
Bridging the Gap between Object
Oriented Modeling and Implementation

Languages Using a Meta-Language
Approach

Dan Alexandru Pescaru

PhD Thesis

Facult}' of Autoiiiation and Computer Science

POLITEHNICA^" UNIVERSITY OF TIMIŞOARA

Timişoara

23 October 2003

Advisor:

Prof. Dr. Ing. Ionel Jian

BIBLIOTECA CENTRALĂ
UNIVERSITATEA "POLITEHNICA"

TIMIŞOARA

' P O i . r r t H N , .

' t i M i o A R A

^
L . L - ^ J

X-UJL-J • .

BUPT

to Alex and Maria

©'2003 Dan A. Pescaru

BUPT

Motto

AU of physics is either impossible or trivial. It is impossible until you

understand it and then it becomes trivial.

- Emest Rutherford

BUPT

ACKNOWLEDGMENTS

I am honored to have Prof. Dr. Ionel J i a n as advisor of my thesis. I would

like to thank him for his continuous support on both a personal and professional

level over the past years.

I am specially grateful to Dr. Ph i l i p pe Lah i re from "Sophia Antipolis"

University of Nice, France. He has been a constant source of advice, guidance

and support during all this time. Without his full support, I would probably

have never reached the stage where I am today. I could say that most of my

work is due to him.

My special thanks go to Emanue l Tundrea and Cons t an t i n Papando-

natos for their invaluable help on protot>'pes of the OFL-compiler and OFL-ML

tool, which were presented in theirs diploma thesis. The discussions I had from

time to time with Dr. P ierre Crescenzo were also highly stimulating.

I want to give tanks to D i a n a A n d o n e and Dr. R a d u Vasîu for their

friendship and all the logistic support, which made possible my research visits

at "Sophia Antipolis" University of Nice.

Numerous colleagues at Computer Science Department. UPT. have indi-

rectly contributed to this thesis, among them C i p r i an Chir i la , Sor in Serau,

D o r u Tod inca and D a n Cosma . not at least by taking over some of my daily

obhgations during the time of the writing and help me with correcting, printing

etc. Many thanks to all of them.

I would hke to thank to all my fami ly , my wife Ma r i a , my child Alex, my

grandmothe r , my parents and my parents-in-law for all their Iove, all their

support, including financial one, and for believing in me even when I lost my

confidence. {Timişoara, November 2003)

BUPT

Contents

1 Introduction 7
1.1 The Problem 7

1.2 TheGoal 7

1.3 Organizat ion 8

2 State of the Art 9
2.1 Design Methods 9

2.1.1 Unified Modelling Language - UML 9

2.1.2 UMLProfile 12

2.1.3 Considerations About UML Semantics Included in Profiles 13

2.1.4 UML Action Semantics Model 14

2.1.5 J-UML 17

2.2 Programming Languages Extensions and Meta-languages 18

2.2.1 Java Extensions 18

2.2.2 C-h-h Extensions 18

2.3 Design Patterns 19

2.4 Discussion 19

3 The OFL model 21

3.1 Intuitive approach 21

3.2 Overview of OFL Model 22

3.2.1 OFL Level: OFL-Concepts and OFL-Atoms 24

3.2.2 Language level: OFL-Components 26

3.2.3 Application Level: OFL-Instances and OFL-Data 27

3.3 Programmer and Meta-progxammer: separation of tasks 27

3.4 The Integration in the Existing Meta-Models 27

4 Extending the OFL Model Through OFL-Modifiers 29

4.1 The OCL Language 30

4.2 The OFL Modifiers 32

4.2.1 Component Modifiers in Commercial Languages 32

4.2.2 Definition of an OFL-Modifier 33

4.2.3 Modifiers Classification Regarding OFL Implementation

Issues 36

BUPT

4.3 Basic Access Control Modifiers 37

4.3.1 Examples of Native Basic Access Control Modifiers 37

4.3.2 Basic Access Control Modifiers for Features 38

4.3.3 Basic Access Control Modifiers for Descriptions 40

4.4 Complex Access Control Modifiers 42

4.4.1 Examples of Native Complex Access Control Modifiers . . 42

4.4.2 Complex Access Control Modifiers for Methods 43

4.4.3 Complex Access Control Modifiers for Attributes 44

4.4.4 Complex Access Control Modifiers for Descriptions 44

4.5 Optimization Modifiers 45

4.5.1 Examples of Native Optimization Modifiers 45

4.5.2 Optimization Modifiers for Attributes 46

4.5.3 Optimization Modifiers for Methods 47

4.5.4 Optimization Modifiers for Description 47

4.6 Service Modifiers 48

4.6.1 Excmfiples of Native Service Modifiers 48

4.6.2 Service Modifiers for Attributes 48

4.6.3 Service Modifiers for Methods 49

4.6.4 Service Modifiers for Descriptions 49

4.7 Additional Modifiers 49

4.7.1 Examples of Native Additional Modifiers 49

4.8 Conclusion and discussions 50

5 The OFL-ML Meta-Profile 51

5.1 Supported Elements and Definitions 52

5.1.1 OFL Model 52

5.1.2 OFL-Modifiers 53

5.1.3 UML Profile 53

5.1.4 OCL 53

5.2 OFL-ML Definition 55

5.2.1 Identified Subset of UML 55

5.2.2 From Core - Backbone 55

5.2.3 The Virtual Meta-model 59

5.2.4 Virtual Metamodel of OFL-ML. 60

5.3 The OFL Type Representations 63

5.3.1 The OFL BasicType Element 63

5.3.2 The OFL Description Element 65

5.3.3 Additional constraints 68

5.3.4 The Externai Description Element 69

5.4 The OFL Feature Representations 70

5.4.1 The OFL Attributes 71

5.4.2 The OFL Methods 74

5.5 The OFL Relationship Representations 80

5.5.1 The OFL Import Relationship 80

5.5.2 Stereotypes and Tagged Values 80

5.5.3 The OFL Use Relationships 92

BUPT

5.5.4 The Basic Type Coniposition 95

5.5.5 The Externai Import Relationship 97

5.5.6 Constraints 97

5.5.7 The Externai Use Relationship 98

5.6 The OFL Model Organization 98

5.6.1 The OFL Package 99

5.7 Modelling Example Using an OFL-Java Profile 100

5.8 Concliisions and Future Work 101

5.8.1 Conclusions 101

5.8.2 Future \\\)rk 102

OFL-ML Tools Support and Validation 104

6.1 The OFL Framework 104

6.1.1 The OFL-Meta Tool 106

6.1.2 The OFL-Database 106

6.1.3 The OFL-ML Modeling Tool 106

6.1.4 The OFL-ML Profiles Generator 108

6.1.5 TheOFLParser 109

6.2 Perspectives 109

Conclusions and Perspectives 110

7.1 Conclusions 110

7.2 Author Contributions 110

7.3 Perspectives 111

BUPT

Chapter 1

Introduction

The starting poiiit of this thesis is the general opinioii about the evident gap be-

tween object-oriented modelling languages and programming languages. Many

companies do not use yet UML, which is the standard of object-oriented mod-

ehng languages since many years. Indeed, even they use UML in the analyzing

phase they prefer to jump over implementat ion model for application. Instead

they are using to have only an ad-hoc model that resides directly in implemen-

tation. First explanation consists in contradiction between generality of UML

and specificity of application model after implementation in a programming

language.

1.1 The Problem

UML is used in a wide area of contexts, by people coming from different cultures,

many of them considering (more or less justified) their case special and asking

for a deviation from the standard in the form of a particular tuning of UML. A

hard-coded UML precise semantics would preclude the existence of these tunings

and thus would be practically unacceptable.

We are in a situation where on one hand we need precise semantics to really

make the UML a communication mean, while on the other hand we do not need

too much precision because the domains on which UML is to be applied are so

different that they can not be unified under a single semantics. The response

of OMG is the introduction of profiles as standard means to adapt the UML to

some domain-specific needs.

1.2 The Goal

The goal of this research, as the title say, is to bridge the gap between object-

oriented modeling and programming languages.

The problem appears when the UML is used to create an implementation

model. After the implementation of this model, the application will contain

BUPT

itself an intrinsic model. Because a prograiiiming languages has a rnore precise

semantic than UML, this two models will be diflferent. If the specification change

the problems will appear at reengineering phase.

If we think at UML Profile solution, the problem is how to specify this profile

in order to fill the gap. This problem is harder if we think in terms of number

of existing programming languages, each of them with different versions and

flavors.

