A comparison with other algorithms is often difficult, as each algorithm 

makes different assumptions on the class of images, the detector settings or other 
prior knowledge. 

6.6. CONCLUSIONS 

Discrete tomography for images on the triangular grid is a difficult task to 
solve and requires a lot of time (with respect to the size of the images) to 
reconstruct them without any a priori knowledge of the image. Actually we have 

used some assumptions about their compactness, but not in the fitness value. In 

Figure 6.31. Reconstruction results for the three test images. 
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this chapter we have presented memetic algorithms on the triangular grid for 
hexagon-shaped binary images reconstruction with six projection angles. 

Experiments were performed using different type and different size hexagon-shaped 
images. Experimental results show that the proposed method is robust enough 
when images that satisfy topological and geometric constraints are used. The 
average pixel error is lower for hv-convex polyominoes than for generic images, 
because the additional constraint of convexity. It has to be noted that the 
considered generic images are pretty difficult to be reconstructed since they do not 

respect any constraints and are pretty different one from each other. In our 

experiments the guided mutation helped a lot to improve the quality of our 
reconstructed images. Results also show that computation time necessary to 
reconstruct a given hexagon-shaped image, scales in a quasi-linear way, because of 
the population and generation size. Regarding the runtime, the gap of our algorithm 
is the computation of all the switching components implied in the hill climb 
operators. Test results show that our memetic algorithm is much faster and its 
reconstruction results are comparable with the results obtained by simulated 

annealing for the test cases which satisfy some topological or geometrical 
properties. 
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Binary tomography is one special case of discrete tomography, where the 
function that represents the object or the image can take only two values: 0 or 1. 

So, the main aim of binary tomography is to reconstruct a binary image, where the 
object is represented in white and the background in black, using projections of the 
image from few different projection angles. In this chapter we propose an iterative 
reconstruction algorithm based on the minimum cost maximum flow algorithm on 
triangular grid. In each iteration a new triplet of projection angles are selected and 
the capacity of each edge of the associated graph is computed. Also the cost 
associated to the minimum cost maximum flow problem is computed using the 

reconstruction from the previous iteration. Then the minimum cost maximum flow 
problem, which incorporates the obtained data, is solved. 

7.1. INTRODUCTION 

In Chapter 5 a minimum cost maximum flow algorithm for resolving the 
reconstruction problem for binary hexagon-shaped images on triangular grid using 

three projection directions was presented. In the proposed algorithm two main 
projections with restrictions imposed by the third projection is used. Unfortunately 
there is no generalization of the minimum cost maximum flow algorithm for the case 
of more than two projections. In this chapter an iterative approach to solve the 
problem of hexagon-shaped images on triangular grid from more than three 
projections is presented. The proposed approach uses, in each iteration, the 

minimum cost maximum flow algorithm presented in chapter 5, each time for a 
different triplet of projection angles. The reconstruction problem that has to be 
solved is the following: 

7. ITERATIVE RECONSTRUCTION ALGORITHM 

BASED ON MINIMUM COST MAXIMUM FLOW 

ALGORITHM ON THE TRIANGULAR GRID 
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Problem 5.3: Let θ1, …,θd be three different projection angles and p1,…, pd the 
measured projection data for the angles θ1, …,θd, Construct a hexagon-shaped 

image A such that Pk=pk for k=1,…,d. 

7.2.  ALGORITHM DESCRIPTION 

The proposed algorithm computes the reconstruction from projections by 

solving a series of three projection reconstructions using the maximum flow 
minimum cost algorithm proposed in chapter 5. The three projections are measured 

along three different projection angles. The proposed algorithm finds an appropriate 
solution for the reconstruction problem. In each iteration, a triplet of three 
projection angles is selected, and then the reconstruction problem for these three 
projections is solved using a minimum cost maximum flow model that corresponds 
to those three projection angles. The obtained solution satisfies the projections in 
the first two directions exactly and some of the projections in the third direction also 
(especially those that have 0 value). This solution is used to determine the pixel 

weight for the network that corresponds to other triplet of directions. In this way 
prior knowledge can be incorporated in the reconstruction.  

In the first step a start solution is computed on the triangular grid as a 
m×m×m hexagon-shaped binary image. At start the algorithm has no 
reconstruction solution from a previous step. So there are no values to be used for 

the generation of the pixel weight from the first network. One of the solutions that 

can be considered in the computation is to use an algorithm based on Ryser’s theory 
[Rys57][Rys60][Rys63] for reconstructing the original image as we proposed in 
[Nag13b]. The other solution is to use the same value, for example zero, for each 
pixel. In the proposed approach, we consider an initial image with pixel values zero 
to compute the start solution, which yields a black image. 

In the next step the total number of white pixels is computed 

kLd

ki

k 1i 1

T p  /3

 

 
 

  
 
 

 where d is the number of the considered projection angles, pk 

are the measured projection data for the considered projection angles and |Lk| is 
the number of samples over a sampling direction k. This value is used in the 
calculation of the total flow in each minimum cost maximum flow problem 

considered in each iteration of the algorithm.  

Next, the algorithm enters in a loop. In each iteration of the loop, a new set 
of (θ1, θ2, θ3) projection angles and the measured projections for these angles are 
selected. Section 7.2.1 describes in detail the way in which the angles are selected. 
Subsequently the pixel weight W is computed using the reconstructed image 
obtained in the previous iteration. Section 7.2.2 describes in detail the computation 

of the pixel weight. Using the projection associated to the selected projection 
angles, the pixel weight values and the total flow the minimum cost maximum flow 
problem can be solved, obtaining a new reconstruction of the image. The stopping 
condition depends on the value of the projections obtained for the reconstructed 
image and on the number of iterations. These stopping criteria are presented in 
7.2.3. 

A similar approach was presented in [Gri98] and extended in 

[Bat06b][Bat07a][Bat08] with a smoothness assumption in the context of 
reconstructing binary image represented on square grid from discrete and 

continuous X-rays. Our approach modifies the algorithm, for the case of binary 
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hexagon-shaped images represented on triangular grid. This is a new algorithm 
which uses the features and properties of the triangular grid, although it is very 

similar to the algorithm proposed by Batenburg. 
In the following sections a detailed description of each of the proposed 

algorithm steps, from Pseudocode sequence 7.1, is given for the case of binary 
hexagon-shaped images represented on triangular grid.  

