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Abstract 
In the quantum computaţional framework, there are polynomial time solving algorithms 

for problems having exponenţial classical solutions. The quest is - on one hand - to search 
if there are other possible effective quantum algorithms and - on the other hand - to be able 
to produce efficient implementations for the already known algorithms. The most feasible 
implementation of quantum algorithms is based on the quantum circuit (gate network) model. 

Our work aims at bridging the gap between classical hardware CAD with design automa-
tion techniques, and quantum circuit design rules. This attempt would be extremely difficult 
without the possibility of the efficient quantum circuit simulation. Thus, our first direction 
was to try using Hardware Description Languages (HDLs) for simulating quantum circuits, 
because their property of being able to describe - in a compact manner - the circuit with 
both structural and behavioral (funcţional) architectures isolates the inner source of simula-
tion complexity: the entanglement. Our analysis showed that the probability of simulation 
improvement just by using the HDL procedure is small. Therefore, we developed a special 
algorithm for avoiding entangled state representations, the bubble bit technique, which is ef-
fective at least when dealing with specific algorithm states. Our simulation framework has 
the ability of fault injection, in order to create incentive for validat ion of quantum circuit 
fault tolerance strategies and algorithms. The other direction of this Ph.D. work is to find 
common ground for reliabiUty techniques and assessment methodologies from the Embryonics 
project and fault tolerant quantum computation. Embryonics is a biologically inspired re-
configurable hardware project, which is suitable for attaining reliability in aggressive, criticai 
environments, similar to quantum computation in terms of fault model and fault occurrence 
frequency. Adopting the accuracy threshold as rehability measure in Embryonic memories 
is benefic. Also, when considering a reconfigurable strategy (reconfigurable quantum gate 
arrays - rQGAs) in quantum computation fault tolerant stabihzer encoding, the appropriate 
reliabihty measure is drastically improved. 

When entanglement is not present, it is possible to describe the circuit and the processed 
quantum states in a structural manner, employing only polynomial resources for simulation. 
By contrast, when entanglement is detected in the processed state, the circuit has to be de-
scribed with a behavioral architecture, and exponenţial resources must be used in this case. 
That happens because, when entanglement occurs between two quantum subsystems, their 
overall state cannot be represented correctly as a reunion (assuming implicit tensor product 
state composition) of the two individual subsystem states. The practicai implementation of 
the iniţial simulation methodology requires that each circuit be described both by structural 
and funcţional (behavioral) architectures. For a gate network, if entanglement is detected in 
the previous or next quantum state, then the funcţional architecture has to be selected to 
describe it; otherwise the structural architecture is chosen. We adopted the matrix represen-
tation of quantum states and unitary operators; therefore the quantum states are type array 
of complex signals. Efficient automated extraction of non-entangled qubit group states is not 
conceivable unless we have some a priori information about the overall state: the so-called 
simulation shortcuts. When deaUng with states from certain points in the circuits imple-
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menting specific algorithms, we have that knowledge because of the characteristic form these 
states exhibit. We have performed an analysis concerning the efFectiveness of our method-
ology, for specific states from Shor and Grover algorithms. Unfortunately, as shown by our 
case stiidy for Shor, Deutsch-Jozsa and Grover algorithms, the probabihty of success for the 
extraction algorithms is decreasing exponentially with the number of qubits in the processed 
state. Nevertheless, the HDL-based simulation methodology can be further improved. The 
bubble bit coding technique creates a new entanglement-free-represented state. Therefore, 
the simulation works with equivalent gate networks operating on corresponding bubble-coded 
non-entangled states, and after applying the unitary operator the original .state ean be re-
stored. This way, the unitary transform is obtained with at most n [2 x l]-si2;© matrixes, with 
the expense of memorizing O size records. The bubble bit procedure caiD also ^be lused. 
for simulated fault injection, according to the fault models. We: presdnt here-[experimental 
and assessment results describing the most important contributions of our Ph.D.:i\vfork iîn the 
simulation part. The simulation runtimes show an important runtimerimproy/^iii/ent'at'{tJ;ie 
expense of a-polynomial memory overhead, as compared with our reference silnul^tor-(QuIDD 
Pro, developed by the Quantum Circuits Group at University of-.MicJjigan). ^ 

The neeid for fault tolerance is vital in quantum computMion, due^ţQ thei^mnipresent 
nature of quantum, decoherence errors. A specific rehability paţajneter-w^fS, dşfined,^ under 
the form. of the accuracy threshold. If the quantum circuit's feult tjşlieraiige digtîs^tes âccuracy 
greater or equal with the threshold, then it could :be;used for arbitraryjQng^rişliable quantum 
computation. The quantum circuit fault tolerance t^hjiiques - e^v îirtthşj rţxogt.recent ones -
use the-cgncatenated coding for both proteqted daţa and.^ncilla qubitş, lOjiy recpnfigurable 
quantum hardware strategy employs a quantum nş^ure ,(i,e. şuperj>oşiţi^)n'of classical basis 
states) configurat ion. register in order tohave a superposition of error detection and correction 
circuits at the, same ţime. Thq ştjafting idea iş that if th,ergate errpr-p;;c>l^bility,is and we 
have k superposed correction circui^ţs ţheji, ş^fter the,nţe^i^urepieiit,of the,ciopfiguration register, 
the overall circuit error probaibUity be;con;ţes ^^ (negligiblş .for̂ a^ S I I J a ^ - a 
reconfigurable quantum circuit, th,e.so7calle4 recQnfigural?Je Quantima Q ŝrte Aryay (rQGA), 
which we assessed with the, accuracy threshold measţire.0\irnanal>^qaJj,eştima^^ of the 
accuracy threshold.shows.thşjt t^e rQG-(\ solution c|early^doii4nates,^ţ|iş,.ş,Gt^ 
accuracy Umit, thus allowing for arbitrary long fault tolerant quantum coi:ţiţ)utation. This 
way, the rQGA technique can replace the concatenat'ed coding, a's6l'utibn4ha;fc!iş WlneraW 
in the presence of correlated'faiilts. ' ' ' ' 

The last part of the thesis is d'edicated to the iniplementa^ of the Quantum Genetic 
Algorithms (QGA). Our soluti,on is based on an already known'quaMum'algorit (the 
maximum finding algorithm) and on a specially d!esigned oradiei, which fed^uc^ tlîe entire 
QGA problem to Grover's search algorithm. The conclusion is thât t t e genetic stra is not 
applicable to the quantum computation environinent, with tjhe cro'ssover and W'tation genetic 
operators becoming useless. The complexity of the proposed Rediiced Quantum Genetic 
Algorithm is linear, tlius proving the superiority of the quâhtuiil computing in yet another 
computation field. 
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Rezumat 
In cadrul computaţiei cuantice există algoritmi care rezolvă în timpi polinomiali probleme 

care au soluţii clasice exponenţiale. Obiectivul este - pe de o parte - de a proiecta alţi al-
goritmi cuantici eficienţi şi - pe de altă parte - de a putea produce implementări eficiente 
pentru algoritmii deja cunoscuţi. Cea mai fezabilă implementare a algoritmilor cuantici este 
bazată pe modelul circuit (sau reţea de porţi). Lucrarea noastră este concepută pentru a 
face legătura între proiectarea asistată de calculator (CAD) din hardware-ul clasic, bazată pe 
proiectarea automatizată, şi regulile de proiectare ale circuitelor cuantice. Această tentativă 
ar fi extrem'dei dificilă în absenţa posibilităţii de a simula circuitele cuantice în mod eficient. 
Astfel, prima direcţie a acestei teze de doctorat constă în încercarea de a folosi limbajele de' 
descriere hardware (HDL) pentru simularea circuitelor cuantice, datorită proprietăţiii aces-̂  
tora de a >putea descrie - într-o manieră compactă - circuitul cu arhitecturi structurale ^! 
comportamentala (funcţionale) şi care face ca izolarea entanglement-ului ca sursă pribcjp^^lă 
a complexitălţii-de simulare să'fie posibilă. Analiza pe care am efectuat-o arată faptul dă 
probabilitatea de a reduce'timpii de simulare doar prin folosirea procedurii de simulare^ HD^ 
este mic'ăV-iPrffi'Urmare, am dezvoltat un algoritm special, pentru evitarea r^ptfezfentărilor 
afectate 'de^entanglenielrt ale stărilbr-cuantice, ă§a-numita tehnică bubbie Azi,-care este efi-
cientă cel puţitf atunci^ când sunt procesat^e'stări specifice anumitor algoritmi. Metodologia 
noastră de -simulare^'^ste^^nzesfrâtă işi-cu abilitatea de a injecta defecte, ^n ideast'de a'face 
posibilă procedum de validăte a Strategiilor şi algoritmilor de toleranţă la defectarfeV Cealaltă^ 
direcţie a activităţii doi^tor^le reflectâte îh^-ace^tă teză constă în încercarea de '̂a^găsi' teren 
comun pentru tiehnî île^ de fiăbilizelre şi'!ffietbdok>giile de' evaluare aferente pf5itedtului Em-
bryonics pe de o parte;* şi calculul cilantic tolerant-la defecte pe de altă- partel' Embryonics 
este un proiect hardware inspirat din̂  -biologife, care este pr^tabii obţinerii fiabilităţii In medii 
critice, agresive', răittiilare calcuîtlliii cuantic în ^er^nini'de nfedel al defectlîlm''şi al frecvenţei 
de apariţie:' • Adoptarea jf^ra^îi/m d^- aeurăVeţe ca ffiăău^ă-a^ fiabilităţii în rtiemoriile Embryon-
ics este benefică.' Deasemehea, ăt^ndi iuăhi în'cbnsideraţie o strâfegie reconfigurabilă 
(matrici recofifigurabne de pdtţi cuantice^- r ( ^ A s ) perttrii'fcbmp\i^'aţia Cuantică tolerantă la 
defectare şî  cbdiiri stabilizatodre; se îmbiinătăi^fe^te drastic -^adttl de fiabilitate. 

Atunci can^^^enomenul de enţş,nglenienţ'nu present, eke posibil să descriem circuitul 
cuantic şi stările procesate în manieră structurala, revrâdicând ţioar resurse polinomiale pen-
tru simulare. In^schimb, atunci când,entan^eniei^t-ul este detectat în starea procesată, cir-
cuitul trebuie rsă fie descris'printr-p armtectură comportamentală, şi simularea va dicta acum 
utilizarea .unor resurse jbxponenţiale. Acest^l^cru se întâmpla deoarece, atunci când apare 
entanglement-uLpentru dpuă subsisteme cuanticei^starea lor generală nu poate fi reprezen-
tată correct ca simpla reuniune a kărilor cuantice aferente celor două subsisteme individuale 
(am presupus,că produsul tensorial este unealta'iny^licită de compunere a stărilor individuale). 
Implementarea pracţică a inetodoîogie^ miţîale de simulare necesită ca fiecare circuit să fie 
descris prin ambele arhitecturi: structurală şi comportamentală (funcţională). Dacă pentru 
o reţea de porţi cuantice entanglement-ul este detectat în starea precedentă sau următoare, 
atunci arhitectura funcţională este selectată pentru a o descrie; altminteri se selectează arhi-
tectura structurală. In cadrul acestei abordări, am ales reprezentarea matriceală a stărilor 
cuantice şi a operatorilor unitari; prin urmare, stările cuantice sunt reprezentate ca tip vec-
tor de numere complexe. Extragerea automată eficientă, a stărilor cuantice representând 
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grupuri de qubiţi care nu se află în entanglement, nu este de conceput fără a avea la dispoziţie 
informaţie apriorică referitoare la starea cuantică generală: aşa-numitele scurtături de simu-
lare. Atunci când avem de a face cu stări din anumite puncte ale circuitelor ce implementează 
algoritmi specifici, vom avea la dispoziţie acea informaţie apriorică, datorită aspectului car-
acteristic pe care îl au aceste stări. Am efectuat o analiză privitoare la eficienţa metodologiei 
de simulare HDL, pentru stări specifice din algoritmii Shor şi Grover. Din nefericire, aşa cum 
se arată în studiul nostru de caz pentru algoritmii Shor, Deutsch-Jozsa şi Grover, probabili-
tatea ca algoritmii de extracţie să fie încununaţi de succes descreşte exponenţial cu numărul 
de qubiţi ai stării procesate. Fără îndoială, metodologia de simulare bazată pe! limbajele de 
descriere hardware (HDLs) poate fi îmbunătăţită în continuare. Tehnica de codificare bub-
ble bit crează o nouă reprezentare lipsită de entanglement. Prin urmare, simularea se face 
CU;reţele de porţi cuantice echivalente ce operează pe stări codificate prin metoda bubble 
bit; după aplicarea transformării unitare starea originală poate fi restaurată^.,, In acest fel, 
transformarea unitara este obţinută cu cel mult n matrici de dimensiune [2 x 1], cu preţul 
memorării unor înregistrări de dimensiune 0{;ri^). Procedura bubble bit poate^îdeasemenea 
s^ fie folosită pentru injecţia simulată de defecte, în concordariţă'lcu modeluFtle defectare, 
în cadrul acestei lucrări se prezintă rezultate experimentale şi an-ali^ice ce'd^criu' cele mai 
importante contribuţii în domeniul simulării HDL-bubble-bit. Ţimpii d.e simulare arată o 
îmbunătăţire semnificativă cu preţul unui consum suphmenţax, poliiiopiial dê  memorie, prin 
comparaţie cu simulatorul referinţă (QuIDD Pro, dezvoltat^ de.(;atre ,,Q Circuits Group 
de la University of Michigan). . , . . 

Necesitatea toleranţei la defectare este vitală în calculul cuantic, datorită naturii om-
niprezente a erorilor de decoerenţă. în plus, a fost definit un parametru specific fiabilităţii, 
sub forma pragului de acurateţe. Dacă toleranţa la defectare, a circuitului q^uantic dictează 
o acurateţe mai mare sau egală cu pragul, atunci poate fi folosit, pentru un calcul cuantic 
fiabil pe o perioadă arbitrar de luiigă. Tehnicile de toleranţă la defecţare pentru circuitele 
cuantice (chiar şi cele mai recente) folosesc codificarea cohcatenată alât peiitru datele codifi-
cate cât şi pentru qubiţii auxiliari (ancilla). Strategia noastră pentru hardwar,e-til cuantic fac 
uz de un registru de configurare de.natură cuantică (superpoziţie de stă^i clasice.ale bazei), 
pentru a avea o superpoziţie simultană de circuite corectoare de erori.ţyldeeâ. de.plecare este 
că dacă probabihtatea de defectare a porţilor este şi avem k circuite corectoare de erori 
superpuse, atunci, după măsurarea registrulîii de c6nfi^raire,^pr6bayilita a 
erorii în circuitul ca întreg devine ^^ (riegfijabiE peritr^^uii''^ Siiflfî ^ proiec-
tat un circuit reconfigurabil cuantic (rQGA)\ p^'care 1-ă^ evâliîat'cu'âjutoriil pragului de 
acurateţe. Estimarea noastră analitică pentru pragul de- acurateţe demonstrează că soluţia 
rQGA este mult decisupra limitei tehnologice de acurateţe^ permiţând, calculul toler-
ant la defectare arbitrar de lung. Astfel, tehnica rQGA poate înlocui codificarea concatenată, 
o soluţie vulnerabilă la acţiunea defectelor corelate. 

Ultima parte a tezei este dedicată implementării Algoritmilor Genetici Cuantici (QGA). 
Soluţia propusă este bazată pe un algoritm cuantic deja^cunoscut (algoritmul găsirii max-
imului) şi pe un oracol proiectat în mod special, care reduce întreaga-problematică rQGA la 
algoritmul de căutare al lui Grover. Concluzia este ca strategia genetică nu poate fi aplicată 
în mediul computaţional cuantic, deoarece operatorii genetici de crossoyer'şi mytaţie sunt in-
utili. Complexitatea algoritmului propus (Reduceâ Quantum Genetic Âlgorit!hni)'este liniară, 
probând astfel superioritatea calculului cuantic liitr-un nou domeniu coinputaţipnal. 
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Chapter 1 

Introduction 

Computer science and engineering have reached the degree of maturity where the difficulties 
and limitations are identified, and the frontiers of computation are tackled in an endeavoring 
paradigm-shifting effort. At fîrst glance, this burden is mainly supported by computer science; 
however, the complexity of today's computaţional problems has made this quest ubiquitous. 

Researchers from all the computing directions - computer science, computer engineering, 
software engineering, and information systems - are striving towards grand objectives, as the 
classical computing estabhshment does not even provide incentive for salvation from what it 
seems a dreadful curse: even the most marginal improvements are yielded with exhausting 
efforts. The promise is that new technologies, accompanied by new computing paradigms will 
save the day. 

There are two main reasons to be lured by this new trend; one has a quahtative nature, 
whereas the other deals with the quantitative aspects of computation. This thesis deals with 
two emerging technologies: quantum computing and adaptive, reconfigurable computation. 
They both have dual qualitative-quantitative motivations, although one may note the poten-
tial epistemological arrogance of quantum computation. What Richard Feynman has foreseen 
31] - today's quantum computing frenzy - also opened a topical interest discussion on the 

inner nature of computation [18]. Defined as "computation that uses atomic scale dynam-
ics" [96], offering a framework for powerful algorithms, quantum computation may also be 
required as Moore's law dictates 1 atom/bit in 2010 ~ 2020. 

The quahtative approach is related to the very demanding attempt, in terms of resources, 
to simulate quantum processes. The majority of these quantum processes, in order to be 
simulated on a classical computer, require exponenţial algorithms. Richard Feynman [30] has 
sugested that all these problems could be overcomed by building a quantum computer. This 
potential quantum computer "will have no problem in simulating itself [30]. Given this fact, 
a new question was rised: if the hypotetical quantum computer is able to simulate quantum 
processes in polinomial time, then it can solve in the same manner other hard problems [70] (i.e. 
problems that, given a classical computaţional context, could be approached in the best case 
with exponenţial algorithms). In 1985, David Deutsch theoretically built a universal quantum 
Turing machine [24], a priceless tool for defining new algorithmic complexity classes: (EQP, 
BQP, BQTime(T(n))). Also, it was demonstrated that, at least theoretically, P C EQP and 
BPP C BQP C P#P C PSPACE [11]. Almost a decade after Deutsch's breakthrough article, Peter 
Shor has published the fîrst quantum algorithms able to solve, polynomially, integer factoring 
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and discrete logarithms. These two are hard problems in the context of classical computation 
[89]. 

The second motivation, the quantitative approach, is a discussion on the hmits of inte-
grat ed circuits manufacturing technology. Today, there is a lot of discussion whether Moore's 
law is obsolete or not. But a lot of the arguments related with this discussion were pointed 
out a long time ago, starting with the 1960s: the works of Rolf Landauer, and later Charles 
Bennett, constitute the basis of reversible computing theory [8] [9] [53]. The universal gate for 
the reversible computing the Toffoli gate is also extremely important for quantum circuits 
[10]. The practicai implementations of the quantum gates, networks and circuits, including 
error detection and correction, are based on several technologies, independently developed: 
Ion Trap at the National Institute for Standards and Technology (NIST), Cavity QED at 
Caltech, and NMR at Stanford, Berkeley and MIT [15] [32. 

With all this spectacular evolution of the quantum computing theoretical aspects and the 
unquestionable technological progress, it's still not clear whether the prospect of building a 
scalable quantum computer is feasible. The answer to the problem of quantum computer 
feasibility must come not only from the physicists making their esoteric research in very 
expensive laboratories. Computer engineering has also its part in this huge efîort. The 
sinmlation of quantum circuitry, although employs exponenţial algorithms, has given eloquent 
results about the impact of errors and the opportunity of building fault tollerant quantum 
circuits [63]. Simulation of quantum circuits itself has capitahzed on computer engineering 
research efforts, while vital aspects as fault tolerance would not be possible to approach 
without taking into account the engineering issues. 

1-1 Motivation 
Although quantum computing is, undisputedly, a paradigm that was created and advocated 
mainly by physicists and mathematicians, today it is widely considered that engineering is 
also vital [62] [77]. As a fact, the most prestigious computer engineering scientific conferences 
and journals have adopted emerging technolog>^ tracks where quantum and reconfigurable 
computing are highly placed. 

This thesis was motivated by the attempt to bring together classical computer hardware 
design and test and the novei, emerging technologies. This also was a source of inspiration 
for establishing a new computing laboratory at "Politehnica" University of Timişoara: the 
Advanced Computing Systems and Architectures (ACSA) Laboratory. Its fundamental, in-
nate principles, which draw their essence from the above mentioned thesis motivation, are 
presented in Figure 1.1; it is a set of interfering computing fields spanned by the classical and 
novei computation axes. 

In the quantum computaţional framework there are polynomial time solving algorithms, 
for problems having exponenţial classical solutions. The quest is - on one hand - to search if 
there are other possible effective quantum algorithms and - on the other hand - to be able 
to produce efficient implementations for the already known algorithms. The most feasible 
implementation of quantum algorithms is based on the quantum circuit (gate network) model 
25] [27]. Our work aims at bridging the gap between classical hardware CAD with design 

automation techniques and quantum circuit design rules. This attempt would be extremely 
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difficult without the possibility of efficient quantum circuit simulat ion. Thus, our first cli-
rection was to try using Hardware Description Languages (HDLs) for sinuilating quantum 
circuits, because their property of being able to describe - in a compact manner - the circuit 
with both structural and behavioral (funcţional) architectures isolates the inner source of 
simulation complexity: the entanglement [29] [77 . 
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Figure 1.1: ACSA laboratory overview. 

The other direction of this PhD work is finding common ground for rehabihty techniques 
and assessment methodologies from the Embryonics project and fault tolerant quantum com-
putation. Embryonics is a biologically inspired reconfigurable hardware project [57], which is 
suitable for attaining reliability in aggressive, criticai environments [79], similar to quantum 
computation in terms of fault model and fault occurrence frequency. Adopting the accuracy 
threshold as reliability measure in Embryonic memories is benefic [80]. Also, when consid-
ering a reconfigurable strategy (reconfigurable quantum gate arrays - rQGAs) in quantum 
computation fault tolerant stabilizer encoding, the appropriate reliability measure may be 
drastically improved. 
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This second direct ion opens up a new discussion, which could be of great import ance for 
computer science in general. Initially, the quest is to design a quantum circuit that is suitable 
for supporting evolvable hardware applications. As the reconfigurable (or programmable) 
quantum gate arrays are not new - being theoretically underpinned [61], the entire problems 
relies on finding a quantum computation implementation for genetic algorithms. As defined 
in the fundamental literature of this field, the evolvable hardware is a reconfigurable device 
(circuit) which is configured by evolutionary means, usually a genetic algorithm (EHW = 
RHW -f GA, or evolvable hardware = reconfigurable hardware + genetic algorithms) [102 . 
The Quantum Genetic Algorithms or QGAs (i.e. genetic algorithms running on a quantum 
computer) are controversial as far as their implementation is concerned; in this thesis a new 
perspective is presented: by making use of the exponenţial quantum computer parallelism, the 
maximum finding algorithm [2] and a specially designed oracle circuit, the genetic algorithm 
is reduced to Grover search [37] which solves the problem in O [y/n) time. 

1.1.1 Industry requirements 
The motivation presented in this section may seem theoretical and pretty much detached 
from the actual industry problems. But the fact is that the industry is seriously taking 
into consideration the aspects related to the emerging technologies, and quantum circuits in 
particular. 

The new challenges facing supercomputing applications will put a străin on the supporting 
technology. It is clear that we will need to build at least zeta-fiops computers in order to deal 
with some very complex unsolved problems like: long-duration climate modeling, controlled-
fusion reactor simulat ion, network security simulation, molecular modeling, and so forth [20 . 
In this context, the software and architecture requirements must be met by the underlying 
technology, and it seems that the classical solutions are not good enough [19. 

The industry representatives have quickly reacted to these emerging problems, and founded 
a global organization called ITRS (International Technology Roadmap for Semiconductors), 
which is jointly sponsored by European Semiconductor Industry Association, Japan Elec-
tronics and Informaţional Technology Industries Association, Korea Semiconductor Industry 
Association, Taiwan Semiconductor Industry Association, and Semiconductor Industry Asso-
ciation from U.S.A. As this organization defines its documents, they are about a continuous 
evaluat ion of the semiconductor technology requirements, aimed at increasing the perfor-
mance of the integrated circuits. This effort is supported by industry, suppliers, academia, 
research groups, and governments [126 . 

The results of the ITRS assessments are published as ITRS reports, which are annually 
updated. The 2004 update contains a report on "Emerging Research Devices" [126]. Within 
this document, the "Emerging Research Architectures" chapter contains a section called "Co-
herent Quantum Computing" ([126], pages 37-40), in which the quantum computation fault 
tolerance requirements are evaluated. Table 64, "Emerging Research Architecture Imple-
mentations' [126] is listing the following defect tolerance imperative for coherent quantum 
computing devices: "error correcting algorithms needed". This industry conclusion is further 
stressing the importance of quantum FTAMs (Fault Tolerance Algorithms and Methodolo-
gies), that are making an important direction of this thesis (Chapter 4). 

The "Emerging Research Materials" chapter from the same document was added in the 
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2004 update for the first time, emphasizing in the "Modeling and Simulation" section ([126 
page 55) the importance of reducing simulation complexity. As already mentioned, an impor-
tant part of the present thesis deals with this extremely important research problem (Chapters 
2 and 3). 

1.2 Thesis goals 
As this work is structured on two main directions, one of which having an important ex-
tension, there are 3 main objectives: efficient simulation of quantum circuits, improving the 
dependabihty of the quantum circuits with rQGA, and implementing QGAs (Quantum Ge-
netic Algorithms). 

Attaining these objectives means that some very important aspects of quantum compu-
tation are approached. First of all, simulating quantum computation processes in general -
and quantum circuits in particular - is usually exponenţial. The source of this exponenţial 
simulation complexity depends on the level of abstraction that is used. From our perspective, 
which is on the unitary (or gate) level, the main source of simulation complexity is the en-
tanglement [62] [77]. On the other hand, the entanglement is essential for making quantum 
algorithms more efficient than their classical counterparts [29] and it cannot be removed from 
the quantum states involved in simulations. However, we can use some a priori knowledge 
about the particular pattern of the states processed by specific algorithms - the so-called sim-
ulation shortcuts [96] - along with dever state coding techniques [107], in order to reduce the 
computaţional burden dictated by simulation of quantum algorithms on classical computers. 

The second objective deals with a extremely important issue, because in quantum com-
putation dependabihty is not just a quality indicator, it is vital [75] [76]. The state-of-the-art 
here is intended to prove the feasibility of quantum computation, by improving the accuracy 
threshold as main reliability attribute. The already developed techniques are using special 
state encoding (similar to classical ECCs), concatenated coding and structural redundancy, 
so that for an component fault rate of the order of the overall circuit error rate would be 
of the order of For a sufficiently small given by intrinsic component fault tolerance 
(hke, for instance, the ones described by [1]) the overall circuit reliability can be sufficiently 
improved. 

However, the assumed fault model [76] is not taking into account the correlated errors, 
even if these errors are unavoidable from an engineering point of view, at the same time 
making the concatenated coding effort useless [109]. The solution can arise from a much 
fiexible implementation platform, under the form of pQGAs (programmable Quantum Gate 
Arrays) or rQGAs (reconfigurable Quantum Gate Arrays) [61] [109 . 

It was already mentioned that, generally, the artificial intelligence approach considers al-
most all computations as searches, and therefore quantum computation can be involved as 
Grover's algorithm provides important search speedups [96]. Also, important work [43] [44 
proves that Grover's algorithm can be used for significant speedups of specific purpose searches. 

After defining rQGA structures, the iniţial intention was to define a framework for im-
plementing Evolvable Quantum Hardware (EQHW) as rQGA + QGA (Quantum Genetic 
Algorithms). The QGAs, as defined by Giraldi et al. [33] are the quantum algorithms that 
perform genetic-based searches. Our approach reduces any GA in quantum computation to 
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Grover's search, by defining a special purpose oracle quantum circuit and performing the 
quantum maximum fînding algorithm [2 . 

1.2.1 Simulat ion problems 
In order to approach the aspects concerning the simulation of quantum computation, the 
research must rely on a quantum computer model, based on formal mathematics. In turn, 
simulation is used to reveal important issues like entanglement efîect, error impact and quan-
tum error correction [90], or techniques for building quantum hardware [121. 

Quantum computing itself emerged from the attempt to simulate quantum systems [30 . 
But. aithough the simulation is often considered to be a tool used in theoretical approaches, 
it could also be employed for quantum hardware design, i.e. adapted design automation and 
computer-aided design techniques. In doing that, one must select an appropriate model. In 
his surveys [65] [66], Omer summarizes the models used by quantum computing researchers, 
for theoretical and practicai purposes: mathematical, machine, circuit^ and algorithmic. 

These models are valid for any computing device, classic or quantum. Therefore, the 
general models from above have classical expressions with quantum counterparts. From a 
mathematical point of view, a computer is modeled by parţial recursive functions having as 
quantum counterpart unitary operators. The machine model in classical computing is given 
by the Universal Turing Machine (TM). For quantum computation we have the Universal 
Quantum Turing Machine (QTM) [11] [24]. The circuit model is the logical gates circuit 
model for the classical digital computer and quantum gates circuit (or network) model for the 
quantum computer. Also, from the algorithmic perspective, the model for classical computer 
is the universal programming language with the quantum programming languages (QPLs) as 
quantum counterpart. Of course, there are other important quantum computing models like 
the Quantum Cellular Automata [112], but they are out of the scope of this thesis. 

The circuit model 

If the goal is to build a quantum computing device, then we must employ some specific design 
techniques (inspired from classical CAD). The substantiation of these techniques must be 
sustained by an appropriate model. The best conceivable model is the quantum gates model 
Simulation according to this model [25] means that we perform gate-level or unitary-level 
simulation [96 . 

Because of the extreme hardness in designing efficient quantum algorithms [62] [77], there 
are just few such examples. An efficient quantum algorithm is an algorithm running on a 
quantum computer, able to solve a problem dramatically better (i.e. polynomial time) than 
a classical algorithm. For example, in computaţional complexity terms, an efl&cient quantum 
algorithm solving a problem could be in BQP with the best classical algorithm solving the same 
problem in EXP. The point here is obvious: given the quantum algorithm design hmitations 
it would be extremely unprofitable to build an expensive universal machine, which would be 
able to outperform a classical computer only when solving a few specific problems. Hence the 
best prospect for involving quantum computing in computer manufacturing is an universal 
classical computer with a quantum oracle [66]. This quantum oracle could be seen as a co-
processor - the processor is a classical computer passing specific hard tasks to the quantum 
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co-processor, which has several hardwired /larrf algorithms (see Figure 1.2). 
From our view, we need a tool to simulate quantum algorithms and, at the same time, to 

help designing quantum gate networks according to the circuit model. In cla^sical computing, 
for hardware design we have such simulation tools: the Hardware Description Languages 
(HDLs) [5][6][22;. 

Classical physics j Quanlum 
environment : worid 

Figure 1.2: The Universal Classical Computer with a Quantum Oracle, after Omer [66 
The Quantum Coprocessor must include a task selection logic and a classical to quantum 
translator. The other way conversion is made by employing measurement. 

Entanglement 

The information storage unit in quantum computing is the quantum bit or qubit, which is 
presented here in bra-ket notation [62]. Any qubit | 0) is a normahzed vector in a Hilbert 
space, with { | 0 ) , |1)} as the orthonormal basis: = a o | 0 ) + a i | l ) . Parameters a o , a i G C 
are called quantum amplitudes, and represent the square root of the associated measurement 
probabilities of the basis states |0) and |1) respectively, with |ao|^ + \aif = 1. 