The approach presented in this thesis tries to use meta-information about a

progrgimming language described in a meta-language and to generate automat-

ically a well tailored profile adapted to it.

This solution goes beyond the presented goal. This suggests a wider frame-

work which allow also extensions of the programming languages not only gen-

eration of tailored profile. This way the programming language and the corre-

sponding profile can become closer to real applications and domains.

1.3 Organizat ion

Chap t e r 2 presents an overview on state of the art in the fields of modeling

languages and meta-programming. It contains discussions and critics about

existing approaches and tries to define exactly the problem.

The OFL-Model is presented in Chap t e r 3. This model represents a para-

metric meta-model that allows description of object oriented programming lan-

guages. This chapter presents main concepts behind this model and represents

an analyze of good and poor aspects of this model.

The model extension proposed in Chap t e r 4 is the result of conclusions

extracted from previous section. It enables customization of language modifiers

and enrich the adaptable semantics of the OFL-Model

Chap t e r 5 represents the main section of this thesis. During this chapter is

developed the approach regarding generation of OFL-ML profiles. It describes

the OFL-Meta-Profile and the Virtual Meta-Model that resides behind it. It

contains also all the rules that axe used to generate a specific OFL-ML Profile.

Chap t e r 6 presents working framework and the tools support necessary to

validate the approaches presented in the previous two chapters.

Chap t e r 7 siunmarizes the thesis and point out the research perspectives

of presented approach.

BUPT

Chapter 2

State of the Art

There are several options in the field of object oriented modelling languages and

meta-languages extensions. There are also several approaches to reduce the gap

between models and implementations. This section tries to offer an overview of

sonie of those in a criticai manner.

2.1 Design Methods

2.1.1 Unified Modelling Language - UML

The Unified Modelling Language (UML) [OMG03b, RJB98] is a graphical lan-

guage for visualizing. specif>ing, constructing, and docunienting the artifacts of

a softAvare-intensive system.

The Logical Model [Red03] in UML is used to model the static structural

elements. It is a static view of the objects and classes that make up the de-

sign/analysis space. Typically, a Domain Model is a looser, high level view of

Business Objects and entities, while the Class Model is a more rigorous and

design focused model. The Logical Model captures and defines the objects, en-

tities and building blocks of a system. Classes are the generalized templates

from which run-time objects are created. Components are built from classes.

Classes (and interfaces) are the design elements that correspond to coded or

developed software artifacts.

The Unified Modelling Language is, as its name implies, a modelling lan-

guage and not a method or process. UML is made up of a very specific notation

and the related grammatical rules for constructing software models. UML in

itself does not prescribe or advise on how to use that notation in a software

development process or as part of an object-oriented design methodology. UML

supports a rich set of graphical notation elements. It describes the notation

for classes, components, nodes, activities, work fiow, logical, objects, states and

how to model relationships between these elements. UML also supports the

notion of custom extensions through stereotyped elements. The UML provides

significant benefits to software engineers and organizations by helping to build

BUPT

rigorous, traceable and niaintainable iiiodels, which support the full software

developiiient life-cycle.

A Class is a standard UML construct used to detail the pattern froin which

objects will be produced at run-time. A class is a specification and an object

is an instance of a class. Classes may be inherited from other classes (that is,

they inherit all the behavior and state of their parent and add new functionality

of their own), have other classes as attributes, delegate responsibilities to other

classes and implement abstract interfaces. To gain a more precise semantic real

models use a variety of stereotypes and related constraints applied to UML class

element. They cire used to model different types of classes belonging to object

oriented langnages (like Java Abstract Class, Java Interface, C+-I- abstract class

etc.) .

The Class Model [Fra99] is at the core of object-oriented development and

design - it expresses both the persistent state of the system and the behavior

of the system. A class encapsulates state (attributes) and offers services to

manipulate that state (behavior). Good object-oriented design limits direct

access to class attributes and offers services which manipulate attributes on

behalf of the caller. This hiding of data and exposing of services ensures data

updates are only done in one place and according to specific rules - for large

systems the maintenance burden of code which has direct access to data elements

in many places is extremely high.

To keep more semantic, a class model could also contain the implementation

encapsulated at the level of method body in a special tagged value.

Logical UML elements may be related in a variety of ways. The following

relationships are the most common: association, aggregation and inheritance

relationships.

Association relationships capture the static relationships between entities.

These generally reiate to one object having an instance of another as an attribute

or being related in the sense of owning (but not being composed of). We will

use this element but in conjunction with stereotypes that define reiationship

semantics.

Aggregation relationships define whole/part relationships. The stronger

form of aggregation is composition and infers that a class not only collects

another class, but is actually composed of that collection. There are also many

other fiavors for aggregation.

Inheritance describes the hierarchical relationship between classes [Ewi, Cai'88,

Por92]. It describes the family tree. Classes may inherit attributes and behavior

from a parent class (which may in turn be the child of another class). This tree

of inherited characteristics and behavior allows the designer the ability to collect

common functionality in root classes (ancestors) and refine and specialize that

behavior over one or more generations (children). Scope specifiers (public, pro-

tected and private) determine which elements may be inherited and which are

not visible. Inheritance is modelled in UML by using the generalization relation-

ship element. A better model for Inheritance is obtained through stereotypes

and tagged values added to UML generalization. This way it can make distinc-

tion between different types of import relationships like class inheritance and

10

BUPT

sub-typing. UML visibility modifiers represent a real problem for programmers

[FSOL GliOO]. They are used to define scope of inherited elements through re-

lationship but also to define some level of protection. Instead of that, we will

tr>' to define an adaptive specification for this modifiers [PL03] that model the

existing access control and protection specifiers from the target language. More-

over, following this way we can add support for other king of features modifiers

that address various semantic (like optimizat ion or services).

UML Dynamic Relationships [vdA02] are the messages passed between classes

(objects at rmi time). A Sequence Diagram illustrates this message passing and

the sequence in which it occurs. These model elements have an association to

each other refiected at run time by the passing of messages to each other. We do

not consider Dynamic Relationships in this thesis. However, a future research

will analyze the opportunity to provide Instantiation Relationships (that are

objects to classes relationships). This relationships model the link between ap-

plication run-time instances (objects) and class meta-instances (meta-objects).

In UML, a logical model element and the attributes, associations and op-

erations that it contains, may all be further specified with constraints [SC02,

Wec97]. These constraints are essential if we want to catch a specific semantic.

These are the UML contractual rules that apply to an element and/or its

features. Typically they fall into one of three t>TDes:

• Pre-conditions - which must be true prior to the operation or existence of

an element

• Post-conditions - which must be true after the use or destruction of an

object

• Invariants - which must always be true for the life and use of an object

Any modehng language need support for these rules as assertions. In UML

they are modelled in OCL [HHB02, BHOO].

As the class model develops, classes (and interfaces) may be organized into

logical units or packages in UML. These collect related elements (and in some

implementations will govern the visibility of operations and attributes) by ele-

ments outside the package.

In all programming languages packages are used mainly as design structures

for supporting a better organization of user application elements. It corre-

sponds to UML package concept and to class libraries organizational model in

object oriented programming languages. Generally, a package is a grouping of

model elements. It may contain different kinds of model elements. Each model

element can be directly owned by a single package. However, packages can

reference other packages, so the whole usage network is a graph. The depen-

dencies among the elements belonging to different packages create dependencies

between packages. This dependencies could be used to write constraints.

11

BUPT

2.1.2 UML Profile

UML is defined by its meta-model [ObjOl, Lem98]. In [Des99] it is discussed how

specific domains, which require a specialization of the general UML meta-model,

can define an UML profile. The goal is to focus UML to describe more precisely

the considered domains. Even as concrete UML profiles have started to emerge

[OMG02b, OMGOL OMG03a, OMG02a], use of the profiling mechanism is still

discussed [DSB99, AKOO].

An UML Profile consists of a set of UML extensions (stereotypes, tagged

values, constraints) and is supplemented by specifications of the mappings of the

domain concepts to those extensions. and specifies additional well-formedness

rules (expressed in OCL or in natural language).

V i r t u a l Me ta-Mode l of Stereotypes The UML specification makes the

following comment in its discussion of Stereotypes [OMG03b]:

The stereotype concept provides a way of classifying (marking) elements so

that they behave in some respects as if they were instances of new ''virtuaV

metamodel constructs.

In the UML meta-model, a Stereotype is a GeneralizableElement. Thus it

is legal to define Generalization (inheritance) Relationships among Stereotypes.