 

7.2.1. PROJECTION ANGLES SELECTION 

In the proposed algorithm the iterations are made using possibilities of three 
combinations. In order to select a different triplet (θ1, θ2, θ3) for the projection 
angles in each iteration of the algorithm, the steps to follow are: first select two 

different directions, and then choose randomly the third direction from the ones not 
yet chosen. For choosing the two projection angles that are used to solve the 
minimum cost maximum flow problem, the pair of directions have to satisfy the 

constraint that the difference between the two angles is set to 
2π

3
 in all the 

experimental results.  

There can be other, may be better, direction selection steps used for the 
first two projection angles. In the case of using few projection angles, for e.g. 
d=3,4,5,6, all the possible combinations of directions can be used in order to avoid 
the usage of the same pair of projection angles, which could influence in a negative 
way the reconstruction.  

7.2.2. PIXEL WEIGHT FUNCTION ON THE TRIANGULAR GRID 

In order to incorporate preferences for smoothness of the image the pixel 
weight of each pixel in the image is computed. This pixel weight depends on the 
pixel value obtained in the previous reconstruction and also on the values of the  
neighborhood pixels. 

In [Bat06b], the author introduces the concept of local weight function in 

the case of square grid image representation. For the computation of the pixel 

weights in our approach the definitions and functions introduced in 

 

Computing the start solution on the triangular grid 
Computing the total number of white pixels 
Generation = 1 
While (condition is not met)  
               Generation = Generation + 1 
               Select a new set of projection angles 
               Compute the triangle pixel weight values using the reconstruction from the                     
               previous  iteration 
               Compute the total number of white pixels 
               Generate a new solution using the minimum cost maximum flow algorithm  
               for triangular grid 
End While 
 

Pseudocode sequence 7.1. Basic steps of the iterative reconstruction algorithm 

BUPT



106    Iterative Reconstruction Algorithm on Triangular Grid – 7. 

[Bat06b][Bat06a] are considered. Based on his approach, the construction of a 
weight function in the case of triangular grid image representation taking into 

consideration the twelve 3-neighbors of a pixel on the triangular grid is presented. 
Let Ha be the neighborhood of a pixel ai,j,k Є A, defined as Ha={ax,y,zЄ A: I – 

r ≤ x ≤ i + r, j – r ≤ y ≤ j + r, k – r ≤ z ≤ k + r} where r represents the 
neighborhood radius and  x, z Є [-m+1, m], y Є [-m, m-1] and x+y+z =0 or x+y+z 
=1, and sa be the number of pixels, from the neighborhood, that has the same color 
with ai,j,k, sa=|{ax,y,zЄ Ha: A(ax,y,z)=A(ai,j,k)} |[Bat06b]. In the case that the 

pixel ai,j,k, is situated near the boundary, the neighborhood contains fewer pixels. 

Considering a pixel ai,j,k Є A of a hexagon-shaped image the weight of the 
pixel is defined as: 

     a
i , j ,k i , j ,k

a

s1
W a A a g 10000

2 H

  
          

 (7.1) 

where A is the reconstructed image from the previous iteration, and  
a
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weight function defined as: 
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 (7.2) 

 The weight function depends on the pixel neighborhood Ha computed using 
the twelve 3-neighbors of the pixel ai,j,k and the number of pixels from the 
neighborhood that has the same color with ai,j,k, sa. .  

 Considering the weight equal to 1 there is no smoothness incorporated in 
the reconstruction. The preference for maintaining the pixel value in the next 

reconstruction is very strong when all the neighbors of the pixel have the same color 
as the pixel itself. This preference is smaller as the neighborhood contains fewer 
pixels with the same color as the considered one.   

In the experimental part, the neighborhood radius is set at r = 5 for the first 
50 iterations, and after that at r = 1. Setting the neighborhood to a small value 
implies that the fine details are also reconstructed.  

7.2.3.  STOPPING CRITERION 

In order to evaluate how similar the reconstructed image is with the original 
one, the distance between the measured projections and the projections of the 
reconstructed image is computed as the stopping condition of the algorithm. This 
measure is specified in the theory that is not a good measure because there can be 
two images with similar projections even if they are very different. But in the case of 

smooth images, considering more than three projections, this is not a problem. For 
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computing the distance between the projections of the reconstructed image and the 
measured projections as defined in equation (7.3), first the projections of the 

reconstructed image are computed for all the considered projection angles. Then the 
norm l1 of the error with respect to the measured projections is computed as defined 
in equation (7.4): 

    
d

1 k k

k 1

A l P ,p



 F  (7.3) 

  
kL

1 k k k ,i k ,i

i 1

l P ,p P p



   (7.4) 

where pk is the measured projection along the projection angle θk and 
Pk=(Pk,1,…,Pk,|Lk|) is the projection of the reconstructed image A calculated along the 
projection angle θk. 

The algorithm stops when for the reconstructed image has exactly the 
measured projections. If there is no improvement for the distance between the 

reconstructed image projections and the measured projections in the last NiЄ 0   

iterations the algorithm stops. We used Ni=200 for our experiments. We 

determined the value of Ni experimentally. The algorithm always stops after a 

maximum number Mi Є 0   of iterations. We used Mi=2000 for our experiments. 

7.3. EXPERIMENTAL RESULTS 

Regarding the proposed iterative method, we tested its benefits in terms of 

correctness, robustness and runtime. For the experimental session different 
databases of hexagon-shaped images were used. From the robustness point of view 
we will show that the presented approach produces stable results even if we use 
only six projection angles. The reconstructed solutions are obtained in a relatively 
good time even in the case of images with a big number of pixels. 

The implementation of the algorithm is made in C#. For solving the 
minimum cost maximum flow problem we use the MCF solver [Ber04][Ber94]. This 

project is public available for noncommercial use. All the results from this sections 
were obtained using a system equipped with Intel(R) Core(TM) i5-2500 (3.30 GHz), 
4 GB of RAM and the Windows 8. 