The qubits can be organized in linear structures called quantum registers, encoding a 
superposition of all possible states of the corresponding classical register. For a n-qubit 
quantum register, its corresponding state is a normalized vector in a H^'' space, |(/v) = 

a^lz), where YI^Iq^ \aif = 1, z G IN. When the individual qubit states are known (for 
example = a o | 0 ) + a i | l ) and | 0 b ) = + ^ a l l ) ) the tensor product gives the overall 
state [(Ĵ a) ® |'0b) = aoa2|00) + aoa^\01) + aia2|10) + aiaalll). The matrix representation 
provides for a straightforward form of the quantum state; the above 2-qubit tensor product 

it is ao "2 vy 
. "3 . 

aoa2 aoaa aia2 aia^ 

For a quantum register state, we have entanglement iff it cannot be represented as a 
tensor product of its parts [62]. Let us consider the following 2-qubit example, where | 0i) = 
^ (|00) + |01)) and |02) = (|00) + |11)) ; we say that state |0i) is not entangled while 

|02) is entangled, because |'0i) = |0) (g) (|0) + |1)) , but there are no |0i) and |02) qubits 
so that the relation |'02) = |0i) ® |02) is satisfied. 
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The qiiantum circuits are constrained networks of gates, with no cloning and no feedback 
allowed [10] [62]. The quantum gate is the physical device implementing an unitary operator, 
which represents the quantum state transform. Due to the unitary property, all quantum 
operators are reversible. 

In this thesis approach, the entanglement is considered as the main source of 
simulation complexity. The explanation, assuming the matrix representation of quantum 
states, resides in the following example. If a quantum circuit is processing a 16-qubit state, 
then for non-entanglement the circuit handles 16 [2 x 1] matrixes, whereas for the entan-
glement situation it will have to handle 1 x 1] matrix. Summarizing, in the absence of 
entanglement processing a 16-qubit state 32 matrix elements (i.e. complex numbers) are han-
dled; but when entanglement occurs the number of matrix elements to be handled becomes 
exponenţial: 

Related work 

Because the stakes are high when it comes to quantum computer simulation, and its com-
plexity reduction techniques, there are many attempts to build efîicient quantum computer 
simulators. These attempts are aimed at different level of abstraction. 

For instance, Obenland and Despain [63] [64] have designed a simulator at physical level 
- corresponding to the trapped ions technology [15]. This simulator was used for assessing 
the feasibility of the trapped ion technology by modehng the quantum errors as laser device 
angle errors [96 . 

At the higher level - the algorithmic level - a fine example is provided by Omer's Quantum 
Programming Language [65] [66]. This metalanguage is very good for synthetically describing 
the quantum algorithms but, because it does not deal with the actual implementations of the 
algorithms, it cannot approach any simulation shortcut speculation [96 . 

This thesis' concern is related to the unitary-transformation-level or gate-level simulation. 
From our computer hardware, engineering view, the most representative simulator at this 
level is QuIDD Pro - developed by the Quantum Circuits Group from University of Michigan 
[73] [114] [115] [116] [117]. This simulator is based on a special quantum state encoding, inspired 
by the Binary Decision Diagram theory. Due to the fact that the QuIDD encoding provides 
compression, the first advantage of this simulator is the reduction of the simulation memory 
overhead. Also, the simulation runtime is improved, as reported [114][115], although the 
complexity problem is not fundamentally solved. 

The QuIDD encoding process is far for being efficient, as this condensed representation is 
not a straightforward one. Also, processing the encoded state attains efficiency only in some 
particular cases. Fortunately, when simulating specific useful quantum algorithms, advan-
tageous state patterns are encountered - the so-called simulation shortcuts [96] - therefore 
this simulation framework is more effîcient than the previous ones, while remaining robust 
and gate-oriented. However, this simulator cannot provide means for performing any kind of 
tradeolf between time and space complexity. 

Still, the simulation theoretical complexity [111] [118] is far from being attained. The 
conditions for polynomial quantum computer simulation was also defined in theory, under the 
form of Gottesman-Knill theorem [62]. The QuIDD simulation procedure uses an engineering 
approach, which is not trying to solve the complexity problem the way it is prescribed by 
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the quantum computer science theory. Summarizing, the most robust and representative 
gate-level quantum computer simulator has the following advantages and drawbacks: 

The advantages: 

A l ) it significantly reduces the simulat ion memory overhead; 

A2) the simulation runtime is improved in comparison with previous gate-level simulators; 

A3) the special encoding technique uses a compressed symbolic representation, which is 
similar to binary decision diagrams, that are familiar to the computer engineers; 

A4) the encoded quantum states are appropriate for capitalizing on the simulation shortcuts. 

With all these very important achievements, there are still some problems to be solved: 

P I ) the simulation runtime improvement does not even make the simulation sub-exponential; 

P2) the memory-time tradeoff is impossible within this simulation framework; 

P3) the solution does not tackle the fundamental causes of the simulation complexity; 

P4) the experimental results are provided only for one quantum algorithm: Grover's algo-
rithm. 

1.2.2 Status-quo in reliable quantum computation 
Unhke classical computation [7], where we have intrinsic fault-tolerance of the components 
and therefore dependability is just a quality indicator, in quantum computation it is vital. 
The quantum world has an erroneous nature, because the macroscopic environment is con-
stantly trying to measure the very fragile superposition of basis states [62] [75] [76] [77]. In these 
conditions, the destructive effect of the decoherence [62] [77] phenomenon can be considered 
as ubiquitous. 

The assumed fault occurrence model [75] [76] is influenced by the need to assess the feasi-
bility of implementing quantum hardware [63]. Therefore we deal with the following assump-
tions: 

• the faults are single and their occurrence is governed by probabilistic rules; 

• the fault are not correlated, neither in time or space; 

• in some evaluations, we are dividing faults in two categories: store faults and processing 
or gate faults. 

In quantum computation we have 3 types of qubit faults: 

• bit'fiip, where the effect is described by the basis state mappings |0) |1), |1) > |0), 

and the following equation = ao|0) + ai | l) ^ ^ ^ ao|l) + ai|0); 

• p/ia5e-5/i2/t, described by |0) |0), |1) - | l ) , a n d | ' 0 ) = a o | 0 ) + a i | l ) ^ ^ ^ ao |0 ) - a i | l ) ; 
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• small amplitude which are similar to analog errors, and affect the qubit amplitudes. 

Here, the bottom line is that all these fault types can be reduced, by appropriate techniques 
76] [75] [77], to bit-flip faults. 

The first drive, when trying to implement fault tolerant techniques in quantum compu-
tation, is to inap the already known techniques from classical hardware. This job is not 
straightforward even when the reference comes from reversible classical circuits [88] [73], as 
the quantum computation generates some constraints and additional problems to be solved. 

Quantum computation constraints: 

• the observation destroys the state; 

• information copying is impossible. 

The inner principie of using error-correcting codes (ECCs) is to use observation. Moreover, 
all the structures build upon the ECC principles are applying structural redundancy, which 
requires information copying. 

Quantum computation additional problems: 

• we need to be able to get state information without destroying it, therefore we are forced 
to use ancilla qubits; 

• we need a fault tolerant recovery process, otherwise the coding fault tolerant techniques 
beconie useless 

• the pha^se-shift fault propagates backward, so we have to apply special techniques de-
signed for thwarting the massive spread of these errors. 

In order to deal with the encountered problems, some very important quantum fault-
tolerance strategies have been developed [62] [75] [76] [77 . 

Strategies for attaining fault tolerance: 

• digitizing small errors [76]; 

• using ancilla qubits in order to measure the information without destroying it; 

• cissuring ancilla and syndrome accuracy for a fault tolerant recovery process; 

• appropriate quantum ECCs for detection and correction. 

With the ECCs, a syndrome is computed, thus revealing the nature of each qubit, which 
corresponds to one of the following situations (assuming that the correct qubit value is ao|0) + 
ai|l)): 

• no fault, the actual qubit expression is ao|0) + ai | l); 

• bit-flip, the actual qubit ao|l) + ajO); 

• phase-shift, the actual qubit ao|0) - ai | l); 
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both bit-flip and phase-shift, the actual qubit having the following expression ao|l) — 
ai|0). 

Gorrecting a q 
0 1 
1 O mations: 

ubit fault, means applying one of the following 1-qubit unitary transfor-

for the bit-flip, 1 
O 

O 
•1 for the phase-shift, and 0 - i 

1 O for both 

faults. 
The state-of-the-art in quantum ECCs is represented by Steane encoding [97] [98] with 

its generahzation provided by stabilizer codes [16] [35] [36]; and the assessment of quantum 
fault tolerance algorithms and methodologies (qFTAMs) is made by using a measure called 
accuracy threshold [76] [124]. The accuracy threshold is the component fault rate that still 
allows the overall cor rect computation when employing qFTAMs. 

The accuracy threshold estimates indicate that arbitrary long fault tolerant computation 
is possible only if another techniques are applied (i.e. concatenated coding [76] [77]). 

Our approach of qFTAMs starts with a criticai view of the error model and the concate-
nated coding technique, and prescribes the replacement by defining a technique based on the 
so-called reconfigurable quantum gate arrays (rQGA). The accuracy threshold assessment 
proves that this technique brings a significant improvement [109. 

1.2.3 Genetic algorithms and quantum computation 
Although this thesis direction emerged from an engineering effort - implementing evolvable 
quantum hardware (EQHW) - its contributions may have significant impact in the computer 
science area. 

By clearly identifying its most major problems and limitations, computer science has 
become aware of the so-called computing frontiers [62] [70]. The research com.munity has put 
a lot of effort in the attempt to solve these problems and further pushing the computing 
frontiers; however, by using the means of what is now called classical computation, it seems 
that one can hardly expect more than marginal improvements, even for the most sophisticated 
approaches. 

In this context, inspiration was mainly found in biology and physics: bio-inspired com-
puting [57] and quantum computing [62] are considered as possible solutions. The optimism 
is fed by theoretical and practicai achievements. Genetic algorithms and evolvable hardware 
are already successfully used in a wide range of applications, spanning from image compres-
sion, robotics and other artificial intelligence related issues, to engineering problems as fault 
tolerance and rehability in criticai environments [79] [80] [81] [82]. Moreover, quantum comput-
ing seems to draw even more power from its exponenţial parallelism: Peter Shor has proven 
that a classical exponenţial problem (integer factorization) can be solved in polynomial time 
[89] [91]. 

The above considerations indicate that the merge between the two novei computing 
promises, namely genetic algorithms (GAs) and quantum computing (QC) would be nat-
ural and benefic [96]. Researchers already follow the path of so-called Quantum Evolutionary 
Programming (QEP) [33] with outstanding results [94]. For instance, the best approach for 
automated synthesis of quantum circuits [121] uses genetic programming [55] [56] [74] [50] [51 
Also, quantum algorithm design can be approached by evolutionary means [95]. In fact, the 
majority of such applications address quantum computation design issues regarding quantum 
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algorithms and implementations [94]; they are all part of QEP's sub-area called Quaneum 
Inspired Genetic Algorithms (QIGAs) [33] [60]. The other sub-area, called Quantum Genetic 
Algorithms (QGAs). tries to implement genetic algorithms in a quantum computation en-
vironment [33] [86] [87] [93] in order to capitalize on the quantum computation exponenţial 
parallelism. 

This thesis proposes a new perspective on QGAs, by showing that the genetic algorithm 
strategy is essentially different in quantum computation: crossover and mutation axe not re-
quired, because finding the best fitness can be reduced to Grover's algorithm [37l[38]. The 
search space is entirely cowred by the QGA because aU individuals are encoded in a superpo-
sition state (at the same time), also fitness values generated for all individuals are encoded as 
a superposition of basis states (at the same time) in a quantum register. As opposed to clas-
sical GAs where the best individual-fitness pair may not be available because the population 
is limited, in Quantimi Computation the best individual is available. 

1.3 Objectives summary 
From our proposed engineering view, there are 5 main objectives when approaching the sim-
ulation and design of rehable quantum circuits, which are presented here with the means to 
achieve them: 

n i ) Efficient simulation of quantimi algorithms, at gate-level, by employing: 

- a Hardware Description Language (HDL) framework; 
- the bubble-bit encoding technique for capitalizing on the "simulation shortcuts" 

[96]: 

^2) Defining a simulated fault mjection framewcwrk in quantum circuits (the QUEIOST 
project) b>' using: 

- our HDL-based quantum circuit simulator; 
- the adapted version of the fault injection (and assessment) techniquies from classical 

hardware design [84] [85] [45]; 

03) Exploring the allowed design techniques, for buUding reconfigiu^ble Quiuitum Gate 
Arrays (rQGAs) by: 

- studying the quantum limitations of this concept; 
- adapting the solutions from classical reconfiguraWe computing; 

Q4) Employing rQGAs, in order to improw the depeudability of quautiuu circuits. by 

- identifving the drawbacks of the state-of-th^t in r̂ UaW^ quaiit^ttu computsktion 
theor>-: 

- using the quantum configurations iot rQGAs. tvs of t̂ xt̂ tt̂ utî jd structural 
redundancv-: 
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Q5) Designing adaptive, evolvable quantum circuits, by means of: 

- already designed rQGAs; 

- building the circuits for Quantum Genetic Algorithms (QGAs) implementation. 

1.4 Thesis outline 
The thesis structure is related to the objective hst from Section 1.3: Chapters 2 and 3 corre-
spond to objective a part of Chapter 3 corresponds to Q2, Chapter 4 deals with 03 and 
n4, while Chapter 5 has to do entirely with objective 1̂5. Finally, the conclusions are pre-
sented in Chapter 6: a summary of the Ph.D. work, the main contributions, and prospective 
thoughts. 
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Chapter 2 

The HDL-Based Simulation 
Framework 

This chapter tries to find common ground between classical circuit design techniques and 
qiiantum computation, by identifying quantum circuit specification and simulation tools under 
the form of Hardware Description Languages (HDLs). The HDL-based simulation approach 
could reduce the complexity of quantum circuit simulation, by considering entanglement as the 
main source of gate-level simulation complexity and isolating it in an automated manner. This 
is possible by taking advantage of the HDL feature of describing a circuit with both structural 
and funcţional architectures. W'e also performed an analysis of our methodology effectiveness, 
for the arithmetic circuits involved in Shor's algorithm and the circuits implementing Grover's 
algorithm. 

2.1 Preliminar ies 
Today, the circuit model of quantum computation [25] is considered as the most feasible, 
and we use it in order to describe the coprocessor. It is seen as a succession of consecutive 
quantum networks of gates {QNeti.. .QNet^ in Figure 2.1) and quantum registers {QReg) 
storing quantum states {Si . . . Sn) in Figure 2.1), which takes a classical state as input. Also, 
the final (rightmost, storing state Sn in Figure 2.1) register will be measured in order to 
obtain the outcome of the quantum computaţional process. The quantum circuit (or gate 
network) design techniques are inspired by the classical approaches [22] including classical 
reversible circuit design [103], always taking into account the quantum mechanical features 
10]. On the other hand, automated design techniques and Computer Aided Design (CAD) 
6][22] enhance classical hardware design; in this context, our main effort is the attempt to 

adapt these techniques to quantum circuits. 

2.2 Quantum computaţional background 
This section deals with the formal representations of quantum computation. Although there 
are various such formalisms [13], we will present the most used (Dirac's bra-ket) and matrix 
62] - the notation that is taken into consideration by our approach [104] [105] [106] [107] [108 . 

15 
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16 CHAPTER 2. THE HDL-BASED SIMULATION FRAMEWORK 

At the same tiine, in this section, we present the quantum algorithms that are simulated 
in tlie thesis: Deutsch-Jozsa [26], Grover [37] [38] and Shor [89] [9i;. 

Ciass;ca! 
state 

bil 

^ \ 
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nctwork 
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\ J 

Quantum 
register 
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m ni 
qubii qubit 
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Figiire 2.1: The circuit model of quantum computation. 

2-2.1 Basic operations and notation 
In quantum computation the information storage unit is the quantum bit, or the qubit Ac-
cording to the nature of quantum mechanics theory, the qubit could be seen as a classical 
bit extension. In bra-ket notation [13], we have: |0) = ao|0) + ai | l ) . Using mathematical 
terms, the qubit is a normalised vector in some Hilbert space H^, having {|0), |1)} as the 
orthonormal basis, with ao,ai G C being quantum amplitudes. Therefore, the qubit is a 
superposition of the classical bit states, the eigen-vectors |0) and |1). A measurement of a 
qubit jcO ^vill yield either |0) or |1), (i.e. a classical orthogonal state) with probabilities |ao|^ 
or respectively. Of course, we have |ao|^ + = 1 [62]. Qubits are organized in linear 
structures: the so-called quantum registers. In its quantum version, a register state could be 
a superposition of all its possible classical states. For a n qubit quantum register, its state is 
a normalised vector in a 2''-dimensional Hilbert space: 

ai = 1 (2.1) Vv) = ^ with ^ 
1 = 0 1 = 0 

In Equation 2.1, e C and / could be written in a binary system: z = cq • 2^ + ci • 2̂  + . . . + 
Cji-i ' where cj 6 B = {0,1}. Hence, the register state can be rewritten as: 

kv) = 

with 
y ^ ICOC'I . . .Cn-l|^ = 1. 

C 0 C i . . . C n - l € B " 

(2.2) 

(2.3) 

When we know the individual state of each qubit from the register, the tensor product is used 
for obtaining register's overall state: 

where 

^ I V'i) = ^ Uioan . . . tti„_i |coCi . . . Cn-l) 
COCl...Cn_ieB" 

IV̂ i) =aio|0) + a,i |l) 

(2.4) 

(2.5) 

VI 
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is the state of qubit i. The power of quantum computation is due to the register exponenţial 
parallelism: any transformation on that register willl be applied on each superposed eigenstate 
621 [771. 

Matrix representation 

The bra-ket notation that we used in the previous section for representing quantum states 
may not always be the most convenient. A better handhng of quantum states having binary-
labeled eigenvectors, and their transformations could therefore result by using the matrix 
representation [62]. Thus, Equation 2.4 becomes: 

= 
«00 "10 ...(8) "2"-l,0 
"01 "11 "2"-l,l 

where aij G C and the state of the individual qubit / is 

(2.6) 

= 
" i O 

U i i 
(2.7) 

Measurement 

Measurement is the only way to extract information out of a quantum state. It is a truly 
random quantum operation, and unfortunately destroys the useful exponenţial parallelism of 
quantum computation. The measurement out come is one of the eigenvectors, with an asso-
ciated probabihty. For instance, if we consider the quantum register described by Equation 
2.1 , then a measurement result can be any of the \i) eigenvectors with a probability of 

Entanglement 

For a quantum register state, entanglement occurs iff it cannot be represented as a tensor 
product of its parts (individual qubits). In a 2-qubit example we could say that state | is 
not entangled while |'02) is entangled, because: 

= x/2 

1 

O 

0 1 • 1 " • 1 " 
1 " v / 2 1 0 (2.8) 

but there are no qubits |0i) and |02) to satisfy 

1-02) = 
V2 

1 
o 
0 
1 

0l) «> 102) (2.9) 

umV: ' T O L I T K ^ V L^ 
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Quantum circuits 

In order to perform the steps required by a quantum computaţional process (i.e. quantum 
algorithm), networks of gates (circuits) are placed between succesive registers which encode 
succesive quantum states (see Figure 2.1). Thus, the gate network {QNeti in Figure 2.1 
terms) is processing the information from the register on the left QReyi-i), in order to obtain 
the state encoded in its right neighboring register {QReyi). The devices involved in these 
circuits are the quantum gates. A quantum gate implements a unitary operator over a 
dimensional Hilbert space (n being the number of qubits processed by the quantum gate) 
which performs a unitary transformation over a quantum state [62] [65]. The description of 
the unitary transform in both bra-ket and matrix forms is given in Equations 2.10 and 2.11. 

x=0 y=0 

U xy {yl where ^ u*^uiy = (2.10) 
i=0 

U = 
'̂ 0,2"-l 

(2.11) 

In Equation 2.11, matrix U is unitary, and therefore characterizes a reversible transform. 
The quantum circuits are networks of gates, built with the following restrictions: no cloning 
is possible and no feedback is allowed. An example of a 1-qubit gate (Hadamard), with its 
VHDL description, is shown in Figure 2.2. 

H II : 

entity v/alsh_hddamard_gate is 
port(intrare:in qubit;ieşire:out qubit); 

end v;alsh_hadamard_gate; 
architecture wng_a of wai3h_haclarr.ară_gate is 
begin 

ieşire (0)<= (1.OC/sqrt(2.00))-(intrare(0)+intrare (1)) 
after 10 ns; 

ieşire(1)<=(1,00/sqrt(2.00))*(intrare(0)-intrare (1)) 
after 10 ns; 

end whq a; 

Figure 2.2: The Hadamard gate: symbol used in diagrams and VHDL description. 

Barenco et ai [10] proved that {XOR,Ao{U)} is a universal set of gates in quantum 
computation. The n + 1 qubit transform A^ ([/) is a condiţional operator, applying 1-qubit 

unitary operator U on the target qubit iff the other n input qubits are '1'. If C/ = J J 

cr̂ , then the condiţional transform is a CNOT operator, which negates the target qubit only 
for the other input bits being T . Thus, the XOR gate is Ai {a^). In Figure 2.3 we have 
represented the general CNOT gate on n + 1 qubits along with its funcţional description 
in VHDL (one of the most used HDLs for design and test of classical circuits [6]). Qubits 
Jo.. .^ n-i are input qubits, y is the target qubit with its value replaced by z after applying 
the gate. 
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-- type quregister is array(natural range <>)of complex; 
entity c n o ^ is 
generic (delay:time); 
port(i_s:in quregister; o_s:out quregister); 

end c_not; 
architecture cnota of cnot is 
begin 
process(i_s) 
variable ig:integer; 
variable ^pmp : qr.rf̂ gi stRr; 
begin 
Ig:= is'length; 
assert lg-1 > 1 report ''not a valid CNOT gate" 
severity error; 
11:for i in O to lg-1 loop 
if i < lg-2 then temp(i):=i_s{i); 
elsif i=lg-2 then temp(i):=i_s(i+1); 
elsif i = lg-l then ten[ip (i) :=i_s (i-1) ; 
end if; 

end loop 11; 
o_s<=temp after delay; 

end process; 
end cnot a; 

Figure 2.3: General form of the CNOT gate: corresponding logic diagram and VHDL de-
scription. 
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2.2.2 Quantum algorithms 
FI om a computaţional complexity point of view [11] [101], assuming that P ̂  NP, then there is 
a chî^s. NPI (NP Intermediate) of problems that are not solvable by employing polynomial 
resoiirces, but are not NP-complete. It seems that this intermediate class contains the prob-
lems with efficient solutions in quantum computation, but has no known efficient classical 
computation solving. Up to date, we know just a few such quantum algorithms. 

As presented by Nielsen and Chuang [62], there are 3 kinds of quantum algorithms that 
are fundamentally more efficient than their classical counterparts: 

• simulation algorithms; 

• search algorithms; 

• algorithms based on quantum discrete Fourier transforms. 

The first kind of algorithms is used for simulating quantum systems on quantum comput-
ers. Although this is an extremely important aspect, it is not of our concern in this thesis. 
The second is represented by Grover [37] [38] and Deutsch-Jozsa algorithms [25], while the 
third kind is be^t represented by Shor's algorithm [89] [91 . 

Deutsch-Jozsa algorithm 

The Deutsch-Jozsa algorithm is an example of quantum computing power. It is solving the 
so-called Deutsch problem, which is about determining the nature of a unknown decision 
function g (operating on n bits) in one computaţional step [25]. The nature of g could be 
either constant (all g (x) are equal) or balanced (g (x) ='0 ' for exactly one half of the inputs, 
and ='V for the other half). The circuit implementing this algorithm is presented in Figure 
2.4, where 2 registers are used (n-qubit query register, and 1-qubit answer register) and the 
relevant states are given by the following equations: 

|0) - | 1 ) 
s/2 

(2.12) 

- S " T F 

0) - |1) 

V 2 

2"-l 2̂ -1 xk+g(x) 

= E E ^ k) 

k=0 X=:0 
0) - |1) 

n/2 

(2.13) 

(2.14) 

After obtaining \(t'>AA) the query register is measured and , if c/ is constant then superposed 
classical state |00 . . . 0) from \ IJ>AA) will have an amplitude of ±1 with all the other superposed 
classical states having zero amplitudes; on the other hand if g is balanced then the state 
00 . . . 0) will have a zero amplitude with at least one other eigenstates having a non-zero 

amphtude. 
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Figure 2.4: Circuit implementing the Deutsch-Jozsa algorithm [62 . 

Grover's algorithm 

The quantum search algorithm, also known as Grover's algorithm [38], is a solution designed 
to substantially reduce the complexity of search algorithms [14], from O {n) to 0{^/n). It 
could be considered as a generahzation of Deutsch-Jozsa algorithm. 

Suppose we have an n-element search space, with each element being labeled by an index 
X G {0,1,. . . n - 1}, n G IN. If the labei is represented on rn qubits, because of the super-
position of all indexes we have n = T^. Then, we consider that our search problem has k 
solutions, with 1 < A: < n. We could reduce this computaţional task to a decision problem 
62] (i.e. defining a function fd (x), which is 'T only when x is the solution, otherwise is 'O'). 

The circuit implementing Grover's algorithm is presented in Figure 2.5 [37][62]. It has 3 
quantum registers: a n-qubit index register, a m-qubit scratch register, and a 1-qubit oracle 
register. The circuits from point (1) to the measured register are forming the so-called "Grover 
iteration circuit" which is rippled O {y/n) times in order to get the result [12] . The UQ circuit 
is described by the following mapping: 

Uo : (|0) - |1)) (|0) - |1)) (2.15) 

X is one superposed state in the index register in point (1) of Figure 2.5. Because of the 
Hadamard gate level, the index register contains at this point a superposition of all the 
possible indexes. Thus, we can say that the Oracle UQ is marking the solution. The Grover 
iteration circuit as a whole performs the action described in the following equation: 

(2.16) 

In order to get the desired state in the measured register, we have to apply the Grover 
iteration circuit q times, where q < 12] [62 
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Figure 2.5: Circuit implementing Grover's algorithm. 

Shor 's algorithm 

Tliis algorithm [89] solves tlie factoring problem in polynomial time, while the best-known 
classical solution is exponenţial [54] [49]. Here, we have 2 quantum registers: the input register 
is the left register in the following equations, and the output register is on the right. The 
goal is to find the factors of a large integer {N) represented on L qubits, by using function 
/q.A' (J) = a^modA' where a and N are co-prime integers. The size of the registers is 2L, 
due to algorithm requirements [89] [91]. Essentially, Shor's algorithm consists of 4 main steps, 
dictating 5 corresponding main states: 

State 1: |(/',) 

State 2: [«./.-s) 

State 3: it';}) 

State 4: |<.'4) 

State 5: 

^ E U - M O I / C O ) 
O2LL 

VTSTE.^O \r-t + b)\m) 

UDFT • |t''4) 

State | t''2) is obtained by applying a layer of Hadamard gates on the input register. | 03) is 
yieldod by putting in the output register the result of special function / (periodic with period 
r) over the input register. |c''4) is obtained by measuring the output register (the result is m, 
b is the bias [89]), and [(/'s) by applying the Quantum Discrete Fourier Transform (QDFT) 
over the input register [17] [39]. 

BUPT



2.3. A HDL-BASED PERSPECTIVE 23 

2-3 A HDL-based perspective 
Building quantum CAD techniques for the design and test of quantum circuits is possible 
only if their simulation is efficient. Our simulation methodology consists of describing each 
quantum gate network from Figure 2.1 by funcţional and structural architectures. When 
entanglement is detected in a neighboring register, then a funcţional (behavioral) architecture 
is selected for the circuit as the only possibility. 

The entanglement detecting procedure is automated, by designing specialized non-entangled 
qubit extraction algorithms. If the extraction algorithm is successful, then in that register 
there is non-entangled information (groups of qubits), and a structural architecture is possible. 
As presented in this thesis chapter and references [105] [106], the funcţional architecture will 
employ exponenţial resources at simulation, whereas the qubit-level structural architecture 
means only a polynomial overhead. 

This methodology is an enhancement only if there are non-"totally entangled" states (see 
section 2.4 for definitions). We have performed case studies for our HDL-based framework, 
involving states appearing in Shor's and Grover's algorithms. The conclusion is that the 
probabihty of total entanglement is rising exponentially with the number of qubits. However, 
when running algorithms for practicai purposes, the information encoded in registers tends 
not to be totally entangled [114\ 

Nevertheless, total entanglement omnipresence when taking into account "blind^' proba-
bihties is a downside of this approach. But at least in some cases this framework offers the 
solution: state's entangled representation is avoided by bubble bit insertion (Chapter 3). This 
technique is favorable for the polynomial structural architectures with the expense of building 
some records of size O (n^). 

2.3.1 Circuit model interpretat ion 
When approaching the design of quantum circuits, this thesis will reiate to our quantum 
hardware interpretation of Gajsky and Kuhn's Y-diagram [23] (see Figure 2.6). We have 
modified the classical diagram [105] in quantum terms, therefore having three abstracting 
levels: architectural, unitary and partide. The architectural level corresponds to the algorithm 
data flow encoded in the overall quantum states. The unitary level is concerned with quantum 
gate networks (quantum circuits at the gate level), basic quantum unitary transforms, and 
unitary operators. Finally, the partide level is a technological interpretation related to the 
physical implementations of the quantum gates, networks and circuits [62 . 

These abstracting levels could be seen from three different perspectives, or views. The 
views in the Y-diagram are behavioral, structural and physical. From a behavioral (or func-
ţional) view, the quantum circuit is a funcţional description, without taking into account the 
implementation issues. In the structural view, the circuit is just the sum of interconnections 
between basic components, while the physical view is concerned with the physical aspects of 
circuit implementation. 

At the architectural and unitary (logical for classical computation) levels, HDLs (Hard-
ware Description Languages) are able to describe classical and quantum circuits from both 
behavioral and structural views. Moreover, existing software tools could assist both archi-
tectural and unitary synthesis. The physical design and the transformation from unitary to 
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FigTire 2.G: Quantum interpretation of the Y-diagram. 
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partide level, while both important, are not targeted here. Also, the physical implenientation 
(from the partide level in physical view) is not of this thesis' concern. 

Barenco et ai [10] addressed unitary level issues; other aspects, siich as coding and 
circuit complexity were also consistently addressed [59] [58], along with some classicaly-inspired 

-l -

Figure 2.7: The quantum hardware interpretation of HDLs involvement in circuit synthesis. 

2.3.2 HDL involvement 
Our simulation methodology is based on the circuit model of quantum computation (see Figure 
2.1) which was taken into account for other simulation approaches [46] [100]. The circuits (gate 
networks) and the registers are simulated by HDLs (VHDL in particular), which are synthesis 
tools for classical circuits. In Figure 2.7, we present the possible involvement of HDLs in a 
quantum interpretation [105] [106] of classical circuits' synthesis [22][23 . 
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But, if simulating quantum processes is aiready an exponenţial job, is any HDL neces-
saril>' a better tool for quantum circuit simulation, as opposed to an ordinary programming 
language? The best enhancement that could be achieved by employing another simulation 
tool - for a funcţional description - is linear, with time and space overhead being exponen-
ţial. However. the positive motivation is presented in Figure 2.8, based on the HDLs feature 
of Ijeing able to de^cribe the same circuit with both behavioral (funcţional) and structural 
architectures [6] [23]. This allows for avoiding unnecessary exponenţial state representations 
[105][114]. 

m 
\ / ^ 

S 2 
m / k 1 / • S 2 

• • • •• \ 
1 M 

^ • i 

m m 
S 3 

Cp, Structurali [ Entity j 
architecturei 

cS:^ 
Entanglement 

detected 

[Entit) 1 Entit^ fEntit>' //l 

I 
Funcţional Funcţional 

architecture architecture 

Figure 2.8: Example of approaching the HDL simulation of a quantum circuit. 

Whenever entanglement appears, the quantum system cannot be correctly represented 
as a tensor product [13] of its components' individual states. A correct representation of 
the overall quantum state, employing linear algebra, means an exponenţial overhead with 
respect to the number of qubits. Therefore, when entanglement occurs between two quantum 
subsystems, their overall state cannot be represented correctly as a reunion (assuming an 
implicit state composition with the tensor product) of the two individual subsystem states. 

Even though researchers are investigating better representations in order to replace linear 
algebra [114] [115] [117], handling overall states is a computationally hard (exponenţial) job. 
Moreover, when dealing with overall states, there is no truly gate-level simulation of quantum 
networks (circuits). 

We will use the HDLs for describing a circuit in structural fashion, so that a non-entangled 
state will not be represented as an overall state (with exponenţial overhead), but as a reunion 
of individual qubit states. If the previous or the next quantum state is an entangled state, 
then the quantum circuit must be represented in a funcţional (or behavioral) manner. 