Furthermore, a GeneralizableElement is a ModelElement, and Dependency Re-

lationships can be defined among ModelElements. Thus it is legal for Stereo-

types to participate in Dependency Relationships.

In the UML meta-model, a Stereotype extends one or more elements of the

meta-model.

Some abstract Stereotypes are defined and, in keeping with UML notation,

abstractness is denoted by italicizing the Stereotypes name. In UML an abstract

GeneralizableElement cannot be instantiated. The abstract Stereotypes are

useful for avoiding repetition in multiple Stereotypes that logically have common

properties.

Using U M L No t a t i o n for V i r t u a l Meta-mode l ing . In light of these facts,

the specification takes the following approach to using UML notation to express

the virtual meta-model:

• The model is expressed via class diagrams.

• Each Stereotype plays the client role in a Dependency Relationship with

the UML metaclass that it extends. These Dependencies are stereotyped

<^baseElement^. We use this as non-standard notation because relation-

ships afford greater clarity than TaggedValues.

• Each Stereotype is expressed via a Classifier box, even though a Stereo-

type is not a Classifier. The keyword ^stereotype» does NOT represent

a stereotype itself - it is simply a notational marker for the underlying

Stereotype meta-class.

12

BUPT

• Generalization Relationships amoiig Stereotypes are expressed in the stan-

dard UML fashion.

2.1.3 Considerations About UML Semantics Included in
Profîles

Alniost anyone will admit the need for a precise UML semantics [BCROO, ObeOO,

HeyOl]. Next issues reveal the problems that appear when trying to achieve this

goal. We try to respond at least partially to this problems when we propose our

meta-profile.

The granulcirity problem. Part of the precise UML semantics should be

contained in domain-specific parts. i.e. profîles. The question that naturally

arises from this is what do we put in the basic UML and what do we put in the

domain specific parts?

Semantics defined in profîles. A possible approach is to leave the UML

definition as it is today. Each profile should contain all the semantics that

describes it. The advantage is that this allows almost any "UML semantics" to

exist. This approach does nothing for increasing the UML precision, it only gives

semantics to UML dialects. One of the main goals of asking for a precise UML,

which is to ensure that UML offers a communication means between modelei^, is

compromised, as the same UML model may be understood differently in different

contexts. Actually, this approach would lead to the transformation of UML from

a modelling language to a modelhng paradigm. If no concept had any semantics,

then UML would only be a vocabulary of terms with different meanings in

different contexts. Concretely this approach would consist of leaving the UML

definition as it is today (possible removing inconsistencies and omissions, if they

are found), and adding precise semantics into UML profiles.

Semantics shared between profile and meta-model. Another approach

would be to add semantics into profiles, but to also add more information into

the UML definition. A possible solution is to define the concepts, relationships

between them, constraints, some more precise semantics of them in the common

UML. Moreover, for each concept it is stated explicitly in the common UML

whether it can or cannot be refined (or redefined) in a profile. The advantage

is that the impact of different variants is reduced and localized and anytime

someone will look at a UML model it will be clear which elements are susceptible

of having a semantics different from the common one. In the same spirit we

could imagine not only having concepts whose semantics can be refined, but

also having concepts without semantics, so that any UML profile should clearly

state what is the meaning of that concept in its context.

Flavors of the flavors Assuming we know how to partition the semantic

between the common UML and the specific profile, the next questions that

13

BUPT

comes is how much information the couple common UML plus specific profile

should contain? We take as a concrete example the under-work UML profile

for real-time [RFPRT], as it is one of the first profiles demanded by the OMG.

The purpose of the real-time profile is to oflFer specific means appropriate for the

real-time domain. Although it solves many of the UML problems, it still may

need further refinement. The real-time domain is itself vast, and a single profile

could not address every specific demand. As a result, if one would compare the

L^ML profile for real-time with a solution dedicated to a specific real-time field,

such as the SDL [SDL] primary designed for telecommunication, the conclusion

would be that the real-time profile offers less than the existing solutions and

may still need further refinements.

Although the problem of not having a precise semaiitics has been often

signaled, having a precise semantics of UML is still an aspiration.

2.1.4 UML Act ion Semantics Model

Action Semantics Model [SPH^Ol, MTAL99, RFBLOOl] is a promising tech-

nology included in last version of UML specification. It aims to provide both a

meta-model integrated into the UML meta-model, and a model of execution for

the statements (application code or constraints). As a OMG standard, the Ac-

tion Semantics eases the move to tool interoperability, and allows for executable

modeling and simulation.

The fundamenta l elements defined by this model are presented

below.

• Action - fundamental unit of computaţional behavior;

• Action semantics are based on proven concepts from computer science.

Act ion semantics remove assumptions about specific compu t i ng

environments in user models.

• Execution engines, programming languages, implementation details:

• Do not require specification of software components, tasking structures or

forms of transfer of control;

• Yet allows modelers to produce executable specifications.

A n action takes some input values, possibly accesses the state of

the containing system, performs some processing, possibly modifîes

the state of the system, and produces some set of ou tpu t values. The

required inputs and outputs of an action are specified as P ins of the

action.

• Input pins - hold values to be consumed by the action;

14

BUPT

• Output pins - hold valiies generated by the action.

• Pins are type conform. The type of the output pin is the same as or is a

descendant of the type of the input pin;

• A single output pin can be connected to zero or more input pins;

• Each input pin can have at niost one connection.

A Da t a Flow sequences execution of two actions by carrying da ta

between them i.e. provides impl icit sequencing.

• A data flow has source and destination pins;

• Output pins of one action are input pins of some other action.

A Control Flow defînes a sequencing dependency between two ac-

tions i.e. provides explicit sequencing.

• The successor action of the flow may not execute until the predecessor

action has completed execution.

The model specification maximizes action concurrency.

• It treats all actions as executing concurrently unless exphcitly sequenced

by a flow of data or control.

Following constraints are defîned for Pr imi t ive Actions.

• A primitive action is one that cannot be decomposed into other actions.

Primitive actions do not contain any sub-actions i.e. nested actions;

• Primitive actions include purely mathematical functions, such as arith-

metic and string functions.

A Procedure is a set of actions tha t may be attached as a un i t to

other parts of the user model , for example, as the body of a method .

• Procedure is an action container; a set of actions within a model e.g. body

of a method;

• Procedure provides a context for action execution;

• Procedure takes a single object as argument and produces a single reply

object as result;

• Multiple arguments or results possible i.e. represented as object attributes.

U M L : K inds of actions.

15

BUPT

New Data Types may be defined using meta-model Data Types

e.g. Uniimitedinteger.

• Defines a data type whose range is the nonnegative integers augmented

bv the special value unliniited:

• Are iised for the upper bound of multiphcities.

Read Actions get values, while Write Actions modify values and
create and destroy objects and links. Read and Write Actions share
the structures for identifying the attributes, links, and variables that
they are accessing.

• Variables:

• Attributes;

• Links.

Composite Actions are provided for conditionals and iteration. In

both cases, there is a need to group actions together so they may be

executed (or not) as unit. Such groupings may be nested, and may

accept and receive control fiows.

• Group, condiţional and loop actions Computation actions:

• Math is N/A, left to the implementation to define as needed - ApplyFunc-

tionAction, CodeAction, MarshalAction...

Collection actions: contain a subaction, an embedded action that
is executed once for each element in the input collection.

• Iterate: applies a subaction to each of the elements in a collection repeat-

edly within a loop:

• Filter: selects a subset of the elements in a collection into a new collection;

• Map: action applies a subaction in parallel to each of the elements in a

collection.

Messaging Actions exchange messages among objects.

• Actions for synchronous, asjaichronous invocation Jumps;

• Break, continue, exceptions Surface languages may define their own ac-

tions.

16

BUPT

2.1.5 J-UML

In inost parts J-UML [Kai99], an extension of UML, can be understood as a

subset of UML, i.e. customized UML. J-UML is however totally Java oriented

- supporting only and fully the graphical OOD/OOA of the actual Java source

code. J-UML is not by any means trying to diminish the important value of

language independent modelling. On the contrary: it tries to build a bridge - or

'adapter' -between these two distant worlds. It defînes how to transfer, 'map',

UML models into actual Java implementations.

The J-UML motto is:

"You can't design am^hing that can't be straightforwardly transferred to

Java."

I can say that our goal is quite the same with a small change: Java will

be replaced by "target programming language (Java, C+-f-,)". Because of this

change, the manner of UML customization differs significatively.

J-UML tries to solve this contradiction specific to any language independent

modeling environment: there are always several ways to implement any language

independent model (like UML) in any specific language environment (like Java).

