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Abstract

In the quantum computational framework, there are polynomial time solving algorithms
for problems having exponential classical solutions. The quest is - on one hand - to search
if there are other possible effective quantum algorithms and - on the other hand - to be able
to produce eflicient implementations for the already known algorithms. The most feasible
implementation of quantum algorithms is based on the quantum circuit (gate network) model.

Our work aims at bridging the gap between classical hardware CAD with design automa-
tion techniques, and quantum circuit design rules. This attempt would be extremely difficult
without the possibility of the efficient quantum circuit simulation. Thus, our first direction
was to try using Hardware Description Languages (HDLs) for simulating quantum circuits,
because their property of being able to describe - in a compact manner - the circuit with
both structural and behavioral (functional) architectures isolates the inner source of simula-
tion complexity: the entanglement. Our analysis showed that the probability of simulation
improvement just by using the HDL procedure is small. Therefore, we developed a special
algorithm for avoiding entangled state representations, the bubble bit technique, which is ef-
fective at least when dealing with specific algorithm states. Our simulation framework has
the ability of fault injection, in order to create incentive for validation of quantum circuit
fault tolerance strategies and algorithms. The other direction of this Ph.D. work is to find
common ground for reliability techniques and assessment methodologies from the Embryonics
project and fault tolerant quantum computation. Embryonics is a biologically inspired re-
configurable hardware project, which is suitable for attaining reliability in aggressive, critical
environments, similar to quantum computation in terms of fault model and fault occurrence
frequency. Adopting the accuracy threshold as reliability measure in Embryonic memories
is benefic. Also, when considering a reconfigurable strategy (reconfigurable quantum gate
arrays - rQGAs) in quantum computation fault tolerant stabilizer encoding, the appropriate
reliability measure is drastically improved.

When entanglement is not present, it is possible to describe the circuit and the processed
quantum states in a structural manner, employing only polynomial resources for simulation.
By contrast, when entanglement is detected in the processed state, the circuit has to be de-
scribed with a behavioral architecture, and exponential resources must be used in this case.
That happens because, when entanglement occurs between two quantum subsystems, their
overall state cannot be represented correctly as a reunion (assuming implicit tensor product
state composition) of the two individual subsystem states. The practical implementation of
the initial simulation methodology requires that each circuit be described both by structural
and functional (behavioral) architectures. For a gate network, if entanglement is detected in
the previous or next quantum state, then the functional architecture has to be selected to
describe it; otherwise the structural architecture is chosen. We adopted the matrix represen-
tation of quantum states and unitary operators; therefore the quantum states are type array
of complex signals. Efficient automated extraction of non-entangled qubit group states is not
conceivable unless we have some a priori information about the overall state: the so-called
stmulation shortcuts. When dealing with states from certain points in the circuits imple-
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menting specific algorithms, we have that knowledge because of the characteristic form these
states exhibit. We have performed an analysis concerning the effectiveness of our method-
ologyv. for specific states from Shor and Grover algorithms. Unfortunately, as shown by our
case study for Shor. Deutsch-Jozsa and Grover algorithms, the probability of success for the
extraction algorithms is decreasing exponentially with the number of qubits in the processed
state. Nevertheless, the HDL-based simulation methodology can be further improved. The
bubble bit coding technique creates a new entanglement-free-represented state. Therefore,
the simulation works with equivalent gate networks operating on corresponding bubble-coded
non-entangled states, and after applying the unitary operator the original state can be re-
stored. This.way, the unitary transform is obtained with at most n [2 x 1]-size matrixes, with

the expense of memorizing O (n?) size records. The bubble bit procedure cam also:be wsed.
for simulated fault injection. according to the fault models. We: present here iexperimental .
and assessment results describing the most important contributions of -our Ph.D.:work-in the.

simulation part. The simulation runtimes show an important runtimerimprovement: atthe

expense of a.polynomial memory overhead, as compared with our reference simulatar (QuIDD

Pro, developed by the Quantum Circuits Group at University. of Michigan). i+ -, i1,

:The need for fault tolerance is vital in quantum computation, due;to the.‘¢mnipresent
nature of quantum decoherence errors. A specific reliability parameter. was, defined; under
the form, of the accuracy threshold. If the quantum circuit’s fault tplerance dictates accuracy
greater or equal with the threshold, then it could be;used for arbitrary leng religble quantum
computation. The quantum circuit fault tolerance techniques - even.thg most recent ones -
use the.concatenated coding for both protected.data and.ancilla qubits, Our reconfigurable
quantum hardware strategy employs a quantum-nature (i.e.: superposition 'of classical basis
states) configuration.register in order.to.have a superposition of error detegtion and correction
circuits at the same time. The starting idea is that if the gate error probgbility.is £, and we
have k superposed correction circuits then, after the. measurement,of the configuration register,
the overall circuit error probability becomes £* {negligible for,a small £);, We developed a
reconfigurable quantum circuit, the so-called. reconfigurable Quantum Gate Array (rQGA),
which we assessed with the accuracy threshold measyre. ., Our,analytical, estimate of the
accuracy threshold.shows. that the rQGA. solution clearly dormnates,(the actual technologic
accuracy limit, thus allowing for arbltrary long fault tolerant quantum corﬂmtatlon This
way, the rQGA techmque can replace the concatenated codlng, a ‘solution that is vulnerable
in the presence of correlated faults ' et 1" s

The last part of the thesis is dedlcated to the 1mplementat1on of the uéintum Genetic
Algorithms (QGA). Our solution is based on an already known quantum algorll:hm (the
maximum finding algorithm) and on a spec1ally de81gned oracle, Wthh reduces the entire
QGA problem to Grover’s search algorlthm The conclusion is that the genetrc strategy is not
applicable to the quantum computation envrronment with the crossover and ‘mutation genetic
operators becoming useless. The complexity of the proposed Reduced Quantum Genetic

Algorithm is linear. thus proving the superlorlty of the quantum computmg ih yet another
computation field.
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Rezumat

In cadrul computatiei cuantice exista algoritmi care rezolva in timpi polinomiali probleme
care au solutii clasice exponentiale. Obiectivul este — pe de o parte — de a proiecta alti al-
goritmi cuantici eficienti si — pe de alta parte — de a putea produce implementari eficiente
pentru algoritmii deja cunoscuti. Cea mai fezabilda implementare a algoritmilor cuantici este
bazatd pe modelul circuit (sau retea de porti). Lucrarea noastrda este conceputd pentru a
face legdtura intre proiectarea asistatd de calculator (CAD) din hardware-ul clasic. bazata pe

proiectarea autoématizata, si regulile de proiectare ale circuitelor cuantice. Aceastd tentativa.

ar i extrem' det dificila in absenta posibilititii de a simula circuitele cuantice in mod eficient.

Astfel, prima directie a acestei teze de doctorat consta in incercarea de a folosi limbajele de’

descriere hardware (HDL) pentru simularea circuitelor cuantice, datoritd proprietédgiitaces:

tora de a:putea ‘descrie — intr-o manierd compacta — circuitul cu arhitecturi structurale gi.

comportamentale (functionale) si care face ca izolarea entanglement-ului ca sursi principald
a complexitativ-de simulare si fie posibili. Analiza pe care am efectuat-o araté faptul c¢i
probabilitatea de a reduce'timpii de simulare doar prin folosirea procedurii de simulare. HDL'
este mici. /Prifl urmare, am dezvoltat un algoritm special, pentru evitarea reprezentirilor
afectate ide’entanglement ale starilor-cuantice, aga-numita tehnicd bubble bit;- care este. efi-
cientd cel putif atunei cAnd sunt -procesate! stiri specifice anumitor algoritmi. . Metodologia
noastra de-simulare este!inzestratd sivcu -abilitatea de a injecta defecte, fin ideea de a face
posibild procédura de validare a strategiilor si algoritmilor de toleranti la defectare: Cealalta
directie a activitéitii doc¢torale teflectate ih-aceastd tezd constd in incercarea:de-a (gisi teren
comun pentru tehni¢ile' de fiabilizare si' metodologiile de’evaluare aferente prbiectului Em-
bryonics pe 'de o parte; si calculul cuantic tolerant-la defecte pe de alta.partei’: Embryonics
este un proiéct hardware inspirat din-biologie, care este prétabil obtinerii-fiabilit#tii‘in medii
critice, agresive, sirnilare calculilui cwantic n termini 'de- model al defectiilui'si al frecventei
de aparitie:-Adoptares pragului de' acuratete ca frEsurs’ a/fisbilititii in memoriile Embryon-
ics este benefics. - Dehsemenea, atunci efhd luim in 'consideratie o-strategie reconfigurabila
(matrici recohfigurabile de potti cuantice'-- rQGAs) pentrw’ 'comp‘uta‘gla éuanticé toleranta la
defectare ' codiiri stabilizatoare, se 1mbunéta!§é‘$te ﬁrastlc grad’ul de fiabilitate.

Atunci candl fenomenii] de entanglement nu este present este p051b11 sa descriem circuitul
cuantic si strile pro(c'ésate in manierd structurala revendlcand gioar resurse polinomiale pen-
tru simulare. Ikn schimb, atunc1 cand entan)%lement -ul este "detectat in starea procesata, cir-
cuitul trebuie ,sa ﬁe descrls prlntr-o arhltectura comportamentala si simularea va dicta acum
utlhzarea unor resurse ‘exponen'glale Aeest lucru | se 1ntampla deoarece, atunci ciand apare
entanglement }11 pentru dpua subeleterne cua'ntlce starea lor generald nu poate fi reprezen-
tata correct ca 51mpla reuniune a starilor cuantlce aferente celor doud subsisteme individuale
(am presupus ci produsul tensorlal este uneaIta 1mphc1ta de compunere a starilor individuale).
Implementarea practlca a metodologle;l 1n1§1ale de 31mulare necesitd ca fiecare circuit si fie
descris prin ambele ‘arhitecturi: structurali si comportamentala (functionald). Daca pentru
o retea de porti cuantice entanglement-ul este detectat in starea precedentd sau urmétoare,
atunci arhitectura functionala este selectatd pentru a o descrie; altminteri se selecteaza arhi-
tectura structurald. In cadrul acestei abordiri, am ales reprezentarea matriceala a starilor
cuantice gi a operatorilor unitari; prin urmare, stirile cuantice sunt reprezentate ca tip vec-

tor de numere complexe. Extragerea automati eficientd, a stirilor cuantice representiand
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grupuri de qubiti care nu se afla in entanglement, nu este de conceput fara a avea la dispozitie
informatie aprioricd referitoare la starea cuantica generald: aga-numitele scurtdtur: de simu-
lare. Atunci cand avem de a face cu stari din anumite puncte ale circuitelor ce implementeaza
algoritmi specifici, vom avea la dispozitie acea informatie aprioricd, datoritd aspectului car-
acteristic pe care il au aceste stiri. Am efectuat o analizd privitoare la eficienta metodologiei
de simulare HDL, pentru stari specifice din algoritmii Shor si Grover. Din nefericire, aga cum
se aratd in studiul nostru de caz pentru algoritmii Shor, Deutsch-Jozsa §i Grover, probabili-
tatea ca algoritmii de extractie si fie incununati de succes descreste exponential cu numarul
de qubigi al starii procesate. Fara indoialé metodologia de simulare bazaté pe. limbajele de
ble bit creazd o noua reprezentare lipsitd de entanglement. Prln urmare, simularea se face
cu'retele de porti cuantice echivalente ce opereazd pe stdri codificate prin metoda bubble
bit; dupd aplicarea transformadrii unitare starea originald poate fi restaurata, In acest fel,
transformarea unitard este obtinutd cu cel mult n matrici de dimensiune [2 x 1], cu pretul
mentorarii unor inregistréiri de dimensiune O (n2). Procedura bubble bit poate*deasemenea
sh fie folositd pentru injectia simulatd de defecte, in concordanga cu modelu}' de defectare.
In cadrul acestei lucriri se prezintd rezultate experimentale si analifide ce'descriu’cele mai
importante contributii in domeniul simulérii HDL-bubble-bit. Txmpu de simulare aratd o
imbunitatire semnificativi cu pretul unui consum suphmentar pohnomlal de memorle prin
comparaie cu simulatorul referinta (QulDD Pro, dezvoltat de c;atre Quantum Clrcults Group
de la University of Michigan). S e . .