Although, in real cases, only the projections of the input image will be 
available, in practice, artificial test images are used. In order to evaluate the 
algorithm the pixel difference between the original image and the reconstructed 
image is computed. The value is normalized by the number of the pixels of the 

image and multiplied by 100 to obtain the pixel error in percentage (%). 
For the moment, no standard database of images represented on the 

triangular grid exists to compare different discrete tomography reconstruction 
algorithms. Anyway, to validate the algorithm two public available databases of 
binary images represented on the square grid [MPE][Pat] are used. Images from 
these databases are resampled to images on the triangular grid. After resampling 

the image on the triangular grid, a number of pixels are suppressed, in order to 
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obtain a hexagon-shaped image having triangular pixels. The dimension of the 
resampled images is m×m×m. 

Considering different classes of images, different number of projections can 
be necessary to reconstruct correctly the images. There is no way to know in 
advance how many projections are necessary. That is why, we used a fixed number 

of projection angles, 
π π π 2π 2π

θ 0, , , , ,
6 3 2 3 6

 
  
 

. Sets of three projection angles are 

used for the reconstructions. 
For all the tests we include the average results for the runs were the test 

results are perfect and the average results of the reconstruction for which the test is 
successful. A reconstruction is considered perfect if the projections of the 
reconstructed image are the same with the measured projections. A reconstruction 

is considered successful if the distance between the reconstructed image projections 
and the measured projections is less than the average difference between the 
reconstructed image projections and the measured projection multiplied by d, where 
d is the number of projection angles. This implies that the reconstructed image 
approximates very well the measured projection values. We use the number of 
projection angles d, in the definition of successful reconstruction, because pixel 
errors result in errors in each of the projections. When the number of projections is 

large, one pixel error in the reconstruction results in a large distance from the 
measured projections. 

7.3.1. HV-CONVEX POLYOMINOES 

For our first test class, we considered 20 hv-convex polyominoes. We 
performed 100 runs using a varying number of projection angles. The hexagon-
shaped images from this class have the size 26x26x26, which means 4056 pixels.  

Figure 7.1 shows 10 samples of hexagon-shaped images that contain hv-
convex polyominoes that we generated. Results show that using 4 projection 
directions all our 20 hv-convex polyominoes where perfectly reconstructed in only 
some minutes. Using 3 projection directions is not enough for all the 20 hv-convex 
polyominoes to be perfectly reconstructed.  

 

Table 7.1 shows the test results for the hexagon-shaped test images from 
Figure 7.1. The first column contains the considered test image. The second column 

contains the number of considered projection angles. The next two columns contain 
the average of perfect and successful reconstructions. Then, the next two columns 
contain the average projection error and the average pixel error, meanwhile the last 
two columns contain the number of average iterations and the number of average 
runtime measured in seconds. 

Figure 7.2 shows the test results for the 10 hv-convex polyominoes from 
Figure 7.1. The blue column illustrate the results obtained using 3 projection angles, 
meanwhile the red columns indicate the reconstruction results using 4 projection 
angles. 
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PH1 PH2 

PH3 PH4 

PH5 
PH6 

PH7 
PH8 

PH9 PH10 

Figure 7.1. Hv-convex polyominoes with dimension of 26x26x26. 
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Table 7.1. Reconstruction results for the hv-convex polyominoes case. 

 

Image d 
Perfect 

reconstruction 
Successful 

reconstruction 
Projection 

error 
Pixel 
error 

Iteration 
Runtime 

(s) 

PH1 
3 18 100 20,52 7,08 385 615 
4 100 100 0,00 0,00 14 18 

PH2 
3 100 100 0,00 0,00 57 99 
4 100 100 0,00 0,00 8 10 

PH3 
3 100 100 0,00 0,00 1 2 
4 100 100 0,00 0,00 1 2 

PH4 
3 100 100 0,00 0,00 9 15 
4 100 100 0,00 0,00 1 2 

PH5 
3 4 100 21,9 7,30 339 552 
4 100 100 0,00 0,00 4 5 

PH6 
3 100 100 0,00 0,00 7 12 
4 100 100 0,00 0,00 4 5 

PH7 
3 2 100 28,32 10,46 359 584 
4 100 100 0,00 0,00 8 11 

PH8 
3 95 95 0,82 0,24 127 209 
4 100 100 0,00 0,00 9 12 

PH9 
3 100 100 0,00 0,00 44 76 
4 100 100 0,00 0,00 4 7 

PH10 
3 100 100 0,00 0,00 28 46 
4 100 100 0,00 0,00 2 3 

 
 

 

Figure 7.2. Results for the 10 hv-convex polyominoes. 

BUPT



7.3. – Experimental results    111 

 
 
The test results show that if using more than three projections, the 

algorithm every time converges to a hexagon-shaped image which perfectly satisfies 

PH1 PH2 

PH3 PH4 

PH5 PH6 

PH7 PH8 

PH9 PH10 

Figure 7.3. Generic regular hexagon-shaped images with dimension of 26x26x26. 
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the measured projections. Only when we use three projections, in some cases for 
example for PH1, PH5, PH7 and PH8, the difference between reconstructed image 

and the original one was very small. Using four projection angles all the images 
were perfectly reconstructed. 

7.3.2. GENERIC REGULAR HEXAGON-SHAPED IMAGES 

The secondly considered test class is of 20 generic hexagon-shaped images. 
In this case, we resampled some generic images represented on the square grid. 
The test images were resampled form the public available databases [Pat]. The 

considered hexagon-shaped images for our tests have the size m=26.  
Figure 7.3 shows 10 examples of images that we used in our tests. For each 

of our images we performed 100 runs.  
Table 7.2 and Table 7.3 show the test results. The first column contains the 

considered image. The second are third column contain the image dimension and 
the number of projection angles used for the test. Column four, five, six and seven 
contain the average perfect and successful runs, and the average projection and 

pixel errors. The eighth and ninth columns contain the number of iterations and the 
runtime in seconds.  

 
Table 7.2. Reconstruction results for PH1-PH5 generic regular hexagon-shaped images. 

