

Contributions in the Field of

Generative Models Applied in

eLearning

A Thesis Submitted for obtaining

the Scientific Title of PhD in Engineering

from

Politehnica University Timișoara

In the Field of Computers and Information Technology

by

Felicia Mirabela DUME (COSTEA)

PhD Committee Chair: Conf. dr. ing. Dan Pescaru

 Sl. dr. ing. Răzvan Bogdan

 Prof. dr. ing. Carmen Holotescu

PhD Supervisor: Prof. univ. dr. ing. Vladimir Ioan Creţu

Scientific Reviewers:

Date of the PhD Thesis Defense:

BUPT

1

The PhD thesis series of UPT are:

1.Automation 11.Science and Material Engineering

2.Chemistry 12.Systems Engineering

3.Energetics 13.Energy Engineering

4.Chemical Engineering 14.Computers and Information Technology

5.Civil Engineering 15.Materials Engineering

6.Electrical Engineering 16.Engineering and Management

7.Electronic Engineering and Telecommunications 17.Architecture

8.Industrial Engineering 18.Civil Engineering and Installations

9.Mechanical Engineering 19.Electronics, Telecommunications

10.Computer Science and and Information Technologies

 Information Technology

Politehnica University Timișoara, Romania, initiated the above series to disseminate

the expertise, knowledge and results of the research carried out within the doctoral

school of the university. According to the Decision of the Executive Office of the

University Senate No. 14/14.07.2006, the series includes the doctoral theses

defended in the university since October 1, 2006.

Copyright © Editura Politehnica – Timișoara, Romania, 2021

This publication is subject to copyright law. The multiplication of this publication, in

whole or in part, the translation, printing, reuse of illustrations, exhibit, broadcasting,

reproduction on microfilm or any other form is allowed only in compliance with the

provisions of the Romanian Copyright Law in force and permission for use obtained in

writing from the Politehnica University Timișoara, Romania. The violations of these

rights are under the penalties of the Romanian Copyright Law.

România, 300159 Timişoara, Bd. Republicii 9,

Tel./fax 0256 403823

e-mail: editura@edipol.upt.ro

BUPT

2

Foreword

This thesis has been elaborated during my activity in the Department of
Computers and Information Technology of the Politehnica University Timişoara, Romania.

The scientific substantiation and elaboration of this doctoral thesis would have
been impossible without the help, support, and guidance of special people who,
through a high degree of professionalism and dedication, contributed to my training

as a researcher, instilling the courage to go further.
I would like to thank my PhD supervisor, prof. univ. dr. ing. Vladimir Ioan

Crețu, for his permanent guidance, support, trust, and encouragement during the
period of doctoral preparation and thesis elaboration. I thank the professor for thus
contributing to my professional training as a person.

I would also like to express my gratitude to the members of the evaluation
committee for their advice and suggestions.

I would like to thank conf. dr. ing. Ciprian-Bogdan Chirilă for the special

collaboration, support, and for the opportunity for professional development that he
offered me.

At the same time, I would like to express my special thanks to my family for
their encouragement and dedicated support, expressed during the doctoral research
process.

Timişoara, June 2021 Felicia Mirabela Dume (Costea)

BUPT

3

Recipients of dedication.

DUME (COSTEA), Felicia Mirabela
Contributions in the Field of Generative Models Applied in
E-Learning
PhD theses of UPT, Series X, No. YY, Editura Politehnica, 200Z, 265
pages, 221 figures, 5 tables.
ISSN:
ISBN:

Keywords
e-learning, auto-generative learning objects,

Abstract
The integration of ICT in the training process has become important in the

evolution of education. Learning objects have emerged as a new way of

organizing learning content. Improving the use of learning objects is an

important direction in the field of research, several models being created.

We propose an approach based on auto-generative learning objects to

facilitate learning and assessment for the STEM disciplines. An auto-

generative learning object is a pedagogical model developed by the tutor

to meet a specific learning objective. It offers different exercises for each

instance based on randomly instantiated variables. The answers given by

the students are evaluated automatically.

We have modeled concepts from several STEM disciplines. After applying

them to the class we found that they are effective and appreciated by

students.

BUPT

4

CONTENTS
List of tables .. 1
List of figures ... 1
1. Introduction .. 8
2. State of the Art in Learning Objects .. 14

2.1. Learning Objects Definitions ... 14
2.1.1. IEEE Learning Object Metadata Standard 15
2.1.2. Sharable Content Object Reference Model 18
2.1.3. Cisco Learning Object Model .. 20
2.1.4. Dublin Core Standard .. 23
2.1.5. The Learnativity Content Model .. 24
2.1.6. NETg Learning Object Model .. 25
2.1.7. Abstract Learning Object Model .. 26
2.1.8. H5P learning objects ... 28

2.2. Learning Objects in Learning Management Systems 30
2.2.1. Learning Objects in Moodle .. 30
2.2.2. Learning Objects in ILIAS .. 34
2.2.3. Learning Objects in Blackboard Learn.. 37

2.3. Generative Learning Objects ... 39
2.3.1. GLOs Coined by Tom Boyle .. 39
2.3.2. GLOs in the Works of Damasevicius and Stuikys 42
2.3.3. Moodle Coordinate Questions ... 43
2.3.4. Moodle Calculated Questions .. 45

2.4. Learning Objects in Other Works ... 47
2.4.1. Learning Objects Sequencing Papers ... 47
2.4.2. Learning Objects Improved by Object-Oriented Design 48
2.4.3. Learning Objects in Cloud Frameworks .. 49
2.4.4. Learning Objects Records - Experience API 51

2.5. Statistical concepts used in the assessment of the proposed e-learning

approach .. 56
2.6. Comparison of Learning Objects .. 57
2.7. Summary ... 60

3. The Auto-generative Learning Object Model... 62
3.1. AGLO creation by StepWay Abstractization and generalization 64

3.1.1. The abstraction algorithm .. 64
3.1.2. The abstraction process applied on an example 65
3.1.3. Abstractions for different concepts from STEM disciplines 67

3.2. Mathematical Definition and Structure ... 73
3.3. Semantics .. 76
3.4. Summary ... 78

4. Models for Middle School Arithmetic ... 79
4.1. Fractions AGLOs .. 79

4.1.1. Fractions Classification AGLO ... 79
4.1.2. Common Divisor AGLO .. 81
4.1.3. Amplification and Simplification of a Fraction AGLO 82
4.1.4. Comparing Fractions AGLOs ... 85
4.1.5. Fraction Addition AGLOs .. 87

BUPT

5

4.1.6. Fraction Subtraction AGLO ... 92
4.1.7. Fraction Multiplication AGLO .. 93
4.1.8. Fraction Power AGLO .. 95
4.1.9. Fraction Division AGLO .. 97
4.1.10. Finding a Percentage of a Whole AGLO 100
4.1.11. Transforming a Decimal Fraction AGLO...................................... 101
4.1.12. Transforming a Periodic Decimal Fraction AGLO 102
4.1.13. Transforming a Mixed Periodic Decimal Fraction AGLO................. 104
4.1.14. Introduction of the Whole into a Fraction AGLO 104
4.1.15. Extracting the Whole from a Fraction AGLO 106

4.2. AGLOs for intervals, equations with the module and inequalities 107
4.2.1. Intervals AGLO ... 107
4.2.2. Equations involving absolute values AGLO 110
4.2.3. Inequations AGLO... 112

4.3. AGLOs for algebraic calculation formulas .. 117
4.3.1. Application of abbreviated calculation formulas AGLO 118
4.3.2. Decomposition into factors AGLO .. 119

4.4. Summary ... 120
5. AGLOs for Information Technology Disciplines ... 121

5.1. Models for Data Structures and Algorithms Discipline 121
5.1.1. Linear search AGLOs ... 121
5.1.2. Linear search with sentinel AGLOs .. 131
5.1.3. Binary search AGLOs... 135
5.1.4. Search by interpolation AGLOs ... 142
5.1.5. Insertion sort AGLOs ... 148
5.1.6. Selection sort AGLOs .. 153
5.1.7. Bubble sort AGLOs .. 157
5.1.8. Shell sort AGLOs .. 159
5.1.9. Quicksort AGLOs .. 162
5.1.10. Linked Lists AGLOs ... 165
5.1.11. Double linked list AGLOs.. 172

5.2. Models for Algorithm Analysis and Design Discipline 176
5.2.1. AGLOs regarding the notion of tree ... 176
5.2.2. AGLOs regarding the notion of graph .. 190

5.3. Models for Operating Systems Discipline .. 199
5.3.1. Commands for directories AGLOs.. 199
5.3.2. Commands for files AGLOs... 205
5.3.3. Commands for processes AGLOs .. 213
5.3.4. Commands for disk partitioning AGLOs 217
5.3.5. Package management AGLOs ... 219
5.3.6. Administrative commands AGLOs ... 221
5.3.7. Basic networking commands AGLOs .. 226

5.4. Summary ... 231
6. Prototype Implementation ... 234

6.1. The DSEL platform .. 234
6.2. The domain-specific JavaScript Libraries .. 237

6.2.1. The JavaScript Library for Fractions Applications 237

BUPT

6

6.2.2. The JavaScript Library for Intervals Applications 238
6.2.3. The JavaScript Library for Data Structures and Algorithms 239
6.2.4. The JavaScript Library for Design and Analysis of Algorithms 242
6.2.5. The JavaScript Library for Operating System 243

6.3. Summary ... 244
7. Validation of Auto-generative Learning Objects .. 245

7.1. Case Study for Fractions AGLOs .. 245
7.2. Case Study for Intervals, Equations and Inequations AGLOs 248
7.3. Summary ... 251

8. Conclusions and Perspectives .. 253
8.1. Conclusions .. 253
8.2. Meeting the Objectives... 255
8.3. Future Work ... 256

Bibliography ... 258

BUPT

LIST OF TABLES

Table 2.1. LO comparison .. 58
Table 2. 2. Moodle plugins and AGLO comparison ... 59
Table 3. 1. The thesis objective associated with the thesis chapters 63
Table 6. 1. Distribution of AGLOs on topics for DSA discipline 232
Table 6.2. Distribution of AGLOs on topics for OS discipline 233
Table 8.1. Grades obtained in the two types of assessments 245

LIST OF FIGURES

Fig.1.1. The LOs conceptual hierarchy ... 9
Fig.1.2. The AGLO Approach ... 10
Fig.1.3. An instantiation of the addition of a node in an ordered linked list 11
Fig.2.1. The hierarchy of elements in the LOM data model………………………………………16
Fig.2.2. An example of a SCORM course .. 19
Fig.2.3. How LMS returns student status .. 20
Fig.2.4. The CISCO Learning Object structure ... 21
Fig.2.5. Course Hierarchy in CISCO Learning Object Model 21
Fig.2. 6. Dublin Core metadata encoding examples ... 24
Fig.2.7. The five-level Learnativity content hierarchy ... 25
Fig.2.8. The architecture of the NETg Model ... 26
Fig.2.9. The ALOCOM model architecture ... 28
Fig.2.10. An interactive video made in H5P .. 29
Fig.2.11. A blank Moodle course page using the Boost theme 31
Fig.2.12. Resources provided by Moodle .. 32
Fig.2.13. The activities offered by Moodle .. 33
Fig.2.14. LOs in ILIAS ... 35
Fig.2.15. An e-campus ILIAS page .. 37
Fig.2.16. A course on Blackboard Learn ... 38
Fig.2.17. Schematic layout of the format for LO realization 39
Fig.2.18. Representation of functional choices in GLO-Maker 40
Fig.2.19. Examples of the ‘surface’ structure ‘pages’ of GLOs as seen by learners . 41
Fig.2.20. The structure of the GLO model... 42
Fig.2.21. Example of LO: Bubble sort; C++; on Mobile (a fragment) 43
Fig.2.22. Example of Moodle Coordinate Question ... 44
Fig.2.23. Moodle Calculated Question example ... 46
Fig.2.24. The LO sequencing process ... 47
Fig.2.25. OOGLOM as a base for IS/OS Models ... 48
Fig.2.26. Example of LO in CLAVIRE .. 51
Fig.2.27. A Statement that voids a previous Statement 53
Fig.2.28. Example of a simple statement ... 53
Fig.2.29. Statement reference example ... 54
Fig.2.30. Example of the "context" field ... 55
Fig.4.1. Sketch for making an AGLO………………………………………………………………………….66
Fig.4.2. Sketch for making the fractions addition AGLOs 67
Fig.4.3. Sketch for making the creation of a hierarchy of directories AGLOs 73

BUPT

2

Fig.4.4 The Grammar .. 75
Fig.4.5. AGLO Name and Scenario .. 77
Fig.4.6. AGLO Theory and Question ... 77
Fig.4.7. AGLO Answer and Feedback ... 78
Fig.5.1. The Scenario for the fractions classification AGLO……………………………………….80
Fig.5.2. An instance of the fractions classification exercise 80
Fig.5.3. The scenario for the common divisor AGLO ... 81
Fig.5.4. An instance of the fractions classification exercise 82
Fig.5.5. An instance of the fractions amplification exercise 83
Fig.5.6. The question section for the simplification of an ordinary fraction AGLO ... 84
Fig.5.7. An instance of the fractions simplification AGLO with a wrong answer 84
Fig.5.8.The scenario for comparing ordinary fractions AGLO 85
Fig.5.9. The scenario for comparing periodical fractions AGLO 86
Fig.5.10. The scenario section for adding two fractions with common denominator 87
Fig.5.11. An instance of the fractions addition AGLO with a wrong answer 88
Fig.5.12. The scenario for the addition of two common fractions AGLO 89
Fig.5. 13. An implementation of the addition of two common fractions AGLO 90
Fig.5.14. The scenario section for adding two mixed periodic decimal fractions 90
Fig.5.15. An implementation of adding two mixed periodic decimal fractions AGLO 91
Fig.5.16. An implementation of the subtraction of two common fractions AGLO 92
Fig.5.17. The symbols for the multiplication of two common fractions AGLO 93
Fig.5.18. An implementation of the multiplying of two ordinary fractions AGLO 94
Fig.5.19. An implementation of the multiplying of two decimal fractions AGLO 95
Fig.5.20. The scenario of the fraction power AGLO .. 96
Fig.5.21. Two implementations of the fraction power AGLO 97
Fig.5.22. The symbols for the division of two common fractions AGLO 98
Fig.5.23. An implementation of the fraction division AGLO 98
Fig.5.24. An implementation of the fraction division AGLO 99
Fig.5.25.The scenario for finding a percentage of a whole AGLO 100
Fig.5.26. An implementation of the finding a percentage of a whole AGLO 100
Fig.5.27.The scenario for transforming a simple decimal fraction into an ordinary

fraction AGLO ... 101
Fig.5.28. An implementation of transforming a decimal fraction into a simple fraction

AGLO .. 102
Fig.5.29.The scenario for transforming a simple decimal fraction into an ordinary

fraction AGLO ... 103
Fig.5.30. An implementation of transforming a simple periodic decimal fraction into

an ordinary fraction AGLO .. 103
Fig.5.31. The scenario for transforming a mixed periodic decimal fraction into a simple

fraction AGLO ... 104
Fig.5.32. An implementation of introduction of the wholes into a fraction AGLO .. 105
Fig.5.33.The scenario for extracting the wholes from a fraction AGLO 106
Fig.5.34.The theory, question and answers sections for extracting the wholes from a

fraction AGLO ... 106
Fig.5.35. An implementation of the intersection of two intervals AGLO............... 108
Fig.5.36. An implementation of the union of two intervals AGLO 109
Fig.5.37. An implementation of the difference of two intervals AGLO 110

BUPT

3

Fig.5.38. An implementation of equations involving absolute values AGLO 111
Fig.5.39. An implementation of Inequations involving absolute values AGLO 112
Fig.5.40. An implementation of inequation with an interval left unbounded and right-

bounded as solution AGLO ... 113
Fig.5.41. An implementation of inequations of the form – a ∗ x + b ≤ c AGLO 115
Fig.5.42. An implementation of inequations of the form a ∗ x + b ≥ c AGLO 116
Fig.5.43. An implementation of double inequations AGLO 117
Fig.5.44. An implementation of abbreviated calculation formulas AGLOs 118
Fig.5.45. An implementation of decompositions into factors AGLOs 119
Fig.6.1. The question and answer of the linear search definition AGLO………………..122
Fig.6.2. The scenario section of the linear searching algorithm steps 122
Fig.6.3. An implementation of the linear searching algorithm steps. 123
Fig.6.4. The implementation of the operating principle of the linear searching

algorithm AGLO .. 124
Fig.6.5. An implementation of the practical situation in which the linear search

algorithm is used AGLO ... 124
Fig.6.6. An implementation of applying the linear search on tables of basic data types

AGLO .. 125
Fig.6.7. An implementation of the application of linear search on different random

data tables AGLO .. 126
Fig.6.8. The result of the searching algorithm AGLO .. 127
Fig.6.9. An implementation of the result of the LINEAR searching algorithm APPLIED

on a linked list AGLO ... 127
Fig.6.10. An implementation of the recognition of an implementation of linear search

AGLO .. 128
Fig.6.11. The question of the recognition of an implementation of linear search on a

table AGLO .. 129
Fig.6.12. An implementation of the recognition of an implementation of linear search

on a table of structures AGLO ... 129
Fig.6.13. An implementation of the recognition of an implementation of linear search

on a linked list AGLO ... 130
Fig.6.14. An implementation of the searching algorithm with sentinel recognition

AGLO .. 132
Fig.6.15. An implementation of the recognition of the position of the sentinel AGLO

 .. 133
Fig.6. 16. An implementation of the recognition of the sentinel value AGLO 133
Fig.6.17. The symbols from the scenario of the comparison between linear search with

sentinel and the classical linear search AGLO .. 134
Fig.6.18. An implementation of the comparison between linear search with sentinel

and the classical linear search AGLO ... 135
Fig.6.19. An implementation of the role of the binary search AGLO 136
Fig.6.20. The scenario section for situations in which binary search is applied AGLO

 .. 137
Fig.6.21. Cases in which binary search is used.. 137
Fig.6.22. An implementation of cases in which binary search is used AGLO 138
Fig.6.23. An implementation of cases in which binary search can’t be used AGLO 139

BUPT

4

Fig.6.24. The theory and the question sections of an implementation of binary search

steps AGLO .. 139
Fig.6.25. The answer section of an implementation of binary search steps AGLO 140
Fig.6.26. The feedback section of an implementation of binary search steps AGLO

 .. 140
Fig.6.27. The scenario section for the binary search recognition AGLO 141
Fig.6.28. An implementation of binary search recognition AGLO 142
Fig.6.29. An implementation of search by interpolation AGLO 143
Fig.6.30. An implementation of practical situations in which interpolation search is

used AGLO ... 144
Fig.6.31. An implementation of types of data to which interpolation sorting is applied

AGLO .. 144
Fig.6.32. An implementation of strings on which interpolation search cannot be used

AGLO .. 145
Fig.6.33. An implementation interpolation search steps AGLO........................... 146
Fig.6.34. An implementation of recognition of the interpolation search AGLO 147
Fig.6.35. An implementation of insertion sorting definition AGLO 148
Fig.6.36. An implementation of practical situations to which insertion sorting applies

AGLO .. 149
Fig.6.37. The scenario section of types of data collections on which insertion sorting

applies AGLO .. 150
Fig.6.38. An implementation of types of data collections on which insertion sorting

applies AGLO .. 150
Fig.6.39. An implementation of insertion sorting recognition AGLO 151
Fig.6.40. An implementation of insertion sorting steps AGLO 152
Fig.6.41. An implementation of selection sorting algorithm use situations AGLO . 153
Fig.6.42. An implementation of data types on which the selection-sorting algorithm

can be applied AGLO ... 155
Fig.6.43. An implementation of data collections on which the selection sorting

algorithm can be applied AGLO ... 156
Fig.6.44. An implementation of the Selection Sorting Algorithm Steps AGLO 156
Fig.6.45. The scenario section of the bubble-sorting algorithm steps AGLO 157
Fig.6.46. An implementation of the bubble-sorting algorithm steps AGLO 158
Fig.6.47. An implementation of the bubble-sorting algorithm interchanges AGLO 159
Fig.6.48. An implementation of the Series in Shell Sorting Algorithm AGLO 160
Fig.6.49. An Implementation of the Sequence of States for the First Series in Shell

Sorting AGLO ... 161
Fig.6.50. An implementation of the index and value of the pivot element for quick sort

AGLO .. 162
Fig.6.51. An implementation of identify the first element bigger than the pivot in quick

sorting algorithm AGLO ... 163
Fig.6.52. An implementation of identify the first element smaller than the pivot in

quick sorting algorithm AGLO ... 164
Fig.6.53. An implementation of the first exchange in Quick Searching Algorithm AGLO

 .. 164
Fig.6.54. An implementation of the quick sorting algorithm steps AGLO 165
Fig.6.55. An implementation of the adding a node in an ordered linked list AGLO 166

BUPT

5

Fig.6.56. An implementation of the determining the position in which a node is added

in an ordered linked list AGLO .. 167
Fig.6.57. An implementation of the successor and the predecessor of an element in

the linked list AGLO ... 168
Fig.6.58. The scenario of the addition to the beginning/end of a random linked list

AGLO .. 169
Fig.6.59. An implementation of the addition to the beginning/end of a random linked

list AGLO ... 169
Fig.6.60. An implementation of the addition after/before an element in a random

linked list AGLO .. 170
Fig.6.61. An implementation of the delete an element from a random linked list AGLO

 .. 171
Fig.6.62. An implementation of the deletion after/before an element in a random

linked list AGLO .. 172
Fig.6.63.The scenario section of the adding a node to the beginning or end of a double

linked list AGLO .. 173
Fig.6.64. An implementation of the addition to the beginning/end of a double linked

list AGLO ... 173
Fig.6.65. An implementation of the addition after/before an element in a double linked

list AGLO ... 174
Fig.6.66. An implementation of the delete an element from a double linked list AGLO

 .. 175
Fig.6.67. The scenario of the recognition of a tree AGLO 177
Fig.6.68. An implementation of the recognition of a tree AGLO 177
Fig.6.69. An implementation of the recognition the tree root AGLO 178
Fig.6.70. An implementation of the calculation of a tree height AGLO 179
Fig.6.71. An implementation of the distribution of nodes of a tree by levels AGLO 180
Fig.6.72. An implementation of the degree of a node of a tree AGLO 181
Fig.6.73. An implementation of the degree of a tree AGLO 183
Fig.6.74. The theory and the question of the degree of all nodes of a tree AGLO . 184
Fig.6.75. The answer and the feedback of the degree of all nodes of a tree AGLO 185
Fig.6.76. The scenario of the pears node – parent node of a tree AGLO 185
Fig.6.77. The question and the answer of the pears node – parent node of a tree AGLO

 .. 186
Fig.6.78. An implementation of determination the root nodes of each subtree of a

node AGLO ... 187
Fig.6.79. The scenario of traversing the nodes of a tree in inorder AGLO 188
Fig.6.80. An implementation of traversing the nodes of a tree in inorder AGLO ... 189
Fig.6.81. An implementation of traversing the nodes of a tree in preorder AGLO . 189
Fig.6.82. An implementation of traversing the nodes of a tree in post order AGLO

 .. 190
Fig.6.83. The scenario of the recognition of a graph AGLO 191
Fig.6.84. An implementation of the degree of a graph AGLO............................. 192
Fig.6.85. The theory section of the minimum path from the first node to all other

nodes AGLOs .. 193
Fig.6.86. The question section of the minimum path from the first node to all other

nodes AGLOs .. 194

BUPT

6

Fig.6.87. The answers and feedbacks sections of the minimum path from the first

node to all other nodes AGLOs .. 195
Fig.6. 88. The theory and question sections of the adjacency matrix AGLO......... 196
Fig.6. 89. The answers and feedbacks sections of the adjacency matrix AGLO 197
Fig.6. 90. The theory and question sections of the adjacency structure AGLO 198
Fig.6. 91. The answers and feedbacks sections of the adjacency matrix AGLO 199
Fig.6.92. The scenario for the command to create a directory AGLO 199
Fig.6.93. An instance of the command to create a directory AGLO..................... 200
Fig.6.94. The scenario for the command to create a hierarchy of directory AGLO 201
Fig.6.95. The theory section for the command to create a hierarchy of directory using

–p option AGLO .. 201
Fig.6.96. The question and answer sections for the command to create a hierarchy of

directory using –p option AGLO .. 202
Fig.6.97. The scenario for the command to create a hierarchy of directory without –p

option AGLO ... 203
Fig.6.98. The question and answer section for the command to create a hierarchy of

directory without –p option AGLO ... 204
Fig.6.99. The feedback section for the command to create a hierarchy of directory

without –p option AGLO ... 205
Fig.6.100. An instance of the command to create a file AGLO 206
Fig.6.101. An instance of the command to populate a hierarchy of directory AGLO

 .. 207
Fig.6.102. The scenario of the command to create and populate a hierarchy of

directory AGLO ... 208
Fig.6.103. The question and answer section for the command to create a hierarchy of

directory without –p option AGLO ... 209
Fig.6.104. The question and answer section for the command to create a hierarchy of

directory without –p option AGLO ... 210
Fig.6.105. An instantiation of setting the file access permissions AGLO 211
Fig.6.106. An instantiation of the mount command AGLO................................. 212
Fig.6.107. An instantiation of the command to start a display process in the

background AGLO ... 213
Fig.6.108. The theory and question sections for the command to kill a process AGLO

 .. 214
Fig.6.109. The answer and feedback sections for the command to kill a process AGLO

 .. 215
Fig.6.110. An instantiation of the command to kill a process in the background AGLO

 .. 216
Fig.6.111. An instantiation of the command to move a process from background to

foreground AGLO .. 217
Fig.6.112. An instantiation of using the options of the fdisk command AGLO 218
Fig.6.113. An instantiation of the command to view a partition AGLO 219
Fig.6.114. An instantiation of the apt command AGLO 220
Fig.6.115. An instantiation of the yum command AGLO 221
Fig.6.116. An instantiation of the command to add a user AGLO 222
Fig.6.117. An instantiation of the command to add a user to a group AGLO 223

BUPT

7

Fig.6.118. An instantiation of the command to generate information about a user

AGLO .. 224
Fig.6.119. An instantiation of the command to change the password of a user AGLO

 .. 225
Fig.6.120. An instantiation of the command to delete a user AGLO.................... 226
Fig.6. 121. An instantiation of the ifconfig command AGLO 227
Fig.6.122. An instantiation of the command to delete an address AGLO 228
Fig.6.123. An instantiation of the command to configure an address AGLO 229
Fig.6.124. An instantiation of the command to activated/deactivated an interface

AGLO .. 230
Fig.6.125. An instantiation of the route command AGLO 231
Fig.7.1. DSEL platform……………………………………………………………………………………………..234
Fig.7.2. An AGLO Instantiation on DSEL Platform .. 235
Fig.7.3. The LO repository with the students answers 236
Fig.7.4. The constructor functions for fractions objects 238
Fig.8.1. Contingency table: false positive, false negative, true positive, and true

negative values of the grades………………………………………………………………………………….246
Fig.8.2. The degree of use of gadgets by students .. 247
Fig.8.3. The degree of interest of the students on the LOs 247
Fig.8.4. The confusion matrix ... 249
Fig.8.5. The questionnaire answers to the second and third questions 250
Fig.8.6. The questionnaire answers to the last two questions 251

BUPT

8

1. INTRODUCTION

1.1. Thesis context

The e-learning term has become an important concept in the evolution of

education. Broadly speaking, elearning (or e-learning) means the totality of
educational situations in which the means of Information and Communication
Technology (ICT) are used significantly [1]. The term was taken from the Anglo-Saxon
literature, being extended from the primary etymological sense of learning by
electronic means, and now covering the intersection of educational actions with
modern computer resources. The computer and electronic/multimedia materials are
used as support in teaching, learning, evaluation, or as a means of communication.

Currently, the e-learning term has practically replaced all the terms that
designate a new way of integrating ICT in the training process.

Digital technology produces certain changes in the learning environment
through:

- the virtual learning space, which creates the possibility of students'

imagination and creativity, the information can be visualized, simulated procedural,
making these materials more attractive and easier to understand;

- independent learning, students do not spend time searching for
information, but using it;

- the individualization of learning, the personal pace of each one is
respected;

- real-time monitoring of learner's activity.
 Learning objects (LO) have emerged as a new way of thinking about learning

content. Traditionally, the content comes in a matter of hours. Learning objects are
much smaller learning units, lasting even just a few minutes. The concept of learning
objects is broadly defined. The Institute of Electrical and Electronics Engineers (IEEE)
standardization defines learning objects as: “a learning object is defined as any entity,
digital or non-digital, that may be used for learning, education or training” [2].

There is a variety of learning object models and new proposals are

continuously appearing. The most widely used e-learning standards are

- Sharable Content Object Reference Model or SCORM [3];
- The Institute of Electrical and Electronics Engineers Learning Object

Metadata or IEEE LOM [4];
- Information Management System or IMS [5];
- Learning Resource Metadata Initiative or LRMI [6];
- Computer Information System Company or CISCO [7].
A learning management system (LMS) is an adapted environment for

disseminating learning objects. It is a software application that provides, among other
things, educational courses and learning programs. The teacher can use this software
to create structured courses and manage them to meet various requirements. LMS is
considered to be the foundation for building today's e-learning practice [8]. Some
open-source LMS are Moodle [9], Ilias [10], Canvas [11].

LOs are difficult to reuse and difficult to adapt to each discipline, as it requires

access to source code, programming knowledge for content modification, testing, and

BUPT

9

deployment [12]. To improve the use of learning objects, the generative model was

created. “Generative Learning Objects (GLOs) are generic and reusable LOs from

which the specific LO content can be generated on-demand” [13].
In the field of generative objects there are two clear directions:

 - GLO based on templates, developed by Tom Boyle in [14], [15], [16].
 - GLO based on meta-programs developed by Damaševičius and Štuikys in
[17], [18], [13].

 Auto-generative learning objects (AGLOs) are “reusable pedagogical patterns
to be instantiated with generated content based on random numbers to fulfill the
learning objectives” [12]. In this thesis, we propose an AGLO based approach to

facilitate learning and automatic assessment for science, technology, engineering, and

mathematics (STEM) disciplines.

Fig.1.1. The LOs conceptual hierarchy

In Figure 1.1 we present the conceptual hierarchy for several types of learning
objects: simple, general learning objects, generative learning objects, auto-
generative learning objects. LOs are the digital resources with which the student
interacts. GLOs are objects from which the specific LO content is generated when

requested. AGLOs are templates from which concrete LOs are obtained at each
instance.

For both teachers and students, it is important to find the right resources and
combine them with other learning materials in order to have the best learning
methods. To meet this opportunity, we have created AGLOs that can be integrated
into learning management systems such as Moodle. This offers both accessibility and

quality. Our approach is schematically represented in figure 1.2.

Initially, the tutor develops an AGLO model that aims at a specific learning
objective. The educator develops the meta-model using accessible media: Eclipse and
Notepad ++. When templates are created, they are stored in a storage unit, a MySQL
database. Templates are saved in XML files. From the database, the student through
the frontend web application can select AGLOs.

Students access the web application using a web browser on a workstation,

tablet, or smartphone. In the assessment process, the student will access several
AGLOs. At this step, the accessed AGLOs are instantiated with random numbers, the
formulas are evaluated to meet the projected learning or testing scenario. Methods
from domain-specific JavaScript libraries are also called. The evaluation of the
correctness of the answers is done automatically. The answers given by students are
stored in a repository of learning objects (LOR).

BUPT

10

An AGLO is a pedagogical model that instantly provides different exercises so
that the student can practice the notion. To exemplify, we will further present an
example, namely, the addition of a node in a simple linked list. The pedagogical
objective pursued is for the student to know how to add a node in a simple linked list.
To create this scenario, a simple linked list and a node are randomly generated. The
list has both a graphical representation, for the student to visualize the notion, and a

representation in the form of a string in order to be able to represent the answer.

Fig.1.2. The AGLO Approach

In the concrete LO with which the student interacts are the following sections:
- the theory section, a section in which the notion is presented to the student

and an example, this is static, the same for each instance, and it also has the role of
showing the student in what form the answer should be written;

- the question section, in which the work task is stated, at each instantiation
the workload depends on the randomly generated list and node. In the case of the
example presented in Figure 1.3, an ordered simple linked list consisting of three
nodes is generated, and a node will have to be inserted in the simple linked list.

Depending on the value of the information in the generated node, it must be added
at the beginning, at the end, or inside the linked list, consequently in the above case
the addition is made at the beginning;

- the answer section, where the student writes the answer in the form of a
string, respecting the model from the example presented to him. In Figure 1.3 we
chose to write the correct answer;

- the feedback section is generated when the evaluate button is activated, it

contains both explanations and the correct expected answer.

BUPT

11

The field of e-learning has a significant potential for research as it is a rather
new concept in Romania's current socio-economic context. Young people in our
society are almost technology-dependent, using electronic devices for learning,
socializing, and leisure. Learning is a process and is part of our everyday life. New
modern educational technologies support individual learning that gives students the
chance to learn on their own, but not exclusively. Students can learn from anywhere

through online education and mobile education. This has made learning more

convenient and fun.

Fig.1.3. An instantiation of the addition of a node in an ordered linked list

A generative model is an effective way to learn using independent learning.

Generating generative models on STEM disciplines would be an effective support for
students. Interactive queries play an important role in e-learning and offer a wide

range of benefits to both the student and the tutor. The model proposed by us fulfills
these aspects.

1.2. Thesis objective

The research activity that is the subject of this doctoral thesis focused on the

following main objective: the development and implementation of an AGLO-based
approach to facilitate learning and automatic assessment for STEM disciplines. The

BUPT

12

purpose of such an objective is that we create AGLOs that can be used in the
instructive-educational process.

The study, concept, development, implementation and testing of the approach
are just some of the steps taken to achieve this main goal. In view of the main
objective mentioned above, a number of specific objectives have been formulated:

Objective O1 is to make a bibliographic study of LOs and a comparative

analysis of the studied models;

Objective O2 is to propose a step-by-step methodology based on abstractions
to create reusable AGLO templates;

Objective O3 is to abstract multiple learning concepts from STEM disciplines
(Arithmetics, Data Structures, Algorithm Analysis, Operating Systems) into
instantiable AGLOs (at least 150 objects);

Objective O4 is to develop domain-specific libraries modeling concepts (at

least 15 JavaScript classes) to assist the instantiation of AGLOs;
Objective O5 is to validate our AGLO approach in practice, on groups of

students showing their effectiveness;
Subobjective O51 is to show that AGLOs are effective in the learning process

compared to classical approaches;
Subobjective O52 is to show that the AGLO's automatic assessment

mechanisms are very close to the evaluation given by tutors.

1.3. The structure and content of the thesis

The content of this doctoral thesis is structured in nine chapters. For an

overview, the notes covered in each chapter will be presented below.
Chapter 2 presents the state of the art in the field of e-learning and LOs. The

chapter begins with a review of the main LO models. The chapter continues with the
exposition of LMS platforms. Next, the chapter presents the new generation of LOs,
namely GLOs. Other methods for improving LO through sequencing, object-oriented
programming, and integration into cloud frameworks are presented. Finally, a

comparison of the presented models is made.
Chapter 4 presents step by step the abstraction process. The abstraction

process is then presented practically on an example from the disciplines Mathematics,
Data Structures and Algorithms, Algorithm Analysis and Design, and Operating
Systems. The chapter further presents the structure of the model. Finally, the model

semantics are presented.
Chapter 5 presents the AGLO model applied in the field of middle school

arithmetic. The chapter includes the presentation of the AGLOs aimed at working with
fractions, operations with intervals, solving equations and inequations involving
absolute values, solving different types of inequalities, as well as abbreviated
calculation formulas.

Chapter 6 presents the AGLO model applied in the field of IT disciplines. The
chapter begins with an exposition of AGLOs targeting four types of searches, namely
linear search, linear search with sentinel, binary search, and interpolation search. The

chapter continues with the presentation of the AGLOs that aim at different types of
searches. Working with linked lists and double linked lists is the topic discussed later
in this chapter. Notions related to trees and graphs are further addressed. Finally, the
AGLOs have presented that aim at notions related to different basic commands used
in Linux.

BUPT

13

Chapter 7 presents the prototype implementation. The chapter presents how
we achieved to connect the students with our AGLOs using the DSEL platform. The
domain-specific Java Script libraries we made are further set out.

Chapter 8 presents the validation of the AGLO model. The chapter presents
two case studies, one made on a group of 12 fifth grade pupils, and one made on a
group of 50 eighth grade pupils.

Finally, Chapter 9 presents the final conclusions, the original contributions

from the doctoral thesis, the dissemination of the results, as well as the direct
research future.

BUPT

14

2. STATE OF THE ART IN LEARNING OBJECTS

This chapter provides a theoretical basis for the design and development of LOs.

The chapter presents definitions of specific terms, describes the preconditions for

implementing the design and development of LOs, explains the role and purposes of

LOs, as well as the need to use them. It justifies the principles considered in this

research as a basis for the design of AGLOs and their use in the educational process.

2.1. Learning Objects Definitions

There are several definitions of the concept of "learning object" since different

directions are followed: pedagogical, technical, and economic. Consequently, some
formal definitions are accepted. There are some generally assumed requirements for
LOs:

- objects should be independent of the sharing system;
- objects should be reusable, not dependent on the educational context;

- objects should have a certain level of aggregation to be able to combine
them;

- objects should be characterized by suitable metadata.
In the initial stage, a learning object was defined as "a collection of content

items, practice items, and assessment items that are combined based on a single
learning objective" [7].

The term is attributed to Wayne Hodgins and was first used in a working group
on Applied Science and Technological Progress in 1994. This new conceptual model
for creating and distributing content was seen as an important element in Hodgins'

vision of the future of learning. He believes that learning objects are designed to
change learning, introducing unprecedented efficiency in the design, development,
and dissemination of content. Thus, their most important quality was seen, at that
time, as the improvement of learning efficiency and human performance [19].

In [20] a LO is defined as: "A digital self-contained and reusable entity, with
a clear educational purpose, with at least three internal and editable components:

content, learning activities and elements of context. The learning objects must have
an external structure of information to facilitate their identification, storage, and
retrieval: the metadata." Chiappe and his collaborators believed that the incorporation
of information and communication technologies is the feasible path to be considered
in order to improve the quality of education. The enormous potential that learning
objects have in the educational scene will play a major role in strengthening the
quality of education. In their view, learning objects are different from any other

educational material produced by a teacher in an isolated way and should be open-
source. Compared to an entire course, LOs are considerably lower and follow a
modular behavior that allows easy application as study material for self-employment.
They are also applicable not only as study material but also as a teaching strategy
revealing pleasant surprises in the teaching-learning processes [20].

Centre of Excellence in Teaching & Learning in Reusable Learning Objects
(RLO-CETL) from England defines a reusable LO as "web-based interactive chunks of

BUPT

15

e-learning designed to explain a stand-alone learning objective" [21]. CETL focused
on providing pedagogical and structural design principles for creating learning objects.

In general, LOs are “digital resources that can be used (and reused) to support
the learning process” [13].

Others as seen in [22] define it as "a digitized entity which can be used, re-
used or referenced during technology supported learning".

In this context, there is an international interest in developing good models

of reusable learning objects. For this purpose, there are funding programs for projects
that address this area, such for example The Joint Information Systems Committee
Design for Learning (D4L) program, ALTC Competitive Grant “Implementing Effective
Learning Design”. There are a series of views on the learning model eg. [2], [14],
[23], [24].

All projects vary according to the studied unit, chapter and object, and what

the designer was following. These variations may lead to the creation of duplicates,
which is why a conceptual model is needed to link these learning patterns [25].

LOs were developed as part of a learning environment. Individually, each LO
was created for a specific educational purpose. Several aggregate objects could
become a lesson and thus fulfill a pedagogical objective.

The idea behind the use of LO is based on the following: discoverability,
reusability, and interoperability. Discoverability is accomplished by the fact that LOs

are described using metadata, for example, IEEE Standard. Reusability is supported
by several specifications, such as the IMS Content Package. Interoperability is

supported by a model like the one developed by ADL Organization, namely SCORM.
For facts, the idea is that learning objects are seen as atoms, small fragments

that can be organized together. Standardization bodies have perfected this concept,
have specified information on how to sequencing, and have provided information on

their organization in courses, as well as assembling them for delivery.
From an economic point of view, LOs have been designed to reduce learning

costs, standardize content, and support profitable content reuse through learning
management systems [4].

LOs are stored in repositories (which are data structures). There are two types
of deposits: containing both LO and their metadata, and those containing only
metadata. These repositories can be:

- centralized - stores LOs metadata on a single server or website and links
to LO,

- distributed - metadata are stored on multiple linked servers or websites.

Besides storing and recovering data, a repository also aims to share and reuse
data.

A learning object is a module compatible with e-learning rules, which intends
to support the instructive-educational process, very specific (aims at a learning

objective), and autonomous. Learning objects are stored in the content management
system, for just-in-time learning in different contexts of a learning process.

2.1.1. IEEE Learning Object Metadata Standard

The Institute of Electrical and Electronics Engineers Standards Association

(IEEE) has achieved an internationally recognized open standard that has been

several versions and is called the IEEE Standard for Learning Object Metadata (IEEE

LOM). The IEEE Learning Technology Standards Committee (LTSC) has described the

metadata learning object model [4].