In Figure 2.8 a HDL simulation approach is presented. Two quantum circuits, functionally 
described, guard the entangled quantum state {Ss). The first quantum circuit (network) is 
having a structural description because is guarded by 2 non-entangled states (^i and S2)' 

are the smallest components of the quantum circuit, and A i . . . An are their 
corresponding architectures. A quantum register corresponding to a non-entangled state is 
using a 7 ' notation, while for the entangled case the used sign is ')'. Of course, if we are to 
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perform a gate-level simulation [96] [114] of the quantum algorithm implementation, then the 
circuit becomes a single quantum gate. 

For a practicai implementation of this methodology, each circuit must be described both 
by structural and funcţional (behavioral) architectures. The structural description is at the 
unitary level (quantum gate) in modified Y-diagram terms (see Figure 2.6) [105]. For a gate 
network, if entanglement is detected in the previous or next quantum state, then the funcţional 
architecture has to be selected to describe it; otherwise the structural architecture is chosen. 
The structural case is the desired one because the simulation will require only polynomial 
resources. 

This simulation methodology could be automated by being able to extract the non-
entangled qubits from the register, if such is the case. This is also an exponenţial job if 
we deal with arbitrary quantum multi-qubit states; however, when dealing with specific algo-
rithm states, it becomes much simpler [105] [106 

2-3-3 Methodology implementation 
For a gate network, if entanglement is detected in the previous or next quantum state, then the 
funcţional architecture has to be selected to describe it; otherwise the structural architecture 
is chosen. Figure 2.9 presents a circuit that can be simulated with a structural architecture 
(case B), but for some input states it produces entanglement, and therefore can only be 
simulated by funcţional (behavioral) architectures (case A). 

The matrix representation of quantum states and unitary operators is adopted; therefore 
the quantum states are type array (of complex) signals [6]. The data structure for HDL-
simulation is designed so that the circuit is capable of processing both array of qubit states 
(the structural case) and overall states (the behavioral case), depending on entanglement 
detection (see Figure 2.10 for the appropriate data structure example - described in VHDL.) 

Entanglement 

^(loo)^!"» / 
A) 

. Entanglement 
1 ) not detected 

|o) 
H) / 

B) 

Figure 2.9: Entanglement example. 

With the data structure from Figure 2.10 and the above considerations, we are able to 
describe the circuit from Figure 2.9 with both structural and behavioral architectures. The be-
havioral architecture (see Figure 2.11, for architecture "funcţional") has a group of 4 variable 
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library ieee; 
use ieee.math_real.all; 
use ieee.math_complex.all; 
package qupack is 
— the qubit state representation 
type qubit is array(0 to l)of complex; 
-- array of qubits representation 
type qubit_vector is array(natural range<>)of qubit; 
— quantum register overall state representation 
type quregister is array(natural ramge<>)of complex; 
-- data type for simulation of 2-qubit circuits 
-- when ent=true we have entanglement and 'qr' field 
-- will be taken into consideration 
type qudata is record 

qr:quregister(O to 3); 
qa:qubit_veccor(O to 1); 
ent:boolean; 

end record; 
end qupack; 

Figure 2.10: VHDL data set example. 

assignments. motivated by the fact that the overall transformation produced by the circuit is 
characterized with tlie resulted matrix from Equation 2.18. The effect of the Hadamard gate 
over the overall input state is given by: 

v/2 

1 0 1 0 
0 1 0 1 
1 0 - 1 0 
0 1 0 - 1 

(2.17) 

Applying the XOR gate over the 2 qubits will have the following effect: 

1 
O 
O 
O 

0 
1 

O 
O 

O 
O 
0 
1 

O 
0 
1 
o 

V2 

1 
O 
0 
1 

0 1 
1 o 
1 o 
o - l 

0 
1 

- l 
o 

(2.18) 

When structural description is possible, the circuit can be reduced to the form given 
by Figure 2.12(A), with Uo,...Un-i being 1-qubit unitary transformations, and qo,...qn-i 
individual qubits. For the Figure 2.9(B) case, the structural description is possible, because 
the circuit can be reduced as shown by Figure 2.12(B) (with Qi = ^ (|0) - |1)), the target 
input qr, = |0), the target output and source qubits qr, = qs = |1)). This is, in fact, the 
motivation for the architecture "structural" of entity "circ-ex" (see Figure 2.11). 

Suinmarizing, the simulation methodology (as developed until this point) is presented in 
Figure 2.13. After each quantum register i, an entanglement analysis is produced, generating 
k, non-entangled qubit groups. This information is passed to QRegi and the quantum network 
that has outputted this state (Qnet,) in order to select the appropriate structural architecture 
(if such would be tiie case). 
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entity circex is 
port(ql:in qudaua;q2:inout qudaLa); 

end circex; 
architecture funcţional of circ_ex is 
begin 
process(ql) 
variable l:quregisier(C to 3); 
variable r:qudata; 
begin 
if (ql.eni) then 
11:for 1 in O to 3 loop i(i):-ql.qr(i); 
end loop 11; 

else : -tensor_produci_l (ql . qa ( O ) , ql . qa U ) ̂  ; 
end if; 
r.qr (0) : = (1 . OG/sqrt (2 . OC) ) M t (0) + t (2) ) . 
r .qr (1) : - (1 . OC/sqru (2.C0))Mt(l)+L(3) 
r.qr (2) :-(1.OC/sqr.(2.00) )Mt (1)-1 (3) ) 
r .qr (3) : = (1. CG/sqr- (2.CC))Mt(0)-t(2)), 
r.ent:=trje; 
q2<^r after 2C ns; 
end process; end funcţional; 
architecture structural of circ_ex is 
component Hadamard_gate 
port(qi:in qubit;qo:out qubit); 
end component; 
component qxor 
port(qs:inout qubit;qti:in qubit;qto:out qubit); 
end component; 
begin 
cl:Hadamard_gate port map(ql.qa(O),q2.qa(O)); 
c2:qxor port^map(q2.qa(0),ql.qa(1),q2.qa(1)); 
end structural; 
entity Hadamard^gate is 
port(ql:in qubit;qo:out qubit); 
end Hâdamard_gate; 
architecture hga of Hadamard_gate is 
begin 
qo(0)<=(1.00/sqrt(2.00))*(qi(0)+qi(1))after lOns; 
qo(l)<-(1.00/sqrt(2.00))Mqi(O)-qi(1))after lOns; 
end hga; 
entity qxor is 
port(qs:inout;qti:in qubit;qto:out qubit); 
end qxor; 
architecture qxa of qxor is 
begin 
process(qs,qti) 
begin 
assert (qs(O).im=0.00 and qs(O).re=0.00) or 

(qs(1).re=0.00 and qs(1).im=0.00) 
report "XOR's output will be entangled" 
severity failure; 
if qs(0).im=0.00 and qs(0).re=0.00 then 
qto(0)<=qti(1) after 10 ns; 
qto(1)<=qti(0) after 10 ns; 

elsif qs(1).im=0.00 and qs(1).re=0.00 then qto<=qti; 
end if; end process; end qxa; 

Figure 2.11: Relevant pieces of VHDL code. 
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Figure 2.12: Non-entanglement circuit reduction. 
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Figure 2.13: HDL-based, entanglement-aware, quantum circuit simulation model. 

2.4 Methodology effectiveness 
Our simulation methodology's effectiveness is afFected by entanglement situations. This kind 
of study was already performed numerically for Shor's algorithm [72], but we are considering 
it for our HDL framework. For assessing the entanglement role in our HDL-based simulation 
method, we consider two definitions. 

Definition 1 (Complete entanglement): A /i-qubit quantum state is completely entangled 
(i.e. an entanglement that includes all the qubits) ifF it cannot be expressed as a tensor product 
of a 1-qubit state and a (// — l)-qubit state. 

Definition 2 (Total entanglement): A n-qubit state is totally entangled iff there is no 
tensor product of two k and /-qubit states (with arbitrary 2 < {k +1) = n) to express it. 

Definition 2 is particularly useful, because there are cases of complete entanglement where 
qubits are totally entangled inside well defined groups, but the groups as wholes are not 
completely entangled between themselves. Figure 2.14 presents such an example, where the 
overall state is not completely entangled, and the overall state of all qubits except q̂  is 
not totally entangled. A situation where the entanglement is complete but not total is still 
advantageous for our simulation approach and a structural description is possible (though not 
at qubit level). 

2.4.1 Automated extraction of non-entangled information 
Grover algorithm case study 

In order to draw any conclusion on the opportunity of applying our simulation methodology 
to Grover's algorithm, we must analyze the entanglement in Figure 2.5, at the indicated 
points: (1), (2), (3), and (4). It is obvious that 1-qubit gates will not produce entanglement. 
Therefore, we have 4 possible distinct situations while simulating Grover's algorithm: 

A) No entanglement is encountered; 

B) Entanglement appears at point (2) and it is cancelled at point (4); 

C) Entanglement appears at point (4); 
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% 
% 
% 
% 

Figure 2.14: Example of groups of entangled qubits. Qubits y? are in the fîrst 
group, qi,q2 in the second, while q̂  is single. 

D) Entanglement appears at point (2) and it would not be cancelled. 

From our simulation methodology perspective, these situations are ordered from A) - the 
best - to D) - the worst. Due to the fact that the state first entering Uq is of the form 

(2.19) 

and the state exiting Uq is 

= XI 
1_ 

21 

ao 
tti 

«n-l 

(2.20) 

with Ui = ±1 and i = 0..2" - 1, we could estabhsh if 0(2) is entangled or not by trying to write 
CLq (li . . . 6i2" —1 1 as a tensor product of individual qubit states (i.e. [2 x 1] individual 

qubit matrixes.) 

Lemma 1 {Uq non-complete entanglement): The oracle is not dictating complete entan-
glement ifF in the set {ao, a i , . . . a2n_i} of Equation 2.20 elements, all the couples a2k-\~\) 
(with k = - 1) are either constant or balanced. 

Proof: First we are considering a 
- l 
1 

1 - 1 1 
1 ) - 1 5 - 1 

balanced. The matrix 

, and 

1 the possible 2 x 1 matrices containing ±1 elements: 

. The first two are constant and the following ones are 

Tom Equation 2.20 represents an n-qubit state. Therefore, if we have 
an {n — l)-qubit state, adding one qubit is described by the following tensor product: 
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1 
2— 

ao 
ai 
a2 

a2n-i_i 

bo 
b, 

aobo 
aobi 
aibo 
aibi 

co 
Ci 
C2 

(2.21) 

(l2n-l-lljQ -2 
a2n-l_l6l C2n-l 

In Equation 2.21, the rightmost form of the product matrix will give the following set of 
couples: 

Sc = { (co,ci), (C2,C3) . . . (c2n_2,̂ -2--l)} = { ^l) . (bo, bi). . . a2n-i_i (60,61)} (2.22) 
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Rl-Tl RN q 
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DUC of the cicinents in Seti 
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ihc rcmamed (-1) qiibitb 

STOP J 

Figure 2.15: Algorithm 1 described with a flowchart, where n is the number of qubits. Set 
and Seti are two ^'aiiables indicating the set of allowed 1-qubit matrixes: '=0' for constant, 
and for balanced. 

Thus. the tensor product froin Equation 2.21 is possible iff the resulted elements could be 
coupled the way Equation 2.22 shows. Of course bj, ci = ±1 for j = 0..1 and l = - l.This 

^̂  : balanced or constant. means that all the couples will have the form of 1-qubit state 
bl 
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Diie to Lemma 1, we have elaborated a simple algorithm that extracts one non-entangled 
qubit state, from a //-qubit overall state (given in the matrix form) dictated by Grover's 
algorithm oracle. From now on, we will call this algorithm "Algorithm V̂  (see Figure 2.15). 
Using Algorithm 1, we are able to extract all the individual non-entangled qubits from the 
state dictated by the oracle. This new algorithm (Algorithm 2 from Figure 2.16) also returns 
the overall state of the qubits that cannot be extracted (Q). 

r START J 

INPL T O overall quanium state (matiix fonn) 
COUNT; n 

1 
AlgoritliniMQ.i 

RETURN 

C STOP J 

Figure 2.16: Algorithm 2 described with a flowchart, where n is the number of qubits. Here, 
q is the individual qubit - matrix form - state, and Q,Qo the entangled overall states of the 
qubits that cannot be extracted. 

For finding entangled qubit groups of arbitrary depth d, we need to modify Algorithm 1, 
which finds only 1-depth groups. This is obtained by redefining the sets of Algorithm 1 Siq = 

^̂  I as all the possible couples of complementary 

gorithm 3, Equation 2.23 shows the possible couples 

" 1 • • - 1 " 
1 1 - 1 I and Sn = | - l 

1 
matrixes. As an example for the new A 
that represent entangled 2-qubit states. 
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S20 = 

S22 — 

S23 — 

S21 = 

- l 

- l 

1 
- l 
- l 
- l 
- l 
1 

- l 
- l 
- l 
- l 
1 

- l 
- l 
- l 
- l 
1 

(2.23) 

Lemma 2 {UQ non-total entanglement): The oracle is not dictating total entanglement 
ifF in the set {ao, (1\ ^ . . . 0,2̂  — 1 } of Equation 2.20 elements there is a 2 < ci < n, c/ G Ê  so that 
all the 2''-uples (a/̂  "fc • • • (̂/c+i) 2^-1) ^re in the same set of complementary matrixes 

Proof: The demonstration of this lemma becomes obvious if we reconsider the demonstration 
of Lemma 1, by replacing the "couple" with the 2'^-uple, and using the above-described notion 
of complementary matrixes set. 

The flowchart explaining Algorithm 3, for extracting cZ-depth entangled qubit groups, is 
presented in Figure 2.17. 

Shor algorithm case study 

In our entanglement-related case study, states |0i) and |02) are not entangled: the first is a 
basis state (eigenvector), the later is obtained from the first by using only 1-qubit gates. Also, 
the registers involved in l '̂a) and (dictated by arithmetic circuits) is given in Equation 
2.24, where n is the number of qubits, ^ € C, and G B = {0,1}. 

U'b) = ^ 

bo 
bl 

(2.24) 

Due to Equation 2.24, we have developed Lemma 3. 

Lemma 3 (Entanglement in Shor's arithmetic circuits): The registers involved in 
states l^a) and |04) are not totally entangled iff, in the set {60,61,... 62n_i} of Equation 2.24 
elements, there is a J e IN so that all the 2'^-dimensional subsets (6 .̂2 ,̂ . . . , 
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^ START J 
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^ STOP ^ 

Figure 2.17: Flowchart describing Algorithm 3 for extracting a (i-depth entangled qubit group 
from the given state. 
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(with k = 0.. - 1)) are in the same set of two x 1 matrixes with binary elements: one 
matrix with all elements being zeros, and the other with at least one non-zero element. 

Proof: Non-total entanglement occurs when there is a subset of d qubits, which is not 
entangled with the rest. This is possible ifF there are 2 corresponding matrixes so that: 

1̂ 6) = K̂'e) W'e) = ̂  

beo brio 
bei brii bei 

0 : 

be2n-d_i 

(2.25) 

Gi\̂ en the fact that Irnj G B, bti is either copying | 0n) elements or making all of them 
'O' in the tensor product, thus confîrming this lemma's assertion. We developed an algorithm 
(Algorithm 4) for extracting J-qubit {\ < d < n) groups that are not entangled with the rest in 
the register (see Figure 2.18). Here, function Compute_set returns the decimal correspondent 
of the binary informat ion encoded by the 2^-dimensional subset. The algorithm will return 
q (the state of the (i-depth qubit group) and Q (overall state of the remained n — d qubits). 
When the extraction algorithm is successful for d = 1, then the entanglement is not complete, 
and if there is a d < n so that the algorithm avoids EXIT in Figure 2.18 then we have a 
non-total entanglement situation. 

2.4.2 Non-entanglement probabilities 

Finding and extracting forms of non-entangled information is an advantage for our HDL-
based simulation method. But its effectiveness is given by the frequency of non-entanglement 
situations. Our simulation approach gives no advantage if the circuit could be described only 
by an entirely funcţional architecture (i.e. no structure could be specified). This means that 
we cannot draw any advantage if total entanglement is encountered. 

We could also say that total entanglement appears only if Algorithm 3 and Algorithm 4 
will give no expected answer {EXCEPTION in Figure 2.17, or EXIT in Figure 2.18). 

Grover's algorithm probabilities 

1051 [1061 is not Unfortunately, the improvement obtained by our simulation methodology 
always present. Furthermore, the probability of encountering an advantageous situation de-
creases exponentially with the number m of qubits in the register (see Figure 2.19). This is 
first expressed in Equation 2.26: 

pi (m) = 2 _ 0-2^ + 1 (2.26) 

where the probability of being able to extract at least one entangled qubit (pi {rn)) is defined 
by the number of matrix sets (2, balanced and constant), the number of matrbces/set (2), the 
number of couples (2"""^), and the number of the iniţial matrix elements (2"^). 

The probability of decomposing all the given quantum state in individual (non-entangled) 
qubits is even lower for a big ni. This probability is expressed in Equation 2.27: 
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(START) 

Figure 2.18: Qubit group extraction Algorithm 4. 
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pMm) 0.5 -

m 

Figure 2.19: Probability pl of extracting one non-entangled qubit; evolution with the number 
of qubits (/?(). 

1 = 1 

(2.27) 

p2(m) 0.5 -

m 

Figure 2.20: Probability p2 of extracting all the qubits as non-entangled; evolution with the 
number of qubits (ni). 

Figures 2.19 and 2.20 show little room for simulation improvement with our approach. 
But extracting individual non-entangled qubits is not the only possibility of separating non-
entangled information from the given quantum state. 

If searching for a J-depth non-entangled group in the given state, then the total number of 
such possibilities is 2̂  Thus, when searching ci-depth groups for all d (1 < c/ < m), 

BUPT



2.4. METHODOLOGY EFFECTIVENESS 39 

the probability of finding one is: 

Em —1 
d=\ ^ p3 { m ) = 

+2 m - d - l 
22̂  (2.28) 

The graphic representation of p3{m) is shown in Figure 2.21; the interpretation is that 
our simulation methodology will present some improvement, although it will decrease expo-
nentially with m. Nevertheless, these probabihties are "bUnd" ineasures for effectiveness. 
Researchers have shown that, when running algorithms in practicai cases, quantum informa-
tion is organizing itself so that total entanglement is not always present. Moreover, special 
coding could be employed so that we avoid entangled representations [114 . 

p3(m) 0.5 

m 

Figure 2.21: Probabihty p3 of extracting one of the possible c/-depth entangled qubit groups, 
ÎOT 2 < d < m. 

Shor's algorithm probabilities 

Algorithm 4 is extracting non-entangled information from register states involved in Shor's 
algorithm arithmetic operations. Related with the results from the previous section, we are 
interested in finding the probabihties of non-complete {Puc) and non-total entangled {Pnt) 
states. Pnc is the probability of finding at least one non-entangled qubit, whereas Put is the 
probability of finding at least one non-entangled qubit group (depth d, 2 < d < rri). The 
result is given in Equations 2.29, 2.30, and Figure 2.22: 

Pnc{rri) = 3 • ^ 2 
22m 

pnt (m) = 
[(2''-1) • - (2''- 2)' 

22'" 

(2.29) 

(2.30) 

with m e IN, m > 2. Unfortunately, these exponentially decreasing probabihties do measure 
the effectiveness of our approach in this particular case study. 
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O h 

P n L ( m ) 0 . 4 -

Pnt ( m ) 

Figiire 2.22: Probabilities of non-complete {Puc) and non-total entangled (Put) states, with 
the number of qubits (/r/,). 

Arbitrary state qubit extraction 

Using the resiilts from Section 2.4.1 we will develop an algorithm for non-entangled qubit 
groups. applicable not just for a specific algorithm state, but for an arbitrary one. This 
algorithm is still exponenţial when extracting the non-entangled qubits, but is efficient when 
discarding a state as totally entangled. 

The straightforward algorithm for non-entangled qubit group extraction is contained in 
Figure 2.23 from point marked as (*) downwards. Our approach is to extract relevant Infor-
mation so that some totallv entangled states could be easily detected (from START to point 
(*))• 

W'hen attemptiiig to extract a c/-depth qubit group from an n-qubit state, we split the 2" 
state niatrix into 2" matrixes of the form 
We denote [s (a^j^) («to-i+i) • • • (a(fc+i)2<J_i)]̂  as Mk,d, where 

^ with A; = 1. 

0 if u; = O 
6 {w) = { - l if sign {w) = - l Vu) e C 

1 if sign (w) = +1 
(2.31) 

In Figure 2.23, the function Compute_set is associating the integer index value of the set 
matrix Ah-j is belonging to. The set, for matrix Mk,d is {Mjt.d, ( - 1 ) x 0^} with being 
a (2'̂  X l)-size matrix with only O elements. Sets are labelled with indexes from O to - 1 . 
For example, when <i = 1 we have the sets from Equation 2.32: 

Seto = 

Set2 = 

1 - 1 0 
0 1 0 1 0 
1 ' " - 1 " ' 0 " 

- 1 • 1 0 

) 0 0 0 

1 - 1 0 

' 1 ' • - 1 ' • 0 • 

1 
1 

- 1 
1 

0 

(2.32) 
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C START ^ 

INPI T:̂ /. €C; i -0 .2" - 1 
INPIT dcpih(/; : v j . „ 

Scti: O 
Set: Ci>iiipute_Net((/,/;, .. .i/, ^ ) 

k 1 

Soli:-Ci)mpiilc_sct(̂ /, , I '̂(/.ii: ^ 

Ycs 

RliTURN CI 
RLTURN Q = overall quantum state of 

the remaincd (n-cJ) qubits 

I 
^ STOP ^ 

Figure 2.23: Algorithm 5: non-entangled qubit group extraction from an arbitrary state. 
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2.5 Experimental results 

AII sînmlations from this thesis were pursued on a Windows XP'^^'^ PENTIUm'^^ IV CPU 
1.6GHz. 192MB RAM machine. For experimenting our HDL-based simulation approach, we 
have performed an experiment concerning the Deutsch-Jozsa algorithm [25]. Entanglement 
problems here are similar to Grovers algorithm case stiidy, due to similar circuit structures. 
We have simulated the algorithm with 2 distinct circuits implementing a balanced function 
f/: the odd-even (Figure 2.24) and the parity circuits (Figure 2.25). Simulation has taken 
into account several instances of the circuits: with a 4, 6, 8, 10, 12, 14, and 16-qubit query 
register. It was performed for all instances with both behavioral and structural architectures. 
That wa8 possible because entanglement was not detected here. 

- I 
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1 ^ f{ 

I iit iPwIcniciii lu'i 
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H 

— 

10) — 

I") [h 
I") — / / 

H 
H 

• m 
H 

m-
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H 

1 1 
1 J 1 
1 

n 1 1 1 
1 

L 1 I 
1 1 i J 1—1 ! 
l—1 1 1 1 ! 

J 
|o)-|i) 
~7r 

Figure 2.24: Deutsch-Jozsa with the Odd-Even circuit. 
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Figure 2.25: Deutsch-Jozsa iinplementation with the Parity circuit. 

The tirne diagrain for such a simulation is presented in Figure 2.26. The circuits for 
function y are presented in Figures 2.24 and 2.25. In Figure 2.26 signal xin encodes the 
input state of the left level of Hadamard gates (operating on the query register) and ah the 
corresponding output state (see Figure 2.25); signal aht encodes the state exiting the level 
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of XOR gates; xout is the signal exiting the right level of Hadamard gates. Signal result is 
created by applying an OR gate on the outputs of the measuring devices from the rightmost 
part of Figure 2.25. 

Simulation times are presented in Table 2.1 (n is the number of qubits, Struct and Behav. 
stand for structural and behavioral), with the discrepancy between the structural and behav-
ioral simulations being obvious because behavioral simulation times are rising exponentially 
with the number of qubits [105] [106]. The discrepancy between behavioral and structural 
runtimes for the Deutsch-Jozsa algorithm is also presented in Figure 2.27. 

/test_parity_8/zero 

Aest_parity_8/one 

/test_parity_8/x_cold 

/lest_parity_8/g_x 

/test_parity_8/g_x_m 

/test_pa rity_8/y_cold 

/test _panty_8/result 

/test_parity_8/cpn/xin 

/test_parity_8/cpn/yin 

/lest_parity_8/qDn/xout 

(0) 

(1) 

(2) 

(3) 
(4) 
(5) 
(6) 

(7) 

/test_paiity_8/cpnyyoiJt 
/test_parity_8/cpn/ah 

(0) 

(1) 

(2) 

(3) 
(4) 
(5) 
(6) 

(7) 
/test_parity_8/cpn/aht 

(0) 

(1) 

(2) 

(3) 
(4) 
(5) 
(6) 

((fl!)X(±» 
nmian) 

[ i «POP 3« (po».! O) fţo 01 (•! CIUC 0» (1 0B<|00i t «1 |(C 01M :i) ((0 VI (1 Oti Î O CI ^̂  0») 
1 

00000000 : ^ 11111111 

1 
1 

Koiâxa!» 

(t-«*>x« vU'XB -l»«3Cir:J 

Q-i^X* •ir'ioti -It'iorri 
W-1e*3a le»30B); t»»30e le.MHÎ 

«1». J08 Jdt> {-1 - î-JOţ; 
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Figure 2.26: Time diagram with relevant signals of the Deutsch-Jozsa circuit simulation the 
Parity circuit, with an 8-qubit query register. Each gate is considered as operating with a 10 
ns delay. 
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n 
odd-even parity 

n str. beh. str. beh. 
4 < 0.5 sec 0.5 sec < 0.5 sec 0.5 sec 
6 <0.5 sec 1 sec < 0.5 sec 1.5 sec 
8 < 0.5 sec 3 sec < 0.5 sec 5.5 sec 
10 < 0.5 sec 21.5 sec 0.5 sec 51.5 sec 
12 < 0.5 sec 45min,8 sec 0.5 sec lh,3min,7sec 
14 < 0.5 sec timed out 0.5 sec timed out 
16 0.5 sec timed out 1 sec timed out 

Table 2.1: Deutsch-Jozsa algorithm simulation results. 

DJ-
Behavioral 
DJ-
Structural 

4 6 8 10 12 14 16 
Number of qubits [n] 

Figure 2.27: Deutsch-Jozsa simulation runtimes: structural Vs. behavioral. 
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Chapter 3 

The Bubble Bit Technique 

Although the conclusion of the previous chapter may not seem promising for our approach, we 
could still improve it; as shown in this thesis and in [106] [107] [108], at least for states appearing 
in Shor^s arithmetical circuits and Grover s algorithm we have an encoding technique that 
creates the possibihty of structural (i.e. polynomial) simulation. 

Considering the arithmetic circuits involved in Shor's algorithm (with Grover's algorithm 
experiencing a similar situation [106] [107]), the difference between a non-entangled and a 
totally entangled state could be a simple binary couple flip. Therefore we developed an algo-
rithm that creates a new entanglement-free-represented state, in order to alter the entangled 
state representation by inserting appropriate values called "bubble bits" and storing their 
positions in the state vector. 

Our technique is similar to the stabilizer codes, which offer the opportunity for efficient 
simulation (as proven in Gottesman-Knill theorem [62]), but instead finding transformations 
that leave the n-qubit state unchanged or stabilized, we produce a corresponding (7i + l)-qubit 
state which is not entangled (it is used for simulation), and a set of memorized inserted matrix 
elements (the bubble records). 

The purpose is to avoid the T- x T- matrix expression of the /i-qubit register unitary 
operator. After performing the bubble bit insertion procedure, the equivalent quantum net-
work will have only 1-qubit gates, and after applying the unitary operator in this manner, 
the original state can be restored. Because the unitary transform is obtained with at most n 
2 X l]-size matrixes, incentive for structural (i.e. polynomial) simulation is provided. 

3.1 Preliminaries 

The bubble bit insertion technique is a quantum state and circuit encoding, which generates 
a new simulation model, under the form shown in Figure 3.1. First, the FArh architectures 
are used for the quantum networks. These architectures are used by the quantum networks 
[QNttx ... QNetn) from Figure 2.13 simulation model, with a high probability of being func-
ţional. The state outputted by QNeU, having FArh as architecture, will be processed with 
the bubble bit procedure, and the result stored in QRtyi (bubble). At this point, QNtt, 
will have non-entangled input and output states, hence it will be described by an entirely 
structural architecture (computation fiowing along the darker arrow in Figure 3.1). 

45 
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m + 1 

Measurement 

Figure 3.1: Quantum circuit simulation model, when the bubble bit technique is employed. 

3.2 Shor's algorithm simulation 

3.2.1 Bubble insertion algorithm 

The procedure for bubble bit insertion works as follows: every couple (62/c, from the 
state vector (as considered in Equation 2.24) is scanned. From this equation, ^ will be ignored 

because all non-zero amplitudes are equal. We denote couple matrixes as: 

= 3. When a non-6 value is encountered all the other couples to be 

O 
O = 0, 

0 
1 

1. 1 
O = 2, 

processed will have to be of either this particular value or 0. 
The bubble insertion described in Figure 3.2 must be performed until all the elements 

from the state vector are scanned; here the oval is the first relevant couple detected and the 
rectangle represents the current processed couple. The bubble bit is inserted between the bits 
shown in rectangles in Figure 3.2. After the bubble insertion, a current processed couple (c) 
results along with a next couple (n) that could be already processed when no sign appears. 

There are 2 cases where a bubble bit could also be inserted in the next couple; that 
happens when becomes obvious that it would be the only choice (see Figure 3.2 for details). 
When the entire state vector is scanned and processed in this way, the extraction of one qubit 
(characterized by the first encountered non-6) becomes straightforward, and it can be said 
that one bubble step is completed. Several bubble steps must be performed until all qubits 
are extracted. 

Any bubble-bit insertion will also increase the number of state matrix elements {bi). The 
solution for maintaining a coherent matrix-form quantum state is to add an extra-qubit to 
the state representation. Thus, the number of bi elements will be increased from 2"" to -
at the first bubble step - by inserting extra Os. The next bubble steps will require erasure of 
Os, so that the matrix-form representation further complies with the quantum state coherence 
requirement (a A:-qubit state implies 2̂^ vector elements in the state matrix representation). 
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c O O ( 0 ) ( 5 ) Q ) o © 1 o o 1 
Qo i i o o o ® o ( 5 ) 0 
o ? o (Q) ©? 1 1 ? 1 o 

Figure 3.2: Bubble bit insertion technique. 

For every bubble-bit insertion, its position inside the vector is recorded. Each bubble 
[b,pos} is described by its nature (6 = 0/1) and its position in the resulted state (pos). 
Performing all the necessary bubble steps requires a total of O (n^) records be produced. 

Efficient quantum gate-level simulation may be achieved by using the HDL simulation 
framework, at least for some particular circuit cases (Grover iteration, arithmetic circuits) 
96] [106]. The abihty of HDLs to describe a circuit with both structural and behavioral archi-

tectures allows isolating entangled qubit cases, which are the sources of simulation complex-
ity. Besides special algorithms for non-entangled qubit group extraction [106], the simulation 
methodology we developed relies on the bubble bit technique, introduced as a method of 
avoiding entangled representations. This method substantially (i.e. exponentially) improves 
simulation times with the expense of buiding some records of size O (n^), as experimented for 
Shor's algorithm arithmetic circuits and Grover algorithm circuit. 

3.2.2 Example and experimental results 
In order to illustrate how the bubble bit technique works, we take as example the backbone of 
quantum arithmetic circuits: the 1-qubit full adder from Figure 3.3(A). The way this add-cell 
could be rippled in order to build n-qubit adders is suggested in Figure 3.3(B). The simulation 
of the 1-qubit full adder will have to take into consideration the successive states from part 
(A) of Figure 3.3. The input state (| 0i)) is not entangled, as shown in the following equation: 

•01) = ~ (|0) + 11)) ® ^ (|0) + |1)) 0 ^ (|0) + |1)) ® |0). (3.1) 

The other states are entangled, with the last one (|05)) being totally entangled and there-
fore the bubble bit technique has to be applied. As presented by Equations 3.2 to 3.5, the 
resulted state representations are identical, with only the corresponding records being differ-
ent. 

M 

•03) 

10000) + 10010) + 10100) + 10111) 
V IlOOO) + IlOlO) + lllOO) + 11111) 

0000)+lOOlO)+10110)+lOlOl) 
V IlOOO) + IlOlO) + 11110) + lllOl) 

b i ^ l e 13^4 ^ î ^ 
4 

b i ^ l e 13^4 ^ I 
4 

rec2 

recs 

(3.2) 

(3.3) 
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Figure 3.3: A) The 1-qubit full adder; B) obtaining a 2-qubit adder from 1-qubit E cells. 