 

Image d 
Perfect 

reconstruction 
Successful 

reconstruction 
Projection 

error 
Pixel 
error 

Iteration 
Runtime 

(s) 

PH1 

3 0 100 581 317 352 564 

4 0 100 162 85 409 451 
5 0 100 192 98 409 434 
6 0 100 159 76 406 415 

PH2 
3 100 100 0,0 0,0 1 2 
4 100 100 0,0 0,0 1 2 

PH3 

3 0 100 557 494 227 361 
4 0 100 437 335 340 369 
5 0 100 400 269 383 385 
6 0 100 220 127 414 422 

PH4 

3 0 100 1035 535 415 892 
4 0 100 188 103 573 619 
5 0 100 379 208 477 478 
6 0 100 181 93 406 414 

PH5 

3 0 100 81 23 402 595 
4 0 100 85 25 405 443 

5 0 100 192  90  406 409 
6 0 100 108 38 405 413 

 
 
Figure 7.4 shows the test results for the 10 hv-convex polyominoes from 

Figure 7.3. The blue color column illustrate the results obtained using 3 projection 
angles, the red color columns indicate the reconstruction results using 4 projection 
angles, the green color column shows the reconstruction results obtained using 5 

projection angles and the mauve color column illustrated the results for 6 projection 
angles. It can be seen that not all the time using more projection angles the 
reconstruction results decrease. This is because of the high number of iterations to 
which is associated a triplet of projection angles for which the first two projections 

are not orthogonal enough. Also, we saw from our test results that for some cases, 
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better reconstruction results can be obtained by using in each iteration triplets of 
projection angles in which the difference between the first two projection angles is 

orthogonal enough, as the case of 4 projections. 
 

Table 7.3. Reconstruction results for PH6-PH10 generic regular hexagon-shaped images. 

 

 
 

 

Image d 
Perfect 

reconstruction 
Successful 

reconstruction 
Projection 

error 
Pixel 
error 

Iteration 
Runtime 

(s) 

PH6 

3 0 100 440 226 620 985 
4 0 100 218 124 468 517 
5 0 100 343 213 417 419 
6 0 100 212 110 425 433 

PH7 

3 0 100 55 23 390 615 
4 0 100 53 18 377 411 
5 0 100 115 50 397 399 
6 0 100 78 30 359 367 

PH8 
3 100 100 0,0 0,0 100 168 
4 100 100 0,0 0,0 95 111 

PH9 

3 0 100 176 84 528 834 
4 0 100 130 56 406 442 
5 0 100 148 62 395 397 
6 0 100 114 49 395 406 

PH10 

3 0 100 958 478 435 437 
4 0 100 197 108 418 493 
5 0 100 212 107 401 379 
6 29 100 18 6 359 395 

Figure 7.4. Reconstruction results for the 10 generic regular hexagon-shaped images. 
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Figure 7.5 shows reconstruction examples for images the test images. Errors 

are shown by color: missing pixels are blue, additional pixels of the reconstructed 

PH1, d=6 
f=154, PE=60, i=313 

PH3, d=6 
f=198, PE=88, i=391 

PH4, d=6 
f=182, PE=76, i=417 

PH5, d=6 
f=54, PE=14, i=381 

PH6, d=6 
f=204, PE=92, i=418 

PH7, d=6 
f=26, PE=8, i=292 

PH9, d=6 
f=108, PE=38, i=756 

PH10, d=6 
f=16, PE=4, i=371 

Figure 7.5. Generic hexagon-shaped images reconstruction examples. 
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image are red; f means fitness function value, PE means pixel error (sum of blue 
and red pixels) and i means number of iterations made for obtaining the solution. 

The results show that using enough projection angles the binary hexagon-
shaped images can be perfectly reconstructed, see for example image PH2, PH8 and 
in some cases PH10. Not for all images the six considered projection angles are 
enough. But even if the solutions are not perfect, a successful reconstruction was 
obtained in all the cases, the shape of the object from the images being clearly 
distinguished. In conclusions even choosing a reasonable number of projection 

angles, the proposed algorithm leads us to robust solutions that are very close to 

the original images. 

7.3.3. NON-CONVEX REGULAR HEXAGON SHAPED IMAGES 

For the third tests class we resampled, at different dimensions, five images 
from the [MPE] database. All the hexagon-shaped test images are resampled from 
square images of 100x100 at a dimensions of m={4, 8, 13, 26, 50}. In our tests, 
for each of the considered test images we used a number of 100 runs.  

Figure 7.6 show the considered non-convex regular hexagon-shaped images 
at a dimension of 50×50×50.  

 

 
 
Table 7.4 shows the test results for the images from Figure 7.6. The first 

and second columns contain the considered test image and the number of projection 
angles. Then, the next four columns contain the average of perfect and successful 
reconstructions and the average projection and pixel error. Columns seven and eight 

PH1 PH2 

PH3 

PH4 PH5 

Figure 7.6. Non-convex hexagon-shaped test images of dimension 50×50×50. 
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contain the number of average iterations and the number of average runtime 
measured in seconds. 

 
Table 7.4. Reconstruction results for non-convex hexagon-shaped images with dimension 

4×4×4. 

 

Image d 
Perfect 

reconstruction 
Successful 

reconstruction 
Projection 

error 
Pixel 
error 

Iteration 
Runtime 

(s) 

PH1 3 100 100 0,0 0,0 1 0 

PH2 3 100 100 0,0 0,0 1 0 

PH3 
3 71 84 2 1 168 8 
4 100 100 0,0 0,0 36 2 

PH4 3 100 100 0,0 0,0 16 0 

PH5 3 100 100 0,0 0,0 3 0 

 
Figure 7.7 shows the charts that contain the reconstruction results for the 

non-convex hexagon-shaped images at a dimension of 4×4×4. The columns indicate 
the number of projections used for the reconstruction. Results show that the 
reconstruction values become lower as the number of projections increase. 

 

 
Table 7.5 shows the reconstruction results for the resampled images at a 

dimension of 8×8×8. The first and second columns contain the considered test 
image and the number of projection angles. The fourth-eighth columns contain the 
average of perfect and successful reconstructions and the average projection and 
pixel error. The next two columns contain the number of average iterations and the 
number of average runtime measured in seconds. 

 

Figure 7.7. Reconstruction results for non-convex hexagon-shaped images with dimension 
4×4×4. 

BUPT



7.3. – Experimental results    117 

Table 7.5. Reconstruction results for non-convex hexagon-shaped images with dimension 
8×8×8. 