BUPT

16

The purpose of this model is to facilitate the use and distribution of learning

objects. This standard can be easily used for both sharing and exchanging of learning

objects. The model also aims to reduce the cost of delivering high-quality resource

services through sharing between systems for discovering learning resources.

Fig.2.1. The hierarchy of elements in the LOM data model

The model can provide information in a standard format if tutors choose to

label resources according to some specifications. Resource descriptions are tailored

to needs and include both the choice of vocabulary and the reduction of the number

of items that are described or the addition of new ones.

The IEEE LOM data model identifies clearly and definitely which properties of

a learning object must be described and what vocabulary should be used for

descriptions. Specifications also define how the pattern can be modified by additions

or constraints. There are also parts of the standard developed to define LOM data

model links, in other words, LOM records are represented in XML and RDF.

Metadata is the information about an object. Due to a large number of objects,

the existence of metadata is vital. The standard tackles this issue. IEEE LOM is based

on defining a structure for describing metadata for a LO.

BUPT

17

The model includes a hierarchy of elements, on the first level there are 9

categories, which in turn are made up of other sub-categories. The hierarchy is shown

in Figure 2.1. As can be seen, a metadata instance describes the relevant

characteristics of an LO, and these features are organized into the following

categories:

- The General category includes general LO information,

- The Lifecycle category describes the history and the current state of LO,

- The Meta-metadata category contains information about the metadata

instance itself,

- The Technical category describes the technical characteristics of LO,

- The Educational category describes the educational and pedagogical

characteristics of LO,

- The Rights category describes LO's property rights and terms of use,

- The Relations category comprises defining relationships between different

LOs

- The Annotation category offers annotations about LOs, but also information

about whom and when they created the comment.

- The Classification category reports this LO to a classification system.

This classification represents the LOM outline. For efficient semantic

interoperability, “extended data elements should not replace data elements in the

LOM structure” [24].

The model specifies that a classification item can be repeated, thus allowing

it to be used for various purposes. Also, specify value space and data type for each of

the data elements. The value space defines what data can be included for that

element: a string, elements from a declared list, or elements from a specific format.

Data types may contain a string of characters or two parts:

- LangString items contain Language and String parts, which render the

information in several languages;

- Vocabulary items are chosen from a list of terms, each element being

consisting of the name of a list of terms used and the chosen term.

 Date Time and Duration items contain two parts, one having the date given

in a machine-readable format, and one allowing a description of the date or duration

 The structure of the metadata description is intended for portability and may

be referenced by other standards. It is a base that can be expanded according to the

tutor's needs, so it can be easily adapted to the student’s level. So this model can

also be used as a basic scheme in the development of automated LOs.

Each element can be simple, so it only contains data, or it can be an aggregate

element and contain other elements. The semantics of any element depends on the

context, the parent element in the hierarchy, and other elements that are at the same

level as it.

Any instance of metadata for a learning object has important features. This

model has four levels of granularity. The smallest level is level 1 and represents raw

media data or fragments. Aggregation level 2 is represented by collections of level 1

objects and is the equivalent of a teaching lesson. Level 3 is the equivalent of a course

and is made of level 2 objects. Level 4 is accomplished through a collection of level 3

elements recursively through level 4 elements.

BUPT

18

The base of this model does not define how a learning system presents or

uses a metadata instance for a LO. When implementing LOM as a data or service

provider, creating an application profile allows tutors to specify the elements and

vocabulary to use. Elements can be replaced with others from other metadata, and

vocabularies can be enriched with personalized elements specific to the goals being

pursued.

The most important things to be followed when using this model are:

- understanding the needs of those who will use learning objects;

- creating an effective strategy to create high-quality objects;

- stacking in a form that allows for efficient portability;

- communicate with other systems by exchanging basic information.

This model of learning objects supports both active learnings through content

that requires the student to engage in productive actions or decisions, as well as

passive learning through materials that have the role of exposing a particular learning

content.

Objects made with IEEE LOM can be transferred between systems using a

variety of protocols, the most widely used being OAI-PMH (Open Archives Initiative

Protocol for Metadata Harvesting). As a resource on the Internet CanCore is currently

the most comprehensive element-to-element guide to LOM existence.

The Standards Development Lifecycle is a process in six stages:

- Initiating the Project, projects are started when there is a need for an idea

or concept to be standardized;

- Mobilizing the Working Group, the group must operate in compliance with

the IEEE-SA Standards Board Bylaws;

- Drafting the Standard, each project version must respect copyright;

- Balloting the Standard, this begins when the Sponsor is satisfied with the

standard version;

- Gaining Final Approval, based on the recommendation the Standards

Review Committee the IEEE-SA Standards Board approves or disapproves standards;

- Maintaining the Standard, a standard is valid for ten years from the date

of its approval.

2.1.2. Sharable Content Object Reference Model

The Sharable Content Object Reference Model (SCORM) consists of assets,

Shareable Content Objects (SCOs), and aggregates of content. An asset can be a text,

a picture, an educational movie, an audio recording, a webpage that can be

represented on a client page. SCO is a collection of one or more assets and can be

reused in different learning contexts. Content aggregation is a well-structured

structure that can be used to organize learning resources in a course, chapter, or

module [24].

When an SCO contains multiple HTML pages, it is responsible for providing

the navigation interface for those pages.

SCORM Content Packaging contains three types of components: two are

considered resources: assets and content objects that can be shared, and the third is

content aggregation. These components can be grouped into packages that can

contain video streams, text documents, and others [24].

BUPT

19

Metadata is added to these packages to allow them to be searched and

reused. Metadata can be defined at any level of aggregation in the content. SCORM

uses IEEE LOM as a metadata profile, which includes nine metadata categories to

describe an object: general, life cycle, meta-meta data, technical, educational, rights,

relationship, annotation, and classification [26].

Shared content objects form "launchable learning resources" [26]. These

objects are compatible with SCORM compliant learning management systems. The

courses consist of both packages and content objects.

Learning objects are considered to be the smallest semantic entities. Learning

objects can be aggregated to form a course or other more complex learning objects.

Courses can be seen as complex learning objects from an object-oriented

vision. The design of the courses is done by grouping the learning objects in packages

that respect the Instructional Management System standard [27].

Fig.2.2. An example of a SCORM course

A SCORM course is like a presentation but with an additional level of

interactivity. An example of such a course is shown in Figure 2.2.

Regarding the realization of a course, it is necessary to take into account the

fact that the aggregations form the logical hierarchy of the course.

The student can have a personalized course. Depending on his level of

knowledge he may be allowed to omit some exercises from that course. How a student

can navigate between the components of a course is determined by a set of rules and

attributes that are found in a manifest XML file.

It is necessary to use typed resources as assets instead of SCOs, as they do

not communicate with LMS.

BUPT

20

A JavaScript controller is added at runtime to manage SCO browsing. This

controller has the role of

 mark the current location of the learner,

 report progress through content,

 to record the total time that the student spent in training,

 report the score based on test results.

Fig.2.3. How LMS returns student status

The result that a student can get in the course can be: incomplete, completed,

passed, or failed, see Figure 2.3.

This model offers a high level of flexibility as it does not require the module

to be organized in a certain way. This level of flexibility is also because content

protection is imposed, that content may have copyright restrictions. SCORM facilitates

the provision of a very general model on which to build a specific learning object. This

feature is included in technical interoperability. However, in this model the problem

of the size of a basic object is not solved, the granularity remaining quite vague in

this context.

2.1.3. Cisco Learning Object Model

The original reusable learning object (RLO) strategy was defined in 1998 by

a cross-functional team at Cisco Systems. Like ADL and IMS, Cisco is actively involved

in developing models to meet current challenges that meet the demands and feedback

of partners and collaborators [7]. From the first version to the present, Cisco has so

far improved its definition of the learning object, as well as its implementation

strategy.

Cisco has published a strategy for developing and implementing RLOs. For the

Cisco team, an effective LO aims to achieve a single learning objective, so this RLOs

focus on a single learning objective or performance. An RLO consists of a collection of

practical activities, static or interactive content, and also includes evaluations to

measure the achievement of the learning objective which it targets. Evaluations can

be found within the LO or placed separately as an assessment group. The components

are made up of raw media assets: text, animation, audio, video, Flash, Java code,

applets, and any other structure needed for the given case. LOs are identified with

metadata so that they can be easily referenced and searched by both tutors and

students.

BUPT

21

Fig.2.4. The CISCO Learning Object structure

The learning object structure is shown in Figure 2.4. Each object includes an

overview of the content, lesson summary, practice, and assessment. To be

conveniently grouped to achieve an effective hierarchy such as a lesson, module,

course, or curriculum, LO has a granular structure. The model is designed with a

simple two-level hierarchy consisting of an RLO and reusable informational objects

(RIOs).

From a structural point of view, an RLO is a collection of 7 ± 2 RIOs. To

achieve a complete learning experience from a collection of RIOs, a summary and

evaluation are added.

RIOs are information built around a learning objective. Each RIO is made up

of three items: content, practice, and assessment. A practical element is an activity

that allows the student to apply his / her knowledge and skills, such as a case study

or a practical activity. An element of assessment is a measurable problem or activity

to determine if the learner has achieved the targeted learning objective.

Fig.2.5. Course Hierarchy in CISCO Learning Object Model

BUPT

22

The full hierarchy of a course is depicted in Figure 2.5. Lesson topics are based

on the five types of information defined by Ruth Clark in Developing Technical Training

and adapted and used by Cisco Systems, namely concept, action, process, principle,

and procedure. Using this model provides a template for creating the content,

practice, and evaluation that forms the learning object. As you can see a lesson

includes a general overview, summary, practice, and evaluation.

Among the benefits that tutors benefit from by adopting this strategy are:

they have significant support in designing multiple learning approaches, they can

combine old and new objects to build new solutions to meet student needs, they save

time and resources through objects “published” for delivery. Students also gain from

using this mode, among the benefits they are: they can self-assess their abilities and

knowledge, have multiple types of support and presentation styles, and multiple

learning approaches (passive learning, learning by discovery, solving problems).

As you can see, there are many benefits to adopting an RLO strategy, but

there are also challenges. These can be tools and systems, or writing styles and

guidelines. Some challenges may be quite significant, even limiting the scope of the

objects. In recent years, following feedback, Cisco has focused more on "repurposing"

content instead of "reuse" [7]. The authors find learning to be a useful base for the

content they can convert to fit their needs.

The learning object design and development model is a set of repetitive

processes that are used to design and develop any solution that responds to the needs

of students. This model allows you to define the scope of the project, meet milestones,

and evaluate the success of the solution. The design and development model begins

with training needs analysis, passes through the design and development stages, and

ends with evaluation and delivery. The result should be a learner experience that

responds to the student's needs.

“A learning system supports the transfer of knowledge and skills far beyond

the traditional events scheduled in time (such as a class)” [7].In the learning object

development process, the primary change is the ability to reuse and repurpose

existing LOs.

The learning object development process has some stages:

- Granular Analysis - this stage of the learning object development process

examines all the factors that influence the needs of the target audience, which causes

the difference in performance, identifies the desired results, and uses this information

to select the best intervention;

- Design and Mine - at this stage, a training solution is structured, learning

objectives are captured, content types are identified, and tutors agree that the

solution responds to identified needs in the analysis phase, learning objects are now

identified that either fit the needs without changes or can be repurposed;

- Reuse and Develop - this stage focuses on developing all the resources,

content, and interactions for each LO;

- Delivery and Reference - at this stage, learning objects are prepared in a

delivery environment as a learning experience;

- Maintain for Life - any learning object made available to students is

updated and maintained for the entire "lifecycle";

- Evaluate.

BUPT

23

In the second stage, the idea of "mining" for learning objects is important, so

there are looking for solutions that could exist and are already used by the student.

An important property of a LO database is its ability to determine what has already

been created, to add new items to existing objects, and produce statistics on use or

evaluation. Adaptation and design depend on the existing creation and delivery

systems and how familiar the tutor is to access data about the use of a particular LO.

It is preferable to create an integrated database that allows the design of the

LO to be automated. Such an instrument allows the tutor to move from the design

phase to the development phase with or without a formal print delivery. Given the

granular nature of LOs, it is possible to design and approve individual learning objects

independently of the larger structure of the course.

The RLO strategy can be customized; there are different types of learning

objectives, depending on the level of the learning experience and its associated level

in a hierarchy of the RLO directive. For example, as you advance in the hierarchy from

lesson to subject, discover that learning objectives become more specific until you

reach what is known as a "terminal goal." This goal is the measurable result that

results from the fact that the student completes with success LOs.

In terms of classifying learning objects, those who use CISCO use learning

objectives to classify each subject. Five basic types are defined: concept, fact,

procedure, process, and principle. A concept is a group of symbols, events, or ideas

that are defined by a word or a term, which have common features and differ in

irrelevant characteristics. A fact is unique, specific information in the form of a

statement, images, or specific data. A procedure is a sequence of instructions that

repeats the same way each time and is to be followed to perform a task or make a

decision. A process is a flow of events, not necessarily done individually, that describes

how something works. Principles are the directions for tasks adapted to different

situations that provide students with guidelines for action.

During the development of learning objects according to this model, it is

crucial to include metadata about each developed LO. Some metadata should be

captured and automatically maintained by the system (author, data, support type,

hierarchy, size, etc.). A LO is incomplete without metadata because most of the

benefits of the RLO strategy would be lost without using them.

2.1.4. Dublin Core Standard

Dublin Basic Metadata Element Set (Simple Dublin Core, standardized as ANSI

/ NISO Z39.85-2001) provides a simpler set of elements that overlap with IEEE LOM

and is useful for sharing metadata across a wide range of disparate services [28].

Dublin Core was first published in a 1995 workshop report and consisted of thirteen

elements. In 1998, this was formalized in the RFC 5791 standard of the Internet

Engineering Task Force and discussions began on its transformation into a standard

of the (US) National Organization for Information Standards (NISO).

The Dublin Core Metadata Initiative works on a set of terms that allow the

Core Dublin Set to be used with Core Qualified Dublin Core. Dublin's Working Group

on Education aims to provide Dublin Core for the specific needs of the educational

community. Details about Dublin Core can be found on organization web site. The

goal of the standard is to discover resources for any networked resources.

BUPT

24

The Dublin Core Metadata Element Set contains data divided into fifteen

categories. These were organized into three main categories: Dublin Core Content,

Intellectual Property, Instantiation.

Dublin Core Content contains the following types of resources:

- Coverage, renders the spatial or temporal subject of the resource, the spatial

applicability of the resource or the jurisdiction under which the resource is relevant;

- Description, specifies a resource account;

- Type, describes the nature or type of the resource;

- Relation, gives a related resource;

- Source, represents a related resource from which the described resource is

derived;

- Subject, specifies the subject of the resource;

- Title, represents the name given to the resource.

Intellectual Property includes

- Contributor, represents an entity responsible for contributions to the

resource;

- Creator, represents an entity primarily responsible for making the resource;

- Publisher, represents an entity responsible for making the resource

available;

- Rights, reproduce information about the rights held in and over the resource.

Instantiation comprises the following types of resources

- Date, provides a point or time period associated with an event in the

resource's life cycle;

- Format, provides information about file format, media, or resource size;

- Identifier, renders an unequivocal reference to the resource in a given

context;

- Language, specify the language of the resource.

Fig.2. 6. Dublin Core metadata encoding examples

The syntax choices for metadata depend on the context. An example of

encoding is shown in Figure 2.6. Concepts and semantics are syntax-independent and

apply in different contexts, as long as the metadata is in a needle form can be

interpreted by both devices and people.

Dublin Core metadata is not only used for simple description of resources, it

can also be used to combine metadata vocabularies of different metadata standards,

or to provide interoperability for metadata vocabularies in the connected data cloud.

The resources described using the Dublin Core may be physical resources such

as books or CDs, as well as video, images, web pages, and objects like artworks.

2.1.5. The Learnativity Content Model

The Learnativity content model is flexible and constitutes a basis for

expanding the learning content architecture [29]. This model has a fixed number of

BUPT

25

granularity levels, and it also discusses the implicit restriction of combining objects of

the same granularity.

Fig.2.7. The five-level Learnativity content hierarchy

The template defines a five-level content hierarchy, see Figure 2.7:

1. Raw & Data elements are the lowest level and refer to content elements

that can be a single sentence, a paragraph, an image, an animation.

2. An information object combines raw data and media elements and focuses

on a single piece of information. Such content could explain a concept, illustrate a

principle, or describe a process. These information items can be considered exercises.

3. Based on a single objective, the information objects are assembled in the

third level of the application objects. This level is considered to contain what may

qualify as a learning object. Accordingly learning objects are actually considered to be

a collection of information objects, which refer to a single learning objective [29].

4. The next level refers to aggregate assemblies that deal with larger

objectives. This level corresponds to the lessons or chapters.

5. Lessons or chapters can be assembled into larger collections, such as

courses and curricula. These collections refer to the last level of aggregation of the

model.

One can notice that the first two levels are not learning objects of their own,

they cannot independently support learning. It would be more effective to use a

scenario in which learning objects of different granularity can be combined to allow

the student to adapt dynamically [30].

2.1.6. NETg Learning Object Model

The National Education Training Group (NETg) is a Thomson learning

company, a member of the IMS Global Learning Consortium [31]. NETg was one of

the first to use the concept of LO for IT courses. In 2007, Thomson sold NETg to

SkillSoft. Currently this type of learning object is used in US universities.

This company has created its own group of learning management system

(LMS) developers, whose systems are designed to work with the NLO (NETg learning

object) architecture.

BUPT

26

Fig.2.8. The architecture of the NETg Model

This architecture is made on a hierarchy of 4 levels - course, unit, lesson and

subject, see Figure 2.8. From the NLO perspective, a course is structured as a three-

dimensional matrix. Each cell of the matrix can be considered to be a subject, a

column of subjects forms a lesson, and a line of lessons forms a unit.

A course contains independent units, a unit contains independent lessons, and

a lesson in turn contains independent subjects. A subject is an independent learning

object that contains a single learning objective and has an appropriate activity and

assessment [12].

A subject is known as a NLO, which is defined as the smallest independent

learning experience. Such a learning object is a single measurable or verifiable step

that aims to achieve a learning objective.

Using a tool like NLO+, NETg content can be mixed and adapted from different

courses to create a new course. When the student needs information, he can browse

the digital library, enter an application and obtain relevant objects. If the student

needs a complete course on a subject, the system will build a course based on the

proposed objectives.

2.1.7. Abstract Learning Object Model

Verbet and Duval present in [32] a model that allows the generalization of

other standards such as Learnativity, SCORM, or NETg. Abstract Learning Object

Model (ALOCoM) is built on three levels:

- Content fragments - are individual text, audio, or video files, and these are

instantiations;

- Content objects - are sets of content fragments and they are the abstract

type;

- Learning objects - independent training experience.

The model is made on the levels of aggregation of objects. This defines a

topology between content objects that can communicate with the outside.

ALOCoM is useful because it has a high degree of reusability. Reusability is

because it does not distinguish between types of obituaries in terms of size or

pedagogical significance. It also allows applications to a variety of learning

environments. There is also an ontology that supports this model of ALOCOM

Ontology.

BUPT

27

ALOCoM was developed as a mapping of the NETg [31], SCORM [3], Cisco [7]

and Learnativity [29] models. The authors developed a model that defines three levels

of aggregation to address interoperability issues.

The paper [32] presents the new version of the model. In this model, the

content of the abstract learning object was performed according to the method

introduced in [33]. The method has three main steps:

- building a global ontology that covers existing content models

- building local ontologies for each content model;

- defining mappings between ontologies.

A set of content analysis categories and types of questions were defined based

on seven types of information:

1. A "concept" describes a generalized abstract or generic idea of certain

situations. A concept is used to teach a group of objects, symbols, ideas, or events

that are designated by a single word or term, have a common feature, and may vary

depending on irrelevant features.

2. A "fact" provides information based on real events; describes an event or

something that holds it without being a general rule [34].

3. A "classification" is a sorting of articles into categories. A typical example

is "the presentation of technologies in medical imaging" [35].

4. A "structure" is a physical object or something that can be divided into

parts and has boundaries. A typical example is the "anatomy of the human brain"

[35].

5. A "principle" is a basic generalization accepted as true and which can be

used as a basis for reasoning or behavior [34].

6. A "procedure" consists of a specific sequence of formal steps or instructions

to achieve a goal. Typical examples are the "Euclidean algorithm" or "instructions for

operating a machine" [34].

7. A "process" describes a sequence of events. A process provides information

about a flow of events that describes how something works and that may involve

multiple actors. An example is "how a computer system responds to commands" [34].

Guidelines have been developed to identify which blocks of key information

are needed to fully understand a topic.

The elements of the learning object are subdivided into:

1. Fragments of content, defined as individual components of content, such

as text, images, audio and video fragments.

2. Content objects, defined as learning components that aggregate fragments

of content. Content objects focus on a single piece of information and can be used to

explain a concept, illustrate a principle, or describe a process.

The ALOCoM model defines content fragments at the lowest level of

granularity. Content snippets are uncombined content components that represent

digital representations of media such as text, graphics, animations, video, or audio.

The learning objects are divided into:

1. Learning objectives with a single objective, defined as aggregations of the

components of the learning object that refer to a single learning objective. Examples

are concepts, facts, principles, processes and procedures.

2. Multi-objective learning objects are aggregated of single-objective learning

objects and refer to larger learning objectives. Examples are chapters and lessons.

BUPT

28

Fig.2.9. The ALOCOM model architecture

The ALOCOM model and the ontological cartographies presented in [32] are

an attempt to align the content models of existing learning objects and aim to facilitate

their interoperability.

The ontology connects the content model specifications that are currently

available. Such ontology is never completely stable and should evolve over time. In

addition, because it is an attempt to integrate different points of view, the mappings

are subject to discussion.

2.1.8. H5P learning objects

H5P interactive content is an open source tool based on JavaScript, focused

on creating interactive HTML5 content [36]. It is used to facilitate the creation of

various interactive activities that can be integrated both in your own site and on other

LMS platforms.

Interactive content can be created both directly on h5p.org and on your own

device after installation. More than 40 different types of multimedia activities are

available, such as word completion, timeline creation, virtual tours, memory games,

and more. The tendency is to increase these variants with the opening of the source

code.

Depending on the type of task, the difficulty of creating it differs. However,

the process of creating interactive learning tasks does not require advanced

programming knowledge. The uniform structure of tasks can be expressed using two

basic components content and settings.

Content, the first component of the object, refers to texts, images, videos or

audio recordings. These are inserted in predefined fields from which the workload is

subsequently generated. Each task type is characterized by a specific dominant

multimedia element, although several multimedia elements can be integrated into a

task. The general feedback module is also included in the content component. In this

module tutors can set their own assessment scale and / or verbal feedback.

BUPT

29

The second component, Behavioral Settings, contains customizable

behavioral attributes of tasks, such as whether students can perform the task

repeatedly, whether incorrect answers are penalized, and so on. The individual

settings vary depending on the type of task selected. In the Text Replacements and

Translations panel, teachers can set their own means of expression in the desired

native language. The latest H5P options of the block allow you to choose the attributes

that will be displayed with the task (Download button, Embed button, Copyright

button). Thus, the teacher can decide whether the created task will be openly

accessible to other learners (either by downloading the task or generating an

embedding code) or if references to the sources and licenses used will be published.

In terms of evaluation, H5P has adapted a plugin to capture xAPI instructions.
That is, it generates xAPI statements from student interactions. These statements

contain information such as: what answers did the students select, what is the score
of the question, or whether the question was completed [37].

Fig.2.10. An interactive video made in H5P

Among the most featured applications offered by H5P we mention:
- Interactive videos - interactive videos in which you can include questions

with several options, to fill in the blanks, the text (see Figure 2.10);
- Course Presentation - a presentation in which the tutor can also integrate

different types of interactions;
- Branching scenario - a scenario made in the form of a game in which there

are various points where the student must choose the right direction to go;
- Agamotto - allows users to compare and explore a sequence of images

interactively;

- Different types of quizzes - allows tests with multiple types of questions;
- Virtual tour - a virtual tour content in which can be added questions or texts;
Interactive content H5P can be seen as a flexible, responsive and versatile

mobile tool that promotes an innovative way of linking teaching resources and

BUPT

30

multimedia elements. H5P is supported by any LTI-supported VLE such as Canvas,
Brightspace, Blackboard and LMS Moodle [37].

2.2. Learning Objects in Learning Management Systems

Once learning management was transferred from the classroom to a new level

of development, classroom experiences had to be reconfigured for computerized

delivery and distributed over the Internet. E-learning platforms mainly comprise LMSs

that focus heavily on creating and standardizing learning content, distributing

materials to learners, and providing functionality for self-assessment exercises and

examination purposes [8].

A LMS is a software application for the administration, documentation,

tracking, reporting, automation and delivery of educational courses, training

programs, or learning and development programs [38].

The teacher to create course content by adding text, images, tables, links,

slide shows, etc can use LMS. They can manage their courses and modules, enroll

students or configure their self-enrollment, as well as import students to their online

courses.

In terms of assessment, LMS can allow teachers to create online tests for

students. Different types of multiple choice questions are allowed, such as: multiple-

choice answer; true or false / yes or no; fill gaps; single-line response; essay and

even offline tasks.

Some platforms allow for attendance management and integration with

classroom instruction, where administrators can view attendance and records if a

student attended, arrived late or did not attend classes.

2.2.1. Learning Objects in Moodle

Moodle is free and open-source learning software, also known as a Course

Management System, LMS, or Virtual Learning Space. Since October 2010, there have

been 49953 registered users and verified sites and serving 37 million users in 3.7

million courses [9].

Moodle is a learning platform originally developed by Martin Dougiamas to

help teachers create online courses focusing on the interaction and collaborative

building of educational content, which is constantly developing.

Moodle has customizable management functions. This system is used to

create private websites with online courses for educators and trainers to achieve

learning objectives. Currently many schools and universities have created their free

platform and/or virtual campuses.

The basic functionality of Moodle can be extended with the help of plugins.

There are hundreds of variants and any of them can be stored in the Moodle plugin

directory.

Any individual Moodle site or course may have different graphics. Themes can

be set for the entire site, for each course, but there can also be custom themes that

are applied to only one session.

BUPT

31

Moodle graphics can be installed to change the look of a Moodle site or an

individual course. In Figure 2.11 it is represented a course page for which it was used

the Boost theme. Boost is a basic theme that gives Moodle sites a new look. It is easy

to configure and offers a better navigation within and between courses. A page using

Boost theme is divided into three sections:

- Course sections - is the section in the middle of the page and includes

learning materials grouped by weeks, topics, forums or other layouts;

- Navigation drawer - is the block located on the left of the page (Figure 2.11),

it is like a map to navigate in course and on the site;

- Gear menu - is the block located on the right of the page (Figure 2.11) and

offers different levels of access to teachers and students.

Fig.2.11. A blank Moodle course page using the Boost theme

The themes are based on a responsive web design and allow the use of Moodle

on mobile devices. A Moodle mobile app is available on Google Play, the App Store

(iOS) and the Windows Phone Store.

Tutors have the opportunity to customize their course by adding resources

and activities.

BUPT

32

Fig.2.12. Resources provided by Moodle

In terms of resources, several modules can be added (see Figure 2.12):

- Book - this module allows the creation of a resource with several pages,

divided into chapters and subchapters like a book;

- File - when you want a file as a course resource;

- Folder - allows you to upload a folder, it is used when you want to display a

number of related files in one place;

- IMS content package - allows the attachment of a collection of files packaged

according to a standard, it is recommended for the presentation of multimedia and

certain content;

- Label - allows the introduction of text and multimedia files in the course

page, links to other resources and activities, helps to improve the appearance of the

course;

- Page - allows the tutor to create a web page resource using the text editor,

it can display text, images, sound, video, web links and embedded code;

- URL - allows the provision of a web link as a course resource, it can be

customized and can be incorporated or opened in a new window.

The activities that a tutor can choose on the Moodle platform are:

- Choice - consists of a single question and an offer of possible answers, the

answers published on the platform can contain the names of students or anonymously

(although teachers always see the names of students and their answers)

- Workshop - allows collecting, reviewing and evaluating answers in a stream,

students can send any digital content;

- Database - allows participants to create, maintain and search for a collection

of entries, the structure of records is defined by the teacher as a number of fields,

and the fields can be check box, radio buttons, drop-down menu, text area, URL,

image, uploaded file;

- Chat - allows both students and tutor to have synchronous discussions in

real time, in text format;

- Questionnaire - a variety of types of questions can be used;

BUPT

33

- Feedback - the teacher can create a personalized survey to collect feedback

from students using a variety of types of questions;

- Forum - allows students to have asynchronous discussions;

- Glossary - allows students to create and maintain a list of definitions, such

as a dictionary, or to collect and organize resources or information;

- H5P - allows you to upload H5P files and add them to a course;

- External tool - allows students to interact with learning resources and

activities on other websites;

- Lesson - allows the teacher to deliver content and / or practice activities in

interesting and flexible ways, a lesson can be graded, with the grade recorded in the

notebook;

- SCORM package - allows SCORM or AICC packages to be uploaded as a zip

file and added to a course, the content can be displayed in a pop-up window, with a

table of contents, with navigation buttons, and the notes are recorded in the notebook

of notes;

- Attendance - The teacher can create multiple sessions and mark the

attendance status as "Present", "Absent", "Delayed", or "Agree", or can change the

statuses;

- Task - the teacher can communicate tasks, collect answers and provide

grades and feedback;

- Survey - the teacher can use this activity to collect data from students that

will help him learn about the class and reflect on his own teaching;

- Test - allows the teacher to create tests comprising questions of different

types, including multiple-choice, matching, short answer, and number;

- Wiki - an activity that allows participants to add and edit a collection of web

pages can be collaborative, everyone can edit it or individually, where everyone has

their own Wiki that only he can edit.

Fig.2.13. The activities offered by Moodle

BUPT

34

Moodle Certified Partners offer Moodle services: hosting, training,

personalization, and content development [9]. This network of suppliers supports the

development of the Moodle project through royalties.

Moodle runs unmodified on Unix, Linux, FreeBSD, Windows, OS X, NetWare,

and any other systems that support PHP and a database, including web hosting

providers. It also has import features for use with other specific systems, such as

importing questionnaires or entire courses from Blackboard or WebCT.

2.2.2. Learning Objects in ILIAS

One of the first LMSs that have been implemented in university education is

ILIAS. The prototype was developed in 1997. It was made within the VIRTUS project

of the Faculty of Management, Economics and Social Sciences at the University of

Cologne. It was initiated and organized by Wolfgang Leidhold [37]. In 1998, the first

version of LMS ILIAS was delivered to the Faculty of Business Administration,

Economics and Social Sciences in Cologne. ILIAS was publish in 2000 as an open-

source software, because more universities showed interest in it. A new version called

"ILIAS 3" was developed between 2002 and 2004. It became the first open-source

LMS to reach the SCORM 1.2 compliance level. Currently, the enhanced version ILIAS

5.3 is used. It is based on HTML5 and can be used as an interoperability provider of

the learning tool. The LOs that a tutor can choose on the ILIAS platform are presented

below.

A course is a collection of LOs of different types. It can be displayed in different

didactical presentation modes. Within a course, learning progress settings can be set.

Only course members are able to see the course content.

A group is a container with different LOs. However, unlike courses, groups do

not have different didactical presentation modes. Groups are often used to split up

course members, like different classes for the same course. Groups can also be used

outside the context of a course and are then often used as a collaboration or project

tool.

Learning Module ILIAS has an integrated authoring tool that can be used to

develop both proprietary ILIAS modules as well as SCORM modules, which can also

be imported from other tools like Captivate or Articulate.

 Chatrooms can be defined within a course or group to allow communication

between members, of between members, and a tutor (private chat).

Survey ILIAS has a survey object which can be used to collect information

from several users; for example to evaluate courses or other events. ILIAS surveys

are easy to define and manage, even for non-experienced staff.

Personal Desktop - each user has his or her desktop. Here you find all objects

that you are registered for, as well as the page markers and notes that you made.

You can also collect your own files, documents, websites, and course certificates. You

can even develop one or more personal portfolios.

Test & Assessment is an integrated environment for developing and

maintaining questions and tests. Tests are used to measure existing knowledge. About

a dozen different question types are supported, such as multiple-choice, cloze, drag-

n-drop, etc.

BUPT

35

Wiki, is a hypertext document that is developed and maintained by some

people working together, for example, participants in a course. Wikis are used for

virtual collaboration and knowledge sharing.

Fig.2.14. LOs in ILIAS

Glossary, is a list of terms with corresponding definitions, much like an

encyclopedia. A glossary can be structured like taxonomy and can, as such, serve

perfectly as a learning or reference object. Glossaries can also be associated with

learning modules (in authoring mode) so that when a term from the glossary is used

in the learning module, a hyperlink is automatically created that links to a popup with

the corresponding definition. Definitions can include text, but also all different types

of media like images and videos.

An organizational Unit, can be created in ILIAS to reflect the organizational

structure of the organization. For each organization unit, you can specify supervisors

and direct reports.

SCORM is a set of technical standards for e-learning software products to

ensure that e-learning products "play well" with other e-learning products. For

example, a learning module that is developed using SCORM standards will be played

on any LMS that adheres to these standards as well.

A forum or discussion group is an online place where users can discuss issues.

Users can communicate asynchronously and a discussion can continue for a long

period. In ILIAS, a forum is often used as a means of communication between a course

tutor and course participants.

File - files can be uploaded to ILIAS. Files of every type can be uploaded, and

subsequently downloaded. However, several types, such as PDF, PNG, MP3, MP4, etc.,

can be opened directly in ILIAS.

BUPT

36

Exercise is a complex learning object. Using an exercise, a tutor can assign

one or more tasks to course participants (either to individual participants or to teams

of participants). These tasks can have start and end dates. Before the end date,

participants need to have finished the assignment and the results uploaded. The tutor

will review the submitted results and grade the assignment, also possibly render

feedback to the participant. You can also allow participants to review each other's

work (peer-to-peer feedback).

A repository contains all learning objects in the ILIAS installation. You can

compare it with a catalog or library. The repository is usually organized hierarchically,

using categories end courses. A tree view allows for easy navigation through the

repository.

A session is a live event within a course. A session has a start and end times,

as well as a physical location. Participants are expected to be physically present. Often

sessions are used for practice sessions as part of a blended learning approach.

Web Feed is an RSS feed (Real Simple Syndicate). The feed will appear on the

side of your screen.

Booking Category is a pool of resources that can be used within a course, like

beamers, classrooms, teachers, books, etc.

Item Group is a way to organize objects in the repository and courses.

Data collection is a spreadsheet, like Excel. You define the columns you want

to use and enter data.

A poll is a one-question survey. The poll is typically shown on the right side

of the screen. A user can only enter the polls once. Results are always anonymous

and are available immediately using a pie chart.

A bibliography is a tool to do bibliographical research

A map is an organizational object to create a hierarchy within a curse or group.

Web Site is a URL Blog. A blog is short for Web Log. It is a discussion or

informational website consisting of separate messages or articles. Often readers can

comment on articles and start a discussion that way.

Media cast is a collection of media (videos, images, audio) that are made

available to participants in a course.

Media Pool is a collection of media objects that can be used when developing

other objects and pages. Within a media pool, you can define a structure using maps.

A portfolio is a personal document in which you describe what you can and

how you want to develop yourself further. Its goals are 1) to show your mentor/tutor

what you have learned and what you want to do with it, and 2) to help you reflect on

what you have achieved and what you want to learn next.

A category is a map that you can use to structure the repository. You can

compare it with the folders on your hard disk.

Competency Management is a collection of tools to develop and maintain

competencies to develop and maintain function profiles, assigning function profiles to

users, creating gap-analysis reports, getting peer-to-peer feedback, and translate this

into competencies.

ILIAS provided a flexible environment for learning and working online with

integrated tools. It can be seen as a type of library that provides materials and content

for learning and working in any location of the warehouse. There are many universities

that use ILIAS, an example is the University of Bonn, see Figure 2.15.

BUPT

37

Fig.2.15. An e-campus ILIAS page

ILIAS provides reports on learning progress both in individual LOs and in

whole courses or groups. They show the processing state of a student, his progress

in terms of learning objects. This facility does not need access to the administration

area and it is available directly to the course.

LMS ILIAS is open source, powerful and flexible. It can be used for an online

learning and testing platform for schoolchildren and students, a training environment

for employees, or an e-learning library.

2.2.3. Learning Objects in Blackboard Learn

Blackboard is one of the most popular names in the digital learning market.

The platform comes in both software-as-a-service (SaaS) and non-SaaS models [39].

The service provider offers all core learning management features as well as powerful

data analytics, communication channels, collaboration tools, and web conferencing.

Class facilitators can easily deliver homework, tests, and track grades. They can also

manage online and blended classes.

BUPT

38

Fig.2.16. A course on Blackboard Learn

Blackboard Learner, has a responsive user interface for improved

accessibility. In addition to the basic functions specific to an LMS, it also comes with

Blackboard Analytics. Blackboard Analytics allows tutors to see valuable information,

such as student performance, involvement, and more. The manufacturing company

has also launched the Blackboard Open LMS powered by Moodle. This is a more

extensible version of Blackboard services, where you can customize various aspects

of some courses.

Mainly, Blackboard targets enterprise and mid-level market segments. They

provide specific customer services. Customers who want Blackboard must book a

demo in order to get a personal offer.

Blackboard Unite for K-12 is a comprehensive digital learning environment

that enables personalized learning anytime, anywhere. Blackboard Learner has a

modern, intuitive and responsive interface. It offers a simpler, more powerful teaching

and learning experience that goes beyond the traditional LMS. Blackboard, is more

than an LMS, it is a model in which the emphasis is not on individual products. It is

an integrated and flexible ed-tech platform. It that offers a uniquely connected

experience in a wide range of capabilities designed to stimulate student success and

institutional performance.

The ed-tech platform offers three essential components:

- a design and architecture approach that allows for a complete user

experience in a broad set of capabilities that will continue to evolve;

- the ability to model the digital environment in the way that best suits the

requirements of the beneficiary;

- the power to enable better outcomes for institutions, instructors, and

students.

BUPT

39

This approach to building, delivering and expanding Blackboard solutions

creates a very popular connected and extensible educational technology ecosystem.

2.3. Generative Learning Objects

2.3.1. GLOs Coined by Tom Boyle

Improving teaching and learning is increasingly achievable with ICT. However,
to get the maximum impact it needs a "stratified learning design" [25]. This approach

allows tutors to create different levels of abstraction, reaching the design of activities
focused on specific learning objectives.

“Learning objects were often monolithic” [14], so there was a need for them
to develop to be able to respond to issues such as reusable, repurposable, decoupled,
pedagogically rich, available for independent reuse. These challenges have led to
massive work that has materialized for Boyle by building LOs in the study of Java
programming. This approach won, in 2004, the European Academic Software Award

(EASA).
The concept of a GLO has as a basic idea the realization of a successful LO

with the ability to reuse, not necessarily focusing on the content.
Respecting the principles of software engineering in generating LOs, Boyle

found it as the first challenge to get the simplest and most decoupled object possible.
The “principle of de-coupling" as it is called in [14] implies that each object must have

minimal connections with the other units. Thus, each object of learning must relate
to its material and not be dependent on others.

Boyle said: ” We must face the challenge of creating LOs that are cohesive,
decoupled and pedagogically rich” [14].

Another problem ignored in the main approach of standards-based learning
objects is the design of high-quality learning objects. Boyle argued that “high-quality
design and development of learning objects is crucial before we get to issues of

metadata and software packaging” [16].

Fig.2.17. Schematic layout of the format for LO realization

He was focused from the beginning on high-quality design. The structure of
Boyle's design for layouts is simple and very flexible [21]. Each object is made in the
form of a web page composed of two parts:

BUPT

40

 one consisting of the text integrating the explanation;
 one consisting of a link column that offers associations with other objects.
To make an efficient model, Boyle said: “learning resource … should be

designed with reuse in mind” [40]. He used for this purpose the reuse of design, more
precisely a method of reuse design known as patterns. Models are similar to classes,
but they have a wide scope and may include more classes.

Another tackled issue of repurposing without accessing the skills of a specialist

e.g. multimedia developer. The model is based on patterns that can be easily used.
A different tackled issue for GLOs is one of being available for independent

reuse. Instantiations are available by the instrumentality of a web browser and can
be used for individual study.

Another challenge was to make these designs accessible to tutors through a
tool that permits the creation and adaptation of LOs.

Fig.2.18. Representation of functional choices in GLO-Maker

To achieve this goal a tool has been created to incorporate GLO models and
make them available both for creating new learning objects and for adapting existing

objects for studying. Boyle performed a special tool, called GLO-Maker [16]. That tool
was developed to make it possible for the users to create based on design and adapt

as needed generative learning objects. The first version was created in 2008, having
the interface is shown in Figure 2.18 [16].

Tom Boyle's project turned into a resource creation tool called GLO Maker
[41]. It is open-source and free for educational use. The GLO-Maker tool provides two
main interfaces: one allows the user to access a pedagogical design expressed as a
structured set of pedagogical choices the ‘surface structure’ (see Figure 2.19) [16]

and one that expresses these choices as a sequence of screen layouts.