J-UML provides notation for a Java Class as an extension of UML Class rep-

resentation. It adds new compartments like Events compartment and Exception

compartment to handle special Java class syntax.

J-UML use UML visibility specifiers (-h, # , -) to define the visibility of class

for proprieties interchangeable with keywords pubhc, protected and private. The

main difference is on interpreting the absence of specifiers: UML considers by

default the propriety as public but J-UML considers it to have package visibility

(like in Java). In addition of that all Java modifiers, like static or synchronised,

could be used. Using of UML specifiers is not a good point.

J-UML has a special notation to refer the Java API classes. Using this

notation, classes that do not belong to application model can be used, even

if their implementat ion is not visible from the model. UML does not provide

anything like that but other systems, like Express-G [Sch91] with "defined data

types", does. The intent is to cover two aspects of programming: using basic

types defined by the language-binding and reusing code from libraries or other

projects. The main impediment is the "opacity" related with the last. The

internai structures of them are hidden and could not be seen. As a result of

that a "no control" policy has to be used. The meaning of this policy is to pass

all responsibilities to the language-binding compiler. No verification is made by

modeling tool related with the usage of those descriptions.

17

BUPT

2.2 Programming Languages Extensions and Meta-

languages

2.2.1 Java Extensions

OpenJa\-a [TCKIOO] is an exteiisible language based on Java. The OpenJava

MOP (Metaobject Protocol) [TatOO] is the extension interface of the language.

Through the MOP, the programmers can customize the language to implement

a new language niechanism. OpenJava helps people who want to develop better

Java libraries, that is, easy-to-use and efficient ones. It also helps people who are

developing their own extended Ja\'a languages. OpenJava can also be regarded

as a toolkit for constructing a Java preprocessor. The special feature of the

OpenJava MOP is its class meta-object API, through which programmers can

handle source code as object oriented language constructs. i.e. classes, methods,

fields. etc. Though its translation it is performed at compile-time, interfaces

are similar to Java Refiection API at runtime and easy to use for high-level

translations [Gui98]. For instance, getting information about methods, adding

methods, modifying methods and so on are easier.

Other extensions of the Java refiection are Reflexive Java [Wu98], Dalang

[WS98] and metaXa (metaJava) [GolQS, GK97]. They all share the same orien-

tat ion to Internet, the same concerns (transactions, security, concurrency, dis-

tribution, mobility and persistency). All use the separation between meta-code

and the application base code. At the same time they provide the customization

of methods invocation. For instance metaXaoflFers "before" and "after" routines

for method invocation and makes possible to customize routine computation on

one object through several meta-objects that are associated with it by links.

The models briefly described above aim to open Java language in a structured

way. Each of them provides characteristics close to our approach : before and

after methods routines, attaching of several meta-objects to the same base level

object of the application etc. The main diff"erences is our goal of obtaining the

language independence.

2.2.2 C++ Extensions

As mentioned within its name, OpenCH-+ [Chi99, Chi95] has been designed in

order to provide new capabilities to C-h-h language but avoiding tendentious

tasks for programmer, such as the modelling of a type system. The main uses of

OpenC-h+ are the development of syntactical/semantical extensions of C-f-+.

This approach focuses on efficiency and handles meta-information at compile

time. Main services of OpenC-l-+ are object assignment, handling of differ-

ent kind of expressions, function invocation, creation and deletion of instances,

access and updates of variables. In order to handle its customization, the meta-

programmer has to build a meta-class, which inherits from the meta-class Class.

He also has to redefine the routine bodies that are selected according to C-f-f-

extension that he intends to implement (each routine corresponds to a customiz-

able concept); the new contents of these routines correspond to the new piece

18

BUPT

of generated code related to the semantical action that is considered. Iguana

[GC96, DSC'^QO] allows the meta-programmer to select the concepts that should

be reified independently from each other. Modification of default semantics is

implemented by inheriting from the class that describes the reification and spe-

ciahzes the methods that may be found within it. The set of meta declarations

is encapsulated within the concept of protocol and it is allowed to build a new

protocol derived from existing ones. The protocols that are used in a class are

selected at declaration time. The main reified and customizable concepts are

method invocation, creation and deletion of objects, message receiving, feature

search, activation / deacti\^tion of semantical controls.

Both OpenC-hH- and Iguana are based upon the same existing language for

which an open programming environment is proposed. Our approach has to be

a little bit different according to the fact that it proposes a model that is not

based on any particular language. Another important distinction is marked by

the central position of links. This corresponds to the strong determination to

isolate the meta-code which handles the relationships between entities from the

meta code that handle the class semantics.

2.3 Design Patterns

A design pattern [GHJV94] provides a scheme for refining the subsystems or

components of a software system, or the relationships between them. It describes

a commonly recurring structure of communicating components that solves a gen-

eral design problem within a particular context. A design pattern is a pattern

whose form is described by means of software design constructs, for example ob-

jects, classes, inheritance, aggregation and use-relationship. The design pattern

identifies the pairticipating classes and their instances, their roles and collabora-

tions, and the distribution of responsibilities. Each design pattern focuses on a

particular object-oriented design problem or issue. It describes when it applies,

whether or not in can be applied in view of other design constraints, and the

consequences and trade-offs of its use. Design patterns are focussed on design

problems and not on a language. Despite of this, programming languages give

their own flavors to usage of a design pattern [Coo98].

2.4 Discussion

The easiest way to fill the gap between design and implementation model is

to restrict UML to an existing language's capabilities. In that case we can

speak about Java-UML, C-I-+-UML etc. The main problem resides in loosing

the "universal" characteristic of UML and in problems related in addition of

"non-standard" elements. A relevant example (J-UML) was analyzed in this

chapter.

We try to make an "open restriction" of UML. It is like creating an open

set of UML restrictions related with languages like Java, C-h-h etc. or with

19

BUPT

extension of that of languages. In that case we want to move the " universality"

at the level of OFL meta-prograiiiming instead of the level of modelling. As a

result, our approach will represent in sonie way a collection of UML restriction.

Since the collection is open we can say that OFL and OFL-ML do not really

restrict in fact the UML. they just uses it's model in other way.

Our approach does not change the meaning of UML:

• We propose to the user to define its semantics for a class or a relationship

using the semantics of OFL and to associate to these semantics a set of

tags.

• We want to change the way of using the UML elements. On the one hand

is possible to define whatever programming element is needed at the level

of OFL meta-programming and to use it in OFL-ML. On the other hand

is not allowed to use an element in OFL-ML, which hcis no corespondent

at the level of OFL.

The main benefit of our approach will be the possibility to have a direct and

an exactly matching implementation for the model but not forgetting the fact

that we are at the design level.

20

BUPT

Chapter 3

The OFL model

3.1 Intuitive approach

OFL is the acronyin for Opeii Flexible Languages [CreOlb, CCL99, LCC02,

CCLOO]and the name of a meta-model for object oriented programming lan-

guages based on classes. It is developing in France at University "Sophia An-

tipolis" of Nice. It relies on three essential concepts of object oriented languages:

the descriptions that are a generalization of the notion of class, the relationships

such as inheritance or aggregation and the langnages themselves. OFL provides

a customization of these three concepts in order to adapt their operaţional se-

mantics to the programmer's needs. It is then possible to specify new kind of

relationships and classes that could be introduced in an existing programming

language in order to improve its expressiveness, its readability and its capabili-

ties to evolve.

The OFL-ML (OFL Modelling Language) is intended to be an meta-profile

that allows automatic generation of UML profiles tailored for OFL-languages.

It is based on OFL and on UML profiles. OFL-ML will be design as a key

feature in implementation of the OFL Framework [PesOl, PLOO]. It is intended

to allows using of OFL extension for existing object programming languages.

The meaning of extension is that: is not possible to remove any kinds of classes

and relationships that already exist within the language but only to add new

kind of classes and relationships [CL02b]. For example it is not possible to

remove the kind of class called "interface" in Java but only to add another kind

of class if needed.

The existing programming language is selected by defining a binding be-

tween an UML Profile and this language. AU method bodies will be imple-

mented according to the syntax of this language. Indeed, OFL does not provide

customization at the level of methods body.

One of the main goals of our approach is to allow programmer to reduce

the gap between UML modelling structures and the target language used for

implementation. By target language we mean the object oriented programming

21

BUPT

language reified or extended using OFL.

The intent is to avoid the necessity to develop separate UML extensioii for

everj' target object oriented language. As intended, this iiiodelling language

will be closer with implementation language than UML is. This goal could

be achieved based on OFL feature to extend modelling capabilities of target

language. This way our approach will avoid usage of general modeling features.