Image d 
Perfect 

reconstruction 
Successful 

reconstruction 
Projection 

error 
Pixel 
error 

Iteration 
Runtime 

(s) 

PH1 
3 100 100 0,0 0,0 1 0 
4 100 100 0,0 0,0 1 0 
5 100 100 0,0 0,0 1 0 

PH2 

3 1 100 13 6 301 38 
4 100 100 0,0 0,0 46 7 
5 51 92 6 3 182 25 
6 100 100 0,0 0,0 33 7 

PH3 

3 0 100 50 48 208 26 
4 0 100 42 27 328 50 
5 0 100 34 15 350 48 
6 47 95 5 3 227 46 

PH4 

3 0 100 72 51 258 33 
4 0 100 57 41 291 44 
5 0 100 52 36 291 39 
6 0 100 41 31 275 51 

PH5 
3 57 100 7 2 109 14 
4 100 100 0,0 0,0 18 3 
5 100 100 0,0 0,0 24 3 

 
Figure 7.5 shows the charts that contain the reconstruction results 

associated to Table 7.5. The color of the columns indicates the number of 
projections used for the reconstruction 3, 4, 5 and 6, respectively. In the charts we 

can see that the projection and pixel errors become less, almost for all the cases, as 
the number of projections increases. 

 

 

Figure 7.8. Reconstruction results for non-convex hexagon-shaped images with dimension 
8×8×8. 
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Table 7.6 shows the reconstruction results for the test images having a 
dimension of 13×13×13. The first two columns contain the test images and the 

number of projection angles. The following two columns contain the average of 
perfect and successful reconstructions. The next columns contain the average 
reconstruction values for the projection and pixel error. The last two columns 
contain the number of average iterations and the number of average runtime 
measured in seconds. The reconstruction values are summarized in Figure 7.9, 
where the color of the columns corresponds to the number of projection angles, 3, 

4, 5 and 6, respectively. Experimental results show that the reconstruction values 

depend a lot on the number of projections and especially on the order of the triplets 
of projection angles used in each iteration. Also the results show that for each type 
of image there is a lower value for the number of projection angles to compute an 
accurate solution. We remark that we have a case of image, the PH1, in which using 
only 3 projections, the algorithm obtained perfect reconstruction, meanwhile 
increasing the number of projection angles the reconstruction becomes worse. This 
is because of the considered order for the triplets of projection angles. Our test 

results show that the accurate of the reconstruction depends a lot on the order in 
which the triplets of projection angles are associated to each iteration. This is 
because the triplets for which the first two projection angles are not orthogonal 
enough worsen the reconstruction, in some cases. For the other considered images 
the reconstruction values linearly decrease with the increasing of the number of 
projection angles. 

 
Table 7.6. Reconstruction results for non-convex hexagon-shaped images with dimension 

13×13×13. 

Image d 
Perfect 

reconstruction 
Successful 

reconstruction 
Projection 

error 
Pixel 
error 

Iteration 
Runtime 

(s) 

PH1 

3 98 98 0,3 0,1 68 19 
4 80 80 2 1 80 26 
5 1 100 19 7 299 82 
6 78 81 3 1 134 57 

PH2 

3 100 100 0,0 0,0 15 4 
4 100 100 0,0 0,0 15 5 
5 100 100 0,0 0,0 52 15 
6 100 100 0,0 0,0 43 21 

PH3 

3 0 100 105 63 375 99 
4 0 100 65 31 424 130 
5 0 100 51 21 368 100 
6 0 100 34 14 370 158 

PH4 

3 0 100 166 86 349 93 
4 0 100 116 66 373 114 
5 0 100 103 58 406 106 
6 0 100 89 49 381 153 

PH5 

3 100 100 0,0 0,0 4 1 
4 100 100 0,0 0,0  7 2 
5 100 100 0,0 0,0 10 3 
6 100 100 0,0 0,0 3 2 
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Figure 7.10 shows reconstruction examples for three test images of 

resolution 13×13×13. Missing pixels are shown with blue, additional pixels of the 
reconstructed image are red. Information about the reconstructions are shown 
below the images: f means fitness function value, PE means pixel error (sum of blue 
and red pixels) and i means number of iterations made for obtaining the solution. 
Results show that the shape of the objects can be clearly distinguished. 

 

 

PH3, d=6 
f=16, PE=4, i=619 

PH1, d=5 
f=20, PE=8, i=337 

PH4, d=6 
f=90, PE=50, i=306 

Figure 7.10. Reconstruction examples for non-convex hexagon-shaped images with dimension 
13×13×13. 

Figure 7.9. Reconstruction results for non-convex hexagon-shaped images with dimension 
13×13×13. 
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Table 7.7 and Figure 7.11 summarize the reconstruction results for the test 

images having a dimension of 26×26×26. The first two columns contain the test 
images and the number of projection angles. Column three and four contain the 
average of perfect and successful reconstructions. The next two columns contain the 
average reconstruction values for the projection and pixel error. The last two 
columns contain the number of average iterations and the number of average 
runtime measured in seconds. The colors of the columns from the charts of Figure 

7.11 indicate the number of projection angles used in the reconstruction. Results 

show that using five projection angles the reconstruction values are the worst for 
almost all the cases. This is because of the number of triplets of projection angles, 
in which the difference the first two projections are not enough orthogonal one to 
each other, is high. Also using 4 projections instead of 6 can be advantageous, in 
some cases, because of the number of the triplets for which the first two projections 
are not enough orthogonal is lower than in 6 projection case. This leads for better 
results for test images like the one from PH1 and PH2. 

 
 
 

Table 7.7. Reconstruction results for non-convex hexagon-shaped images with dimension 
26×26×26. 