V4) = 
0000)+10010)+10110)+10101) 

2v/2 V IlOOO) + I^Oll) + i l l l l ) + illOl) 

0000) + jOOlO) + 10110) + 10101) 
~ 2 ^ / 2 \ 11010) + |1001) + jllOl) + |1111) 

b i ^ l e 1 ^ î ^ 
4 

b i ^ l e ^ I ^ 
4 

rec4 

rec5 

(3.4) 

(3.5) 

Figure 3.4 presents the step-by-step results of the procedure applied on the 1-qubit full 
adder, while Figure 3.5 contains the details regarding all the bubble steps performed for |02)-
Figure 3.4 has 6 columns and 5 rows; the columns correspond to the following: 1 record (rec), 
4 qubits for the circuit's inputs (x\y,Cin,A also labeled as O, 1, 2, 3), and the extra qubit 
required by bubble bit insertions (e). All the involved successive states |0i..5) have a distinct 
allocated row in this procedure illustration. 

The results from Figure 3.4, as well as Equations from 3.2 to 3.5, indicate a structural 
network ('SArlr from Figure 3.1) of only identity qubit gates (characterized by I matrix). 
The new equivalent network was obtained the way section 2.3.3 and Figure 2.12 explain. 
This is important, because the structural (i.e. polynomial) simulation is now possible, with 
the original quantum states that can be restored, because of the information stored in the 
appropriate records. 

The presented results are due to VHDL simulations, carried on a Windows XP"^^, 
PENTIUM^^ IV CPU l,6GHz, 192MB RAM machine. We have performed the gate-level 
simulation of quantum arithmetic [113] of the full adder (see Figure 3.3). The experiment 
was pursued in the presence of total entanglement (therefore not a trivial simulation, as it is 
defined by [111]), thus requiring the bubble bit technique. 

The results are presented in Table 3.1, where sizt is the size of the adder in qubits, n is the 
size of the corresponding overall state (in qubits), ent is the type of the entanglement after 
the rightmost gate of the circuit, gates is the number of gates involved, bub is the maximum 
number of bubbles inserted for one record, and twB^ ts are the simulation times obtained 
without and with the bubble technique respectively. 

Table 3.2 presents simulation times for the modulo-A; (we considered k = quan-

BUPT



3.2. SHOR'S ALGORITHM SIMULATION 49 

•v(0)l v(l) ic,„(2)i .-1(3)1 rec 
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1 {1.6! +7 
2 il,5i -1 
3 {1,3} -1 

step bubble zeros 

1 {1,4} 
{0,7} 

+6 

2 {1,5} -1 
3 {1,3} -1 

step bubble /cros 

1 {1.4',,|0.7i 
{1,12; +6 

2 - -

3 {1,5} -1 
4 {1,3} -1 

step bubble zcros 

1 !1,4|.!0,7! 
11,10! 
iO,13! 
!1.16; 

+ 11 

2 {1,11} -1 
3 - -

4 {1,3} -1 

Figure 3.4: Bubble bit procedure results. 

size n ent gates bab iwB tB 
1 4 total 4 4 <0.5 sec <0.5 sec 
4 13 total 16 12 13.5 sec 2 sec 
8 25 total 32 24 4 hr, 12 sec 13 sec 
16 49 total 64 48 timed out 41 sec 
32 97 total 128 94 timed out 3 min, 48 sec 
64 193 total 256 192 timed out 16 min, 7 sec 

Table 3.1: Quantum full adder simulation results. 
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hiihblc 

craseil • 
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® 

Figure 3.5: Bubble bit procedure example. 

size Modulo adder Modulo multiplier | size 
UvB tB twB iB 1 

4 33 min, 4 sec 3.5 sec 6 hr, 12 min 9 sec 
8 8hr, 53 min 17 sec timed out 44.5 sec 
16 timed out 58.5 sec timed out 2 min, 16 sec 
32 timed out 5 min, 42 sec timed out 16 min, 23 sec 
64 timed out 21 min, 4 sec timed out 53 min, 18 sec 

Table 3.2: Experimental results for modulo adder and multiplier (simulation time). 

turn adders and multipliers, as essential circuits used for Shor's algorithm implementations 
[89] [91] [113]. Because additional memory is required in order to store the records dictated by 
the bubble bit technique, Figure 3.6 presents the polynomial memory overhead for the simple 
quantum ripple adder, modulo adder, and modulo multipher. 

3-3 Simulation of Grover's algorithm 

When considering the states involved in Grover's algorithm, we will have a more general 
approach to avoiding entangled representations in the quantum states. The general form of 
the states dictated by circuits from Grover's algorithm implementations is: 
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- rippie I 
adders 

nrodulo 
adders i 

- modulo 
multipliers; 

Operand size [qubits] 

Figiire 3.6: Extra memory requirenients. 

V'Groter) = C 

ao 
ai 

a2n_i 

(3.6) 

where a, 6 { - l , 0,1} for i = - 1. 
For explaining how our experiment works, we take as example the Grover algorithm circuit 

from [62] (see Figure 3.7), which performs quantum search on a 2-qubit register. 

a) b) O d) 

Figure 3.7: Grover algorithm circuit for a 2-qubit search register. The oracle UQ can be any 
of the a)-d) gates; also an entanglement analysis is provided by showing where it appears and 
where it is absent. 
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3.3.1 Bubble-bit insertion 
The algorithm that transformes the state representation into a non-entangled one consists of 
repeating the bubble insertion algorithm until (n + 1) [2 x l]-size matrices are extracted. The 
insertion algorithm is described by the following pseudocode: 

Bubble insertion algori thm 

1. scan a l l the couples from Equation 3 . 6 ; 

(a) memorize the f i r s t non-0 couple; 

(b) i n s e r t bubbles according t o r u l e s i n Figure 3 . 8 and memorize t h e i r 
nature and p o s i t i o n ; 

2. i f the number of a, e lements i s a power of 2 (=2"^) then go t o s t e p 4; 

3. i f the prev ious adjustement c o n s i s t e d of a O's padding then erase 
zeros so t h a t the number of â  (matrix) e lements w i l l be t h e c l o s e s t 
power of 2; 

4. e x t r a c t the f i r s t d e t e c t e d non-0 couple as a non-en tang led qubi t 
r e p r e s e n t a t i o n ; 

The rules for bubble insertion are presented in Figure 3.8, where 'x' stands for either '-T 
or T \ 

o © ® o ® ® ® 
X -X X -X \ -X 

O -X Q Q X -X X -X 
n 0 0 o ® ® ® ® 

^ ? X -X X -X -X X 

^ o \ -X o ® X -X -X 

O Q Q ® O Q Q X 
^ . ' 0 0 K -X X -X 

o X -X ® ® -X X -X 
o Q Q o O -X Q Q 

n O O X X ' -X X 

Figure 3.8: Bubble bit insertion rules for Grover algorithm states. 

In order to keep track of the operations involved by the bubble bit technique, we will 
watch the highlighted states . . l̂ /'s)) from Figure 3.9. In this figure, the lower qubit 
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value is known throughoiit the computation (it is sho\vn in Figure 3.9) and it is not entangled 
with the rest. The search register is made out of qubits A and B, while qubit e is the extra 
qubit which is used only because it is required by the bubble bit non-entangled representation. 
Initially, e = |0). 

0) e= 

O 

H 

H 

jyd»)-!')) / 

oracle 

H':) hN> 

H • : phase 
r • 

H 

H 
: i shift H H shift 

: : H 

/ 
Figure 3.9: Relevant states for Grover algorithm simulation. 

The result of applying the bubble bit technique on the | 0 i ) . . . I ̂ s) states is presented in 
Figure 3.10. In fact, as forecasted in the entanglement analysis from Figure 3.7, the bubble 
bit technique is only necessary for states and [ij's). 

1 e i B \ A : rec 
1 1 : 1 

1 1 

-l 

'l j v • r 
1 -1. 

step bubble zeros 

1 { - 1 . 3 } 
{ 1 , 5 } 

+ 2 

2 { - 1 , 3 } -1 

step bubble zeros 

1 { - 1 , 3 } 
{ - 1 , 5 } 

+2 

2 { 1 , 3 } -1 

il»̂ :) 

\ 
"i 

Figure 3.10: Bubble bit insertion results for 2-qubit Grover search simulation. 

These results can also be expressed as equations, where 

1 

- l 
1 = 4 and 1 

- l = 5: 

•0i> = ^ (|00) + |01) + |10) + |11)) = 6 (8) 3®̂  (3.7) 
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1 t/,2) = - (|00) + |01) - |10) + |11)) = 3 5 <8) 3 + 
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(3.8) 

(3.9) 

(3.10) 

(3.11) 

lt/,3) = i (|00) - |01) + |10) + |11)) = 3®2 O 5 + 

t.',̂ ) = i (|00) + |01) - |10) - |11)) = î ^ 5 ^ 3 

l̂ '-s) = |10) = 

The way that the bubble insertion procedure works is presented in Figure 3.11. 

11' - 1 huhh/e 
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-l 
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erased 

0 

Figure 3.11: Bubble bit insertion procedure for |03). 

The result is the possibihty of performing HDL structural simulation of the circuit, and 
therefore obtaining polynomial simulation times. The equivalent gate network, that can be 
simulated structurally, is presented in Figure 3.12. 

Figure 3.12: 2-qubit search Grover equivalent circuit, obtained with the bubble-bit technique 
in order to allow structural (i.e. polynomial) simulation. 

In Figure 3.12 v.e use a HNH gate. It is a gate that performs negation in a chan 

basis space. Its equivalent network is H • N • H = ^ 1 1 
1 - l 

0 1 
1 O 

1 

1 O 
O - l 

1 1 
1 - l 

îed 

In order to represent the bubble records, we will add the data structure from Figure 3.13 
to the VHDL package from Figure 2.10. In Figure 3.14 we present the methodology that 
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was iised when building corresponding VHDL entity-architecture pairs, for the 1-qubit gate 
levels that were dictated by the bubble quantum state representation {as, for instance, ^'phase 
shift'^ in Figure 3.12). These entity-architecture pairs have a fixed form, with only the marked 
components and signals being dictated by bubble bit technique's outcome (see Figure 3.14). 

-- the type describing bubble structure 
type bubb is record 
nature:integer; 
position:integer; 

end record; 
-- the bubble type 
type bubble_type is array (natural rangeo) of bubb; 
-- structure of bubble records 
type r e c r e c is record 
bubble:bubble_type (O to 1); 
zeros:integer; 

end record; 
-- data type for bubble records 
type bubble_record is array(natural rangeo) of rec_rec; 

Figure 3.13: Data types required by bubble record representation. 

Grover's algorithm was simulated for an Oracle that marks just one basis state, like [115 
Figures 3.15 and 3.16 present the time diagrams resulted from simulation of Grover's algo-
rithm with a 2-qubit data register and |10) the "marked" basis state. In these figures the 
relevant datapath is highlighted by arrows, which point the fields that are actually used by the 
corresponding structural or behavioral architectures. Of course, for the bubble bit simulation 
only structural architectures are required. 

The runtime evolution with the number of qubits in the data register is presented in Figure 
3.17. Also, the measured simulation times are compared here with the runtime complexity re-
ported in [115], which is 0.22 x 1.44̂ .̂ The graphical representation shows substantial runtime 
improvement. Also, Figure 3.18 presents the memory overhead of bubble bit simulation, dic-
tated by the bubble records. The added trendline indicates that the supplementary memory 
overhead grows polynomially with the number of qubits in the data register. 

3.4 Simulated fault injection 

3-4.1 Preliminar ies 
In classical hardware, fault injection techniques are used for vahdation of Fault Tolerance 
Algorithms and Mechanisms (FTAMs) [92]. This dependability verification ability is used for 
the ultimate goal of incorporating the assessment of used fault tolerance techniques within 
the design process, which may use an integrated environment [3] [4] [84][85 . 

As it is the case of classical circuits, the Hardware Description Languages {HDLs) are able 
to support dual behavioral - structural descriptions on different abstraction levels, and are 
suitable for implementing various experimental and formal testing techniques. These features 
make the HDLs the most appropriate tools for integrating description, simulation, synthesis 
83], testing, and FTAM testing in the same environment [21] [45] [84] [85 . 
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e n t i t y level_bubble i s 
p o r t ( S I : i n quda ta ; so :out quda t a ) ; 

end level_bubble; 
a r c h i t e c t u r e bubble_arh of level_bubble i s 
coxiţjonent qubit_l_gate 
port (q i : in qubit ;qo:out qubi t ) ; 

end component; 

component i den t i t y_1_ga t e 
port(qirin qubit ;qo:out qubi 

end conţ)onent; 
b e g i n 
cO: ^???_l__gateNport map(si.qa 
cl : / ??? 1 gate w r t map(si . (1 

rebulted after 
applying the 

. bubble bit 
technique 

) , s o . q a ( 0 ) ) ; 
) , s o . q a ( 1 ) ) ; 

cn-1 :\5??_l_gatp^port map C/Si .qa (n-1) , so.qa (n-1) ) ; 
so . ent <^~1rrrfe a f t e r t i i r ^ d e l a y ; 
so.qr 
so.bub < = C ^ b b l e _ r e c o 7 ^ a f t e r time_delay; 
end bubble aTFT? 

Figure 3.14: VHDL gate level implementation (entity-architecture pair) for bubble bit state 
transformat ion. 

This section will focus on extending our already defined HDL-based quantum circuit sim-
ulation frainework [96] [106], so that it can support fault injection that helps evaluating the 
dependability attributes [7] with relevance for quantum circuits. The basic classical fault 
injection techniques are the starting point of our quantum methodology; therefore, we will 
emphasize only the differences dictated by the quantum nature of the processed information. 

Quantum entanglement is the most important quantum feature that influences fault in-
jection. The reason is clear, it is impossible to have a real structural description for the 
circuit in the presence of entanglement. Because of the fact that entanglement influences the 
way that fault injection is performed (by structural or behavioral architectures), a natural 
question is how can we involve the bubble bit technique, so that structural fault injection is 
still possible in the presence of entanglement. One robust answer comes from the stabilizer 
formalism [62] [35], but the recently developed bubble bit technique [107] can also be adapted 
to error injection, so that the consequences of such this methodology are extended in order 
to approach fault tolerance assessment [108 . 

This section presents the achievements in classical hardware FTAM assessment, identifies 
the features that can be adapted to our quantum computaţional needs, and then sketches the 
basic guidhnes for the QUantum ERror Injection Simulation Tool (or QUERIST) which is an 
extension of our Bubble Bit HDL-based Quantum Circuit Simulation Tool (i.e. features error 
injection). The implications of QUERIST development - for the bubble bit approach - are 
indicated in the last part of this chapter. 
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co m g „ « 
«o ffl w 

Figure 3-15: Time diagram resulted from VHDL simulation of Grover's algorithm, without 
the bubble bit technique. 
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Figure 3.16: Time diagram resiilted from VHDL simulation of Grover's algorithm, with the 
bubble bit technique. 
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Figure 3.17: HDL bubble bit runtime results for Grover algorithm simulation, compared with 
the reference complexity. 

9000 

8000 t 

7000 

•g- 6000 
I Ă 5000 0 N 
^ 4000 

1 3000 

2000 

1000 

2 4 16 24 32 
Register size [qubits] 

64 

Figure 3.18: Memory overhead dictated by bubble records for Grover algorithm simulation. 
A trendline is added to the sample data, showing polynomial growth. 

BUPT



60 CHAPTER 3. THE BUBELE BIT TECHNIQUE 

3.4.2 Sketching the guidlines for the QUERIST project 
W'ith the inspiration drawn from the classical hardware HDL-based fault injection techniques, 
we extend our quantum circuit simulation framework. 

The classical fault injection methodologies can be mapped without intervention, so that 
the HDL framework supports fault injection into quantum circuit simulations. Of course, 
we cannot expect any efficiency from such an approach. Therefore, the right solution would 
be to adapt those methodologies to one of the available efficient simulation frameworks [106 
[107][114][115]. 

This report will describe the guidelines of a bigger software project that fosters simulated 
fault injection techniques in quantum circuits; the project is called QUERIST. In this de-
scription, only the adaptation issues will be stressed, so we present the decisions that were 
made so that quantum computaţional constraints and specific problems axe solved. 

The overview of the QUERIST project is presented in Figure 3.19. In the classical ap-
proach there are 3 cycles; likewise the quantum version has the initialization, simulation, and 
data computation cycles. The first cycle takes the quantum circuit HDL description as an 
input. Also, there are 2 abstract (i.e. theoretical assumption) inputs: the HDL model and the 
as^sumed error model. The first one influences how the HDL description is presented, while 
the second one dictates the test scenario. 

In the theory of fault tolerant quantum computation [76], along with the most commonly 
assumed error model: random faults, no time or space-correlated errors. QERIST endorses 
this error occurrence model, which means that the test scenario has to deal with defining the 
start and the stop simulation states because all the signals must be observed (all qubits are 
equally prone to errors). References [105][106][107] are documenting the HDL modeling of 
quantum circuits in order to attain efficient simulation. 

The outputs of the first cycle, which are also inputs for the simulation cycle consist of 
a test scenario (basically a description of when simulation starts and when it ends), and an 
executable HDL model with the corresponding entanglement analysis. The output for the 
second cycle is the time diagrams of all qubits, from the start to the stop state. 

Special designed rules will extract the useful information from the raw, bubble-bit-represented, 
qubit traces. The entanglement analysis and the quantum computation reliabihty theory are 
used in order to compare the correct qubit values with the extracted values. The result of 
that comparison results in computing the probabihstic accuracy threshold value, in the third 
cycle. 

3.5 Specific problems in the quantum environment 
This section explains how to perform simulated quantum fault injection, within the HDL 
bubble bit [106] [107] framework, by following the rules given by quantum error model theory 
76]. 

Implementing fault injection according to the constraints means that the bubble bit sim-
ulation model from Figure 3.1, has to be modified as Figure 3.20 shows. 

Figure 3.20 shows that fault injection is performed just before the bubble bit technique 
is applied. Also, fault injection is performed only if the "random number generator" dictates 
so. The way fault injection is triggered, its nature, and the way it is implemented is part of 
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Figure 3.19: An overview of the QUERIST project. 
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Measurement 

Figure 3.20: The bubble bit HDL simulation model, when fault injection is applied according 
to the error and fault occurence models presented in [76 . 

the socalled ''Setup phase". This phase is similar to the setup phase from classical hardware 
fault injection. We also have a simulation phase which corresponds to running the experiment 
according to the scenario that was set in the setup phase. In the end, the data processing 
phase uses the simulation signal trace results, in order to compute the appropriate reliability 
measure. 

3.5.1 Setup phase 
Injecting a fault, in our simulation framework [105] [106] [107] [108], consists of accordingly 
modifying the quantum state matrix: 

= 

ao 
ai 

(3.12) 

a2n_l 
When the fault is a bit-flip, then the fault injection means that we rearrange the matrix 

elements, whereaî  for the phase shift some matrix elements will be multiplied with -1. In 
the bit flip case the elementary operation is exchanging values between two matrix positions: 
a, Uj for / j . This allows the building of an exchange function that operates on blocks 
of matrix elements: 

Exchange [(ixq, • • • , ('̂ o, • • • ^ ^ Vi for every i = 0, w - 1. (3.13) 

Suppose we have a quantum state on ii qubits, .. .q2qi), then if a fault occurs on 
qubit k, and that fault is a bit-flip, then we will execute the following algorithm: 

Bit-flip fault injection 
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For i := O t o 
Exchange [(a,• • • , • • • 

End For 
When the nature of the error is phase shift, the corresponding algorithm is 

Phase-shift fault injection 
For / O t o - 1 

If i mod 2̂ ^ > 2^ ~ 1 Then a, ( - 1 ) x a, 
End For 

We have settled the way the error injection is performed, but how is it going to be trig-
gered? According to the fault occurrence model [75] [76] it has to be a random triggering. 
Therefore, we have to use a random number generator. 

For a quantum state, we use the generator for the first time in order to find out if an error 
occurs. Then, we use the random number generator for selecting one of the following fault 
types: bit-fiip, phase-shift, both faults [76 . 

When first used, the generator returns the number / i. If i i < n^ (for a n^ given by a fixed 
error rate), then we have a fault. We start the number generator again - yielding - and 
the selected fault nature is set by the following equation: 

0 < 72 < I we have a bit-flip 
T2 = { h < we have a phase-shift 

1 < 7-2 < 1 we have both bit-flip and phase-shift 
(3.14) 

For each simulated gate, when the fault is triggered the actual injection is performed on 
the processed state. The gate fault is triggered the same way the state fault is triggered: the 
random numbers are deciding if we have a fault, and the nature of the fault. The bit-flip fault 
for a gate will have the efîect of inducing a bit-flip fault on the target qubit. Instead, the gate 
phase-shift not only induces the phase-shift fault on the target qubit, but also spreads the 
error on all the source qubits. Figure 3.21 presents these cases ( a) and b) respectively), which 
are considered by taking into consideration the quantum fault tolerance problems described 
by Preskill [75] [76]. 

U 
bi^flip 

a) bit-flip 

ph^c-shift 

phase-shift 

4 

• M 

ph^sc-shift 

b) phase-shift 

Figure 3.21: The effect of faulty gate operation on the processed qubits: a) gate bit-flip fault, 
b) gate phase-shift fault. 
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3.5.2 Simulation phase 
This subsection will take an example of an error correcting quantum device, and show how 
fault injection simulation actually works on this circuit. We use a coding technique that 
replaces 1 qubit with a cluster of 3 qubits. The qubit basis state |0) is encoded as |000), and 
|1) as |111). For example, state = ^ (|0) + |1)) will become \xyz) = ^ (|000) + |111)). 

If a bit-flip error occurs, then the error is indicated by the syndrome |6i6'2), where si = x®z 
and S2 = y Q z. The syndrome value indicates the fault: |10) means bit-flip on x, |01) on 
y. |11) on and |00) indicates that there is no error. The entire circuit is presented in 
Figure 3.22, and we start with state = (|000) + |111)) which is affected by a 
fault on qubit y: |/;0) = (|010) + |101)). The evolution of the bubble-bit quantum state 
representation throughout the circuit simulation is described in the following equations: 

pO) 

pl) 

p2) = bl) 

1 ' 1 " " 1 " " 0 • • 1 " 
0 1 1 0 

1 1 1 0 1 
\V2 0 1 0 1 (8) 0 

(3.15) 

(3.16) 

(3.17) 

pS) = \pO) (3.18) 

1̂ 4) 

|p5) 

p6) 

p7) = 

l (1 1 0 0 
= 1 0 

(8) 
1 

cg 
1 

j (1 1 0 0 
= 1 

lv/2 0 1 1 

( 1 1 0 ' 1" 
0 1 0 

1 • 1 • 
«1 

1 1 1 
— 

1 
«1 

0 0 0 

52 

52 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

The corresponding records are presented in Figure 3.23. 
This indicates that state \p7) = (|000) + |111)), therefore the inflicted error has been 

corrected. 

3.5.3 Data processing phase 
Suppose that, at simulation time t we observe signals {sq, s i , . . . 6n_i}. Each such state has 
a bubble bit description. If ni is on ki qubits, the bubble-bit representation is given by the 
following equation: 

Si — qbo) \qbi) ® ... \qbk,) +1 reCi . (3.23) 
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Figiire 3.22: Circuit for singular bit-flip error correction. 

Step bubble zeros step bubble zeros 

1 {0 ,5} + 7 rec^ 1 - 0 
2 - 0 

rec^ 
2 {0 ,2} + 3 

rec. 

step bubble zeros 

1 - 0 
2 {0 ,2} + 3 

rec. 

step bubble zeros 

1 {0 ,7} + 7 

2 - 0 

rec. 

Figure 3.23: Bubble records produced by simulating error correction with the circuit from 
Figure 3.22. 
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In our analysis, is the state observed during non-faulty simulation, so for the same state 
in a fault}' environrnent we will have the bubble expression given by: 

rec. (3.24) 

For validation of the quantum FTAMs, we need to compare Si with s*, This can be done 
with the operator presented in the following equation: 

d i f ( . , , . n = ( n (3.25) [O otlierw'ise 
This means that the total number of overall state errors at simulation time t is 

n - l 

(3.26) 
i = 0 

The crror rate on the overall observed states at moments to , t i , . . . tm-i will be given by: 

^ m—l 

^sim = — / ^ 

j=0 
(3.27) 

As pointed out in references [75] [76] [78], the used FTAMs are valid if the relationship 
between the experimental ŝim and the assumed singular error rate ^ is of the order: 

(3.28) 
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Chapter 4 

Reliability with Reconfigurable 
Quantum Hardware 

The need for error detection and correction techniques is vital in quantum computation, due 
to the omnipresent nature of quantum errors. No realistic prospect of an operaţional quantum 
computaţional device may be warranted without such mechanisms. Therefore, the fact that 
error detecting and correcting techniques have been developed has enhanced the feasibility of 
a potential quantum computer [76] [97]. The ITRS [126] is also listing the need for effective 
quantum fault-tolerant algorithms as an imperative for the quest of tomorrow's technology. 

This chapter presents a methodology for improving the fault tolerance of quantum circuits 
by using the so-called reconfigurable Quantum Gate Arrays (rQGAs). Our solution reduces the 
problem of stabilizer coding safe recovery to preserving a given quantum configuration state. 
As shown in this chapter's practicai example, the configuration register to be protected has a 
reduced number of qubits, and the overall dependabihty attribute [7] - reliability measured 
by the accuracy threshold [76] - is drastically improved. 

4.1 Preliminaries 
The theory of fault tolerant quantum computation employs special coding in order to protect 
useful data from the destructive effect of the environment. There are two main error sources: 
the first is due to the faulty behavior of the quantum gate that produces the so-called process-
ing errors, while the second is generated by the macroscopic environment interacting with the 
quantum state (storing errors). 

Within the quantum computaţional framework, the developed techniques for error detec-
tion and correction have the potential of a sound error recovery process, and error propagation 
is thwarted. However, quantum computation could be ruined if the error probability in the 
basic components (qubits, quantum gates) exceeds a certain accuracy threshold. Usually the 
microscopic quantum states are prone to frequent errors, thus safe recovery hecomes extremely 
important [76 . 

The main error source is the decoherence effect [62]. The environment is constantly trying 
to measure the sensitive, microscopic quantum superposition state, while technologically it 
is not possible to perform a perfect isolation between the two of them. But the most in-
sidious error appears when decoherence affects the quantum amphtudes without destroying 
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them; these are very similar to small analogical errors. The solution to these problems is 
represented, on one hand, by intrinsic fault tolerance due to technological implementation 
(topological interactions Aharanov-Bohm [1]) and, on the other hand, by error correcting 
technique^ [35] [16] [36] [98]. 

The error detecting and correcting techniques are not easy to approach due to the quantum 
computaţional constraints: the useful state could not be observed (otherwise it will decohere), 
nor could it be cloned. However, the necessary theoretical background is available for designing 
error detection and correction quantum circuits [69] [76], which are eflPective if the error rate 
does not exceed the accuracy threshold. 

4.1.1 Contr ibut ions 
This chapter presents a fault tolerance improvement technique, based on reconfigurable quan-
tum gate arrays (rQGA), inspired by the classical reconfigurable solutions to dependabihty 
problems. A relevant example is given by the Embryonics project [57], which improves the 
dependabihty attributes [68] of classical digital circuits by reconfigurable means. Moreover, 
recent developments have proven the effectiveness of Embryonics in attaining feasible compu-
tation in criticai environments [79] [80] [81] [82], very similar to quantum computation due to 
the similarities of fault models and error rates. 

When using a quantum state (i.e. a superposition of classical configuration states) in order 
to configure the rQGA, the resulting circuit is equivalent to a superposition of distinctive 
circuits, each of which corresponding to a classical superposed configuration. Our method 
uses this feature in order to configure a superposition of error correcting circuits, based on 
distinctive encodings. Eventually, by applying measurement on the configuration register, just 
one classical configuration will remain. If the probability of one of the superposed circuits 
developing faulty behavior is then the probability of getting a faulty circuit by measuring the 
quantum configuration register (having m superposed classical configuration states) becomes 

For a suflficiently small the overall error probability becomes even smaller. As a result, 
the circuit reliabihty [7], (as a dependabihty attribute) measured by the accuracy threshold, 
is drasticaly improved [109 . 

The reconfigurable quantum hardware (rQHW) concept - under the form of rQGAs -
can also be used in order to fight against correlated errors. Usually, it is considered that the 
quantum error has a single, random nature, but this theoretically convenient error model may 
prove as not completely accurate when dealing with future quantum hardware engineering 
problems. 

4.2 Quantum fault tolerance 
The available quantum error detection and correction techniques use stabilizer coding and 
special methods for ancilla qubit preparation [76]. Recent developments in this field [47] [48 
are also based on this approach. 

Quantum computation not only introduces new types of errors, it also puts some compu-
taţional constraints while generating some new problems. AII these were already addressed 
76] [98], and the circuits presented in this chapter are built according to the available solutions. 
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Figure 4.1: The circuit that returns the Steane encoding of an arbitrary state. 

4.2.1 Quantum faults 
The qubit can be affected by 3 types of errors: bit-flip, phase, both bit-flip and phase (see 
Equation 4.1). Besides these errors, small errors could affect the quantum amphtudes. How-
ever, there are methods of reducing any error to a bit-flip error [76 . 

ao|0) + ai | l ) error 
' ao|0) + ai | l) no fault 

aojl) + ai|0) bit-flip 
ao|0) — ai | l) phase-shift 
ao|l) — ai|0) both faults 

(4.1) 

4.2.2 Quantum error detection and correction 
Correcting a flip error means negating the affected qubit, thus applying the transformation 
characterized by: 

N = = 0 1 
1 O (4.2) 

As presented in Equation 4.3, in order to correct the phase error we apply the Z operator. 

1 O 
O - l (4.3) 

The correction of the third error type (i.e. the situation when both bit-flip and phase shift 
are activated, see Equation 4.1) is achieved by applying a composed transformation upon the 
affected qubit: 

Y = UZ = 0 -i 
1 O (4.4) 

Quantum error detection and correction is performed with special coding techniques, which 
are inspired from the classic Hamming codes. The syndrome obtained by measuring the proper 
ancilla qubits reveals the nature of the error. 
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Stesme encoding 

Steane's 7-qubit code [97] [98] [99] is derived from a classical single error correcting error, so it 
can detect aiid correct only single qubit faults in the code block [52 . 

Let HA be a Hamming matrix describing a code with 4 useful bits (n = 4), and 3 redundant 
bits {k = 3). 

H. = 

CQ 

1 
o 

\ 0 

Ci 
0 
1 
O 

C2 
O 
0 
1 

Uo 
1 
1 
o 

Ui 
0 
1 
1 

U2 
1 
1 
1 

1 \ 
0 
1 / 

(4.5) 

The Steane 7-qubit coding of |0) consists of an equally weighted superposition of all the 
vaHd Hamming 7-bit vvords with an even number of Is: 

0)5 = ^ Eeven(«oui.ti2ti3cociC2) \uoU1U2U3CoC1C2) -
( jOOOOOOO) + jOOlOlll) + 10101110)+ \ 

1 10111001) + IlOOlOll) + 11011100)+ 
11100101)+ 11110010) 

(4.6) 

/ 
The similar superposition of the odd number of Is Hamming code words is used for jl) 

coding: 

11)5 = Eodd{u0Ui,U2U3C0CjC2) |W"l"2fX3C0ClC2) = 
/ 11111111)+ 1101000) + 11010001)+ \ 

11000110) + [0110100) + [0100011)+ 
\ [0011010) +joooi ioi) / 

_ 1 (4.7) 

With this code, any singular qubit fiip error is detected and can be corrected by computing 
the following syndrome: 

niQ = co® Uo © U2 © us 
rui = Ci © uq © Ui © U2 
m2 = C2 © Ui © U2 © Us 

(4.8) 

The interpretation given to the syndrome from Equation 4.8 is presented in Table 4.1. 
Applying Steane coding over an arbitrary given quantum state = ao|0) + ai | l) (see 

Figure 4.1), generates the state from Equation 4.9 in order to use it for potential recoveries. 