Necesitatea tolerantei la defectare este vitali in calculul cuantic, datorlta naturii om-
niprezente a-erorilor de decoerentd. In plus, a fost definit un parametru specific fiabilitatii,
sub forma pragulu: de acuratefe. Daca toleranta la defectare. a- circuitului ¢uantic dicteaza
o acuratete mai mare sau egald cu pragul, atunci poate fi folosit. pentru un.calcul cuantic
fiabil pe o perioadd arbitrar de lunga. Tehnicile de tolerant;a la defec'pare pentru circuitele
cuantice (chiar si cele mai recente) folosesc codificarea concateénats atat pentru datele codifi-
cate cat si pentru qubitii auxiliari (ancilla). Strategia noastrd pentru hardware-ul cuantic fac
uz de un registru de configurare de: naturd cuantica (superpozitie de stari clasice ale bazei),
pentru a avea o superpozitie simultana de circuite corectoare de erori.‘Ideea: de.plecare este
cd dacd probabilitatea de defectare a portilor este £, si avem & circuite corectoare de erori
superpuse. atunci, dupa maéasurarea reglstrulul de cénﬁg{\lrare probaﬂlhjtatea de aparitie a
erorii in circuitul ca intreg devine fk (neghjablla pent:x’nL un € SUfﬁment ‘de- nﬁc) Y Am proiec-
tat un circuit reconfigurabil cuantic (rQGA), pé’ ¢are l-am evaldat 'cu aJutorul pragulul de
acuratete. Estimarea noastra analiticd pentru pragul de acuratete demonstreaza cd solutia
rQGA este mult deasupra limitei tehnologice de acuratete, permlt;and calculul .cuantic toler-
ant la defectare arbitrar de lung. Astfel, tehnica rQGA poate 1nlocu1 codlﬁca.rea concatenata,
o solutie vulnerabild la actiunea defectelor corelate.

Ultima parte a tezei este dedicatd implementarii- Algoritmilor Genetici Cuantici (QGA).
Solutia propusa este bazatd pe un algoritm cuantic dejaicunoscut (algoritmul .gasirii max-
imului) §i pe un oracol proiectat in mod special, care reduce intreaga problematici rQGA la
algoritmul de cautare al lui Grover.. Concluzia este ca. strategla genetlca nu poate fi aplicata
in mediul computational cuantic, deoarece operatoril geneha de crossover st mytatie sunt in-
utili. Comple)otatea algorltmulm propus (Reducea Quantum Geénetic AIgorlthm) este liniar4,
proband astfel superlorltatea calculului cuantic intr-un nou éiomemu computat;lonal
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Chapter 1

Introduction

Computer science and engineering have reached the degree of maturity where the difficulties
and limitations are identified, and the frontiers of computation are tackled in an endeavoring
paradigm-shifting effort. At first glance. this burden is mainly supported by computer science;
however, the complexity of today’s computational problems has made this quest ubiquitous.

Researchers from all the computing directions — computer science, computer engineering.
software engineering, and information systems — are striving towards grand objectives, as the
classical computing establishment does not even provide incentive for salvation from what it
seems a dreadful curse: even the most marginal improvements are yielded with exhausting
efforts. The promise is that new technologies, accompanied by new computing paradigms will
save the day.

There are two main reasons to be lured by this new trend; one has a qualitative nature.
whereas the other deals with the quantitative aspects of computation. This thesis deals with
two emerging technologies: quantum computing and adaptive, reconfigurable computation.
They both have dual qualitative-quantitative motivations, although one may note the poten-
tial epistemological arrogance of quantum computation. What Richard Feynman has foreseen
[31] - today’s quantum computing frenzy — also opened a topical interest discussion on the
inner nature of computation [18]. Defined as ”computation that uses atomic scale dynam-
ics” [96], offering a framework for powerful algorithms. quantum computation may also be
required as Moore’s law dictates 1 atom/bit in 2010 ~ 2020.

The qualitative approach is related to the very demanding attempt, in terms of resources,
to simulate quantum processes. The majority of these quantum processes, in order to be
simulated on a classical computer, require exponential algorithms. Richard Feynman [30] has
sugested that all these problems could be overcomed by building a quantum computer. This
potential quantum computer ”will have no problem in simulating itself” [30]. Given this fact,
a new question was rised: if the hypotetical quantum computer is able to simulate quantum
processes in polinomial time, then it can solve in the same manner other hard problems [70] (i.e.
problems that, given a classical computational context, could be approached in the best case
with exponential algorithms). In 1985, David Deutsch theoretically built a universal quantum
Turing machine [24], a priceless tool for defining new algorithmic complexity classes: (EQP,
BQP, BQTime(T(n))). Also, it was demonstrated that, at least theoretically, P C EQP and
BPP C BQP C P*F C PSPACE [11]. Almost a decade after Deutsch’s breakthrough article, Peter
Shor has published the first quantum algorithms able to solve, polynomially, integer factoring
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and discrete logarithms. These two are hard problems in the context of classical computation

The second motivation, the quantitative approach, is a discussion on the limits of inte-
grated circuits manufacturing technology. Today, there is a lot of discussion whether Moore’s
law is obsolete or not. But a lot of the arguments related with this discussion were pointed
out a long time ago, starting with the 1960s: the works of Rolf Landauer, and later Charles
Bennett, constitute the basis of reversible computing theory [8][9][53]. The universal gate for
the reversible computing the Toffoli gate is also extremely important for quantum circuits
{10]. The practical implementations of the quantum gates, networks and circuits, including
error detection and correction, are based on several technologies, independently developed:
Ion Trap at the National Institute for Standards and Technology (NIST), Cavity QED at
Caltech, and NMR at Stanford, Berkeley and MIT [15]32].

With all this spectacular evolution of the quantum computing theoretical aspects and the
unquestionable technological progress, it’s still not clear whether the prospect of building a
scalable quantum computer is feasible. The answer to the problem of quantum computer
feasibility must come not only from the physicists making their esoteric research in very
expensive laboratories. Computer engineering has also its part in this huge effort. The
simulation of quantum circuitry, although employs exponential algorithms, has given eloquent
results about the impact of errors and the opportunity of building fault tollerant quantum
circuits [63]. Simulation of quantum circuits itself has capitalized on computer engineering
research efforts, while vital aspects as fault tolerance would not be possible to approach
without taking into account the engineering issues.

1.1 Motivation

Although quantum computing is, undisputedly, a paradigm that was created and advocated
mainly by physicists and mathematicians, today it is widely considered that engineering is
also vital [62][77]. As a fact, the most prestigious computer engineering scientific conferences
and journals have adopted emerging technology tracks where quantum and reconfigurable
computing are highly placed.

This thesis was motivated by the attempt to bring together classical computer hardware
design and test and the novel, emerging technologies. This also was a source of inspiration
for establishing a new computing laboratory at ”Politehnica” University of Timisoara: the
Advanced Computing Systems and Architectures (ACSA) Laboratory. Its fundamental, in-
nate principles, which draw their essence from the above mentioned thesis motivation, are
presented in Figure 1.1; it is a set of interfering computing fields spanned by the classical and
novel computation axes.

In the quantum computational framework there are polynomial time solving algorithms,
for problems having exponential classical solutions. The quest is — on one hand - to search if
there are other possible effective quantum algorithms and - on the other hand - to be able
to produce efficient implementations for the already known algorithms. The most feasible
implementation of quantum algorithms is based on the quantum circuit (gate network) model
(25} {27). Our work aims at bridging the gap between classical hardware CAD with design
automation techniques and quantum circuit design rules. This attempt would be extremely
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difficult without the possibility of efficient quantuin circuit simulation. Thus, our first di-
rection was to try using Hardware Description Languages (HDLs) for simulating quantum
circuits, because their property of being able to describe — in a compact manner — the circuit
with both structural and behavioral (functional) architectures isolates the inner source of
simulation complexity: the entanglement [29][77).

!
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Figure 1.1: ACSA laboratory overview.

The other direction of this PhD work is finding common ground for reliability techniques
and assessment methodologies from the Embryonics project and fault tolerant quantum com-
putation. Embryonics is a biologically inspired reconfigurable hardware project [57], which is
suitable for attaining reliability in aggressive, critical environments [79], similar to quantum
computation in terms of fault model and fault occurrence frequency. Adopting the accuracy
threshold as reliability measure in Embryonic memories is benefic [80]. Also, when consid-
ering a reconfigurable strategy (reconfigurable quantum gate arrays — rQGAs) in quantum
computation fault tolerant stabilizer encoding, the appropriate reliability measure may be
drastically improved.
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This second direction opens up a new discussion, which could be of great importance for
computer science in general. Initially, the quest is to design a quantum circuit that is suitable
for supporting evolvable hardware applications. As the reconfigurable (or programmable)
quantum gate arrays are not new — being theoretically underpinned [61], the entire problems
relies on finding a quantum computation implementation for genetic algorithms. As defined
in the fundamental literature of this field, the evolvable hardware is a reconfigurable device
(circuit) which is configured by evolutionary means, usually a genetic algorithm (EHW =
RHW + GA. or evolvable hardware = reconfigurable hardware + genetic algorithms) [102].
The Quantum Genetic Algorithms or QGAs (i.e. genetic algorithms running on a quantum
computer) are controversial as far as their implementation is concerned; in this thesis a new
perspective is presented: by making use of the exponential quantum computer parallelism, the
maximum finding algorithm [2] and a specially designed oracle circuit, the genetic algorithm
is reduced to Grover search [37] which solves the problem in O (y/n) time.

1.1.1 Industry requirements

The motivation presented in this section may seem theoretical and pretty much detached
from the actual industry problems. But the fact is that the industry is seriously taking
into consideration the aspects related to the emerging technologies, and quantum circuits in
particular.

The new challenges facing supercomputing applications will put a strain on the supporting
technology. It is clear that we will need to build at least zeta-flops computers in order to deal
with some very complex unsolved problems like: long-duration climate modeling, controlled-
fusion reactor simulation, network security simulation, molecular modeling, and so forth [20].
In this context, the software and architecture requirements must be met by the underlying
technology. and it seems that the classical solutions are not good enough [19].

The industry representatives have quickly reacted to these emerging problems, and founded
a global organization called ITRS (International Technology Roadmap for Semiconductors),
which is jointly sponsored by European Semiconductor Industry Association, Japan Elec-
tronics and Informational Technology Industries Association, Korea Semiconductor Industry
Association, Taiwan Semiconductor Industry Association, and Semiconductor Industry Asso-
ciation from U.S.A. As this organization defines its documents, they are about a continuous
evaluation of the semiconductor technology requirements, aimed at increasing the perfor-
mance of the integrated circuits. This effort is supported by industry, suppliers, academia,
research groups, and governments [126).

The results of the ITRS assessments are published as ITRS reports, which are annually
updated. The 2004 update contains a report on "Emerging Research Devices” [126]. Within
this document, the "Emerging Research Architectures” chapter contains a section called ” Co-
herent Quantum Computing” ([126], pages 37-40), in which the quantum computation fault
tolerance requirements are evaluated. Table 64, "Emerging Research Architecture Imple-
mentations” [126] is listing the following defect tolerance imperative for coherent quantum
computing devices: “error correcting algorithms needed”. This industry conclusion is further
stressing the importance of quantum FTAMs (Fault Tolerance Algorithms and Methodolo-
gies), that are making an important direction of this thesis (Chapter 4).

The "Emerging Research Materials” chapter from the same document was added in the
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2004 update for the first time, emphasizing in the "Modeling and Simulation” section ([126],
page 55) the importance of reducing simulation complexity. As already mentioned, an impor-

tant part of the present thesis deals with this extremely important research problem (Chapters
2 and 3).

1.2 Thesis goals

As this work is structured on two main directions, one of which having an important ex-
tension, there are 3 main objectives: efficient simulation of quantum circuits, improving the
dependability of the quantum circuits with rQGA, and implementing QGAs (Quantum Ge-
netic Algorithms).

Attaining these objectives means that some very important aspects of quantum compu-
tation are approached. First of all, simulating quantum computation processes in general -
and quantum circuits in particular - is usually exponential. The source of this exponential
simulation complexity depends on the level of abstraction that is used. From our perspective.
which is on the unitary (or gate) level, the main source of simulation complexity is the en-
tanglement [62] [77]. On the other hand, the entanglement is essential for making quantum
algorithms more efficient than their classical counterparts [29] and it cannot be removed from
the quantum states involved in simulations. However, we can use some a priori knowledge
about the particular pattern of the states processed by specific algorithms - the so-called sim-
ulation shortcuts [96] — along with clever state coding techniques [107], in order to reduce the
computational burden dictated by simulation of quantum algorithms on classical computers.

The second objective deals with a extremely important issue, because in quantum com-
putation dependability is not just a quality indicator, it is vital [75][76]. The state-of-the-art
here is intended to prove the feasibility of quantum computation, by improving the accuracy
threshold as main reliability attribute. The already developed techniques are using special
state encoding (similar to classical ECCs), concatenated coding and structural redundancy,
so that for an component fault rate of the order of £, the overall circuit error rate would be
of the order of £2. For a sufficiently small £, given by intrinsic component fault tolerance
(like, for instance, the ones described by [1]) the overall circuit reliability can be sufficiently
improved.