Instead. the OFL specific features will be used.

The advantage of this solution coniparing with custom UML languages like

J-UML [Kai99] resides in its independence to the implementation language.

The advantage related with reflective languages, like Iguana [GC96], Open

C+-h [Chi99] or Open Jav^a [TCKIOO], consists in a considerably less meta-

programming work, tanks to the OFL. Also, unlike OFL Framework, the reflec-

tive language does not provide support to graphical modeling. The modeling

tools in this framework will be a combination between a modelling tool, like

Raţional Rose, and an IDE (Integrated Development Environment), like IBM

Visual Age. Although. commercial modeling tools could use with an OFL-ML

Profile [Des99].

3.2 Overview of OFL Model

OFL was first designed as a meta-object protocol such as that of CLOS (Com-

mon Lisp Object System) [KDRB91]. However, more open and complete that

CLOS, it has quickly become ver>' difficult and boring first to program and then

to use it. So it was switched to a hyper-generic approach to solve this problem.

Genericity is the ability to customize the behavior of a class in an object lan-

guage just as in the Eiffel [Mey02, Mey97] or C-f-f (template) [Str97, Koe95]

generic classes. Hyper-genericity [Des94] is the ability to customize the behav-

ior of the language itself. Rather than allowing redefining language behaviors

thanks to algorithms, OFL propose a set of parameters. These algorithms, al-

ready implemented, take into account the values of these parameters to achieve

the desired behavior. These algorithms are called OFL-Actions and they define

the operaţional semantics.

At first reading the OFL approach can be summed up as the search for

a set of parameters whose value determines the operaţional semantics of an

object language based on classes. It defines a set of parameter [CCCLOl], which

represents the main features of the behaviors of these three important notions

that are called concept-relationship, concept-description and concept-language.

For instance, concerning the concept-relationship, the value of the Cardinality

parameter allows to specify if it is simple or multiple. As for the concept-

description we have for instance the Generator parameter, which determines

whether the concept-description can or cannot create own instances.

The operaţional semantics of each concept must adapt to the value of its

parameters. This is achieved thanks to a set of action's algorithms whose exe-

cution depends on these values. For example, the assignment of an object to an

attribute, the dynamic binding of the features, the sending of messages and lots

22

BUPT

OFL

OKL-coacrpCs

Figure 3.1: The OFL Architecture

of other behaviors are expressed according to parameters of coiicept-relationship

and concept-description. OFL links two facets to each action: the first illus-

trates the static part inside an interpreter or a compiler; the second represents

the dynamic aspect integrated within the runtime. The distribution of the code

into these two facets depends on implementat ion choices of the OFL model.

Figure 3.1 illnstrates how to use the OFL Model to describe an application.

The notation follows the UML convention. Three levels of modelling are shown:

1. the apphcation level includes the program's descriptions and objects (OFL-

instances and OFL-data).

2. the language level describes the components of the programming language

{OFL-components like ComponentJavaClass or ComponentJavaExtends),

and

3. the OFL level represents the reification of those components {OFL-concepts

and OFL-atoms).

The OFL atoms represent the reification of the non-customized entities of the

model. The relationships, descriptions and languages have their own OFL atoms

to describe the part of their structure and their behavior, which are not cus-

tomized.

23

BUPT

The OFL components iiiherit froin atoms and represents reification of lan-

guage entities [reiationships and descriptions). Each component keeps a set

of characteristics that represents meta-information for program entities (OFL

instances) such as lists of attributes and methods for a description component

or lists of redefined features for relationship components. The language itself

is a component. It's main function is to put together the reiat ionships and

descriptions which are supplied to the programmer.

In order to describe an application, the programmer uses the services sup-

plied by the language level. He creates OFL-instances, which are the descrip-

tions and the relationships of his application by instantiation of the OFL-

components. At runtime, the application objects, called OFL-data, are instances

of the OFL-instances representing the descriptions.

3.2.1 OFL Level: OFL-Concepts and OFL-Atoms

The OFL model is a meta-model for the programming language (language level)

and a meta-meta-model for the programs itself (application level). OFL cus-

tomize three important notions: relationships, descriptions and languages. How-

ever, a lot of other components need to be reified such as objects, methods,

assertions, etc. in order to modelling a language completely. The OFL level

includes two t}ipes of entities:

• the OFL-Concepts which describes the customizable part of the relation-

ships, descriptions and languages, and

• the OFL-Atoms which describes the non-customizable part of these three

concepts as well as all the other components.

Also assertions are described in each OFL-concept and OFL-atom in order to

keep the model consistent.

OFL-Concep ts Figure 3.2 shows the whole of the classification of the OFL-

concepts. Let's remember that only the OFL-Concepts are customized in the

OFL model. The meta-programmer's task is to create an OFL-Component,

i.e. an instance of an OFL-Concept, by giving a value to each of its parameters.

Thus he decides on the behavior of each future instance of the OFL-Component.

If the operaţional semantics, which the meta-programmer wants to bind to an

OFL-Component, does not match the actions planned, then he has to modify

the code of those actions.

The OFL model is left open by this possibility which should not be used

but in very specific context. Indeed, in that case, the meta-programmer's job is

much heavier than just giving values to parameters.

The Concepts-Relationships. A concept-relationship is an entity represent-

ing a kind of relationship. A concept-relationship is consequently a meta-

relationship. Among the relationships, which are to be found in lots of object-

oriented languages based on classes and object design methods, we may mention

for example inheritance, aggregation, composition, generalizat ion, etc. However

24

BUPT

concept

concept-
language

concept-
relationship

concept-
description

1 1
concept-

relationship
between objects

concept-
relationship

between descriptions

concept-
import-ielationship

concept-relationship
between objects
and descriptions

concept-
use-relationship

Figure 3.2: The OFL Concepts

a given method or laiiguage seldom owiis all of these relationships and usually

uses some of them in order to simulate others. For example the generalization

in UjML describes a generalisation as well as an inheritance, a strict sub-typing,

etc.

Around thirty parameters define the semantics of all the OFL model's concept-

relationship. Figure 1 illustrates the classification of the concepts-relationships.

Concerning the inter-description relationships, we distinguish between the im-

port relationships (generalisation of the inheritance mechanism) and the use

relationships (generalisation of the aggregation mechanism).

OFL also takes into account the relationship between objects and classes,

which are used, for example to model the instantiation relationship existing

between an object and its class. It is also possible to model the relationship

between objects. Yet, OFL mainly care about inter-description relationships.

A Concept-Description allows defining the notion of class and all that looks

like a class such as the interfaces in Java. Therefore a concept-description is a

kind of meta-class.

For instance it can be noticed that even if they look the same the Eiffel, C-I-+

or Java, classes show some notable differences. Around twenty parameters are

necessary to describe the behavior of a description in the OFL model. Each

concept-description is compatible with a set of concepts-relationships. For in-

stance, in Java, the concept-description interface is compatible with the concept-

relationship implementation but it is incompatible with between-classes-inheritance.

The Concept-Language is an important and yet simple notion. It models a

language. In particular, each language includes a set of concepts-descriptions

and a set of concepts-relationships, which are compatible with at least one of

25

BUPT

entity

= r =

type

clftss-ftatuie

I

• ~ i r
typed-«ntity

method

pro ce dure

L _ I
attrlDute

ste temeni

message

parameter

expression
— ^ —

bookaA-evnnim

fuuc tion loc al-vamble assezbon

concept

1 1
description rektonship hngmge

•̂aditian

invanant

obiect

Figure 3.3: The OFL Atoms

the concepts-descriptions.

The concepts-languages are hardly customized and their inain function is to

federate the concepts-relationships and concepts-descriptions that are compati-

ble with them.

OFL-Atoms They represent the reification of the non-customized entities of

the model. Figure 3.3 illustrates a part of those OFL-Atoms. The relationships,

descriptions and languages have their own OFL-Atoms to describe the part of

their structure and their behavior, which are not customized. For instance in an

apphcation all the features of a description aie instances of an heir of feature,

all the expressions are instances of expression or of one of its heirs and all the

objects are instances of object. Thus OFL gives a full reification of the entities

found at the application runtime.

3.2.2 Language level: OFL-Components

The language level describes different types of relationships and descriptions,

which can be used in the modelled language. The relationships are instances of

concept-relationship, the description are instances of concept-description. The

language itself is an instance of concept-language. Its main function is to put

together the relationships and descriptions which are supplied to the program-

mer.