(4.9) 

Steane 's ancilla coding 

In order to compute the syndrome, ancillary qubits are necessary because we cannot mea-
sure encoded qubits. The design of circuits for encoding the ancilla must take into account 
two aspects: a preventing strategy against backward error propagation and ancilla accuracy 
verification [76 . 
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Figure 4.2: Ancilla coding: A) Shor's tecnique; B) Steane's technique; C) Verfication for 
Steane's ancilla, where the "State ancilla coding" blocks contain the circuit from B) except 
the rightmost level of Hadamard gates. 
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Figure 4.3: Single quantum bit-flip error correcting circuit with Steane ancilla coding. 

Figure 4.4: Error-correction with stabilizer generator measurement, Steane ancilla, and syn-
drome computation according to the check matix. 
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mo nil 'fi2 erroneous qubit 
0 0 0 no error 
0 0 1 
0 1 0 Ci 
0 1 1 Ul 
1 0 0 
1 0 1 "3 
1 1 0 uo 
1 1 1 "2 

Table 4.1: Steane code's syndrome interpretation, with the rightmost row indicating the 
position of the bit-flip error. 

There are two coding techniques for the ancilla: the Shor and Steane coding (see Figure 
4.2). We will focus on the most effective one, Steane ancilla preparation [76] (Figure 4.2 B) 
which generates: 

Anc)st eane 7 ! (10)5 + 11)5) (4.10) 

The bit-flip syndrome is obtained by first applying 7 XOR gates, having the data qubit as 
source, and the same position verified ancilla qubit (see Figure 4.2 C) as target. The ancilla is 
measured, and then the Hadamard matrix check HA is applied in order to get the syndrome. 

4.2.3 Putting it all together 
With the results from the previous two subsections, we are able to present (in Figure 4.3) the 
complete circuits for bit-flip error correction (for Steane code, Steane ancilla preparation). 

Considering the model of non-correlated errors, it was shown that the redundant syndrome 
computation with the circuits from Figure 4.3 will assure a data fldelity of order 1 - O 
when the single qubit error probability is ^ [76 . 

Stabilizer codes 

Steane's code is a particular case of a stabilizer code [35]. In the stabilizer formalism, the 
code given in Equation 4.9 is characterized by the check matrix [62]: 

H A = 

1 0 0 1 0 1 1 0 0 0 0 0 0 0 \ 
0 1 0 1 1 1 0 0 0 0 0 0 0 0 
0 0 1 0 1 1 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 1 0 1 1 
0 0 0 0 0 0 0 0 1 0 1 1 1 0 

0 0 0 0 0 0 0 0 1 0 1 1 1 / 

(4.11) 

Having the check matrix generalization theory, more general generator measuring devices 
can be developed, as Figure 4.4 shows. 
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4.2.4 Accuracy threshold 
Technological requirements 

For a quantum code that corrects r errors (r G IN, 'r > 1), Preskill [76] has shown that the 
accuracv threshold is: 

-P (4.12) 

where iV is the number of error correction cycles, and r^ is the number of computaţional steps 
required for syndrome computation. 

Still there will be an Amax so that, if N > A^max, then the non-correctable error situation 
(> / simultaneous errors) becomes hkely. Under these conditions, there is a limit on how long 
the fault-tolerant computation can be. 
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Figure 4.5: Graphical representation of accuracy degree required for the corresponding A^ 
for different p's: 3 for x/'i, 4 for xt2, 5 for xis. xt4 corresponds to the no-coding situation, 
while ref is the reference accuracy (i.e. the accuracy allowed by today's state of the art 
technology). 

Figure 4.5 presents the required accuracy degree getting closer to the present day's tech-
nological limit (tipically 10"^ for p = 4) after N = 10^ ^ Nmax- For a fault tolerant 
Shor algorithm [89] encoding solution, this should have happened after A'" = 10^ steps [76 
Therefore, A'max niay not be large enough. 

Concatenated coding 

A solution for fault tolerant quantum computation with arbitrary length is concatenated 
coding, where each qubit is encoded by a block of n sub-qubits, each sub-qubit being encoded 
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by other fi blocks of qubits, and so on (Figure 4.6). For a /r/-depth (concatenation levels), a 
number of n''' qubits is required. 

Preskill [76] provided an analysis that proves the effectiveness of 3-level concatenated 
coding, stabilizer coding, Steane ancilla circuit, by estimating its accuracy threshold: 

(4.13) 

Cyatê o - 6 . 10-^ (4.14) 

The analysis assumes two types of errors: gate errors and store errors. If the error rate 
is lower than values given by Equations 4.13 and 4.14, arbitrary long fault tolerant quantum 
computation is preserved. 

4-3 A bird's eye criticai view 

This analysis provides the necessary critique of the actual quantum fault tolerance techniques, 
by identifying their weaknesses, and at the same time pointing a potential solution. 

4.3.1 The big picture 
In quantum computation the circuits are prone to fail, and safe recovery is difîicult. Therefore, 
a straightforward classically-inspired solution is not feasible because the overall fail rate will 
be given by ancillary qubits preparation. Figure 4.7 shows that data and ancilla qubits having 
a error rate of the order ^ will always give an overall ^ fail rate when a classical approach is 
used, regardless of the number of ancillary levels. 

The only conceivable solution to the safe recovery problem is to use structural redundancy. 
Our objective, for the random single error model, is to assure an ^^ error probability for the 
corrected data. The method that is actually applied uses a limited structural redundancy. 
The Steane safe recovery procedure is based on Steane ancilla preparation, which provides 
for effective syndrome testing. If one syndrome is not good, then another is available. The 
probabihty of both faihng is ^^ and therefore this procedure (Figure 4.8), is sufficient for 
achieving the stated goal. 

• • • 

Figure 4.6: Concatenated coding: each qubit can be encoded by a block of sub-qubits. 
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Figiire 4.7: Classical fault tolerance approach for safe recovery. 
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Figure 4.8: Steane safe recovery procediire. 
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4.3.2 Issues to be settled 

There are some potential problems - of theoretical nature - that could affect. the future 
quantum hardware engineering. We vvill debate over two of these problems: 

(a the fact that the error occurrence modei that was taken into consideration, is of iincor-
related errors; 

{6 the infiexibihty of quantum circuits for ancilla preparation, which requires at least two 
ancilla sets to be used even if the syndrome computed on the first set is correct. 

Figure 4.9: Concatenated coding affected by correlated errors. 

When discussing problem (a from an engineering standpoint, one cannot exclude corre-
lated errors (in time or space). Nevertheless, the biggest problem that comes from correlated 
errors is that concatenated code blocks are jeopardized. For example, if we iise a concate-
nated code of size 7 on 3 levels, we have a total of = 343 qubits. Let us consider that 
only one error/block is tolerable. Thus, when 5 low-level qubits (fiom 343) are erroneous, the 
probabihty of not being able to correct the entire code is very low. But when these errors are 
correlated in space, it is very likely that the original code cannot be recovered (Figure 4.9). 

As for the problem {/3, when concatenated coding is employed, a lot of qubits are used in 
order to assure the rehabihty of just one qubit, and one still has to use structural redundancy 
for the safe recovery. Structural redundancy means at least doubling the ancillary qubit 
consumption (ancillary syndrome qubits also use concatenated coding!), even if the first ancilla 
set was correctly prepared. 

Another theoretical aspect worth being mentioned, is that the described Quantum FTAMs 
(Fault Tolerance Algorithms and Methodologies) employ mostly classical algorithms, thus not 
making use of the full quantum computaţional power. One can assume that, by capitalizing 
on the exponenţial parallelism of quantum computation, better FTAMs can be developed. 
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4.4 The rQHW-based solution 

4.4.1 Motivat ion 
Assuming only uncorrelated probabilistic errors is not realistic from an engineering point of 
view [76]. Reconfigurable qiiantum hardware (rQHW) could be a solution for problems (a 
and (/I which are related to fault tolerance issues, induced by correlated errors. Also, it 
is possible to choose dynamically the depth of concatenated coding, because the quantum 
hardware can be reconfigurated accordingly. 

When fighting the transient, correlated errors, the rQHW solution brings flexibihty that 
allows for dynamic ancilla qubit preparat ion: 

choosing the ancilla qubits so that they will not be neighbors to each other; 

just one set of ancillary qubits is used for one data block; if testing [73] [42] reveals that 
it is faulty, then another ancilla set is configured in a different area of the reconfigurable 
quantum circuit. 

In principie, a reconfigurable quantum circuit is a quantum gate array (QGA), acting on 
an input register in a way that it is prescribed by a configuration register, The processed 
input is stored in an output register (see Figure 4.10). In a formalized expression, we have: 

UQGA • \ifipat) ^ \conf ig) i—• \output) (g) \dont care) (4.15) 

\ input) /—• 

m 
\config) -/•—• 

Reconfîgurable 
Quantum Gate Array 

/ • \output) 

rn -f—^\don't care) 

Figure 4.10: Reconfigurable quantum gate array: the involved registers. 

Limitations for rQHW 

There are two main limitations that do not allow us to deal with the quantum programmable 
gate arrays the way it is done in classical hardware. 

1. As shown by Nielsen and Chuang we cannot have a programmable gate array that can 
be configured so that it performs any unitary operations, unless the gate array "operates 
in a probabihstic fashion" [61 . 

2. It is impossible to build a switch-based quantum gate array, as shown in the following 
proposition. 
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Proposition (No switches) Diie to the qubit cloning impossibility. we cannot have a switch-
based programmable quantuni gate array. 

Proof: In order to have a switch-based QGA we must be able to implement a baaic switch 
in quantum terms. 

Building the switch requires: 

U s w i t c h •• ^ k / c ) , 2 » | 0 ) „ 1 $ $ | 0 ) ^ 2 ^ 

J h) i i ^ kc) i2 ̂  ki)oi l̂ )o2 ^̂ ^ some \qc)] (4.16) 
I Wc),2 ^ |0)oi ^ lŷ >o2 otheiwise. 

Suppose that we are in the first instance of Equation 4.16 (for some |yc)). Then, the switch 
is reduced (because \qc) is fixed) to 

Us^i : ® |0),i " ® (4.17) 
But Equation 4.17 is impossible because the no-cloning law of quantum mechanics says 

that there is no Udone so that for any | (/'): 

f/c/one : (10) « (10)® 10)). 

4.4.2 rQGA structure 

(4.18) 

Due to the second hmitation of the rQHW, any programmable quantum gate array - consisting 
of a set of basic reconfigurable cells - will have to ripple the cells in a hnear fashion. Figure 
4.11 presents the consequence of Limitation 2. 

% 
m 

m O 

rQGA 
cello 

n 1 . 
rQGA 
celli 

rQGA 
cello / ' ' 

rQGA 
celli 

Figure 4.11: Linear connection of basic reconfigurable quantum gate arrays, allowed by the 
second limitation. 

There are w linear connected cells, with two kinds of inputs - outputted by a previous 
cell {rij with j = w — uq from whole circuit's input) and coming from the input {Ij 
with j = 1, w - 1). There are two kinds of outputs: going to be inputs for the next cell 
{•rij^iJ = w in number, with n^ being part of whole circuit's output), and going to the 
general output {kjJ = 0, w -2 qubits for each cell).Also, we have a rn = mo + rrii + rn^^i 
qubit control register; cell j having rrij corresponding control qubits. 

The only hmitation is that, for each j = O, o; — 1, the following equation has to hold 
(/o = O and = 0): 
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tj + rij = kj + rij+i (4.19) 

As for the entire circuit, a total of no + YA=I input qubits, is equal to the number 
^'u-i + ^^ output qubits. 

Apropriate gates 

For the rQGA, the usage of each gate has to be conditioned by dedicated qubits that form the 
cojifiguration register. Therefore, the most convenient set of gates to be used in a basic cell of 
rQGA is iiispired by gate family ([/) [10]. With this formahsm A^ {U) is a (n + l)-qubit 
unitary operator, described by: 

An [U) (|ao,.. .an-i, t)) ^ 
r utolao,.. .a„_i,0) + U6i|ao,.. if A^r^/ai = 1 
\ |ao, a i , . . . a^-i, 6) if Ai^^ai = O, 

(4.20) 

where U is any unitary transformation U = '̂ 00 '̂ 01 
V '̂ 10 '̂ 11 

with uoo-̂ uoi. uio.uu G C, n G IN, 

and ao,ai,. . G B = {0,1} [62][10 . 
For our rQGA purposes, we need a particular case of this formalism, where n = 1 and U 

is a /f/.-qubit unitary transformation, representing the gate which is conditioned by one qubit 
from the configuration register. This means that the general form of our 1-qubit conditioned 
gate Al (f/^.qubit) ^̂  ^^^ x matrix: 

An(f/) = 

/ 1 \ 

1X2̂ -1,0 

(4.21) 

In the basic quantum reconfigurable cell architecture, we will use the following elementary 
gates: Ai {UCNOT)^ Ai (//). UCNOT stands for any matrix describing a CNOT transform, 
while H is the Hadamard matrix. While the relationship between UCNOT and Ai {UCNOT) 

has been extensively described in [10], Ai {H) is a special 2-qubit gate described by the matrix 
from Equation 4.22 and depicted in Figure 4.12.a: 

Al {H) = 
1 
O 
O 

\ 0 

0 
1 
o 
o 

o 
0 
1 

F 
72 

O 
0 
1 

"71 / 

(4.22) 

A conditioned measurement is also required in order to build a general reconfigurable cell 
for the studied quantum circuits. The control for conditioned measurement gates (see Figure 
4.12.b) can be only a basis state (i.e. line c represents a bit, not a qubit). 
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H 
a) 

m 

b) 

Figure 4.12: Special conditioned gates: a) Hadamard, and b) qubit measurement. 

Basic reconfigurable cell 

The basic cell of a reconfigurable quantum gate array (rQGA) is designed so that rippling 
several such basic cells allows for configuration of any concatenated code based on stabilizer 
coding and Steane-like ancilla qubit preparation. 

Its general architecture, presented in Figure 4.13, has n input and output qubits and rn 
control qubits. The grey lines represent control qubits, while the black lines correspond to 
the processed qubits. Also, a dashed hne stands for a control that can only be classical; full 
grey line means that the control can also be of quantum nature. 

In Figure 4.13, the first level of gates from left to right are represented by two Hadamard 
gate sub-levels: the first one is common for all circuits involved (code generation, ancilla prepa-
ration and syndrome computation), the second is used for space basis transformation.The 
second level is formed of Toffoli gates. The controlled XORs are placed so that there are 
gates with each qubit as source (and all the other qubits being targets). There are two sets 
of such gates, with a total of n^ — n gates in this level (n is the input register size). The third 
level of gates has two Hadamard gate sub-levels. The first sub-level is responsable with basis 
transformation, while the second corresponds to the second Hadamard level from the ancilla 
preparation circuit (Figure 4.1). The fourth gate level consists of condiţional measurement 
gates. 

Figure 4.13 shows that we need to be able to process the classical outcome of the qubit 
measurement with classical circuits. The "basis state logic" takes k classical inputs and 
produces n classical outputs. These control signals will configure the rest of the basic cell 
architecture, in order to correct both bit flip and phase shift errors. 

The remaining gate levels are controlled with basis states (i.e. clasically), implementing 
the correction step.We have two sets of XOR gates, with each of the n qubits as targets, being 
classically controlled. The XOR gate level is guarded by two Hadamard (base changing) gate 
levels. 

4.4.3 Quantum configuration 
For the basic cell in Figure 4.13 we can present a structure of the configuration register. The 
configuration information for the left half of the cell is of quantum nature, while the right 
half is classical: 

= \'^')conf ^ striug) 

The bit string classical configuration register has the following structure: 

(4.23) 
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Figure 4.13: The basic reconfigurable cell for stabilizer encoding solutions. 
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\bit string) = \ futn^.. inJili . Iixx . xjih . h) (4.24) 

n bits n bits 2n bits n bits 
In Equation 4.24, m denotes a bit that controls a measurement gate, Ji a Hadamard 

gate, and x a XOR gate. As for the |0)can/ P^^^ ^^ ^^e configuration register, it can be a 
superposition of basis state configurations with the structure given in Equation 4.26. The 
quantum configuration 

k 

1 = 0 

with ^ f^o ll̂ îll̂  = 1, â  G C, has Ni 6 IN as basis states, which is equivalent to the following 
structured binary string. 

y. _ uu LfO fO fO xo .0 \ .Ni — {J^l^j^l^o^i ' ' ' • • • M,n-1 ' • • 

2n bits n(n-i) bits 

n i l ^ bits bits 
AU hs and ts are binar}^ digits with the following meaning: h controlls a Hadamard gate, 

and t̂^ g is a Toffoli gate from layer l (could be only O or 1) with the first control qubit in the 
configuration register, the second being input qubit 6', and g input qubit as target. 

The described reconfiguration methods can be applied for any qubit or qubit group froni 
the input register, so that the qubit vicinity may fight correlated errors. When errors occur, 
the qubits from the code block are selected in such a way that they are physically separated 
from each other. 

If the configuration register is a superposition of classical configurations (i.e. basis states), 
then the reconfigurable quantum gate array rQGA will have all the configurations from the 
superposition at the same time. Therefore, we will have a superposition of k distinct circuits 
at the same time. Figure 4.14 presents this feature of quantum reconfigurable circuits. 

For our previously discussed fault tolerant circuits, we can use a superposition of classical 
configurations so that the circuit produces a superposition of all possible stabilizer codes. 
Moreover, we will be able to configure the circuit from Figure 4.3 with all possible stabilizer 
code versions, at the same time. 

Of course, when measuring the configuration register, just one such fault tolerant configu-
ration will remain, corresponding to a particular stabilizer code. With such a procedure, the 
probability of a gate error occurring in the fault tolerant circuit is substantially lowered; if 
the probability of one gate faihng its service is then the probability of one gate failing in 
the measured circuit becomes 

4.5 Code genaration with rQHW 
This section provides examples of useful rQGA configurations, which implement the presented 
fault tolerant circuits. 
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input> 

output> 

Figure 4.14: When the configuration register has a quantum nature, the same reconfîgurable 
quantum gate array acts as a superposition of k simultaneous distinct circuits. These cir-
ciiits share the same input state and the same output qubits. The output qubits encode a 
superposition of the superposed circuits distinct outputs. 

4.5.1 Encoder with classical configuration 

The qubit Steane encoder circuit from Figure 4.1 is configured from one basic rQGA cell as 
specified by Equations 4.23, 4.24, 4.25, and 4.26. The classical part of the configuration (see 
section 4.4.3) is not necessary, and the input-output size is n = 7 qubits. 

V Steane (4.27) 

bit st ring) Steane 
0) 

®35 (4.28) 

1110000)® 
V ' 

Hadamard 
0)®^^® IIOIOOO)® 

V ' 

|001011011100111)(^ |0)®®g) 
(4.29) 

\®7 

Hadamard 
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4.5.2 Stabilizer code with steane ancilla 
\ \ e provide a configiiration for the circuit with Steane ancilla coding froni Figiire 4.3 (the 
partition is highlighted). The configuration states for the two 14-qubit baaic cells are given 
in the following equations. For the first cell ("Cell O") we have: 

^^''f^yfbasicceU = U'fbft ^ ^tri7iy)l^t 

bit striny)lj^ = 0 ® |0) 

measurement Hadamard 
7 qubits 

classical circuit outcuni^ <S) X 

&7 
XORs 

Hadamard 

Hadamard 
1001011) ® |0)®^ 0 101110) |0)®^ 
(^10111) ® |0)®^ 

1001011011100111)^ 

0)®® ® |1) ^ ^ |1) ® ® |1) ® V®12 

0)®'° ^ |1) ^ |0)®' ® |1) |0)®^ ^ |1) 
®|0)®'® |1) 

0 |0) ®28 

'•3 Hadamard 
and for "Cell 1": 

(4.30) 

(4.31) 

(4.32) 

= ^ \lfit striny)lf^ 

bit striny)lj^ = ® |0) 
v®14 

measurement Hadamard 
7 qubits 

classical circuit outconi^ <S) |0)®^ (g) 

i®14 
XORs 

Hadamard 

(4.33) 

(4.34) 
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= JO) 
>®28 

Hadamard 

(4.35) 

0) 
091 

Quantum configuration for the encoding circuit 

In this subsection, we present practicai means for implementing a quantum configuration 
for the encoding circuit like the one from Figure 4.3, corresponding to a superposition of 
stabilizer encodings. For practicai reasons, we consider as basis states in the superposition 
only the codes obtained by permuting the u0,ui,u2,u3 columns in the Hamming matrix Ha 
from Equation 4.5 (4! = 24 distinct codes). 

For the best theoretical probability, we have to prepare a 12 qubit quantum state given 
bv: 

= 
2n/6 

1011110111101) + 
1011111011011) + 
1011111101011) + 
1101101111101) + 
1101111010111) + 
1101111100111) + 
|110101111011) + 
110110110111) + 
110111100111) + 
111001111011)+ 
111010110111) + 
111011010111) + 

011110111110)+ \ 
011111011110)+ 
011111101101)+ 
101101111110)+ 
101111011110)+ 
101111101101)+ 
110101111110)+ 
110110111110)+ 
110111101011)+ 
111001111101)+ 
111010111101)+ 
l l l i o i i o i i o i l ) / 

(4.36) 

This 12-qubit state must be fitted in the 12 positions, marked with fîlled dots, of the 
configuration state, as shown below. The configuration state will be 

(4.37) 

with the 'bit string' being only Os {\bit st ring) 
posed configure states: 

V stabil and the structure of the super-
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\Ni) = 11110000)® 1101000)0 VC$15 

Hadamard fixed t^j (4.38) 

Hadamard 
The l^-j) contains fixed qubits and the 12 qubits that participate to the superposition 

state from Equation 4.36, with the following basis state structure: 

Îjbasis^ = |00 • • • • O • • • • • • • •000000). (4.39) 
The Os correspond to the fixed values, whereas the filled dots mark the qubits that con-

tribute to the superposition. 
If we are to prepare state from Equation 4.36 on the qubits highhted in Equation 

4.39, we have to acknowledge the fact that the state itself is hard to obtain, because it is a 
superposition of 24 (not a power of 2) basis states. 

We arrange the basis state codes from Equation 4.36 so that the same gate will not be 
used in all the superposed configurations. Four such configurations, in our heuristic approach, 
are given in Table 4.2. 

Column Ci Column C2 Column C3 
qo qi q2 qz QA qb qe qr qs q9 q\o qn 
0 1 1 1 1 0 1 1 1 1 0 1 
1 0 1 1 1 1 1 0 0 1 1 1 
1 1 0 1 0 1 1 1 1 1 1 0 
1 1 1 0 1 1 0 1 1 0 1 1 

Table 4.2: The rows present the basis configurations which can be superposed with minimum 
gate usage (qubits qq, . . . qn are the ordered positions of the filled dots from Equation 4.39). 

When these configurations are superposed, the same gate will be used in 3 out of 4 super-
positions, hence producing an overall <̂3 error probability order. 

One solution would be to add one more level of controlled Toffoli gates {t^j) in the basic 
cell. This will change Equation 4.26: 

2n b i t S 

a 42 
bits iiir^ bits 

n i ^ bits bits 

Next, we will present and in detail, the way Equation 4.39 prescribes. 

(4.40) 

= 100 »0 »000000) 

^^Jbase = lOODDDDODDnnaDDDOOOOOO). 

(4.41) 

(4.42) 
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The orthonormal basis structure of the qubit groups marked with filled dots and boxes 
are presented, respectively, in the following two equations: 

P)ls^s = I6061III62I6364I65I) 

p)^s^s = Inbebrbslb^Uholbii). 

(4.43) 

(4.44) 

The positions not marked with 6,s are fixed with the corresponding binary value; it is only 
necessary to present the states corresponding to the bi qubit groups: 

BOBIB2B^BAB-O) — {BEBRBSBGBIOBN) = 
1 1010110)+ 

v/2 V 1101001) 
The circuit for obtaining the state from Equation 4.45 is presented in Figure 4.15. 

(4.45) 

bo=b,\^) - T F I -

b,= b,\0) 

b2=bM 

b,= bJO) 

bs=bu\0) 

O 

Figure 4.15: Circuit for setting the 6-qubit configuration state, from Equation 4.45. 

4.5.3 Accuracy threshold analysis 
If all the superposed classical configurations have the same quantum amphtude, then they will 
have the same probabihty of being measured. For the circuit from Figure 4.3, we have 4! = 24 
possible configurations, each corresponding to a distinct stabihzer code, and a | probabihty 
of having the same gate in two distinct classical configurations. After the measurement of the 
configuration register - with a <^gate S^te error probabihty given by the available technology 

24 
- the reconfiguration solution will have an overall gate error probabihty of Cgĝ ê ^ 

In a general form, the gate error rate for the overal reconfigurable gate array {rQGA) is: 

^rQGA = (^gate) 
KXFR 

(4.46) 

where Cgate ^̂  ^^^ S^^^ error rate, k the number of superposed circuits in rQGA (i.e. the 
number of superposed basis states in the configuration register), and fr is the so-called freedom 
rate or the frequency of a gate not being used in one particular configuration, but used in the 
other superposed configurations. In our example from above, fr = \ and k = 24. 
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This is nevertheless a very good result, which capitalizes on the parallelism of quanturn 
computation, and was obtained uiider the a^sumption that the configuration register is reh-
able. Due to practicai reasons, the theoretical ^^ is hard to achieve. Basically, it is hard to set 
a quanturn superposition containing a number of basis states that is not equal to a power of 2, 
and the physical hmits of the basic cells may force us to a low Our engineering approach 
to these problems (Section 4.5.2) provides for a solution that guarantees an overall ^^^ = ^^ 
error rate (configuration is spht in two groups). 

In order to assess the consequences of reconfigurable quanturn hardware approach, we will 
get back at Equation 4.12. As we use the same type of circuits, which are superposed with a 
quanturn configuration, and the circuit for set ting the quanturn configuration will not increase 
p, we can express the accuracy threshold: 

(4.47) 

AII the superposed configurations can be grouped, so that the members of one configuration 
group will not use any gate which is used by the configurations from any other group. The 
number of such distinct groups is S, 

For a circuit using superposed stabilizer encodings, generated with rQHW in a quantum 
configuration, and for the heuristic implementation provided in 4.5.2, suppose we have a high 
p = 6. Then, our accuracy threshold Cthr̂ ^oid ^̂  ^^ ^̂ ^̂  order given by xir(yV) = logA'""^ 
because 5 = 2 and fr = The comparison between function xir {N) and the technologically 
assured threshold (lim = 10"^) is given in Figure 4.16. This comprehensively shows that 
the rQHW technique provides means for arbitrary long fault-tolerant quantum computation, 
because the xir {N) function clearly dominates the technological limit, even for very high N. 

4.6 Summary 
The qubits and gates involved in quantum computation implementations are prone to frequent 
errors, due to the delicate nature of quantum basis state superposition. While there is an 
ongoing effort in developing a quantum technology with inherent fault tolerance [1], special 
encoding techniques and quantum circuits have been created in order to attain fault tolerant 
quantum computation. 

The specially designed techniques rely on classically inspired codes (i.e. Hamming, sta-
bilizer codes [35] [97]). Due to the fact that there is a serious difficulty in achieving safe 
recovery, we have to employ structural redundancy. With these techniques we would expect a 

error probability for the entire circuit, when the qubit and gate error probability are of the 
order But if the error rates (^'s) exceed the estimated threshold values, the error-correcting 
techniques become useless. 

4.6.1 Achie vement s 
We have introduced the so-called reconfigurable Quantum Hardware (rQHW) and the recon-
figurable Quantum Gate Array (rQGA) Cells, as incentive in avoiding the destructive effect 
of the correlated errors, and for reducing the number of required ancilla qubits. 

BUPT



90 CHAPTER 4. RELIABILITY WITH RECONFIGURABLE QUANTUM HARDWARE 

0 . 0 4 
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xiifN) 
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5 - 1 0 1 «10̂  LS-IO' 2-10' 
N 

Figure 4.16: Evolution of accuracy threshold value for rQHW stabilizer codes ('xir' function) 
with the number of computaţional steps (A )̂. The technological accuracy limit ('lim') is also 
provided for compar ison. 

As it turned out, if the rQGA uses a quantum configuration, then the overall rehabihty 
(mea^ured by the accuracy threshold) is improved by reducing the problem of controlling gate 
errors to preserving a given (reduced) quantum configuration register. 

The efîectiveness of our proposed solution was proved by our particular case study, which 
used the rQGA basic cell construction, in order to generate a superposition of 4 distinct 
stabilizer code circuits. The considered error correction framework was stabilizer data 7-
qubit encoding with Steane ancilla preparation. Given the case study conditions, the accuracy 
threshold estimation clearly dominates the technologically assured failure rate, thus creating 
incentive for fault tolerant quantum computation in this context. 

4.6.2 Issues to be settled 
Although the qualitative evaluation of our approach is promissing, a quantitative assessment 
[64] of this paper's theoretical analysisis needed, by employing simulated fault injection. This 
approach is intensively used in classical digital circuit design [122]. In quantum computation 
it can be implemented by adding fault injection features to one of the available simulation 
frameworks [106] [107] [115] (See Section 3.4). 
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Chapter 5 

Evolvable Quantum Hardware 

Building the core of this chapter has started as an attempt to design a quantum coimterpart 
for the classical evolvable hardware [102]. The benefits of implementing this concept were also 
mentioned in the previous chapter: a very versatile and adaptive striicture that has various 
apphcations. 

Starting from the definition of evolvable hardware (EHW): EHW = RHW (reconfigurable 
hardware) + GAs (genetic algorithms), our quest in the quantum computation field is pre-
sented in Figure 5.1. In the figure, the configuration of the programmable quantum circuit 
structure, which was discussed in the previous chapter, is generated by a quantum version of 
the genetic algorithms (i.e. the so-called QGAs, or Quantum Genetic Algorithms [33]). 

Figure 5.1: Evolvable quantum hardware. 

As a consequence, the problem of designing evolvable quantum hardware is reduced to 
designing circuits for implementing Quantum Genetic Algorithms. Here, there are a lot of 
open problems, as it is not clear yet how to design and build QGAs [33] [86] [87] [93 . 

91 
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5.1 Preliminaries 

5.1-1 Motivation 

The QGAs rely on qubit representations for the chromosomes and the use of quantum opera-
tors in order to process them during the quest for the optimal solution of the search problem. 
In principie, this approach redefines the GA operators in quantum terms; these new oper-
ators will perform better due to the exploit of the quantum parallelism [87]. Nevertheless, 
approaching specific appUcations this way will result in a significant performance enhancement 
[40] [4i;. 

Because the chromosome represented by qubits, just one quantum chromosome register 
would be able to store the entire population as a superposition of all the possible classical 
states. The function that evaluates the fitness of the iniţial population (which could also be 
the entire population) would take the chromosome register as input and the output would 
be stored in a fitness register. This would store a superposition of all the fitness values, 
corresponding to the superposition of the individuals from the chromosome register. 

The key observation that led us to this new perspective is the fact that if the best fitness 
value can be marked (i.e. by changing the phase of the corresponding eigenstate) without 
destroying the superposition of the registers, then Grover's algorithm will fînd the solution 
in O {y/n). Therefore, all the quantum versions of GA operators, like crossover or mutation, 
would become useless if we can figure out a way to mark the best fitness, inside the fitness 
superposition state. 

5.1-2 Objective 

The reconfigurable quantum gate array from Figure 4.10 will translate to evolvable quantum 
hardware (QEHW) if its configuration register, the rn-qubit register \conf ig), represents a 
state outputted by means of a genetic algorithm. Therefore, if QEHW is to be synthesised, one 
has to specify how to run genetic algorithms in quantum computing. This chapter proves that 
there is a methodology of running any genetic algorithm on a quantum computer in O (\/n) 
time. Then, we also provide the guidhnes for implementing the corresponding quantum 
circuit. 