However, the assumed fault model [76] is not taking into account the correlated errors,
even if these errors are unavoidable from an engineering point of view, at the same time
making the concatenated coding effort useless [109]. The solution can arise from a much
flexible implementation platform, under the form of pQGAs (programmable Quantum Gate
Arrays) or rQGAs (reconfigurable Quantum Gate Arrays) [61][109)].

It was already mentioned that, generally, the artificial intelligence approach considers al-
most all computations as searches, and therefore quantum computation can be involved as
Grover’s algorithm provides important search speedups [96]. Also, important work [43][44]
proves that Grover’s algorithm can be used for significant speedups of specific purpose searches.

After defining rQGA structures, the initial intention was to define a framework for im-
plementing Evolvable Quantum Hardware (EQHW) as rQGA + QGA (Quantum Genetic
Algorithms). The QGAs, as defined by Giraldi et al. [33] are the quantum algorithms that
perform genetic-based searches. Our approach reduces any GA in quantum computation to
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Grover's search, by defining a special purpose oracle quantum circuit and performing the
quantum maximum finding algorithm [2].

1.2.1 Simulation problems

In order to approach the aspects concerning the simulation of quantum computation, the
research must rely on a quantum computer model, based on formal mathematics. In turn,
simulation is used to reveal important issues like entanglement effect, error impact and quan-
tum error correction [90], or techniques for building quantum hardware [121].

Quantum computing itself emerged from the attempt to simulate quantum systems [30].
But. although the simulation is often considered to be a tool used in theoretical approaches,
it could also be employed for quantum hardware design, i.e. adapted design automation and
computer-aided design techniques. In doing that, one must select an appropriate model. In
his surveys [65][66]), Omer summarizes the models used by quantum computing researchers,
for theoretical and practical purposes: mathematical, machine, circuit, and algorithmic.

These models are valid for any computing device, classic or quantum. Therefore, the
general models from above have classical expressions with quantum counterparts. From a
mathematical point of view, a computer is modeled by partial recursive functions having as
quantum counterpart unitary operators. The machine model in classical computing is given
by the Universal Turing Machine (TM). For quantum computation we have the Universal
Quantum Turing Machine (QTM) [11]{24]. The circuit model is the logical gates circuit
model for the classical digital computer and quantum gates circuit (or network) model for the
quantum computer. Also, from the algorithmic perspective, the model for classical computer
is the universal programming language with the quantum programming languages (QPLs) as
quantum counterpart. Of course, there are other important quantum computing models like
the Quantum Cellular Automata [112}, but they are out of the scope of this thesis.

The circuit model

If the goal is to build a quantum computing device, then we must employ some specific design
techniques (inspired from classical CAD). The substantiation of these techniques must be
sustained by an appropriate model. The best conceivable model is the quantum gates model.
Simulation according to this model [25] means that we perform gate-level or unitary-level
simulation [96).

Because of the extreme hardness in designing efficient quantum algorithms [62][77], there
are just few such examples. An efficient quantum algorithm is an algorithm running on a
quantum computer, able to solve a problem dramatically better (i.e. polynomial time) than
a classical algorithm. For example, in computational complexity terms, an efficient quantum
algorithm solving a problem could be in BQP with the best classical algorithm solving the same
problem in EXP. The point here is obvious: given the quantum algorithm design limitations
it would be extremely unprofitable to build an expensive universal machine, which would be
able to outperform a classical computer only when solving a few specific problems. Hence the
best prospect for involving quantum computing in computer manufacturing is an universal
classical computer with a quantum oracle [66]). This quantum oracle could be seen as a co-
processor — the processor is a classical computer passing specific hard tasks to the quantum
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co-processor, which has several hardwired hard algorithms (see Figure 1.2).
From our view, we need a tool to simulate quantum algorithms and, at the same time, to
help designing quantum gate networks according to the circuit model. In classical computing,

for hardware design we have such simulation tools: the Hardware Description Languages
(HDLs) [5][6](22].

Input Task seiiection
Data ouput | Classical Quantum
processor | Classical data 3| coprocessor
InST.I'uCllOIlS IVleaSurerélent outcome I \'l'l >

Classical physics | Quantum
environment ;| world

Figure 1.2: The Universal Classical Computer with a Quantum Oracle, after Omer [66].
The Quantum Coprocessor must include a task selection logic and a classical to quantum
translator. The other way conversion is made by employing measurement.

Entanglement

The information storage unit in quantum computing is the quantum bit or qubit, which is
presented here in bra-ket notation [62]. Any qubit |¢) is a normalized vector in a H? Hilbert
space, with {|0), |1)} as the orthonormal basis: |) = 1g|0) + a;|1). Parameters ap,u; € C
are called quantum amplitudes, and represent the square root of the associated measurement
probabilities of the basis states |0) and |1) respectively, with |ao|® + |a;|* = 1.

The qubits can be organized in linear structures called quantum registers, encoding a
superposition of all possible states of the corresponding classical register. For a n-qubit
quantum register, its corresponding state is a normalized vector in a H?" space, |¢,) =
212;5 " a;]i), where Zf;g "la;|> = 1, ¢ € N. When the individual qubit states are known (for
example |¢4) = ao|0) + ¢1]|1) and |¢') = a2|0) + a3|1)) the tensor product gives the overall
state |4) ® |¥B) = aou2|00) + apas|01) + aja2|10) + aya3|1l). The matrix representation
provides for a straightforward form of the quantum state; the above 2-qubit tensor product
1S |:(L() ® a2 } = [ Ugly Ugdz Ay1dg WA1d3 ]T.

ay as

For a quantum register state, we have entanglement iff it cannot be represented as a
tensor product of its parts [62]. Let us consider the following 2-qubit example, where [¢);) =
7 (100) +[01)) and |¢) = % (J00) + [11)) ; we say that state |¢;) is not entangled while

|2) is entangled, because |¢;) = |0) ® [% (|0) + |1))], but there are no |¢;) and |¢;) qubits
so that the relation [ip) = |¢1) ® |¢s) is satisfied.
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The quantum circuits are constrained networks of gates, with no cloning and no feedback
allowed [10](62]. The quantum gate is the physical device implementing an unitary operator,
which represents the quantum state transform. Due to the unitary property, all quantum
operators are reversible.

In this thesis approach, the entanglement is considered as the main source of
simulation complexity. The explanation, assuming the matrix representation of quantum
states, resides in the following example. If a quantum circuit is processing a 16-qubit state,
then for non-entanglement the circuit handles 16 {2 x 1] matrixes, whereas for the entan-
glement situation it will have to handle 1 [2'® x 1] matrix. Summarizing, in the absence of
entanglement processing a 16-qubit state 32 matrix elements (i.e. complex numbers) are han-
dled: but when entanglement occurs the number of matrix elements to be handled becomes
exponential: 216,

Related work

Because the stakes are high when it comes to quantum computer simulation, and its com-
plexity reduction techniques, there are many attempts to build efficient quantum computer
simulators. These attempts are aimed at different level of abstraction.

For instance, Obenland and Despain [63}[64] have designed a simulator at physical level
- corresponding to the trapped ions technology {15]. This simulator was used for assessing
the feasibility of the trapped ion technology by modeling the quantum errors as laser device
angle errors [96).

At the higher level - the algorithmic level — a fine example is provided by Omer’s Quantum
Programming Language [65][66]. This metalanguage is very good for synthetically describing
the quantum algorithms but, because it does not deal with the actual implementations of the
algorithms, it cannot approach any simulation shortcut speculation [96].

This thesis’ concern is related to the unitary-transformation-level or gate-level simulation.
From our computer hardware, engineering view, the most representative simulator at this
level is QulDD Pro - developed by the Quantum Circuits Group from University of Michigan
[73][114][115][116][117]. This simulator is based on a special quantum state encoding, inspired
by the Binary Decision Diagram theory. Due to the fact that the QuIDD encoding provides
compression, the first advantage of this simulator is the reduction of the simulation memory
overhead. Also, the simulation runtime is improved, as reported [114][115], although the
complexity problem is not fundamentally solved.

The QulDD encoding process is far for being efficient, as this condensed representation is
not a straightforward one. Also, processing the encoded state attains efficiency only in some
particular cases. Fortunately, when simulating specific useful quantum algorithms, advan-
tageous state patterus are encountered — the so-called simulation shortcuts [96] — therefore
this simulation framework is more efficient than the previous ones, while remaining robust
and gate-oriented. However, this simulator cannot provide means for performing any kind of
tradeoff between time and space complexity.

Still, the simulation theoretical complexity [111] [118] is far from being attained. The
conditions for polynomial quantum computer simulation was also defined in theory, under the
form of Gottesman-Knill theorem [62]. The QuIDD simulation procedure uses an engineering
approach, which is not trying to solve the complexity problem the way it is prescribed by
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1.2. THESIS GOALS 9
the quantum computer science theory. Summarizing, the most robust and representative
gate-level quantum computer simulator has the following advantages and drawbacks:

The advantages:

A1) it significantly reduces the simulation memory overhead;

A2) the simulation runtime is improved in comparison with previous gate-level simulators;

A3) the special encoding technique uses a compressed symbolic representation, which is
similar to binary decision diagrams, that are familiar to the computer engineers;

A4) the encoded quantum states are appropriate for capitalizing on the simulation shortcuts.

With all these very important achievements, there are still some problems to be solved:
P1) the simulation runtime improvement does not even make the simulation sub-exponential;
P2) the memory-time tradeoff is impossible within this simulation framework;

P3) the solution does not tackle the fundamental causes of the simulation complexity;

P4) the experimental results are provided only for one quantum algorithm: Grover's algo-
rithm.

1.2.2 Status-quo in reliable quantum computation

Unlike classical computation [7], where we have intrinsic fault-tolerance of the components
and therefore dependability is just a quality indicator, in quantum computation it is vital.
The quantum world has an erroneous nature, because the macroscopic environment is con-
stantly trying to measure the very fragile superposition of basis states [62][75][76]{77]. In these
conditions, the destructive effect of the decoherence [62][77] phenomenon can be considered
as ubiquitous.

The assumed fault occurrence model [75][76] is influenced by the need to assess the feasi-
bility of implementing quantum hardware [63]. Therefore we deal with the following assump-
tions:

e the faults are single and their occurrence is governed by probabilistic rules;
e the fault are not correlated, neither in time or space;

e in some evaluations, we are dividing faults in two categories: store faults and processing
or gate faults.

In quantum computation we have 3 types of qubit faults:

o bit-flip, where the effect is described by the basis state mappings |0) — |1), |1) — |0),

and the following equation |¢)) = ag|0) + a;|1) fault ag|1) + a1|0);

e phase-shift, described by |0) — |0), |1) — —|1), and |¢)) = ag|0)+a,|1) faulf ao|0)—aq|1);
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e small amplitude which are similar to analog errors, and affect the qubit amplitudes.

Here, the bottom line is that all these fault types can be reduced, by appropriate techniques
{76][75](77], to bit-flip faults.

The first drive, when trying to implement fault tolerant techniques in quantum compu-
tation, is to map the already known techniques from classical hardware. This job is not
straightforward even when the reference comes from reversible classical circuits [88][73], as
the quantum computation generates some constraints and additional problems to be solved.

Quantum computation constraints:
e the observation destroys the state;
e information copying is impossible.

The inner principle of using error-correcting codes (ECCs) is to use observation. Moreover,
all the structures build upon the ECC principles are applying structural redundancy, which
requires information copying.

Quantum computation additional problems:

e we need to be able to get state information without destroying it, therefore we are forced
to use ancilla qubits;

e we need a fault tolerant recovery process, otherwise the coding fault tolerant techniques
become useless

e the phase-shift fault propagates backward, so we have to apply special techniques de-
signed for thwarting the massive spread of these errors.

In order to deal with the encountered problems, some very important quantum fault-
tolerance strategies have been developed [62][75][76][77).

Strategies for attaining fault tolerance:

digitizing small errors [76];

using ancilla qubits in order to measure the information without destroying it;

assuring ancilla and syndrome accuracy for a fault tolerant recovery process;
e appropriate quantum ECCs for detection and correction.

With the ECCs, a syndrome is computed, thus revealing the nature of each qubit, which
corresponds to one of the following situations (assuming that the correct qubit value is ag|0) +

a1{1}):
e no fault, the actual qubit expression is ao|0) + a;]1);
e bit-flip, the actual qubit ag|1) + a,|0);

e phase-shift, the actual qubit ag|0) — a,]1);
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1.2. THESIS GOALS 11

e both bit-flip and phase-shift, the actual qubit having the following expression ag|1) —
(1,1|0>.

Correcting a qubit fault, means applying one of the following 1-qubit unitary transfor-

mations: l (1) é } for the bit-flip, [ (1) _(_)1 ] for the phase-shift, and [ ? Bl ] for both

faults.

The state-of-the-art in quantum ECCs is represented by Steane encoding [97](98] with
its generalization provided by stabilizer codes [16](35](36]; and the assessment of quantum
fault tolerance algorithms and methodologies (qFTAMSs) is made by using a measure called
accuracy threshold [76][124]. The accuracy threshold is the component fault rate that still
allows the overall correct computation when employing qFTAMs.