BUPT

41

Fig.2.19. Examples of the ‘surface’ structure ‘pages’ of GLOs as seen by learners

Each learning object is saved in a separate package in its directory and can
be played from any location into which this package is moved.

Each learning object should be based on one clear learning objective. The

tutor can thus handle students differently, depending on the level of knowledge they

have achieved. Some learning objects are just to practice simple notions while others
are using advanced questions.

Boyle approached these problems using a form of representation borrowed
and adapted from Generative Linguistics, especially Systemic Grammar [42]. The final
form of an object and the description of the processes involved in its production can
be radically different. Systemic Grammar is used as the basis for the GLO approach

because [14] provides the basis for a form of representation that is both amenable to
understanding by human users and executable by formal computer software” [16].

The process of developing a GLO involves several stages:
 - in the first step a series of screen layouts or templates were designed by
tutors and sometimes learners;
 - in the second step, there were extracted and represented formally the
pedagogical decisions underlying the generation of the learning object and

 - in the third step, the templates were captured in a network.

The central structure is a selected and organized set of pedagogical choices.
It is captured as a decision structure - in which each node represents a pedagogical
function that can then be refined or expanded as needed.

Learning objects are not scalable. The concept of generative learning objects
(GLOs) was developed to tackle the problem of facilitating scale-up [40]. The tool

realized by Boyle has the property to be scalable. The tutors can use it to make their
learning resource, they can add pictures, audio files, and whatever they think is
useful.

The organization of concepts is essential to have a stable and efficient use of
technology in the learning process. Technology is appealing, but it can distract
attention from "profound design" [43]. It requires a base, a prototype, for design, and
a conceptual unit to apply and keep up with technological change.

BUPT

42

2.3.2. GLOs in the Works of Damasevicius and Stuikys

The model proposed by Vytautas Štuikys and Robertas Damaševičius is

reusable and is quite general, can easily be customized to the tutor's need. The model
is expanded with meta-programming technologies. Their approach aims to extend the

existing GLO concept, their content relying on pedagogical, social, and technological
aspects [18].

They have developed a model that responds to the problem of decouples,
including lessons in mathematics, software engineering, or computer science domain.
They have proposed to focus on the instantiations of learning objects. The model is
represented in Figure 2.20.

Fig.2.20. The structure of the GLO model

This model is composed of three parts:
- name, for identification;
- interface, which transports information from LO and to LO;
- body, which is a list of accumulated learning information.

The model proposed by Robertas Damaševičius and Vytautas Štuikys also
responds to the problem of reusability. In [13] is an example of GLO for array sorting
algorithms. The processor generates a learning object implemented in two parts: one
is represented in HTML and contains the description of a sorting algorithm and the
second part is in Javascript and demonstrates the efficiency and principles of the
algorithm. This GLO can be distributed over the internet and can be viewed on both a
computer and a phone (see Figure 2.21).

As a result, they obtain a GLO expanded known LO model with the help of
meta-programming techniques for generating instances. This model can be used to
teach Computer Science at the university or high school level.

In [44] the authors reused the model using LEGO robots. In this variant, there
is present both educational and technological sides. The LEGO NXT robot has been
easily introduced into this area. It is used to demonstrate the functionality of programs
and algorithms. This combination was possible because the models are independent

BUPT

43

of the instruments and tools used. The robot-based approach also has the effect of
increasing external variability and improving internal reuse.

Fig.2.21. Example of LO: Bubble sort; C++; on Mobile (a fragment)

In the latest works, there is a real interest in the research field on knowledge

transfer “from the teacher’s ontology to the learner ontology” [45].
Stuikys starts with the GLOs presented in [18] but together with other

collaborators, they had extended a set of GLOs to a specific meta-programming
template called the stage-based GLO model [46]. This model allows the

implementation of a more flexible approach and the automatic adaptation of content
through stage-based transformation.

This direction has been chosen as more efficient solutions are sought in terms
of harmonizing the pedagogical and technological side. Technological standardization
is achieved when content is explicitly specified in stages and then interpreted using
an appropriate automation tool. Thus, the step-based model is what is achieved at
the meeting between the pedagogical stage and technological standardization.

This model differs from the first variant of GLO by the following:
- the internal structure is multi-stage;
- content generation is phased;
- the process of generating is influenced by context.
In this case, the context is understood as any information that can be used to

characterize any relevant interaction between the user and the application [46].

2.3.3. Moodle Coordinate Questions

Moodle Coordinate Questions (MCQ) are a plug-in for Moodle [9]. Through

these questions, the student can answer a set of correlated and random calculation
questions. They are mainly used in physics and engineering. The main idea is based

on the fact that the calculation of numerical (random) data can be turned into answers
and can be verified.

These questions are meant to be generic so that different types of questions
can be easily created.

The main features of these types of questions are:
- based on the choice of random numbers from a set, each student can receive

an individualized question;

- the answers can be of four types: number, numeric (number and arithmetic
operation), numerical formula, and algebraic formula;

BUPT

44

- multiple sub-questions can be performed based on the same random
variables. A sub-question is valid if it is assigned a grade and an answer;

- it is possible to specify grading criteria to verify the correctness of a student's
answer. An answer is not only wrong or correct; it can also have intermediate
notations;

- it is possible that a question can be accessed multiple times, but in this case,

a maximum scoring sequence needs to be specified;

- the correctness of the answer is checked and graded so that the student
automatically sees his mark.
The tutor can edit the text of a question. In addition to text, variables and

substitutes can also be used. The names of the variables will be replaced by the
numeric value in the version that the student receives.

Fig.2.22. Example of Moodle Coordinate Question

The drawback of these kinds of questions is that they can be applied only
where it is algebraically responsive, as can be seen in the example of Figure 2.22.

Structurally, the MCQ has four sections: main question, sub-question, extra-

options, and variables instantiation checking.
The main question section describes the context of the exercise. It also

includes values of the random variables expressed by enumeration having a step that
is default 1, but that can be changed.

The sub-questions section contains the text, the unit and the grading criteria.
These sub-questions tend to reuse the set of random variables instantiated in the
main question, giving the tutor the opportunity to further develop their exercise ideas.

The extra options section contains a set of specific options that apply to all

sub-questions.
The variable instantiation check section is a section in which some questions

are displayed to the tutor, optionally with answers, so that he has a visual
representation of the exercises that the student will see [47].

Depending on the type of answer, it can be either an evaluated expression or
a string. If the answer is a number, then an error variable is calculated as the

BUPT

45

difference between the calculated answer and the given answer. The answer is correct
if the difference is less than a defined threshold denoted absolute error.

2.3.4. Moodle Calculated Questions

Moodle Calculated Questions are a plug-in for Moodle [9]. Calculated

questions offer the ability to create multiple versions of a question with different
numerical values. Metacharacters are used to ask such questions. A metacharacter is
obtained from an ordinary variable enclosed in parentheses, for example the
metacharacter {a} can be created. These metacharacters are substituted with certain
values during the test.

When Moodle delivers a calculated question to the student, the
metacharacters are replaced with randomly selected values from a predefined set of
possible values. This allows control over the possible values so that the numbers are
realistic.

There is two types of data sets:
- private, used by a single calculated question;
- shared, used in all calculated questions that use it.

When Moodle delivers a calculated question to the student, the wildcards are
replaced with randomly-selected values. However, these values are not completely
random - rather, they are randomly selected from a pre-defined dataset of possible

values. This allows you some control over the possible values chosen - for example,
in order to make sure the numbers are realistic.

These datasets can be private or shared - private datasets are used by one

wildcard within one calculated question; shared datasets are used by one wildcard
within all calculated questions that use it.

To create or modify a calculated question there are three pages to work
through.

In the first page, we edit the calculated question. Any shared wildcards for
this category are listed beneath. If we change category, we will need to click the
"Update the category" button to refresh this list. There may not be any shared

wildcards yet - if not, we can create them later if we wish. Next, we add the formula
for the answer. This formula must contain at least the wildcards that appear in the
question text. We can see the correct answer formula syntax for further details.
Choose the grade that the student will get for this question if they give this answer.

This should be a percentage of the total marks available. For example, we could give
100% for a correct answer, and 50% for an answer that is nearly right. One of the
answers must have a 100% grade. Determine the tolerance for error that we will

accept in the answer. The tolerance and tolerance type settings combine to give a
range of acceptable scores. So, if tolerance = t, correct answer = x and the difference
between the user's answer and the correct answer is dx.

In the second page, we chose dataset proprieties. If there is anything in the
question text that looks like a wildcard, but does not appear in any of the answer
formulae, we can specify whether or not this is meant to be a wildcard. If it is, we can

choose whether it should use a private or shared dataset.
In the third page, we edit the dataset. Now we need to create the set of

possible values that each wildcard can take. There are two ways of creating values -
you can type them in yourself and add them to the list, or you can have Moodle
generate them for you.

BUPT

46

Fig.2.23. Moodle Calculated Question example

In Figure 2.23 an example of a test consisting of three questions is presented,
the first two of which are calculated questions. The first question has the partially
correct answer, and the second has the correct answer. In both cases, the student
receives feedback. If the answer is incomplete, it is warned about what is missing. If
the answer is correct, he is reminded of the theory that is applied in the calculation.
In addition, in both cases the correct answer is presented. Calculated questions allows
only arithmetic operators and functions, possibly in addition a unit of measure.

BUPT

47

2.4. Learning Objects in Other Works

2.4.1. Learning Objects Sequencing Papers

Course materials consist of reusable LOs grouped in sequences. LO grouping

can be accomplished through different processes by the tutor or automatically. A

model that can perform the sequencing is presented in [48].

Web-based courses and adaptive systems can replace the tutor and adapt to

different environments. These systems can use a variety of educational methods. One

of these methods is the sequencing of the curriculum designed to give students

individualized material [49].

In the case of classical learning objects, the sequencing is done by the tutor,

the course thus created can’t be personalized, on the contrary, it is general. It is

therefore desirable to create a model that can automatically perform sequencing.

Fig.2.24. The LO sequencing process

Thus sequencing is one of the solutions proposed by Luis de-Marcos and his

collaborators in [48] to solve the problem of flexibility and to automate the role of

tutor. What they have proposed uses artificial intelligence techniques. Learning

objects are seen as small reusable learning units that can be grouped to get a lesson

or a course.

The model in [48] is defined for the LO sequencing according to the

competencies they are targeting. This involves attaching competences to each LO. A

valid sequence of LOs corresponds to a set of competencies.

BUPT

48

Modeling of students is done according to competences. Those are also used

to outline the expected learning outcomes. The process of analyzing the existing gaps

in knowledge and the distribution of LOs aimed at exactly filling the identified gaps

will be performed through the squinting process (see Figure 2.24).

The realization of these associations is done through a classic problem of artificial

intelligence, namely the problem of constraint satisfaction. A Progressive Swarm

Optimization (PSO) algorithm was used to optimize the sequencing. Thus the problem

of sequencing is transformed into a permutation problem. The authors' experiments

show that PSO manages to solve the problem they were considering.

The sequencing process was actually tested in engineering classes as well as

in the laboratory. The authors have shown that this process works even in complex

scenarios in which people face difficulties. This will save time and reduce costs. The

model can also be extended to build personalized e-learning experiences. The

sequencing process can be completed with a gap analysis process. The courses

created by this method can be integrated into LMS platforms.

2.4.2. Learning Objects Improved by Object-Oriented Design

Claudine Allen and Mugisa Ezra consider it necessary to have a consistent LO

theory since the very vague definition of an LO has led to the absence of a well-

defined theory and a variety of object interpretations.

In [50], several LO standards are analyzed to identify areas where

improvements could be considered. As problems of the LOs theory are emphasized in

the paper: level of granularity, incompatibility between models, LO reusability. Under

these circumstances, it is considered useful to have a standard that combines LOs of

any size. The authors present their theory about the existence of a standard for LOs

in the article.

Fig.2.25. OOGLOM as a base for IS/OS Models

The proposed theory defines seven concepts:

- Learning Experience is a series of events that lead to learning goals;

- Learning Objective is an assertion that includes measurable knowledge,

abilities, or attitudes that students have to gain through learning experiences;

BUPT

49

- Learning object independence refers to the ownership of an LO to be self-

sustaining from a pedagogical point of view, but not necessarily from a technical point

of view;

- E-Learning refers to the use of ICT in learning experiences;

- Pedagogical activities are educational activities such as assessment

activities, instructional activities, curricular activities, or research activities;

- Learning components is material made by an LO to achieve a goal. They run

on specific e-learning systems.

- Institution Specific or Organization Specific Models (IS/OS Models) are the

e-learning standards that exist.

 Object orientation is regarded to be an important factor in solving identified

problems as efficient features such as inheritance, polymorphism and instantiation

could be used. Thus an LO is an instance of a class. In the proposed model there are

two types of LO: atomic learning objects (ALO) and composite learning objects (CLO).

 ALO is a subclass of the LO class and is made up of content, metadata, a

reference to a learning objective, and data handling and use operations. CLO is a

composite LO class instance that consists of a list of ALOs or CLOs, metadata, and

data handling and usage operations. A CLO can cover more specific LOs.

The LO theory proposed in [30] includes their model called "Object Oriented

Generic Learning Object Model"(OOGLOM). Because it is desirable to eliminate the

limitation of reusability and interoperability, there is no working definition of an LO.

The authors claim that LOs made according to this theory have the following

properties: independence, granularity, reusability, assemblability, contextuality,

interoperability, and flexibility.

The OOGLOM model can be represented as a LO tree in which the leaves are

ALO, and when running the RunLO main operation of a CLO will recursively call all

RunLO operations of all LOs included.

OOGLOM is presented as a powerful platform that provides common base

classes from which any other LO model could be developed. It is presented that

OOGLOM's popular standards build on the flexibility, reuse, and interoperability of LO.

In [30] OOGLOM is considered useful to be used as the basis for IS/OS Models.

The repository of these models can be populated by creating LO class instances. This

is illustrated in Figure 2.25.

2.4.3. Learning Objects in Cloud Frameworks

Computational Science is a field in which changes occur very quickly due to
research and technical evolution. To meet this challenge in [51], the authors have
proposed a hybrid learning resource approach with support for learning objects in

cloud computing platforms.
They identified two major trends in modern education at the university level:

individualization and mass character. ITC entered all branches of science and offers
access to distance learning. It has facilitated the creation of learning objects that
support individualized learning. Reusable learning objects replace traditional forms of
learning, especially in this dynamic field, such as Computer Science.

However, there is an inconvenience, the preparation of learning resources

long, so the rapid integration of research into practice is deficient. Effective practical

BUPT

50

work experiences are required in Computational Science due to the rapid growth of
research in this field.

The approach from [51] contains hybrid learning resources (HLR) which
contain different objects and resources:

- informational object (IO) – a theoretical item,
- informational resource (IR) – some IOs and links to IOs all associated by a

property,

- learning object – fuses learning with assessment tools,
- abstract learning resources (ALR) - contains information about how to use

efficiently IRs and LOs.
An ALR together with the technical and educational context is a hybrid

learning resource. ALR frames are made up of research objects linked together.
In Computational Science, the form of representation of the results underlying

HLR research is the software package. A software package can be considered as a
function between input and output data and is appointed with all documentation:
notations, ways of execution, description of both functionalities, and format of the
input and output data. The software package is mapped and represented as a cloud
package.

In [51] the authors used the CLAVIRE e-Science platform as the basis for HLR
implementation, which can be developed in a relatively short time. CLAVIRE (CLoud

Applications VIRtual Environment) is a platform whose structure and functionality are
presented in [52].

To incorporate a software package into CLAVIRE, the Easy Package was used.
Creating and using cloud and scientific workflow (SWF) packages in CLAVIRE is done
with the Domain-Oriented Interface and SWF editor. In this case, a student can both
create an SWF from a given package and experience some existing ones. The platform

gives the advantage of reaching articles and scientific papers.
CLAVIRE environment is based on intelligent problem solving environment

(iPSE) concept. So it is been used as simulation environment for Virtual Simulation
Objects (VSO) concept [53].

CLAVIRE is been used as simulation environment. In [53] a use case of using
the platform in a simulation environment is presented.

Virtual Simulation Objects is a concept which forms theoretical basis for

building tools and framework that is developed for system-level simulations using
existing software modules available within cyber-infrastructure.

To put the presented concept into practice, the implementation of VSO

management system software is now being developed. It is integrated with CLAVIRE
platform which allows building composite the applications with the use of the set of
the domain-specific software available within the service-oriented distributed
computational environment. CLAVIRE environment is based on intelligent problem

solving environment (iPSE) concept. So it is been used as simulation environment for
Virtual Simulation Objects (VSO) concept.

To test the implemented system the ship behavior during sailing in the sea
was simulated.

Simulation is run using CLAVIRE environment which is provided with AWF with
blocks describing corresponding software running. CLAVIRE user interface, which is

web-application, is presented at Figure 2.26.

BUPT

51

Fig.2.26. Example of LO in CLAVIRE

Thus, this approach allows the use of simple components such as IOs and IRs

to a high level of abstraction. This fact also supports the reusability of the packets
and quick response in case of changing the input data. This model strengthens the
cloud platform both as a packet location and as a learning environment, providing
access to diverse teaching materials. Students can even participate actively in the
process of creating knowledge by creating their own models and sharing them with

others.
A study has been made in the High-Performance Computing Department of

ITMO University. The results of the study based on the implementation of the model

in [51] confirmed that HLRs are a deep approach than traditional learning.

2.4.4. Learning Objects Records - Experience API

The realization of the Experience API (xAPI) project was possible thanks to

the Experience API Working Group, which enjoyed the support of the Office of the

Deputy Assistant Secretary of Defense, and the Advanced Distributed Learning (ADL)

Initiative.

The ADL has the role to manage the development of the xAPI. ADL believes

that xAPI is “an evolved version of SCORM that can support similar usage cases but

can also support many of the use cases gathered by ADL and submitted by those

involved in distributed learning that SCORM could not enable” [24]. So, the

improvements have been implemented based on feedback from active users. From

this point of view, it can be said that the Experience API (xAPI) is SCORM's successor.

BUPT

52

They also believe that xAPI is among the first technologies that enable a larger

architectural vision of online learning and training. xAPI is committed to supporting

modern and needed technologies such as authentication services, visualization

services, personal data services, querying services.

The version includes also some refinements, such as adding attachments,

using JSON rather than XML for Activity metadata storage, signing statements, the

name of the document is APIs. It has been designed to support new features such as:

translating across platforms, using e-learning on mobile, greater content control,

tracking real-time performance, team-based e-learning.

It is a way that facilitates learning anytime and anywhere. This standard can

be implemented on different systems and is intended to be used to develop

interoperable tools, systems, and services that are independent and communicate

with each other. “All learning events are stored as Statements” [24]. Statements

represent the xAPI kernel. Statements are learning events. A statement resembles a

sentence like, "I did that."

As a distinctive note, the xAPI specifically offers the following outfits:

- structure and definition for how the experiences are communicated by an

Activity Provider (namely Statement, State, Actor, Activity, and Objects);

- data transfer methods of objects to/from a repository in terms of storage

and data recovery;

- security methods for the exchange of information with safe sources.

An Activity Provider is a software object that communicates with LRS to store

information about the experience. The means are:

- Actor – an identity of a person or group being watched using statements as

doing an action in a learning activity, is the "I" in "I Did This";

- Activity – interpretation of Activity is broad, it could be a training unit, an

experience or a performance;

- Objects – is the "This" in "I Did This";

- Statement – a simple set of <actor><verb><object>, with <result> in

<context> to target an aspect of a learning experience;

- Verb – an action in an Activity, is the "Did" in "I Did This".

Actor, Verb, and Object cannot be missed, the other properties are optional.

The statement is invariable. Activities are not considered to be part of the Statement

and are variable.

If the Actor is a group, two options are available: anonymous and identified.

An anonymous Group describes a group of people that does not have an identifier. An

identified Group contains exactly a unique Inverse Functional Identifier, which

includes a value that is guaranteed to always be used only to identify that group.

The Verb in an xAPI Statement describes the action between the Actor and

the Activity during the learning experience and specifies a meaning that is not related

to any particular language. The model defines how verbs are created, but does not

provide a predefined list of them, as it may not effectively cover all possible learning

experiences. The Verb type is IRI (Internationalized Resource Identifiers), is human-

readable, and involves the Verb meaning. It also includes a set of names

corresponding to languages or dialects.

BUPT

53

Fig.2.27. A Statement that voids a previous Statement

There is only one reserved verb called "voided". One of the key factors of xAPI

distribution is that it is guaranteed that Statements cannot be changed or logically

deleted. Mistakes may happen, and for such situations, there is a need for a Statement

to be declared invalid. So a previously made Statement is marked as invalid through

"voiding a Statement". Any Statement that cancels another Statement cannot be

annulled itself. In Figure 2.27 is illustrated an example Statement that voids a

previous Statement which it identifies with the id "e05fa483-acaf-40ad-bf54-

02a8ce485fb0".

Fig.2.28. Example of a simple statement

BUPT

54

xAPI is a service that allows learning experiences to be delivered and stored

in a repository appointed Learning Record Store (LRS) [24].

Each identifier used for any means is unique, since using an identifier in two

different cases would cause ambiguities in the Statements' validity. The simplest

Statement uses all the necessary properties (Figure 2.28).

You can use references to statements that already exist, they are in the form

of pointers and have the name Statement Reference. For example, if there is a

Statement with the ID 8f87ccde-bb56-4c2e-ab83-44982ef22df0, then using a new

statement we can make another Statement that refers to the original; this is

illustrated in Figure 2.29. Sub-statements may also be used, and are included as part

of a parent statement. These are done using the "SubStatement" type for the

"objectType" property.

There are also optional fields related to a Statement like the "context" field.

This field can store information such as a tutor for an activity if this experience has

occurred in teamwork or as an individual experience if it is a sub-activity in a broader

activity. Four types of contexts are valid:

- Parent - an Activity with a direct link to the Object of the Statement. For

example, A test question will have parental activity, the test;

- Grouping - an Activity with an indirect link to the Object of the Statement.

For example a C ++ course within a programmer's qualification, course is composed

of several lessons and is referred to as a parent for them, but the qualification relates

to the lessons as the grouping;

- Category - an Activity used to divide into categories the Statement. For

example: if a student tries an algebra test and uses the MTI-3 profile, then Activity

refers to the test, and the category is the MTI-3 profile;

- Other - an Activity that does not fit in any of the above categories. For

example, a student studies a textbook for a math exam. The Activity refers to the

textbook, and the exam is a context Activity of type "other".

Fig.2.29. Statement reference example

BUPT

55

 For a better understanding of these, we can take the following hierarchical

structure as an example: "Questions 1-5" are part of "Test 1", "Questions 6-10" are

part of "Test 2". These tests, in turn, are part of the "Graphs" course. The first five

questions are recorded as part of the test by declaring "test 1" as their parent, and

the next five are recorded as part of the test by declaring "test 2" as their parent.

They are also grouped with other "Graphs" statements to fully reflect the hierarchy.

This is particularly useful when the object of the statement is an Agent, not an Activity.

"Tutor X mentored student A with context Graphs." The example is illustrated in Figure

2.30.

Fig.2.30. Example of the "context" field

 The authenticity and integrity of a statement are ensured by the fact that a

Statement may contain a digital signature. In order to include the original serialization

together with the signature, signed Statements include a JSON web signature as an

attachment.

 Regarding the way the statements are transferred between LRS and the

provider, it is not necessary for tutors to fully understand all these details. Some

libraries that manage these activities are still being developed for more technologies

(such as JavaScript).ADL assumes liability for any subsequent changes to be added

as a property of the Statements to be able to perform an effective implementation of

updates.

Validation of Statements in xAPI focuses exclusively on syntax, not on

semantics. The rules apply to the structure and not the significance. Tutors are

responsible for applying some rules to the valid meaning of definitions and activities.

In terms of structures for interactions or evaluations, as well as the extension

of utility, they were borrowed from the SCORM model. These definitions are simple

and offer a familiar utility. However, they can be extended by using extensions to that

type.

xApi does not define how registration is accomplished, LRS is the provider or

a delegated system that can ensure such a mechanism. Four sub-APIs compose xAPI:

- Statement - the basic communication mechanism;

-State – “this is a scratch area for Activity Providers that do not have their

internal storage, or need to persist state across devices” [24];

- Agent Profile - this is an area where arbitrary key/documents are saved that

are related to an Agent;

- Activity Profile - this is an area where arbitrary key/documents are saved

that are related to an Activity.

BUPT

56

Another goal pursued by xAPI is to allow tracking across multiple domains.

For browsers that do not allow this property, there is alternate syntax via a specified

request.

2.5. Statistical concepts used in the assessment of the

proposed e-learning approach

In this work we will use a set of statistical concepts to evaluate our approach.

T-tests (hypothesis tests) are basic tests for the analysis of continuous data.

A t-test allows us to compare the average values of the two sets of notes and

determine if they have major differences between them.

The test takes a sample from each of the two sets and establishes the

statement of the problem by assuming a null hypothesis that the two means of

evaluation are similar. Based on the applicable formulas, certain values are calculated

and compared with the standard values, and the assumed null hypothesis is accepted

or rejected accordingly.

Basically, the test takes a sample from each of the two sets and establishes

the statement of the problem by assuming a null hypothesis. Based on the applicable

formulas, certain standard values are calculated and compared and the assumed null

hypothesis is accepted or rejected accordingly.

If the null hypothesis qualifies to be rejected, it indicates that it is not due to

chance. The t test is just one of many tests used for this purpose. Statisticians must

use additional tests other than the t test to examine several variables.

Calculating a t-test requires three key data values. These include the

difference between the mean values from each data set, the standard deviation, and

the number of data values. The standard deviation is the measure of a spread of data

around the mean [54].

When testing a hypothesis, it must be decided what difference between

averages is needed to reject the null hypothesis. This level of significance can have

different values; the most commonly used are 0.05 and 0.01. A level of 0.05 means

that the average of our sample is significantly different from the average hypothesis

if the chances of observing the average of the sample are less than 5% [55]. Similarly,

it applies to any other level chosen.

In testing the significance of the null hypothesis, the p-value is also useful.

This represents the probability of obtaining the test results at least as well as the

results actually observed, assuming that the null hypothesis is correct [56]. A small p

value means a great statistical significance of the observed situation.

The accuracy is the measure that show us how close we are to the true value.

The accuracy has the formula:
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑁 + 𝑇𝑃 + 𝐹𝑃

In the formula above, we have the following:

- TN – true negative – a correct result in which the condition does not holds;

- FN – false negative – is a result, which wrongly indicates that a condition

does not holds;

- TP – true positive – a correct result in which the condition holds;

BUPT

57

- FP – false positive – an error in classification in which a result incorrectly

indicates the presence of a condition.

The F score is a measure of the accuracy of a test. It is calculated from the

accuracy and recall of the test, where accuracy is the number of correctly identified

positive results divided by the number of all positive results, including those that were

not correctly identified, and the recall is the number of correctly identified positive

results divided by the number of all samples that should be identified as positive.

For an F test, the steps we need to follow are:

1. Affirmation of the null hypothesis and the alternative hypothesis.

2. Calculation of the value F. The value of F is calculated using the formula

F = (SSE1 - SSE2 / m) / SSE2 / n-k,

where SSE = residual sum of squares, m = number of constraints and k = number of

independent variables.

3. Finding the F statistic (critical value for this test). The statistical formula F

is:

F Statistics = group variation means / average of group variations.

4. Supporting or rejecting the null hypothesis.

The F score is often used in machine learning [5]. F-measure is the harmonic

mean of recall and precision. The precision is the fraction of relevant instances among

the retrieved instances, while recall is the fraction of the total amount of relevant

instances that were retrieved.

The questionnaire is another research tool. It is composed of several

questions related to the opinions, preferences, interests of the subjects in precise

circumstances [57]. This is a method of collecting data through the questions asked.

The questionnaire can include both closed and open questions. Closed questions

involve a mandatory choice of one or more of the answer options, and open-ended

questions accept any answer. It should be noted, however, that any closed question

involves an answer type such as I don't know, I don't answer, in order to keep the

respondent's right not to answer.

2.6. Comparison of Learning Objects

In this section, we summarize the main features of all presented learning

objects and we compare them to motivate our research. We chose to compare the

LOs models from several points of view.

The accessibility of LOs from our point of view refers to the possibility of

ensuring their use by anyone, from anywhere, on different types of devices,

facilitating the personalized teaching-learning activity.

Regarding the content of the learning object, it can be static or static

combined with dynamic elements. By static content, we mean a text, an image, a

video that is the same whenever the object is accessed. By dynamic content, we mean

variables or symbols that are instantiated based on randomly generated values, so

that each instance is a different exercise.

BUPT

58

LO Accessibility Static

content

Static

content

combined

with

dynamic

elements

Automatic

feedback

containing

the correct

result

Automatic

grading

Free from

program-

ming skills

IEEE Learning

Objects

Yes Yes No No No Yes

SCORM Yes Yes No Yes Yes No

CISCO Yes Yes No No No No

Learnativity Yes Yes No No No Yes

Netg Yes Yes No No Yes Yes

H5P Yes Yes No No Yes Just web

programing

GLOs by T.

Boyle

Yes Yes No No Yes Yes

GLOs by

Damasevicius

and Stuikys

Yes Yes No No Yes Yes

Moodle

coordinate

question

Yes, in

Moodle

Platform

Yes only

numerical

variables

Yes Yes Yes

Moodle

calculated

question

Yes, in

Moodle

Platform

Yes only

numerical

variables

Yes Yes Yes

AGLO Yes Yes Yes Yes Yes No

Table 2.1. LO comparison

In terms of accessibility, the LO models shown in Table 2.1 are compatible

with different types of devices such as phone, tablet, laptop, or PC.

IEEE learning objects are represented by any content used for learning or

training. The content can be any text, images, audio. They have no feedback, no

evaluation and require no programming knowledge.

SCORM is a set of technical standards that ensures that eLearning content

works properly on an LMS platform. LO content is static, an electronic representation

of media, text, images, audio, web pages or other data that can be presented in a

web client. LOs can have automatic feedback and evaluation. SCORM allows tutors to

distribute their content in a variety of LMSs, but to create this content it is necessary

for the tutor to have a minimum of programming knowledge.

CISCO is a content model that restricts the number of learning components

to seven. The LO content is also static, it can contain sentences or paragraphs,

images, animations, etc. Cisco has a strategy for developing and implementing RLOs,

but the tutor needs to have some basic programming knowledge.

Learnativity is a content model in which raw media elements, such as a single

sentence or paragraph, illustration, animation, and others are grouped up to the

course level. The LOs created with Learnativity contains only static content. How to

combine objects at different levels of granularity follows a few rules, but you do not

need programming skills to meet them.

The term LO used by NETg comprises three parts: a learning objective, an

activity to teach the objective, and an evaluation unit that measures the objective.

BUPT

59

These are abstract types, which can be mapped and aggregated on four levels, up to

the course level. The content can be any text, images, audio. They have automatic

evaluation. LOs do not require programming knowledge to be realized.

H5P is an open source tool focused on creating interactive HTML5 content.

Depending on the type of task, the difficulty of creating it differs, so the process of

creating interactive learning tasks requires minimal programming knowledge.

GLOs coined by Tom Boyle are reutilizable patterns. These patterns are

accessible from any devices. The GLO-Maker are a tool that offers the tutors the

possibility to create concrete LOs base on this patterns, by adding static content. The

student's answer is appreciated with a grade.

The GLOs proposed by Vytautas Štuikys and Robertas Damaševičius are a

model expanded with meta-programming technologies, quite general and accessible.

The templates were regarding only to IT disciplines. The content is static, and the

student response get a mark.

Moodle coordinate questions and Moodle calculated questions are two plugins,

in which the question is made from static content combined with dynamic numerical

variables. The tutor can set an automatic feedback to each question. After evaluating

the student's answer, a grade is returned. No programming knowledge is required to

create such questions. The Moodle platform provides the necessary documentation

for their realization.

By using AGLO, learning objects accessible from any device are obtained. The

content is made of static text combined with variables, these variables make the

statement dynamic. Subject-specific feedback can be made for each AGLO. The

student's answer is automatically compared to the correct answer, the student had

shown this comparison in the feedback section. Also, his answer is automatically given

a grade. In order for a tutor to develop AGLO, he needs programming knowledge.

 Question Answers Variables types Random

values

Moodle

coordinate

question

Embedded

variables and

text

Is defined as

mathematical

expression

numbers, strings

enclosed by

quotes, list of

numbers or

strings

Are

generated in

an interval

given by the

tutor

Moodle calculated

question

Embedded

variables and

text

Is defined as

mathematical

expression

numbers

expressed in

several formats

Are

generated in

an interval

given by the

tutor

AGLO Embedded

variables and

text

Simple answers,

multiple line

answers,

structures

Any basic type,

and dynamic

types created by

composing basic

ones facility

supported by

JavaScript

format and its

functions

Complex
data
structures
generated

from random
values

Table 2. 2. Moodle plugins and AGLO comparison

BUPT

60

Since the closest to the AGLO model are Moodle coordinate questions and

Moodle calculated questions, we have chosen to make a more detailed comparison of

them in order to motivate our research.

Regarding the question sections for both Moodle plugins and AGLOs, this is

done by combining between static text and variables that are replaced with values

during the instantiations.

The answer section for the Moodle plugins are calculated only on the basis of

mathematical expressions. The answer in AGLO is domain specific library generated.

The answer section for AGLOs includes several types of answers depending on the

subject: numbers calculated based on formulas or functions, strings, different types

of objects represented as strings such as linked linear lists, double-linked lists, and

intervals.

In the Moodle coordinate questions, the variables are:

- numbers expressed in several formats;

- strings enclosed by quotes;

- lists of numbers associated to arrays;

- lists of strings associated to arrays;

- algebraic variables - as a set of numbers, defined in the non-random variable

scope.

In the Moodle calculated questions, the variables are only numerical integer

or float.

In AGLOs, the variables are:

- numbers expressed in several formats;

- strings enclosed by quotes;

- lists of numbers associated to arrays;

- lists of characters associated to arrays;

- lists of strings associated to arrays;

- objects: intervals, fractions, list nodes, linear linked lists, double linked lists;

- trees;

- graphs;

- SVG representations.

From this point of view, we can say that AGLO allows a greater variety of

types of variables, thus allowing the approach of a wider area of notions.

2.7. Summary

In this chapter, we presented different definitions of LOs, and existing
standards. Since there are several accepted definitions for learning objects, each
standard has been developed based on a certain direction. The IEEE Standard focused
more on the metadata characteristics of a learning object. SCORM is a standard that
guarantees compatibility with almost any LMS. In the case of the CISCO model, the

emphasis is on learning objectives, each LO having an objective whose achievement
can measure it. Dublin Core Standard has focused on networking educational
resources. The Learnativity Content model and NETg model focused on LO granularity

BUPT

61

and rules on their combination depending on the level of granularity. ALOCoM was
built as a generalization of existing Learnativity, SCORM, and NETg standards. H5P is
a newish tool created to facilitate the development of attractive HTML5 content.

In order for these LOs to be distributed, LMSs are needed. We presented three
of the most used platforms in education, namely Moodle, Ilias, and Blackboard Learn.
 Next, we presented a new generation of LOs, namely GLOs. GLO are

templates that can be reused and filled with content. Regarding the GLOs, there are

two clear directions, one by Tom Boyle and one by Vytautas Štuikys and Robertas
Damaševičius. This category of learning objects also includes the plugins offered by
Moodle, namely Moodle Coordinate Questions and Moodle Calculated Questions.

Because the maximum potential of LOs has not been reached, there have
been several projects to develop this field. Thus further, we the LOs grouped in
sequences, the LOs improved by object-oriented design and CLAVIRE e-Science

platform.
We also present several statistical concepts that we use in chapter seven to

evaluate our approch. Finally, we made a comparison of LOs.
We concluded that AGLO is a model worth developing because it offers

advantages in terms of the notions it can target. It is also a plus that it can provide
automatic feedback and automatic grading of the student's response.

BUPT

62

3. THE STRATEGY FOR MEETING THE
OBJECTIVES

The field of e-learning and LOs is a wide one. There are several accepted
models, each of them aiming at one specific direction, namely pedagogical, technical,
or economic. Following the study on LOs, we identified that they are difficult to reuse
and difficult to adapt to each discipline. Also, the content of the LOs is static, the
student has the same exercise at his disposal each time he accesses the LO.

Consequently, we will study the possibility of using the AGLO model for different STEM
disciplines. We will especially consider making templates based on random numbers
that give the student the opportunity to have a different exercise at each instance,
automatic response assessment and feedback.

Regarding the realization of this thesis, we divided the activity carried out into
five main tasks:

1. Realization of an abstraction of the AGLO templets;

2. Model design for AGLOs;
3. Development and implementation of the model for STEM disciplines;
4. Development of domain-specific JavaScript libraries;

5. Evaluation of the model by applying the AGLOs in the learning-evaluation
process in the classroom.

Regarding the realization of an abstraction of the AGLO templates, we

consider that it is necessary to create an algorithm. It must include well-defined and
structured steps. The algorithm must be easy to understand. Its application must be
able to be done by any tutor who wants to make AGLO templates. This task will help
us to fulfil the second thesis objective, namely to propose a step-by-step methodology
based on abstractions to create reusable AGLO templates.

We will use the already existing AGLO model. The templates will be written in
a XML form, and the root element will be the action element. Each template will be

organized into six sections, namely name, scenario, theory, question, answer, and
feedback.

The development and implementation of the model involve the creation of

AGLO templates for different notions. The targeted notions will be chosen from several

STEM disciplines, namely Mathematics, Data Structures and Algorithms, Algorithm

Analysis and Design, and Operating Systems. For the Mathematics, notions we will

focus our attention on fractions, operations with intervals, equations, and inequations

involving absolute values, and using abbreviated calculation formulas. For the Data

Structures and Algorithms discipline, we will focus our attention on searching

algorithms, namely linear search, linear search with sentinel, binary search and search

by interpolation, sorting algorithms, namely insertion sort, selection sort, bubble sort,

shell sort, and quick sort, and linked lists, namely linear linked lists and double linked

lists. For the Algorithm Analysis and Design discipline, we will focus our attention on

some basic notions about trees and graphs. For the Operating Systems discipline, we

will focus our attention on basic Linux commands. We will analyze the chosen notions.

We will identify the learning objectives. We will create examples that target the

objectives. We will abstract the examples in an AGLO template. Through this task, we

BUPT

63

will be able to reach the fulfillment of the third objective of the thesis, namely to

abstract multiple learning concepts from STEM disciplines.

In the development of domain-specific JavaScript libraries, it is necessary to

model the targeted notions. These libraries will contain the builders of abstract objects

that will be identified with the notions, as well as functions and methods for working

with them. By reaching these tasks, our scientific research will reach a TRL3 level

[58]. This task will help us to fulfil the fourth thesis objective, namely to develop

domain-specific libraries modeling concepts to assist the instantiation of AGLOs.

Applying AGLOs in the classroom learning assessment process will allow us to

evaluate the model. By applying specific statistical metrics, we will be able to measure

the accuracy of the model. Applying our model in the classroom, we will be able to

consider it will reach a TRL4 level. Through this task, we will be able to reach the

fulfillment of the fifth objective of the thesis, namely to validate our AGLO approach

in practice, on groups of students showing their effectiveness.

The thesis objectives The thesis chapters

Objective O1 is to make a bibliographic study of LOs and

a comparative analysis of the studied models

Chapter 2

Objective O2 is to propose a step-by-step methodology
based on abstractions to create reusable AGLO
templates.

Chapter 4

Objective O3 is to abstract multiple learning concepts

from STEM disciplines

Chapters 5 and 6

Objective O4 is to develop domain-specific libraries
modeling concepts to assist the instantiation of AGLOs

Chapter 7

Objective O5 is to validate our AGLO approach in practice,
on groups of students showing their effectiveness

Chapter 8

Table 3. 1. The thesis objective associated with the thesis chapters

In table 3.1, we present the associations between the thesis objectives and

the thesis chapters. Each chapter targets a proposed objective.
Accomplishing the proposed tasks will lead us to obtain the thesis objectives.

BUPT

64

4. THE AUTO-GENERATIVE LEARNING OBJECT
MODEL

The chapter presents the abstraction process that we applied. The steps of the

abstraction algorithm and their application in creating scenarios for AGLO for STEM

disciplines are presented.

The structure of the model and the mathematical definition are presented.

Semantics is also explained using a concrete example.

4.1. AGLO creation by StepWay Abstractization and

generalization

In this chapter we will present the abstraction algorithm for obtaining AGLOs

and we will present the application of this algorithm in different situations.

4.1.1. The abstraction algorithm

The process of making these AGLOs includes several stages:

Step 1: The learning objective identification.

Step 2: The concrete exercise identification.

Step 3: The variables identification.

Step 4: Variables type and range identification.

Step 5: Primary input data identification.

Step 6: Building a computational scenario.

Step 7: The domain specific library objects and methods identification.

Step 8: Setting up the difficulty level.

Step 9: Necessary intermediate variables.

Step 10: Answer variables and their computation formula identification.

Step 11: Testing the object.

In the first step, the tutor extracts specific competencies and learning

objectives that the use of AGLOs can accomplish.