5.2 Quantum genetic algorithms 

As part of Quantum Evolutionary Programming, QGAs have the ingredients of a substantial 
algorithmic speedup, due to the inherited properties from both QC and GA. However, there 
are still questions as to how would it be possible to implement a genetic algorithm on a 
quantum computer. The attempts made in this particular direction suggest there is room left 
for taking advantage of the massive quantum computation parallehsm [87]. Moreover, some 
questions were left open, as pointed out in [33 . 
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5.2.1 Running GAs in a quantum computaţional environment 
For the first time, the possibility (and the advantages) of the QGAs were indicated in [87 . 
The approach described here contains hard evidence for QGA speedup, but there still are 
some unanswered questions [33]. The proposed algorithni uses a number of rn regivster pairs: 

= (5.1) \fitness 

where i = O, rn - 1. The first (left) register contains the individual, while the second contains 
its corresponding fitness. Because we are dealing with quantum registers, both \(p) and \fj) can 
encode a superposition of exponentially many individuals and their corresponding superposed 
fitness values. Each time a new population (set of individuals) is generated in the individual 
register, the corresponding fitness is computed and stored in the fitness register. Of course, if 
the fitness register is measured, then, due to entanglement [62], the result is only one of the 
superposed values; in the individual register will remain as superposed the individuals that 
give the measured fitness. Fitness register measurement is a crucial element in developing 
QGAs [87]. For the general expression of the pair register (iV-qubit for the individual register 
and A/-qubit for the fitness register) given in Equation 5.2, the measurement of the second 
register (|y)) will have r as result with the probabihty from Equation 5.3. 

x=0 y=0 x=0 y=0 

2^-1 

x=0 

The post-measurement state of the pair register will be: 

Due to the fact that an individual cannot have more than one fitness, it is obvious that, 
if individual u has a fitness value v, then c^^y = O for all y v. 

The QGA, as described in [87], is presented in the following pseudo code: 

Genetic Algorithm Running on a Quantum Computer (QGA) 

1. For 2 := 1 to m prepare as superpositions of individuals and compute the cor-
responding fitness pair register (the outcome will be a superposition of m fitness 
values). 

2. Measure all fitness registers. 

3. Repeat 

(a) Selection according to the m measured fitness values. 
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(b) Crossover and mutation are employed in order to prepare a new population (setting the 
ni individual registers). 

(c) For the new population, the corresponding fitness values will be computed and then 
stored in the fitness registers. 

(d) Measure all fitness registers. 

Until the condition for termination is satisfied. 

Reference [33] provides analysis and critique for the above presented algorithm. The iden-
tified advantages of using QGAs over the classical GAs, which are drawn from the quantum 
computaţional features, are: 

• Due to the superposition of individuals (i.e. basis states) that is stored in the individual 
register. the building block [33] could be crossed not by just one individual, but by a 
superposition of exponentially many individuals. Thus, the selection of a new population 
is made with the contribution of many attraction pools. 

• In quantum computation true random numbers can be generated. It was proven that a 
GA with a true random number generator will outperform a pseudorandom solution, 
which is the only possibility in classical computation [86 . 

The questions that remain open are: 

• Hoŵ  is it possible to build the crossover operator in quantum computation? 

• How is it possible to implement the fitness function on a quantum computer? 

• Hoŵ  can the correlation be maintained - by using the entanglement - between the 
individual register (superposed) basis states and the (superposed) fitness values from 
the fitness register? 

Although the advantages appear to be substantial, one can easily argue that the power of 
quantum computation is not suflSciently used by this approach. However, some of the opened 
questions have been addressed in reference [33]. Giraldi et ai developed a mathematical for-
malism in order to avoid misinterpretations regarding the last question. The second question 
is also addressed by defining quantum genetic operators. The proposed formalism establishes 
the necessary correlation between the fitness and the individual registers, w ĥich cannot be 
accomplished with the QGA construction provided in [87 . 

5.2.2 Mathematical formalism 
The QGA formalism uses m quantum register pairs (A^-qubit individual register and M-qubit 
fitness register,) as presented in Section 5.2.1. Also, in order to achieve proper correlation 
between the individual and its fitness value, the fitness function must be chosen so that 
it is a "quantum function" as defined by [65][66], hence a pseudo-classical operator with a 
corresponding Boolean function: / : {0,1} —> { 0 , U f : \x) (g) |0) |x) <8) | / (x)) if \x) is 
a basis state. 
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When acting on a superposition, the unitary operator corresponding to function / will 
dictate the following mapping: 

2''̂ '-! 
Uf : "xU") ^ 1/ (.r)) = ^ a,|x, / (.r)) (.5.5) 

x=0 x=0 1 = 0 

An important aspect regarding the pseudo-classical Boolean functions is that they are 
universal (i.e. any computaţional function can be represented in such a form), and easy to be 
implemented as gate networks. In fact, due to their universality, Boolean functions form the 
backbone of the classical computation's circuit model. 

The QGA algorithm, after adopting Giraldi^s formalism can be rewritten as in the below 
pseudo-code. 

Genetic Algorithm Running on a Quantum Computer (QGA) with proper for-
malism 

1. For i := 1 to rn set the individual-fitness pair registers as = Eu=o ^ 
superposition of n individuals with O < n < 2^). 

2. Compute the fitness values corresponding to the individual superposition, by applying a uni-
tary transformation (corresponding to pseudo-classical Boolean operator ffn : {0,1}^ —> 
{ 0 , F o r i 1 to m do = Uf^M] = ^ EZl ® \ffit • 

3. For i := 1 to rn measure the fitness registers, obtaining the post-measurement states (we 
suppose that \y)- is obtained by measurement): l^ip)^ = ® 

ki values in {O,..., n — 1} to satisfy /fu (v) = y. 

4. Repeat 

a. Selection according to the m measured fitness values \y)-. 
b. Crossover and mutation are employed in order to prepare a new population (setting the 

rn individual registers 
c. For the new population, the corresponding fitness values will be computed and then 

stored in the fitness registers(|//it (u))̂ ^ )̂. 
d. Measure all fitness registers 

Until the condition for termination is satisfied. 

Besides the necessary formalism, reference [33] also provides some insight regarding the 
implementation of the genetic operators in the quantum computaţional environment. These 
considerations lead towards two main implementation problems: 

a) the number of all valid individuals is not always a power of 2, which is the total number 
of basis states; 

fj) crossover implementation is difîicult and requires a much thoroughly investigation, in-
cluding quantum computation architectural aspects [69 . 
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5.3 A new approach 

An observation concerning the individual-fitness quantum register pair is that all the possible 
valid individuals {ri) can be encoded in the same quantum state superposition, which has a 
total of possible basis states (n < 2^). If we can figure out a method of measuring the 
highest fitness value from the fitness register, then by measuring the individual register we 
will get that corresponding individual (or one of them, if several have the same highest fitness 
value). 

Approaching the QGAs in this manner renders some genetic operators as no longer nec-
essary, as long as finding the maximum has an efficient solution. This effectively leads to 
solving problem 6. 

Because the individual is encoded on N qubits, we have a total of 2^ basis states which 
can participate in the superposition. It is possible that not all of these basis states will 
encode vahd individuals (problem a); the proposed method relies on defining some constrains 
regarding the fitness function and the fitness value format, without losing the generality of 
the solution. We will consider the fitness function as a Boolean pseudo-classical unitary 
operator Uf (characterized by / : { 0 , ^ { 0 , w h i c h can be also applied to non-
valid individuals. The fitness value space { 0 , c a n be spht, so that a distinct subspace is 
allocated to the fitness values corresponding to vahd individuals and another distinct subspace 
corresponds only to non-valid individuals. This enables us to concentrate only on processing 
states that correspond to valid individuals (Section 5.4 further elaborates on this particular 
aspect). 

The method of finding the highest fitness value is inspired from efficient quantum algo-
rithms for finding the maximum [2] [28]. Finding the best fitness value is equivalent to marking 
the highest classical state that is superposed in the fitness register state or, in other words, 
the highest basis state with non-zero amplitude. Basically, the proposed methodology relies 
on reducing the highest fitness value problem to Grover's algorithm. In order to do so, special 
oracle and fitness value format are defined. Section 5.3.1 presents the quantum algorithm for 
finding the maximum [2], Section 5.4 presents details for oracle implementation and fitness 
register structure, while Section 5.5 provides our adaptation of the algorithm in order to find 
the best value in the fitness register. 

5.3.1 Computing the maximum 

This subsection analyzes the available quantum methodologies for finding the maximum, 
and provides a modified version of the original algorithm [2] [28], in order to meet our QGA 
demands. 

The iniţial algorithm 

The quantum algorithms for minimum/maximum finding [2] [28] are inspired from the classical 
''bubble sort" algorithm, but their complexity in quantum version is O {y/n), 

Such an algorithm takes an unsorted table of m elements as input, in order to return the 
index of the maximum value element. By adopting the formalism from [2], we have a pool 
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P [/] of m. elements (i = O, m - 1) which will be processed in order to obtain the index k of 
the maximum element (P[A;]). 

In order to meet our demands, Grover's algorithm uses a specially designed oracle that 
"marks" all the basis states greater than some given value j (within the pool): 

/ 1 if Pf/l > P[j] 
^^ = 1 O ot l iwise (5.6) 

We notice that the oracle works with the pool indexes a^ parameters. Also, there is no 
indication as to how is the pool represented. The oracle just "knows'̂  the answer to the 
following question: "is P[l] bigger than P[j] T Therefore, the resulting algorithm will have 
the form of the following pseudo code: 

Quantum Algorithm for finding the maximum from an unsorted table of rn ele-
ments 

1. Initialize k := randovi nurîiber\ O < k < m - 1 as the starting index of this search; 

2. Repeat O {y/m) times 

a. Set two quantum registers as = SZ^o^ lOI'î̂ ); the first register is a superposition 
of all indexes; 

b. Use Grover's algorithm for finding marked states from the first register (i.e. those which 
make Ok (O = 1); 

c. Measure the first register. The outcome will be one of the basis states which are indexes 
for values > P[k]. Let the measmement result be x. Make k x\ 

3. Return k as result. It is the index of the maximum. 

The complexity analysis performed in [2] reveals the fact that this algorithm will find the 
index of the maximum in 13.Gy^ steps, with an error rate smaller than 

The modified algorithm 

In the iniţial algorithm, a quantum form for the pool of elements is not necessary. However, for 
our QGA related purposes, we need to maintain the correlation between the individual register 
(corresponding to the indexes) and the fitness register (corresponding to the fitness values). 
Therefore, a maximum finding algorithm - that is usable in the desired, genetic algorithm 
context - must have a quantum (i.e. basis state superposition) state for representing the 
values, which in turn has to be correlated appropriately with the quantum register representing 
the indexes. 

This means that the oracle will operate on the values register, where its input data is 
available. Hence, the oracle expression from Equation 5.6 will be modified accordingly: 

Oy (x) = I Q otherwiL 

BUPT



98 CHAPTER 5. EVOLVABLE QUANTUM HARDWARE 

In Equation 5.7, x*, y G IN and are encoded by the superposed basis states from the values 
register. Also, because we will have to run a number of s G O {y/m) steps to complete the 
algorithm, so it is necessary that a number of s indexes-values quantum register pairs be 
prepared. Each register pair, except the last one used, generates a parţial maximum search 
solution. The modifîed quantum maximum finding algorithm is presented in the following 
pseudocode: 

Quantum Algorithm for finding the maximum from an unsorted table of rri ele-
ments, which is represented as a quantum state 

1. Initialize k := randoni inteyer with O < k < m — 1; rnax := P [/c] ; 

2. For j := O to - 1 set the pair registers as \jP)] = ^ Eîlo^ lOf'^''' ® |0)f 

3. For j :=Otos-l set the value corresponding to the index [ipfj = P\ip)] = 

4. For j := O to 6- - 1 loop 

(a) Apply the oracle on the value register Omax {P ['])• Therefore, if \P > max then 
the corresponding basis states are marked; 

(b) Use Grover's algorithm for finding marked states in the value register after applying 
the oracle. As pointed out in reference [62], we find one of the marked basis states 
\p) = \P with P [z] max > 0; 

(c) max := p; 

5. Having the highest value in the register, we measure the register in order to 
obtain the corresponding individual (or one of the corresponding individuals). 

5.4 The oracle 
The oracle implementation must be made so that the problems mentioned in reference [33], namely 
a) and 3) from Subsection 5.2.2, are dealt with. This subsection presents the envisaged solutions. 

5.4.1 Solving problem a) 
In order to deal with problem a), we have to adopt a constraint, which does not restrict the gen-
erali ty of the fitness functions. We consider the ordinary fitness function ffu (which applies only 
on the valid individuals) ffu : {0,1}^ {0,1}^^, which is Boolean (and therefore universal), 
with a straightforward correspondence to the unitary representation Uĵ .̂  [62] [65]. The modified 
fitness function will accept invalid individuals as argument, and the returned values will belong 
to distinct areas, corresponding to valid or invahd individuals. This can be achieved by defining 

rmod f \ j O X { 0 , i f X is a non-valid individual . . 
if X-is a valid individual 
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The fitness values are encoded by the qubits in a modified fitness register, wliicli has a (A/ + 1)-
qubit size. The individuals always produce fitness values with the most significant qubit being 
T : a value for the most significant qubit in the fitness register indicates the correspondence to a 
non-vahd individual, as presented in Figure 5.2 (where the quantum state matrix representation is 
used). 

00...00 

r X y • invalid individual 
amplitude 

^ - valid individual 
amplitude 

11...11 

arca 

individual 
register register 

Figure 5.2: The basics of fitness function construction: when is applied to valid individuals it 
produces a value in the valid area (upper half: |10.. . 00) . . . |11. . . 11)) of the fitness register, 
whereas when applied to invalid individuals, the corresponding values in the fitness register 
will always be in the invahd area (lower half: |00.. . 00) . . . |01. . .11)) . 

5.4.2 Building the oracle 
As our approach avoids solving problem i3 directly, the remaining task concerns the definition of 
an appropriate (i.e. application specific) oracle, starting from Equation 5.7 and the algorithm from 
Subsection 5.3.1. 

We propose a solution that uses two's complement number representation [71] for marking the 
states that have a value greater than a given / G IN, / > 0. As a consequence, the fitness register will 
have the form from Figure 5.3. 

The oracle processes all the fitness register qubits except the most significant one {u), vvliich 
indicates if the value represented by the other qubits belongs to a valid individual or not. All 
the value qubits (/a/ . . . /o) from the fitness register encode two's complement positive integers as 
fitness values. The oracle adds - (/ + 1) to the fitness register, therefore the basis states (from the 
state output by the quantum adder [113]) greater than l will always have = O (see the oracle 
implementation from Figure 5.4.) 
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V 

valid qubit 

/M / m a /M-I 

fitness value qubits (two's complement) 

Figure 5.3: The format of the fitness register, for the oracle implementation that is based on 
a two's complement approach. 

For the solution given in Figure 5.4 we have used 2 negation gates (denoted with 'x') and one 
XOR gate [10] [62], in order to change the phase of the corresponding superposed basis states. The 
architectures for the quantum arithmetic circuits, the adder/subtractor for our particular case, are 
presented in references [34] and [113]. After marking the corresponding basis states (by shifting their 
ampHtudes), their value is restored by adding Z + 1. Only the qubits containing the result of the 
arithmetic function [ f ^ - - f " m) ^sed by the Grover iteration circuit [38] [62] in order to find 
one of the marked basis states. 
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Figure 5.4: Oracle implementation for a fitness register having the structure from Figure 5.3. 

The Grover algorithm that is actually applied to the f ' i ^ . . . f ' ^ register complies with the 
Grover algorithm version defined by reference [12], in order to find one of the marked solutions, 
without any a priori knowledge about the number of solutions. 

Although the oracle uses two's complement addition (which means that we will have to change the 
fitness values in the superposition), the correlation between the individual and the fitness registers 
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is not destroyed, because the addition is a pseudo-classical permutation functioii [65] [66] [113]. The 
Grover iteration will find as a marked basis state \p) = \ f ' \ f . . . /"(,), with p e IN, f'^,,..., /"„ € 
{0,1} which is given by \p) = -\q) for |(/) = ... /o), with /m, . . . , /o e {0,1} = B. 

The algorithm listed below is iiispired from the quantuiii maxiinuni algorithm from Section 
5.3.1. The iniţial max value must obey the < niax < _ ^ condition, so that the search 
for the highest fitness value will take place only in the valid fitness area. We have a number of 
ni e Of^y/îv'j (due to the complexity analysis provided in [2]) pair registers (individual-fitness), 
where the individual register is on N qubits, and the fitness register on M + 2 qubits. Also, it can 
be said that m "quantum selection steps" are required by this algorithm. 

5.5 Reduced quantum genetic algorithm 
Having a fitness register as defined in the previous subsection, the corresponding fitness function, 
and the specially defined oracle, we are able to provide the pseudocode that corresponds to running 
a Genetic Algorithm in the quantum computaţional environment. It is called Reduced Quantum 
Genetic Algorithm (RQGA) because it uses only one population (encoded in just one quantum 
state), consisting of all possible individual binary representations (that correspond to valid and 
invahd individuals). 

Crossover and mutation operators are not used for finding the highest fitness value (they are not 
required in a quantum context), which is obtained by employing Grover's algorithm. Although these 
operators are not required in the given context, we may say that this new approach also induces some 
form of a "quantum evolution". The best fitness value emerges step by step, with each register pair 
being employed. The selection is implemented by the "marking the basis states" process. Grover's 
algorithm is used in order to obtain one of these basis states (i.e. selected individuals) out of the 
quantum superposition. The selection process of the next step uses the value of Grover's algorithm 
output, and so on. 

The algorithm hsted below is inspired from the modified quantum maximum algorithm from 
Section 5.3.1.The iniţial max value must obey the < max < - 1 relation, so that 
the search for the highest fitness value will take place only in the valid fitness area. We have a 
number oi m e O ( v ^ ) (due to the complexity analysis provided in reference [2])pair registers 
(individual-fitness), where the individual register is on N qubits, and the fitness register on M + 2 
qubits. 

Reduced Q u a n t u m G e n e t i c A l g o r i t h m 

1. For i O to m - 1 set the pair registers as \il;)\ = ^ E î l o ^ ® 

2 For i := O to m - 1 compute the unitary operation corresponding to fitness computation 

3. max := randorn integer, so that < max < _ i-

4. For i := O to m - 1 loop 

(a) Apply the oracle Omax i f f u ("))• Therefore, if \ffit > max then the corresponding 
\ffit basis states are marked; 
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(b) Use Grover's iterations for finding marked states in the fitness register after applying the 
oracle. We find one of the marked basis states \p) = \ f f i t with f/u (u) max > 0; 

(c) rnax := p+l; 

5. Having the highest fitness value in the register, we measure the register in order 
to obtain the corresponding individual (or one of the corresponding individuals, if there are 
more than one solution). 

Measuring the individual corresponding to the best fitness value is possible due to the fact that 
only pseudo-classical operators [65] (i.e. Controlled NOT and Hadamard gates [62]) were applied 
on the second (fitness) register, so that the correlation with the first (individual) register was not 
destroyed. 

Grover's algorithm, interpreted as prescribed by reference [12], is a method of augmenting the 
amplitude of oracle marked basis states, and it works even when the number of such states is not 
known in advance. Therefore, Grover's search will work even if the superposed basis states in the 
search quantum register have uneven amplitudes. However, this means that the complexity assess-
ment of our proposed algorithm cannot be performed straightforwardly by referring to the complexity 
of the iniţial algorithm (maximum finding quantum algorithm) which uses even amplitudes for the 
basis states within the quantum superposition. Even if a much thorough investigation is required, 
as far as the exact complexity analysis is concerned, we can assess the complexity with the following 
proof. If the quantum amplitudes are not equal for all the superposed individual-fitness pair basis 
states, an extra number of at most O (y/n) steps are required to get to this point. Therefore, we 
will have at most O {\/n - y/n) = O (n) steps to complete the execution of the Reduced Quantum 
Genetic Algorithms. A practicai example of how this algorithm works is presented in Appendix D. 

5-6 Quantum evolutionary strategy 
In this section we analyze how is affected the evolutionary strategy by the quantum computation 
features, according to our perspective over the QGAs. Our main reference would be the general, 
classical evolutionary computation systems, as described in reference [96] (pages 37-39). Figure 5.5 
(a) is presenting the typical classical evolutionary system: generation of some individuals (usually 
in a random manner), followed by the assessment-selection-variation loop (which will eventually 
generate the solution). 

The assessment process is based on computing fitness values, corresponding to the individuals 
in the successive populations. Because we cannot be sure that the solution is an individual from the 
current population, other individuals may be generated by sexual variation (crossover) or non-sexual 
variat ion (mutation). 

In our quantum computation approach, as presented in 5.5, the variation stage of the evolutionary 
strateg}^ is no longer necessary. The problem solving strategy for evolutionary quantum computation 
is presented in Figure 5.5 (b). The generation stage means that all the possible individuals (vahd 
or non-valid) are generated as a basis-state superposition due to the fact that the qubits are used 
to represent the chromosome (i.e. individual encoding). Then, the assessment is apphed on all the 
superposed individuals, therefore generating a fitness register, which consists of a superposition of 
all the fitness values. The selection is applied on all the superposed individuals, which are available 
within the quantum chromosome, by making use of Grover's algorithm. The fact that all the 
individuals are already available, as superposed, means that the techniques used for generating new 
individuals are useless. Figure 5.5 (b) is refiecting this situation, because it is simpler than the model 
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Generation (usually random) 

Assessment (by fitness) Solution 

Selection Variation 
(according to the assessment) (crossover, mutation) 

Generation 
(the entire population) 

Assessment (by fitness) — 

A 

T 
Selection 

(according to the assessment) 

Solution 

Classical 
computation 
(a) 

Quantum 
computation 
(b) 

Figure 5.5: A comparison between the classical and quantum evolutionary (and genetic) 
algorithm strategy, inspired by [96 . 
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from Figure 5.5 (a); this is the reason why we called the algorithm created according to this model 
" Reduced Quantum Genetic Algorithm". 

5.7 Summary 
This chapter described a methodology for running Genetic Algorithms on a Quantum Computer. 
By taking advantage of the quantum computation features, all the possible chromosome binary 
representations can be encoded in just one individual quantum register. This register is correlated 
with its pair (fitness) register, which contains a superposition of all corresponding fitness values. 
Due to quantum mechanical properties, measuring the highest fitness value in the fitness register, 
leads to a post-measurement state of the corresponding individual register that contains superposed 
basis state(s) encoding the individual(s) with the highest fitness. 

Therefore, the iniţial problem is reduced to finding the best fitness value without destroying the 
individual-fitness register correlation. This objective is achieved by adapting an existing quantum 
algorithm for finding the maximum [2] [28]. Without loosing the generaUty of the solution, the 
adaptation requires that a specific structure be adopted for the fitness register, and a special oracle 
be defined by employing two's complement integer representation. As a result, the problem of finding 
the highest fitness value can be solved by Grover's algorithm without employing genetic operators 
such as crossover and mutation. 

We can conclude that the search strategy itself is different for QGAs in comparison with the 
GAs; in fact. it isnt really genetic anymore. The special Oracle and Grover iterations are performing 
ni successive selection steps. 

The fact that the complexity of the original quantum maximum finding algorithm is O (N) [2] and 
our proposed algorithm is an adaptation of that does not increase the number of steps, indicates that 
any GA may be performed on a Quantum Computer with polynomial effîciency. This consequence 
would broaden the area of computaţional problems where the quantum solutions outperform the 
classical ones, and can also be counterbalance to the rising skepticism that regards the effectiveness 
of Grover's search [116]. However, a thorough complexity analysis is required because, unhke the 
iniţial algorithm, our proposal works with uneven quantum amplitudes in the search register. 
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Chapter 6 

Conclusions 

The new computaţional paradigms are subject for discussion within the computer science community 
for a long time. Nevertheless, computer engineering has approached this subject for some years, 
and a quite interesting debate has started, questioning whether Moore's law is obsolete or not. 
Regardless of the individual position and commitments involved in this debate, the general conclusion 
is that the quest for new technologies is necessary in order to achieve significant progress in building 
computaţional devices. 

Because the new technology research efForts have soared, there is also commitment towards 
concentrating these efforts on the most important issues. As already mentioned in the first chapter 
of this thesis, the International Technology Roadmap for Semiconductors [126] is the worldwide 
recognized document that defines the guidelines in order to achieve these goals. 

This thesis acknowledges the objectives defined by the ITRS, and aims at contributing to devel-
oping CAD tools for designing quantum circuits - on one hand - and to designing fault tolerance 
quantum algorithms and methodologies - on the other hand. Figures 6.1 and 6.2 present the ITRS 
perspective on emerging technologies, including quantum computation, along with a illustrative 
comparison with the classical CMOS technology. 

As a reminder, we will present the main directions of this thesis: 

Al) Runtime-efficient quantum circuits simulation; 

A2) Design of fault-tolerant quantum circuits; 

A3) Implementing evolvable quantum hardware; 

The main motivating idea that underpins the whole thesis structure is to approach the quantum 
computation field in a computer engineering fashion, by taking advantage of the already known 
methodologies and tools developed in classical computer hardware design automation, CAD, recon-
figurable computing, and evolvable hardware. 

This does dot mean that the proposed techniques are just a quantum counterpart for the clas-
sical ones; where the simple quantum adaptation is not appropriate, the necessary explanations are 
provided along with emphasizing the distinctive characteristics of quantum computation. 

This chapter will summarize the contributions of this thesis, by presenting the way goals stated 
in Section 1.2 were approached from 3 points of view: the relevance for the ITRS document, the 
original contributions, and what is to be done in the future with the proposed solutions. 
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Emerging Technology Sequence 
Cellular 
array 

Defect 
tolerant 

Biologicaliy 
inspired 

Quantum 
computing A ŢY'-

RSFQ ; "l-D 
structures 

Resonant 
tunneling SET ^ ^ ^ t i r j j ^ ^ ^ j ^ 

Spin 
^ r a n s i s ţ ^ J L o g i C 

Phase change Floating body 
DRAM 

Nano 
FG 

SET 
Insulator 

resistance 
change 

Insulator 
resistance 

change 
Molecular 

Insulator 
resistance 

change Memory 

Transport 
enhanced 

FETs j UTBsingle 
gate FET 

Source/Drain 
engineered 

FET 

UTB muit^le 
gate FET | | 

Quasi 
ballistic 

FET 

. N o n -

i c l a s s i c a i 

P CMOS 

Figure 6.1: Emergent technology sequence, according to the Emerging Research Devices, 
within the ITRS fl26l. 
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Figure 6.2: The parametric comparison between new technologies and CMOS - with respect 
to speed, size, cost, and energy consumption - according to ITRS [126 . 
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6.1 Thesis relevance 

6.1.1 Al - Simulation 
In the Einerging Research Devices (ERD) ITRS document [126], simulation is considered as playing 
a "key role (...) in characterizing the role of ERM (Emerging Research materials)". Because we are 
in the early stages of developing these new technologies, simulation cannot be very accurate, but it 
can provide some valuable quantitative assessment means [126]. 

Some empirical and systematic modeling and simulation methodologies are required at the phys-
ical level, in order to deal with metrology needed for the assessments [126]. Although this thesis is 
not concerned with this type of simulations, the results from the physical level are of great impor-
tance at the unitary level in quantum computation, especially when it's about fault injection with 
the fault abstract models, and error models taken into consideration for the QUERIST project. 

The next subsection deals with the quantum fault tolerance imperatives, as described by ITRS 
documents referring to ERD and ERM; but in order to assess the effectiveness of the quantum 
FTAMs there has to be some simulation tool dedicated to that purpose. The guidehnes for the 
QUERIST project are intended to satisfy these needs. 

6.1.2 A2 ~ Fault tolerance 
In reference [126] (pages 37 - 41) the need for fault tolerant ("coherent") quantum computation is 
defined and characterized. The main enemy for all the technologies used (QED, trapped ions, and 
solid state semiconductors and superconductors) is the decoherence phenomenon. ITRS states, as 
we have already presented in Chapter 4, that the existing error correcting strategies are extremely 
costly. 

The fundamental issue is that classical approaches are used in order to fix massively parallel and 
complex quantum state decoherence problems. Our rQGA and rQHW approaches use a quantum-
nature phenomenon (the superposed ECC circuits) in order to deal with the source of quantum ECC 
inefficiency (unsafe recovery). 

The fax:t that fault tolerance is a vital aspect for quantum computation is emphasized by the 
fact that Table 64 from [126] urges the quest for efficient and lower-cost fault tolerance algorithms 
and methodologies (FTAMs). The same table also points to a very important aspect which is still 
opened to research solutions: quantum circuit testing is not possible directly. 

6.1.3 A3 - Evolvable quantum hardware 
This thesis direction has a special significance with respect to ITRS specifications, because it merges 
two ERD architecture implementations (as presented in Table 64 from the [126] document): "Bio-
logically Inspired Implementations" and " Coherent Quantum Computation". 

Although this very idea was already brought up by others [33] [96], this thesis proposes an original 
view of this problem and provides the circuit implementation details. 

6.2 Contributions 
This section will enumerate the original contributions brought by this thesis, linked to the 3 main 
directions as pointed in the prologue of the Chapter 6. The introductory first chapter provided the 
motivation for the 3 directions (Al, A2, and A3) by presenting the thesis goals. 
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6.2.1 Al - Simulation 
Simulation of quaiitum computaţional systems is usually exponenţial. The quantum circuits make 
no difference to this rule, Reducing the inner complexity of quantum circuit simulation may be a 
prerequisite in approaching CAD and EDA (Electronic Design Automation) techniques to quantum 
circuit design but, on the other hand, the polynomial simulation of quantum systems is not a reahstic 
goal. If a classical computer is able to simulate a quantum computer in polynomial time, then there 
is no point in building a quantum computer in the first place. However, it was demonstrated that 
quantum computation is much powerful than classical computation from the complexity point of 
view [24 . 

Nevertheless, our quest is facilitated by the fact that there are few useful quantum algorithms 
at this time, and therefore the involved quantum states will exhibit some a priori known patterns. 
These features that can be capitalized on are also referred as simulation shortcuts [96 . 

This thesis proposes a HDL-based approach of quantum circuit simulation, which is appropriate 
in the sense that it can be used for isolating the very source of simulation complexity - the entan-
glement phenomenon [105] [106]. However, it was shown that this approach would not be effective 
unless some sort of quantum state encoding is provided [106] [107 . 

This encoding - used to facilitate effective quantum circuit simulation by providing incentive 
for structural quantum circuit description even in the presence of entanglement - comes under the 
form of the so-called bubble bit technique [107]. The experimental results show a better runtime 
performance of our technique in comparison with the state-of-the-art. The drawback consists of 
the memory overhead (polynomial with the number of qubits in the state) dictated by the bubble 
records produced by the bubble bit insertion algorithm. Another advantage is that the bubble bit 
technique can be easily adapted in order to allow fault injection [108 . 

Summarizing, the original contributions of this thesis in simulating quantum circuits are: 

• a new, HDL-based, and entanglement-aware perspective on simulation of quantum circuits; 

• a case study (concerning the well-known quantum algorithms: Shor, Grover, Deutsch-Jozsa) 
aimed at defining the entanglemet role in quantum circuit simulation complexity [123]; 

• the bubble-bit encoding technique, which facihtates structural (therefore, polynomial) simu-
lation of quantum circuits; 

• the guidhnes for the QUERIST project, a tool that is designed to allow quantum fault injec-
tions in order to assess the effectiveness of the quantum FTAMs. 

These achievements come with the following advantages: 

the simulation runtimes are significantly improved for Deutsch-Jozsa, Grover, and arithmetic 
circuits involved in Shor's algorithm; 

using the HDLs for quantum circuits description and simulation brings quantum computation 
closer to design automation and future computer-aided design and test techniques; 

• the bubble-bit technique is easily adaptable for simulation fault injection purposes. 

The drawbacks, as compared with other gate-level simulation techniques, are: 

• the memory overhead dictated by the bubble-bit encoding technique; 

• the fact that the unitary transformations (which define the quantum gate actions) are also 
encoded. 
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6-2.2 A2 - Fault tolerance 
Fault tolerance techniques are vital in quantum computation; therefore any progress in this area has 
an important significance. Due to the nature of quantum computation, and the nature of the errors 
that are affecting quantum circuits, detecting and correcting errors is difficult. 

Due to the specific nature of quantum mechanics, implementing error correcting methods in 
quantum circuits is confronted with a series of limitations and problems, which were surpassed 
by ingenuous quantum circuit design techniques [76]. However, because of the high fault rate in 
quantum computation, the problem can also be represented by the safe recovery, 

The result is that arbitrary long fault tolerant quantum computation is not possible with only the 
error correcting circuits. Therefore, besides appropriate coding (Steane-based codes [76]) the state-
of-the-art also relies on concatenated coding. However, as shown in this thesis, the concatenated 
coding can be useless if the errors affecting the circuit are correlated. 