The accuracy threshold estimates indicate that arbitrary long fault tolerant computation
is possible only if another techniques are applied (i.e. concatenated coding [76][77]).

Our approach of gFTAMs starts with a critical view of the error model and the concate-
nated coding technique, and prescribes the replacement by defining a technique based on the
so-called reconfigurable quantum gate arrays (rQGA). The accuracy threshold assessment
proves that this technique brings a significant improvement [109].

1.2.3 Genetic algorithms and quantum computation

Although this thesis direction emerged from an engineering effort — implementing evolvable
quantum hardware (EQHW) — its contributions may have significant impact in the computer
science area.

By clearly identifying its most major problems and limitations, computer science has
become aware of the so-called computing frontiers [62][70]. The research community has put
a lot of effort in the attempt to solve these problems and further pushing the computing
frontiers; however, by using the means of what is now called classical computation, it seems
that one can hardly expect more than marginal improvements, even for the most sophisticated
approaches.

In this context, inspiration was mainly found in biology and physics: bio-inspired com-
puting [57] and quantum computing [62] are considered as possible solutions. The optimism
is fed by theoretical and practical achievements. Genetic algorithms and evolvable hardware
are already successfully used in a wide range of applications, spanning from image compres-
sion, robotics and other artificial intelligence related issues, to engineering problems as fault
tolerance and reliability in critical environments [79]({80][81}[82]. Moreover, quantum comput-
ing seems to draw even more power from its exponential parallelism: Peter Shor has proven
that a classical exponential problem (integer factorization) can be solved in polynomial time
[89][91].

The above considerations indicate that the merge between the two novel computing
promises, namely genetic algorithms (GAs) and quantum computing (QC) would be nat-
ural and benefic [96]. Researchers already follow the path of so-called Quantum Evolutionary
Programming (QEP) [33] with outstanding results [94]. For instance, the best approach for
automated synthesis of quantum circuits [121] uses genetic programming [55](56][74]({50][51].
Also, quantum algorithm design can be approached by evolutionary means [95]. In fact, the
majority of such applications address quantum computation design issues regarding quantum
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algorithms and implementations [94]; they are all part of QEP’s sub-area called Quantum
Inspired Genetic Algorithms (QIGAs) [33](60]. The other sub-area, called Quantum Genetic
Algorithms (QGAs). tries to implement genetic algorithms in a quantum computation en-
vironment [33][(86] [87][93] in order to capitalize on the quantum computation exponential
parallelism.

This thesis proposes a new perspective on QGAs, by showing that the genetic algorithm
strategy is essentially different in quantum computation: crossover and mutation are not re-
quired, because finding the best fitness can be reduced to Grover’s algorithm [37][38]. The
search space is entirely covered by the QGA because all individuals are encoded in a superpo-
sition state (at the same time), also fitness values generated for all individuals are encoded as
a superposition of basis states (at the same time) in a quantum register. As opposed to clas-
sical GAs where the best individual-fitness pair may not be available because the population
is limited, in Quantum Computation the best individual is available.

1.3 Objectives summary

From our proposed engineering view, there are 5 main objectives when approaching the sim-
ulation and design of reliable quantum circuits, which are presented here with the means to
achieve them:

1) Efficient simulation of quantum algorithms, at gate-level, by employing:

— a Hardware Description Language (HDL) framework;

— the bubble-bit encoding technique for capitalizing on the "simulation shortcuts”
[96]:

(22) Defining a simulated fault injection framework in quantum circuits (the QUERIST
project) by using:

— our HDL-based quantum circuit simulator;

— the adapted version of the fault injection (and assessment) techniques from classical
hardware design {84](85](45];

(23) Exploring the allowed design techniques, for building reconfigurable Quantum Gate
Arrays (rQGAs) by:

— studying the quantum limitations of this concept;
— adapting the solutions from classical reconfigurable computing;
(4) Employing rQGAs. in order to improve the dependability of quantum circuits, by

- iientif}ing the drawbacks of the state-of-the-art in reliable quantum computation
theory:

— using the quantum configurations for rQGAs. as sowrce of exponential structural
redundancv:
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25) Designing adaptive, evolvable quantum circuits, by means of:

— already designed rQGAs;

— building the circuits for Quantum Genetic Algorithms (QGAs) implementation.

1.4 Thesis outline

The thesis structure is related to the objective list from Section 1.3: Chapters 2 and 3 corre-
spond to objective €21, a part of Chapter 3 corresponds to 22, Chapter 4 deals with Q3 and
(24, while Chapter 5 has to do entirely with objective 25. Finally, the conclusions are pre-
sented in Chapter 6: a summary of the Ph.D. work, the main contributions, and prospective
thoughts.
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Chapter 2

The HDL-Based Simulation
Framework

This chapter tries to find common ground between classical circuit design techniques and
quantum computation, by identifying quantum circuit specification and simulation tools under
the form of Hardware Description Languages (HDLs). The HDL-based simulation approach
could reduce the complexity of quantum circuit simulation, by considering entanglement as the
main source of gate-level simulation complexity and isolating it in an automated manner. This
is possible by taking advantage of the HDL feature of describing a circuit with both structural
and functional architectures. We also performed an analvsis of our methodology effectiveness,
for the arithmetic circuits involved in Shor’s algorithm and the circuits implementing Grover’s
algorithm.

2.1 Preliminaries

Today, the circuit model of quantum computation [25] is considered as the most feasible.
and we use it in order to describe the coprocessor. It is seen as a succession of consecutive
quantum networks of gates (QNet; ... QNet, in Figure 2.1) and quantum registers () Reg)
storing quantum states (S; ...S,) in Figure 2.1), which takes a classical state as input. Also,
the final (rightmost, storing state S, in Figure 2.1) register will be measured in order to
obtain the outcome of the quantum computational process. The quantum circuit (or gate
network) design techniques are inspired by the classical approaches [22] including classical
reversible circuit design [103], always taking into account the quantum mechanical features
(10]. On the other hand, automated design techniques and Computer Aided Design (CAD)
[6][22] enhance classical hardware design; in this context, our main effort is the attempt to
adapt these techniques to quantum circuits.

2.2 Quantum computational background
This section deals with the formal representations of quantum computation. Although there

are various such formalisms [13], we will present the most used (Dirac’s bra-ket) and matrix
[62] - the notation that is taken into consideration by our approach [104][105][106][107][108].

15
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16 CHAPTER 2. THE HDL-BASED SIMULATION FRAMEWORK

At the same time, in this section, we present the quantum algorithms that are simulated
in the thesis: Deutsch-Jozsa [26], Grover [37][38] and Shor [89][91].

m |Quantumy ,;  |Quantum| m Classical

Classical ™ Quantumg 5 [Quantum

m
ate network register -a> oo network register [A state
it | (QNet 1) qubit (S qubit qubit { (QNet i) Jqubnt (Sn) |bit
Mecasurcment

Figure 2.1: The circuit model of quantum computation.

2.2.1 Basic operations and notation

In quantum computation the information storage unit is the quantum bit, or the qubit. Ac-
cording to the nature of quantum mechanics theory, the qubit could be seen as a classical
bit extension. In bra-ket notation [13], we have: |¢)) = ao|0) + a;]1). Using mathematical
terms, the qubit is a normalised vector in some Hilbert space H2, having {|0),|1)} as the
orthonormal basis, with ug,a; € C being quantum amplitudes. Therefore, the qubit is a
superposition of the classical bit states, the eigen-vectors |0) and |1). A measurement of a
qubit |e+) will yield either |0) or |1). (i.e. a classical orthogonal state) with probabilities |ao|*
or lu,|* respectively. Of course, we have lao|? + |a1)? =1 [62]. Qubits are organized in linear
structures: the so-called quantum registers. In its quantum version, a register state could be
a superposition of all its possible classical states. For a n qubit quantum register, its state is
a normalised vector in a 2"-dimensional Hilbert space:

27 -1 2" -1
) = > aili) with Y Jai =1 (2.1)
=0 =0

In Equation 2.1, ¢; € C and ¢ could be written in a binary system: ¢ = ¢¢-2°+¢; - 21 4+ ... +
cn-1-2""! where ¢; € B = {0, 1}. Hence, the register state can be rewritten as:

2

cgC)...cn-1€EB™

2.

€yCi...Ccn-1€B"

|L/)r> = |C()Cl e Cn—l) (22)
with
l(f()(,'l N Cn_1|2 = 1.

(2.3)

When we know the individual state of each qubit from the register, the tensor product is used
for obtaining register’s overall state:

R g) = Z QioQi1 - - - Qin—1|CoCy - . . Cp_q) (2.4)
cc1...cn_1€BP
where
[i) = dip]0) + a;1|1) (2.5)
~ v v
e NS
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is the state of qubit i. The power of quantum computation is due to the register exponential
parallelism: any transformation on that register willl be applied on each superposed eigenstate
62][77].

Matrix representation

The bra-ket notation that we used in the previous section for representing quantum states
may not always be the most convenient. A better handling of quantum states having binary-
labeled eigenvectors, and their transformations could therefore result by using the matrix
representation [62]. Thus, Equation 2.4 becomes:

R ;) = [ oo } ® [ 10 ] ® [ @2n-10 ] . (2.6)
do1 an Ugr-1.1
where a;; € C and the state of the individual qubit i is
N | %o .
Il/}1> - I: ai ] . (27)

Measurement

Measurement is the only way to extract information out of a quantum state. It is a truly
random quantum operation, and unfortunately destroys the useful exponential parallelism of
quantum computation. The measurement outcome is one of the eigenvectors, with an asso-
ciated probability. For instance, if we consider the quantum register described by Equation
2.1 , then a measurement result can be any of the |i) eigenvectors with a probability of |a;|*.

Entanglement

For a quantum register state, entanglement occurs iff it cannot be represented as a tensor
product of its parts (individual qubits). In a 2-qubit example we could say that state |¢;) is
not entangled while |4,) is entangled, because:

1
) = —=

AHEAHED

but there are no qubits |¢;) and |¢;) to satisfy

O = O =

|tha) = = [¢1) ® |¢2). (2.9)

2
V2
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7’ LS e
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UNTV: “POLITY 1wy
TIMISOA W L €
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18 CHAPTER 2. THE HDL-BASED SIMULATION FRAMEWORK

Quantum circuits

In order to perform the steps required by a quantum computational process (i.e. quantum
algorithm), networks of gates (circuits) are placed between succesive registers which encode
succesive quantum states (see Figure 2.1). Thus, the gate network (QNet; in Figure 2.1
terms) is processing the information from the register on the left (Q Reg;_1), in order to obtain
the state encoded in its right neighboring register (QQReg;). The devices involved in these
circuits are the quantum gates. A quantum gate implements a unitary operator over a 2"-
dimensional Hilbert space (n being the number of qubits processed by the quantum gate)
which performs a unitary transformation over a quantum state [62]{65]. The description of
the unitary transform in both bra-ket and matrix forms is given in Equations 2.10 and 2.11.

o] 2n-} on_]
U= |2) ugy- (yl, where Y ujuy = &y (2.10)
r=0 y=0 i=0
Ug o Ugorn—1
U= : : (2.11)
Ugn_10 Ugn_12n_1

In Equation 2.11, matrix U is unitary, and therefore characterizes a reversible transform.
The quantum circuits are networks of gates, built with the following restrictions: no cloning
is possible and no feedback is allowed. An example of a 1-qubit gate (Hadamard), with its
VHDL description, is shown in Figure 2.2.

{ I
0 —(loY+ |1
— H /1:”HVZ(I/+|>)

Hr

<5 10)- 1)
entity walsh_hadamard gate is
portiintrare:in gubit;iesire:out gubit);
end walsh_hadamard cate;
architecture wng _a of welsh hadamard gate is
begin - B
iesire (0)<=(1.0C/sqrt(2.00) )~ (intrare(0) +intrare (1)}
after 10 ns;
iesire(1)<=(1.00/sqrt(2.00))* (intrare (0)-intrare (1))
after 10 rs;
end whg_a;

Figure 2.2: The Hadamard gate: symbol used in diagrams and VHDL description.