 

Image d 
Perfect 

reconstruction 
Successful 

reconstruction 
Projection 

error 
Pixel 
error 

Iteration 
Runtime 

(s) 

PH1 

3 91 91 0,8 0,4 156 164 
4 95 95 0,4 0,2 138 159 
5 0 100 43 16 413 387 
6 8 100 14 5 356 380 

PH2 

3 0 100 27 10 351 356 
4 38 98 9 3 297 331 
5 0 100 79 30 374 353 
6 15 100 24 7 364 380 

PH3 

3 0 100 81 36 508 509 
4 0 100 87 39 443 487 
5 0 100 118 52 406 418 
6 0 100 89 41 401 416 

PH4 

3 0 100 808 427 441 436 
4 0 100 303 205 419 462 
5 0 100 292 170 435 442 

6 0 100 221 116 418 435 

PH5 

3 23 100 13 4 239 240 
4 84 84 2 1 139 159 
5 0 100 57 22 394 400 
6 84 88 3 1 195 208 
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Figure 7.12 shows reconstruction examples for the test images resampled at 

dimension 26×26×26. Missing pixels are shown with blue, additional pixels of the 
reconstructed image are red. Information about the reconstructions are shown 
below the images: f means fitness function value, PE means pixel error (sum of blue 
and red pixels) and i means number of iterations made for obtaining the solution. 
Reconstruction examples show that even if the projection and the pixel error are 

high the shape of the objects from the images can be clearly distinguished. 
Table 7.8 shows the reconstruction results for the five test images 

resampled at dimension of 50×50×50. The first and second columns contain the 
considered test image and the number of projection angles. The fourth-eighth 
columns contain the average of perfect and successful reconstructions and the 
average projection and pixel error. The next two columns contain the number of 
average iterations and the number of average runtime measured in seconds.  

 

Figure 7.11. Reconstruction results for non-convex hexagon-shaped images with dimension 
26×26×26. 
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Table 7.8. Reconstruction results for non-convex hexagon-shaped images with dimension 
50×50×50. 

Image d 
Perfect 

reconstruction 
Successful 

reconstruction 
Projection 

error 
Pixel 
error 

Iteration 
Runtime 

(s) 

PH1 

3 0 100 171 73 400 2112 
4 0 100 141 60 402 2015 
5 0 100 199 83 412 2216 
6 0 100 197 85 346 1857 

PH2 

3 0 100 217 94 401 2118 
4 0 100 202 87 412 2062 
5 0 100 345 164 382 2043 
6 0 100 267 111 416 2230 

PH3 

3 0 100 175 85 573 3015 
4 0 100 222 105 454 2261 
5 0 100 434 202 405 2164 
6 0 100 189 114 430 2202 

PH4 

3 0 100 2744 1453 820 4195 
4 0 100 983 763 661 3268 
5 0 100 899 649 349 1868 
6 0 100 505 299 416 2066 

PH5 

3 0 100 46 15 401 2006 
4 36 90 24 9 322 1611 
5 0 100 150 59 406 2168 
6 0 100 128 53 391 1950 

PH2, d=5 
f=60, PE=18, i=490 

PH1, d=6 
f=8, PE=4, i=320 

PH3, d=3 
f=88, PE=28, i=503 

PH4, d=6 
f=218, PE=98, i=275 

PH5, d=5 
f=32, PE=8, i=634 

Figure 7.12. Reconstruction examples for non-convex hexagon-shaped images with dimension 
26×26×26. 
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Figure 7.13 shows the charts that contain the reconstruction results for the 
non-convex hexagon-shaped images resampled at dimension of 50×50×50. The 

color of the columns indicates the number of projections used for the reconstruction, 
3, 4, 5 and 6, respectively. Results show that, similarly to the case of dimension 
26×26×26, using five or six projections affects a lot the accurateness of the 
reconstructed images. This is because of the high number of iterations to which is 
associated a triplet of projection angles for which the first two projections are not 
orthogonal enough. This case happens for images like the ones from PH1, PH2 and 

PH3. Meanwhile results show that for other type of images the reconstruction results 

increase by using the same high number of iterations to which is associated a triplet 
of projection angles for which the first two projections are not orthogonal enough. 
See, for example the case of PH4. 

 
 

 
 

Figure 7.14  shows reconstruction examples for the test images resampled 
at dimension 50×50×50. Missing pixels are shown with blue, additional pixels of the 
reconstructed image are red. Information about the reconstructions are shown 
below the images: f means fitness function value, PE means pixel error (sum of blue 
and red pixels) and i means number of iterations made for obtaining the solution. 
Reconstruction examples show that even if the projection and the pixel error are 

high the shape of the objects from the images can be clearly distinguished. 
 
 

Figure 7.13. Reconstruction results for non-convex hexagon-shaped images with dimension 
50×50×50. 
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Experimental results show that for small dimension images and for images 

that contain simple objects there are cases when the reconstruction is perfect, even 
if the image has a high dimension. For images that contain more complex objects 
the reconstructions are successful but neither of them is perfect, for high dimension 
objects. In order to obtain perfect reconstruction there are needed more projection 
angles. Also, in some cases we saw that better reconstruction results can be 

PH1, d=4 
f=108, PE=40, i=382 

PH2, d=4 
f=160, PE=62, i=547 

PH3, d=3 
f=174, PE=64, i=581 

PH4, d=6 
f=490, PE=262, i=378 

PH5, d=5 
f=114, PE=44, i=377 

Figure 7.14. Reconstruction examples for non-convex hexagon-shaped images with dimension 
50×50×50. 
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obtained by using in each iteration triplets of projection angles in which the 
difference between the first two projection angles is orthogonal enough.   

We tested our algorithm on three types of datasets. Test results show that 
our proposed algorithm computes accurate reconstructions also for images of higher 

dimensions, even if the reconstruction takes several hours. In some of the 
considered test images, having triplets of projection angles with difference between 
the first two projection angles less or equal to 2π/3 is apparently not sufficient for 

reconstructing them. The first two projection angles have to be sufficiently 
orthogonal. By not using sufficiently orthogonal directions, the reconstructed image 
results in a flat reconstruction over the chosen directions, and this worsens our 
reconstruction. We obtained perfect reconstruction in only some seconds for the 

dataset of images that satisfy some constraints like the hv-polyominoes. For all the 
considered test cases our algorithm manage to successfully reconstruct the images, 
using only maximum six projection angles, in such a way that the object or objects 
contained in the image are clearly distinguished. In conclusions, choosing a 
reasonable number of projection angles, the proposed algorithm leads us to robust 
solutions that are very close to the original images. 