26

BUPT

3.2.3 Application Level: OFL-Instances and OFL-Data

To describe an application, the prograninier uses the services supplied by the

laiiguage level. He creates OFL-Instances, which are the descriptions and the

relationships of his application by instantiation of the OFL-Coniponents. At

runtime, the application objects, called OFL-Data, are instances of the OFL-

Instances representing the descriptions.

OFL-Instances Each description or relationship described by the prograni-

nier is niodelled by an OFL-Instance. The OFL Instances for a description

correspond to a class written by a prograninier in an object-oriented language.

The OFL Instances of a relationship keep the information for relationship cus-

tornization.

OFL-Data In the application, each description instance is modelled at run-

time by an OFL-Data entity. The OFL-Data objects are not instances of OFL-

Components because the behaviors of the application's objects are not custoniiz-

able according to the OFL.

3.3 Programmer and Meta-programmer: sepa-

ration of tasks

According to the model, the programmer and the meta-programmer tasks are

clear separated. The programmer has to make the application model and to

wTite the code for its implementation. Indeed, his work will be on the applica-

tion level. For model specification he has to use a modelling language designed

to provide OFL features. For cod implementation he can choose between dif-

ferent object oriented languages supported by the OFL implementation. The

sjmtax used will be the original language syntax but the semantics of model

reified in apphcation types will be changed according to the meta-programmer

OFL definitions. Usually this means much more constrains in accessing classes

features. The meta-programming works is locahzed on the OFL Components

level. His work consists in three different tasks. The first task consists in creat-

ing components that wrap over the language entities (mainly descriptions and

relationships). The second one consists in providing modified components by

changing parameters values. The last one implies much more work in both

defining parameters and changing the action code for new components. The

programmer will use those components to create the application model.

3.4 The Integration in the Existing Meta-Models

OFL is a meta-model that describes object-oriented languages based on classes

and customizes the operaţional semantics of their descriptions and relationships.

The state of the art, in the field of meta-model shows quite a diversity. We can

27

BUPT

find Reflective Java, Dalang, metaXa, OpenC-}-+, Iguana etc. These meta-

models are usually able to describe one another. Fiom a general point of view,

OFL is close to OpenC-|-+ by its customization model expressiveness and is

close to Iguana by technical aspects: the customizable meta Information and the

encapsulation of semantics (the OFL concept of language versus Iguana concept

of protocol). Generally, OFL is quite difFerent compering with all because its

language independence.

For OFL, the most significant one is MOF (Meta Object Facility) [ObjOl].

OFL do not aim to compete against MOF but to other a less general model

closer to the programmer. MOF describes a class concept, an association con-

cept and a package concept. A MOF class allows to define attributes, the type

of which can be simple or described by a class, and to specify operations. Let us

point out that OFL and MOF have the same approach concerning the method

bodies that have to be described according to an independent language (bind-

ing). OFL and MOF both draw from the OMG UML and IDL notation and

syntax. A MOF association allows to define any relationship that occurs be-

tween a number of MOF source classes and a number of MOF target classes.

The semantics of the relationship described by such an association is imple-

mented thanks to the attributes and the operations of the MOF classes. The

MOF packages allow encompassing the MOF classes and associations. OFL

may be described according to MOF and supply the latter with an additional

layer on top of it allowing customizing the operaţional semantics of the MOF

classes and associations. Finally, OFL can also be described thanks to XML

[W3C00. RayOh BDW^Ol] and XML-Schemas [ODW^Ol, DTV02].

Finally, we can consider relationships between OFL and Desigu Patterns.

Desigu Patterns technology take in account a lot of aspects controlled by OFL

model. Using OFL parameters, meta-programmer could control the granularity

of classes. could make distinction between different relationships like inheritance

and sub-typing and could implement several types of use relationships like dele-

gation or aggregation. For instance, OFL can make a clear distinction between

association and aggregation. Because OFL model deal also with run-time rela-

tionships, it can manage compile-time and run-time structures explicitly. The

OFL model could be used to simplify usage of design patterns or even to apply

some of patterns automatically. Other way is to integrate directly some patterns

into the OFL apphcation model in order to support programmer to choose the

best model for its application or to do automatic transformations to application

model.

28

BUPT

Chapter 4

Extending the OFL Model

Through OFL-Modifiers

OFL model provides a customization of main aspects of the semantics of a

laiiguage through actions and parameters, but the customization provided can

deal only with features than are enough general for being applicable to most

existing object oriented programming languages. Practicai experience points

out the necessity to capture more of the semantics of these languages. To

achieve that it is necessary to add new elements to the original OFL Model

[CreOlb. CL02a].

In order to preserve simplicity, a large part of the language reification is

not customizable in the OFL Model philosophy. However, in order to achieve

acceptance in programmers' community, some other customizations are needed.

Generally, this additional semantics is handled by keywords (modifiers) in ex-

isting languages.

One main goal of introducing modifiers is to limit the number of components

within an OFL-language. Using modifiers we avoid necessity to define one dif-

ferent component for any different combination of parameters. For instance, is

better not to have both public java-class and package java-class components dif-

ferentiated by a parameter visibility. Instead, we can imagine just one java-class

component and something else (like modifiers) allowing ensuring that access is

public.

Another goal of modifiers is to improve the fiexibility at the level of meta-

progranmiing by providing a clean way to extend a language with new capabil-

ities.

According to that we propose a generic approach which allows to define rules

for implementing access controls or additional semantics for language compo-

nents. The general idea is to apply these rules to an application in order to

provide for example metrics, error reporting, and design or debugging facilities.

Thanks to these rules we can had constraints to language entities in order to

enrich, when it is necessary, the expressiveness of a language construction.

29

BUPT

Coiiiparing with other approaches found in [ACL03, Sch02, BROl], we focus

on a generic technique independent from languages. Also, instead to define a

formalism which depicts access control niechanisms, we propose an approach

that describes how to implement these mechanisms at a meta-programming

level.

Following those goals we pay a special attention to not change the general

aspect of the OFL model.

Considering these issues we propose to add at the level of language com-

ponents the ability to define different kinds of modifiers and to add reification

elements according to that.

OFL modifiers are used together with other language entities in order to

change protection or other semantic aspects of them. Some of them have an

equivalent in ke>^vords that may be found in some programming lang"uages,

others could be added in order to simplify programming task.

4.1 The OCL Language

Starting from the point that most of the OFL modifiers relay on constraints

[Pes03] to be applied to the program entities, we choose OCL as the language

for specifying these constraints. OCL [CW02, WK98] is a formal language

which allows to express side effect-free constraints. The Object Management

Group (OMG) defines OCL (Object Constraint Language) [OMGOO] as a pcirt

of UML L3 standsird specification. Main motivation regarding that choice is

programming language independence of OCL and general acceptance of this

language.

OCL is designed to express side eflfect-free constraints. It was used by OMG

in the UML Semantics document [Sof97] to specify the rules of the UML meta-

model. Each rule in the static semantics sections in the UML Semantics docu-

ment contains an OCL expression, which is an invariant for the involved class.

The usage of OCL is important because in object-oriented modelling a graph-

ical model, like a class model, is not enough for a precise and unambiguous

specification. There is a need to describe additional constraints about the ob-

jects in the model. Such constraints are often described in natural language.

Practice has shown that this will always result in ambiguities. In order to write

unambiguous constraints, so-called formal languages have been developed. The

disadvantage of traditional formal languages is that they are useable to persons

\v\th a strong mathematical background, but difficult for the average business

or systeni modeler to use.

OCL has been developed to fill this gap. It is a formal language that remains

easy to read and write. It has been developed as a business modelling language

within the IBM Insurance division, and has its roots in the Syntropy method

[CD94].

OCL is a pure expression language [Gri99]. Therefore, an OCL expression

is guaranteed to be without side effect; it cannot change anything in the model.

This means that the state of the system will never change because of an OCL ex-

30

BUPT

pression, even though an OCL expressioii can be used to specify a state chaiige,

e.g. in a post-condition. AU values for all objects, including all links, will not

change. Whenever an OCL expression is evaliiated, it simply delivers a value.

OCL is not a prograniming language, so it is not possible to write program

logic or flow control in OCL.

OCL is a t>T3ed language, so each OCL expression has a type. In a correct

OCL expression all types used must be type conformant.

OCL can be used for a number of different purposes:

• to specify invariant on classes and t̂ ^pes in a class model

• to specify' type invariant for UML Stereotypes

• to describe pre- and post conditions on Operations and Methods

• to describe Guards

• as a navigation language

• to specify constraints on operations

We use OCL to describe constraints introduced by modifiers. It can be also

used to specify pre and post conditions for OFL-entities at the level of OFL-ML

implementation.