Barenco et al. [10] proved that {XOR, Aq(U)} is a universal set of gates in quantum
computation. The n + 1 qubit transform A, (U) is a conditional operator, applying 1-qubit

10
a,. then the conditional transform is a CNOT operator, which negates the target qubit only

for the other input bits being '1'. Thus, the XOR gate is A, (6;). In Figure 2.3 we have
represented the general CNOT gate on n + 1 qubits along with its functional description
in VHDL (one of the most used HDLs for design and test of classical circuits [6]). Qubits
To...p-1 are input qubits, y is the target qubit with its value replaced by z after applying
the gate.

unitary operator U on the target qubit iff the other n input qubits are '1". If U = 01 ] =
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-- type quregister 1is array(natural range <>)of complex:
entity c not is
generic (delay:time);
port(i s:in quregister; o s:out quregister);
end c _not;
architecture cnot a of ¢ not is
begin
process (i_s)
variable lg:integer;
variable -emp:qguregistar;
begin
lg:= 1 _s'length;
assert 1lg-1 > 1 report “rot a valid CNOT geate”
severity error;
ll:for i in 0 to lg-1 loop

if 1 < lg-2 then temp(i):=1 s(i);
elsif i=1g-2 then temp(i):=1 s(i+l);
elsif i=_g-1 then temp(i):=1i s(i-1);
end if;

end loop 11;
o s<=temp after delay;
end process;
end cnot a;

Figure 2.3: General form of the CNOT gate: corresponding logic diagram and VHDL de-
scription.
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2.2.2 Quantum algorithms

From a computational complexity point of view [11]{101}, assuming that P # NP, then there is
a class. NPI (NP Intermediate) of problems that are not solvable by employing polynomial
resources. but are not NP-complete. It seems that this intermediate class contains the prob-
lems with efficient solutions in quantum computation, but has no known efficient classical
computation solving. Up to date, we know just a few such quantum algorithms.

As presented by Nielsen and Chuang [62], there are 3 kinds of quantum algorithms that
are fundamentally more efficient than their classical counterparts:

e simulation algorithms;
e search algorithms;
e algorithms based on quantum discrete Fourier transforms.

The first kind of algorithms is used for simulating quantum systems on quantum comput-
ers. Although this is an extremely important aspect, it is not of our concern in this thesis.
The second is represented by Grover [37][38] and Deutsch-Jozsa algorithms [25], while the
third kind is best represented by Shor’s algorithm [89]{91].

Deutsch-Jozsa algorithm

The Deutsch-Jozsa algorithm is an example of quantum computing power. It is solving the
so-called Deutsch problem, which is about determining the nature of a unknown decision
function g (operating on n bits) in one computational step [25]. The nature of g could be
either constant (all ¢ (x) are equal) or balanced (g (z) =’0" for exactly one half of the inputs,
and =1’ for the other half). The circuit implementing this algorithm is presented in Figure
2.4, where 2 registers are used (n-qubit query register, and 1-qubit answer register) and the
relevant states are given by the following equations:

,. _22""‘ ) 10y — |1)
lUA> - o \/2—71 |: \/§ } ) (212)
oy Z (=1)?|z) [10) — 1)
Id’B) e o (_2"' [ \/‘2— } 1 (213)

[Waa) = (2.14)

= L! [|0> - ll)]
k=0 x=0 \/Q_n \/5 .

After obtaining {¢44) the query register is measured and , if g is constant then superposed
classical state [00...0) from |¢14,) will have an amplitude of 41 with all the other superposed
classical states having zero amplitudes; on the other hand if ¢ is balanced then the state
[00...0) will have a zero amplitude with at least one other eigenstates having a non-zero
amplitude.

BUPT



o
o

QUANTUM COMPUTATIONAL BACKGROUND 21

Entangiement
could be detected

T Mcasurement
0 N A A \l,
[ n

H®I1 Vi iy —

n n .

n
10 A H 2

il

—_——
N
=

e
(]

1

i !
LA H 7 - 4

P) ‘ »
Y, ' ‘WB> W

Figure 2.4: Circuit implementing the Deutsch-Jozsa algorithm [62].

Grover’s algorithm

The quantum search algorithm, also known as Grover’s algorithm [38], is a solution designed
to substantially reduce the complexity of search algorithms [14], from O (n) to O (\/n). It
could be considered as a generalization of Deutsch-Jozsa algorithm.

Suppose we have an n-element search space, with each element being labeled by an index
x € {0,1,...n =1}, n € N. If the label is represented on m qubits, because of the super-
position of all indexes we have n = 2™. Then, we consider that our search problem has &
solutions, with 1 < & < n. We could reduce this computational task to a decision problem
[62] (i.e. defining a function f;(x), which is '1’ only when z is the solution, otherwise is '0’).

The circuit implementing Grover’s algorithm is presented in Figure 2.5 [37][62]. It has 3
quantum registers: a n-qubit index register, a m-qubit scratch register, and a 1-qubit oracle
register. The circuits from point (1) to the measured register are forming the so—called " Grover
iteration circuit” which is rippled O (y/n) times in order to get the result [12] . The Up circuit
is described by the following mapping:

_1_ _ s (—=1)/a@) |, i _
ﬂ(IO) 1)) = (=1) |>\/§(|O> 1)) (2.15)

x is one superposed state in the index register in point (1) of Figure 2.5. Because of the
Hadamard gate level, the index register contains at this point a superposition of all the
possible indexes. Thus, we can say that the Oracle Uy is marking the solution. The Grover
iteration circuit as a whole performs the action described in the following equation:

UO : |:13>

UGro : |’d’z’> — (2|'¢)i><'l/’i| - 1) -Uo (2-16)

In order to get the desired state in the measured register, we have to apply the Grover
iteration circuit ¢ times, where ¢ < [%,/%] [12][62].
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Figure 2.5: Circuit implementing Grover’s algorithm.

Shor’s algorithm

This algorithm [89] solves the factoring problem in polynomial time, while the best-known
classical solution is exponential [54][49]. Here, we have 2 quantum registers: the input register
is the left register in the following equations, and the output register is on the right. The
goal is to find the factors of a large integer (V) represented on L qubits, by using function
fax (1) = «*modN where ¢ and N are co-prime integers. The size of the registers is 2L,
due to algorithm requirements [89][91]. Essentially, Shor’s algorithm consists of 4 main steps,
dictating 5 corresponding main states:

® State 1: |LI'.“> = l"{]iHUl)o) — |0>®2L|0>82L

State 2: {uz) = (3 72,7 1i)) 10)°*

22L

e State 3: i) = glr Zizo [ f (i)

State 4: |vy) = /[55] ZLT] [ i+ b))

State 5: |v;) = Uppr : |¥4)

State |v1) is obtained by applying a layer of Hadamard gates on the input register. |v3) is
vielded by putting in the output register the result of special function f (periodic with period
r) over the input register. lvy) is obtained by measuring the output register (the result is m,
b is the bias [89]), and |v5) by applying the Quantum Discrete Fourier Transform (QDFT)
over the input register {17](39].
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2.3 A HDL-based perspective

Building quantum CAD techniques for the design and test of quantum circuits is possible
only if their simulation is efficient. Our simulation methodology consists of describing each
quantum gate network from Figure 2.1 by functional and structural architectures. When
entanglement is detected in a neighboring register, then a functional (behavioral) architecture
is selected for the circuit as the only possibility.

The entanglement detecting procedure is automated, by designing specialized non-entangled
qubit extraction algorithms. If the extraction algorithm is successful, then in that register
there is non-entangled information (groups of qubits), and a structural architecture is possible.
As presented in this thesis chapter and references [105][106}, the functional architecture will
employ exponential resources at simulation, whereas the qubit-level structural architecture
means only a polynomial overhead.

This methodology is an enhancement only if there are non-"totally entangled” states (see
section 2.4 for definitions). We have performed case studies for our HDL-based framework.
involving states appearing in Shor’s and Grover’s algorithms. The conclusion is that the
probability of total entanglement is rising exponentially with the number of qubits. However,
when running algorithms for practical purposes, the information encoded in registers tends
not to be totally entangled [114].

Nevertheless, total entanglement omnipresence when taking into account ”blind” proba-
bilities is a downside of this approach. But at least in some cases this framework offers the
solution: state’s entangled representation is avoided by bubble bit insertion (Chapter 3). This
technique is favorable for the polynomial structural architectures with the expense of building
some records of size O (n?).

2.3.1 Circuit model interpretation

When approaching the design of quantum circuits, this thesis will relate to our quantum
hardware interpretation of Gajsky and Kuhn’s Y-diagram [23] (see Figure 2.6). We have
modified the classical diagram [105] in quantum terms, therefore having three abstracting
levels: architectural, unitary and particle. The architectural level corresponds to the algorithm
data flow encoded in the overall quantum states. The unitary level is concerned with quantum
gate networks (quantum circuits at the gate level), basic quantum unitary transforms, and
unitary operators. Finally, the particle level is a technological interpretation related to the
physical implementations of the quantum gates, networks and circuits [62].

These abstracting levels could be seen from three different perspectives, or views. The
views in the Y-diagram are behavioral, structural and physical. From a behavioral (or func-
tional) view, the quantum circuit is a functional description, without taking into account the
implementation issues. In the structural view, the circuit is just the sum of interconnections
between basic components, while the physical view is concerned with the physical aspects of
circuit implementation.

At the architectural and unitary (logical for classical computation) levels, HDLs (Hard-
ware Description Languages) are able to describe classical and quantum circuits from both
behavioral and structural views. Moreover, existing software tools could assist both archi-
tectural and unitary synthesis. The physical design and the transformation from unitary to
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Figure 2.6: Quantum interpretation of the Y-diagram.
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particle level, while both important, are not targeted here. Also, the physical implementation
(from the particle level in physical view) is not of this thesis’ concern.

Barenco et al. [10] addressed unitary level issues; other aspects, such as coding and
circuit complexity were also consistently addressed [59][58], along with some classicaly-inspired
implementations like Programmable Gate Arrays [61]. At the architectural level, advanced
classical arithmetic designs [71] could be adapted to quantum circuit architectural needs.

l Architectural level | Unitary level |
ISR R R S e 4 -
| | |
| |HDL | |
| I specification | |
| | |
| | |
' — Abstract|! -
| Compilation | | =
model g
| | I £
o
: Architectural : : Z
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| | | =
| HDL | | 3
l . I I
y |specihication I |
| | i
| v I Unitary 1
| | synthesis I
I Compilation Abstract |
L Lwodel P _____1_
| 2 I i
| HHDL e
| . - . I =
specification =
| | (=
| | ("
| | I g
| | I 5
i i ; Abstracty =2
Translat s
| I ransiation n]Odel ' g
| | 3 I
| ! |
e ————— I T -4 —

Figure 2.7: The quantum hardware interpretation of HDLs involvement in circuit synthesis.

2.3.2 HDL involvement

Our simulation methodology is based on the circuit model of quantum computation (see Figure
2.1) which was taken into account for other simulation approaches [46][100]. The circuits (gate
networks) and the registers are simulated by HDLs (VHDL in particular), which are synthesis
tools for classical circuits. In Figure 2.7, we present the possible involvement of HDLs in a
quantum interpretation [105](106] of classical circuits’ synthesis [22][23].
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But, if simulating quantum processes is already an exponential job, is any HDL neces-
sarily a better tool for quantum circuit simulation, as opposed to an ordinary programming
language? The best enhancement that could be achieved by employing another simulation
tool - for a functional description - is linear, with time and space overhead being exponen-
tial. However. the positive motivation is presented in Figure 2.8, based on the HDLs feature
of being able to describe the same circuit with both behavioral (functional) and structural
architectures {6]{23]. This allows for avoiding unnecessary exponential state representations

[105H114}
circuit\ ’32 circuit n
Sz ’k 2 S3

o’

................................................. Entanglement
; detected
SUuaumﬁ
architecture}
' Functional Functional
(EntiryD(Entity ]J (Entity ”) architecture architecture

Figure 2.8: Example of approaching the HDL simulation of a quantum circuit.

Whenever entanglement appears, the quantum system cannot be correctly represented
as a tensor product [13] of its components’ individual states. A correct representation of
the overall quantum state, employing linear algebra, means an exponential overhead with
respect to the number of qubits. Therefore, when entanglement occurs between two quantum
subsystems, their overall state cannot be represented correctly as a reunion (assuming an
implicit state composition with the tensor product) of the two individual subsystem states.

Even though researchers are investigating better representations in order to replace linear
algebra [114]{115][117], handling overall states is a computationally hard (exponential) job.
Moreover, when dealing with overall states, there is no truly gate-level simulation of quantum
networks (circuits).

We will use the HDLs for describing a circuit in structural fashion, so that a non-entangled
state will not be represented as an overall state (with exponential overhead), but as a reunion
of individual qubit states. If the previous or the next quantum state is an entangled state,
then the quantum circuit must be represented in a functional (or behavioral) manner.

In Figure 2.8 a HDL simulation approach is presented. Two quantum circuits, functionally
described, guard the entangled quantum state (S3). The first quantum circuit (network) is
having a structural description because is guarded by 2 non-entangled states (S; and Ss).
Cp,...Cp, are the smallest components of the quantum circuit, and A;... A, are their
corresponding architectures. A quantum register corresponding to a non-entangled state is
using a '/’ notation, while for the entangled case the used sign is °)’. Of course, if we are to
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perform a gate-level simulation [96][114] of the quantum algorithm implementation, then the
circuit becomes a single quantum gate.