Our solution [109] is based on designing the so-called reconfigurable (or programmable) Quantum 
Gate Arrays (rQGA), as an application of the reconfigurable Quantum Hardware (rQHW) concept. 
The reconfigurable quantum circuit has a quantum-nature configuration register (i.e. superposition 
of states) which configures the rQGA as a superposition of distinct error-correcting circuits. Only 
one of these circuits remains after measuring the configuration register, in order to be used for the 
actual correction. However, the probability of an error occurring in the measured circuit decreases 
exponentially with the number of actual superposed circuits. 

Practicai circuit implementation brings other problems to be solved, by further complicating the 
issues. However, as shown in our analytical study, the proposed solution drastically improves the 
accuracy threshold. Moreover, the circuit used for generating the configuration state is simphfied, 
thus dealing with the problem of preserving an accurate configuration. 

Summarizing, the advantages brought by our solution are: 

• it solves the problem of safe recovery in quantum error-correcting circuits; 

• offers a solution of replacing the concatenated coding technique (prone to fail in the presence 
of correlated errors), so that arbitrary long faul tolerant quantum computation is preserved; 

• in fundamental terms, it brings a solution that exploits the exponenţial parallelism of quantum 
computation in order to achieve dependabihty. 

The limitations consists of the following issues: 

• some gates are used by more than one superposed correcting circuit, thus an error affecting 
that gate will affect more than one correcting circuit; 

• the configuration state must be maintained accurately. 

Even with the above-mentioned limitations, the main quantum circuit reUabihty measure (i.e. 
the accuracy threshold) is significantly improved, with respect to the state-of-the-art [47][48 . 

6.2.3 A3 - Evolvable quantum hardware 
This direction provides a solution within the computer-engineering context (i.e. is presenting a circuit 
implementation of our approach) but its possible consequences transcend this field - it concerns the 
computer science area. 
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The iniţial goal was to develop a quantum counterpart for the versatile and robust evolvable 
hardware concept. In classical computation EHW = RHW + GA (evolvable hardware - reconfig-
urable hardware + genetic algorithms), hence our objective can be reduced to designing a quanturn 
computation architecture for implementing genetic algorithms. 

Again, the attempt to run GAs on quantum computers is not new [33], but the previous ap-
proaches were blocked when trying to build quantum counterparts for genetic operators [119] such aii 
crossover. Instead, our proposed view does not require crossover and mutation. As a matter of fact, 
the selection mechanism consist of marking the '^better than current'̂  parţial solution individuals 
(with a specially designed quantum oracle [62]) and then finding one of them with Grover's algorithm 
used as means for augmenting the amplitude of the marked states. 

Another engineering ad-hoc decision was to define a special kind of fitness function, which will 
return values even for non-valid individuals. The fitness values assigned to non-valid individuals 
will clearly identify them. Therefore, one quantum register can be used to encode all the possible 
individuals as superposed basis states. The individual with the best fitness will emerge by using and 
adaptation of the already published maximum finding algorithm [2 . 

Even if the iniţial maximum finding algorithm has a O {y/n) complexity, we cannot conclude that 
this also the complexity of running GAs on the quantum computer, because the algorithm from [2] 
deals with basis states that have all the same amplitude. Nevertheless, even if further investigation 
is necessary in order to establish the exact complexity of the proposed Reduced Quantum Genetic 
Algorithm (RQGA), the extra Grover steps used for extra-amplitude-augmentation will be no more 
than O (\/n). This means that the overall complexity cannot be more than O (n). 

As a summary, we present the main achievement of this thesis' third direct ion: 

• for the first time, a comprehensive QGA (Quantum Genetic Algorithm) implementation is 
presented; 

• it is shown that the crossover and mutation operators are not necessary; 

• the selection is made by means of specific quantum computation features, reducing the selection 
process to Grover's algorithm working with a specially-designed quantum oracle. 

The most important consequence of the proposed QGA implemetation is that QGAs will outper-
form the classical implementations, with the observation that the exact complexity of our algorithm 
(RQGA) is still to be assessed. 

6.3 Future work 
This thesis has addressed an emerging subject, the design of rehable quantum circuits. We are still 
quite far from actually developing such devices on a commercial scale, but the academia and the 
industry are preoccupied with the possibility of encountering such problems. 

However, even if we will got to a point where the manufacturability of such devices becomes possi-
ble, design automation and CAD techniques will encounter the fundamental problem of exponential-
time simulation for quantum circuits (and quantum systems in general). Of course this drawback 
must be dealt with in advance, in order not to afîect the scalability of the automated designs. 

Another aspect consists of dealing with the reUability issues in quantum circuitry. Without 
specialized algorithms and methodologies used for mitigating the destructive effect of decoherence 
in quantum states, there could be no realistic prospect of quantum computation. 

BUPT



112 CHAPTER 6. CONCLUSIONS 

This thesis tries to deal with all these problems, by proposing a computer engineering view on 
the field of quantum computation. It is inevitable, however, that this thesis covers a lot of other 
issues from physics, computer science, placing itself at the frontiers of computation research. 

It comes ai> obvious that this thesis is one of the many efforts to open a new highway on computer 
engineering research. A lot is still to be done on all of the approached issues, but this thesis underpins 
the idea that HDLs can be used successfully in simulating quantum circuits and in quantum simulated 
fault injection. These elements must be subsequently used by automated quantum circuit design 
techniques. 

In the field of quantum rehability, this thesis shows the fact that reconfigurable (or program-
niable) arrays of gates could offer the ideal platform for building robust error-correcting circuits. 
Also, genetic algorithms can program the reconfigurable quantum hardware, thus incentives for de-
veloping evolvable quantum hardware are created. As a consequence, we bring together two very 
hot directions in emerging technology research. Still, a lot is to be done, including the development 
of intrinsic fault tolerant quantum devices, innovative error correcting encoding, and finding new 
applications for the QEHW concept. 

We will now summarize what we think that is to be pursued in this area, by having the present 
thesis as one of the emergence points. 

6.3-1 A l - Simulation 
• Exploring the possibility of improving the bubble-bit encoding method, in order to reduce the 

bubble record burden. 

• Unitary-level automated synthesis [120] [121] [125] for our developed HDL-based simulation 
framework. 

• Integrating simulated fault injection technique, which has been developed in this thesis, in the 
design process. 

• Approaching system-level design in quantum computation. 

• Using simulated fault injection for developing fault-tolerant architectures at the system level. 

6.3.2 A2 - Fault tolerance 
• Extending the rQGA technique for safe recovery, so that it will become suitable for more 

quantum error-correcting codes. 

• Developing reconfiguration techniques in order to avoid fighting with correlated errors. 

• Settling the issue of concatenated coding necessity, when the rQGA technique is apphed. 

• Finding the most suitable quantum technology for the configuration register and for the rQGA 
structure itself. 

6.3.3 A3 - Evolvable quantum hardware 
• Finding the exact complexity for the Quantum Genetic Algorithms. 

• Finding applications for the Evolvable Quantum Hardware Concept. 
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• Exploring the possibility of developing Quantum Cellular Automata (QCA) on EQHW plat-
forms. 
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Appendix A 

VHDL Description of Elementary 
Quantum Gates 

In order to describe the simple gates, a data structure must be built so that we caii represeiit qubith 
and quantum registers according to the matrix model. We have reduced the data package to the 
necessary. Also, the example VHDL code fragments provided in this appendix are stripped from 
any irrelevant statements or instructions. 

The data structure 
library ieee; 
use ieee.math_real.all; 
use ieee.math_complex.all; 
package quantum is 
type qubit is arrayCO to 1) of complex; 
type quregister is array(natural range<>)of complex; 
type qubit_vector is array (natural range<>)of qubit; 
end quantum; 

Another useful feature would be a function for transforming a register quantum state into a new 
state, including an extra-qubit: 

function tensor_product-l(reg:quregister;qb:qubit)return quregister is 
variable newreg: quregister; 
variable half ,odd: integer; 
begin 
assert power_2(regMength) 
report "not a valid quregister state" 
severity error; 
l l : fo r i in O fo (2* reg ' length)- ! loop 
half :=i /2; 
odd:=i-(2*half); 
newreg(i):=reg(half)*qubit(odd); 
end loop 11; 
return newreg; 
end tensor_product_l; 
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This function can be included in the above package. Here, the function power_2 returns true if 
its integer argument is a power of 2, and false if it isn't. 

A . l Hadamard gate 
The representation and the characterizing matrix for this gate are presented in Figure A.l. The 
describing VHDL code follows: 

H H = 
1 1 
1 - 1 

Figure A.l: Hadamard gate representation and corresponding unitary matrix. 

entity walshJiadainard_gate is 
genericCdelay: t ime) ; 
port ( intrare: in qubit; i e ş i r e : o u t qubit ) ; 
end walshJiadaiiiard_gate; 
architecture whg.a of walshJhadamard^ate is 
begin 
i e s i re (0 )<= ( 1 . 0 0 / s q r t ( 2 . 0 0 ) ) * ( i n t r a r e ( 0 ) + i n t r a r e ( l ) ) after delay; 
i e s i r e ( l ) < = ( 1 . 0 0 / s q r t ( 2 . 0 0 ) ) * ( i n t r a r e ( 0 ) - i n t r a r e ( 1 ) ) after delay; 
end whg_a; 

A.2 Negation gate 

N N=G = 
0 1 
1 O 

Figure A.2: Negation gate representation and corresponding unitary matrix. 

Figure A.2 presents the symbol used for this gate along with the corresponding gate. The 
describing VHDL code is: 

entity not_gate is 
generic (delay: t ime) ; 
por t ( in trare : in qubit; i e ş i r e : o u t qubit ) ; 
end not_gate; 
architecture ng_a of not_gate is 
begin 
i e s i re (0 )<= i n t r a r e ( l ) after delay; 
i e s i r e ( l ) < = intrare(O) after delay; 
end ng.a; 

' ^ ^ MJQk 
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A,3 Rotation gate 

R ,(G) -
cos— Sin — 

. O o - sin - cos-

e- O 

O e'-

Figure A.3: Rotation gates representation with corresponding unitary matrixes. 

Figure A.3 presents the symbol used for this gates along with the corresponding gate. The 
rotation gate is a generahzation of Haddamard gate, operating only on a single qubit. RY {0) is the 
rotation with O around axis y, while R. {o) is the rotation with 0 around axis i The appropriate 
VHDL code is: 

library i eee ; 
use ieee.math_real .ai i; 
use ieee.math_complex.all; 
entity y_rotation_gate is 
generic ( theta: r ea l ; delay: t ime) ; 
por t ( in trare : in qubit; i e s i r e i o u t qubit); 
end y_rotation_gate; 
sirchitecture yrg.a of yjrotation_gate is 
begin 
process( intrare) 
variable s i n u s , c o s i n u s : r e a l ; 
begin 
s i n u s : = s i n ( t h e t a / 2 ) ; 
cos inus :=cos ( the ta /2 ) ; 
i e s i re (0 )<=cos inus* intrare (0 )+s inus* intrare ( l ) after delay; 
i e s i r e ( l ) < = c o s i n u s * i n t r a r e ( l ) - s i n u s * i n t r a r e ( 0 ) after delay; 
end process; 
end yrg_a; 
entity zjrotation_gate is 
generic(phi :principal .value; delay: t ime) ; 
por t ( in trare : in qubit; i e s i r e : o u t qubit); 
end zjrotat ion-gate; 
architecture zrg_a of z_rotat ion^ate is 
begin 
process( intrare) 
variable element O, element 1: complex_polar; 
begin 
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elemente .arg:=phi /2;e lementO.mag:=1; 
e l ement1 .arg :=- (ph i /2 ) ; e l ement1 .mag:=1; 
i e ş i r e ( 0 ) < = e l e m e n t 0 * i n t r a r e ( 0 ) af ter de lay; 
i e s i r e ( l ) < = e l e m e n t l * i n t r a r e ( l ) af ter de lay; 
end process; 
end zrg.a; 

A.4 Condiţional phase-shift gate 
The condiţional phase shift gate is a gate that could operate on more than one qubit as presented 
Figure A.4. Besides the matrix expression, in this figure will appear the corresponding symbol. The 
VHDL description of this a-qubit gate must take into account the fact that the state of the n qubits 
is not always describable as the tensor product of the individual qubit states. Therefore, the simplest 
way to simulate this gate is to have as input and output the overall input and output states (type 
quregister): 

P(£) 

1 O O 
O 1 O 
O O 1 

1 O 
O e'̂  

Figure A.4: A n-qubit condiţional phase-shift gate representation, with the x 2^-size cor-
responding unitary matrix. 

ent i ty phase_sh i f t is 
generic ( e p s i l o n : r e a l ; de lay : t i m e ) ; 
p o r t ( i n t r a r e r i n q u r e g i s t e r ; i e s i r e i o u t q u r e g i s t e r ) ; 
end p h a s e - s h i f t ; 
architecture ps .a of phase_sh i f t is 
beg in 
process ( i n t r a r e ) 
variable temp: q u r e g i s t e r ; 
variable tmp,phase: complex_polar; 
variable Ig: i n t e g e r ; 
beg in 
Ig: = i n t r a r e ' l ength; 
l l i f o r i in O t o l g - 2 loop 
t e m p ( i ) : = i n t r a r e ( i ) ; 
end loop 11; 
phase .mag:=1;phase .arg:=eps i lon; 
tmp: =complex_to_polar ( i n t r a r e ( l g - 1 ) ) •phase; 
t e m p ( l g - l ) :=polar_to_complex(tmp); 
ies ire<=temp after de lay; 
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end process; 
end ps_a; 

A.5 XOR and Toffoli gates 
The XOR and Toffoli gates are in the sanie unitary gate class CNOTn-quM^ where XOR = 
CNOT2-qubit and TOFF = CNOTi.g^,,^. Figure A.5 a,b, and c, present the XOR. TOFF and 
the general CNOTn-qubit gates. 

X 

z e x 

?i)XOR 

An 

b) TOFFOLI 

X, 
A'., 

.V, 

Figure A.5: CNOT gates: a) XOR] b) TOFFOLI: c) the general CNOT operating oii // 
qubits. 

Then, the description for the general u-qubit CNOT gate is: 

entity c j i o t is 
generic ( d e l a y : t i m e ) ; 
p o r t ( i n t r a r e : in qureg i s t er ; i e ş i r e : o u t qureg i s t er ) ; 
end c-Qot; 
architecture cnot .a of c_not is 
begin 
p r o c e s s ( i n t r axe) 
variable I g i i n t e g e r ; 
variable temp: qureg i s t er ; 
begin 
lg := in trare Mength; 
assert l g - 1 > 1 
report "not a v a l i d gate" 
severity error; 
l l i f o r i in O t o ( i n t r a r e ' l e n g t h ) - l loop 
if i < l g - 2 
t e m p ( i ) : = i n t r a r e ( i ) ; 
elsif i = l g - 2 t h e n 
t e m p ( i ) : = i n t r a r e ( i + l ) ; 
elsif i = l g - l t h e n 
t e m p ( i ) : = i n t r a r e ( i - l ) ; 
end if; 
end loop 11; 
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iesire<=temp after de lay; 
end process; 
end cnot.a; 

A.6 Swap gate 
The SWAP gate is operating over 2 qubits. Its matrix expression along with the symbol are given 
in Figure A.6. The VHDL code follows: 

SWAP = 

1 0 0 0 
0 0 1 0 
0 1 0 0 
0 0 0 1 

Figure A.6: The symbol and corresponding unitary matrix for the SWAP gate. 

enti ty swap_gate is 
generic (delay: t i m e ) ; 
p o r t ( i n t r a r e : i n q u r e g i s t e r ; i e s i r e i o u t q u r e g i s t e r ) ; 
end swap_gate; 
architecture arh.sw of swap_gate is 
begin 
proces s ( in t rare ) 
variable temp: q u r e g i s t e r ; 
variable I g i i n t e g e r ; 
begin 
lg := in trare Mength; 
assert Ig /= 4 
report "not a v a l i d swap gate" 
severity error; 
t emp(O):= intrare (0 ) ; temp(3) := intrare (3 ) ; 
t empd) := intrare(2) ;temp(2) : = i n t r a r e ( l ) ; 
iesire<=temp after delay; 
end process; 
end eirh.sw; 

A.7 Quantum adders 
The quantum adder, operating over a quantum register, is a composition of pseudo-classical oper-
ators. A n-qubit quantum adder or qadder could be decomposed in n 1-qubit full qadders. The 
unitary expression of the 1-qubit qadder is 

SU M\-qubit ' y, Qn, 0) ^ y, X © y ® Qn, X-y + X-Cin + y Cin) 

baiied on the equations of the classical l-bit full adder [67][71 . 

(A.l) 
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Since we are forced to use only valid quantuiri pseudoclassical operators, the unitary diagic 
of the 1-qubit quadder cell is the quantum network froin Figure A.7. ani 

.V 

Cin' 
Scratch 

r , r 
J ' V 

X 

V 

Cout Caut 

Figure A.7: 1-Qubit full quadder, implemented with unitary gates XOR and TOFF [63] [113 

The way to get z is straightforward, ^ = x e y © but getting Cout is much tricky. Therefore, 
we must rewrite the classical Cout expression so that it could be implemented with TOFF and XOR 
gates: 

Cout = xy + XCin + yc^n 

because 

= XyCjn + Xyĉ ;̂  + XCin + xycin + J'ycin 
= y{x® C,ri) + + OUyC.n 
= y{x(BCin) +J:Cin 
= y {x @ Cin)] ® Ctn 

ah + b = a 
a + b= {a® b) + ab 

(A.2) 

and 
XCiny {x ®C,n)= XCinXCin + XC.nyxCin = 0 + 0 = 1 . 

Thus, the VHDL description is (entanglement is considered absent): 

entity add.cel l is 
p o r t ( x , y , c i n , s c r a t c h : i n qubi t ;xo ,yo , z , cout :out qubit) ; 
end add-cel l; 
architecture s tructura l of add_cell is 
component xor_gate 
generic (delay: t ime) ; 
port (a ,b : in q u b i t ; a , r e z : o u t qubit) ; 
end component; 
component t o f f o l i _ g a t e 
genericCdelay: t i m e ) ; 
p o r t ( a , b , c : i n q u b i t ; a , b , r e z : o u t qubit); 
end component; 
signal t l , t 2 : q u b i t ; 
begin 
c i : t o f f o l i _ g a t e 
generic map(delay=>10 ns) ; 
port map(a=>x,b=>y,c=>scratch,rez=>t2); 
c2 :xor_gate 

(A.3) 

(A.4) 
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generic map(de lay=>10 n s ) ; 
port m a p ( a = > x , b = > c i n , r e z = > t l ) ; 
c 3 : t o f f o l i ^ a t e 
generic map(de lay=>10 n s ) ; 
port m a p ( a = > y , b = > t l , c = > t 2 , r e z = > c o u t ) ; 
c4:xor_gate 
generic map(de lay=>10 n s ) ; 
port map(a=>y ,b=>t l ,rez=>z) ; 
xo<=x;yo<=y; 
end s t r u c t u r a l ; 
The typical way to operate for the quantum adder is making use of its ability to sum all the 

possible superposed input states. In our case, for the 1-qubit adder from Figure A.7, qubits x and y 
could be prepared to represent the superposition state of the 4 classical distinct states (eigenvectors 
in a Hilbert space): |00), |01), |10) and |11). In this situation (Figure A.8), carry in is |1) and 
each superposed classical state contains the input qubit values and the corresponding output bit 
values. When measuring the output state, the outcome will be one of the superposed input classical 
states, with the corresponding output values (see Figure A.8 for details). 

0) 
0) 
') 
0) 

— H —1 
1 / / 1 ' i i 

> ( > r— 
^ \ 1 i i 1 1 ' 

c , C 
, 1 

r r ) ! i 

-(]0010) + |01 

V ^ 

01)+ 1001) + 
4. 

" " ) ) / 

Figure A.8: A 1-qubit full quadder operating over a superposition of possible classical states 
for inputs x and y. Carry in is |1) in this example, is the state of inputs x and y y)) 
while |0) is the state of the 4-qubit output. 

The way that 1-qubit full quadder cells could be combined so that an n-qubit qadder is obtained 
is presented in Figures A.9 and A. 10. 

The corresponding code, which is valid in the absence of entanglement, is: 

ent i ty adder_4 is 
p o r t ( x , y , s e r a t c h : i n qubi t .vector(O t o 3 ) ; c i n : i n qubi t ; 
x x , y y , z : o u t qubit . v e c t o r (O t o 3 ) ; c o u t : o u t q u b i t ) ; 
end adder.4; 
architecture s t r u c t of adder_4 is 
c o m p o n e n t add_cel l 
p o r t ( x i , y i , c i , s c r : i n q u b i t ; x o , y o , z o , c o : o u t q u b i t ) ; 
end add_cel l ; 
constant z e r o : q u b i t : = ( ( ! , 0 ) , ( 0 , 0 ) ) ; 
signal carry :qubit_vector (O t o 3 ) ; 
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>'o 
0) 
0) 

A', 

V, 

Cout M-l 

Figure A.9: An n-qubit adder obtained by rippling the carry. Note that we need n scratch 
qubits for completing this operation. 

X[n-\:0] 
R[«-L:0 

Cin 
Scratch [«-1:0' 

Y[n-\:0 
Z[«-1 :0 
Cout 

Figure A. 10: The symbol for the n-qubit, used in quantum networks, with its details contained 
in Figure A.9. 
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begin 

u l : add-cel l 
port m a p ( x i = > x ( 0 ) , y i = > y ( 0 ) , c i = > z e r o , s c r = > z e r o , 
xo=>xx(0) ,yo<=yy(0) ,zo<=z(0) , 
co=>carry(0)); 
u2:add_cell 
port m a p ( x i = > x ( l ) , y i = > y ( l ) ,c i=>carry(0) , scr=>zero, 
x o = > x x ( l ) , y o < = y y ( l ) , z o < = z ( l ) , 
co=>carry( l ) ) ; 
u3:add_cell 
port m a p ( x i = > x ( 2 ) , y i = > y ( 2 ) , c i = > c a r r y ( 1 ) , s c r = > z e r o , 
xo=>xx(2) ,yo<=yy(2) ,zo<=z(2) , 
co=>carry(2)); 
u4:add_cell 
port m a p ( x i = > x ( 3 ) , y i = > y ( 3 ) , c i = > c a r r y ( 2 ) , s c r = > z e r o , 
xo=>xx(3) ,yo<=yy(3) ,zo<=z(3) , 
co=>carry(3)); 
cout<=carry(3); 
end s t r u c t ; 
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Appendix B 

Deutsch-Jozsa Algorithm Simulation 

The VHDL description of a circuit implementiiig Deutsch s algorithm is contained in ''deutsch.vhd' 
l ibrary i eee ; 
use i e e e . m a t h j r e a l . a l l ; 
use ieee.math_complex.all; 
package quantum i s 
type qubit i s array(0 to 1) of complex; 
type quregister i s array(natural range<>)of complex; 
end quantum; 
l ibrary i eee ; 
use i eee .math_rea l .a l l ; 
use ieee.math_complex.all; 
use work.quantum.all; 
en t i ty deutsch i s 
port ( x i , y i : i n q u b i t ; f O , f 1 : i n b i t ; reziout b i t ) ; 
end deutsch; 
architecture s tructura l of deutsch i s 
component walshJiadamaxd-gate 
p o r t ( i n t r a r e : i n q u b i t ; i e ş i r e : o u t qubit); 
end component; 
component walshJiadamard_phase 
p o r t ( i n t r a r e : i n q u b i t ; i e ş i r e : o u t qubit); 
end component; 
component ufd_gate 
p o r t ( x i i , y i i : i n qub i t ; fdO, fd l : in bi t ;xoo,yoo:out qubit) ; 
end component; 
component measure_phase 
port ( intrare: in qubit ;vector_baza: out b i t ) ; 
end component; 
s ignal x_in, y_in, qxl , qy 1, qx2, qy2: qubit; 
s ignal f c t O , f c t l : b i t ; 
begin 
c l : walsh_hadamard_gate 
port map(x_in,qxl); 
c2: walsh Jiadamard_gate 

125 
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port map(y_in,qyl) ; 
c3: ufd_gate 
port m a p ( q x l , q y l , f c t 0 , f c t l , q x 2 , q y 2 ) ; 
c4: measure_phase 
port i i iap(qx2,rez); 
x . in (O) . im <= 0 .00; 
x . i n d ) .im <= 0 . 0 0 
x.iii(O) .re <= 1 .00 
x _ i n ( l ) . r e <= 0 . 0 0 
y.iii(O) .im <= 0 . 0 0 
y _ i n ( l ) . i m <= 0 . 0 0 
y . i n ( O ) . r e <= 0 . 0 0 
y _ i n ( l ) . r e <= 1.00; 
fctO <= 
f e t i <= 'O'; 
end s t r u c t u r a l ; 
c o n f i g u r a t i o n c f . d e u t s c h of deutsch i s 
f o r s t r u c t u r a l 
end f o r ; 
end c f -deutsch; 
l i b r a r y i e e e ; 
use i e e e . m a t h j r e a l . a l l ; 
use i eee .math_complex .a l l ; 
use work.quantum.al l; 
e n t i t y ufd_gate i s 
p o r t ( x i i , y i i : i n q u b i t ; f d O , f d l : i n b i t ; x o o , y o o : o u t q u b i t ) ; 
end ufd_gate; 
a r c h i t e c t u r e b of ufd_gate i s 
begin 
process ( x i i , y i i ) 
var iab l e a O , a l : r e a l ; 
begin 
i f fd0= '0 ' then a0:=1 .00; 
e l s e a 0 : = - 1 . 0 0 ; 
end i f ; 
i f f d l = ' 0 ' then a l : = 1 . 0 0 ; 
e l s e a l : = - 1 . 0 0 ; 
end i f ; 
xoo(0)<= ( a 0 * x i i ( 0 ) ) a f t e r 10 ns; 
xoo( l )<= ( a l * x i i ( l ) ) a f t e r 10 ns; 
yoo<=yii a f t e r 10 ns; 
end process ; 
end b; 
l i b r a r y i e e e ; 
use i e e e . m a t h _ r e a l . a l l ; 
use i eee .math_complex .a l l ; 
use work.quantum.all; 
e n t i t y measure_phase i s 
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port ( intrare: in qubit; vector_baza:out b i t ) ; 
end measure_phase; 
architecture m of measure_phase i s 
begin 
process ( intrare) 
variable bal_eq:bit; 
begin 
i f intrare(0) . im=0.00 and in trare ( l ) . im=0 .00 then 
i f ( ( i n t r a r e ( 0 ) . r e ) * ( i n t r a r e ( 1 ) . r e ) ) >= 0.00 then 
bal_eq:= 'O'; 
e l s e bal_eq: = ' 1' ; 
end i f ; 
end i f ; 
vector.baza <= bal_eq a f t e r 5 ns; 
end process; 
end m; 
l ibrary i eee ; 
use i e e e . m a t h j r e a l . a l l ; 
use ieee .math.complex.al l ; 
use work.quantum.all; 
en t i ty walshJiadamard^ate i s 
p o r t ( i n t r a r e : i n q u b i t ; i e ş i r e : o u t qubit); 
end walshJiadamard_gate; 
architecture whg_a of walshJiadainaTd_gate i s 
begin 
i e ş i r e ( 0 ) < = ( 1 . 0 0 / s q r t ( 2 . 0 0 ) ) * ( i n t r a r e ( 0 ) + i n t r a r e ( l ) ) 
a f t e r 10 ns; 
i e ş i r e ( l ) < = ( 1 . 0 0 / s q r t ( 2 . 0 0 ) ) * ( i n t r a r e ( 0 ) - i n t r a r e ( D ) 
a f t e r 10 ns; 
end whg_a; 

B . l Time diagrams for VHDL simulat ion of Deutsch's 
algorithm 

B.1.1 For a balanced oracle 
The time diagram resulted from simulating the algorithm, for a balanced oracle, is presented in 
Figure B.l. 