As a notation convention for this document, the underlined word before

an OCL expression determines the context for the expression. Also, the OCL

expression itself will be on italic.

In OCL, a number of basic types are predefined and available to the modeler

at all time: Boolean, Integer, Real, String and Enumeration. It is also defined

a number of operations on these predefined types.

In addition, all descriptions coming from the OFL Model are types in OCL

that is attached to the model.

The type Collection, which is predefined in OCL, plays an important role in

writing constraints. It includes a large number of predefined operations to enable

the OCL expression author (the modeler) to manipulate collections. Consistent

with the definition of OCL as an expression language, collection operations never

change collections. They may result in a collection, but rather than changing

the original collection they project the result into a new one.

Collection is an abstract t}TDe, with the concrete collection types as its sub-

types. OCL distinguishes three different collection types: Set, Sequence, and

Bag. A Set is the mathematical set. It does not contain duplicate elements.

A Bag is like a set, which may contain duplicates, i.e. the same element may

be in a bag twice or more. A Sequence is like a Bag in which the elements are

ordered. Both Bags and Sets have no order defined on them. Sets, Sequences

and Bags can be specified by a literal in OCL.

OCL defines a number of operators for collection manipulation:

• SELECT and REJECT - allows to specify a selection from a specific col-

lection

31

BUPT

• COLLECT - allows to specify a collection which is derived froni sonie other

collection, but which contains different objects from the original collection

(i.e. it is not a sub-collection)

• FORALL - allows to specify a Boolean expression, which must hold for all

objects in a collection

• EXISTS - allows to specify- a Boolean expression which must hold for at

least one object in a collection

• ITEFL^TE - allows building one accunmlation value by iterating over a

collection. It is a very generic. The operations Reject, Select, forAll,

Exists and Collect can all be described in terms of Iterate

4.2 The OFL Modifiers

An intuitive definition of a modifîer entity is the following: a modifier is a

language keword that is used in composition with other key^^wds to change

their semantics. An important issue is that a modifier keyword have no stand-

alone meaning.

0¥L-modifiers are designed to reify those entities in order to ensure better

OFL customization for programming languages. Generally, modifiers imply

constraints added to the application model in order to achieve a fine control.

Not all language modifiers are intended to be reified by OFL modifiers.

Semantics changes induced by some of them are very deep and relay in different

OFL components. We name them component modifiers. Following list presents

situation for three well known object-oriented languages: Java [GJSBOO, Fla99,

LYJW96], C-h-h [Str97, Lip99, Str94] and Eiffel [Mey02, Mey91].

4.2.1 Component Modifiers in Commercial Languages

Java language.

abstract {class dec larat ion} An abstract class is a class that is incomplete,

or to be considered incomplete. The reification for a class declared abstract

in Java results in several OFL description components for abstract class,

static abstract nested class, abstract inner class and abstract local class.

All these components has parameters generator and destructor set to value

false.

f inal { a t t r i bu te dec larat ion} A final attribute may only be assigned to once.

Once a final attribute has been assigned, it always contains the same value.

To model this kind of attribute in OFL we use an OFL-Atom Attribute that

has property is Constant set to true.

stat ic {feature dec larat ion} If a feature (attribute or method) is declared

static, there exists exactly one incarnation of the feature, no matter how

32

BUPT

many instances (possibly zero) of the class may eventually be created. A

static attribute, sometimes called a class variable, is incarnated when the

class is initialized. A static method, called as class method, is always iii-

voked without reference to a particular object. The O FL-Atom Attribute

aiid OFL-AtomMethod that reifies these entities has the isDescriptionFea-

ture property set to false.

C + + language.

stat ic {membe r dec larat ion} In C-f-h a variable that is part of a class, yet

is not part of an object of that class, is declared as static member. There is

exactly one copy of a static member instead of one copy per object. Simi-

larly, a function that needs access to members of a class, yet doesn't need

to be invoked for a particular object, is called a static member function.

The OFL reification resides in O FL-Atom Attribute and OFL-AtomMethod

entities, which have the isDescriptionFeature property set to false.

EifFel language.

expcuided {class dec larat ion} Declaring a class as expanded indicates that

entities declared of the corresponding type will have objects as their run-

time values. (By default, values are references to objects.). These classes

will be reified by description components corresponding to expanding class

and generic expanding class. Those components could not be target for

client aggregation relationship or generically derivation. Instead, they

could be target only for inheritance, expanded client relationship and ex-

panded generically derivation.

Figure 4.1 illustrates the OFL model extended with OFL-Modifiers. We define

three kind of modifîers for entities which support their semantics. These types

are: description-modifier, method-modifier and attribute-modifier. The OFL

modifiers components inherit from OFL-modifiers and represent reification of

language modifiers.

4.2.2 Definition of an OFL-Modifier

An OFL-modifier is defined by a modifier name, a context (an entity against

it is defined). a keyword, modifier assertions (OCL constraints) and a set of

associated actions (modifîed OFL-actions).

Modi f ie r Name . The name is used to identify the modifier. It should be a

legal identifîer related with OFL and the language binding.

Modi f ie r Con tex t . Type of entity that accepts the modifier is denoted by

its context. Context could be description, relationship, attribute or method.

33

BUPT

<HRL
OFL-ODDCCptS OFL-

T

OFL-CTunponcDts

OFL-modifltr»

OFL-modifiti componcDts

^ T T O

Figure 4.1: The extension of the OFL model through OFL-Modifiers

Modi f i e r Keyword . The modifier keyword represents the string representa-

tion of the modifier in the language syntax.

Modi f i e r Assert ions. We use OCL to specify the modifier constraints through

assertions.

These constraints reside in invariant for OFL components or in pre and post

conditions for OFL actions. Implementation of control implies assertions at the

level of OFL entities reifying the corresponding mechanisms. Indeed, they will

be attached to corresponding OFL-Components and OFL-Actions.

Another solution could be to define the assertion within the OFL-Modifier

itself but the drawback is that one modifier has to know about other modifiers

and this decrease its reuse capabilities.

Considering that, the role of an OFL-Modifier is to help meta-programmer

to manage and organize assertions.

For assertions we use notation that have the same meaning as in OCL defi-

nition [OMGOO]. The seif keyword refers the current instance of the associated

component.

The OCL modifier assertions are written in context of the OFL model defi-

nition; as a result of that, all types defined by the OFL model could be used in

assertions.

Some component features correspond to OCL collection type and support

OCL collection operators. For instance,

component.modifiers —• includes('modifier name')

that tests if the component has modifier 'modifier name' attached to it or not.

34

BUPT

Modi f ier ' s Act ions . Modifier's actions axe OFL-Actions rewritten to con-

sider new semantics. The modifier keeps references to all rewritten action, help-

ing meta-programmer to manage them. Actions play different roles depending

of the complexity of the considered modifier. Most modifiers do not need action

rewriting. They have just a set of assertions attached to theni.

In order to build a complex semantics from simpler ones and to extend mod-

ifiers, we define a modifier composition operator. This operator specifies how to

combine assertions and actions that belongs to composed modifiers. In the con-

text of composition operation we state the definition of "compatible modifiers"

and 'Mncompatible modifiers''. Two modifiers defined in the same context are

compatible if they can be the parts of a composition. They are incompatible

if their actions and assertions are not disjmictive. Actions and assertions are

not disjunctive if their semantics interfere. According to that we extent the

definition of OFL-Modifier by adding a characteristic named incompatible mod-

ifier set. One modifier keeps in this set information about all modifiers that are

incompatible with it.

In the composition process, two aspects of modifiers are addressed: the

assertions and the actions associated with it. For compatible modifiers all inter-

actions will be just cumulative. For the assertions, which are OCL expressions,

other constraints can be composed using the AND logical operator. Because

OCL avoids side effects, composition of assertions is commutative. Actions may

be called in a random order. Indeed, if there are some interactions at the level of

action semantics, the modifiers are incompatible and the composition operator

cannot be applied.

To deal with incompatible modifiers we define an invariant at the level of

OFL entity representing the modifier context.

Following example consider the Java public modifier for attributes. For bet-

ter understanding we consider a 'package' modifier replacing all default visibility

for attributes. The OFL reification for an attribute is the OFL-AtomAttribute.

When define ax:cess control modifiers for Java attributes, we attach an invariant

to this entity.

incompatible modifiers set for public is {protected, private, package}

context AtomAttribute

inv: seif.modifiers->includes('public')
implies
NOT (
seif.modif iers->includes('private')

OR
seif.modifiers->includes('package')

OR
seif.modifiers->includes('protected')
)

In order to cover all situations an invariant should be added for each modifier

considered.