For a practical implementation of this methodology, each circuit must be described both
by structural and functional (behavioral) architectures. The structural description is at the
unitary level (quantum gate) in modified Y-diagram terms (see Figure 2.6) [105]. For a gate
network. if entanglement is detected in the previous or next quantuin state, then the functional
architecture has to be selected to describe it; otherwise the structural architecture is chosen.
The structural case is the desired one because the simulation will require only polynomial
resources.

This simulation methodology could be automated by being able to extract the non-
entangled qubits from the register, if such is the case. This is also an exponential job if
we deal with arbitrary quantum multi-qubit states; however, when dealing with specific algo-
rithm states, it becomes much simpler [105]{106].

2.3.3 Methodology implementation

For a gate network, if entanglement is detected in the previous or next quantum state, then the
functional architecture has to be selected to describe it; otherwise the structural architecture
is chosen. Figure 2.9 presents a circuit that can be simulated with a structural architecture
(case B). but for some input states it produces entanglement, and therefore can only be
simulated by functional (behavioral) architectures (case A).

The matrix representation of quantum states and unitary operators is adopted: therefore
the quantum states are type array (of complex) signals [6]. The data structure for HDL-
simulation is designed so that the circuit is capable of processing both array of qubit states
(the structural case) and overall states (the behavioral case), depending on entanglement
detection (see Figure 2.10 for the appropriate data structure example - described in VHDL.)

Entanglement , , Entanglement

_1_ 4 detected 1 not detected
—— (0-10)-

AT 0)
) \_j‘ \U\‘}l |
5 (00)+1) /

A) B)

Figure 2.9: Entanglement example.

With the data structure from Figure 2.10 and the above considerations, we are able to
describe the circuit from Figure 2.9 with both structural and behavioral architectures. The be-
havioral architecture (see Figure 2.11, for architecture ”functional”) has a group of 4 variable
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library ieee;
use ieee.math real.all;
use ieee.math complex.all;
package qupack is
~-- the gqubit state representation
type gubit is array(0 to 1)of complex;
-- array cf qubits representation
type qubit vector is array(natural range<>)of qubit;
-- guantum register overall state representation
type guregister is array(natural range<>)of complex;
-- data tvpe for simulation of 2-qubit circuits
-- when ent=true we have entanglement and 'qr' field
-- will be taken into consideration
type gudata is record
gr:quregister (0 to 3);
ga:qublt vector(0 to 1);
ent:poclean;
end record;
end gupacx;

o X
b ’

Figure 2.10: VHDL data set example.

assignments. motivated by the fact that the overall transformation produced by the circuit is
characterized with the resulted matrix from Equation 2.18. The effect of the Hadamard gate
over the overall input state is given by:

10 1 O
1 01 0 1
HI = ﬁ 10 -1 0 (2.17)
01 0 -1
Applying the XOR gate over the 2 qubits will have the following effect:
1 000 10 1 O
0100 1 01 0 1
0001 |HID="%141 ¢ (2.18)
0 010 10 -1 0

When structural description is possible, the circuit can be reduced to the form given
by Figure 2.12(A), with Uy, ... U,_, being 1-qubit unitary transformations, and 4o, - - - Gn-1
individual qubits. For the Figure 2.9(B) case, the structural description is possible, because
the circuit can be reduced as shown by Figure 2.12(B) (with ¢; = % (|0) —|1)), the target
input gr, = |0), the target output and source qubits ¢, = g5 = |1)). This is, in fact, the
motivation for the architecture "structural” of entity “circ-ex” (see Figure 2.11).

Summarizing, the simulation methodology (as developed until this point) is presented in
Figure 2.13. After each quantum register ¢, an entanglement analysis is produced, generating
k; non-entangled qubit groups. This information is passed to ( Reyg; and the quantum network

that has outputted this state (Qnet;) in order to select the appropriate structural architecture
(if such would be the case).
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entity circ_ex is
pert(gl:in qudata;gl:inout qudata);
end circ_ex;
architecture functional of circ _ex is
begin -
process (ql)
variable t:quregiszer(C to 3);
variable r:qudata:
begin
if (gl.en:) then
ll:for 1 in 0O to 3 loop =(i):—-qgl.qr(i);
end loop 1l1;

else .:=tensor product_1l(gl.ga(d),ql.gqacl)y;
end if: - -
r.qr(d):=(1.00/sqrz(c.3C)) *(t(Cr+(2));
r.qr(l):=(1.30/sqrz(2.CO))*(t(l)+t(3)):
r.gr(2):=(1.08/sqro(2.00))* (e (l)-2(2));
r.qr{3):=(1.00/sqrz(2.C00))*(t(0)-t(2));

at

.ent:=trae;

qg2<=r after 20 ns;

end process; end func:ional;

architecture s:iructural of circ_ex is
component Hadamard_gate

port(gi:in qubit;gqo:out qubit);

end component;

component gxor

port(gs:inout gubit;qri:in qubii;gtc:out gubit);
end component;

begin

cl:Hadamard gate port map(ql.ga(0),ql.qa(0))
c2:qxor port map(g2.gqa(0),gl.qga(l),q2.qa(l});
end structural;

entity Hadamard gate is

port(gl:in qubiz;go:out qubit);

end Hadamard_gate;

architecture hga of Hadamard_gate is

begin

go(0)<=(1.00/sgr=(2.00)) *(qi(Q)+gi(l))after 10ns;
go{l)<=(1.00/sgqr:(2.00))*(qi(0)-gqi(l))after 10ns;
end hga;

entity gxor is

port(gs:inout;gti:in gqubit;qto:out qubit);
end gxor;

architecture gxa of gxor is
begin
process (gs, qti)
begin

assert (gs(0).im=0.0C and gs(0).re=0.30) or

(qs (1) .re=0.CC and gs (1) .im=0.00C)

report "XOR's cutput will be entangled"”
severity failure;

if gs(C).im=0.0C and qs(C).re=0.00 then

qto (0)<=gti(l) after 10 ns;

gro(l)<=qti(0) after 10 ns;
elsif gs(l).im=0.C0 and gs(1l).re=C.00 then gto<=qti;
end if; end process; end gxa;

Figure 2.11: Relevant pieces of VHDL code.

qO I L/b —

. H q4;, — L% —— 4g
91— U, \— 91 — U, — 9

Figure 2.12: Non-entanglement circuit reduction.
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Mcasurcment
= m m m m ?5
g QReg | Entanglement ese |QRegn Entanglerpem pz’ %
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Figure 2.13: HDL-based, entanglement-aware, quantum circuit simulation model.

2.4 Methodology effectiveness

Our simulation methodology’s effectiveness is affected by entanglement situations. This kind
of study was already performed numerically for Shor’s algorithm [72], but we are considering
it for our HDL framework. For assessing the entanglement role in our HDL-based simulation
method, we consider two definitions.

Definition 1 (Complete entanglement): A n-qubit quantum state is completely entangled
(i.e. an entanglement that includes all the qubits) iff it cannot be expressed as a tensor product
of a 1-qubit state and a (n — 1)-qubit state.

Definition 2 (Total entanglement): A n-qubit state is totally entangled iff there is no
tensor product of two & and [-qubit states (with arbitrary 2 < (k + ) = n) to express it.

Definition 2 is particularly useful, because there are cases of complete entanglement where
qubits are totally entangled inside well defined groups, but the groups as wholes are not
completely entangled between themselves. Figure 2.14 presents such an example, where the
overall state is not completely entangled. and the overall state of all qubits except ¢3 is
not totally entangled. A situation where the entanglement is complete but not total is still

advantageous for our simulation approach and a structural description is possible (though not
at qubit level).

2.4.1 Automated extraction of non-entangled information

Grover algorithm case study

In order to draw any conclusion on the opportunity of applying our simulation methodology
to Grover’s algorithm, we must analyze the entanglement in Figure 2.5, at the indicated
points: (1), (2), (3), and (4). It is obvious that 1-qubit gates will not produce entanglement.
Therefore, we have 4 possible distinct situations while simulating Grover’s algorithm:

A) No entanglement is encountered;
B) Entanglement appears at point (2) and it is cancelled at point (4);

C) Entanglement appears at point (4);
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g n
q U!\
q, ‘
q,
qJ
q, 7
9,
q,

Figure 2.14: Example of groups of entangled qubits. Qubits ¢o, ¢4, g5, ¢s, 47 are in the first
group. ¢, ¢» in the second, while g3 is single.

D) Entanglement appears at point (2) and it would not be cancelled.

From our simulation methodology perspective, these situations are ordered from A) - the
best - to D) - the worst. Due to the fact that the state first entering Up is of the form

by = , (2.19)

[\]
vl —

and the state exiting Up is

1
Py = o7 (2.20)

Un—1

with ¢; = 1 and ¢ = 0..2" — 1, we could establish if ¢/9) is entangled or not by trying to write

[ ag 4 ... don_) ]T as a tensor product of individual qubit states (i.e. [2 x 1] individual
qubit matrixes.)

Lemma 1 (U, non-complete entanglement): The oracle is not dictating complete entan-
glement iff in the set {ag, ay,...asn_1} of Equation 2.20 elements, all the couples (aak, azk+1)
(with k = 0..2"~! — 1) are either constant or balanced.

Proof: First we are considering all the possible 2 x 1 matrices containing +1 elements:

[ 1 }, [ :i }, [ _11 ], and [ —11 ] The first two are constant and the following ones are

balanced. The matrix from Equation 2.20 represents an n-qubit state. Therefore, if we have
an (n — 1)-qubit state, adding one qubit is described by the following tensor product:
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aobg Co
g 1 aghy 5]
| ay b aibo C2
0 | _ ab C
— as ® [ ; ] = 101 3 (2.21)
272 1
Aon-1_1 an—l_lb() Con_2
| az'n—]__lbl ] i Con_q ]

In Equation 2.21, the rightmost form of the product matrix will give the following set of
couples:

SC = { ((.’0. (,'1) . (Cz, ('3) R (an_z, (:2“—-1)} = { dg (bo, bl) , a1 (bo, bl) «..lon-1_1 (bg, bl)} (222)

‘ START ’

INPUT- « = =11} with

=027 1)

v
Seti—0
Set:-Compute setia.a)

[

v

Setr Compute set(u,, ,a., )

EXCEPTION: No qubnt
¢ xtravtecd

RETURN ¢
RETURN Q = overall quantum state of
the remamed (71-1) qubus

one of the clements in Seti

Figure 2.15: Algorithm 1 described with a flowchart, where n is the number of qubits. Set
and Seti are two variables indicating the set of allowed 1-qubit matrixes: =0’ for constant,
and '=1" for balanced.

Thus. the tensor product fromn Equation 2.21 is possible iff the resulted elements could be
coupled the way Equation 2.22 shows. Of course b;,¢; = 1 for j = 0..1 and [ = 0..2" — 1.This

bo

means that all the couples will have the form of 1-qubit state [ b
1

] : balanced or constant.
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Due to Lemma 1, we have elaborated a simple algorithm that extracts one non-entangled
qubit state, from a n-qubit overall state (given in the matrix form) dictated by Grover’s
algorithm oracle. From now on, we will call this algorithm ” Algorithm 1" (see Figure 2.15).
Using Algorithm 1, we are able to extract all the individual non-entangled qubits from the
state dictated by the oracle. This new algorithm (Algorithm 2 from Figure 2.16) also returns
the overall state of the qubits that cannot be extracted (Q).

INPUT. Q. - overall quantum state (matix formy
COUNT - 1

le
<

Algonthm Q)

Yes

I RETL'R.\'QJ [RETUR;\‘q I

o |[COUNT := COUNT -
Q =Q

Figure 2.16: Algorithm 2 described with a flowchart, where n is the number of qubits. Here,
¢ is the individual qubit - matrix form - state, and Q,Q, the entangled overall states of the
qubits that cannot be extracted.

For finding entangled qubit groups of arbitrary depth d, we need to modify Algorithm 1,
which finds only 1-depth groups. This is obtained by redefining the sets of Algorithm 1 Sy =

{ [ i } ) [ :i ]} and Sy, = { [ —11 ] , [ _11 ]} as all the possible couples of complementary

matrixes. As an example for the new Algorithm 3, Equation 2.23 shows the possible couples
that represent entangled 2-qubit states.
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f __1 T B 1 7 )
1 -1
Sxn = ¢ 1 1] =1 ¢
1 -1
>- 1 - -_1-<
-1 1
Sa1 = ¢ 1 1 $
1 -1
> 1 ;_1=< (2.23)
1 -1
522 = < -1 ’ 1 >
1 -1 ]|
IREN It
1 -1
S = 90 1 {1 -1 ’
\ L _1_ L 1 dJ

Lemma 2 (Up non-total entanglement): The oracle is not dictating total entanglement
iff in the set {ag,«y,...asm_1} of Equation 2.20 elements there is a 2 < d < n, d € N so that
all the 2%-uples ((Lk,zd, Ug.pdgys - - .a(k+1).zd_1) are in the same set of complementary matrixes

Sgr (£ =10.22" —1).