B.1.2 For a constant oracle 
The time diagram resulted from simulating the algorithm, for a constant oracle, is presented in 
Figure B.2. 
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Figure B.l: Simulation results for Deutsch-Jozsa algorithm, when the oracle is a balanced 
function. 
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Figure B.2: Simulation results for Deutsch-Jozsa algorithm, when the oracle is a constant 
function. 
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Appendix C 

Grover Algorithm Simulat ion (2-qubit 
querry) 

library ieee; 

use ieee.math_real.all; 

use ieee.math_complex.all; 

package qupack is 

— the qubit state representation 

type qubit is arrayCO to l)of complex; 

— array of qubits representation 

type qubit_vector is array (natural rajige<>)of qubit; 

— quantum register overall state representation 

type quregister is array (natural r a n g e o ) of complex; 

— the type describing bubble structure 

type bubb is record 

nature:integer; 

position:integer; 

end record; 

— the bubble type 

type bubble.type is array (natural r a n g e o ) of bubb; 

— structure of bubble records 

type rec_rec is record 

bubble: bubble.type (O to 1); 

zeros:integer; 

end record; 

— data type for bubble records 

type bubble jrecord is array (natural r a n g e o ) of rec_rec; 

— data type for simulation of 2-qubit circuits 

— when ent=true we have entanglement and 'qr* field 

— will be taken into consideration 

type qudata_2q is record 

qr:quregister(O to 3); 

qa:qubit .vector(O to 1); 

ent:boolean; 

end record; 

type qudata_3q is record 

qr:quregister(O to 7); 

qa:qubit .vector(O to 2); 

bub:bubblejrecord (O to 1); 

131 
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ent:boolean; 

end record; 

end qupack; 

use work.qupack.all; 

library ieee; 

use ieee.math_real.all; 

use ieee .math-complex. all; 

entity grover_circ is 

port (search_regi : in qudata_3q; einsi : in qubit; rez: out bit_vector(0 to 3)); 

end grover.circ; 

architecture structl of grover_circ is 

component levell 

port (si: in qudata_3q; ai : in qubit ;so: out qudata_3q; ao: out qubit); 

end component; 

component oracle 

port (si: in qudata_3q; ai : in qubit ;so: out qudataJ3q; ao: out qubit); 

end component; 

component level2 

port (si: in qudata_3q; ai : in qubit ;so: out qudata_3q; ao: out qubit); 

end component; 

component phase_shift 

port (si: in qudata_3q; ai : in qubit ;so: out qudata_3q; ao: out qubit); 

end component; 

component level3 

port (si: in qudata_3q; ai : in qubit ;so: out qudata_3q; ao: out qubit); 

end component; 

component measurement 

port(si:in qudata_3q;ai:in qubit; r:out bit_vector(0 to 3)); 

end component; 

component ent.anal 

port (si: in qudata.3q; ai : in qubit ;so: out qudataJ3q; ao: out qubit); 

end component; 

signal ta, searchjrego.t, search_rego_tt, search_rego_ttt, searchj:ego_tttt, 

search-rego_ttttt :qudata^q; 

signal tata,anso.t,anso_tt,anso.ttt,anso_tttt,anso_ttttt:qubit; 

begin 

cl:levell port map(searchjregi,ansi,seairchjrego.t,anso.t) ; 

c2: oracle port map(search_rego_t, anso.t ,se2Lrch_rego_tt ,anso_tt) ; 

c3:level2 port map(search_rego.tt,anso.tt,search_rego_ttt,anso.ttt) ; 

c4:phasejshift port map(search_rego.ttt, anso.ttt ,search_rego_tttt,anso.tttt); 

c41:ent.anal port map(searchjrego_tttt,anso.tttt,ta,tata); 

c5:level3 port map(ta,tata,searchj:ego.ttttt,anso_ttttt) ; 

c6:measurement port map(searchjrego_ttttt ,anso.ttttt ,rez) ; 

end structl; 

architecture struct.bub of grover.circ is 

component levell 

port (si: in qudata_3q; ai : in qubit ;so: out qudata_3q; ao: out qubit); 

end component; 

component oracle.bub 

port (si: in qudata.3q; ai : in qubit ;so: out qudata_3q; ao: out qubit); 

end component; 

component level2.bub 

port (si: in qudata_3q; ai : in qubit ;so: out qudata_3q; ao: out qubit); 

end component; 
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component phase_shift.bub 

port(si:in qudata_3q; ai : in qubitjsoiout qudata_3q; ao: out qubit) ; 

end component; 

component level3-bub 

port (si: in qudata_3q; ai : in qubit ;so:out qudata_3q; ao: out qubit); 

end component; 

component measurement_bub 

port (si: in qudata.3q; ai : in qubit; r:out bit.vector(0 to 3)); 

end component; 

signal searchjrego.t, searchjrego_tt, searchjrego.ttt, searchjrego.tttt, 

search_rego.ttttt :qudata^q; 

signal anso_t, anso_tt, anso_ttt, anso.tttt, anso.ttttt: qubit; 

begin 

cl:levell port map(searchjregi,ansi,search_rego_t,anso_t); 

c2:oracle_bub port map(search_rego_t,anso_t,search_rego_tt,anso_tt) ; 

c3:level2_bub port map(search_rego_tt, anso.tt, search_rego_ttt, anso.ttt) ; 

c4:phasejshift_bub port map(searchj:ego-ttt, anso.ttt ,searchjrego_tttt ,anso_tttt); 

c5: level3 Jbub port map(seaLrch_rego_tttt ,anso_tttt,search_rego_ttttt ,anso_ttttt) ; 

c6:measurement JDub port map(searchj:ego_ttttt, anso.ttttt ,rez) ; 

end struct_bub; 

use work.qupack.all; 

library ieee; 

use ieee.math_real.all; 

use ieee.math-complex.all; 

entity levell is 

port (si: in qudata.3q; ai : in qubit ;so: out qudata_3q; ao: out qubit); 

end levell; 

architecture lla_b of levell is 

begin 

process (si,ai) 

variable r:qudata.3q; 

variable ti : quregister(0 to 7); 

variable ra:qubit; 

variable ati : quregister(0 to 1); 

begin 

11: for i in O to 7 loop ti(i):=si.qr(i); 

end loop 11; 

ati(O):=ai(0);ati(l):=ai(l); 

r.qr(O): = (1.00/2.00)*(ti(0)+ti(2)+ti(4)+ti(6)) : 

r.qr(l):=(1.00/2.00)*(ti(l)+ti(3)+ti(5)+ti(7)) 

r.qr(2):=(1.00/2.00)*(ti(0)-ti(2)+ti(4)-ti(6)) 

r.qr(3):=(1.00/2.00)*(ti(l)-ti(3)+ti(5)-ti(7)) 

r.qr(4):=(1.00/2.00)*(ti(0)+ti(2)-ti(4)-ti(6)) 

r.qr(5):=(1.00/2.00)*(ti(l)+ti(3)-ti(5)-ti(7)) 

r.qr(6):=(1.00/2.00)*(ti(0)-ti(2)-ti(4)+ti(6)) 

r.qr(7):=(1.00/2.00)*(ti(l)-ti(3)-ti(5)+ti(7)) 

r.qa:=si.qa; 

ra(0):=(1.00/sqrt(2.00))*(ati(0)+ati(l)); 
r a d ) : = (1.00/sqrt(2.00))*(ati(0)-ati(l)) ; 
r.ent:=true; r.bub:=si.bub; 

so <= r after 10 ns; ao <= ra after 10 ns; 

end process; 

end lla_b; 

architecture lla_s of levell is 

BUPT



134 APPENDIX C. GROVER ALGORITHM SIMULATION (2-QUBIT QUERRY) 

component Hadamard_gate 

port(qi:in qubit;qo:out qubit); 

end component; 

component Identity_gate 

port(qi:in qubit;qo:out qubit); 

end component; 

begin 

cl: Hadamard-gate port map(si.qa(0) ,so.qa(0)) ; 

c2: Hadamard^ate port map(si.qa(l) ,so.qa(l)) ; 

c3: Hadamard_gate port map(ai,ao); 

c4: Identity_gate port map(si .qa(2) ,so.qa(2)) ; 

so.ent<=false after 10 ns; 

so.qr<=si.qr after 10 ns; 

so.bub<=si.bub after 10 ns; 

end lla_s; 

use work.qupack.all; 

library ieee; 

use ieee.mathjreal.all; 

use ieee.math-complex.all; 

entity Hadamard_gate is 

port(qirin qubit;qo:out qubit); 

end Hadamard_gate; 

architecture hga of Hadamard_gate is 

begin 

qo(0)<=(1.00/sqrt(2.00))*(qi(0)+qi(l))after 10 ns; 

qo(l)<=(1.00/sqrt(2.00))*(qi(0)-qi(l))after 10 ns; 

end hga; 

use work.qupack.all; 

library ieee; 

use ieee .math_xeal. all; 

use ieee .math-complex. all; 

entity Identity_gate is 

port(qi:in qubit;qo:out qubit); 

end Identity_gate; 

architecture iga of Identity_gate is 

begin 

qo(0)<= qi(0) after 10 ns; 

qo(l)<= qi(l) after 10 ns; 

end iga; 

use work.qupack.all; 

library ieee; 

use ieee.math_real.all; 

use ieee.math_complex.all; 

entity hnh^ate is 

port(qi:in qubit;qo:out qubit); 

end hnh-gate; 

architecture hnha of hnh-gate is 

begin 

qo(0)<= qi(0) after 10 ns; 

qo(l)<= (-1.00)*qi(l) after 10 ns; 

end hnha; 

use work.qupack.all; 

library ieee; 

use ieee.math_real.all; 
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use ieee.math_complex.all; 

entity test^rover is 

end test_grover; 

architecture tga of test^rover is 

component grover_circ 

port (searchjregi rin qudata_3q; ansi: in qubit; rez: out bit.vectorCO to 3)); 

end component; 

signal ts:qudata_3q; 

signal ta:qubit; 

signal ro:bit_vector(0 to 3); 

begin 

tl:grover_circ port map(ts,ta,ro) ; 

process 

variable tsvrqudata^q; 

variable tav:qubit; 

begin 

tsv.ent:=false; 

tsv.qr(O).re:=1.00;tsv.qr(0).im:=0.00; 

tsv.qr(l).re:=0.00;tsv.qr(l).im:=0.00; 

tsv.qr(2).re:=0.00;tsv.qr(2).im:=0.00; 

tsv.qr(3).re:=0.00;tsv.qr(3).im:=0.00; 

tsv.qr(4).re:=0.00;tsv.qr(4).im:=0.00; 

tsv.qr(5).re:=0.00;tsv.qr(5).im:=0.00; 

tsv.qr(6).re:=0.00;tsv.qr(6).im:=0.00; 

tsv.qr(7).re:=0.00;tsv.qr(7).im:=0.00; 

tsv.qa(0)(0).re:=1.00;tsv.qa(0)(0).im:=0.00; 

tsv.qa(O)(1).re:=0.00;tsv.qa(0)(1).im:=0.00; 

tsv.qa(l)(0).re:=1.00;tsv.qa(l)(0).im:=0.00; 

tsv.qa(l)(1).re:=0.00;tsv.qa(l)(1).im:=0.00; 

tsv.qa(2)(0).re:=l.00;tsv.qa(2)(0).im:=0.00; 

tsv.qa(2)(1).re:=0.00;tsv.qa(2)(1).im:=0.00; 

tsv.bub(O).zeros:=0; 

tsv.bub(O).bubble(O).nature:=0; 

tsv.bub(O).bubble(O).position:=-l; 

tsv.bub(O).bubble(l).nature:=0; 

tsv.bub(O).bubble(l).position:=-l; 

tsv.bub(l).zeros:=0; 

tsv.bub(l).bubble(O).nature:=0; 

tsv.bub(l).bubble(O).position:=-l; 

tsv.bub(l).bubble(l).nature:=0; 

tsv.bub(l).bubble(l).position:=-l; 

tav(O).re:=0.00;tav(0).im:=0.00; 

tav(l).re:=1.00;tav(l).im:=0.00; 

ts<=tsv; 

ta<=tav; 

wait; 

end process; 

end tga; 

configuration beh_sim of grover_circ is 

for structl 

for cl:levell use entity work.levell(llaJD) ; 

end for; 

end for; 

end beh_sim; 
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configurat ion bub.sim of test_grover is 

for tga 

for tl :grover_circ use entity work.grover_circ(struct_bub) ; 

end for; 

end for; 

end bubjsim; 

use work.qupack.all; 

library ieee; 

use ieee.mathjreal.all; 

use ieee.math_complex.all; 

entity oracle is 

port (si: in qudata_3q; ai : in qubit;so:out qudata_3q; ao: out qubit) ; 

end oracle; 

architecture oa_b of oracle is 

begin 

process (si,ai) 

variable r:qudata^q; 

variable ti : quregister(0 to 7); 

begin 

if si.ent then 

11: for i in O to 7 loop ti(i):=si.qr(i); 

end loop 11; 

else 

ti(0):=si.qa(0)(0)*si.qa(l)(0)*si.qa(2)(0) 

ti(l):=si.qa(0)(0)*si.qa(l)(0)*si.qa(2)(l) 

ti(2):=si.qa(0)(0)*si.qa(l)(l)*si.qa(2)(0) 

ti(3):=si.qa(0)(0)*si.qa(l)(l)*si.qa(2)(l) 

ti(4):=si.qa(0)(l)*si.qa(l)(0)*si.qa(2)(0) 

ti(5):=si.qa(0)(l)*si.qa(l)(0)*si.qa(2)(l) 

ti(6):=si.qa(0)(l)*si.qa(l)(l)*si.qa(2)(0) 

ti(7):=si.qa(0)(l)*si.qa(l)(l)*si.qa(2)(l) 

end if; 

r.qr(O):=ti(0); 

r.qr(l):=ti(l); 

r.qr(2):=ti(2); 

r.qr(3):=ti(3); 

r.qr(4):=-1.00 *ti(4); 

r.qr(5):=ti(5); 

r.qr(6):=ti(6); 

r.qr(7):=ti(7); 

r.qa:=si.qa; r.bub:=si.bub; 

r.ent:=true; 

so <= r after 10 ns; ao <= ai after 10 ns; 

end process; 

end oa.b; 

use work.qupack.all; 

library ieee; 

use ieee.math_real.all; 

use ieee.math_complex.all; 

entity level2 is 

port (si: in qudata_3q; ai : in qubit ;so: out qudata_3q; ao: out qubit); 

end level2; 

architecture 12a_b of level2 is 

begin 
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process (si,ai) 

variable r:qudata_3q; 

variable ti : quregister(0 to 7); 

begin 

11: for i in O to 7 loop ti(i):=si.qr(i); 
end loop 11; 

r.qr(O):=(1.00/2.00)*(ti(0)+ti(2)+ti(4)+ti(6)) 
r.qr(l):=(1.00/2.00)*(ti(l)+ti(3)+ti(5)+ti(7)) 
r.qr(2):=(1.00/2.00)*(ti(0)-ti(2)+ti(4)-ti(6)) 
r . q rO) : = (1.00/2.00)*(ti(l)-ti(3)+ti(5)-ti(7)) 
r.qr(4):=(1.00/2.00)*(ti(0)+ti(2)-ti(4)-ti(6)) 
r.qr(5):=(1.00/2.00)*(ti(l)+ti(3)-ti(5)-ti(7)) 
r.qr(6):=(1.00/2.00)*(ti(0)-ti(2)-ti(4)+ti(6)) 
r.qr(7):=(1.00/2.00)*(ti(l)-ti(3)-ti(5)+ti(7)) 
r.qa:=si.qa; 
r.ent:=true; r.bub:=si.bub; 

so <= r after 10 ns; ao <= ai after 10 ns; 

end process; 

end 12a_b; 

use work.qupack.all; 

library ieee; 

use ieee.mathjreal.all; 

use ieee.math_complex.all; 

entity phase_shift is 

port (si: in qudata_3q; ai: in qubit;so:out qudata_3q; ao: out qubit) ; 

end phase_shift; 

architecture pha_b of phase_shift is 

begin 

process (si,ai) 

variable r:qudata_3q; 

variable ti : quregister(0 to 7); 

begin 

11: for i in O to 7 loop ti(i):=si.qr(i); 

end loop 11; 

r.qr(0):=ti(0); 

r.qr(l):=ti(l); 

r.qr(2):=-1.00 * ti(2); 

r.qr(3):=ti(3); 

r.qr(4):=-1.00 * ti(4); 

r.qr(5):=ti(5); 

r.qr(6):=-1.00 * ti(6); 

r.qr(7):=ti(7); 

r.qa:=si.qa; r.bub:=si.bub; 

r.ent:=true; 

so <= r after 10 ns; ao <= ai after 10 ns; 

end process; 

end pha_b; 

use work.qupack.all; 

library ieee; 

use ieee.mathjreal.all; 

use ieee.math_complex.all; 

entity ent.anal is 

port (si: in qudata_3q; ai : in qubit ;so: out qudata_3q; ao: out qubit); 

end ent.anal; 
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architecture eaa of ent^ainal is 

begin 

process 

variable r:qudata_3q; 

variable ti : quregister(0 to 7); 

begin 

11: for i in O to 7 loop ti(i):=si.qr(i); 

end loop 11; 

r.qr(0):=ti(0); 

r.qr(l):=ti(l); 

r.qr(2):=ti(2); 

r . q r O ) :=ti(3) ; 

r.qr(4):=ti(4); 

r.qr(5):=ti(5); 

r.qr(6):=ti(6); 

r.qr(7):=ti(7); 

r.qa(0)(0).re:=(!.00/sqrt(2.00)); r.qa(0)(0).im:=0.00;r.qa(0)(1).re:=(-l.00/sqrt(2.00)); 

r.qa(0)(l).im:=0.00; 

r.qa(l)(0).re:=(l.00/sqrt(2.00)); r.qa(l)(0).im:=0.00;r.qa(l)(1).re:=(1.00/sqrt(2.00)); 

r.qa(l)(l).im:=0.00; 

r.qa(2)(0).re:=1.00; r.qa(2)(0).im:=0.00; r.qa(2)(l).re:=0.00;r.qa(2)(1).im:=0.00; 

r.bub:=si.bub; 

r.ent:=false; 

wait on si.qa; 

so <= r ; ao <= ai; 

end process; 

end eaa; 

use work.qupack.all; 

libraxy ieee; 

use ieee.math_real.all; 

use ieee.math_complex.all; 

entity level3 is 

port (si: in qudata_3q; ai : in qubit;so:out qudata_3q; ao: out qubit) ; 

end level3; 

architecture 13a_s of level3 is 

component Hadamard_gate 

port(qi:in qubit;qo:out qubit); 

end component; 

component Identity_gate 

port(qi:in qubit;qo:out qubit); 

end component; 

begin 

cl: Hadamard^ate port map(si.qa(0) ,so.qa(0)); 

c2: Hadamard^ate port map(si . qa(l) ,so.qa(l)) ; 

c3: Identity_gate port map(ai,ao); 

c4: Identity_gate port map(si.qa(2) ,so.qa(2)) ; 

so.ent<=false after 10 ns; 

so.qr<=si.qr after 10 ns; 

so.bub<=si.bub after 10 ns; 

end 13a_s; 

use work.qupack.all; 

library ieee; 

use ieee .math_real. all; 

use ieee. math.complex. all; 
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to 7 loop if (si.qr(i).re /= 0.00 and si.qr(i).im /= 0.00) then 

: = '0' ;rv(l) = '0' ;rv(2) = '0' 

: = '0' ;rv(l) = '0' ;rv(2) = '1' 
: = '0' ;rv(l) = '1' ;rv(2) = '0' 
: = '0' ;rv(l) = '1' ;rv(2) = '1' 
: = '!' ;rv(l) = '0' ;rv(2) = '0' 
: = '!' ;rv(l) = '0' ;rv(2) = '1' 
: = '!' ;rv(l) = '1' ;rv(2) = '0' 
rv(0) :='l';rv(l) :='!';rv(2) 

entity measurement is 

port(si rin qudata_3q;ai:in qubit; r:out bit.vector(O to 3)); 

end measurement; 

architecture masa of measurement is 

begin 

process(si,ai) 

variable rv:bit_vector(0 to 3); 

variable t:integer; 

begin 

if si.ent then 

10: for i in O 

t:=i; 

end if; 

end loop 10; 

case t is 

when O => rv(0) 

when 1 => rv(0) 

when 2 => rv(0) 

when 3 => rv(0) 

when 4 => rv(0) 

when 5 => rv(0) 

when 6 => rv(0) 

r 
end case; 

else 

ll:for i in O to 2 loop if si.qa(i)(0).re = 0.00 and si.qa(i)(0).im = 0.00 then rv(i) 

elsif si.qa(i)(1).re = 0.00 and si.qa(i)(1).im = 0.00 then rv(i):='0'; 

else r v ( i ) ; 

end if; 

end loop 11; 

end if; 

if (ai(O).re = 0.00 and ai(0).im = 0.00) then rv(3) 

elsif a i C D . r e = 0.00 and ai(l).im = 0.00 then rv(3): = '0'; 

else r v ( 3 ) ; 

end if; 

r <= rv after 10 ns; 

end process; 

end masa; 

use work.qupack.all; 

libraxy ieee; 

use ieee.math_real.all; 

use ieee .math_complex. all; 

entity oracle_bub is 

port (si: in qudata_3q; ai : in qubit ;so:out qudata_3q; ao: out qubit); 

end oracle_bub; 

architecture oba of oracle_bub is 

component hnh^gate 

port(qi:in qubit;qo:out qubit); 

end component; 

component Hadamard^gate 

port(qi:in qubit;qo:out qubit); 

end component; 

component Identity^gate 

port(qi:in qubit;qo:out qubit); 

BUPT



140 APPENDIX C. GROVER ALGORITHM SIMULATION (2-QUBIT QUERRY) 

end component; 

begin 

cl: Identity_gate port map(si . qa(0) , so. qa(0) ) ; 

c2: hnh^ate port map(si.qa(l) ,so.qa(l)) ; 

c3: Identity_gate port map(ai,ao); 

c4: Hadainard_gate port map(si . qa(2) , so. qa(2)); 

so.ent<=true after 10 ns; 

so.qr<=si.qr after 10 ns; 

so.bub(O).bubble(O).nature <= -l after 10 ns; 

so.bub(O).bubble(O).position <= 3 after 10 ns; 

so.bub(O).bubble(l).nature <= 1 after 10 ns; 

so.bub(O).bubble(l).position <= 5 after 10 ns; 

so.bub(O).zeros <= 2 after 10 ns; 

so.bub(l).bubble(O).nature <= -l after 10 ns; 

so.bub(l).bubble(O).position <= 3 after 10 ns; 

so.bub(l).bubble(l).nature <= O alter 10 ns; 

so.bub(l).bubble(l).position <= -l after 10 ns; 

so.bub(l).zeros <= -l after 10 ns; 

end oba; 

use work.qupack.all; 

library ieee; 

use ieee .math_real. all; 

use ieee.math.complex.all; 

entity level2_bub is 

port (si rin qudata_3q; ai : in qubit;so:out qudata_3q; ao: out qubit) ; 

end level2_bub; 

architecture 12ba of level2_bub is 

component hnh_gate 

port(qirin qubit;qorout qubit); 

end component; 

component Identity_gate 

port(qirin qubit;qorout qubit); 

end component; 

begin 

cir hnh_gate port map(si.qa(0) ,so.qa(0)) ; 

c2r hnh-gate port map(si .qa(l) ,so.qa(l)) ; 

c3r Identity^ate port map(ai,ao); 

c4r Identity_gate port map(si .qa(2) ,so.qa(2)) ; 

so.ent<=true after 10 ns; 

so.qr<=si.qr after 10 ns; 

so.bub(O).bubble(O).nature <= -l after 10 ns; 

so.bub(O).bubble(O).position <= 3 after 10 ns; 

so.bub(O).bubble(l).nature <= -l after 10 ns; 

so.bub(O).bubble(l).position <= 5 after 10 ns; 

so.bub(O).zeros <= 2 after 10 ns; 

so.bub(l).bubble(O).nature <= 1 after 10 ns; 

so.bub(l).bubble(O).position <= 3 after 10 ns; 

so.bub(l).bubble(l).nature <= O after 10 ns; 

so.bub(l).bubble(l).position <= -l after 10 ns; 

so.bub(l).zeros <= -l after 10 ns; 

end 12ba; 

use work.qupack.all; 

library ieee; 

use ieee.mathjreal.all; 
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use ieee.math_complex.all; 

entity phase_shift.bub is 

port (si rin qudata_3q; ai : in qubit;so:out qudataJ3q; ao: out qubit) ; 

end phasejshift.bub; 

architecture psba of phase_shift.bub is 

component Hadamard^ate 

port(qi:in qubit;qo:out qubit); 

end component; 

component Identity.gate 

port(qi:in qubit;qo:out qubit); 

end component; 

begin 

cl: Identity.gate port map(si .qa(0) , so.qa(0)) ; 

c2: Identity^ate port map(si.qa(l) ,so.qa(l)) ; 

c3: Identity^ate port map(ai,ao); 

c4: Hadamard.gate port map(si . qa(2) , so . qa(2)) ; 

so.ent<=false after 10 ns; 

so.qr<=si.qr after 10 ns; 

so.bub(O).bubble(O).nature <= O after 10 ns; 

so.bub(O).bubble(O).position <= -l after 10 ns; 

so.bub(O).bubble(l).nature <= O after 10 ns; 

so.bub(O).bubble(l).position <= -l after 10 ns; 

so.bub(O).zeros <= O after 10 ns; 

so.bub(l).bubble(O).nature <= O after 10 ns; 

so.bub(l).bubble(O).position <= -l after 10 ns; 

so.bub(l).bubble(l).nature <= O after 10 ns; 

so.bub(l).bubble(l).position <= -l after 10 ns; 

so.bub(l).zeros <= O after 10 ns; 

end psba; 

use work.qupack.all; 

library ieee; 

use ieee.math_real.all; 

use ieee.math_complex.all; 

entity level3.bub is 

port (si: in qudata_3q; ai : in qubit ;so: out qudataJBq; ao: out qubit); 

end level3_bub; 

architecture 13ba of level3_bub is 

component Hadamard.gate 

port(qi:in qubit;qo:out qubit); 

end component; 

component Identity_gate 

port(qi:in qubit;qo:out qubit); 

end component; 

begin 

cl: Hadamard.gate port map(si .qa(0) ,so.qa(0)) ; 

c2: Hadamard^ate port map(si .qa(l) ,so .qa(l)) ; 

c3: Identity.gate port map(ai,ao); 

c4: Identity_gate port map(si .qa(2) ,so.qa(2)) ; 

so.ent<=false after 10 ns; 

so.qr<=si.qr after 10 ns; 

so.bub <= si.bub after 10 ns; 

end 13ba; 

use work.qupack.all; 

library ieee; 
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use ieee.math_real.all; 

use ieee.math_complex.all; 

entity measiirement_bub is 

port (si: in qudata_3q; ai: in qubit; r:out bit_vector(0 to 3)); 

end measurementJbub; 

architecture masab of measurementJbub is 

begin 

process(si,ai) 

vaxiable rv:bit_vector(O to 3); 

variable tiinteger; 

begin 

11:for i in O to 2 loop 

if si.qa(i)(0).re = 0.00 and si.qa(i)(0).im = 0.00 then rv(i): = ; 

elsif si.qa(i)(1).re = 0.00 and si.qa(i)(1).im = 0.00 then rv(i):='0'; 

else rv(i):='0'; 

end if; 

end loop 11; 

if (ai(O).re = 0.00 and ai(0).im = 0.00) then rv(3):='l'; 

elsif ai(l).re = 0.00 and ai(l).im = 0.00 then rv(3):='0'; 

else rv(3):='0'; 

end if; 

r <= rv after 10 ns; 

end process; 

end masab; 
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Appendix D 

Running a genetic application on a 
quantum computer 

In this appendix we will exainine an example of how the genetic algorithms will run according to the 
algorithm described in Chapter 5 (Reduced Quantum Genetic Algoiithm). Therefore we will take 
into consideration a typicai problem for the genetic approach. 

Problem: A person has a backpack with a maximum capacity of 10 kilograms. He also ha^ 4 items 
with the following characteristics: item Ii having 7 kg and a value of 40 $, item h (4 kg, 100 $), 
item /a (2 kg, 50 $), and item U (3 kg, 30 $). Which items ŵ ould this person carry in his backpack 
so that it would have the maximum value ? 

The classical genetic approach will have as chromosome a 4-bit code, where each 'T bit means 
that the corresponding item is present in the backpack. For instance, a 1001 code indicates that 
the backpack contains items Ii and I4. In the quantum version, the chromosome encoding will have 
all the 4-qubit classical values (see Table D.l) as superposed basis states, which represent valid and 
invalid (i.e. the items will add up to more than 10 kg) individuals. 

u=0 

10000) + 10001) + 10010) + 10011) \ 
+ 10100) + 10101) + joiio) + 10111) 
+ 11000) + 11001) + 11010) + 11011) 

V +11100) + jiioi) + iiiio) + ji i i i) 

10000000000) (D.l) 

The fitness function that we will apply, would be an arithmetic function according to the re-
quirements formulated in Section 5.2.2. The fitness formula, given in Equation D.2, contains two 
variables, the chromosome value val and the chromosome mass rn; also two constants are used, the 
total added value of all items {vait = 220) and the maximum allow êd package mass (/̂ max = 10)-
For any chromosome x, the fitness function is given by: 

fj^^ {x) = val (x) - {vait + 1) x (m (x) div nimax) = val {x) - 221 x {m {x) div 10) (D.2) 

Applying the fitness function over the individual registers means that we use the Uf̂ ^̂  
basis state permutation, obtaining the state presented in Equation D.3. 
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h h h h Value mass [kg] Validity 
0 0 0 0 0 0 valid 
0 0 0 1 30 3 valid 
0 0 1 0 50 2 valid 
0 0 1 1 80 5 valid 
0 1 0 0 100 4 valid 
0 1 0 1 130 7 valid 
0 1 1 0 150 6 valid 
0 1 1 1 180 9 valid 

0 0 0 40 7 valid 
0 0 1 70 10 valid 
0 1 0 90 9 valid 
0 1 1 120 12 invalid 
1 0 0 140 11 invalid 
1 0 1 170 14 invalid 
1 1 0 190 13 invalid 
1 1 1 220 16 invalid 

Table D.l: AII the chromosome binary combinations, valid and invalid, with the corresponding 
fitness values. 

(D.3) 

10000)11000000000) 
+10001)®IlOOOOllllO) 
+10010)®IlOOOllOOlO) 
+10011)®IlOOlOlOOOO) 
+10100)® ilOOllOOlOO) 
+10101)®IlOlOOOOOlO) 
+10110)^IlOlOOlOllO) 
+10111)®11010110100) 
+I1000) (8) 11000101000) 
+11001)®11001000110) 
+11010)® ilOOlOllOlO) 
+11011)®10110011011) 
+11100)® 10110101111) 
+11101) g) joiiiooiioi) 
+11110)®10111100001) 
+11111)® 10111111111) 

The fitness values of the invalid individuals are negative numbers (all least significant 9 bits of 
the fitness values represent 2's complement numbers), with the most significant bit being dedicated 
to indicating the validity of the corresponding chromosome (O means invalid, 1 indicates a valid 
individual), see Section 5.4.2 for details. 

The next step of the Reduced Quantum Genetic Algorithm is to apply the oracle over the first 
pair of individual-fitness registers. According to the algorithm from Section 5.5, we have to get a 
random value for variable rnax. Suppose that the yielded value for rnax is 85, then the state of 
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the \IP)q register at this point is given in Equation D.4 and D.5: is the pair registers state 
after applj'ing the subtractor and phase-shift part of the oracle, while |(/')o is the state obtained 
after appljdng the entire oracle, induding the adder part (see Figure 5.4 from Section 5.4.2). One 
observation hnked to the details presented in Section 5.4.2 is that the phase shift (i.e. amplitude a, 
becomes —a,) is triggered bĵ  a 'O' value of the 2nd bit from the left in the fitness register. 

fit _ 

/ 10000)®IIIIOIOIOII) \ 
+10001)®11111001001) 
+10010) ®11111011101) 
+10011)o 11111111011) 
-10100)®11000001111) 
-10101) «11000101101) 
-jOllO)®11001000001) 
-10111) «11001011111) 
+11000) «11111010011) 
+11001) « lllllllOOOl) 
-11010) «11000000101) 
+11011) «11101000110) 
+11100) «11101011010) 
+11101) «jllOllllOOO) 
+ 11110) ® jlllOOOllOO) 
+ 11111) «llllOlOlOlO) 

(D.4) 

MT = \P)T' ® = i Kfit _ 

0000) ®11000000000) \ 
+10001) ®IlOOOOllllO) 
+10010) ®11000110010) 
+10011) «11001010000) 
-10100) «11001100100) 
-10101) «I1010000010) 
-10110) «IlOlOOlOllO) 
-10111)®11010110100) 
+11000) «I1000101000) 
+11001) «11001000110) 
- 1010)®IlOOlOllOlO) 
+11011) «10110011011) 
+11100) «10110101111) 
+11101) «10111001101) 
+11110) «10111100001) 
+11111) «10111111111) 

(D.5) 

After applying the Grover algorithm over the fitness register (rightmost 10 qubits) of l(/̂ )o, we will 
get state IV')», as presented in Equation D.6, where the amphtudes ao, ai, 02,03, ag, ag, an, «12, • • • "15 
« O and la4r + ksj^ + kel^ + + l«ioP « 1-
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fit _ 

ao 10000) 
+aii0001) 
+a2|0010) 
+a3|0011) 
+a4|0100) 
+a5|0101) 
+0610110) 
+0710111) 
+0811000) 
+09IIOOI) 

+010IIOIO) 
+011IIOII) 
+012IIIOO) 
+ai3|1101) 
+ai4|1110) 

+015IIIII) 

1000000000) 
» 11000011110) 
0 11000110010) 

1001010000) 
1001100100) 

®I1010000010) 
(g) jlOlOOlOllO) 
® IIOIOIIOIOO) 
® 11000101000) 

jlOOlOOOllO) 
g) 11001011010) 
o 10110011011) 
®10110101111) 
(g) joiiiooiioi) 
®lOllllOOOOl) 
^10111111111) 

\ 

(D.6) 

Therefore, if we measure the fitness register of after applying Grover iterations, then we will 
measure (with a high probability) one of the following basis states (of the rightmost 10 qubits of \IP)Q): 
11001100100), IlOlOOOOOlO), 11010010110), IIOIOIIOIOO). Suppose that we measure |1010000010) (+ 
130 if we convert this value in decimal). In the individual register we will have |0101); also the new 
rnax := 130 + 1. 

The next algorithm iteration will involve the next individual-fitness pair registers {\ip)i = 
by subsequently setting states \ip)l (oracle - subtractor and phase-shift), [ip)̂  (oracle - adder), 

and (Grover iterations): 

lOOOO) 
+ 10001) 
+10010) 
+10011) 
+10100) 
+10101) 
-10110) 
-10111) 
+11000) 
+11001) 
+11010) 
+ 11011) 
+11100) 
+11101) 
+11110) 
+11111> 

1101111101) ̂  
® 11110011011) 
® l l l io io i l l l ) 
® jllllOOllOl) 
® 11111100001) 
g) l l l l l l l l l l l ) 
® ilOOOOlOOll) 
(8) jlOOOllOOOl) 
® illlOlOOlOl) 
® 11111000011) 
(8) j i n i o i o i i i ) 
® 10100011000) 
gj 10100101100) 
® 10101001010) 
(8) 10101011110) 
(8 joioilllioo) 

(D.7) 
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\i>)\ = lp) f ' ^ = 7 
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+11000) 
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+11101) 
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ao 10000) 
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+«310011) 
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® jioiooioiio) 
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®11001000110) 
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® 10111001101) 
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^ lo i l l l l l l l l ) 
® 11000000000) 
«) 11000011110) 
» 11000110010) 
® 11001010000) 
® 11001100100) 
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® jioiooioiio) 

® 11010110100) 
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» 10110011011) 

0 10110101111) 

» 10111001101) 

® 10111100001) 

o loillllllll) 

(D.8) 

(D.9) 

After applying the Grover algorithm over the fitness register (rightmost 10 qubits) of froni 
we willget state as presented in Equation D.9, where the amplitudes ao, «i, «2, «3, «4,05,us-

ag,... ai5 RS O and \ae\̂  + layl̂  1. 
Therefore, if we measure the fitness register of \ip)l after applying Grover iterations, then we will 

measure (with a high probabihty) one of the following basis states (of the rightmost 10 qubits of 
10)5): 11010010110), 11010110100). Suppose that we measure |1010110100) (+ 180 in decimal). In 
the individual register we will have |0111), which is also the solution for our problem. 
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