In the second step, the tutor creates an example of an exercise or problem,

such as the ones he would teach in class, which would correspond to the previously

identified goal.

Then follows the generalization of the chosen exercise. In performing this

step, consideration is given to determining all the variables needed to create an

exercise that meets the established learning objective.

For each variable its type is established, these types can be integer, float,

character, string, or objects of fraction type, interval, tree, SVG. Where appropriate,

the interval in which it can take variable values is also written, this being of the form

[minimum, maximum].

BUPT

65

In the next step, the input data are identified. These ones will be randomly

generated at the chosen intervals. Functions such as random_int(), random_float(),

random_array(), random_linked_list() are used for random generation. The

generalization also includes determining how we can change certain variables types

in the exercise.

After that, we make sketches about making templates. These templates must

be designed so that they can be implemented as existing exercises meet the desired

learning objective. When constructing a calculation scenario we also consider the

mute in which the dependencies between the variables are created.

In the next stage, we identify the required functions and methods necessary

and we decide what domain-specific JavaScript libraries it is needed.

In the next step, we set up the difficulty level by modifying the variables

interval.

Next, we will identify how to calculate intermediate variables. Not all exercises

will have such variables.

In the next step, we will determine how we will calculate the answer. There

are cases in which it will be calculated based on formulas, sometimes based on

methods, and sometimes directly in the scenario.

The next step includes the implementation of the template in an XML file and

testing the obtained object. In this stage, the tutor tests the template made by several

snapshots. It follows the degree of difficulty of calculating the answer and the inclusion

between variants of special cases, if they exist. Each template is refined, as far as the

design allows.

4.1.2. The abstraction process applied on an example

To exemplify the way in which abstraction process is applied, we have chosen as

a model an AGLO regarding the double-linked linear lists. Next, we will present the

abstraction process step by steps.

Step 1: We chose the following as a learning objective: the student can recognize

the successor or predecessor of a node in a double-linked linear list.

Step 2: To accomplish this goal in class we would present to the student a double-

linked linear list from which we will choose a node and ask him to identify his

predecessor or successor, see Figure 4.1.

Step 3: In this stage we have identified the necessary variables, namely in an

integer that will represent the number of nodes in the list, a list with n nodes, an

integer and that will represent the order of a node in the list, an option and the answer

desired.

Step 4: in this situation, we have the following variables:

- n, the number of nodes in the linear list;

- an list object;

- a graphical representation of the list;

- a number, i, what will identify the chosen node;

- a string representation of the chosen node;

- an option, allowing the choice of a successor or predecessor;

- a node object that represents the desired answer;

- a string representation of the answer.

BUPT

66

Regarding the intervals of the variables, we have n, an integer, between 3 and

10, and i, an integer, between 1 and n-2 and an option, which can have the values 0

or 1.

Step 5: We identify as input data the number of nodes, the double-linked linear

list, the identification number of the chosen node and the option. Thus, the number

of nodes, the identification number of the chosen node and the option will be

generated using the random_integer() function, and the list is an object whose values

will be generated randomly. We will choose the node information to be of type integer

or char.

Step 6: We made a sketch about this template, see Figure 4.1. In this scenario,

we realize that both the creation of the list and the choice of the node depend on the

number of the integer n. In order for everything to be as clear as possible, the

graphical representation of the list is necessary.

Step 7: Given what we identified in the previous step, we will need the constructor

of a linear list object and specific methods to represent graphic a linear list object.

Fig.4.1. Sketch for making an AGLO

Step 8: Regarding the level of difficulty of the exercise, we consider the chosen

intervals appropriate.

Step 9: We do not consider that in this case we need other intermediate variables.

Step 10: Regarding the answer, we have first the node type object and then its

representation in the form of a string.

BUPT

67

Step 11: After testing the AGLO, we realized that the number of nodes should not

exceed seven due to the space occupied by the graphical representation. Thus we

modified the interval in which the number of nodes is generated from [3; 10] to [3;

7].

4.1.3. Abstractions for different concepts from STEM

disciplines

Next, we will present from each discipline the way in which we abstracted an

AGLO.

For Arithmetic, regarding the work with fractions we will show the steps

through which we realized the AGLOs that aim at the addition of fractions.

Fig.4.2. Sketch for making the fractions addition AGLOs

BUPT

68

Step 1: The learning objective is the student to know how to add two fractions.

Step 2: Regarding the addition of fractions, we identified three types of

possible exercises, namely: the addition of ordinary fractions with the same

denominator, the addition of ordinary fractions with different denominators and the

addition of decimal fractions. Thus, we will make three different types of templates

see Figure 4.2.

For the addition of the ordinary fractions that have the same denominator, we

further performed the following:

Step 3: The identified variables are two fractions for which we need two

counters, a common denominator, and the fraction that represents the sum.

Step 4: For numerators we chose the interval [1; 50], and for the denominator

the interval [20; 90].

Step 5: As input data, we identified the two counters and the common

denominator.

Step 6: Regarding the addition of fractions that have the same denominator,

add the two counters, and the denominator is the common one.

Step 7: In this case, we need a single fraction object and the method of

determining the common divisor to turn the fraction into an irreducible one.

Step 8: Regarding the level of difficulty, we considered that the intervals

chosen in step 4 are good.

Step 9: The required intermediate variable is the fraction object that

represents the sum of the two initial fractions.

Step 10: To calculate the answer variable we chose to simplify the sum

fraction with the common divisor of its denominator and numerator.

Step 11: Testing the object showed us that the chosen scenario meets our

goal.

For the addition of the ordinary fractions that have different denominators,

we further performed the following:

Step 3: The identified variables are two fractions for which we need two

counters, and tow denominators, and the fraction that represents the sum.

Step 4: For numerators we chose the interval [1; 20], and for the denominator

the interval [2; 20].

Step 5: As input data, we identified the two counters and the tow

denominators.

Step 6: Regarding the addition of fractions that have different denominators,

we considered it necessary to generate two fraction type objects and to apply the sum

method.

Step 7: In this case, we need three fractions object, the method to add and

the method of determining the common divisor to turn the fraction into an irreducible

one.

Step 8: Regarding the level of difficulty, we considered that the intervals

chosen in step 4 are good.

Step 9: The required intermediate variable is the fraction objects.

Step 10: To calculate the answer variable we chose to simplify the sum

fraction with the common divisor of its denominator and numerator.

BUPT

69

Step 11: Testing the object showed us that the chosen scenario meets our

goal.

For the addition of the ordinary fractions that have different denominators,

we further performed the following:

Step 3: The identified variables are two fractions for each of them we need

the integer part, the simple decimal part and the periodic decimal part, as well as the

fraction that represents the sum.

Step 4: We have chosen for the variables to be randomly generated the

following restrictions:

- the whole part will be an integer with one digit;

- the non-periodic decimal part and the periodic decimal part will be generated

in the interval [1; 15].

Step 5: In this example the input data are the three randomly generated

numbers that form the two decimal fractions.

Step 6: Regarding the addition of decimal fractions we generated two fraction

type objects and applied the sum method.

Step 7: In this case, we need three fraction type objects, the method to add

and the method to determine the common divisor to turn the fraction into an

irreducible one.

Step 8: Regarding the level of difficulty, we considered that it is enough that

the whole part and the periodic decimal part have a single digit.

Step 9: The required intermediate variables are the objects of the fraction.

Step 10: To calculate the answer variable we need to simplify the sum fraction

with the common divisor of its denominator and numerator.

Step 11: Following the implementations performed, we considered the

changes:

- the non-periodic decimal part will be generated in the interval [6; 14]

- the periodic decimal part will have a single digit between 1 and 5.

We made these changes because it happens in some generations that the

periodic decimal part is equal to the non-periodic decimal part, which was not

mathematically correct. In addition, if the periodic decimal part has two digits, large

numbers are obtained, and we want the emphasis to fall on practicing and not on

having a very high difficulty of the exercise.

Regarding the mathematics for the eighth grade, we chose to present the way

in which we realized the AGLO for solving the equations involving absolute value.

Step 1: The chosen learning objective is for the student to know how to solve

linear inequations involving absolute values.

Step 2: For this the student must know how to solve an inequation of form

|𝑎𝑥 + 𝑏| ≤ 𝑐.

Step 3: In this case we need the terms a, b, c, and the interval that represents

the solution.

Step 4: For the variable a, since it will have the role of divisor, we will choose

only values that allow obtaining finite decimal numbers, namely 2, 4, 5, 8, 10, 20.

The variable b will have values in the range [-50,+50]. The variable c can have only

positive values, so it will be in the range [1,200]. The variable that will represent the

solution will be of type randomInterval object.

BUPT

70

Step 5: The variables a, b and c represent the input data, and they will be

generated randomly in the chosen intervals.

Step 6: Based on the generated variables, the solution of the equation will be

calculated.

Step 7: For the response variable we will use the object we have defined in

Interval.js domain specific library.

Step 8: Regarding the level of difficulty, the restriction applied for the variable

a is sufficient.

Step 9: As necessary intermediate variables we will need the set consisting of

the values chosen for the variable a and an index that will specify the value chosen

from the set.

Step 10: The variable answer will be calculated according to the formula, the

left bound will be
−𝑐−𝑏

𝑎
, and the right bound will be

𝑐−𝑏

𝑎
 .

Step 11: After we implemented the object and made some snapshots we

considered that it corresponds to the intended objective.

Regarding Data Structures and Algorithms disciplines, we chose to present

the way we applied the abstraction proces in the realisation of the template for the

steps of the linear search algorithm.

Step 1: The intended learning objective is for the student to know the steps

of the linear search algorithm.

Step 2: In this case in class the student would have received an array and a

value to look for it, item by item. The searched value may or may not exist in the

table.

Step 3: To make this scenario we need a table, the number of elements in the

table, a search value and a variable to keep the steps of the algorithm.

Step 4: The number of elements in the table, the elements of the table and

the searched value will be integers. The steps of the algorithm could be stored in a

string variable. The number of elements will be chosen in the range [3; 10], the values

of the elements in the table and the element to be searched in the range [1; 300].

Step 5: The number of elements in the table, the elements of the table and

the searched value will represent the input data for this AGLO.

Step 6: To remember all the steps of the algorithm in a string, we chose to

make a method for the linear_search object.

Step 7: So we need a linear_serch object and the getSteps () method.

Step 8: Regarding the difficulty of the exercise, I chose that the value to be

searched should be part of the elements of the table.

Step 9: Because we have chosen that the value to be searched is part of the

elements of the table, it will not be generated from a range but will be chosen

randomly from the elements of the table. Thus we will need a variable to indicate its

position in the table. The linear_search object variable can also be considered as an

auxiliary variable.

Step 10: The answer will be a string returned by the getSteps () method.

Step 11: After testing the object, we modified the interval in which the number

of elements in the table is chosen to [6; 11]. We made this change because in the

initial version few steps were generated and thus the algorithm may not be well

understood.

BUPT

71

For Algorithm Analysis and Designed Discipline, we will show the steps

through which we realized the AGLO that aim at the recognition of the nodes on each

level of a tree.

Step 1: The intended learning objective is for the student to know how to

recognize the nodes on each level of a tree.

Step 2: Given a randomly generated tree, the nodes on each level are

identified and write in order.

Step 3: We need a randomly generated tree, the number of nodes and the

maximum degree of a node and the response variable.

Step 4: The number of nodes will be an integer between 6 and 10. The

maximum degree of a node will be an integer in the range [2; 4].

Step 5: The number of nodes and the maximum degree of a node are required

for random generation of a tree.

Step 6: We considered that an easy way to represent the fulfillment of the

requirement is to write the nodes on each level on a line.

Step 7: To create this scenario you need a tree object and a method to return

the desired answer.

Step 8: Regarding the level of difficulty, we considered that the restrictions

from step 4 are sufficient.

Step 9: The required intermediate variable is the representation of the tree in

the SVG form. We consider that the representation of the tree is very important in

understanding the notion.

Step 10: The response will be generated by the implemented method

tree_levels().

Step 11: After testing the object, we consider that it meets the intended

learning objective.

Regarding the Operating Systems discipline, we chose to present the way in

which we realized the AGLOs for the commands to create a hierarchy of directories.

Step 1: The learning objective we pursue is for the student to create a

hierarchy of principals. In Linux this can be done in two ways with or without the -p

option. In this situation, it is necessary to create two templates, one for creating a

folder hierarchy using the -p option and one for creating a folder hierarchy without

the -p option. Thus, below we will present two scenarios.

Step 2: In the first case, a folder hierarchy is given in the form of a tree:

alpha

* beta

**gamma

***delta

***omega

This is created using the -p option as follows:

mkdir -p alpha / beta / gamma / delta /

mkdir -p alpha / beta / gamma / omega /

Step 3: In this case we need a hierarchy of folders. Because it is generated

like a tree, it needs the number of nodes, ie the number of folders in the hierarchy,

and the maximum degree of each node, ie the maximum number of subfolders that a

folder can have.

BUPT

72

Step 4: The number of folders will be randomly generated in the range [5.8],

and the maximum number of subfolders will be 2 or 3.

Step 5: The input data will be the two for which we set the generation intervals

in the previous step.

Step 6: In this case, based on the input data, a folder tree will be randomly

generated.

Step 7: We will need an object of type FolderTree and a method to return the

response as a string toMkdirPathsString ().

Step 8: We consider that the level of difficulty obtained by the restrictions

imposed on the previous steps is sufficient.

Step 9: As an intermediate variable we need the representation of the folder

hierarchy as a string.

Step 10: The answer will be returned by the method performed.

Step 11: After testing the object, we did not make any changes, the objective

being fulfilled.

Step 2: In the second case a hierarchy of folders in the form of a tree is given:

alpha

* beta

**delta

*gamma

**omega

This is created without the -p option as follows:

mkdir alpha

cd alpha

mkdir beta

cd beta

mkdir delta

cd..

mkdir gamma

cd gamma

mkdir omega

cd..

cd..

Step 3: And in this case we need a hierarchy of folders, a number of folders

and the maximum number of subfolders that a folder can have.

Step 4: The number of folders will be randomly generated in the range [5.8],

and the maximum number of subfolders will be 2 or 3.

Step 5: The input data will be the two variables presented in the previous

step.

Step 6: Based on the input data, a folder tree will be randomly generated.

Step 7: We will need an object of type FolderTree and a method to return the

response as a string toMkdirCdPathsString ().

Step 8: We consider that the level of difficulty obtained by the restrictions

imposed on the previous steps is sufficient.

Step 9: As an intermediate variable we need the representation of the folder

hierarchy as a string.

Step 10: The answer will be returned by the specific method performed.

BUPT

73

Step 11: After testing the object, we consider that it meets the intended

learning objective.

Fig.4.3. Sketch for making the creation of a hierarchy of directories AGLOs

4.2. Mathematical Definition and Structure

Next, we will define the mathematical model of AGLO instantiated with

random numbers. All functions and operators from the JavaScript language standard

[59] are indicated by 𝐹𝐽𝑆.

BUPT

74

Any function 𝑓𝑖𝜖𝐹𝐽𝑆 has an argument of form 𝑥 = 〈𝑥1, 𝑥2, … , 𝑥𝑛〉. The value of n

represents the number of arguments for the x vector.

The 𝑓𝑖 functions can have as argument values:

- integers located within a certain range;
- doubles (floating-point values) also located within a certain range;
- strings as vectors of character;
- arrays;

- objects.
The expression construction function 𝑒𝑖 is defined as:

𝑒𝑖(𝑥) = (𝑓1°𝑓2° … °𝑓𝑘)(𝑥),

where x can be a constant value or a randomly generated value.

We define AGLO as a quintuple:

𝐴𝑔 = 〈𝑆, 𝑇, 𝑄, 𝐴, 𝐹〉,

where each component is a section [60].

The scenario section S is a vector of composed functions:

𝑆 = 〈𝑒1(𝑥), … , 𝑒𝑛𝑠
(𝑥)〉.

The theory section T is made from constant values

𝑇 = 〈𝑡1, 𝑡2, … , 𝑡𝑛𝑡
〉, 𝑡𝑖 ∈ [0,255] ∩ ℤ.

The question sections Q, the answer section A, and the feedback section F are

vectors of random generated value and constant values.

Structurally AGLO model has six sections: name, scenario, theory, question,

answer, feedback [60].

The name section is the first XML element and it is reserved for the name of

AGLO. This section is made up of a single sentence that describes the competency

(framework objective) covered by that exercise.

The scenario section is the section where the variables are defined and

initialized. This section is divided into two. The first part consists of a text - static text

- in which the mode of operation of the LO is presented. The second part consists of

declaring and initializing the symbols necessary to solve the problem presented in the

static text. Symbols can be initialized based on random numbers or based on ones

already initialized through some specific functions.

The theory section is made by static text - a text that does not change at each

instance. In this section, the student can read a brief presentation of the theory

needed to solve the next problem.

The question section is the section where a task is placed. The statement is

made of static text blended with randomly instantiated variables.

The answer section is where the input is read from the student and is assessed

automatically.

The feedback section is composed out of static text, which has the value to

explain the student the essence of the exercise if it is necessary. For some LO

feedback, it also contains some variables needed to improve the learning process.

Moreover, at the end the student's answer is compared on components with the

correct computed answer.

BUPT

75

Fig.4.4 The Grammar

The model is defined using the EBNF meta-language [60]. The grammar thus

obtained is represented in Figure 4.4.

In all the sections by ID, we denote the identifier token.

In the scenario section by CT, we denote any constant or literal: integer, float,

character, or string. In the scenario, are defined symbols that act as instantiation

parameters for the AGLO to be referenced in the next sections. Such a symbol has

several properties as a name, a type, and an initialization expression based on random

numbers.

The expressions are made up of functions and several operators unary or

binary. To simplify implementation and increase portability, we rely on JavaScript

expressions [60] that can be evaluated with the JavaScript function "eval". These

expressions are the randomly controlled instantaneous key of the number-based

object. Expressions can call native JavaScript functions, as well as user-defined

functions, gathered in domain-specific libraries.

The theory section contains only static text about the learned concept in HTML

format.

The question, answers, and feedbacks sections contain a mix of static data

and dynamic values referring to the previously computed symbol values. The semantic

of these sections is to create a dynamic content to be presented to the learner.

Formalisms are also present, like:

BUPT

76

- correctness - because we need to know which is the correct answer;
- feedbacks answer identifier list - because feedbacks are related to answers

and when there are multiple answers only the related feedback is showed to the
learner.

4.3. Semantics

In this subchapter, we describe in detail an AGLO model example. The chosen

example refers to the rise an ordinary or decimal fraction to a power.

The root XML element is the action element. The first XML element is reserved

for the analyzed AGLO name that is displayed to the learner for location and selection

purposes. In this case Raising a fraction to a power.

The second XML element is the scenario element that contains a text

description of AGLO and a set of symbols. The description is expressed in natural

language and contains the stages of the exercise. An ordinary fraction and a decimal

fraction are randomly generated; a number that will represent the power and an

option depending on which one will decide which fraction will rise to power. The power

fraction is calculated and its counter and denominator are displayed.

Then several symbols are defined. The first two symbols, nr and, num,

represent the denominator and the counter of the ordinary fraction. The next two

symbols, pi and, pz, represent the whole and the decimal part of the simple periodic

decimal fraction. The fifth symbol, putere, represents the exponent of power; the

sixth symbol, optiune, represents the option depending on which one will decide which

fraction will represent the basis of power. The first six symbols are generated

randomly, and these will be used to generate the next symbols.

The seventh and eighth symbols, f1 and f2, are the two generated fractions.

Each symbol is initialized by calling the specific constructor.

The ninth and tenth symbols, var1 and var2, represent the writing of these

fractions and will be used later in the question. The eleventh symbol, intrebare, is

what will appear in the question section. And the twelfth symbol, raspuns, is what the

answer should contain and will also be used in the feedback section.

In the following, we will discuss the XML elements depicted in Figure 4.5. The

theory element consists only of static text. It presents to the student the notion to be

applied in this exercise. The power of a number is obtained by multiplying the number

with itself by as many times equal to the exponent.

The following element presents the question to the student. The questions

section will refer to the generated fractions and the power exponent. The reference is

implemented by using qualified <value> XML elements with name attributes. The

semantics of these elements is that each element will be replaced with their

corresponding value, so the content of e-learning will be dynamic. Each running

session will have a different fraction and a different power.

The <answers> XML element is composed of several individual <answer>

XML elements. Each <answer> element will be a mixture of static and dynamic values.

In the current AGLO example, we used only one answer which is the correct one and

in which there is only one dynamic variable. The calculated values and the completed

values are compared and a result is issued which is transmitted to the learner.

BUPT

77

Fig.4.5. AGLO Name and Scenario

Fig.4.6. AGLO Theory and Question

BUPT

78

The feedback section consists of several dynamic content elements, but also

static statements. In our AGLO example, we help the student by providing repetition

of the notion that was to be applied and the correct answer that was to be given.

Fig.4.7. AGLO Answer and Feedback

4.4. Summary

In order to achieve an AGLO that aims at a certain learning objective, it is
necessary to follow a few steps. In this chapter, we have presented the abstraction
algorithm to perform AGLOs that we created. Next, we presented how we applied this
algorithm for examples from each discipline Middle School Arithmetic, Data Structures
and Algorithms, and Operating Systems.

We further, presented the mathematical definition and structure of the AGLO

model. We presented and described the six sections of the model, namely name,
scenario, theory, question, answer, feedback. Next, we describe in detail the AGLO

semantics applied to a concrete example from Middle School Arithmetic.

BUPT

79

5. MODELS FOR MIDDLE SCHOOL ARITHMETIC

As for the Arithmetic, we chose to approach the subject of fractions [5], of

intervals and of abbreviated calculation formulas. We chose these chapters because

it includes an important part of elementary notions that can be well-mastered by

students if they repeatedly apply the theory necessary in exercises. The exercises

resulting from the instance of the learning objects proposed by us follow the specific

competencies present in the current school curriculum.

5.1. Fractions AGLOs

Regarding the topic of fractions, we have implemented twenty-one exercises

that target classification, comparison, amplification, and simplification, all operations,

transformations from decimal fractions into ordinary irreducible fractions, as well as

the introduction of the whole in a fraction and the removal of the wholes from

fractions.

To achieve these goals we have developed the library module “fractions.js”.

In this module, fractions are modeled as JS classes, constructors, as well as methods

necessary for the operations with fractions.

An ordinary fraction is initialized by the constructor function

randomFraction2(), and a periodical mixed fraction is initialized by the constructor

function randomFraction3(). Both constructors return a fraction object.

5.1.1. Fractions Classification AGLO

The first AGLO approaches the fractions classification. From the pedagogical

point of view, this exercise aims to familiarize the student with basic mathematical

notions as a proper fraction and improper fraction. The name section contains a text

which includes the idea of exercise “The fractions classification”.

The second section is captured in Figure 5.1. This section contains two parts.

The first part consists of a text that describes in natural language what has to be done

in this exercise.

- a fraction is generated randomly;
- the denominator is compared to the counter;
- the following variants are obtained:

 if the counter is greater than the denominator, the fraction is proper;
 if the counter and denominator are equal, then the fraction is equal to

the unit;
 if the counter is lower than the denominator, the fraction is improper.

The second part includes the declaration and the initialization of all variables

that are needed to solve the exercise. As shown in the previous figure, the counter

and the denominator are initialized with two randomly generated numbers between 1

and 20. In this way, a random fraction is created and kept in the f symbol.

BUPT

80

The raspuns answer symbol retains the correct answer that is returned by the

classify() function. This symbol value will be compared to the student's input.

Fig.5.1. The Scenario for the fractions classification AGLO

In the theory section, it is presented for the student the part of the theory

that is applied in the exercise, namely, the classification of fractions in proper, equal

to the unit, or improper. This part is constituted only by static text.

Fig.5.2. An instance of the fractions classification exercise

BUPT

81

The following section contains the actual question, in which the student

receives the fraction to be classified. After the instantiation, the symbols are replaced

with their values and the student is given a new exercise. In the example in Figure

5.2 the fraction to be classified is 15/6.

The last section is the feedback. For this exercise, feedback is made only by

a text, which summarizes the idea of what the student should do, namely, he had to

determine if a fraction is proper, equal to the unit, or improper.

5.1.2. Common Divisor AGLO

The second exercise refers to the notion of a common divisor. Although it is a

notion that seems to be unrelated to the factions, it is important to know it. This

notion will be used instinctively by the student to solve most of the exercises that

need computation of the largest common divisor of the counter and denominator. It

is the number by which each fraction is simplified to reach the irreducible form.

The name section is made up of the sentence in which the essence of the

AGLO is given, with how much you can simplify a fraction to become an irreducible

one.

Fig.5.3. The scenario for the common divisor AGLO

The scenario includes two parts, one in which the workflow of the exercise is

explained applied on an example and one in which the symbols are declared and

initialized. Two numbers are randomly generated that will represent the numerator

and denominator of the fraction. We chose to generate these numbers in the range

[1; 20]. The next symbol is a fractional object formed using the two generated

numbers. As can be seen in Figure 5.3, the common divisor is returned by a function,

since its value will also be needed in subsequent exercises.

The theory section contains a text that explains that a fraction becomes

irreducible if it is simplified with the largest common divisor of the counter and

denominator.

The question section includes the interrogation: With how much you can

simplify the fraction <value name = "nr" /> / <value name = "num" /> to become

an irreducible fraction? As one can notice, the static text is embedded with the

symbols to be replaced during instantiation with the random values assigned to them

BUPT

82

in the scenario section. At each instantiation the two symbols nr and num are replaced

with randomly generated numbers in the scenario.

The expected answer to this exercise is simple, a number. It represents the

number that is the bigger common divisor of the counter and the denominator.

Fig.5.4. An instance of the fractions classification exercise

The feedback section contains a sentence in which the essence of the exercise

is accentuated. The student is explained that he had to calculate the bigger common

divisor of the count and the denominator. We chose this feedback to emphasize the

importance of knowing this mathematical notion because of its importance in the

following exercises.

5.1.3. Amplification and Simplification of a Fraction

AGLO

The next two exercises target the following specific skill: Calculation of a

fraction equivalent to a given fraction, by amplification or simplification.

Thus the third exercise has the name: Amplification of a fraction.

The scenario section describes how exercise works. It randomly generates a

fraction and a number between 1 and 100. It returns a fraction obtained by amplifying

the fraction with the previously generated number.

The symbols used in this exercise are:

- nr - the counter of the fraction;
- num - the denominator of the fraction;
- amplific - the number with which the fraction will be amplified;

- f - the actual fraction;

BUPT

83

- raspuns - which is the answer, namely the amplified fraction.
The first three symbols are randomly generated and based on them the other

symbols are initialized.

In the theory section, we defined the mathematical notion of fraction

amplifying. To amplify a fraction means to multiply the numerator and the

denominator by a given number.

The question section contains an interactive question. The student receives a

fraction and a number to amplify this fraction. The number with which it is amplified

is limited from 2 to 10 because the idea of amplifying, not having complicated

calculations, is important.

Fig.5.5. An instance of the fractions amplification exercise

The answer is the amplified fraction. Figure 5.5 shows an example in which

the answer is 30/200, because the fraction 3/20 had to be amplified by 10.

The last section is the feedback. As can be seen in Figure 5.5 in the feedback

section, regardless of whether the student's answer is correct or not, the statement

reminds the student that he had to multiply the denominator and the numerator by

the same number.

In the next exercise, we approached the notion of simplifying fractions. The

AGLO name is given by the purpose of the exercise, namely: Simplification of an

ordinary fraction.

In the scenario section, we describe how this exercise was thought. A random

fraction is randomly generated. It calculates the largest common divisor of the count

and denominator. It returns the irreducible fraction obtained from the simplification.

If the generated fraction was irreducible then the initial fraction is returned.

To implement this scenario, the following symbols are required:

BUPT

84

- the counter and the denominator of the fraction which are randomly

generated;

- the common divisor that is computed using the function divisor();

- the counter and denominator of the simplified fraction.

In this exercise the randomly generated values are the counter and the

denominator, the other symbol values are calculated based on them.

In the theory section, we have presented both what an irreducible fraction

means - whose denominator and counter are prime numbers among themselves - and

what it means to simplify a fraction - to divide both the counter and the denominator

by the same given number.

Fig.5.6. The question section for the simplification of an ordinary fraction AGLO

To create a question that fits the scenario, the statement is made from both

static and dynamic text, as can be seen in Figure 5.6. The dynamic part consists of

the counter and the denominator of the fraction.

Fig.5.7. An instance of the fractions simplification AGLO with a wrong answer

BUPT

85

The answer contains a simplified fraction. This is obtained by dividing the

denominator and the numerator by their greatest common divisor.

The feedback contains the idea of the exercise, that is, it is desired to bring

the fraction to the irreducible form, and the number with which the fraction must be

simplified to reach the desired result. If the student gives a wrong answer, feedback

will help him correct his mistake.

An example of the wrong answer is shown in Figure 5.7. The student receives

not the correct answer without explanations, but the instructions on what to do.

5.1.4. Comparing Fractions AGLOs

The fifth and sixth AGLO relates to the comparison of fractions. This is also a

basic mathematical notion that should be correctly implemented in the mathematical

vocabulary of students.

The Comparison of Two Ordinary Fractions AGLO

The fifth AGLO name section is the Comparison of two ordinary fractions.

The scenario section also includes a part consisting of a static text in which

the exercise is presented. Two fractions are randomly generated. The two factions are

compared and the sign that should be put between them is returned as follows:

- if the first one is bigger, the ">" sign is returned,
- if equal, returns the "=" sign is returned,
- if the first one is lower, the "<" sign is returned.

Fig.5.8.The scenario for comparing ordinary fractions AGLO

As can be seen in this exercise, four values, two counters, and two

denominators are randomly generated, as two fractions are needed to make a

comparison. Each random number is in the range of 10 to 30.

BUPT

86

 The method comparare() was created so it can be used for ordinary fractions

as well as for decimal fractions. The fraction from the current object is compared with

the fraction that receives it as a parameter. The rezultat symbol is the method output

and it contains one of the signs representing the answer.

 For this object, the feedback section is made only from the static text. It

underlines the importance of knowing the theoretical formula.

The Comparison of Two Periodical Mixed Fractions AGLO

The sixth AGLO name section is a Comparison of two periodical mixed

fractions.

The scenario section includes a part consisting of a static text in which the

exercise is presented and the initialization of the necessary symbols. Two periodical

mixed fractions are randomly generated.

Fig.5.9. The scenario for comparing periodical fractions AGLO

In fact, in the background, the method comparare() transforms the periodic

decimal fractions into ordinary fractions, but the student uses for comparison a more

visual method. The whole parts of the two decimal fractions are compared first if they

are different, is bigger the fraction with the whole part bigger. If the whole parts are

equal, the student compares digit by digit the decimal parts. The comparison stops at

the first pair of distinct numbers because at a periodic fraction the fractional part has

an infinite number of digits. Thus, the bigger fraction is whose decimal is bigger.

In the scenario, it is explained how the object works, and in the theory section,

it is explained to the student how he can compare the fractions by visual method,

without making calculations or transformations.

BUPT

87

As can be seen in this exercise, the whole parts are equal, so the student must

apply the complete algorithm. We chose to put the whole equal because otherwise

the problem is reduced to comparing two integers.

The question asks the student to compare the two randomly generated

fractions.

The feedback section underlines the importance of knowing how to compare

the decimal fractions without making calculations or transformations.

5.1.5. Fraction Addition AGLOs

The following objects deal with fractional operations. The seventh AGLO refers

to the addition of the fractions having the same denominator. This is a very simple

exercise, but very important from a pedagogical point of view. It is very important to

implement this notion in the student's image: two fractions can only be added if they

have the same denominator.

The Addition of Two Fractions with the Same Denominator AGLO

The first part of the scenario explains in natural language how to solve the

addition of fractions. The addition is further exemplified by a static example. Two

ordinary fractions are randomly generated that have the same denominator 7/15 and

2/15. Calculate the numerator, (7+2)/15. Simplify the result by obtaining an

irreducible fraction, 3/5.

Fig.5.10. The scenario section for adding two fractions with common denominator

In the scenario section three numbers are randomly generated, two counts,

and the common denominator. The fraction that is initialized based on these values

is the sum of the fractions. It has the denominator as the common denominator and

as the count the sum of the two counts. The answer is the irreducible form of this

fraction. To obtain this form, the common divisor method is called.

The theory section presents the theoretical part as a static text: To add two

fractions that have the same denominator:

BUPT

88

- the two fractions counts are added, this will represent the count of the sum

fraction;

- the common denominator will be the denominator of the sum fraction.

The result obtained is simplified to obtain an irreducible fraction.

The question section is composed of both static and dynamic text. The

dynamic text is represented by the values of the two generated fractions. Figure 5.11

is represented an example in witch in which fractions 14/52 and 30/52 must be added.

Fig.5.11. An instance of the fractions addition AGLO with a wrong answer

The feedback section is giving the student the correct fraction to be obtained.

We chose this feedback because it is important if the student gave the wrong answer

to see where he made the mistake. In the example above the answer is wrong

because fraction 22/26 is not irreducible, the correct answer is 11/13.

The Addition of Two Fractions with Different Denominators AGLO

BUPT

89

The eighth exercise refers to the addition of two fractions with different

denominators. The name of AGLO is the Addition of two common fractions with

different denominators.

Fig.5.12. The scenario for the addition of two common fractions AGLO

In the scenario section, Figure 5.12, four numbers are randomly generated,

two counts, and two denominators. The counts are generated between 1 and 30, and

the denominators are generated between 1 and 20. Three fractional objects are then

initialized. The first two are the two fractions obtained from the four randomly

generated numbers, and the third is the result returned by the sum method. This

method calculates the sum of two fractions. The final result is the irreducible form of

the sum fraction.

Just as in the case of adding with the same denominator, the question and

feedback sections are composed of both static and dynamic text. In the question

section, the dynamic part is made up of the two fractions to be adding, and in the

feedback section, it is made up of the fraction to be obtained. The static text is made

up of the explanations necessary to make the statements.

Figure 5.13 shows an implementation of the addition of two fractions with

different denominators, namely, the addition of fractions 7/10 and 7/2.

The theory section presents the theoretical part as a static text. To gather two

fractions, they must be brought to the same denominator. What is to be done is similar

to the previous exercise. The sum has as its denominator the common denominator

and, as a numerator, the sum of the numerators of the two fractions.

The question section offers the student the two fractions to be added. The

result obtained is simplified to an irreducible fraction, namely, 21/5.

The feedback section is composed of a statement that contains the correct

fraction to be obtained, 21/5.

BUPT

90

Fig.5. 13. An implementation of the addition of two common fractions AGLO

The addition of two mixed periodic decimal fractions AGLO

The next AGLO refers to the addition of two mixed periodic decimal fractions.

Fig.5.14. The scenario section for adding two mixed periodic decimal fractions

BUPT

91

In the scenario section, see Figure 5.14, six numbers are randomly generated,

two whole parts, two decimal non-periodical parts, and two periodical parts. Three

fractional objects are then initialized. The first two are the two fractions obtained from

the six randomly generated numbers, and the third is the result returned by the sum

method.

This exercise was built so that it can be reused for any type of fraction.

The entire fraction consists of a single-digit number to obtain accessible

exercises. The decimal parts are, however, chosen from different intervals to give the

student varied examples.

The theory section explains to the student the steps to be taken to add two

mixed periodic decimal fractions. To add two mixed periodic fractions, they must be

transformed into ordinary fractions, brought then to the same denominator. The sum

has as its denominator the common denominator and, as a numerator, the sum of

the numerators of the two fractions. The result obtained is simplified to obtain an

irreducible fraction.

Fig.5.15. An implementation of adding two mixed periodic decimal fractions AGLO

An example of the implementation of the addition of two mixed periodic

decimal fractions is in Figure 5.15. In the question section, are represented the two

fractions to be added, namely, 5,8(4) and 1,2(7).

BUPT

92

The answer is represented by the irreducible fraction 641/90 obtained after

performing the addition and simplification operations.

In the feedback section, the student receives regardless of the answer given

by the fraction that represents the correct answer.

5.1.6. Fraction Subtraction AGLO

The tenth exercise is aimed at fractions subtraction. This AGLO addresses the

idea of subtracting two common factions. From a mathematical point of view, these

fractions may subtract if they have the same denominator.

The name of AGLO is the Subtraction of two common fractions with different

denominators.

The first part of the scenario explains in natural language how to solve the

subtraction of two fractions with different denominators and is exemplified by a static

example.

Fig.5.16. An implementation of the subtraction of two common fractions AGLO

In the scenario section four numbers are randomly generated, two counts,

and two denominators. The four numbers are in the range 1 20, to give the student

easy calculations.

BUPT

93

Three fractional objects are then initialized. The first two are the two fractions

obtained from the four randomly generated numbers, and the third is the result

returned by the subtraction method. This method calculates the subtraction of two

fractions. The final result is the irreducible form of the subtraction fraction.

The theory section presents the theoretical part as a static text, Figure 5.16.

To make the difference between the two fractions, they must have the same

denominator. The difference is a fraction whose denominator is the common

denominator, and the numerator is the difference of the numerators. The result

obtained is simplified by obtaining an irreducible fraction.

The question presents to the student the fractions to be subtracted, in our

example, 11/4 and 16/20.

The feedback section is giving the student the correct fraction to be obtained,

namely, the 39/20 fraction.

5.1.7. Fraction Multiplication AGLO

The eleventh and the twelfth exercise are aimed at fractions multiplication.

From a mathematical point of view, the resulted fraction is obtained by multiplying

the counts, respectively the denominators among them.

The Multiplication of Two Common Fractions AGLO

The name of the eleventh AGLO is the Multiplication of two common fractions.

The first part of the scenario explains in natural language how to solve the

requirement and is exemplified by a static example.

In the scenario section four numbers are randomly generated, two counts,

and two denominators. The four numbers are in the same range between 1 and 20.

Thus avoiding heavy calculations, the emphasis is on the notion that he must acquire.

Fig.5.17. The symbols for the multiplication of two common fractions AGLO

Three fractional objects are then initialized. The first two are the two fractions

obtained from the four randomly generated numbers, and the third is the result

returned by the multiplication method. This method calculates the multiplication of

BUPT

94

two fractions. The final result is the irreducible form of the multiplication fraction.

These symbols are illustrated in Figure 5.17.

In terms of structure, the multiplication of two common fractions AGLO is

similar to the addition and the subtraction of two common fractions AGLOs.

The theory section presents the theoretical part as a static text. The

multiplication of two fractions is a fraction that has as the numerator the multiplication

of numerators and as the denominator the multiplication of denominators. The final

result is the irreducible fraction obtained by simplifying the product.

Fig.5.18. An implementation of the multiplying of two ordinary fractions AGLO

The question section presents a statement that contains the fractions to be

multiplied. In Figure 5.18, the fractions to be multiplied are 15/10 and 14/11.

In the previous figure, it is given an example of the implementation of the

multiplying of two fractions AGLO with a wrong answer. As can be seen, the feedback

section is giving the student the correct fraction to be obtained.

The Multiplication of Two Mixed Periodic Decimal Fractions AGLO

The name of the twelfth AGLO is the Multiplication of two mixed periodic

decimal fractions.

In this case, in the scenario section, six numbers are randomly generated two

whole parts, two decimal non-periodical parts and, two periodical parts. In this case,

the whole parts are restricted to one-digit numbers, the non-periodic decimal parts

are digits smaller than 6, and the periodic decimal parts are in the range [6; 14].

These restrictions are also imposed in order to make the calculation not difficult.

BUPT

95

To multiply two periodic decimal numbers, they must first be transformed into

ordinary fractions. For this, three fractional objects are then initialized. The first two

are the two fractions obtained from the six randomly generated numbers, and the

third is the result returned by the multiplying method.

Fig.5.19. An implementation of the multiplying of two decimal fractions AGLO

As in the previous AGLO, the theory section presents how to perform the

multiplication of two periodic decimal fractions.

The question section presents to the student the fractions to be multiplied. In

Figure 5.19 is represented an implementation of this AGLO in which the student is

asked to multiply the decimal fractions 8,7(3) and 4,3(13).

The feedback section is giving the student the correct fraction to be obtained,

namely 55937/1485.

5.1.8. Fraction Power AGLO

The next AGLO addresses the rise to power of a faction. The name of AGLO is

the Power of a fraction.

The first part of the scenario explains in natural language how to solve the

requirement and is exemplified by a static example. In the second part of the scenario

section six numbers are randomly generated, an option, a count, a denominator, an

BUPT

96

integer part, a periodical part, and a number that represents the power to which the

fraction is raised.

Two fractions are generated:

- an ordinary fraction that has the denominator and the count generated

previously;

- a simple periodic decimal fraction.

The option can have a value of 1 or 0. Depending on its value, the question

and the answer are generated. If the option has value 1, the power base will be an

ordinary fraction, and if the option has the value 0, the power base will be a simple

periodic fraction. Fraction power is implemented as a method that returns the power

fraction.

Fig.5.20. The scenario of the fraction power AGLO

Because power fraction is obtained by repeatedly multiplying the fraction as

many times as the exponent looks like, we have restricted the exponent to be

generated in the range 1 to 6, and denominator and counter fraction between 1 and

10. In the case of the periodic fraction, we further restricted the whole part to avoid

getting difficult numbers to calculate.