Unfortunately, we could not make comparisons with alternative approaches 
for algorithms that reconstruct hexagon-shaped images using the triangular grid, 
because no alternative is yet available. Future work may include the development of 
alternative algorithms in order to be able to compare the feasibility and flexibility of 
the proposed algorithm for the case of triangular grid represented images. 

7.4. CONCLUSIONS 

In this chapter, we have presented an algorithm for reconstructing binary 
hexagon-shaped images from few projection angles, maximum six projection 
angles. This gives confidence on the feasibility of reconstruction hexagon-shaped 
images from few projection angles. The experimental results show that the 
algorithm can make a very good reconstruction in a relatively short time for 
different test images. Even if in our proposed method we use the smoothness 

assumption of an image, the algorithm performs well for reconstructing details also. 
Usually in practice images are not completely random and they do not satisfy 
mathematical constrains. The proposed method performs well by using the 
assumption that the images are relatively smooth, but they do not have any rigid 

structure assumption. In its actual form the algorithm assumes that the projection 
data it’s perfect, there are no noisy projections. 
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8.1. CONCLUSIONS 

We have presented in this thesis our contribution to resolve the binary 
tomography reconstruction problem for digital images sampled on the triangular 
grid.  

The field of tomography is still an active area of research, not being an easy 

task. The goal of tomography is to obtain image of object sections. This method is 
used in several fields in practice, when data about the inner structure of the object 
is needed without breaking it. It is applied in medicine, biology, material science, 

archeology, geophysics and in other field also. 
Tomography techniques are based on acquiring projections of the image 

using multiple angles. These projection data is used by a tomography reconstruction 

software algorithm to obtain the section image. 
In discrete tomography, the object, from mathematical point of view, 

corresponds to an attenuation function. For the attenuation function some integrals 
or sums over a subset are known. Binary tomography is a special case of discrete 
tomography where the function has only two values 0 and 1. The solution of the 
discrete topographic problem is usually undetermined, being several solutions for 
the same problem. Also discrete tomography problem is NP-hard when three or 

more than three projections are considered.  
 The first studied grid for discrete tomography was the square grid 

[Rys57][Rys63][Gal57][Wan98] and the cubic grid because of the Cartesian 
coordinate system use. However other regular and non-traditional grids in image 

processing can be used. In the plane, considering the possible tilling, the hexagonal 
and triangular grids can be used instead of the square grid. The advantage of using 
hexagonal grid is that it is very simple having only one neighborhood relation and it 

has better symmetric properties than the square grid has. The symmetry of the 
hexagonal grid is mirrored by its description by three coordinates with zero 
coordinate sums [Her95]. There is a relative wide literature on binary tomography 
using the hexagonal grid [Mat98][Mid05][Lai93]. The dual of the hexagonal grid is 
not hexagonal, but triangular, so the triangular grid (of areas), is topologically the 
same as the hexagonal grid of nodes. The triangular grid has a similar symmetry as 

the hexagonal grid, a 
2π

3
 rotation moves the grid to itself, a three coordinate 

description being possible [Nag04][Nag07]. Also the triangular grid can represent 
any circular band limited signal in a more efficient way than conventional square 
grid. 

8. CONCLUSIONS AND FUTURE WORK 
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In this thesis we have defined the digital image sampled on the triangular 
grid, and called it hexagon-shaped image. Also we have developed the 

mathematical background for the two phases of the binary tomography 
reconstruction problem, we have defined the Radon transform on triangular grid and 
we have proposed an image reconstruction algorithm from few different angles. 
Next section summaries our contributions.  

8.2. SUMMARY OF CONTRIBUTIONS 

The main purpose of this thesis is to solve the problem of the reconstruction 
of binary hexagon-shaped images represented on the triangular grid using 
projections of the image from few different angles.  

In accordance with the established thesis objectives, we have introduced the 
fundamental bases of triangular grid and digital image representation using 
triangular grid. In this context, in chapter 3, we have presented the data structures, 
definitions and properties of the triangular grid. We also have defined the digital 

images on the triangular grid naming them hexagon-shaped images, because of 
their hexagon shape, fulfilling the first objective of the thesis. Some of the 
definitions presented in this chapter were introduced in 
[Moi13a][Nag13b][Nag13a][Nag14]. 

The binary tomography reconstruction problem presumes two main phases: 

the generation of the set of projections, and the combination of images to 

reconstruct an approximation of the original image. 
Mathematically, the first phase, the generation of the set of projections of a 

hexagon-shaped image measured along different projection angles, is accomplished 
using the Radon transform. In chapter 4, we have developed the mathematical 
equations of the Radon transform on triangular grid bases achieving the second 
thesis objective. This transformation represents the equation of the measured 
projection, which is used in the second phase of tomography, in the reconstruction 

of the hexagon-shaped images. 
The second phase of the considered problem, mathematically, consists of 

image reconstruction algorithms. For the image reconstruction process, the first 
step in our approach has been to model the reconstruction problem of hexagon-
shaped images on triangular grid using three projections based on the problem of 
finding a maximum flow with minimum cost in a graph, fulfilling the third thesis 
objective. The proposed model, presented in chapter 3, takes into consideration the 

properties of a hexagon-shaped image, mainly the property that on the triangular 
grid a pixel is represented using three coordinates that correspond to the three 
coordinate axes of the grid and the domain in which these coordinates are defined 
in. In [Moi13a] and [Nag14] we presented the way in which the reconstruction 
problem of hexagon-shaped images, using orthogonal, respectively parallel to the 
triangular coordinate axes directions, can be modeled as the problem of finding 

maximum flow with minimum cost in a graph.  
Using the model of the minimum cost maximum flow algorithm with 

restrictions imposed by the third projection, two image reconstruction algorithms 
were proposed. 

The first developed method is a memetic algorithm, presented in chapter 6 
which fulfills the fourth objective of the thesis. In this algorithm the initial population 
is generated using the minimum cost maximum flow algorithm for the case of 

hexagon-shaped images. We introduced new mutation and crossover operators for 
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hexagon-shaped images. Also a new compactness operator and a minimal hill climb 
operator, based on the switching components are defined. The compactness and the 

switching components are two important components of discrete tomography. We 
performed extension simulations on databases containing hv-convex polyominoes, 
generic hexagon-shaped images and non-convex regular hexagon-shaped images 
with various dimensions. Preliminary results show that the proposed method is 
robust enough, especially in the case in which the hexagon-shaped images satisfy 
prior knowledge, like the hv-polyominoes, or satisfy topological and geometrical 

constraints, like the generic images that contain objects without holes. The 

proposed operators for the case of hexagon-shaped images on triangular grid and 
some results using the orthogonal and respectively the parallel to the coordinate 
axes projection directions, are presented in [Moi11][Moi13b][Nag13a] and [Nag14]. 