Proof: The demonstration of this lemma becomes obvious if we reconsider the demonstration
of Lemma 1, by replacing the "couple” with the 2¢-uple, and using the above-described notion
of complementary matrixes set.

The flowchart explaining Algorithm 3, for extracting d-depth entangled qubit groups, is
presented in Figure 2.17.

Shor algorithm case study

In our entanglement-related case study, states |;) and |¢) are not entangled: the first is a
basis state (eigenvector), the later is obtained from the first by using only 1-qubit gates. Also,
the registers involved in |i3) and |y4) (dictated by arithmetic circuits) is given in Equation
2.24, where n is the number of qubits, £ € C, and b; € B = {0,1}.

bo
b

) =€ (2.24)

bon _1
Due to Equation 2.24, we have developed Lemma 3.

Lemma 3 (Entanglement in Shor’s arithmetic circuits): The registers involved in
states [t3) and |¢4) are not totally entangled iff, in the set {bg, b, ...bsn_,} of Equation 2.24
elements, there is a d € IN so that all the 2¢-dimensional subsets (bk.gd, kg1, - - -2 bk +1),2d_1)
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START

INPUT: a, € {—L1} with
i=0.2"-1
INPUT: depth d with

2<d<n

I

Seti:=0
Set:=Compute_set(a,q,...a,, )
k=1

Seti:=Compute_set(d, . .d, . o Qe )

k=k+1

~~
CXCLCPTION: No dJ-depth
qubit group could be extra-ted

RETURN ¢ = one of the elements in Seti
RETURN Q = overall quantum state of

the remained ( 12-d) qubits

Figure 2.17: Flowchart describing Algorithm 3 for extracting a d-depth entangled qubit group

from the given state.

STOP

BUPT



36 CHAPTER 2. THE HDL-BASED SIMULATION FRAMEWORK

(with & = 0.. (2"~ — 1)) are in the same set of two 2¢ x 1 matrixes with binary elements: one
matrix with all elements being zeros, and the other with at least one non-zero element.

Proof: Non-total entanglement occurs when there is a subset of d qubits, which is not
entangled with the rest. This is possible iff there are 2 corresponding matrixes so that:

beO bﬂo
, . bel blll
i) = lvey oy =€ . | ®] (2:25)
begn-a_; brga_y

Given the fact that be,, bn; € B, be; is either copying |¢,) elements or making all of them
'0" in the tensor product, thus confirming this lemma'’s assertion. We developed an algorithm
(Algorithm 4) for extracting d-qubit (1 < d < n) groups that are not entangled with the rest in
the register (see Figure 2.18). Here, function Compute_set returns the decimal correspondent
of the binary information encoded by the 2¢-dimensional subset. The algorithm will return
¢ (the state of the d-depth qubit group) and @ (overall state of the remained n — d qubits).
When the extraction algorithm is successful for d = 1, then the entanglement is not complete,
and if there is a d < n so that the algorithm avoids EXIT in Figure 2.18 then we have a
non-total entanglement situation.

2.4.2 Non-entanglement probabilities

Finding and extracting forms of non-entangled information is an advantage for our HDL-
based simulation method. But its effectiveness is given by the frequency of non-entanglement
situations. Our simulation approach gives no advantage if the circuit could be described only
by an entirely functional architecture (i.e. no structure could be specified). This means that
we cannot draw any advantage if total entanglement is encountered.

We could also say that total entanglement appears only if Algorithm 3 and Algorithm 4
will give no expected answer (EXCEPTION in Figure 2.17, or EXIT in Figure 2.18).

Grover’s algorithm probabilities

Unfortunately, the improvement obtained by our simulation methodology [105][106] is not
always present. Furthermore, the probability of encountering an advantageous situation de-
creases exponentially with the number m of qubits in the register (see Figure 2.19). This is
first expressed in Equation 2.26:

pl (m) = 273"+ (2.26)

where the probability of being able to extract at least one entangled qubit (p1 (1)) is defined
by the number of matrix sets (2, balanced and constant), the number of matrixes/set (2), the
number of couples (2™71). and the number of the initial matrix elements (2™).

The probability of decomposing all the given quantum state in individual (non-entangled)
qubits is even lower for a big /. This probability is expressed in Equation 2.27:
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INPUTS: b, €{0.13( =0.2" - Lin >2): d (d > 1)
v
g:=NULL: &k :=0;

|

Set:=Compute_set (bk.z" ,b

k-2 +1....b(k+l }2¢ -1 )

O[k]:="0": k :=k+1: Yes @

No
g:=Set; Q[k] :="1"1 k :=k+1:

)

Set:=Compute_set (b/\-ﬂ" b b )

>k (k1)

RETURN ¢
RETURN Q

k =k+1;

Figure 2.18: Qubit group extraction Algorithm 4.
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Figure 2.19: Probability pl of extracting one non-entangled qubit; evolution with the number
of qubits ().

p2(m) = ﬁ (2"2m_1+1) (2.27)

i=1

2(m) 0.5 —

o
s
o)
oo

10

Figure 2.20: Probability p2 of extracting all the qubits as non-entangled; evolution with the
number of qubits (7).

Figures 2.19 and 2.20 show little room for simulation improvement with our approach.
But extracting individual non-entangled qubits is not the only possibility of separating non-
entangled information from the given quantum state.

If searching for a d-depth non-entangled group in the given state, then the total number of
such possibilities is 22+2"7*~1, Thus, when searching d-depth groups for all d (1 < d < m),
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the probability of finding one is:

(rin—l 22‘*+2"‘-d—1

p3 (m) = ==L R (2.28)
The graphic representation of p3 (m) is shown in Figure 2.21; the interpretation is that
our simulation methodology will present some improvement, although it will decrease expo-
nentially with m. Nevertheless, these probabilities are "blind” measures for effectiveness.
Researchers have shown that, when running algorithms in practical cases, quantum informa-
tion 1s organizing itself so that total entanglement is not always present. Moreover, special

coding could be employed so that we avoid entangled representations [114].

1 T T

p3(m) 0.5 -

-2
+

6 8

Figure 2.21: Probability p3 of extracting one of the possible d-depth entangled qubit groups,
for2<d<m.

Shor’s algorithm probabilities

Algorithm 4 is extracting non-entangled information from register states involved in Shor’s
algorithm arithmetic operations. Related with the results from the previous section, we are
interested in finding the probabilities of non-complete (Pnc¢) and non-total entangled (Pnt)
states. Pnc is the probability of finding at least one non-entangled qubit, whereas Pnt is the
probability of finding at least one non-entangled qubit group (depth d, 2 < d < m). The
result is given in Equations 2.29, 2.30, and Figure 2.22:

Pnc(m) = 3—12;-;———2 (2.29)
pnt (m) = E [(22i _ 1>2.2,2jm_1 _ (QT _ 2>] (2.30)

with m € IN; m > 2. Unfortunately, these exponentially decreasing probabilities do measure
the effectiveness of our approach in this particular case study.
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Poc(m) ¢4

Pnt(m)

0.2

Figure 2.22: Probabilities of non-complete (Pnc) and non-total entangled (Pnt) states, with
the number of qubits ().

Arbitrary state qubit extraction

Using the results from Section 2.4.1 we will develop an algorithm for non-entangled qubit
groups. applicable not just for a specific algorithm state, but for an arbitrary one. This
algorithm is still exponential when extracting the non-entangled qubits, but is efficient when
discarding a state as totally entangled.

The straightforward algorithm for non-entangled qubit group extraction is contained in
Figure 2.23 from point marked as (*) downwards. Our approach is to extract relevant infor-
mation so that some totally entangled states could be easily detected (from START to point
(*)).

When attempting to extract a d-depth qubit group from an n-qubit state, we split the 2"
state matrix into 2"~¢ matrixes of the form [akgd, Ugodyqs - - - a(kﬂ)zd_l]f with £ = 0..2""4 - 1.

We denote [s (agod) s (dgadyq) ... 8 ((L(k+1)2d_l)]t as My 4, where

0 if w=0
s(w)y=¢ —1 if sign(w)=-1 VweC (2.31)
1 if sign(w)=+1

In Figure 2.23, the function Compute_set is associating the integer index value of the set
matrix My 4 is belonging to. The set, for matrix M 4 is { M q, (—1) X My 4,04} with 04 being

a (27 x 1)-size matrix with only 0 elements. Sets are labelled with indexes from 0 to 32‘12“1 —1.
For example, when d = 1 we have the sets from Equation 2.32:

s ([ (2] [2]) s
R

(2.32)

Y )
I
—

OO OO
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2.4. METHODOLOGY EFFECTIVENESS 11

‘ START ’

INPUT:- . € C; i =0.2" |
INPUT. depthd: 2<

A 4
Seti: U

Set:- Compute_setidyd, ...d, )
Aol

Setiz-Compute_set(d, -.a, .. d )

LXCEPTION: No d-depth
qubit group could be extracted

\&%/

RETURN g {a,a, ... a,, ]
RETURN Q = overall quantum state of
the remained (11-d) qubits

STOP

Figure 2.23: Algorithm 5: non-entangled qubit group extraction from an arbitrary state.
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12 CHAPTER 2. THE HDL-BASED SIMULATION FRAMEWORK

2.5 Experimental results

All simulations from this thesis were pursued on a Windows XPTM, PENTIUMTM IV CPU
1.6GHz. 192MB RAM machine. For experimenting our HDL-based simulation approach, we
have performed an experiment concerning the Deutsch-Jozsa algorithm [25]. Entanglement
problems here are similar to Grovers algorithm case study, due to similar circuit structures.
We have simulated the algorithm with 2 distinct circuits implementing a balanced function
g: the odd-even (Figure 2.24) and the parity circuits (Figure 2.25). Simulation has taken
into account several instances of the circuits: with a 4, 6, 8, 10, 12, 14, and 16-qubit query
register. It was performed for all instances with both behavioral and structural architectures.
That was possible because entanglement was not detected here.

tragurament
Entapelemaim not detected
f i {7} ~—H} —1 0
o —H} {H} — 0
5 1) l—lH ‘I_]-_lJi | N—— 0
A L A} A} = 0
R LH | Wl — 0
0; 7} [H} — 0
10} 4ll} {H} = } 0
s \ 19— 7] (7} — !
: La— el —
5{ m [ N |0)-[1)
g e AN ¥ 2

Figure 2.24: Deutsch-Jozsa with the Odd-FEven circuit.

Entanglement not detected Masurement
A M

5 o —{#} ﬁ ¥: 4 —
7 | o —mF-D O+
2 vl N — =
2 v —{H} NZS o— {41 =
g » —E—ODr- A\D —{ A= o
:: Y] ——’{ H } AN 28 /.\\j : ]H l ; J:' 0
-; ‘f —{H} ) 8 B » (3 ¢
£ o —{H] N Jf\ \\ v —{ At  m— 0
Z o —{H} \NVS QY ) {H} t— !
Ho—m 4 nt

Figure 2.25: Deutsch-Jozsa implementation with the Parity circuit.

The time diagram for such a simulation is presented in Figure 2.26. The circuits for
function ¢ are presented in Figures 2.24 and 2.25. In Figure 2.26 signal rin encodes the
input state of the left level of Hadamard gates (operating on the query register) and ah the
corresponding output state (see Figure 2.25); signal aht encodes the state exiting the level
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2.5. EXPERIMENTAL RESULTS 43

of XOR gates; rout is the signal exiting the right level of Hadamard gates. Signal result is
created by applying an OR gate on the outputs of the measuring devices from the rightmost
part of Figure 2.25.

Simulation times are presented in Table 2.1 (n is the number of qubits, Struct. and Behav.
stand for structural and behavioral), with the discrepancy between the structural and behav-
ioral simulations being obvious because behavioral simulation times are rising exponentially
with the number of qubits [105][106]. The discrepancy between behavioral and structural
runtimes for the Deutsch-Jozsa algorithm is also presented in Figure 2.27.