The theory section presents the theoretical part as a static text. The power of

a number is obtained by multiplying the number with itself as many times as equal to

the exponent.

The question section is composed of both static and dynamic text. It tells the

student what the base number is and what the exponent is to calculate the power.

The feedback section is composed of

- a static part that explains how to obtain the power of a fraction;
- a dynamic text, giving the student the correct fraction to be obtained.
Figure 5.21 shows two implementations of the AGLO, one in which an ordinary

fraction 2/10 is required to rise to power 2 and one in which a simple decimal fraction
1,(7) is required to be raised to power 4. In both cases, the result is an ordinary
fraction.

BUPT

97

Fig.5.21. Two implementations of the fraction power AGLO

5.1.9. Fraction Division AGLO

The fourteenth and the fifteenth AGLO are aimed at the fractions division.

From a mathematical point of view, the resulted fraction is obtained by

multiplying the first fraction with the inverse of the second fraction. If the fractions

are given as decimal numbers, the first step is to transform them into ordinary

fractions and then divide them.

The Division of Two Common Fractions AGLO

The name of the fourteenth AGLO is the Division of two common fractions.

The first part of the scenario explains in natural language the steps to be made

to perform the fraction division and the mathematical operation is exemplified by a

static example.

In the scenario section four numbers are randomly generated, two counts and

two denominators, in the range [1; 20]. Three fractional objects are then initialized.

The first two are the two fractions obtained from the four randomly generated

numbers, and the third is the result returned by the division method. The final result

is the irreducible form of the resultant fraction. These symbols are illustrated in Figure

5.22.

BUPT

98

Fig.5.22. The symbols for the division of two common fractions AGLO

 The theory section presents the theoretical part as a static text. In this

section, we explain the fact that the division of two fractions is done by multiplying

the first fraction by the inverse of the second.

Fig.5.23. An implementation of the fraction division AGLO

The question section contains a dynamic part represented by the variables

randomly generated previously. Figure 5.23 shows an implementation of this AGLO in

which the student is asked to divide the ordinary fractions 12/19 and 10/2.

We chose the implementation in Figure 5.23 to have a wrong answer to see

that the feedback section gives the student both the correct result to be obtained and

a recapitulation of the notion.

The Division of Two Mixed Periodic Decimal Fractions AGLO

BUPT

99

The name of the fifteenth AGLO is the Division of two mixed periodic decimal

fractions.

In this case in the scenario section six numbers are randomly generated, two

whole parts, two decimal non-periodical parts, and two periodical parts. In this case,

the whole parts are restricted to one-digit numbers, the non-periodic decimal parts

are digits smaller than 6, and the periodic decimal parts are in the range [6; 14].

These restrictions are imposed in order not to make the calculation difficult.

Three fractional objects are then initialized. The first two are the two fractions

obtained from the six randomly generated numbers, and the third is the result

returned by the division method.

Fig.5.24. An implementation of the fraction division AGLO

The theory section contains the instructions necessary to perform the

exercise, namely the decimal fractions are first transformed into simple fractions, and

then they are performed. The student is also told that the end result will be an

irreducible fraction.

The question section presents to the student the fractions to be divided. Figure

5.24 shows an implementation of this AGLO in which the student is asked to calculate

the quotient of fractions 2.7 (1) and 9.5 (8). The student must transform the two

BUPT

100

fractions into ordinary fractions, namely 244/90 and 863/90. The result obtained after

the division is 244/863.

The feedback section is giving the student the correct fraction to be obtained

to help him if he was wrong.

5.1.10. Finding a Percentage of a Whole AGLO

The next AGLO aims to find out some percent of a whole. Although it is an

elementary notion, students need to acquire this properly. It is also a very common

notion in daily extracurricular activities.

Fig.5.25.The scenario for finding a percentage of a whole AGLO

Fig.5.26. An implementation of the finding a percentage of a whole AGLO

As can be seen in Figure 5.25, the scenario section comprises both a part of

static text, which is transcribed how the item works and a part of generating random

numbers for the required variables. A percentage and an integer are needed. The

percentage is chosen randomly from the range [1; 100], and the integer is chosen

BUPT

101

randomly from the range [1; 500]. It is calculated the percentage of that number by

the formula (percentage * number) / 100. In the case of this exercise, there was no

need to implement any specific method. The notion is not difficult to implement, but

the concept is very important to be well understood by students.

The theory section presents the theoretical part, in mathematical language,

as a static text: p% of x represents the number (p * x) / 100.

The questions section is composed of both text and dynamic values

represented by the percentage and the number from which it is calculated. In the

example of implementation from Figure 5.26, it is required to calculate 31% of the

number 289.

The feedback section is composed only of the correct number to be obtained,

in the above implementation the correct answer being the decimal number 89.59.

5.1.11. Transforming a Decimal Fraction AGLO

The seventeenth AGLO refers to the transforming of a decimal fraction into

an ordinary fraction.

Fig.5.27.The scenario for transforming a simple decimal fraction into an ordinary fraction AGLO

In the scenario section, two numbers representing the whole part and the

decimal part are generated randomly. With the help of these numbers, the fractie

object is constructed. A whole part is a random number between 1 and 20. A decimal

part is a random number between 1 and 200. The restriction on the decimal part

determines the obtaining of fractions that can have as the denominator the numbers

10, 100, or 1000.

The counter and denominator of this fraction will be the answer to the

following question.

The theory section presents the theoretical part as a static text. To transform

a simple decimal fraction into an ordinary one, the following are performed:

- the denominator is put 1 followed by so many zeros how many digits has

the simple decimal fraction after the comma

- the counter is calculated without taking into account the punctuation marks.

The question section is composed of:

- static text – the statement: Convert the following simple decimal fraction

into an ordinary fraction:

BUPT

102

- dynamic text - the fraction to be transformed.

Fig.5.28. An implementation of transforming a decimal fraction into a simple fraction AGLO

An implementation of the AGLO is shown in Figure 5.28. In the feedback, the

student gets the correct fraction to be obtained.

5.1.12. Transforming a Periodic Decimal Fraction AGLO

The eighteenth AGLO refers to transforming a periodic decimal fraction into a

simple fraction.

In the scenario section, the whole part and the periodic decimal part are

generated randomly. When the fraction builder is called the non-periodic decimal part

is null.

 The theory section presents the theoretical part. To transform a simple

periodic decimal fraction into an ordinary fraction, the following are performed:

- the denominator, there are so many 9 digits, how many digits are in the

period;

- the initial number is placed on the counter without taking into account the

punctuation marks from which the non-periodic part is subtracted.

The question section also includes a dynamic part, in which at each

implementation it is randomly generated another fraction. An exercise to transform a

periodic decimal fraction, namely 13.(12) into an ordinary fraction is shown in Figure

5.30.

BUPT

103

Fig.5.29.The scenario for transforming a simple decimal fraction into an ordinary fraction AGLO

Fig.5.30. An implementation of transforming a simple periodic decimal fraction into an ordinary

fraction AGLO

In the feedback section, the student receives the fraction obtained by

transformation and if necessary, the correct fraction to be obtained by simplification.

BUPT

104

In the example above, the initial fraction is 1299/99. By simplification, the answer is

obtained, namely 433/33.

5.1.13. Transforming a Mixed Periodic Decimal Fraction

AGLO

The fifteenth AGLO aims the transforming of a mixed periodic decimal fraction

into a simple fraction.

In the scenario section, the whole part, the non-periodical decimal part, and

the periodic decimal part are generated randomly.

Fig.5.31. The scenario for transforming a mixed periodic decimal fraction into a simple fraction

AGLO

 The theory section presents the theory, to convert a mixed decimal fraction

into an ordinary fraction, the following are performed:

- to the denominator, we will put as many digits of 9 as many digits are in the

period and as many digits of zero as many digits are after the comma, but not in the

period

- the numerator is the initial number without taking into account the

punctuation marks from which the non-periodic part is subtracted.

A static example is also given, namely 12.34(56) = 122222/9900 =

61111/4950.

The question section contains the mixed periodic decimal fraction, and the

feedback section is giving the student the correct simple fraction to be obtained, and

where appropriate the simplified fraction.

5.1.14. Introduction of the Whole into a Fraction AGLO

BUPT

105

The twentieth AGLO aims the introduction of the whole into a fraction. For

this, a subunit fraction and a whole are generated randomly.

The scenario section contains the explanation of what you want to calculate

in the exercise and a static example. Then the variables to be initialized are given.

For the fraction to be subunit, we chose to generate the counter in the range of 1 to

10 and the denominator in the range of 11 to 20. To have accessible calculations, we

chose the whole to be in the range [2; 20].

The theory section presents the theoretical part. To introduce the whole into

the fraction we perform the following:

- for the new count, we multiply the integer by the denominator and add it to

the old count;

- the denominator remains the same.

Figure 5.32 illustrates an implementation of the AGLO in which it is required

to enter in the fraction 4 integers and 3/11.

Fig.5.32. An implementation of introduction of the wholes into a fraction AGLO

The numerator and denominator of the fraction obtained from the calculations

is the answer that is expected to be given. In the feedback section, the student

receives the correct answer, and this is compared with the answer given by him.

BUPT

106

5.1.15. Extracting the Whole from a Fraction AGLO

The seventeenth exercise aims to extract the whole from a fraction.

Removing the whole from an ordinary fraction is a method of the fraction

object.

In the descriptive part of the scenario, that contains the static text, an

example is given to illustrate what is desired to be learned through this exercise. The

wholes from a fraction represent the quotient of dividing the counter by the

denominator.

To be mathematically correct and to be as useful as possible, we have chosen

that the interval in which the denominator is generated is between 1 and 9, and the

one in which the counter is generated is between 10 and 20. In this way, we made

sure that every time there is at least one integer, and the operation to be solved has

a medium level.

Fig.5.33.The scenario for extracting the wholes from a fraction AGLO

 The theory section presents the theoretical part as a static text. In the

example part it is presented to the student that in fraction 37/11 there are 3 integers.

Fig.5.34.The theory, question and answers sections for extracting the wholes from a fraction

AGLO

BUPT

107

An ordinary fraction is randomly generated. In the question section, the

student is asked to remove the whole from the respective fraction.

The student calculates the quotient of the division between the count and the

denominator. It represents the whole of that fraction, that is, the answer.

At each implementation of this AGLO, the student receives an ordinary fraction

from which he must remove the whole. In Figure 5.34, an implementation of this

AGLO is presented in which the student is asked to extract the wholes from the

fraction 19/7. In this example, the answer is two.

In the feedback section, it is emphasized to the student that the answer is

obtained by dividing the counter by the denominator.

5.2. AGLOs for intervals, equations and inequations

involving absolute values and inequalities

Intervals, equations and inequalities are among the basic notions in algebra.

Their correct understanding can be achieved by practicing the applications that

integrate them.

Regarding the intervals, we created AGLOs to help the student practice all the

operations: intersection, union and difference.

5.2.1. Intervals AGLO

The first AGLO targets the intersection of two intervals.

In the scenario section, four integers are randomly generated that will

represent the bounds of the two intervals. We chose the left bound from both intervals

to be generated in the same interval [-20, 20], and the right bound to be calculated

based on the left one where we add a randomly generated number between 1 and

20, one different for each interval. Thus the student has the possibility to obtain both

the case when the intersection is empty and the one in which the intersection is not

empty. In addition, this way we made sure that the intervals are mathematically

correct.

In the theory section it is explained that the intersection of two intervals A

and B is an interval that contains numbers which are in both of the intervals. It is the

set of numbers that are in A and B [61]. If there are no such numbers then the

intersection is the empty set. The student receives an example for each case, see

Figure 5.35.

The question section comprises the two randomly generated intervals. In the

example given above, the intervals were generated [4;7] and [-5;9].

In the answer section, the interval given by us, namely, [4;7] is evaluated.

We have chosen to offer a correct answer, so the grade received is maximum.

In the feedback section, the student is reminded that the intersection contains

the common elements of the two intervals. It also includes the correct answer to be

given. We chose the left bound from both intervals to be generated in the same

interval [-15, 15], and the right bound to be calculated based on the left one where

BUPT

108

we add a randomly generated number between 1 and 30, one different for each

interval.

The next AGLO aims the uion of two intervals.

In the scenario section, four integers are randomly generated, like the

previous example. That integers will represent the bounds of the two intervals.

 In the theory section it is presented that the union of two intervals, A and B,

is an interval that contains all elements from A and B [61]. An example is also

represented, namely the union of [-4;8] and [7;9] intervals.

In the question section, the question is formulated based on the randomly

generated values in the scenario. In Figure 5.36 the question asked is to calculate the

union of the intervals [-3;21] and [-14;9].

Fig.5.35. An implementation of the intersection of two intervals AGLO

In the answer section we chose to provide the correct answer, namely the

interval [-14;21]. It is evaluated and noted accordingly when activating the Evaluate

button. In the example in Figure 5.36 we gave the correct answer.

BUPT

109

The correct answer is provided in the feedback section. The student also

receives some recommendations regarding the union calculation. In the case of

disjoint intervals, the meeting does not consist of a single interval, otherwise the left

end point of the meeting is the smaller of the two numbers representing the left end

point of the two initial intervals, and the right end point of the meeting is the higher

number. between the two correct endpoints of the initial intervals.

Fig.5.36. An implementation of the union of two intervals AGLO

The third AGLO refers to the difference of intervals. In this case, two intervals

are randomly generated in the scenario section. The left bound of the first interval is

generated between -10 and 10, and the left bound of the second interval is generated

between -20 and 20. The right bounds are calculated based on the left ones where

we add a randomly generated number between 1 and 20, one different for each

interval.

In the theory section it is explained to the student that the difference of the

intervals A and B is the interval formed by those elements that are found in A but are

not found in B. Also presented are two examples, one in which the intersection is a

BUPT

110

compact interval and one in which intersection consists of the meeting of two

intervals. It is also specified that the capital letter U will be used instead of the reunion

sign in the answer (see Figure 5.37).

The question is asked in the next section. In the example above the student

must calculate the difference between the intervals [8,20] and [18,24].

Fig.5.37. An implementation of the difference of two intervals AGLO

 In the feedback section the student receives the observation that the

difference includes the elements from the first interval that are not found in the second

interval. He is also provided with the correct answer which is compared to the answer

given by him.

5.2.2. Equations involving absolute values AGLO

The following AGLO aims to solve an equation involving absolute values.

The equation has the form |𝑎𝑥 + 𝑏| = 𝑐. In this case, in the scenario section,

three numbers a, b and c are randomly generated. The randomly generated numbers

are:

- a, the x coeficient, chosen from the numbers 2, 4, 5, 8, 10;

- the term b from the interval [1; 100];

BUPT

111

- the term c from the interval [1; 100].

We chose these values because a it will be a nominator in the solution and we

want to get integers or finite decimal numbers. Thus we maintain an average level for

the generated exercises, and we ensure the existence of accessible numbers, the

emphasis falling on the way in which the exercise is performed more than on

calculations.

Fig.5.38. An implementation of equations involving absolute values AGLO

In the theory section, the student is reminded what it means to solve an

equation, namely to determine the set of solutions. An example is presented to him,

namely solving the equation |𝑥 + 2| = 7. Here the student can also see the form in

which he has to write the answer, namely the two solutions in ascending order

separated by space. In the case of the example, the solution consists of numbers -9

and 5.

BUPT

112

 The question statement is formulated in the question section. Figure 5.38

shows an example of this AGLO in which it is required to determine the solutions of

the equation |2*x+6|=14.

The feedback section shows the student how to solve the equation with the

module, namely solving two equations a * x + b = -c and a * x + b = c. In the case

of the above example the solutions are -10 and 4.

5.2.3. Inequations AGLO

Regarding the inequations, the first AGLO aims at solving the inequations

involving absolute values.

An inequation involving absolute values has the form |𝑎𝑥 + 𝑏| ≤ 𝑐. In the

scenario section, three numbers are randomly generated:

- a, a number from the set {2,4,5,8,10} that will represent the coefficient of

x;

- b, an integer in [-50; +50] and

- c, an integer in [0; 200].

Fig.5.39. An implementation of Inequations involving absolute values AGLO

BUPT

113

Based on these numbers, we calculate the interval according to the

mathematical formula [
−𝑐−𝑏

𝑎
;

𝑐−𝑏

𝑎
]. We have chosen these restrictions for a because it

will be divisor and we want to get finite decimal numbers.

Furthermore, an inequation of form |𝑎𝑥 + 𝑏| ≤ 𝑐 will become a double inequality

of form −𝑐 ≤ 𝑎𝑥 + 𝑏 ≤ 𝑐. For this reason we chose the term c to be a positive number,

to obtain a true mathematical inequality.

The theory section reminds us that solving an inequation means determining

its set of solutions. Also represented is a static example, namely solving the inequation

|2𝑥 + 5| ≤ 7, which has as solution the interval [-6; 1]. This example also shows the

student that the solution that is expected to be written is a bounded interval.

Fig.5.40. An implementation of inequation with an interval left unbounded and right-bounded

as solution AGLO

Figure 5.39 shows an implementation of this AGLO. In the question section in

this case, it is required to solve the inequation |10𝑥 − 23| ≤ 89. The question statement

is made with the help of randomly generated numbers in the scenario section.

In the answer section we chose to write the correct answer, namely the

interval [-6.6; 11.2]. Following the evaluation, the grade obtained is maximum.

BUPT

114

In the feedback section, the student receives an indication of how the

inequatio turns into double inequality, so that it can be solved. Then his answer is

compared to the correct answer.

The following AGLO aims at solving an inequation that has as a solution an

interval left-unbounded and right-bounded.For this exercise in the scenario section,

three integers are randomly generated:

- the coefficient of x restricted to the set {2,4,5,8,10,20};

- the term b in the range [1; 100];

- the term c in the range [1; 100].

In this way we can say that there is the possibility to generate 60,000 different

examples of inequations.

In the theory part, the student is reminded of the notion and is also presented

with an example, namely solving the inequation 3𝑥 + 5 ≤ 8. In the case of the

example, the interval that represents the solution is (-infinite; 1] Through this

example the student also sees the way in which the answer must be written correctly.

The question contains the inequation made using randomly generated

numbers in the scenario. Figure 5.40 shows an implementation of this AGLO, the

inequation that needs to be solved being 2𝑥 + 18 ≤ 61.

The answer given by us in the example presented in Figure 5.40 is the correct

one, namely the interval (-infinite; 21.5]. The correct answer automatically generated

grade 10.

In the feedback section, the answer given by the student is compared element

by element with the correct answer calculated in the scenario.

The following AGLO aims at solving inequations of the form −a ∗ x + b ≤ c that

has as solution an interval left-bounded and right-unbounded.

For this exercise in the scenario section, three integers are randomly

generated:

- the coefficient of x restricted to the set {2, 4, 5, 8, 10, 20};

- the term b in the range [1; 100]; and

- the term c in the range [1; 100].

Since the meaning of the inequality is identical to that of the previous

example, the difference is obtained by transforming the coefficient of x into a negative

number. In this way the same type of inequality has another solution. In fact, the

student must know that dividing the inequality with a negative number, its meaning

is reversed. Thus the solution is an interval left-bounded and right-unbounded.

In the theory part, the student is reminded of the notion and is also presented

with an example, namely solving the inequation −3𝑥 + 5 ≤ 8. In the case of the

example, the interval that represents the solution is [-1; +infinite).

The question contains the inequation made using randomly generated

numbers in the scenario. Figure 5.41 shows an implementation of this AGLO, the

inequation that needs to be solved being −10𝑥 + 85 ≤ 95.

The answer given by us in the above example is the correct one, namely the

interval [-1; +infinite). This automatically generate the grade 10.

In the feedback section, the answer given by the student is compared with

the correct answer calculated in the scenario.

BUPT

115

Fig.5.41. An implementation of inequations of the form – a ∗ x + b ≤ c AGLO

The following AGLO that aims at solving inequations of the form a ∗ x + b ≥ c .
In this case the unbounded side and the bounded side, will depend on the randomly

generated values. Thus, this exercise is a generalization of the previous two.

For this exercise in the scenario section, three integers are randomly

generated:

- the coefficient of x, from the set { -2, 2, 4, -5, 5, 8, -10, 10, -20, 20};

- the term b in the interval [-50; 50];

- the term c in the interval [-50; 100].

In the theory part, the student is reminded of the notion and is also presented

with an example, namely solving the inequation −3𝑥 + 5 ≥ 8, see Figure 5.42. In the

example case, the interval that represents the solution is (-infinite; -1].

BUPT

116

Fig.5.42. An implementation of inequations of the form a ∗ x + b ≥ c AGLO

In the example from Figure 5.42, in the question section the student is asked

to solve the inequation −10𝑥 + 9 ≥ 82. In this case, the interval that represents the

solution is (-infinite; -7.3].

The correct answer given will generate the maximum grade, namely 10.

In the feedback section, the student is given the correct answer, with which

the answer given by him is compared. Thus, if he made a mistake, the student can

see which of the sides of the interval is wrong.

The next AGLO aims at solving double inequations.

For this exercise in the scenario section, three integers are randomly

generated, the coefficient of x restricted to the set { -2, 2, 4, -5, 5, 8, -10, 10, -20,

20}, and the terms b and c in the range [1; 100].

In the theory part, the student is reminded of the notion and is also presented

with an example, namely solving the inequation −4 ≤ 3𝑥 + 5 ≤ 8, see Figure 5.43. In

the example case, the interval that represents the solution is [-3; 1].

BUPT

117

In the example from Figure 5.43, in the question section the student is asked

to solve the inequation 12 ≤ −2𝑥 − 21 ≤ 28. In this case, the interval that represents

the solution is [-24.5; -16.5].

Fig.5.43. An implementation of double inequations AGLO

In the feedback section, the student is reminded of the method by which this

type of inequality is calculated, namely calculations are made until only x remains

between the two signs. Next, the answer given by the student is compared with the

correct answer expected.

5.3. AGLOs for algebraic calculation formulas

A very important topic in eighth grade math is the correct use of abbreviated

calculation formulas. These formulas must be very well mastered by students as they

will be used in solving several types of exercises.

BUPT

118

5.3.1. Application of abbreviated calculation formulas

AGLO

The first AGLO aims at the formulas (𝑎 ± 𝑏)2 = 𝑎2 ± 2𝑎𝑏 + 𝑏2.

For the first exercise in the scenario section, an integer is randomly generated in

the interval [2;20], and an option that can be 0 or 1. These intervals ensures the

generation of 38 different variants. The option is to choose which of the two formulas

will be used, namely the square of an amount or the square of a difference.

The student only has to apply the formula. Figure 5.45 shows an example in which

the number 10 was randomly generated.

In the feedback section is represented the correct application of the formula,

namely x^2+20*x+100.

Fig.5.44. An implementation of abbreviated calculation formulas AGLOs

The next AGLO aims at the formula (𝑎 + 𝑏)(𝑎 − 𝑏) = 𝑎2 − 𝑏2.

BUPT

119

For this exercise in the scenario section, is randomly generated an integer in the

interval [2;20]. In Figure 5.44 it is represented an implementation of this AGLO in

witch the randomly generated number is 9. And in this case, solving the exercise is

simple, namely the student must apply the appropriate formula.

5.3.2. Decomposition into factors AGLO

This exercises are the revers from the one in the previous section. The first AGLO

aims at the formulas 𝑎2 ± 2𝑎𝑏 + 𝑏2 = (𝑎 ± 𝑏)2.

For this exercise in the scenario section, an integer is randomly generated in the

interval [2;20], and an option that can be 0 or 1. The option has the role of choosing

the sign that differs between the two targeted formulas. In Figure 5.46 it is

represented an implementation of this AGLO in witch the randomly generated number

is 4, and the result is the square of a difference.

Fig.5.45. An implementation of decompositions into factors AGLOs

The next AGLO aims at the formula 𝑎2 − 𝑏2 = (𝑎 + 𝑏)(𝑎 − 𝑏). And in this case the

notion is quite simple, but it must be well understood, and this can be achieved by

practicing. In this case the student must know that the difference of two squares can

be narrowed as a product between the difference and the sum of the two roots.

BUPT

120

For this exercise in the scenario section, is randomly generated an integer in the

interval [2;20]. In Figure 5.45 it is represented an implementation of this AGLO in

witch the randomly generated number is 8.

5.4. Summary

In this chapter we presented the AGLO that aims several Arithmetic notions.

For working with fractions we have made a number of twenty-one AGLOs. These

exercises cover the specific competencies related to the fractions required by the

current curriculum in Romania for fifth grade students.

Thus, we managed to make thirty-four AGLOs aimed at middle school

mathematics, namely the arithmetic part. We can conclude that in this chapter we

presented that the AGLO model can be applied to the notions of arithmetic in middle

school.

For eighth grade arithmetic, we made a number of thirteen exercises. These

exercises cover specific competencies related to the first two chapters of arithmetic

required by the current curriculum in Romania for eighth grade students. These

notions refer to operations with intervals, solving equations and inequalities, as well

as to some abbreviated calculation formulas.

We can conclude that AGLOs can be folded very well on arithmetic formulas.

BUPT

121

6. AGLOS FOR INFORMATION TECHNOLOGY
DISCIPLINES

6.1. Models for Data Structures and Algorithms
Discipline

The table is a fundamentally structured type because it is defined directly in

the language, with hardware support for indexing.

One of the most common operations, that are performed on the tables, is the

search, that is, the verification of the existence of a given element in the table. We

have approached three types of searches: linear search, linear search with sentinel,

binary search, and search by interpolation.

Another operation performed on the tables is sorting. Regarding the sorting

methods, we chose to make AGLOs both with the simple sorting methods, namely

insertion sort, selection sort, bubble sort, and with the advanced ones, namely shell

sort, Quicksort. These AGLOs refer both to the steps of the algorithms and to notions

specific to each one.

Another important notion in terms of structures is the notion of list. We have

created AGLOs that target, random or ordered, single-linked linear lists and double-

linked linear lists. We aimed at recognizing specific elements and operations such as

adding or deleting in the list according to a certain requirement.

6.1.1. Linear search AGLOs

Linear search is a method of determining the smallest index for which the

element of the table tab[i] is equal to the searched element x. The elements of the

table are compared one by one with x until the equality of tab[i] = x is reached or the

end of the table is reached [62].

To deepen these notions, we have chosen to make thirteen applications that

address different aspects of the problem. To have all the functions we need we have

created the LinearSearch.js library. This includes the constructor function and the

function of determining the algorithm steps.

The first AGLO approaches the definition of the notion of linear search in a

table. For educators, this item illustrates the familiarity of the student with the notion.

An implementation of this AGLO is shown in Figure 6.1. This AGLO offers the

student the opportunity to choose the correct answer between two possible variants.

Always next to the correct version it will have an incorrect one. The incorrect variant

is generated randomly and at each instance, it has a different form.

The correct definition of the linear search is resumed in the feedback section.

BUPT

122

Fig.6.1. The question and answer of the linear search definition AGLO

The following AGLO familiarizes the student with the linear search algorithm

steps.

Fig.6.2. The scenario section of the linear searching algorithm steps

 Figure 6.2 illustrates the scenario of the AGLO that aims for the student to

know the steps of the linear search algorithm. For the realization of this topic, a table

of n integer elements is generated randomly. The number n is between 6 and 11. For

the searched element, an element from the generated table is also randomly chosen.

We choose to take one of the table elements because we want to verify the

understanding of the search steps and the fact that this algorithm stops at the first

element found.

 The expected answer is to list all the steps of the linear search until the

element is found. For the student to know the correct form that the answer should

have in the theory part, we gave a static example, as can be seen in Figure 6.3.

 In the feedback section, each step of the search is compared item by item

with the correct answer. We thought this way of feedback would help the student. If

he does not know the correct answer, he can see how far the algorithm went correctly

and where the error occurs. In addition, the grade that the student receives is

BUPT

123

proportional to the correctness of the answer. I chose that in this situation there are

not only the right and wrong options.

Fig.6.3. An implementation of the linear searching algorithm steps.

The next AGLO aims the understanding the working principle of the algorithm.

In the theory section, the student receives the necessary notions that are applied in

solving the exercise. The linear search algorithm sequentially compares each element

of the table with the value to be searched. If it finds a match, it returns the value of

the index where that match was found. Otherwise, it is considered that the searched

element is not present in the table.

To implement this exercise, several elements located in the range 10 -15, and

a table of random numbers of this size are randomly generated. Also, an element

from the string is chosen at random, this being the element to look for.

Figure 6.4 shows the implementation of the operating principle of the

algorithm. In this case, the student must determine how many comparisons the

algorithm executes.

The next AGLO refers to the practical situations in which the linear search

algorithm is used.

The student receives three practical situations in which this algorithm is used:

- when we have a list or an array of a certain size;

- when a search in an unordered table is needed;

- when a search is needed in an orderly picture that undergoes frequent

changes and its reorganization becomes a burden.

What changes at instantiation is the number of elements of the table, it is

chosen in the range 100 - 200.

BUPT

124

Fig.6.4. The implementation of the operating principle of the linear searching algorithm AGLO

In this situation, all the options are correct, and in the feedback part, the

student receives the necessary theoretical explanations to deepen knowledge.

Fig.6.5. An implementation of the practical situation in which the linear search algorithm is

used AGLO

In Figure 6.5 it is captured an implementation of the practical situation in

which the linear search algorithm is used AGLO with a correct answer given.

BUPT

125

In the next applications, the student receives strings of different types of data

characters, integers, strings, randomly generated, and he must choose the variants

on which the algorithm is applicable.

In the scenario section, are initialized four variables, the number of string

elements that are located in the range 10 to 15, and the three tables.

Fig.6.6. An implementation of applying the linear search on tables of basic data types AGLO

In Figure 6.6, you can see an implementation of applying the linear search

algorithm on a random data table of various types of elements AGLO. The idea

highlighted here is that this is an algorithm applicable to unordered strings. This idea

is reminded to the student in the feedback section.

The following AGLO refers to the use of the algorithm on ordered tables.

The main idea is that the linear search can be applied on any tables with basic

type elements or with structured elements.

In the scenario section, five tables needed to present the desired options:

- a table with ordered scalar elements;

- a table of strings with ordered elements;

- three table with structured elements that are ordered by a string or an

integer key.

The elements of these tables are randomly generated in numerical or

alphabetical order.

In the question section, the student is asked to choose the tables on which

the algorithm can be applied.

In the answer section, the five tables are presented to the student. In Figure

6.7, an implementation of the application on different random data tables is showed.

At each instantiation, all five situations appear, but the elements of the tables change.

BUPT

126

In the feedback section, regarding the ordered tables, the student is advised

to use a binary search for these. Indeed linear search is not performance, but it is

useful in situations where the elements of the table are random.

Fig.6.7. An implementation of the application of linear search on different random data tables

AGLO

The following AGLO refers to the result that the algorithm returns. What

should be kept in mind is that the linear search algorithm returns the first position on

which the searched element is found if it is in the array.

To perform this exercise, in the scenario section, the number of table

elements in the range 7 - 12, and the table elements are randomly generated. The

element to be searched is chosen randomly from the elements of the string in order

not to have the answer: the element does not exist in the table.

In the question section, the student is asked to determine the result of the

linear search algorithm applied to the values generated in the scenario. Figure 6.8

shows an implementation of this AGLO in which the student is asked to determine the

result of the search for element 250 in the table consisting of elements 68, 250. 205,

177, 47, 158, 60 and 137.

In the answer section, the student is given two different options for each

implementation, one is true and one is false. In the case of the example in Figure 6.8.

the correct variant is the position of the searched element, namely the index 1.

This idea taken up in the feedback section is that this algorithm returns the

first position where it finds this element.

BUPT

127

Fig.6.8. The result of the searching algorithm AGLO

The following AGLO refers to the result that the linear search algorithm returns

when is applied on a linked list.

Fig.6.9. An implementation of the result of the LINEAR searching algorithm APPLIED on a

linked list AGLO

In this AGLO we chose the list to have between 7 and 15 randomly generated

elements. In the answer section, the student is given two different options for each

BUPT

128

implementation, one is true and represents the address of the element, and the other

is false and represents the value of the element.

Figure 6.9 shows an implementation of the linear searching algorithm applied

on a linked list. In this case, we chose the correct answer, namely the address of the

element. The idea is once again highlighted in the feedback section.

Fig.6.10. An implementation of the recognition of an implementation of linear search AGLO

 An implementation of the next AGLO is illustrated in Figure 6.10. In this

exercise, the student must recognize several implementation variants of this

algorithm in pseudocode. Every time, the student receives three real variants.

 Thus are present the variants:

- The A1 algorithm is implemented based on the while instruction;

- The A2 algorithm is implemented based on the for instruction;

- The A3 algorithm is implemented based on the do-while instruction.

What is dynamic in this example are the names of the indices, the table, the

length of the table. It is about implementing the algorithm with different repetitive

structures. This idea is important because in this way the student observes the

equivalence between repetitive instructions.

The next AGLO refers to the recognition of the algorithm applied on a table.

In this exercise, the student receives a program sequence, written in the C

programming language, represented in the Figure 6.11.This sequence represents the

linear search algorithm applied on a board. At each instant the name of the table

changes, the index, and the name of the element to be searched.

BUPT

129

Fig.6.11. The question of the recognition of an implementation of linear search on a table

AGLO

The student must recognize both the algorithm and the type of data to which

it applies. These are reminded in the feedback section.

The next AGLO refers to the recognition of the linear searching algorithm

applied on a table of structures.

Fig.6.12. An implementation of the recognition of an implementation of linear search on a table

of structures AGLO

In the question section is a program sequence that represents the linear

search on a table of structures with different fields of different types. Randomly during

implementation are selected:

BUPT

130

- as table_name one of the letters: a, b, c, d, e, f, g, h, i, j;

- as field_name one of the variants: name, surname, cnp, color, brand, model,

author, title, diary, average, age, date_of_birth, year_of_birth.

Figure 6.12 represents an implementation of the recognition of the

implementation of linear search on a table of structures.

And this time the student must take into account both the characteristics of

the linear search, namely the sequential search, and the type of data on which it is

applied.

The next AGLO also refers to the recognition of the linear searching algorithm,

but this time applied on a linked list.

Fig.6.13. An implementation of the recognition of an implementation of linear search on a

linked list AGLO

In this exercise, the student receives a program sequence in which a linked

list is initially defined, and then the linear search algorithm applied to a linked list.

The dynamic part consists of the names of the variables.

BUPT

131

In this case, in the answer section, the student receives several types of

algorithms as variants and he must choose the correct algorithm among them, see

Figure 6.13. The code sequence is a linear search applied on a linked list.

In the feedback part, is reminded of the theoretical part that is applied to the

correct solution. It is observed the existence of the NOD structure, the pointer p that

goes through the chained list starting with its first element, and the assignment

instruction for advancing to the next element p = p-> next.

6.1.2. Linear search with sentinel AGLOs

The linear search algorithm has been improved by a method that involves the

use of a sentinel. The table is extended with one more element (the sentinel), which

has the value of x. Then the linear search method is applied, that is, the element x is

searched sequentially in the table. The advantage of this method is the simplification

of the cycling condition, in the sense that it is no longer necessary to check if the

index does not exceed the size of the table because in the table there is at least one

element with the looked-up value [62].

For this search, we have made AGLOs which deals with the following aspects:

definition of the notion, algorithm steps, operating principle, different use cases for

different types of values, as well as the recognition of some implementations for

different types of input data.

The first AGLO targets the notion of linear search with a sentinel. It is shown

that the search algorithm with sentinel has the role of finding a particular value in a

table and that it is an improved variant of the classical linear search. In this exercise,

the student has a choice between two statements, one false and one true about the

search with sentinel.

The second AGLO tests the student's ability to recognize an implementation

in the C programming language of the search algorithm.

In the question section, is presented a sequence of code that represents the

linear search with the sentinel. What is dynamic in this exercise is the fact that each

implementation randomly chooses the name of the array, index, and search element

from several variants.

In the answer section, the student is offered three options from which to

choose the correct one, see Figure 6.14.

In the feedback section, the particularities of each search are resumed and

underlined. These must be very well understood by the student to be able to use the

algorithms correctly. This is a linear search with a sentinel because we can identify:

the table is e, the counter is j, the size of the array is r, and the searched element is

x, and the sentinel has been added at the end of the table. This is not a binary search

because we do not have specific indexes for the left and right of the interval that this

algorithm applies. In addition, it is not an interpolation search because we do not have

specific indexes for the left and right of the interval that this algorithm applies, nor

the pivot interpolation formula.

BUPT

132

Fig.6.14. An implementation of the searching algorithm with sentinel recognition AGLO

The next AGLO refers to the recognition of the position of the sentinel.

To perform this exercise, in the scenario section, a number between 8 and 15

is randomly generated. This number represents the number of elements that the table

will have. The elements of the table and the element to be searched are then randomly

generated. We chose the intervals in such a way that the search element is not in the

table.

In the question section, the student is presented with the table and the

element to look for. He is asked to determine the position that the sentinel will occupy.

The student must know that the sentinel is inserted on the last position of the

table after its extension with an element, see Figure 6.15. This idea is also emphasized

in the feedback section.

The next AGLO refers to the value of the sentinel. In this case, the student

receives also a table and a value to look for. He has to say what the value of the

sentinel is if the searching algorithm with sentinel is applied to the table. Here the

student must know that the sentinel has the value of the element sought.

In the scenario of this exercises it is necessary to randomly generate a

number that will represent the number of elements of the table, the elements of the

table, and the element to be searched.

BUPT

133

In this case, the element to be searched may or may not be in the table, being

chosen randomly from the same range as the elements of the table.

Fig.6.15. An implementation of the recognition of the position of the sentinel AGLO

In the question section, the student is presented with the table and the

element to look for. He is asked to determine the value of the sentinel.

Fig.6. 16. An implementation of the recognition of the sentinel value AGLO

BUPT

134

The student must know that the sentinel has the value of the element sought,

see Figure 6.16.

The last AGLO that refers to the search algorithm with sentinel shows the

student comparison between this search and the classical linear search.

Fig.6.17. The symbols from the scenario of the comparison between linear search with sentinel

and the classical linear search AGLO

We have chosen in this exercise to include both the case when the element is

found in the string and the case when it is not found in the string. The role of the first

implemented symbol found is to determine which situation will be implemented:

- 0 represents the case when the element is not in the table,

- 1 represents the case where the element is in the table.

The length of the string, which can vary between 8 and 12, the elements of

the string, and an index of an element in the string are then randomly generated.

The following variables are generated based on the value of found:

the element to be searched, and the number of steps for each algorithm.

The answer raspuns will be the difference between the numbers of the two

algorithms steps.

In the theory section, we chose to emphasize that in the case of the classical

linear search at each step, two comparisons are performed, one to find the element

and the other to verify that the size of the table is exceeded, see Figure 6.18.

In the question section, the two algorithms written in the C programming

language applied to the generated string are represented.

The student should determine how many more comparisons are performed in

the case of linear search. There is a formula for determining them. It is worth

considering that even if the element exists in the table, the difference of comparisons

is significant.

In the feedback section, it is recalled what the two comparisons represent in

the case of the classic linear search.

BUPT

135

Fig.6.18. An implementation of the comparison between linear search with sentinel and the

classical linear search AGLO

6.1.3. Binary search AGLOs

The binary search algorithm is a search algorithm used to find an element in

an ordered list. The principle of this search method consists of the repeated halving

of the interval in which the desired element is searched.

BUPT

136

We consider that we apply the algorithm on an ordered table of elements

named tab. It is considered tab[m] the element located in the middle of the ordered

table. It compares with the searched element:

- if they are equal, the algorithm ends and returns m the position of the

element;

- if the searched element is smaller than the algorithm resumes for the

elements from the beginning of the table to the middle;

- if the searched element is larger than the algorithm resumes, from the

middle of the table to the end.

Everything is repeated as long as we can half the interval.

The need for the table to be ordered implies that its elements have a (key)

component that belongs to a scalar type, and the search is done after this component

[63].

For this search, we have made AGLOs which deals with the following aspects:

definition of the notion, algorithm steps, operating principle, different use cases for

different types of values, as well as the recognition of some implementations for

different types of input data.

Fig.6.19. An implementation of the role of the binary search AGLO

The first AGLO targets the role of the binary search algorithm. The student

must know that the binary search algorithm is a search algorithm used to find an

element in an ordered table. The algorithm works based on the divide and rule

technique. In this exercise, the false statement is the only one that will change during

implementation.

BUPT

137

In the next three exercises, the student is familiar with the situations in which

it is specific to use the binary search algorithm, but also with those cases where it is

not usable.

Fig.6.20. The scenario section for situations in which binary search is applied AGLO

In Figure 6.20 the scenario section of the AGLO is represented, aiming at

tables on which the binary search can be applied. In this AGLO, three unsigned

integers and three tables are generated. In this exercise, the student receives three

tables of different size: the first is made up of randomly generated integers, the

second table consists of letters arranged in alphabetical order, generated randomly,

and the other one is a table of structures, arranged by a key.

Fig.6.21. Cases in which binary search is used

BUPT

138

In the question section, the third table appears twice because, the first time

the element is searched by the key according to which the elements are arranged,

and the second time it is searched for another key according to which the elements

are not ordered. We left the same table for the student to understand the need for

the key according to which the table is ordered. The last variant that contains the key

according to which the array is not ordered does not correspond to the application of

the algorithm, so it is the wrong answer.