The second proposed method for solving the image reconstruction problem 
from few projections is an iterative one and it is presented in chapter 7, fulfilling the 
last objective of the thesis. In each iteration, of the proposed algorithm, a new 
triplet of projection angles is selected. The reconstruction problem that depends on 

the selected triplet of projection angles and on the reconstruction from the previous 
iteration is solved. This reconstruction problem is equivalent with the problem of 
finding a flow with minimum cost in a graph. In our approach, we used the 
minimum cost maximum flow algorithm in order to solve the reconstruction 
problem. Our method is based on Batenburg approach for the case of the square 
grid, but some parts of the algorithm are adapted for the triangular grid case. The 

experimental results show that our algorithm produces good quality reconstruction 
results in a short time, even if we use high dimension hexagon-shaped images. Our 
results show that for images with more complex objects, it is not enough to use only 
six projections, but more different projection angles are needed.  

8.3. RESEARCH PERSPECTIVES 

In future we intend to generalize our methods to take into consideration 
specific models of the objects from the images, for example images that contain real 
test data from different domains. In this case, we want to extend the proposed 
method to 3D volumes of data based on the triangle representation of a pixel in 2D. 

In real cases, the projection data can be perturbed by quantization and 
instrumental noises. In computerized tomography, usually these perturbations are 
disregarded due to the huge number of different projection angles which distribute 

the errors on the whole reconstructed image. In discrete tomography, this 
assumption is no longer valid because there are used a small number of projections 
in order to reconstruct the image. In this case, our method still needs to be verified. 

Moreover, we intend to propose a parallel implementation for the proposed 
memetic algorithm for binary discrete tomography reconstruction on triangular grid, 
using few projection angles and without any further a priori information. Using 

parallel implementation would speed up our method due to the use of different 
physical CPUs. 

Also we intend to implement other reconstruction algorithms for the case of 
hexagon-shaped images represented on the triangular grid, in order to make 
comparisons between different binary discrete tomography methods.  
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APPENDIX A 

In this appendix it is shown the formula used for converting coordinates of 
pixels on a triangular grid into corresponding pixel coordinates on a square grid. The 

Cartesian grid is a well known grid used in image processing. Triangular grid is, in 
many respects as the Cartesian grid, the pixels in the triangular grid are triangles 

instead of squares as in the case of the Cartesian grid. Figure A. 1 shows the 
triangular and Cartesian grid coordinate systems. 

 
 
 Using the Pythagorean Theorem, the relationship between y-Cartesian and 

x-Cartesian grid line spacing is 

 y Cartesian space x Cartesian space* 3    (A.1) 

Figure A. 1. Triangular grid coordinate and Cartesian grid coordinate systems 
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ycart 
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136   Appendix A 

If the x-Cartesian space is considered to be 1 unit, than the y-Cartesian 

space is 3  units. The length of a side of the equilateral triangle is 3 . The length 

of the height of the equilateral triangle is 
3

2
.  

It can be noticed that any row of triangles parallel to x-coordinate have a 

constanty – z coordinate, soycart depends only on y – z. The centers of the triangles 
in one row parallel to x-coordinate are half side-length above/below the centers in 

the next row, so: 

  cart
3

y y z
2

    (A.2) 

 The triangles with a given x and z coordinates all have centers on a line 

perpendicular to x axis that is 
1

2
 from the origin. The x axis has slope 

3

3
 , so the 

line perpendicular to it has slope 3 . A point on the x axis and on the line has 

coordinates    
1 3

x z , x z
2 2

 
   

 
 

. An equation in xcart and ycart for the line 

containing the centers of the triangles with x and z coordinates is 

   cart cart
3 1

y x z 3 x x z
2 2

 
     

 
. Substituting for ycart using equation (A.2) 

and solving for xcart gives the formula: 

  cart
1

x x y z
2

    (A.3) 

Using the coordinate transformation between the triangular coordinates and 
the Cartesian coordinates the radon transform, which is the mathematical basis of 
the projection operation, is presented. 
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APPENDIX B 

 
This appendix provides the derivation for the rotation transformation on the 

triangular grid. 
In Figure B. 1, OP, OQ, OR are axes of triangular coordinate and OP’, OQ’, 

OR’ are axes of the triangular coordinate rotates by an angle of θ  with respect to 

OP and OQ. Point E is represented as (x, -y, z) and (x’, -y’, z’) in OP, OQ, OR and 
OP’, OQ’, OR’ coordinate system, wherex+(-y)+z=0 orx+(-y)+z=1 andx’+(-
y’)+z’=0orx’+(-y’)+z’=1. 

 
 
 

 
 

 OA OE OC CE OC CE           (B.1) 

Substituting: 

 

 

 

   

0

0

OA x z

OE y z cos60

OC x z cosθ

CE y z cos 60 θ

 

   

   

    
 

equation(B.1) becomes: 

          0 0x z y z cos60 x z cosθ y z cos 60 θ            (B.2) 
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Figure B. 1. Triangular and rotated triangular coordinate 
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138       Appendix B 

 For EE” we can write: 

 EE EE EE CC EE          (B.3) 

Substituting: 

 

 

 

   

0

0

EE y z sin60

CC x z sinθ

EE y z sin 60 θ

   

   

     
 

Equation(B.3) becomes: 

        0 0y z sin60 x z sinθ y z sin 60 θ           (B.4) 

 Solving equations (B.2) and (B.4) for x-z and y-z we get: 

 
 

 

0

0 0

sinθ sin 60 θ
x z x z1

y z y zsin60 sin 60 θ sinθ

 
       

     
       

 

 (B.5) 

 
 

 

0

0 0

sin 60 θ sinθ
x z x z1

y z y zsin60 sinθ sin 60 θ

 
       

     
       

 

 (B.6) 
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