Ntest_parity_8/zero [{{1 0} {0 O}}
ftest_parity_8/one [{{0 0} {1 0}}
hest_parity_8/x_cold [{{{1 O} {0 0} {{1 0} {0 0} {{7}0; {0 Oy} {{7 O} {0 O} {{7 O} {q Oy} {10} {0 O3} {{7 O} {0 OFF [{T OF {0 O}
ftest_parity_8/g_x UG 11U 190012} {10 00 5 C1f K 0 (1 O 4O 05 ¢ ) (R 01 41313 (10 9 {1 N 5-0 €T { O
hest_parity_8/g_x_m (00000000 [REEEEEEI
test_panty_8/y_cold [{{00} {10}
/test_panty_8/result
Ntest_parity_8/cpr/xin {{{1 0} {0 OF} {{1 0} {0 0)} {{1)0} {0 O}} {{? 0} {00} {{7 0} {4 O}} {{T O} {0 O}} {7 O} {0 O} {{1 O} {0 O}}
ftest_parity_8/cpntyin [{{0 O} {1 O}}
Rest_parnty_8/cpr/xout 0 0?9 (0 0 {103 0.0] (1€ 4 A1 T A0 T+ U i ) (v @ @ 1 oy 0 {1 o)
(0) {m1v-30 10-30m 10308 o083 ({-1.9INF -1.#INF} {0 0}) {0 0} {-1 #INF -1 #INF}) {00110}
(1) [arer208 0n 200 1w 0n -tee08 {{-1.#INF -T#INF} {0 O}} (0 0} {-1 #INF -1 #INF}} 00} {1 0})
(2) [P=msvaon rexce evs0e 4-1.8INF -1.#INF) {0 0}} TH{O O (-1 &INF -1.oINFy) {001 {1 6}}
(3) [rems ve20m e300 1o 3085 ({-1.#INF -1 #iNF} (0 0}) {{0 0} (-1 #INF -V BINF}) {{oo} {10}
(4) [Errseersm:irexe 1o {{-1.#INF -1 4INF) {0 0)) ({0 0} {-1 #INF -1 #INF}) {00} (1 0}}
(5) [wie=xa ovsom : voe308 1ee3mm {{-1.@INF -1 #INF} (0 0)) ({0 0} {-1 #INF -1 SINF}} {{ooj {10} o _ _
(6) [ re-3-10-20m i 1ew0 1e-20m; {{-1.8INF -1.#INF} (0 0}} ({0 0} (-1 #INF -1 MINF}} {{00} {1 0}}
(7) [Hre308 1020 -1 0= 00 -re- 2085 {{-1.#INF -1.4INF) {0 0}) 1{0 0) {-1 #INF -1.3INF)) {{o0){10n
ftest_parity_8/cpn/yout |ke-38-1e-30m 1308 1e-30m 0.707107 0} {-0.707107 0}
Ntest_parity_8/cpn/ah T e e e L D L e
(0) [¥rerscs vwrsom remsce e {{0-707107 0} {0.707107 O}} _
(1) [Wre08 ters0m 1o e300y {{0.707107 0} {0.707107 O}} !
(2) [saw s ezm, exa army {{0.707107 0} {0.707107 0 !
(3) [tt1e308 -10-208; 10e2c 10o 3083 {{0.707107 0} {0.707107 O}} i
(4) [P e e {{0-707107 0} {0.707107 OJ]. 1
(5) [arerxe-tovsm iteice o33 {{0.707107 0} {0.707107 0}
(B) [#1exa w308 1m0 102087, {{0.707107 0} {0.707107 O}
(7) [greomn-10030m L1vox ee3my {{0.707107 0} {0.707107 0))
Rest_parity 8/fcpnfant | @ ]emeemeeeesseeeset e o diemtmea i o |
(0) [a1e-xa 100308 (10308 1c20m 16330 -16+308) {18~308 10430 {{0.707107 0} {-~0.707107 O}
(1) [a1-32 10300 1038 10308 1116398 1o 30} =308 1+ 20 {{0.707107 0} {-0.707107 0}
(2) [wrrso0mrerrcm riueson iascar (102308 10368 {10308 10 3687) 0.767107 0} {-0.767107 0 o
(3) [0 10200 10 0 00 00 -1 X0 10208 {1+ 208 1o 2H3) {{0.707107 0} {-0.707107 O}
(4) [Frext-1er0m ;1030010 30wy 1102308 -16308) {14308 10-308) {{0.707107 6} {-0.707107 0}
(5) [urte 8 10300 ;10038 03089 {10 300 102300 {10308 1+ 36) {{0.707107 0} {-0.707107 O}
(6) [ore-308 103300 rev3ce v0v20m) -1 330 -10>308) {10308 002003 {{0.767107 0} {-0.707107 O}
I T T T R T T R N T T BT IR TR IR AR 1 o I Co
30 40

Figure 2.26: Time diagram with relevant signals of the Deutsch-Jozsa circuit simulation the
Parity circuit, with an 8-qubit query register. Each gate is considered as operating with a 10
ns delay.
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odd-even parity
n str. | beh. str. | beh.
4 || < 0.5 sec 0.5 sec < 0.5 sec 0.5 sec
6 | <0.5 sec 1 sec < 0.5 sec 1.5 sec
8 || < 0.5 sec 3 sec < 0.5 sec 5.9 sec
10 || < 0.5 sec 21.5 sec 0.5 sec 51.5 sec
12 || < 0.5 sec | 45min,8 sec 0.5 sec | 1h,3min,7sec
14 | < 0.5 sec | timed out 0.5 sec timed out
16 0.5 sec timed out 1 sec timed out

Simulation time

Table 2.1: Deutsch-Jozsa algorithm simulation results.

50 {-— - —-—-—f
40

T30 | -
Q
£2,20 -

4 6 8

10 12 14 16

Number of qubits [n]

——Du-

Behavioral:

. -—~-—-——*"—1§ —e— DJ-
Structural .

|

i
|
|
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|
i
!
i
i

i
i
|
|
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Figure 2.27: Deutsch-Jozsa simulation runtimes: structural Vs. behavioral.
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Chapter 3

The Bubble Bit Technique

Although the conclusion of the previous chapter may not seem promising for our approach, we
could still improve it; as shown in this thesis and in [106](107][108], at least for states appearing
in Shor’s arithmetical circuits and Grover’s algorithm we have an encoding technique that
creates the possibility of structural (i.e. polynomial) simulation.

Considering the arithmetic circuits involved in Shor’s algorithm (with Grover’s algorithm
experiencing a similar situation [106][107}). the difference between a non-entangled and a
totally entangled state could be a simple binary couple flip. Therefore we developed an algo-
rithm that creates a new entanglement-free-represented state, in order to alter the entangled
state representation by inserting appropriate values called "bubble bits” and storing their
positions in the state vector.

Our technique is similar to the stabilizer codes, which offer the opportunity for efficient
simulation (as proven in Gottesman-Knill theorem [62]), but instead finding transformations
that leave the n-qubit state unchanged or stabilized, we produce a corresponding (n+ 1)-qubit
state which is not entangled (it is used for simulation), and a set of memorized inserted matrix
elements (the bubble records).

The purpose is to avoid the 2" x 2" matrix expression of the n-qubit register unitary
operator. After performing the bubble bit insertion procedure, the equivalent quantum net-
work will have only 1-qubit gates, and after applying the unitary operator in this manner,
the original state can be restored. Because the unitary transform is obtained with at most n
[2 x 1]-size matrixes, incentive for structural (i.e. polynomial) simulation is provided.

3.1 Preliminaries

The bubble bit insertion technique is a quantum state and circuit encoding, which generates
a new simulation model, under the form shown in Figure 3.1. First, the FArh architectures
are used for the quantum networks. These architectures are used by the quantum networks
(QNet;...QNet,) from Figure 2.13 simulation model, with a high probability of being func-
tional. The state outputted by Q) Net;, having FArh as architecture, will be processed with
the bubble bit procedure, and the result stored in QQReg; (bubble). At this point, QNet;
will have non-entangled input and output states, hence it will be described by an entirely
structural architecture (computation flowing along the darker arrow in Figure 3.1).

45

BUPT



16 CHAPTER 3. THE BUBBLE BIT TECHNIQUE

Record Record
1 ﬁ n ol
rd \
r \ m
g QReg 1 ( \ QRegn
FArh j:) (S1) FArh jj (Sn)
m m
Classical M ‘ m+1 m+1

state [i} QNet 1 ® —ﬁ ces ﬁ QNet n

bubble
inscrtion
m+1 i
SArh SArh |, 41
iy QReg 1 QRegn
bubble bubble Classical
‘ state

4 nm

Measurement

Figure 3.1: Quantum circuit simulation model, when the bubble bit technique is employed.

3.2 Shor’s algorithm simulation

3.2.1 Bubble insertion algorithm

The procedure for bubble bit insertion works as follows: every couple (b, bax+1) from the
state vector (as considered in Equation 2.24) is scanned. From this equation, £ will be ignored

because all non-zero amplitudes are equal. We denote couple matrixes as: [ 8 } = (), [ (1) } =

1
processed will have to be of either this particular value or 0.

The bubble insertion described in Figure 3.2 must be performed until all the elements
from the state vector are scanned; here the oval is the first relevant couple detected and the
rectangle represents the current processed couple. The bubble bit is inserted between the bits
shown in rectangles in Figure 3.2. After the bubble insertion, a current processed couple (c)
results along with a next couple (n) that could be already processed when no ’?’ sign appears.

There are 2 cases where a bubble bit could also be inserted in the next couple; that
happens when becomes obvious that it would be the only choice (see Figure 3.2 for details).
When the entire state vector is scanned and processed in this way, the extraction of one qubit
(characterized by the first encountered non-0) becomes straightforward, and it can be said
that one bubble step is completed. Several bubble steps must be performed until all qubits
are extracted.

Any bubble-bit insertion will also increase the number of state matrix elements (b;). The
solution for maintaining a coherent matrix-form quantum state is to add an extra-qubit to
the state representation. Thus, the number of b; elements will be increased from 2" to 2"+! -
at the first bubble step —- by inserting extra 0s. The next bubble steps will require erasure of
0s, so that the matrix-form representation further complies with the quantum state coherence
requirement (a k-qubit state implies 2% vector elements in the state matrix representation).

1. [ (l) } = 2, [ ! :] = 3. When a non-0 value is encountered all the other couples to be
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Figure 3.2: Bubble bit insertion technique.

For every bubble-bit insertion, its position inside the vector is recorded. Each bubble
{b,pos} is described by its nature (b = 0/1) and its position in the resulted state (pos).
Performing all the necessary bubble steps requires a total of O (n?) records be produced.

Efficient quantum gate-level simulation may be achieved by using the HDL simulation
framework, at least for some particular circuit cases (Grover iteration, arithmetic circuits)
[96][106]. The ability of HDLs to describe a circuit with both structural and behavioral archi-
tectures allows isolating entangled qubit cases, which are the sources of simulation complex-
ity. Besides special algorithms for non-entangled qubit group extraction [106], the simulation
methodology we developed relies on the bubble bit technique, introduced as a method of
avoiding entangled representations. This method substantially (i.e. exponentially) improves
simulation times with the expense of buiding some records of size O (n?), as experimented for
Shor’s algorithm arithmetic circuits and Grover algorithm circuit.

3.2.2 Example and experimental results

In order to illustrate how the bubble bit technique works, we take as example the backbone of
quantum arithmetic circuits: the 1-qubit full adder from Figure 3.3(A). The way this add-cell
could be rippled in order to build n-qubit adders is suggested in Figure 3.3(B). The simulation
of the 1-qubit full adder will have to take into consideration the successive states from part
(A) of Figure 3.3. The input state (|¢/;)) is not entangled, as shown in the following equation:

1 1 1
|vhr) = 7 (0 +1)® NG (o) +1)® 7 (10) +11)) ®10). (3.1)

The other states are entangled, with the last one (|¢)s)) being totally entangled and there-
fore the bubble bit technique has to be applied. As presented by Equations 3.2 to 3.5, the
resulted state representations are identical, with only the corresponding records being differ-
ent.

oy _ L ([0000) +[0010) +[0100) + [0111) '\ bubble 1 s .
[v2) = 575 ( 11000) + |1010) + [1100) + [1111) e T I CR)
oy _ L (10000) +[0010) +[0110) + 0101) '\ bubble 1 54

[s) = 972 ( |1000) + [1010) + |1110) + |1101) 5 ® 1+ [recy] (3:3)
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Figure 3.3: A) The 1-qubit full adder; B) obtaining a 2-qubit adder from 1-qubit ¥ cells.

_ 1 { |0000) + |0010) + [0110) +[0101) ) bubble 1 ;g4
lva) =55 ( 11000) + |1011) -+ |1111) + |1101) e l+rea]  (34)
. _ 1 (]0000) + [0010) + |0110) + [0101) ) bubble 1 ;g4
i) =55 ( |1010) + |1001) + |1101) + [1111) P elvfres]  (39)

Figure 3.4 presents the step-by-step results of the procedure applied on the 1-qubit full
adder, while Figure 3.5 contains the details regarding all the bubble steps performed for |¢).
Figure 3.4 has 6 columns and 5 rows; the columns correspond to the following: 1 record (rec),
4 qubits for the circuit’s inputs (r,y, ¢;,, A also labeled as 0, 1, 2, 3), and the extra qubit
required by bubble bit insertions (e). All the involved successive states |¢; 5) have a distinct
allocated row in this procedure illustration.

The results from Figure 3.4, as well as<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>