In the feedback part, the student receives a recapitulation of the notion;

binary search cannot be applied to tables that are not ordered. In Figure 6.21 it is

illustrated an implementation for AGLO targeting cases where the binary search is

used.

In the next AGLO, the theme is the same but represented differently. Four

numbers are randomly generated that will represent the dimensions of four tables.

They are then generated: an array of natural numbers in ascending order, an array

of integers ordered in descending order, an array of structures, and an array of integer

numbers unordered.

Fig.6.22. An implementation of cases in which binary search is used AGLO

The theme is the same but represented differently. Numbers are randomly

generated that will represent the dimensions of four arrays, see Figure 6.22. They are

then generated: an array of natural numbers in ascending order, an array of integers

ordered in descending order, an array of structures, and an array of integer numbers

unordered. In this situation, the idea that we have insisted is that it does not matter

if the table is ordered in ascending or descending order.

In the next AGLO, the student receives three strings of integers and must

choose on which of these tables binary search is not applicable. First, three unsigned

integers are generated randomly, which will represent the dimensions of the three

tables. Then, an ascending ordered table, a descending ordered table, and an

BUPT

139

unordered table are randomly generated. The answer the student has to choose is the

unordered table.

Fig.6.23. An implementation of cases in which binary search can’t be used AGLO

The following AGLO covers the steps of binary search. This is a very important

thing that the student must master. To be able to understand how the algorithm works

its steps are essential.

Fig.6.24. The theory and the question sections of an implementation of binary search steps

AGLO

 In Figure 6.24 the theory and questions sections are represented. In the

theory section, the student is reminded that this search is applied only on ordered

tables, then he is presented with a static example, a table with four whole elements,

and a response model.

BUPT

140

In the questions section, you receive the table on which you must apply the

binary search algorithm.

Fig.6.25. The answer section of an implementation of binary search steps AGLO

 In Figure 6.25 we chose to give a partially correct answer to show how we

chose to help the student in this case. The first two rows in the answer are correct,

and the third is wrong. The correct answer would be two more lines. In this case, the

student's grade is evaluated according to what percentage of the correct answer

represents what he wrote.

Fig.6.26. The feedback section of an implementation of binary search steps AGLO

 As you can see in Figure 6.26 in the feedback part the student first receives

a notification with the theoretical part that should have been applied. After this, his

answer is compared with the correct answer so that the student can see step by step

what he did well and where the mistake occurred.

BUPT

141

 The last AGLO refers to the recognition of an implementation. The student

receives an implementation of the binary search algorithm written in the C

programming language.

Fig.6.27. The scenario section for the binary search recognition AGLO

As can be seen in Figure 6.27, although the exercise does not seem very

complicated for its implementation, many variables are needed. The beginning of the

scenario describes how the variables are instantiated:

- the table variable can have one of the values: a, b, c, d, e, f, g or h;

- the meter variable can have one of the values: i, j, k, l or m;

- the dimension variable can have one of the values: n, o, p or q;

- the variable element to be searched for can have one of the values: x, y, z,

or t.

This choice gives us the fact that at each instant the student will receive a

different version so that he can recognize the elements that define this algorithm.

In response, the student must choose one of the search variants: linear,

binary, or by interpolation.

It must know that it is a binary search because we have specific left and right

indexes within the range that this algorithm applies. It is also important to know that

it is not a linear search because it is not sequentially searched for, item by item. There

is no interpolation search because we do not have the pivot interpolation formula.

BUPT

142

Fig.6.28. An implementation of binary search recognition AGLO

 In Figure 6.28 illustrates an implementation of AGLO aimed at recognizing the

binary search algorithm. In the feedback section, the student is reminded of the

significant ideas regarding the targeted notions.

6.1.4. Search by interpolation AGLOs

From a theoretical point of view, we consider that we have a table of integers

called tab[] of length N.

The search interpolation method is efficient if:

- the number of elements N is very large and

- the values of the elements of the table have a uniform distribution in the

range of tab[1], ..., tab[N]

- the search element, x, be within the range of tab[1],..., tab[N].

If the search element is not in the range of tab[1],..., tab[N] there is a risk

that the calculated value of m will exceed N.

BUPT

143

This search is similar to binary search but uses another formula for calculating

m. The formula for calculating m, is m=s+(x-tab[s])*(d-s) div (tab[d]-tab[s]). Here

s represents the index of the first element and d the index of the last element in the

table on which the search is applied.

For this search, we have made AGLOs which deals with the following aspects:

definition of the notion, algorithm steps, operating principle, different use cases for

different types of values, as well as the recognition of some implementations for

different types of input data.

The first AGLO refers to the understanding of the notion.

Fig.6.29. An implementation of search by interpolation AGLO

In this exercise, the student must choose the true sentence from the two

variants he receives, as can be seen in Figure 6.29.

The true sentence in which the notion is presented does not change in

different implementations, while the false sentence has several variants from which a

random one is chosen.

The following AGLO addresses practical situations in which interpolation

search is used.

The theory sections are the same for those AGLOs, because in solving them

the same theoretical part is necessary. In these sections, it is recalled that this method

is efficient if n is very large and the values of the elements of the array have a uniform

distribution in the range tab[1], ..., tab[n]. Applying the search by interpolation

requires the search element to be inside the interval tab[1], .., tab[n].

The student receives four variants regarding specific situations of interpolation

search. Depending on the variants it receives, what is true will be the fact that this

search is applied on large, ordered strings, with the elements evenly distributed in

the range of the first and last element, and the element to be searched must be in

this range.

What will be a false variant will refer to different implementations on

unordered tables or tables of structures, see Figure 6.30.

BUPT

144

Fig.6.30. An implementation of practical situations in which interpolation search is used AGLO

Fig.6.31. An implementation of types of data to which interpolation sorting is applied AGLO

BUPT

145

The next AGLO refers to strings to which this method can be applied.

As can be seen in Figure 6.31, the student receives several variants of strings

from which he must choose the ones on which the application is suitable by

interpolation.

In the scenario section, the following are declared and initialized for strings:

- a table of integers in ascending order,

- a table of integers, in descending order,

- a table of structures,

- a table of random integers (unordered).

To simulate a larger number of elements, specific to this method, we chose

that the lengths of the tables should be numbers greater than 15. In this exercise,

the correct variants are the tables of integers ordered ascending or descending.

The next AGLO refers to the determination of strings on which interpolation

search cannot be used.

Fig.6.32. An implementation of strings on which interpolation search cannot be used AGLO

The next AGLO, see Figure5.32 targets cases in which interpolation search

cannot be applied. The student receives three variants of tables from which he must

choose the improper ones.

In the scenario section, the following are declared and initialized for strings:

- a table of integers in ascending order,

BUPT

146

- a table of integers, in descending order,

- a table of random integers (unordered).

It is obvious to those who know the notion that the only option to check is the

sequence of unordered integers. In the feedback section, the student receives

confirmation of this fact.

The first AGLOs presented are not very sophisticated, but they aim at the

correct implementation of the notion. The student must know the specific

characteristics of the notion to be able to apply it correctly. You also need to know

the practicalities to know when it is possible to use this method.

The next AGLO aims to know the steps of the search by interpolation.

In the theory section, the student receives the formula for the pivot m and a

static example. The example also has the role of showing the student under what

form the answer should be written.

In this exercise, a table of 10 to 15 elements is randomly generated. To

respect the real conditions of this search, we evenly distributed the elements between

the first and the last element. Also, the element to be searched for is randomly

generated in the interval between the first and the last element of the table.

Fig.6.33. An implementation interpolation search steps AGLO

BUPT

147

An implementation of AGLO targeting the search by interpolation steps is

presented in Figure 6.32. And here it can be seen that the student's answer is

analyzed step by step in case of a mistake so that he can easily identify it, and the

grade obtained should be partial.

The following AGLO aims to recognize the implementation of the search

algorithm by interpolation.

For this, in the question section is represented as a program sequence written

in the C programming language. This sequence represents the search by interpolation.

Within each implementation the names of the variables in this sequence change.

In the answer section, the student must choose one of the three options he

receives: linear search, binary search, and interpolation search.

Fig.6.34. An implementation of recognition of the interpolation search AGLO

As shown in Figure 6.34, in the feedback section are recalled the

characteristics of the three types of searches that appear between the answer options.

So, the following are presented:

BUPT

148

- it is not about binary search because it is not searched sequentially item by

item.

-it is not a binary search because the middle of the interval is not calculated.

-it is an interpolation search because we have the pivot interpolation formula.

6.1.5. Insertion sort AGLOs

For the insertion sorting, the basic idea is to insert a certain element in the

already sorted table of its predecessors [64].

For this search, we have made AGLOs which deals with the following aspects:

definition of the notion, algorithm steps, operating principle, different use cases for

different types of values, as well as the recognition of some implementations for

different types of input data.

Fig.6.35. An implementation of insertion sorting definition AGLO

In the first AGLO, we give the student three sentences, two false and one

true, see Figure 6.35. The correct sentence is static, and the two false sentences are

different at each implementation.

In the feedback section, we remind the student what is the role of the

insertion-sorting algorithm.

BUPT

149

The next AGLO aims to help the student to identify practical situations of using

the insertion-sorting algorithm.

In the question section are presented two options:

- a static one does not change: When ordering is needed, simple to

implement, to an unordered table;

- a dynamic sentence that contains elements that change their value.

Both statements are true at every implementation.

The specific features of sorting inserts are mentioned in the feedback section.

The student must remember that this sorting applies to tables with a small number

of elements.

Fig.6.36. An implementation of practical situations to which insertion sorting applies AGLO

The following AGLO identifies several types of data collections to which

insertion sorting can be applied.

In the scenario section, see Figure 6.36, four integers are randomly generated

that will represent the number of elements of some tables. We chose each interval in

which these numbers are generated to be different. The following are then generated:

- a table of integers, which represents the primitive types;

- a table of strings, which represents any types of elements;

- a table of structures with a string field and an integer field, representing a

non-scaling data collection;

- a table of structures with an address field and a string field, representing a

scaling data collection.

BUPT

150

Fig.6.37. The scenario section of types of data collections on which insertion sorting applies

AGLO

Fig.6.38. An implementation of types of data collections on which insertion sorting applies

AGLO

Of the options presented in each implementation, only one is not correct, see

Figure 6.38.

BUPT

151

In the feedback section, the student receives a recapitulation of the notions

that are applied for the accomplishment of this exercise. If he chooses the wrong

option which is not represented in the figure above, the student is reminded that he

cannot apply the inserting sort algorithm on collections of elements of various types

that do not have an ordering rule.

The following AGLO aims at recognizing the implementation of the inserting

search algorithm in the C programming language. Three code variants are

implemented, one of which is chosen randomly at each implementation.

The student receives three answers options: insertion, selection, and

interchange. The correct option is the insertion.

Fig.6.39. An implementation of insertion sorting recognition AGLO

 An implementation of the AGLO that aims the recognition of an

implementation of the insertion-sorting algorithm in the C programming language is

presented in Figure 6.39.

 Since an algorithm can have several variants, we chose to make two AGLOs

aimed at recognizing an implementation.

In the second AGLO, the student receives a program that uses a sorting

algorithm. The question is whether the algorithm used in that program is insert

sorting. In this case, the student has to choose only between the Yes or No options.

BUPT

152

 At each implementation, a number in the range 10 - 15 and a table of integers

of this size are randomly generated.

 The student must observe the two cycling instructions for traversing and for

inserting the elements, respectively.

 The following AGLO is very important because it aims to know the steps of

the insertion sorting algorithm.

Fig.6.40. An implementation of insertion sorting steps AGLO

BUPT

153

In the theory section, it is presented in brief how the algorithm works. The

insert sort algorithm builds gradually the list of sorted items, adding one item at a

time. At each step, an item is extracted from the initial list and entered in the sorted

list. The item is inserted in the correct position in the sorted list so that it remains

sorted. A static example is also presented so that the student knows in what form the

answer should be represented.

 To formulate the question, a number between 5 and 8 and a table of this size

are randomly generated.

An implementation of the AGLO which aims steps of the insertion sorting

algorithm is presented in Figure 6.29.

In the feedback section, the student's response is compared item by item with

the correct answer. In this way, in case of a wrong answer, the student can notice a

mistake and thus can correct it.

Also, the answer is evaluated proportionally with the correctly written steps.

6.1.6. Selection sort AGLOs

The algorithm checks each number and starts with the smallest one. The next

number after tab[0] is the smallest of the remaining numbers but greater than the

tab[0]. The step is repeated until the table is sorted.

For this search, we have made AGLOs which deals with the following aspects:

definition of the notion, algorithm steps, operating principle, different use cases for

different types of values, as well as the recognition of some implementations for

different types of input data.

Fig.6.41. An implementation of selection sorting algorithm use situations AGLO

BUPT

154

In the first AGLO, the student is taught to identify the situations of using the

selection sorting algorithm.

The main idea of the exercise is that selection sorting is applied to small

unordered tables.

The two answer options are true for each implementation. One of the

sentences changes with each implementation and the other does not.

Figure 6.30 shows an implementation of AGLO that targets the practical

situations in which the selection sorting algorithm is used.

 The following AGLO aims for the student to know on which tables the

algorithm can be applied.

 Six integers are randomly generated in the range 5 to 15 that will represent

the dimensions of the six tables to be initialized. The following are generated:

- a table of unordered integers,

- a table of randomly selected characters,

- a table of randomly selected strings,

- a table of integers in ascending order,

- a table of characters in alphabetical order,

- a table of strings in alphabetical order.

All generated variants are true. The purpose of the exercise is to present to

the student the fact that the selection sorting algorithm can be applied on any table

with elements of any type as long as there is the possibility to compare two elements

of it. Applying the algorithm to an ascending table makes sense only if you want to

sort it in descending order or vice versa, otherwise, the table remains unchanged after

applying the sorting algorithm.

The next AGLO targets data collections on which the selection sorting

algorithm is used.

In this case, four tables of different sizes are randomly generated:

- a table of strings with different types of content,

- a table of structures with an address type field and a string type field, this

represents a collection of elements of various types,

- a table of unordered integers, which represents an array of primitive types,

- an array of structures that can be ordered according to one of the fields.

Among these variants, the table that represents a collection of elements of

various types is the one that does not meet the necessary conditions to apply the

selection sorting algorithm.

BUPT

155

Fig.6.42. An implementation of data types on which the selection-sorting algorithm can be

applied AGLO

BUPT

156

Fig.6.43. An implementation of data collections on which the selection sorting algorithm can be

applied AGLO

 Figure 6.43 shows an implementation of AGLO that targets the collections of

different types of data on which the selection search algorithm can be applied.

Fig.6.44. An implementation of the Selection Sorting Algorithm Steps AGLO

BUPT

157

The next AGLO aims the steps of the selection sort algorithm, that is, the

intermediate versions of a table to which the selection search is applied.

 In the theory section, the student receives a brief description of the algorithm.

The selection sort algorithm builds step by step the list of sorted items, adding one

item at a time. At each step, the smallest item from the initial list is extracted and

entered into the sorted list. The item is finally inserted in the sorted list so that it

remains sorted. The section also includes a static example through which the student

can practically understand the steps and also have it as a model for the form of the

answer to be given.

To complete the question, an integer, n, is first generated in the range 5 - 8.

Then the n elements of the table are randomly generated.

The answer is represented by the intermediate versions of the table that are

obtained at each activity loop of the algorithm.

In the feedback section, the student's answer is compared item by item with

the correct answer. Thus, if it is wrong, as can be seen in Figure 6.44, it is possible

to identify exactly which is the step where the error occurred.

Figure 6.44 shows an implementation of AGLO that targets the steps of the

selection sorting algorithm with a partially correct answer.

6.1.7. Bubble sort AGLOs

By this method, the table is scanned and each element is compared with its

successor. If they are not in order, the two elements are interchanged. The table is

traversed several times, until at a complete journey no more interchange between

the elements is performed, in this case, the table is sort [65].

The first AGLO aims the mode of operation of the algorithm, i.e. the

intermediate versions of the table on which the algorithm is applied.

Fig.6.45. The scenario section of the bubble-sorting algorithm steps AGLO

In the scenario section, a number n is randomly generated in the range 5 to

7, this represents the size of the table. We have chosen a smaller number of elements

because here we are primarily looking at understanding the algorithm steps, and this

requires accessible cases. A table of n elements is then randomly generated. Based

on this table, a bubble sort object is initialized, which has the method to determine

the steps of the bubble sorting algorithm.

BUPT

158

Fig.6.46. An implementation of the bubble-sorting algorithm steps AGLO

In Figure 6.46 it can be seen that in the theory section is presented a static

example that has the role of showing the student what are the steps of the algorithm

and in what form the answer must be written correctly.

In the feedback section, the student's answer is compared to the correct

answer. As in the other AGLOs that aim at the steps of an algorithm, and in this case,

we are interested in the student to see, if he gave a partial or incorrect answer, where

exactly he was wrong.

In the next AGLO, the aim is for the student to know how many interchanges

are made at a crossing of a table in the bubble sort algorithm.

In the theory section, the student is presented with a static example, a table

of integers and the answer to the question: How many changes are made at the first

crossing of that table.

In the question section, a table of integers is randomly generated, with 5 to

10 elements.

BUPT

159

The answer is represented by a number, the number of interchanges that are

made at the first traversal of the table within the sorting algorithm.

Fig.6.47. An implementation of the bubble-sorting algorithm interchanges AGLO

Figure 6.47 shows an implementation of the bubble sorting algorithm

interchanges AGLO.

6.1.8. Shell sort AGLOs

Shell sort is a highly efficient sorting algorithm and is quite used for medium-

sized data sets.

Shell sort can be seen as a generalization of the bubble sorting algorithm. The

method begins by sorting the pairs of elements apart from each other, progressively

reducing the gap (h) between the elements to be compared. Starting with distant

elements, it can move some of the elements out of place faster than a simple change

of neighbor. This gap is calculated based on Knuth's formula as h=h*3+1, where h

has the initial value 1 [65].

The first AGLO aims to determine the series of a table of integers for a random

h between 3 and 5. To be as convenient as possible the generated example we chose

to generate the length of the string between 10 and 15.

In the theory section, the student has presented as an example the series

obtained for a table of 15 elements and h = 4.This model also shows the student how

to write the answer he will give.

In the feedback section, the student's answer is compared sequentially with

the correct answer. In this way, we aim again that in case of a wrong or partial answer

the student can see where the mistake occurred.

BUPT

160

Fig.6.48. An implementation of the Series in Shell Sorting Algorithm AGLO

Figure 6.48 shows an implementation of the AGLO which aims the way it is

formed series in the shell sorting algorithm. The example is given with the correct

answer.

The following AGLO aims to determine all states of the first series for a random

h.

The theory section presents an example applied to a series of 15 elements

and h = 4. The answer is written in the form that the answer that the student will

have to write must-have.

BUPT

161

In the question section, you will find a table of integers of length 10-15

generated randomly and an h in the range 3-5. The student must write on one line at

a time the sequence of states for the first series generated on the case he receives,

which will be sorted independently.

Fig.6.49. An Implementation of the Sequence of States for the First Series in Shell Sorting

AGLO

Because it is a succession of steps and in this case, in the feedback section

the student's answer is compared sequentially with the correct answer. Figure 6.37

shows an implementation of AGLO that aims at the sequence of states for the first

series that will be sorted by shell sort.

BUPT

162

6.1.9. Quicksort AGLOs

Quick sort is a famous sorting algorithm, which in practice is faster than other

sorting algorithms because its inner loop has efficient implementations on most

architecture.

Quicksort performs sorting based on a divide et impera strategy. Thus, it

divides the sorting list into two sublists that are easier to sort [64]. The steps of the

algorithm are:

- Choose an item from the list, called a pivot

- Rearrange the list so that all items smaller than the pivot are placed before

the pivot and all items larger than after the pivot. After this partitioning, the pivot is

in its final position.

- Recursively sorts the sublist of items smaller than the pivot and the sublist

of items larger than the pivot.

A list of size 0 or 1 is considered sorted.

The first AGLO targets the index and value of the pivot element for a quick

sort algorithm.

Fig.6.50. An implementation of the index and value of the pivot element for quick sort AGLO

The student receives the theoretical notion that must be applied in the

exercise, namely that the pivot is the middle element of the table, see Figure 6.50.

The student must apply this to a randomly generated integer table with some

elements in the range 6 - 10.

The expected answer consists of two numbers, the first represents the index

of the element, and the second the value of the element.

The next AGLO aims for the student to know how to identify the first element

bigger than the pivot. Also, if it does not exist, the student must know that the answer

will represent the value of the pivot.

BUPT

163

In the theory section, is presented a static example containing a table of seven

integer elements.

Next, the student receives a table of randomly generated elements with a

length between 5 and 8 and in which he must identify the first element bigger than

the pivot. Although the notion is quite easy, it is very important in understanding the

steps of the quick sorting algorithm.

Fig.6.51. An implementation of identify the first element bigger than the pivot in quick sorting

algorithm AGLO

The next AGLO aims for the student to know how to identify the first element

smaller than the pivot. Also, if it does not exist, the student must know that the

answer will represent the value of the pivot.

In the theory section, is presented a static example containing a table of seven

integer elements. It is also emphasized that if there is no such element, the value of

the pivot will be displayed.

In the question section, the student receives a table of randomly generated

elements with a length between 5 and 8 and in which he must identify the first element

bigger than the pivot. This notion is also important in understanding the steps of the

quick sorting algorithm.

The answer is represented by the value of the element.

BUPT

164

Fig.6.52. An implementation of identify the first element smaller than the pivot in quick sorting

algorithm AGLO

The next AGLO aims for the student to know which is the first exchange that

will be made in a given table with a given pivot.

Fig.6.53. An implementation of the first exchange in Quick Searching Algorithm AGLO

BUPT

165

In the theory section, is presented a static example containing a table of seven

integer elements and the pivot with the index three, see Figure 6.41.

At each implementation of this AGLO generates an array of integers having

the size in the range 5 - 10. In this case, the two previous applications are useful

because the first change is made between the first element smaller than the pivot and

the first element bigger than the pivot.

The last AGLO covers the steps of the quick sort algorithm.

Fig.6.54. An implementation of the quick sorting algorithm steps AGLO

In this case, a table with a maximum of 10 integer elements is randomly

generated. The student must write at each step which is the pivot and which are the

limits of the substring on which it is worked, also the intermediate versions of the

table.

6.1.10. Linked Lists AGLOs

Simply linked lists are dynamic data structures. Each node in the list contains,

besides the useful information, the address of the next item. This organization only

allows sequential access to the list items. To access the list, the address of the first

element (called the head of the list) must be known; the following items are accessed

through the list [66].

In order to cover in detail the addition and deletion in a list, we made eighteen

AGLOs.

Inserting an element from a list can be done at the beginning, the end, or

before, or after a given element. To perform these operations of addition to the list,

we implemented several AGLOs.

The first AGLO deals with adding a node in an ordered linked list. The idea

that should be emphasized in this example is that the addition to an ordered linked

list is done in such a way that the list remains ordered.

BUPT

166

In the theory section, the student receives an example, namely an ordered

linked list of five elements in which another element is added. The list obtained is

written in the form of a string, as this is the format in which the answer must be

written.

In the question section, an ordered linked list is randomly generated that can

have between three and seven elements. The student receives this linked list in

graphic form.

Fig.6.55. An implementation of the adding a node in an ordered linked list AGLO

In Figure 6.55 you can see the graphic form that the linked list in the question

has and the string shape that the student's answer has.

The theoretical notion which aims to add to an ordered linked list is resumed

in the feedback section, and the correct answer is also represented.

The following AGLO aims to determine the position in which a node is added

to an ordered linked list.

In the theory section, the student receives an example consisting of an

ordered linked list of five elements and a nod that would be added to it. Depending

on the value of the information field of this node, the student must choose the position

that the respective node will have in the list, namely at the beginning, at the end, or

inside the list.

BUPT

167

An ordered linked list is randomly generated that can have between three and

seven elements and a node. The student must determine the position that the node

will occupy so that the list remains in order. He has a choice of three options.

In the feedback section, this time the student receives only theoretical

indications regarding the notion in question.

Fig.6.56. An implementation of the determining the position in which a node is added in an

ordered linked list AGLO

Figure 6.56 represents an implementation of the AGLO that targets the

position in which a node is added to an ordered linked list so that it remains ordered.

The next AGLO deals with a simpler but very important topic, which is the

successor and the predecessor of a certain element in the linked list.

The theory section represents a random linked list of three elements and it is

underlined that the predecessor of any element is the one located in the list before it.

It is also important how an element of the linked list is represented. Each element is

constructed in the form of a triplet so that when it is asked to name a certain element

it represents the entire triplet consisting of the address of the element, the information

of the element, and the address of the next element in the list.

To be able to practice this notion, the student receives a random list consisting

of three to seven elements. Depending on the option that is randomly generated, the

student must name the successor or predecessor of a certain element, also chosen at

BUPT

168

random. In the exercise, however, the randomly selected element will never be the

first or the last because in these cases inconveniences could have occurred such as

the successor of the last element or the predecessor of the first element.

The answer consists of the required element.

In the feedback section, the student receives as information the correctly

chosen node.

Fig.6.57. An implementation of the successor and the predecessor of an element in the linked

list AGLO

Figure 6.57 shows an implementation of the AGLO in which the predecessor

of an element is required.

The following AGLO deals with addition to the beginning or end of a random

linked list.

As seen in Figure 6.58 for the addition, an option is first generated that will

determine where to add the nod, at the beginning, or the end. An object of the form

random linked list of three to seven elements and a node to be added are still

randomly generated. A new object of form random linked list is then generated that

will contain all the elements of the initial one and also the new element added on the

corresponding position. The toString functions are necessary to be able to transmit to

the student the correct information in the form of a character string.

In the theory section, the theory is mentioned, namely that the addition in a

random linked list can be done at the beginning, at the end, or inside the list. The

student is also presented with a static example to add at the beginning of a random

list of three elements.

The expected answer in this AGLO consists of the new random linked list

obtained after adding the element.

BUPT

169

Fig.6.58. The scenario of the addition to the beginning/end of a random linked list AGLO

Fig.6.59. An implementation of the addition to the beginning/end of a random linked list AGLO

BUPT

170

In the feedback section, see Figure 6.59, the student receives some

theoretical information regarding the connections that are made as follows:

- the element inserted in the head of the linked list will have the next address

field to point to the old element head of the list.

- the element inserted in the list queue will be referred to by the old queue

element.

 The student also receives the correct version of the linked list resulting from

the addition of the new node.

 The following AGLO aims to add a new node to a random linked list before or

after a given element.

In the theory section, the student receives a static example in which the

addition after a given element is illustrated.

 To achieve this goal, one of the two options is randomly generated in the first

place, namely, before or after.

Fig.6.60. An implementation of the addition after/before an element in a random linked list

AGLO

A random linked list is randomly generated. Its element to which the addition

is made is also chosen randomly from its elements. The answer consists of the new

list obtained after the addition see Figure 6.60.

The following AGLO aims to delete an element from a random linked list.

The theory section, see Figure 6.49, presents the notion of deleting a node

from a random linked list. This is done by removing the named node. The student also

receives a static example in which a node is removed from a random linked list.

 In the question section, the student receives a random linked list of four to

eight elements from which he is asked to delete a certain element. The node to be

deleted is chosen randomly from the elements of the random linked list.

BUPT

171

Fig.6.61. An implementation of the delete an element from a random linked list AGLO

The answer consists of the random linked list obtained after deleting the

targeted node.

 The following AGLO aims to delete an element from the random linked list

located before or after a given node.

 As in the case of addition and the case of deletion, it may be required that the

element have a certain location relative to a given node. We chose, and in this case,

to use an option that was chosen randomly during implementation to determine the

location before or after.

In the theory section, the student is presented with a static example in which

an element located after a mentioned node is deleted from a random linked list, see

Figure 6.62.

In the question section, it is represented graphically a random list consisting

of four to eight nodes and it is required to delete an element located before or after a

mentioned node. The mentioned node will never be the first or the last one to avoid

the inconveniences that could occur, namely to delete the element located before the

first element or the element located after the last element.

BUPT

172

Fig.6.62. An implementation of the deletion after/before an element in a random linked list

AGLO

The answer is represented by the new random linked list obtained after

deleting the node.

 In order to apply these notions, we also created AGLOs that have float or

character data as information for the linked list nodes.

6.1.11. Double linked list AGLOs

A double-linked list contains an additional pointer to the previously linked list.

The advantage is that this list can be traversed both forward and backward.

To accustom the student to the operations that can be performed on a double

linked list, we made three types of AGLO:

- adding a node at the beginning, or the end;

- adding a node before or after a specified node;

- deleting a specified node.

We applied these types both to lists that have integers as information and to

lists that have a float or a character as information. Thus the notion applied is the

same, but the use case differs. The student can thus better master these things by

repeating them.

BUPT

173

Fig.6.63.The scenario section of the adding a node to the beginning or end of a double linked

list AGLO

The first AGLO deals with adding a node to the beginning or end of a list

depending on the random value that the variable optiune will receive see Figure 6.63.

Fig.6.64. An implementation of the addition to the beginning/end of a double linked list AGLO

BUPT

174

Depending on the value generated for the variable, the value of the option

variable is still generated, having one of the beginning or end values. Its role is to

indicate to the student which is the additional option to be performed.

It generates a node that will be added and the list in which the node will be

added. The list is represented to the student in graphical form. The answer is made

in the form of a string so that it can be written conveniently.

The theory section presents a static example in which a node is added to the

beginning of a double list.

Fig.6.65. An implementation of the addition after/before an element in a double linked list

AGLO

In the question section, the double list in which you want to add is represented

in graphical form and the element to be added in the form of a string. We chose this

BUPT

175

variant of representation because it is important for the student to have the graphic

image of the connections between the nodes of the double linked list. Since it is

necessary to write the answer, we considered the string to be the optimal variant.

As can be seen in Figure 6.64, the answer is the new double linked list

obtained after the addition. The example shown above requires addition at the

beginning of the list.

The following AGLO aims to add a node in a double linked list before or after

a given element.

The theory section presents a static example that deals with the addition to a

double linked list of a node after a given element.

The option for the location where the node will be added is randomly

generated. Also, the element against which the location is established is randomly

generated from the elements of the double linked list.

In the question section the student receives:

- the double linked list in which he must add represented graphically,

- the element to be added,

- the position in which it must be added,

- the element against which the position is established.

Fig.6.66. An implementation of the delete an element from a double linked list AGLO

In the answer section, the student must write the new double linked list that

is obtained after making the addition.

BUPT

176

In the feedback section, it is mentioned that when adding a node to a double

linked list it is important to consider the new connections between the nodes. Also

here the student is shown the correct answer.

Figure 6.65 shows an implementation of adding before an item from a double

linked list AGLO.

The following AGLO aims to delete a node from a double linked list.

A static example is represented in the theory section. This is the deletion of a

node from a double list of four elements. The result is a new list that is obtained after

removing the mentioned node.

In the question section, it is represented a double linked list of four to eight

elements from which the student is asked to delete a certain node. The node to be

deleted is chosen randomly from the elements of the double list.

The answer to this exercise is represented by the new list that is obtained

after performing the operation of deleting the node.

Figure 6.66 shows the implementation of an AGLO that aims to delete an

element from a double list in which the information is a character.

6.2. Models for Algorithm Analysis and Design

Discipline

Regarding the design and analysis of algorithms, we chose to make some

AGLOs about working with trees and graphs. Tree structures are used when a

hierarchical organization is needed. Graphs are used to solve problems involving

networks [67].

The generalized tree structure is important because it occurs frequently in

practice, for example, family trees, or the structure of a book broken down into

chapters, sections, paragraphs, and subparagraphs. Tree traversal algorithms are also

very important and are recursive.

6.2.1. AGLOs regarding the notion of tree

We have developed nine AGLOs aimed at the correct knowledge and proper

use of tree-specific notions, and three AGLOs aimed at traversing trees in preorder,

postorder and inorder.

The first AGLO refers to the recognition of a tree.

To make this scenario we chose to generate three random structures: one

tree and two that are not trees. The three structures will have the same number of

nodes between 6 and 10, but will not necessarily have the same degree. The degree

of the tree will be generated between 3 and 5, but the degree of graphs may vary

depending on the random value that the symbol var will receive, see Figure 6.68.We

chose this because we want to be able to generate as much variety as possible.

Structural objects will be initialized with graphic shapes using specific

functions created toSVG().These representations are very important in understanding

the notions about trees.

In the theory section, the notion of a tree is presented. A tree is a finite set

of elements in which:

BUPT

177

i) there is a special node called the root;

ii) the rest of the nodes are partitioned into n> = 0 sets M1, ..., Mn where each

set represents a tree.

M1, ..., Mn is the root subtrees.

Fig.6.67. The scenario of the recognition of a tree AGLO

Fig.6.68. An implementation of the recognition of a tree AGLO

BUPT

178

In the question section, the student is asked to choose from the represented

structures the one that is a tree.

In the answer section, the student sees the representations of the three

structures and can choose the right one. At each implementation, the second structure

is the one that can be a tree, only each time it will have a different representation.

In the feedback section, it is explained to the student that in the first and third

structures there are arches that determine a connection between two different

subtrees so the structures are not trees.

Figure 6.68 shows an implementation of the AGLO that aims to recognize a

tree with the correct answer.

Fig.6.69. An implementation of the recognition the tree root AGLO

The following AGLO refers to recognizing the root of a tree.

In this scenario, we chose to randomly generate a tree with five nodes that

can have degree 1 or 2. Also based on the node keys we will initiate some variables

that will represent response variants.

In the question section, the student is asked to choose from the answer

options below the one that denotes which of the nodes of the structure could have

the role of the root.

BUPT

179

There are five answer options in the answer section. Three of the answers are

the same in each instance, and two are variable depending on the randomly generated

options. The only correct option is the last one.

In the feedback section, it is explained that in the represented structure any

node could be chosen as the root.

Figure 6.69 shows an implementation of the AGLO that aims to recognize a

tree root with the correct answer.

Fig.6.70. An implementation of the calculation of a tree height AGLO

The following AGLO aims to calculate the height of a tree.

In this case, a tree with 6 to 10 nodes is randomly generated, which can have

a degree between 2 and 5. The graphic representation in the SVG format of the tree

is also generated. The height is calculated by calling the specific method that we

performed tree.height().

In the theory section, it is mentioned that in a tree the maximum level gives

us its height.

BUPT

180

In the question section, the student is informed that it is desired to calculate

the height of the represented tree.

In answer, he has a certain natural number to write which represents the

number of levels of the tree, i.e. its height.

In the feedback section, it is explained to the student that the number of

levels represents the height of the tree. Also, the answer given by the student is

compared to the one expected to be received.

An implementation of the AGLO that aims to calculate the height of a tree

with the correct answer is shown in Figure 6.70.

Fig.6.71. An implementation of the distribution of nodes of a tree by levels AGLO

BUPT

181

The following AGLO aims to determine all the nodes that are on each level in

the tree.

To make this scenario we chose to randomly generate a tree with 6 to 10

nodes. To represent in string format the nodes that are on each level of the tree, we

realized the tree-levels function.

In the theory section, the student is reminded that in a tree, the levels are

defined as follows: the root forms level 1, its sons form level 2, and so on, the sons

of nodes on level n form level n + 1.

Fig.6.72. An implementation of the degree of a node of a tree AGLO

BUPT

182

In the question section you will find its statement, namely: Write each level

in the tree below one by one, putting a space between the nodes on the same level.

This statement also indicates how the correct answer should be written.

The answer thus includes all the nodes of the tree distributed on levels, as

can be seen in Figure 6.71.

The feedback section consists of two parts:

- a static one that includes an explanation of the exercise, namely that for the

correct solution each level is taken in turn and the nodes are written;

- a dynamic in which the answer given by the student is compared with the

correct answer.

The following AGLO refers to determining the degree of a node.

To make this scenario we randomly generated three numbers like this; the

first located between 6 and 12 represents the number of tree nodes, the second

located between 2 and 5 represents the degree of the tree, and the third located in

the interval 0 and the first represents the node whose degree we want to determine.

Based on the first two numbers, a tree is randomly generated and its representation.

In the theory section, it is mentioned that in a tree by the degree of a node

we understand its number of sons.

In the question section, the student is asked: what is the degree of the node

chosen randomly from the nodes of the tree.

The answer consists of a single number that represents the degree of the

node. Figure 6.72 shows an implementation with the wrong answer. In this case, the

student can receive either the correct score or nothing, as he has to write a single

number that can be right or wrong.

In the feedback section, the student is reminded that he had to count the sons

of the respective node.

The following AGLO refers to determining the degree of a tree.

In this scenario, a tree with 6-15 nodes, and a degree between 2 and 5 are

randomly generated. The degree of a tree is given by the maximum degree of its

nodes.

In the question section, the student is asked to calculate the degree of the

represented tree.

The answer also consists in this case of a single number, which means that it

can be either right or wrong.

The feedback emphasizes the idea in theory, namely that we must find the

node with the most sons, and the student's answer is compared with the expected

one.

The following AGLO refers to determining the degrees of all tree nodes.

A tree is also randomly generated for this scenario.

The theory section specifies that in a tree by the degree of a node we

understand the number of its sons.

BUPT

183

Fig.6.73. An implementation of the degree of a tree AGLO

As can be seen in Figure 6.74, the question is given to the student and the

details about who should give the correct answer.

According to the instructions received in the answer section, the student

should write on each row a node starting from the root followed by its degree. Thus

the answer has as many lines as the number of nodes in the tree.

BUPT

184

Fig.6.74. The theory and the question of the degree of all nodes of a tree AGLO

In the feedback section, it is pointed out that to determine the degree of a

node we simply count how many sons that node has. Also to determine the degree of

all nodes in the tree we apply this procedure to all nodes in the tree, and the terminal

nodes have degree 0. The student's answer is also compared to the correct answer

expected, for reasons of space in Figure 6.75 we did not leave the whole comparison.

The following AGLO aims to represent all pairs of form the node and father

node pairs in a tree.

The notions concerned refer to the knowledge by the student of the fact that

a node A is a direct son of another node B if it is located on the level immediately

following node B and there is an edge between A and B. A node A is the parent of

another node B if it is located on the level immediately above node B and there is an

edge between A and B.

BUPT

185

Fig.6.75. The answer and the feedback of the degree of all nodes of a tree AGLO

Fig.6.76. The scenario of the pears node – parent node of a tree AGLO

To perform this exercise in the scenario section, Figure 6.76, a tree is

randomly generated with the number of nodes between 4 and 8 and the degree

between 2 and 4.The expected answer is the result returned by the function

getChildParent().

BUPT

186

Fig.6.77. The question and the answer of the pears node – parent node of a tree AGLO

In the question section, the student is asked to write, for each node of the

tree, one by one, the paired node - parent node. The structure of the answer can be

seen in Figure 6.77.

In the feedback section, it is emphasized that each node had to be taken in

turn and its parent was written next to it. Also, the only node that does not have a

father, the root node, should not appear as the first element in any row.

The following AGLO aims to determine the root nodes of each subtree of a

node.

To realize the scenario aiming at the exercise whose instantiation can be seen

in Figure 6.78, a random tree structure with 6 - 10 nodes and degree 2-4 is generated.

An internal node is also chosen at random.

It is desired to determine the root nodes of each subtree of the chosen node.

The theory section mentions that this means determining the sons of that node.

The feedback consists of two parts:

- one part that explains what was to be done, namely take the nodes below

the indicated node one by one and list them,

BUPT

187

- one part in which the answer received is compared with the expected answer

unit by unit.

Fig.6.78. An implementation of determination the root nodes of each subtree of a node AGLO

The next three AGLOs refer to crossing a tree. By crossing the tree we mean

visiting each node and processing its specific information. For a given tree,

corresponding to a certain application, a certain traversal order is required. The

programs use systematic shaft traversal algorithms implemented in the form of

procedures. The navigation possibilities are inorder, preorder, and postorder.

The first of the mentioned AGLOs aims at traversing a tree in order.

BUPT

188

Fig.6.79. The scenario of traversing the nodes of a tree in inorder AGLO

As can be seen in Figure 6.79 to achieve this scenario, two numbers are

randomly generated, one in the range 6, 10 and represents the number of tree nodes,

and one in the range 2, 5 and represents the degree of the tree. A tree with the

respective dimensions is randomly generated, as well as its graphical representation.

In order to obtain the desired crossing, the inorder() function is called.

In the theory section, it is presented the fact that to go through a tree in

inorder, the following steps are performed:

1. Go through the left subtree,

2. Visit the root,

3. Go through the right subtree.

In the question section, the student receives the graphic shape of the tree to

be traversed.

In the answer section, all tree nodes were expected to be written in inorder.

The feedback section highlights how the browsing is done, namely the left

subtree, root, and right subtree. Next, the answer given is compared with the correct

answer expected.

A representation of an implementation of the traversal in inorder is shown in

Figure 6.80.

The next AGLO aims at traversing a tree in preorder.

To achieve this scenario, whose implementation can be seen in Figure 6.82,

a tree with between 6 and 10 nodes, and with a degree between 2 and 5 were

randomly generated.

In the theory section, the steps of the preorder traversal algorithm are

presented:

1. Visit the root,

2. Go through the left subtree,

3. Go through the right subtree.

In the answer section, all tree nodes were expected to be written in preorder.

The randomly generated tree is graphically represented in the question

section.

The feedback section highlights how the traversal is done, namely root, left

subtree, and right subtree, and the answer given by the student is compared with the

correct answer expected.

BUPT

189

Fig.6.80. An implementation of traversing the nodes of a tree in inorder AGLO

Fig.6.81. An implementation of traversing the nodes of a tree in preorder AGLO

BUPT

190

Fig.6.82. An implementation of traversing the nodes of a tree in post order AGLO

The next AGLO aims at traversing a tree in post order. The structure of the

AGLO is based on the same ideas as the other crossings. Figure 6.82 shows an

implementation of the AGLO that aims to traverse a tree in post order.

In the theory section is presented the way in which the post order is traversed,

namely: the left subtree, the right subtree, and finally the root.

In the questions section, a tree with a maximum of ten nodes is represented

in SVG format. The student is asked to go through the respective graph in post order.

In the answer section, all tree nodes were expected to be written in post order

as shown in Figure 6.82.

In the feedback section, is reminded the correct order for this traversal: left

subtree, right subtree, and root, and the correct answer is compared with the given

answer.

6.2.2. AGLOs regarding the notion of graph

In the next group of objects, the first AGLO refers to recognize a graph versus

a tree.

To make this scenario we chose to generate three random structures: one

graph and two trees. The number of nodes is chosen randomly between 6 and 10.

The generated structures may or may not have the same number of nodes, depending

on the value that the variable var will have. Thus if the variable has the value zero

then all the structures have the same number of nodes, if the variable has the value

1 then each structure will have a different number of nodes.

BUPT

191

Structural objects will be initialized with graphic shapes using specific

functions created toSVG().These representations are very important in understanding

the notions.

Fig.6.83. The scenario of the recognition of a graph AGLO

In the theory section it is reminded that a graph is an ordered pair of sets,

denoted G = (X, U). X is a finite and nonempty set of elements called nodes or

vertices, and U is a set of pairs (ordered or unordered) of elements in X called edges

(if they are unordered pairs) or arcs (if they are ordered pairs) [67].

In the question section, the student is asked to choose from the represented

structures the one that is a graph.

In the answer section, the student sees the representations of the three

structures and can choose the right one. At each implementation, the second structure

is the one that can be a graph, only each time it will have a different representation.

In the feedback section, it is explained to the student that in the first and third

structures are trees, and the second is a graph.

The following AGLO refers to calculate the maximum degree of a graph.

In this scenario, we chose to randomly generate a graph with a number of

nodes randomly generated between 6 and 10. We will also initialize a variable with

the representation of the graph and a response variable containing the maximum

degree of the graph.

BUPT

192

Fig.6.84. An implementation of the degree of a graph AGLO

In the theory section, it is presented that the maximum degree of a graph G

is the maximum degree of its nodes.

In the question section, the student is asked to determine the maximum

degree of the represented graph.

In the feedback section the student is reminded of the way in which the degree

of a node is calculated, namely this represents the number of edges adjacent to the

node.

BUPT

193

Figure 6.84 shows an implementation of the AGLO that aims to calculate the

degree of a graph. In this case, a graph with ten nodes was generated, whose

maximum degree is 6. We chose to give the correct answer. Thus, after the automatic

evaluation, the grade is maximum.

The next AGLO aims to determine the minimum path from the first node to

all other nodes with the help of Dijkstra’s algorithm.

Fig.6.85. The theory section of the minimum path from the first node to all other nodes AGLOs

In the scenario section, two integers are randomly generated,

- one from 6 to 10 and represents the number of nodes of the graph;

- one in the range [3; 5] and represents the maximum degree that a node

can have.

A graph is then generated based on these values. In order to have all the

necessary elements for the targeted learning objective, the graphical representation

BUPT

194

of the graph, the cost matrix associated with the graph and the minimum paths from

the first node to all other nodes are generated using Dijkstra's algorithm.

An example is presented in the theory section so that the student can

recapitulate all the necessary theoretical part see Figure 6.85. A five-node graph is

presented to which a cost matrix is attached. All the steps that Dijkstra's algorithm

follows are presented below. The answer to the exercise is given by the best version

generated by the algorithm. In addition, the student receives some indications,

namely that the order of the nodes is considered alphabetical; there are situations in

which there is no arc between two nodes, the infinite path will be symbolized by the

value 1000.

Fig.6.86. The question section of the minimum path from the first node to all other nodes

AGLOs

In the questions section, a graph is represented together with the related cost

matrix. The student is asked to determine the minimum path from the first node to

all the others. Figure 6 shows a question that includes a graph with seven nodes, the

first node being C.

In the answer section, the student must write the minimum lengths of the

paths from node C to the others. Figure 6 shows the response and feedback sections.

The answer is written in the form of a table of values.

In the feedback section, the student is reminded that he had to calculate the

length of the paths from the first node to all the others, and by applying the algorithm

at each step, the minimum distance found is optimized. The correct answer was also

given.

BUPT

195

Fig.6.87. The answers and feedbacks sections of the minimum path from the first node to all

other nodes AGLOs

The following AGLO aims to determine the adjacency matrix attached to the

graph.

For this exercise in the scenario section two integers are randomly generated:

- the first represents the number of nodes of the graph and is generated in

the range [6; 10];

- the second represents the maximum degree of one node and is generated

in interval [3; 5].

Based on these, a graph is randomly generated. For the representation, the

graphical representation in SVG format is generated, and for the answer, the

adjacency matrix corresponding to the graph is calculated.

In the theory section, is presented the way in which the adjacency matrix is

constructed, namely this is a quadratic matrix whose elements have the values 1 or

0 depending on whether or not there is an arc between the two nodes. In addition,

because the graph is undirected the matrix will be symmetrical. Below is a five-node

graph and its adjacent matrix.

In the question section, the student is asked to construct the adjacency matrix

of the represented graph. Figure 6.88 shows an example in which a graph with six

nodes is generated: D, E, G, H, K, and N, each having a maximum degree of 3.

BUPT

196

Fig.6. 88. The theory and question sections of the adjacency matrix AGLO

Figure 6 shows a correct answer together with the corresponding feedback.

The answer given by the student must respect the representation of the matrix.

 In the feedbacks section, the student is reminded that he had to construct a

quadratic matrix whose elements are 0 or 1 depending on the existence of the edge

[i, j] in the given graph. In addition, the answer given by the student is compared

with the correctly calculated answer.

BUPT

197

Fig.6. 89. The answers and feedbacks sections of the adjacency matrix AGLO

The following AGLO aims to determine the adjacency structure attached to

the graph.

For this exercise in the scenario section two integers are randomly generated:

- the first represents the number of nodes of the graph and is generated from

6 to 10;

- the second represents the maximum degree of one node and is generated

from 3 to 5.

BUPT

198

Based on these, a graph is randomly generated. For the representation, the

graphical representation in SVG format is generated, and for the answer, the

adjacency matrix corresponding to the graph is calculated.

In the theory section, is presented the way in which the adjacency matrix is

constructed, namely on each row is written a node followed by all the nodes with

which it is adjacent in alphabetical order.

Fig.6. 90. The theory and question sections of the adjacency structure AGLO

In the theory section is represented a graph of five nodes and the

corresponding adjacent structure. Figure 6.90 captures the representation of the

theory that appears at each implementation of the AGLO.

In the question section is represented the graph randomly generated in the

scenario. The student is asked to construct the adjacent structure related to the

graph. Figure 6.90 shows an example in which a graph of six nodes B, C, D, E, F and

H has been generated.

BUPT

199

Fig.6. 91. The answers and feedbacks sections of the adjacency matrix AGLO

In the answers section, the student is expected to write on a line in

alphabetical order each node followed by the nodes with which it is adjacent. Figure

6.91 shows a correct response to an implementation of this AGLO.

6.3. Models for Operating Systems Discipline

Linux is a family of Unix-type operating systems that use the kernel. Linux

can be installed on a wide variety of hardware, from mobile phones, tablets, video

consoles, to personal computers to supercomputers, which is why it is widely used in

some international companies. Linux is best known for its use as a server. In recent

years, Linux has begun to become increasingly popular due to distributions such as

Ubuntu, open SUSE, Fedora, as well as the advent of notebooks and the new

generation of smartphones running an embedded version of Linux.

These are sufficient reasons for us to approach applications basic notions in

this field.

6.3.1. Commands for directories AGLOs

The first set of AGLOs aims to exercise the commands for working with

directories.

The first AGLO aims to use the correct command to create a directory.

Fig.6.92. The scenario for the command to create a directory AGLO

Figure 6.92 shows the scenario of the AGLO which aims to create a directory

using the mkdir command. The name of the directory is chosen at random from a

BUPT

200

series of names that represent letters of the Greek alphabet. The correct answer is

retained in the comanda symbol.

The theory section presents a static example, namely how to create the alfa

directory.

In the question section the student receives the statement of the question in

which he is told what command to use and what name the directory has.

In the answer section the student writes the command line necessary to fulfill

the requirement from the previous section.

Fig.6.93. An instance of the command to create a directory AGLO

Figure 6.93 shows an instantiation of the AGLO aimed at creating the directory

named Papa18. In this instant, we put a correct answer, and after evaluating the

answer, the grade that the application automatically gives is maximum.

The following AGLO aims to create a directory hierarchy using the -p option.

In this case, each folder does not have to be created individually.

BUPT

201

Fig.6.94. The scenario for the command to create a hierarchy of directory AGLO

Figure 6.94 shows the scenario for AGLO that aims to create a hierarchy of

directories.

Two numbers are first randomly generated that represents the number of

directories to be created and the level to which this hierarchy will be achieved. These

numbers are required because this hierarchy is generated in the background as a tree.

For this tree, the numbers represent the number of nodes and the height. The

directory tree is generated. The name of each directory is chosen at random from an

existing list of names to which is added a randomly chosen two-digit number.

In the variable st the directory tree is represented in indented level text

format. In the variable comenzi is retained the answer consisting of the correct

commands written each in a line. These commands represent all paths in the tree as

a string.

Fig.6.95. The theory section for the command to create a hierarchy of directory using –p

option AGLO

BUPT

202

A static example is represented in the theory section, as can be seen in Figure

6.95. This example comprises an indented representation of a hierarchy of directories

and then the corresponding lines of code for its realization. In this exercise, the

student must know how to use the -p option correctly. For this, he also must know

how to go through the folder tree in preorder.

Fig.6.96. The question and answer sections for the command to create a hierarchy of directory

using –p option AGLO

In the question section, the student receives a hierarchy of folders for which

he must write specific commands using the -p option. It is also emphasized to the

student that he must write only one command on each line of the answer. Figure 6.96

BUPT

203

shows an implementation of the question, answer, and feedback sections in an

exercise to create a folder hierarchy using the -p option.

The feedback section consists of two parts, a static one that tells the student

that he had to write a command for each path in the tree. And a dynamic part, in

which the student's answer is compared to the correct answer.

The following AGLO aims to create a directory hierarchy without using the -p

option. In this case, each folder must be created individually. To do this the student

must know how to go through the folder trees in preorder.

Fig.6.97. The scenario for the command to create a hierarchy of directory without –p option

AGLO

Figure 6.97 shows the AGLO scenario that aims to create a folder hierarchy

without using the -p option. In the first part, there is a text in which the idea of the

exercise is explained in natural language. This is useful for the developer who wants

to reuse this scenario.

Initially, the number of nodes of the tree is generated randomly, i.e. the

number of folders that will exist in the respective hierarchy. The folder tree is then

generated using the constructor function. The variable st will retain the indented

representation of the tree as a string. The comenzi variable will retain the correct

instructions needed to create the generated hierarchy.

 In the theory section, the student is presented with a static example of a

folder hierarchy as well as the commands needed to create it. What the student needs

to remember is that a subfolder cannot be created without the -p option until we have

made the parent folder the current folder. To return to a certain level or to the root

folder he will use the cd.. command.

BUPT

204

Fig.6.98. The question and answer section for the command to create a hierarchy of directory

without –p option AGLO

 In the question section, the student is reminded of the commands he must

use and is given a hierarchy for which he must write the correct commands, see Figure

6.98.

In this case, depending on the complexity of the hierarchy, the answer

contains more command lines than when using the -p option.

BUPT

205

Fig.6.99. The feedback section for the command to create a hierarchy of directory without –p

option AGLO

In the feedback section, the student is reminded of what he had to do, namely

that he had to create each folder using the mkdir command, and every time he

entered a subfolder he had to return to the parent folder using the cd.. command. In

addition, below, the student's answer is compared to the correct answer on blocks of

words.

6.3.2. Commands for files AGLOs

Regarding working with files, the first AGLO refers to creating a file. In this

scenario, the student must know how to use the touch command correctly.

The theory part presents a static example in which the file with the alpha

name is created.

In the question section, a file name is randomly generated. It is required to

write the command to create the respective file.

BUPT

206

Fig.6.100. An instance of the command to create a file AGLO

Figure 6.100 shows an instance of AGLO that aims to create a file named

Papa74.mp3. We have given the correct answer in this example, namely the command

touch Papa74.mp3.

In the feedback section, a static indication is provided, namely that a simple

command had to be written. Then the answer given is compared with the correct

answer.

The following AGLO targets the population of a folder tree with a given file.

To create this AGLO in the script section, a folder tree and a file name are

randomly generated. In order to achieve this requirement, the student must go

through the tree in pre-order.

In order to follow the essentials, namely only the correct application of the

specific commands, we chose to populate them with the same file name.

The theory section shows how to create the alpha.txt file in the betta folder.

What is wanted is to see that the touch command is applied.

BUPT

207

Fig.6.101. An instance of the command to populate a hierarchy of directory AGLO

In the question section, the student receives the file tree with the

corresponding hierarchy and the name of the file with which this hierarchy must be

populated. In addition, in the statement of the question, it is mentioned that it is

necessary to use the touch command, as can be seen in Figure 6.101.

BUPT

208

In this case, the student's answer includes several commands that contain

the access ways to each folder in which the requested file is created.

In the feedback section is compared each command entered by the student

with the correct answer so that in case of an error he knows where he did not write

correctly.

The following AGLO also aims to popularize a hierarchy of folders with a file,

only this time the folders do not exist but must also be created.

In this case, the student must know that in order to create the file in a certain

folder, he has to follow the following steps:

- creating the folder;
- accessing the folder as the current folder;
- creating the file;
- returning to the parent folder.

When solving this AGLO, these steps must be applied to each folder in the

hierarchy.

Fig.6.102. The scenario of the command to create and populate a hierarchy of directory AGLO

As can be seen in Figure 6.102, the following variables are required to make

this AGLO scenario:

- a file object, namely the file with which we will populate the folders, and its

name as a string,

- a natural number that will represent the number of folders,

- a FolderTree object, namely the hierarchy of folders to be created and

populated, and its representation as a string,

- a string that represents the correct answer.

In order to have an accessible exercise, we chose that the number of folders

in the hierarchy should be between 5 and 8, and the nesting level up to which it can

be 5.

BUPT

209

Fig.6.103. The question and answer section for the command to create a hierarchy of directory

without –p option AGLO

In the theory section, the student is given an example of a hierarchy with

three folders and the commands needed to populate it with files. In this case, the

student must know that each file is created with the touch command when the folder

where it is to be created has been established as the current folder. After creating the

file, return to the root folder.

The static example also has the role of reminding the student of the

commands he must use:

- mkdir - to create a folder;

- cd - to make a folder the current folder;

BUPT

210

- cd.. – to return to the root folder;
- touch - to create a file.

Fig.6.104. The question and answer section for the command to create a hierarchy of directory

without –p option AGLO

In this case, the answer consists of several command lines.

In the feedback section, the student's answer is compared to the correct

answer. Figure 6.104 shows a correct response to an instantiation of this AGLO.

BUPT

211

The following AGLO targets command specific to changing the access

permissions of a file.

For this, a file name and three natural numbers between 0 and 7 are randomly

generated. These numbers will represent the octal digits that show the access

permissions of the three user classes to the desired file.

Fig.6.105. An instantiation of setting the file access permissions AGLO

BUPT

212

In the theory section, the student receives, in the form of a static text, the

meaning of the access permissions to a file, as can be seen in Figure 6.105.

In the question, the student can see for each group of users which access

permissions must be set. In the example from Figure 6.105, the student must set the

following permissions for Delta95.txt file: for the user read and for the group and

others no permission.

The answer is the correct application of the chmod command, namely chmod

400 Delt95.txt.

The following AGLO aims to upload a new file system to the main file system

of the system.

When instantiating this learning object, a file name and a system file are

randomly generated.

Fig.6.106. An instantiation of the mount command AGLO

BUPT

213

The theory section presents the action of the mount command.

In the question section, the student is instructed to use the mount command

to create the given file Golf39.java in the received system file ext2/dev/sda6.

The answer is the correct application of the mount command.

In the feedback section, the student's answer is compared with the correct

answer and is reminded that he had to write a single command.

6.3.3. Commands for processes AGLOs

Next, we made some AGLOs aimed at working with processes: displaying

processes, moving a process from, or to the background/foreground.

The first application aims to display background processes.

We want to start in the background a process that displays all files that have

a certain extension and start with a certain set of characters. To do this, a character

set for the file names and an extension are randomly generated.

Fig.6.107. An instantiation of the command to start a display process in the background AGLO

In the theory section, the student is reminded that the ls command is used to

display all files with certain properties.

BUPT

214

Figure 6.107 shows an instance of this AGLO in which the student is asked to

start in the background a process that displays all the files whose names start with

beta and have the extension c.

The answer consists of a single line of code that represents the display

command followed by the & sign, which represents the start in the background.

In the feedback section, the correct answer and the student's answer are

compared, so you can see where the student is wrong if necessary.

The next AGLO aims to complete a process without sending it in the

background. For this, a process number with four digits is randomly generated.

Fig.6.108. The theory and question sections for the command to kill a process AGLO

In the theory section, the student is reminded that a process ends using the

kill command. He is also given a realistic example of a list of nine processes that could

run on a computer. Figure 6.108 shows the static part that includes the theory from

this exercise.

In the question section, the student is asked to stop the process with the

indicated PID, i.e. the previously randomly generated number.

The answer lies in the correct application of the kill command, namely using

the -9 option.

BUPT

215

Fig.6.109. The answer and feedback sections for the command to kill a process AGLO

The feedback section consists of two parts:

- the first consists of a static text in which the correct syntax of the kill

command is presented,

- the second dynamic in which the student's answer is compared with the

expected correct answer.

The next AGLO aims to complete a background process.

To achieve the scenario targeted bythis AGLO, a realistic list is generated

consisting of three processes that are supposed to run in the background. The

numbers representing the PID of the processes are randomly generated.

Also, a number between 1 and 3 is randomly generated, which will represent

which process in the list needs to be completed.

In the theory section, the student is reminded that he must use the kill

command.

In the question section, besides the statement of the question, the student

also receives the list of processes from which the one to be stopped is chosen.

The answer consists of a single command line that should contain the correct

application of the specific kill command.

In the feedback section, the student receives both the correct syntax that had

to be used for the kill command and the comparison of his answer with the correct

answer.

BUPT

216

Fig.6.110. An instantiation of the command to kill a process in the background AGLO

The following AGLO aims to bring a process from background to foreground.

To achieve the scenario covered by this AGLO, a realistic list is generated

consisting of three processes that should run in the background. The numbers that

represent the process PID are randomly generated. It is also randomly chosen which

of the three processes will be moved to the foreground.

BUPT

217

Fig.6.111. An instantiation of the command to move a process from background to foreground

AGLO

In the question section, besides the statement of the question, the student

also receives the list of processes from which the one to be moved is chosen see

Figure 6.111.

The answer consists of a single command line that should contain the correct

application of the specific fg command.

In the feedback section, the student receives both the correct syntax that had

to be used for the fg command and the comparison of his answer with the correct

answer.

6.3.4. Commands for disk partitioning AGLOs

The next two AGLOs focus on using the fdisk command.

In the first ALGO, the use of fdisk command options is followed.

BUPT

218

Fig.6.112. An instantiation of using the options of the fdisk command AGLO

The student should know that, depending on the option he chooses, he can

have the following options:

- accessing a bootable flag;

- editing the label of a disc;

- delete a partition;

- enumeration of known partitions;

- print the help menu;

- adding a new partition;

- print the partition table.

In the theory section, the first statement is a realistic use of the fdisk

command on a randomly generated partition. Following this command, the

programmer has to choose one of the seven options listed above. The student receives

one of them at random and must say which is the letter corresponding to that option.

The letter corresponding to the option to be typed represents the correct

answer to the question in the AGLO.

In the feedback section, the student is reminded that he had to choose only

one letter that represents the required option.

The following AGLO aims to view a partition of the hard disk.

BUPT

219

Fig.6.113. An instantiation of the command to view a partition AGLO

As can be seen in Figure 6.113 the student receives a randomly generated

hard drive name.

The answer is represented by the correct use of the fdisk command together

with the -l option.

In the feedback section, the student receives the correct command to be able

to correct any mistakes.

6.3.5. Package management AGLOs

The following AGLOs aim the package management. In Linux to install or

uninstall a software package depending on the version of the operating system, two

variants are included in the next two AGLOs.

 The first AGLO aims to install or uninstall a program under Linux versions such

as Dabian, Ubuntu, or Knoppix.

BUPT

220

Fig.6.114. An instantiation of the apt command AGLO

In the theory part, it is explained to the student that he will have to install or

uninstall a program in a certain version of Linux, as can be seen in Figure 6.114.

The option to install or uninstall is randomly generated so that in one instance

the student can have only one of them to perform. The program name is also

randomly generated from a list of four possibilities.

The answer consists of the correct use of the specific command to install or

uninstall the received program.

In the feedback section, the student is reminded of the theoretical part,

namely that there are two main tools around APT:

- apt-get is for installing, upgrading, and cleaning packages,
- apt-cache is used for finding new packages
The next AGLO aims to install or uninstall a program under Linux versions

such asFedora, Red Hat or Mandriva.

BUPT

221

Fig.6.115. An instantiation of the yum command AGLO

In the theory part, it is explained to the student that he will have to install or

uninstall a program in a certain version of Linux, as can be seen in Figure 6.115.

The option to install or uninstall is randomly generated so that in one instance

the student can have only one of them to perform. The program name is also

randomly generated from a list of four possibilities.

The answer consists of the correct use of the specific command to install or

uninstall the received program.

In the feedback section, the student is reminded of the theoretical part,

namely that YUM is a free and open-source command-line package-management

utility for computers running the Linux operating system using the RPM Package

Manager.

6.3.6. Administrative commands AGLOs

The following applications target administrative commands.

BUPT

222

The first AGLO in this category aims to add a user. To create this scenario, a

username is randomly generated.

Fig.6.116. An instantiation of the command to add a user AGLO

In the theory section, he is reminded that he wants to use the useradd

command, see Figure 6.116.

The question requires adding the user with the random name generated.

The answer consists of the correct use of the useradd command.

In the feedback section, the student's answer is compared with the correct

one, specifying that he had to write a single command.

The next AGLO aims to add a user to a certain group. To create this scenario,

a username is randomly generated and a group is randomly chosen.

BUPT

223

Fig.6.117. An instantiation of the command to add a user to a group AGLO

In the theory section, he is reminded that he wants to use the usermod

command.

The question asks to add the user with the random name generated in one of

the groups: administrator, developers, designers, guests.

The answer consists of the correct use of the usermod command.

In the feedback section, the student's answer is compared with the correct

one, specifying that he had to write a single command.

The next AGLO in this category aims to generate specific information about a

user. To create this scenario, a username is randomly generated.

BUPT

224

Fig.6.118. An instantiation of the command to generate information about a user AGLO

In the theory section, he is reminded that he wants to generate specific

information about a particular user, see Figure 6.118.

The question requires the display of specific information about the user with

the random name generated. In the above instantiation the student is asked to write

the command that display specific information about Kilo91 user.

The answer consists of the correct use of the finger command, namely finger

Kilo91.

In the feedback section, the student's answer is compared with the correct

one. The student is also reminded that the finger command displays the login name,

name, directory, shell, login time, email, and plan of the user.

 The next AGLO aims to change the password of a user. To create this

scenario, a username is randomly generated.

BUPT

225

Fig.6.119. An instantiation of the command to change the password of a user AGLO

In the theory section, he is reminded that he wants to change the password

of a certain user, see Figure 6.119.

In the question section, the student is asked to change the password of the

user with the randomly generated name, namely Papa56.

The answer consists of the correct use of the passwd command, thus in the

answer section the student has to complete a single command.

The feedback section compares the student's answer with the correct one,

namely passwd Papa56.

The next AGLO aims to delete a user. To create this scenario, a username is

randomly generated.

BUPT

226

Fig.6.120. An instantiation of the command to delete a user AGLO

In the theory section, the student is reminded that he wants to delete a certain

user.

The question asks the student to delete the user with the random name

generated, namely Delta38.

The answer consists of the correct use of the userdel command, namely

userdel Delta38.

The feedback section compares the student's answer with the correct one,

reminding that only one command had to be written.

6.3.7. Basic networking commands AGLOs

The following AGLOs target network-specific commands: view, configure or

delete an address.

The first AGLO aims to manage and configuring network interfaces with the

ifconfig command. . To create this scenario, an option is randomly generated.

To learn how to use the ifconfig command, one of the variants can be

generated:

BUPT

227

- display all the active interfaces details;
- display information of all active or inactive network interfaces on server;
- display details about the eth0 specific network interface;
- activates a network interface with interface name eth0;
- deactivates the specified network interface with interface name eth0;
- assign the IP address 172.16.25.125 to the interface named eth0;

- set the network mask 255.255.255.224 to a given interface eth0.

Fig.6. 121. An instantiation of the ifconfig command AGLO

The question asks the student to solve one of the above options. As can be

seen in Figure 6.121 is asked to activates a network interface with name eth0.

In the answer section, it needed to be written the correct uses of the ifconfig

command, namely ifconfig eth0 up.

The feedback section compares the student's answer with the correct one,

reminding that he has to use the ifconfig command with different options.

BUPT

228

The next AGLO is about deleting an address.

Fig.6.122. An instantiation of the command to delete an address AGLO

In the theory section, the student is reminded that he wants to use the arp

command.

The question asks the student to delete a randomly generated address. In

Figure 6.122 is captured an instantiation in witch is asked to delete the 225.124.61.36

address.

The answer consists of the correct use of the arp command, namely arp –d

followed by the address.

The feedback section compares the student's answer with the correct one,

reminding that only one command had to be written.

The next AGLO aims to configure a new IP with netmask using the command:

ifconfig. To accomplish this scenario, an IP address and a network interface are

randomly generated.

BUPT

229

Fig.6.123. An instantiation of the command to configure an address AGLO

In the question section, the student is asked to configure a randomly

generated address with a new IP address on a certain interface and with the mask

255.0.0.0.

The answer consists of the correct use of the ifconfig command.

In figure 6.115 we represented an instantiation with the wrong answer of this

AGLO. As you can see, the student's answer is compared to the correct one

sequentially on the blocks so that he knows where he went wrong. Also, the grade

received is proportional to how correct the answer is.

The following AGLO aims to manually enable or disable a network interface

without using the ifconfig command.

BUPT

230

Fig.6.124. An instantiation of the command to activated/deactivated an interface AGLO

 In the theory section, the student has presented what the exercise aims at,

namely the manual activation or deactivation of a network interface.

The question section required activating or deactivating depending on the

randomly generated option of a network interface that is also randomly generated.

The feedback section consists of two parts:

- a static one in which the student is reminded that the ifdown command take

a network interface down and the ifup command bring a network interface up;

- a dynamic in which the student's answer is compared which the correct

expected answer.

The following AGLO aims toAdding (Deleting) a route via a gateway connected

via a network interface.

BUPT

231

Fig.6.125. An instantiation of the route command AGLO

In the theory section, the student is presented with what the exercise aims

at, namely the addition or deletion of a route via a gateway connected via a network

interface using the command: route.

The question section required deleting or adding depending on the randomly

generated option of a route. In Figure 6.125 is represented an instantiation of the

AGLO in which the student is asked to add a route via 104.196.102.43 gateway

connected via eth0 network interface.

The answer consists of the correct use of the route command, namely route

add default gw 104.196.102.43 eth0.

The feedback section provides the student with information about what he or

she should write and provides a comparison of his or her answer with the correct one.

6.4. Summary

BUPT

232

For the Data Structures and Algorithms discipline, we grouped the exercises

into seventeen topics. The topics covered are:

- several searches algorithms: the linear search, the linear search with

sentinel, the binary search, the interpolation search;

- several sorting algorithms: the insert sort, the select sort, the bubble sort,

the shell sort, the heap sort, the quick sort, the inter-classification with three bands,

the inter-classification with four bands, the natural inter-classification;

- the simple linked linear lists;

- the double linked linear lists;

- the stacks;

- the queues.

The distribution of the AGLOs by topics is represented in Table 6.1.

Table 6. 1. Distribution of AGLOs on topics for DSA discipline

For the discipline of algorithms analysis and design, we have made twelve

AGLOs aimed at notions related to the notion of tree, and five AGLOs related to the

notion of graph.

For the Operating Systems discipline, we grouped the AGLOs by topics as

follows:

- the commands for working with directors;

- the commands for working with files;

- the process commands;

- the commands for disk partitioning;

- the commands for package management;

- the administrative commands;

- the commands for networks.

The distribution of the AGLOs by topics is represented in Table 6.2.

No. The topics Number of AGLOs

1. Linear search 13

2. Linear search with sentinel 5

3. Binary search 6

4. Interpolation search 6

5. Insert search 8

6. Select search 5

7. Bubble sort 3

8. Shell sort 3

9. Heap sort 3

10. Quick sort 5

11. Inter-classification with three bands 1

12. Inter-classification with four bands 1

13. The natural inter-classification 1

14. Simple linked linear lists 20

15. Double linked linear lists 11

16. Stacks 4

17. Queues 2

BUPT

233

No. The topics Number of AGLOs

1. Commands for working with directors 3

2. Commands for working with files 5

3. Process commands 5

4. Commands for disks 2

5. Commands for package management 2

6. Administrative commands 5

7. Commands for networks 5

Table 6.2. Distribution of AGLOs on topics for OS discipline

We can conclude that we have made 141 AGLOs targeting different ITC disciplines.

BUPT

234

7. PROTOTYPE IMPLEMENTATION

7.1. The DSEL platform

In order to be able to use these AGLOs in the teaching-learning-evaluation

activity, we considered it useful for them to be organized in a web page. Thus we

created dsel.upt.ro. The platform is called DSEL because it was originally built to use

AGLO in Data Structures discipline. This is a web page where the student can log in

with a Facebook, Google or Yahoo existing account.

Fig.7.1. DSEL platform

The DSEL platform is built from an authentication module and an interface

module. The interface module allows the student to navigate the LO tree. XML files

containing AGLOs are stored in a hierarchy of directories arranged by discipline (see

Figure 7.1). By activating the View button, the theme-specific AGLOs are accessed.

BUPT

235

Each topic has a different AGLO number depending on the learning objectives. The

grouping of the AGLOs is performed as follows: computer programming, data

structures and algorithms, design and analysis of algorithms, trees, operating

systems, mathematics for the eighth grade and, fractions. When the View button is

activated, the student has access to the objects that target the respective topic, some

of these topics are grouped on topics, and others are not.

Fig.7.2. An AGLO Instantiation on DSEL Platform

The instantiation of an AGLO is represented in Figure 7.2. The AGLO sections

visible to the student are the theory section, the question section, the answer section,

and the feedback section. The feedback section is visible when the student requests

the evaluation of the answer by activating the Evaluate button. When activating the

button, the student's grade is automatically generated. If the student wants to repeat

this type of exercise, it is enough to choose the Repeat option from the header menu.

This allows them to access the same type of exercise, but the instantiation will be

done with other randomly generated numbers.

The header of the page contains the Back and Forward options. They have

the effect of accessing web pages like similar options in the browser. The Home label

BUPT

236

takes the student to the home page of the platform from where he can chose another

discipline.

Fig.7.3. The LO repository with the students answers

The answers given by the students are stored in a LOR (see Figure 7.3), from

where they can be accessed. Each record in this database has the following fields:

- id - is the serial number of the registration in the database;

- name - represents the student's name;

- firstName - the student first name;

- lastName - the student last name;

- sessionName - each login session receives a unique name;

- email - the email with which the login session was performed;

- loginMethod - the way in which the login was made, i.e. directly through the g-

mail address or through a Facebook existing account;

- agloName - is the name of the AGLO that the student accessed;

- agloPath - is the path to the AGLO that the student accessed;

- tableOfSymbols - includes all the symbols from the respective AGLO scenario;

- question - the statement of the question;

- studentAnswer - the answer given by the student;

BUPT

237

- computeAnswer - the correct answer calculated automatically;

- feedback - the feedback received at the evaluation by the student;

- noOfCorrectItems - the total number of correct tokens in the answer given by

the student;

- noOfTotalItems - the total number of tokens from which the answer is formed;

- grades - the grade obtained by the student after comparing the answer given

by him with the correct answer;

- dates - the date on which the login session took place on the dsel platform.

The symbols corresponding to the selected AGLO are organized in a table built by

a generator contained by the platform. The answer is divided into one or more tokens

separated by space, depending on the exercise. Regarding the grade, it is calculated

in direct proportion to the correct tokens the student wrote.

7.2. The domain-specific JavaScript Libraries

7.2.1. The JavaScript Library for Fractions Applications

For the exercises aimed at working with fractions to meet their goals, we have

built a JavaScript library called Fractii.js. These contain the methods necessary for

the notions concerned.

Both simple fractions and decimal fractions are generated randomly. For a

simple fraction, the denominator and the counter are generated as random numbers.

A simple fraction is initialized by the constructor function randomFraction2(). This

constructor generates the fraction object based on the two random numbers the

denominator and the counter.

For a mixed decimal fraction, are randomly generated:

- the integer part,

- the simple decimal part,

- the decimal periodic part.

A decimal fraction is initialized by the constructor function randomFraction3().

This constructor generates the fraction object based on a different number of random

integers, depending on the fraction type. If you want to generate a simple decimal

fraction, the periodic part will be set to zero. If you want to generate a simple periodic

fraction, the non-periodic decimal part will be set to zero. Thus, we have the same

constructor for a simple decimal fraction, a simple periodic fraction, or a mixed

periodic fraction. These fractions have specific methods by which they are then

transformed into ordinary fractions to be used in arithmetic operations.

BUPT

238

Fig.7.4. The constructor functions for fractions objects

Thus both constructor functions return a “Fractie” fraction object who can call

on their specific methods. The representation of constructor functions is captured in

Figure 7.4.

The names of the constructor functions have a digit in their name. This digit

represents the default number of parameters. These details help the tutor in case of

reuse and debugging.

The type Fractie represents a fraction object.

Functions are also implemented for mathematical operations used in exercises

such as addition, multiplication, division. Each of these functions has a parameter of

the type fraction object. In this case, the mathematical operations are applied

between the object that calls the function and the one that receives it as a parameter.

All these functions return an object of the fraction type.

The function for calculating the power also has a parameter but in this case,

this is an integer representing the exponent. And in this case, what is returned is a

function type object.

Another function we have implemented is to generate the counter and

denominator, this is useful for decimal numbers.

We also implemented functions that return a sign in the case of comparison

and functions that return a word in the case of classification.

The most widely used function is the divisor function, which calculates how

much the fraction must be simplified to become irreducible. This is called in 80% of

the AGLOs.

7.2.2. The JavaScript Library for Intervals Applications

Regarding the AGLOs regarding the work with intervals, we have implemented

the Intervale.js library.

The RandomInterval(l, r) constructor function will generate a closed interval

object, where l and r are two randomly generated integers that represent the bounds

of the interval. So, l is the left bound and r is the right bound.

The methods we have implemented in this library are:

- toString() - which transforms the interval object into a string so that it can

be represented or compared;

BUPT

239

- intersection(a) - realizes the intersection between the object this and the

object a that it receives as a parameter;

- union(a) - realizes the reunion between the object this and the object a that

it receives as a parameter;

- difference(a) - realizes the difference between the object this and the object

a that it receives as a parameter.

These methods have been reused in AGLOs aimed at solving inequalities. We

managed to achieve this reuse because the solution of an in-equation is an interval.

7.2.3. The JavaScript Library for Data Structures and

Algorithms

To be able to create all the AGLOs FOR Data Structure and Algorithms

discipline, we have created some JavaScript libraries. They individually target one of

the desired topics, i.e. a sort, or an order. In the case of linked lists, however, it took

several libraries to be able to obtain both a string shape and a graphic shape.

The JavaScript Libraries for Searching Algorithms

For the four search algorithms we made the following libraries:

- BinarySearch.js;

- LinearSearch.js;

- InterpolationSearch.js;

- SentinelLinearSearch.js.

The name of each is chosen suggestively for better reuse and ease in further

development.

Each of these libraries contains a constructor function and a getSteps()

function. The getSteps() returns the steps of the targeted algorithm, memorize as

strings. Each stage is represented as one step at a time.

For the linear search, the library contains a constructor for initializing

linear_search objects and a getSteps() function. The constructor function is called

with two parameters, the first represents the string in which it is sought and the

second the element that is sought.

The getSteps() function returns the steps of the algorithm, namely on each

row is written the value of the index of the table that is compared with the searched

element, the value of the element, and the result of the comparison that can be yes

or no. If for example the index is 0, the value of tab[0] is 8, and the value of the

searched element is 3, then the first step of the linear search will have the following

representation: i = 0 tab[0] == 3? 8 == 3? not.

For the linear search with sentinel, the library contains a constructor for

initializing SentinelLinearSearch objects and a getSteps() function. Because this

algorithm is an improved version of the linear search algorithm, the functions used

are similar.

The BinarySearch.js contains three functions:

- the constructor function with which the binary_search objects are initialized;

- the getSteps() function that returns a string containing the steps of the

algorithm;

BUPT

240

- the belongs(element, array) function that checks if an element belongs to

an array and returns a Boolean value.

A step in the binary search algorithm has the following form: s = 0, d = 5, m

= 2 20> 16, where s represents the position of the left element, d the position of the

right element, m the position of the middle element, and 20 and 16 represent the

values of tab[m], respectively of the searched element.

For interpolation search, we created a library that contains a constructor

function needed to initialize interpolation_search objects and a getSteps() function.

Each step of the interpolation search is of the following form: s = 0 d = 9 m = 3 67

= 67, where s represents the position of the left element, d the position of the right

element, m the position of the pivot, and 67 and 67 represent the values of tab[m],

respectively of the searched element.

The JavaScript Libraries for Sorting Algorithms

Regarding the sorting algorithms, also in their case, we made libraries named

suggestively with the name of the targeted algorithm.

For the sort algorithms, the getSteps() function aims to obtain all the steps of

the algorithm, i.e. the intermediate variants through which the string passes during

the sorting through the respective algorithm.

 The InsertSort.js library and the SelectSort.js library contains two functions:

a constructor function for initializing insert_sort objects, respectively select_sort

objects and a getSteps() function that returns all intermediate variants of the string

until it is sorted.

 The BubbleSort.js contains the following functions/methods:

- the constructor function required to initialize bubble_sort objects,

- getSteps () function for obtaining algorithm steps,

- thegetFirst() function which returns the first pair of elements to be

exchanged within the algorithm,

- thegetNoOfChanges() function that returns how many changes were made

in a single traversal of a table in one step of the bubble sort algorithm.

 The ShellSort.js contains the following functions:

- the constructor function required to initialize shell_sort objects,

- getSteps() function for obtaining the algorithm steps,

- thegetSeries() function that returns all series of a table for a given gap h,

- thegetFirstSerie() function that returns the sequence of states for the first

series that will be sorted independently for a given table and gap h.

For the quick sort algorithm, the specific library contains two functions: a

constructor function for initializing quick_sort objects and a getSteps() function that

returns all intermediate variants of the string until it is sorted.

The JavaScript Libraries for Linked Lists

Regarding the linked lists, we made five libraries for working with them.

There are three JavaScript libraries that we have made them represent a

linked list and are used for both random and ordered linked lists:

BUPT

241

- the LinkedListLink.js is useful for making graphical connections between list
nodes,

- the LinkedListNode.js which contains a constructor function for initializing a
LinkedListNode object, a function for graphically representing a node, and a function
for representing the node as a string,

- the LinkedListNodeShape.js which contains everything needed to graphically

represent the node of a list.

The other two libraries are made specifically for random linked lists and

ordered linked lists.

The RandomLinkedList.js contains:

- a constructor function for initializing random_linked_list objects,

- three functions fillWithIntegers(), fillWithFloats() and fillWithChars() that

randomly generate a list whose information field contains elements of integer, float

or character type, respectively,

- atoString() function that returns the representation of the random linked list

as a string,

- acomputeSVG() function that calculates the data needed to represent the

existing random linked list,

- atoSVG() function that generates the graphical representation of the random

linked list,

- anadd(location) function that returns a new list obtained by adding to the

existing one a node in the position given by the location parameter,

- an add_pos(location, poz) function that returns a random list obtained by

adding to the existing one a node in the location position, which can be before or

after, referring to the element on the poz position in the list,

- adelete(poz) function that removes from the random linked list the item

from the poz position,

- a delete_pos(poz, option) function which, depending on the value of the

options parameter, deletes the element before or after the element on the poz position

in the random linked list,

- anode(poz) function that returns the node that has the poz position in the

random linked list.

The OrderedLinkedList.js contains:

- a constructor function for initializing ordered_linked_list objects,

- two functions fillWithIntegers() and fillWithFloats() that randomly generate

an ordered linked list whose information field contains elements of integer or float

type, respectively,

- atoString() function that returns the representation of the ordered linked list

as a string,

- atoSVG() function that generates the graphical representation of the ordered

linked list,

- awhere_to_add() function that returns the position where a node must be

added for the linked list to remain ordered, namely at the beginning, at the end or

inside,

- anadd() function that returns a new ordered linked list obtained by adding

a node to the existing one.

For the random double linked lists, we made four libraries. Three of these, as

in the previous case, are realized to have the necessary tools for the representations

BUPT

242

of the lists, namely DoubleLinkedListLink.js, DoubleLinkedListNode.js, and

DoubleLinkedListNodeShape.js.

The fourth RandomDoubleLinkedList.js library contains the following

functions/methods:

- a constructor for initializing random_double_linked_list objects,

- fillWithIntegers() for randomly generating a random double linked list whose

key fields contain integer information,

- fillWithFloats() for randomly generating a random double linked list whose

key fields contain float information,

- fillWithChars() for randomly generating a random double linked list whose

key fields contain character information,

- toString() to represent the double linked list as a string,

- computeSVG() for the calculation of the data necessary for the graphical

representation of the double linked list,

- toSVG() for graphical representation of double linked lists,

- add() to add to the beginning or end of the double linked list depending on

the desired option,

- node(pos) to return the node at the pos position in the double linked list,

- add_pos(pos) to add to the double linked list a node before or after the node

located on the pos position,

- delete(pos) to delete the item from the pos position in the double linked list.

7.2.4. The JavaScript Library for Design and Analysis of

Algorithms

To make these AGLOs that aim to work with trees, we made four libraries,

each one being named in such a way as to highlight what it was created for.

The following libraries: Circle.js, Line.js, and TreeNode.js, have a role in

making the graphical representation of the tree. In the Circle.js the functions

necessary for the representation in the form of a circle of a node of a structure are

found. In the Line.js library, you will find the necessary functions for making arches

between nodes. These libraries are generally made to be able to be used to represent

other structures than trees, namely graphs.

 The fourth library is called Tree.js and contains all functions specific to working

with trees in the scenarios we imagined. Functions are:

 - the constructor function which generates a tree according to the parameters

set in the object argument,

- the function toSVG()which generates the graphical representation of the

tree,

- the function height() which calculates and returns the height of the tree,

- the function index(key) which returns the order of a node knowing its key,

- the function getKey(index) which computes the key of a given index,

- the function getNodDegree(index) which computes the nod degree of a given

index,

- the function allNodsDegrees() which returns as a string all the nodes of the

tree and their degrees,

BUPT

243

- the function getArrayKeys() which returns the tree keys as an array,

- the function getChildParent() which returns as a string all the pairs of shape:

node - father node in the tree,

- the function tree_parentIdList() which computes the list of parent ids,

- the function tree_firstChildIdList() which computes the list of first child

applied for each node,

- the function tree_levels() which computes the multiline representation of a

tree by levels,

- the function inorder() which returns the traversal of the tree in inorder,

- the function preorder() which returns the traversal of the tree in preorder,

- the function postorder() which returns the traversal of the tree in postorder.

7.2.5. The JavaScript Library for Operating System

In order to be able to create all the AGLOs presented in this chapter, we have

created several JavaScript libraries.

The name of each is chosen suggestively for better reuse and ease in further

development.

The File.js library contains the following functions: the constructor function,

the setRandomName function, and the toString function. The constructor function has

the role of creating a tab object. The setRandomName function initializes a file name

out of 26 possible, followed by a natural two-digit number with an extension of ten

possible variants. Such a combination guarantees a great diversity of possible names,

over twenty-five thousand. The toString function transposes the file name in string

format so that it can be represented in applications.

The Folder.js library is made on the same principle as the previous one. It

contains three functions:

- the constructor function has the role of creating a folder object,

- the setRandomName function initializes a folder name out of 26 possible,

followed by a natural two-digit number, thus providing over two thousand five

hundred possible names,

- the toString function transposes in string format the folder name so that it

can be represented in applications.

The FolderTree.js library contains the following functions:

- the constructor function that performs a hierarchy of folders up to five levels,

- the preorderOnNodes() function, to generate the display of the preorder

folder tree using * and nodes,

- toMkdirPathsString() function, iterates folder paths and chains the mkdir

command,

- toMkdirCdPathsString() function, to create individual folders,

- toTouchPathFilesString(), to populate the folder tree with files using the

touch path on the folder paths,

- the toPathFilesString() function, to populate the folder tree with files using

the touch command that moves in each folder,

BUPT

244

- the iterateTerminalNodes() function, to iterate the pre-command terminal

node folders and store each path in the tree returns in the path argument the path-

filled array,

- the iterateAllNodes() function, to iterate all nodes in the pre-order,

- the toString() functions for each of the above to translate the result into a

form that can be returned to the student, namely as a string.

7.3. Summary

In this chapter, we have presented the DSEL platform where students can

access the AGLOs made by us. They can log in to the platform with a G-mail address

or a Facebook account.

Next, we presented the domain specific JavaScript libraries that we have

created in order to be able to create the AGLOs presented in chapters 4 and 5.

BUPT

245

8. VALIDATION OF AUTO-GENERATIVE
LEARNING OBJECTS

8.1. Case Study for Fractions AGLOs

T-tests are basic tests for the analysis of continuous data. We chose to use a

T-test to determine if there is a significant difference between a student's classical

grading and the grading with the help of our AGLOs.

A t-test allows us to compare the average values of the two sets of notes and

determine if they have major differences between them.

The test takes a sample from each of the two sets and establishes the

statement of the problem by assuming a null hypothesis that the two means of

evaluation are similar. Based on the applicable formulas, certain values are calculated

and compared with the standard values, and the assumed null hypothesis is accepted

or rejected accordingly.

Calculating a t-test requires three key data values. These include the

difference between the mean values from each data set, the standard deviation, and

the number of data values.

To perform the statistical analysis regarding the application of the AGLOs

targeting middle school arithmetic, we applied them to a sample of 12 students.

Student ID Grades using

AGLOs

Grades in classical

teaching

1 9 10

2 7.75 8

3 5.3 7

4 7 9

5 5.5 6

6 8.3 8

7 8 8

8 7.5 7

9 8 8

10 4 5

11 10 9

12 5.5 6

Table 8.1. Grades obtained in the two types of assessments

Table 8.1 shows the grades obtained by students in the classical version, as

well as after the use of these auto-generative learning objects.

The F score is a measure of the accuracy of a test. The first thing to do is to

state the affirmation of the null hypothesis, namely there is no significant difference

between the two evaluations.

The F score is often used in machine learning [5]. F-measure is the harmonic

mean of recall and precision. The precision is the fraction of relevant instances among

BUPT

246

the retrieved instances, while recall is the fraction of the total amount of relevant

instances that were retrieved.

True Positive True Negative

11 0

0 1

False Positive False Negative

Fig.8.1. Contingency table: false positive, false negative, true positive, and true negative

values of the grades

In Figure 7.1 we divided the marks obtained in an error matrix. We will discuss

the possibility that the use of AGLOs does not distort the reality of learning

assessment.

A p-value of less than 0.05 will indicate that there is less than a 5% chance

that a significant change in grades will be due to the use of learning objects in

teaching. Therefore, there is a 95% chance that learning objects will effectively

support the learning process.

According to the collected data, the average decrease obtained is 0.42.

From the standard deviation, one can calculate the standard error (SE) this

being 0.25.

The value of t is the test statistic of the t-test and is calculated as follows t =

0.42 / 0.25 = 1.68.

The p-value is less than 0.002.

We can conclude that the application of generative auto-learning objects leads

to a real evaluation of the student.

In terms of positive identification, it can be calculated the precision which in

our case is equal to 1.

To identify what proportion of real positives has been correctly identified we

will calculate the recall which in our case is equal to 0.91.

Accuracy is one metric for evaluating classification models. Informally,

accuracy is the fraction of predictions our model got right. In our case, according to

the data presented in Figure 8.1, the accuracy comes out to 0.91, or 91%.

The purpose of the questionnaire applied to sixth graders who used learning

objects made by us was to find out the students' willingness to use the online

environment in their learning activity and to determine the degree of satisfaction

offered by the interactive objects.

The questionnaire was composed of 10 questions structured on two existing

areas at the individual level of the possibility to learn online from home, the impact

of auto-generative learning objects.

Next, we will analyze the results obtained for each area of interest.

Regarding the possibility of each student using a gadget in the learning

process, most students said that 75% use the tablet, laptop, or phone in learning

activities, while 25% do not use them.

BUPT

247

Fig.8.2. The degree of use of gadgets by students

Regarding the degree of appreciation on self-generative learning objects, the

result of the questionnaire was the following: a significant percentage of 67% of the

respondents said that this approach is interesting and that they would like teachers

to integrate them into their e-learning materials, and 8% of them considered it not

useful in their learning process.

Fig.8.3. The degree of interest of the students on the LOs

Following the diagrams above, it can be seen that currently the learning

activity is carried out in the online environment, it is based on independent activity

and the dynamic objects are appreciated by the students.

BUPT

248

8.2. Case Study for Intervals, Equations and
Inequations AGLOs

In this section, we will present the statistical analysis of the results obtained

for a group of 8th-grade pupils. We applied a test with these 9 AGLOs on a group of

50 pupils. Also, to the same group of pupil, we applied a classic test.

Analyzing the data obtained, we found that the difference between marks is

over 1 in a single case, and we obtained identical grades in 24 of the cases. We apply

the t-test for assessing the statistical significance of the difference between the two

evaluations.

The hypothesis proposed for evaluation is: the chances that these learning

objects do not really reflect the level of knowledge acquired by pupils are less than

5%.

After comparing the marks obtained from a classical test with those obtained

by evaluation with AGLO, we had as a result the standard deviation (SD) having a

value of 0.75, and the standard error (SE) having a value of 0.11. According to the

values obtained, the value of t, which measures the size of the difference in relation

to the variation of our data, is 1,88. The t distribution probability percentage, the p-

value is 0.03. A p-value less than 0.05 means that there is no significant difference

between the marks obtained by the two assessments.

In the evaluation of the pupils, we applied a test consisting of nine AGLOs

having as learning objectives:

i. Calculate intervals intersection;
ii. Calculate intervals reunion;
iii. Calculate intervals difference;
iv. Solving modulus based equation;
v. Solving modulus based inequation;

vi. Solving inequation of different forms.
A group of 50 pupils answered the AGLOs and fulfilled a face-to-face test on

the previously listed learning objectives.

In order to determine the accuracy of the approach, we will compare the two

result sets. We focus on the pupil pass/fail classification accuracy. The grades under

5 mean failure and grades above 5 mean passing. We study the confusion matrix (see

Figure 8.4) obtained by comparing the grades from AGLOs based assessment with

the grades from the face-to-face assessment.

In creating the confusion matrix, we considered the following:

- false negative (FN) - a pupil who in the classical evaluation has a grade below
5 and in the evaluation with AGLOs has a grade above 5;

- false positive (FP) - a pupil who in the classical evaluation has a grade above
5 and in the evaluation with AGLOs has a grade below 5;

- true negative (TN) - a pupil who in the classical evaluation has a grade below
5 and in the evaluation with AGLOs he also has a grade below 5;

- true positive (TP) - a pupil who in the classical evaluation has a grade over 5

and in the evaluation with AGLOs he also has a grade over 5.

BUPT

249

Fig.8.4. The confusion matrix

Having established these, we can calculate the accuracy. Accuracy is

calculated according to the formula [68]:
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑁 + 𝑇𝑃 + 𝐹𝑃

Therefore, the accuracy of the approach has a value of 98% for the pass/fail

hypothesis. This value is a high enough number for the model to be considered

‘accurate’.

However, we will calculate further the precision and the recall. The precision

or positive predictive value is defined as the percentage of TP number out of the

number of all positives (TP + FP). In our case, the precision has the value 1. This

value is very good because it indicates that any pupil who has a grade above 5 in this

assessment, means that he is indeed a pupil whose level of knowledge is above grade

5.

The recall or the true positive rate is defined as the percentage of TP number

out of TP + FN. The recall has a value of 0,978. This measure tells us how well we

can identify pupils who have not accumulated the necessary knowledge to obtain a

grade above 5. So, with the help of this model, we can identify pupils with poor

knowledge with a correctness of about 98%.

F1 score is the harmonic mean of precision and recall. In our study, the F1

score has a value of 0,989. We consider this to be a good result.

BUPT

250

Fig.8.5. The questionnaire answers to the second and third questions

In order to receive feedback from pupils on the appreciation of these types of

exercises, we chose to apply a satisfaction questionnaire. 41 pupils out of the 50 who

used AGLOs answered the questionnaire. The questionnaire includes six closed

questions and one open question. A set of questions was designed to investigate the

usage of computing devices by the pupils. It turned out that 75% of them are using

laptops or desktop computers.

In the followings, we will analyze only the questions that refer strictly to

AGLOs and their use. Pupils were asked if it is easy for them to access and use these

types of exercises. In this question, 17 of the interviewed pupils considered that the

AGLOs are very easy to use, and 24 of the pupils considered that they are neither

difficult nor easy to use (see Figure 8.5). Regarding their appreciation, 7% of the

pupils did not like the AGLOs, while 93% were very excited about them.

Regarding their usefulness, pupils were asked if they found them useful for

the process of knowledge accumulation or in the assessment. To this question, 61%

considered that they would be more useful in the evaluation, and 34% considered

that they would be more useful in practicing the Arithmetic notions.

BUPT

251

Fig.8.6. The questionnaire answers to the last two questions

In the open-ended question, pupils were asked: what do they think should

change in these exercises. Four pupils felt that the way their answer was assessed

could be changed, as they encountered problems in not following the punctuation.

Regarding the pupils' desire to use AGLOs, after this experiment, we found

out that 90% of the pupils would like to interact with them, but only 75% would like

them for other disciplines (see Figure 8.6).

Since no pupils considered difficult to use these types of exercises, we can

conclude that they represent accessible learning materials and that they delighted by

them. In addition, they consider AGLOs useful and express their desire to have more

learning activities in which to use them.

8.3. Summary

In this chapter, we have presented two case studies of using AGLOs.
First, we used the AGLOs to deepen and evaluate the notions related to

fractions in the sixth grade. We evaluated the model comparing the evaluation with

the marks obtained by the students at a classical evaluation. After calculating the F
score of the test, we can say that the evaluation with AGLO reflects the real value of
the level of acquisition of the student's knowledge.

BUPT

252

Next, we applied in the teaching-evaluation process to the eighth grade
AGLOs that refer to operations with intervals and inequalities of different types. To
determine the accuracy of the model and in this case we compared the grades
obtained by students in two tests, one face-to-face and one using AGLOs. In this case,
the result was good.

We also applied satisfaction questionnaires to students to get feedback.

Following the answers received, we can conclude that AGLOs are a type of exercises

appreciated by students, and which they desire in the instructive-educational process.

BUPT

253

9. CONCLUSIONS AND PERSPECTIVES

9.1. Conclusions

In the state of the art of this thesis, we can conclude that learning and

teaching in education have faced significant challenges. Designing learning

experiences that successfully integrate digital tools is still a real issue. The use of

AGLOs in the teaching-evaluation process could be one of the solutions.

In order to design LOs, we carried out a review of the LO literature, an

inventory, and a comparison of the existing approaches. LOs have several definitions

and models designed in different directions: pedagogical, technical, and economic.

The IEEE model was made to facilitate the use and distribution of LOs. SCORM

facilitates the provision of a very general model on which a certain type of LO can be

built and offers a high level of flexibility because it does not require the organization

of the content in a certain way. Cisco was developed as a strategy for developing and

implementing reusable learning objects (RLOs). The Dublin Core model provides a

simpler set of elements that overlap with IEEE LOM and is useful in sharing metadata

for the specific needs of the educational community. The Learnativity content model

was developed as a model with a fixed number of granularity levels and is a basis for

extending the learning content architecture. NLOs were created to operate on the

National Education Training Group's own LMS prototype. ALOCoM was built as a model

that allows the generalization of other standards such as Learnativity, SCORM, or

NETg. H5P is an open-source tool used to facilitate the creation of various interactive

activities that can be integrated into different sites or platforms.

The sequencing of LOs is a method designed to give students individualized

material. LOs are seen as small reusable learning units that can be grouped to get a

lesson or a course by using artificial intelligence techniques. A different theory

proposed for LOs to be more efficient is to improve them with the help of notions of

object-oriented design, so the OOGLOM model was developed. Another approach is

the one used for the implementation of the CLAVIRE e-Science platform as a basis for

hybrid learning resources (HLR), these hybrid objects being mapped and represented

as a cloud package.

From the studied materials, we realized that we can improve teaching and

learning through the use of ICT. However, to achieve maximum impact, a new

generation of LOs was needed. The basic idea of the GLO concept is to achieve a

successful LO with the ability to reuse, not necessarily focusing on the content. The

GLOs designed by Tom Boyle are design models implemented as rich reusable

pedagogical templates. Another approach to GLOs was that of Damasevicius and

Stuikys, namely a knowledge-based model expanded with meta-programming

technologies.

In the study, we did for the thesis we also focused on two of the Moodle

plugins, namely Moodle Coordinate Questions and Moodle Calculated Questions. They

use the GLO principles by creating a template that contains static text blended with

variables. The variables are replaced at instantiation time with randomly generated

values in a certain interval.

BUPT

254

Based on the comparison of the existing LO models, we concluded that the

advantages that AGLOs offer motivates us researching their design and

implementation. Based on the comparisons we can conclude that AGLOs are templates

accessible from any device, which provides feedback and automatic assessment. They

are dynamic exercises because they are made of blending static text with variables,

these variables being automatically instantiated with random values at each

instantiation. They can be used both in the evaluation and in the learning process for

practicing STEM concepts.

In order to create an AGLO, it is necessary to follow a few steps that we have

grouped into an algorithm. The tutor must choose a learning objective, to carry out

an exercise that sees that objective. In the created exercise, the tutor has to identify

the input data, the intervals in which they could be randomly generated, to identify

the intermediate data, their type, and if a specific function is needed for the

calculation. The tutor must identify the algorithmic steps in which the answer is

calculated. He must also choose the intervals according to the desired degree of

difficulty for the exercise. He must perform object instantiation testing to determine

any non-compliant or incorrect cases that may occur.

The AGLO model is defined using the EBNF meta-language. From a structural

point of view, each ALGO consists of six sections: name, scenario, theory, question,

answers, and feedbacks.

Regarding the disciplines we approached, we can conclude that AGLOs are

pedagogical models that can model several concepts in the area of STEM disciplines.

We managed to apply this model to disciplines like: Middle School Arithmetic, Data

Structures and Algorithms discipline, Algorithm Analysis, and Design discipline, and

System Operating discipline.

For the Arithmetic discipline, we chose to approach the subject of fractions

where we designed AGLOs for an entire chapter from the manual of the fifth-grade

curriculum. Regarding the fractions, we made AGLOs dealing with the classification of

fractions, amplification and simplification of fractions, operations with fractions,

transformations of fractions, and addition of integers in the fraction, removal of

wholes from the fraction. We also addressed eighth-grade Arithmetic on interval

operations, solving modulus equations, solving modulus inequations, solving several

types of inequalities, and applying abbreviated calculation formulas and factor

decompositions according to formulas.

For the Data Structures and Algorithms discipline, we have made AGLOs for

several types of searches and different sorting methods, namely insertion search,

selection search, bubble sort, shell sort, and quicksort. We have also developed AGLOs

aimed at working with simple linked linear lists and double linked linear lists. In the

case of lists, the exercises aimed at recognizing the successor or predecessor of an

element, adding a node before or after a given element, adding it to an ordered list,

deleting a node according to a certain criterion.

For the Algorithm Analysis and Design discipline, we created AGLOs regarding

the notions of tree and graph. These are aimed at the correct knowledge and proper

use of specific notions, at traversing trees in preorder, postorder, and inorder, at

constructing the adjacency matrix and the adjacency structure corresponding to a

graph.

BUPT

255

For the System Operating discipline, we have created AGLOs aimed at

knowing the commands for working with folders, the commands for working with files,

the commands for controlling processes, the commands for partitioning the disk, the

administrative commands, as well as some basic network commands.

Thus, we managed to create 34 AGLOs targeting arithmetic notions, 97 AGLOs

for Data Structures and Algorithms discipline, 17 AGLOs for Algorithm Analysis and

Design discipline, and 27 AGLOs for Operating Systems discipline.

To fulfill the imagined learning scenarios we implemented domain specific

JavaScript libraries. Thus, we developed five libraries modeling 42 reusable concepts

containing the necessary functions and methods.

In order for students to be able to access the AGLOs, we use a web platform.

Students can access the platform using a Gmail or Facebook account.

Regarding the AGLO application in practice, we conducted two case studies

for the fifth and eighth grades.

In the first case study, we applied in the learning-assessment process of 12

pupils, AGLOs aimed at working with fractions. The hypothesis proposed by us is that

the grading of students using AGLO will reflect the value of the acquisition reached by

the student. According to the collected data, the calculated p-value was less than

0.002. Thus, our hypothesis has been achieved.

In the second case study, we applied a set of nine AGLOs for the evaluation

process of 50 eighth-grade pupils. The hypothesis proposed by us is that the chances

that these learning objects do not reflect the level of knowledge acquired by pupils

are less than 5%. In this case, based on the collected data, the calculated p-value

was 0.03.

From the surveys, we learned that the students were very interested in these

types of learning objects and showed their openness to do activities that use AGLOs.

We can summarize that AGLOs are templates easy to use by students,

accessible from any device, which provides feedback and automatic evaluation. They

can be used both in the evaluation process and in the learning process for practicing

STEM concepts.

We consider that AGLOs are learning tools that could help us to increase the

quality of online education, by providing feedback to the student and automatic

evaluation of the response.

9.2. Meeting the Objectives

The doctoral research performed in this theses had as main goal the

development and implementation of an AGLO-based approach meant to facilitate

learning and automatic assessment for STEM disciplines. This doctoral thesis is in the

sphere of general interest concerns in the field of eLearning, improving the quality of

education through the integration of ICT. The treated topic represents a complex and

topical scientific approach with a strong interdisciplinary character, being able to be

used in the educational activity.

In an exhaustive enumeration, the personal contributions brought by the

author, following the research carried out during the doctoral studies, are the

following:

BUPT

256

1. We developed an abstraction algorithm to create AGLO templates. In this

sense, eleven steps have been merged that can be followed by any teacher to create

reusable AGLO templates. The abstraction-based methodology was published in [69].

2. We made 175 AGLOs on several notions from STEM disciplines to show the

wide applicability of this model. In this sense, we have implemented the following:

- 21 AGLOs for working with fractions, in fifth grade, published in [70];

- 13 AGLOs for eighth-grade Arithmetic, published in [71];

- 97 AGLOs for Data Structures and Algorithms discipline, published in [72];

- 17 AGLOs for Algorithm Analysis and Design discipline, published in [73];

- 27 AGLOs for Operating Systems discipline, published in [74];

3. A number of five domain–specific JavaScript libraries was developed to model

the targeted concepts. These libraries contain the functions and methods necessary

for the implementation of the proposed AGLOs.

4. We conducted a study on a group of 12 fifth graders to investigate the

effectiveness of learning compared to classical approaches. In this sense, we used

AGLOs in the process of learning and evaluating the notions related to fractions. We

used specific metrics to compare the results obtained in the evaluation with AGLOs

and in the classical evaluation. Statistical data obtained were published in [70].

5. We conducted a study of a group of 50 8th graders to determine whether the

AGLO's automatic assessment mechanisms are very close to the tutors' assessment.

In this sense, we applied to the class two evaluations, a classical evaluation and an

evaluation using AGLO. Statistical data obtained using specific metrics were published

in [75].

The researches undertaken during the doctoral studies allowed the elaboration

and publication, as first author, of a number of 8 articles published in the volumes of

some international scientific conferences, indexed by ISI, which are found in the

bibliography.

9.3. Future Work

As future work, we would like to extend our approach to a larger number of

STEM disciplines and their concepts. This implies abstracting generic models from

exercises imagined for the fundamental concepts from:
- Arithmetic, notions from 6th and 7th-grade curriculum;
- Geometry, notions like triangle, square, rectangle, circle - specific elements,

calculations of areas and perimeters;
- Medicine schools disciplines like statistics notions and some formulas applied

in the high school biology;

- Mechanics, formulas for university courses and application at seminars and
laboratories;

- Civil constructions, formulas, and notions for university courses and
application at seminars and laboratories;

- Chemistry, reaction equations, formulas, and notions for high school
curriculum;

- Physics, formulas, and notions for high school curriculum.

BUPT

257

Another direction is to develop a way to integrate AGLO into an LMS or to
make a mobile application for these objects.

Another challenge is to make these designs accessible to tutors through a tool
that permits the creation and adaptation of AGLOs. An AGLO designer could have a
friendly graphical interface that allows tutors to create and/or modify their objects. It
could also provide a translation into several languages such as English and French.

 The correct use and creation of AGLOs would also require the development of

tutorials. Tutorials could be made on several levels depending on the needs of the
tutors: just use, modify existing objects, and create your own objects.
 Another direction that publishes the code/prototype with an open-source
license.

We consider that our model is at the TRL4 [58] level because it was tested in
a laboratory environment and two practical situations. Through the future activities

that we propose in our future work, we consider that it will move to TRL5, as we will
be able to complete other relevant validations in the practical environment.

BUPT

258

BIBLIOGRAPHY

[1] M. White, "Synthesis of research on electronic learning," Educational

Leadership, no. 40(8),p. 13-15, 1983.

[2] T. S. C. Learning, Draft Standard for Learning Object Metadata. IEEE Standard

1484.12.1, New York: Institute of Electrical and Electronics Engineers, 2002.

[3] "Advanced Distributed Learning Initiative,SCORM, [Online]," Available:

https://www.adlnet.gov/adl-research/scorm [Accessed: 28-05-2018], 2001.

[4] LTSC, "Ieee standard for learning object metadata. Technical report, IEEE,"

[Accessed: 28-05-2018], 2002.

[5] "IMS Learning Design," Available: http://www.imsglobal.org/learningdesign/

index.html [Accessed: 20-01-2021], 2003.

[6] "Learning Resource Metadata Initiative," in Avaible:

https://www.dublincore.org/ specifications/lrmi/1.1/ [Accessed 18-04-2018].

[7] C. Systems, Reusable Information Object Strategy. Version 3.0, 1999.

[8] B. Davis, C. Colleen and E. Wagner, The Evolution of the LMS: From

Management to Learning, Sage Road Solutions, LLC, 2009.

[9] Moodle, Releases - MoodleDocs, Available: docs.moodle.org. [Accessed 18-04-

2018].

[10] M. Kunkel, The official ILIAS 4 practical book, München : Auflage. Addison-

Wesley, 2011.

[11] „ About Canvas | Edtech Learning Platform | Instructure,” 2013.

[12] C. B. Chirila, "Auto-generative learning objects in online assessment of data

structures disciplines," in BRAIN - Broad Research in Artificial Intelligence and

Neuroscience, Bacau, Romania, 2017.

[13] D. Robertas and Š. Vytautas, "On The Technological Aspects of Generative

Learning Object Development," Springer, 2008.

[14] T. Boyle, „Design principles for authoring dynamic, reusable learning,” 2003.

[15] T. Boyle, „The desing and developement of second generation learning ogjects,”

World Conference on Educational Multimedia, Hypermedia &

Telecommunications, Orlando, 2006.

[16] T. Boyle, "Generative learning objects (GLOs): design as the basis for reuse and

repurposing," London Metropolitan University, London, 2009.

[17] R. Damasevicius and V. Stuikys, "Specification and Generation of Learning

Object Sequences for E-learning Using Sequence Feature Diagrams and

Metaprogramming Techniques," 2009.

[18] Š. Vytautas and D. Robertas, "Towards knowledge-based generative learning

objects," Information Technology and Control, vol. 36, no. n2, 2007.

[19] W. Hodgins, "The Future of Learning Objects," Vols. Vol. 46, No. 1,, 2006.

[20] A. Chiappe, Y. Sergovia and H. Rincon, "Toward an instructional design model

based on learning objects," Education Tech Research Dev55:671-681, 2007.

BUPT

259

[21] T. Boyle, J. Cook, R. Windle, H. Wharrard, D. Leeder and R. Alton, "An agile

method for developing Learning Objects," Paper presentation, ASCILITE

conference, Sydney, Australia, 2006.

[22] D. Rehak and R. Mason, "Engaging with the Learning Object Economy,"

Littlejohn, Alison, Reusing Online Resources: A Sustainable Approach to E-

Learning, pp. 22-30, London, 2003.

[23] J. San Diego, D. Laurillard, T. Boyle, C. Bradley, D. Ljubojevic, T. Neumann and

D. Pearce, "Towards a user-oriented analytical approach to learning design,"

ALT-J, Research in Learning Technology, vol. 16, no. 1, pp. 15-29, 2008.

[24] "Advanced Distributed Learning Initiative,Experience API, [Online]," Available:

http://adlnet.gov/adl-research/performance-tracking-analysis/ experience- api

[Accessed: 28-05-2018], 2011.

[25] T. Boyle, „Layered learning design: Towards an integration of learning design

and learning object perspectives,” Computers & Education, vol. 54, nr. n3,

2010.

[26] M. Gruene, K. Lenz and A. Oberweis, Pricing of Learning Objects in a Workflow-

Based E-Learning Scenario, The 38th Hawaii International Conference on

System Sciences, 2005.

[27] „IMS specifications,” 2014.

[28] M. I. Dublin Core, „Innovation in metadata design, implementation & best

practices,” Avaible: http://dublincore.org/documents/dces/ [accessed: 19-07-

2018], 2010.

[29] E. D. Wagner, Steps to Creating a Content Strategy for Your Organization, The

eLearning developers’ journal, October 2002.

[30] C. Allen and E. Mugisa, "Improving Learning Object Reuse Through OOD: A

Theory of Learning Objects," Journal of Object Technology, ETH Zurich, 2010.

[31] J. L'Allier, Frame of Reference: NETg's Map to Its Products, Their Structures and

Core Beliefs, Whitepaper, 1997.

[32] K. Verbert and E. Duval, "ALOCOM: a generic content model for learning

objects," Int J Digit Libr 9:p. 41-63, 2008.

[33] A. C. A. Buccella and N. Brisaboa, An ontology approach to data integration,

vol. 3, Journal of Computer Science & Technology, 2003.

[34] C. Ullrich, The learning-resource-type is dead, long live the learning-resource-

type!, Learn. Objects Learn. Des. 1(1), 7–15, 2005.

[35] W. Ceusters and L. Bouquet, Language engineering and information mapping in

pharmaceutical medicine, J. Belg. Med. Inform. Assoc. 7(1), 26–34, 2000.

[36] Z. Homanová and T. Havlásková, H5P interactive didactic tools in education,

Palma, Mallorca, Spain: EDULEARN19 Conference, 2019.

[37] H5P, "H5P documentation".

[38] R. Ellis, Field Guide to Learning Management, ASTD Learning Circuits, 2009.

[39] Desire2Learn, "Blackboard Digital Content," http://www.desire2learn.com/,

Online; accessed 22-Aug-2020.

BUPT

260

[40] R. Jones and T. Boyle, "Learning Object Patterns for Programming," Informing

Science Institute, London, 2007.

[41] T. Boyle și C. Bradley, „ User Guide for the GLO Maker 2 Authoring Tool,” 2009.

[42] M. A. K. Halliday, Learning how to mean., UNESCO: In Lenneberg E.H. (Ed.)

Foundations of language development, 1975.

[43] T. Boyle and A. Ravenscrof, Context and deep learning design,

Elsevier,Computers & Education 59, 2012.

[44] V. Štuikys, R. Burbaite and R. Damasevicius, "Teaching of Computer Science

Topics Using Meta-Programming-Based GLOs and LEGO Robots," Vilnius

University, vol. 12, no. No. 1, 2013.

[45] R. Damaševičius, "Towards Empirical Modelling of Knowledge Transfer in

Teaching/Learning Process," DOI: 10.1007/978-3-319-11958-8_29, 2014.

[46] V. Stuikys, R. Burbaite, K. Bespalova, T. Blazauskas and D. Barisas, "Stage-

Based Generative Learning Object Model for Automated Content Adaptation,"

Baltic J. Modern Computing, vol. 5, no. No.2, 2017.

[47] B. C. Chirila, "A comparision of MCQ and AGLO generative learning object

models," Annals of the Faculty of Engineering Hunedoara, vol. 13, no. 4, pp. 37

- 41, 2015.

[48] L. de-Marcos, J.-J. Martínez and J.-A. Gutiérrez, "Swarm Intelligence in e-

Learning: A Learning Object Sequencing Agent based on Competencies,"

GECCO’08, Atlanta, USA, 2008.

[49] P. Brusilovsky, „Adaptive and Intelligent Technologies for Web-based

Education,” Special Issue on Intelligent Systems and Teleteaching, 4.19-25,

1999.

[50] A. Claudine and E. Mugisa, "Improving Learning Object Reuse Through OOD: A

Theory of Learning Objects," Journal of object technology, 2010.

[51] K. Bochenina, A. Dukhanov, M. Karpova and V. Shmelev, "An approach to hybrid

learning resource design for training professionals in Computational Science,"

Procedia Computer Science , vol. 101, no. DOI: 10.1016/j.procs.2016.11.051,

pp. 439 - 448, 2016.

[52] K. Knyazkov, S. Kovalchuk, T. Tchurov, S. Maryin and A. Boukhanovsky,

"CLAVIRE: e-Science infrastructure for data-driven computing," Journal of

Computational Science 3, 2012.

[53] Sergey V. Kovalchuk, Pavel A. Smirnov, Sergey S. Kosukhin și Alexander V.

Boukhanovsky, „Virtual Simulation Objects Concept as a Framework for

System-Level Simulation,” nr. DOI: 10.1109/eScience.2012.6404413, 2012.

[54] A. Najat, "The importance of statistical tools for data evaloutions.," DOI:

10.13140/RG.2.2.34553.19042, 2020.

[55] Hypothesis Testing, https://courses.edx.org/c4x/

UTAustinX/UT.7.01x/asset/Chapter_12.pdf 16.

[56] Wasserstein, Ronald and Lazar, Nicole, "The ASA's Statement on p-Values:

Context, Process, and Purpose," The American Statistician, vol. 70, pp. 129-

133, 2016.

BUPT

261

[57] P. Pichot, Les Tests mentaux, Presses universitaires de France, 1991.

[58] NASA, "Technology Readiness Level," https://www.nasa.gov/

directorates/heo/scan/engineering/technology/technology_readiness_level,

[Accessed: 15-05-2021].

[59] I. ECMA, Standard ECMA-262 ECMAScript Language Specification 11th Edition,

https://www.ecma-international.org/publications-and-

standards/standards/ecma-262/, 2020.

[60] C. B. Chirila, H. Ciocarlie and L. Stoicu-Tivadar, "Generative Learning Objects

Instantiated with Random Numbers Based Expressions," in BRAIN. Broad

Research in Artificial Intelligence and Neuroscience, 2010.

[61] Cicu, I., David, E., Iacob, I. and Ceuca, R., Mathematics - 8th grade, Bucharest:

Intuitext, 2020.

[62] V. Cretu, Structuri de date si algoritmi. Notite de curs, Universitatea Politehnica

Timisoara, Facultatea de Automatica si calculatoare, 2020.

[63] T. Cormen, C. Leiserson și R. Rivest, Introduction to Algorithms, ISBN 0-262-

03141-8: The MIT Press, 2000.

[64] D. Knuth, The Art Of Computer Programming 3rd ed, Boston: Addison-Wesley

Professional, 2011.

[65] D. E. Knuth, Art of Computer Programming, Volume 3: Sorting and Searching

(2nd Edition), Addison-Wesley Professional, 2 edition, 1998.

[66] D. Knuth, Art of Computer Programming, Volume 1: Fundamental Algorithms

(3rd Edition), Addison-Wesley Professional, 1997.

[67] V. Cretu, Proiectarea si analiza algoritmilor. Notite de curs, Universitatea

Politehnica Timisoara, 2020.

[68] A. Tharwat, „Classification assessment methods: a detailed tutorial,” în Applied

Computing and Informatics, 2018.

[69] F. M. Costea, C. B. Chirila and V. I. Cretu, "Redesigning educational tools using

auto-generative learning objects," in ELearning and Software for Education

(ELSE), Bucharest, 2019.

[70] F. M. Costea, B. C. Chirila and V. I. Cretu, "Auto-Generative Learning Objects

for Middle School Arithmetic," in International Scientific Conference eLearning

and Software for Education, Bucharest, Romania, 2018.

[71] F. M. Costea, C. B. Chirila and V. I. Cretu, "Middle School Arithmetic Auto-

Generative Learning Objects to Support Learning in the Covid-19 Pandemic," in

In Proceedings of the IEEE 13-th International Symposium on Applied

Computational Intelligence and Informatics, Timisoara, 2021.

[72] F. M. Costea, B. C. Chirila and V. I. Cretu, "Auto-Generative Learning Objects

for Learning Linked Lists Concepts," in International Symposium on Electronics

and Telecommunications, Timisoara, Romania, 2020.

[73] F. M. Costea, B. C. Chirila, O. S. Chirila și V. I. Cretu, „On the Generation of

Random Data for Auto-Generative Learning Objects,” în IEEE 13th International

Symposium on Applied Computational Intelligence and Informatics, Timisoara,

Romania, 2019.

BUPT

262

[74] F. M. Costea, C. B. Chirila and V. I. Cretu, "Towards Auto-Generative Learning

Objects for Industrial IT Services," in The IEEE 12-th International Symposium

on Applied Computational Intelligence and Informatics, Timisoara, Romania,

2018.

[75] F. M. Costea, C. B. Chirila și V. I. Cretu, „A Use Case for Arithmetic Auto-

Generative Learning Objects in Pandemic,” în Else, Bucuresti, 2021.

[76] R. Burbaite, K. Bespalova, R. Damasevicius and V. Stuikys, "Context-Aware

Generative Learning Objects for Teaching Computer Science," International

Journal of Engineering Education, vol. 30, no. No. 4, 2014.

[77] K. Verbert and E. Duval, Towards a global architecture for learning objects:,

Lugano, Switzerland: The 16th ED-MEDIA 2004World Conference on

Educational Multimedia, Hypermedia and Telecommunications, 2004.

[78] E. Duval, W. Hodgins, D. Rehak and R. Robson, Learning objects symposium

special issue guest editorial, Journal of Educational Multimedia and Hypermedia,

2004.

[79] V. Štuikys and R. Damaševičius, Towards knowledge-based generative learning

objects, Information, Technology and Control, 2007.

[80] D. Lint, L. Maranda, B. Alina, N. Sorin, Z. Dan and Z. Maria, Matematica, manual

pentru clasa a opta, Bucharest: Ed. Litera, 2020.

[81] I. Cicu, D. Eliza, I. Ioana și C. Razvan, Matematica, clasa a VIII-a, Bucharest:

Ed. Intuitext, 2020.

[82] Ilias, Open Source e-Learning, ilias.de, 2017.

[83] F. M. Costea, B. C. Chirila and V. I. Cretu, "Designing E-Learning Content Using

AGLOs," in The 23rd International Conference on System Theory, Control and

Computing, Timisoara, Romania, 2019.

[84] C. B. Chirila, "Auto-Generative Learning Objects for IT Disciplines," in

Proceedings of the International Conference on Virtual Learning, Bucharest,

Romania, 2015.

[85] C. B. Chirila and P. Gaultier, "Metamodels for Auto-Generative Learning Objects

Dedicated to Unix Operating System Disciplines," in International Conference

on System Theory, Control and Computing, Sinaia, Romania, 2018.

[86] C. Holotescu, G. Grosseck, D. Andone, L. Gunesch, L. Constandache, V. D.

Nedelcu, M. Ivanova and R. Dumbraveanu, "Romanian Educational System

Response during the Covid-19 Pandemic," in Proceedings of the 16th

International Scientific Conference “eLearning and Software for Education” ,

Bucharest, doi: 10.12753/2066-026X-20-171, 2020, pp. 11 - 20.

[87] DCMI, "DCMI Grammatical Principles,," Avaible: www.dublincore.org/

usage/documents/principles/. [Accessed: 15-07-2018], 2018.

[88] Moodle Coordinate Question Plugin, "Tutorial and Documentation,"

https://code.google.com/p/moodle-coordinate-question/, 2015.

[89] C.-B. Chirila, "Towards the enhancement of AGLOs with SCORM and xAPI," in

The 13th International Scientific Conference eLearning and software for

Education, Bucharest, 2017.

BUPT

263

[90] D. Hillmann, "Using Dublin Core," in http://dublincore.org/

documents/usageguide/, 2003.

BUPT

		2021-08-20T12:41:32+0300
	Computerul meu
	DORIN LELEA
	Atest integritatea acestui document