35

BUPT

In the context of a langiiage extension niade by a nieta-programnier we

can distinguish two kind of modifiers. An OFL-modifier could represent the

reifîcation of a modifier that belongs to the language binding - we name it

native modifier - or could be a custom modifier added by the meta-programmer

in order to enrich language semantic.

The native modifiers will have the same meaning, related with the language

binding components, like in the original language. The meta-programming task

will consist in describing the meaning and the behavior of modifiers according

with their definition. When a meta-programmer adds new extension for the

language (new components) he has the responsibility to extend the definition of

the modifiers according to the new entities.

In the following sections we try to provide an orthogonal approach in order

to define both native and custom modifiers.

Next we present a classification based on the semantics behind modifiers.

The meaning of semantics in this context is related with the aspect of entity

semantics that is changed by the modifier. To evaluate semantic changes, we

consider all the OFL-Actions that are involved. The identified classes are:

4.2.3 Modifiers Classification Regarding OFL Impiemen-
tation Issues

Access Con t ro l Modi f iers The importance of a systematic approach on

access control mechanism represents an actual topic of research in the field

of object oriented technology [Aba98, Ard02, CNP89, Sny86]. Even the UML

standard [OMG03b], which was planned to be language independent, lacks in

defining protection mechanisms. Flower and Scott emphasize this aspect [FSOl]:

"When you are using visibility, use the rules of the language in which you

are working. When you are looking at UML model from elsewhere, be wary of

the meaning of visibility markers, and be aware how those meanings can change

from language to language."

OFL Model also lacks in customization of access control mechanisms [PL03].

Modifiers represent a way to add this customization. Considering the OFL-

Actions involved by the semantics we can split these modifiers into two subcat-

egories: basic modifiers and complex modifiers.

Basic Access Con t ro l Modif iers . Some modifiers add constraints to some

facets of the language which are customizable in OFL by setting values to

some of the parameters and characteristics built in the OFL Model To

implement these modifiers, meta-programmer has to write only assertions

at the level of one or several OFL-Components. They do not imply any

action rewriting. We call them basic modifiers.

Comp l ex Access Con t ro l Modif iers . Some other modifiers address mech-

anisms that are implemented in OFL through pieces of code wrote by

meta-programmer. To implement these modifiers, he has to rewrite some

of the OFL-Actions and/or to extend their assertions. Because writing

actions is a more complicated job, we call them complex modifiers.

36

BUPT

AII the time complex modifiers implies protection and some tinie they

implies also visibility (ex. protected-write [CKMR99]).

Op t im i z a t i o n Modi f iers These modifiers have no impact at the level of ap-

plication model semantics. They are used only to estabhsh optimization strate-

gies for compilers or, more generally, translators (ex. inhne, volatile, register

etc.)

Service Modi f iers Service modifiers are used to introduce new kind of ser-

vices like custom look-up, persistency or concurrency; They could have impact

at the level of model semantic or only at the level of code generation. (ex.

persistent, synchronised etc.)

Add i t i o n a l Modi f iers In addition to previous considered modifiers languages

has also other keywords used to change semantics in a not customizable manner

in OFL. The meaning of these additional modifier is to force compiler to treat

in a special way the entity that declare the modifier. This category does not

include modifiers that change the reification component for considered entity

(this subject was discussed in .sec. 4.2). The modified semantics is handled by

the native compiler (ex. explicit, agent etc.).

4.3 Basic Access Control Modifiers

Most of access-control modifiers add constraints regarding the way features

could be reached by other entities that are connected through different kinds of

relationships. They imply only constraints related with mechanisms reified by

OFL relationships (d>Tiamic relationships like the one that links an instance to

its class could also be considered). According to that they could be considered

as basic modifiers. Their implementation relies only on assertions at the level of

OFL-components dealing with the description that involve those relationships.

4.3.1 Examples of Native Basic Access Control Modifiers

J ava Language . Java [GJSBOO] has several modifiers used for basic access

control: public, protected, private, and default (to be more expressive we named

it package).

Java class members (attributes and methods) that are declared public can

be accessed any^vhere that the class in which they are declared can be accessed.

Members that are declared as protected can be accessed within the package

in which they are declared and in subclasses of the class in which they are

declared.

Members that are declared as private are only accessible in the class in which

they are defined and not in any of its subclasses.

37

BUPT

Class members that have no access control modifier associated is considered

to have default visibility. These members can be accessed only from within the

package in which they are declaied.

A Java class. abstract class or interface that is declared as public can be

referenced outside its package. If a class is not declared as public, it can be

referenced only within its package.

To achieve symmetry on defining modifiers we augmented the default Java

visibility for both class and members with an implicit package modifier.

C + + Language . For C-f—f- language [Str97] the public, protected and private

modifiers has slightly different meaning as in Java [Ard02]. It has no "package"

resolution but has instead a special class of visibility denoted by friend.

Using the friend ke>^vord, a class can giant access to non-member functions

or to another class. These friend functions and friend classes are permitted to

access private and protected class members. The public and protected ke>'words

do not apply to friend functions, as the class has no control over the scope of

friends.

If a member of a C-I-+ class is private, its name can be used only by member

functions and friends of the class in which it is declared.

A protected member can be used only by member functions and friends of

the class in which it is declared and by member functions and friends of classes

derived from this class.

A public member can be used by any function.

The default access for C-f + class members is private.

These modifiers could be used to change access control through inheritance

between classes.

When preceding the name of a base class, the public keyword specifies that

the public and protected members of the base class are public and protected

members, respectively, of the derived class.

The protected keyword use for inheritance specifies that the public and pro-

tected members of the base class are protected members of its derived classes.

Finally, when preceding the name of a base class, the private keyword speci-

fies that the public and protected members of the base class are private members

of the derived class.

EifFel Language. In Eiffel [Mey02] there are two constructions that can deal

with access modifiers; these are feature and export In this language some of the

protection semantics are hidden in the language philosophy. For instance, the

writing protection has no direct meaning for an attribute because access to an

attribute from outside class is considered as a query (and it is not possible to

write into a result of a query).

4.3.2 Basic Access Control Modifiers for Features

Modi f ie r Assert ions. The assertions of basic access control modifiers for

features (attributes and methods) are defined at the level of OFL-Relationship

38

BUPT

components that maiiage export of those features. They should be tested each

time a reiationship involving that feature is created. An invariant at the level

of description that own the feature is not necessary. Basic niodifiers do not

protect features against the description itself. Independently of the language

s\Titax we can consider three possibihties: the feature belongs to current class

or it is inherited through ai\ inheritance relationship from a direct or indirect

ancestor or it is accessed through an use relationship (current clsiss is a client

of description that owtis the feature). In the last situation we consider that the

current description could access supplier description. Indeed, this problem is

covered by description's access control. By current class we mean the class that

accesses the feature.

If we consider the Java syntax, features belonging to a class or inherited

by the class, are accessed using this keyword as qualifier. This keyword could

be explicit or imphcit (non-qualified features). Features accessed through an

use relationship are explicit qualified with the supplier name. To consider all

situations, an invguriant is needed for every component of import relationship

t>TDe and use relationship type defined for that language.

The following example presents invariants for extends Java inter-class rela-

tionship and Java aggregation relationship.

Java features basic modifiers: {public, protected, private, package}

cont ext Component JavaC1as sExt ends

inv: seif.showedFeatures->forall(f:Feature I

f.modifiers->includes('public')

OR

f.modifiers->include('protected'))

inv: seif.redefinedFeatures->forali(f:Feature |

f.modifiers->includes('public')

OR

f.modifiers->include('protected'))

inv: seif.hiddenFeatures->forali(f:Feature I

f.modif iers->includes('private'))

The invariant says that all showed and redefined features through an ex-

tend relationship should have modifiers public or protected attached. All hidden

features have private modifier.

context ComponentJavaAggregation

inv: seif . showedFeatures->f o r a l K f :Feature I

f.modifiers->includes('public')

OR

((f.modifiers->include('package') OR

f.modif iers->include('protected'))

AND

seif.source.package = seif.target.package)))

inv: seif.hiddenFeatures->forali(f:Feature I

f.modif iers->includes('private')

39

BUPT

OR
((f.modifiers->include('package') OR

f. modif iers->iiiclude (' protected'))

AND
seif.source.package <> seif.target.package)))

In addition to previoiis assertioii. this one tests also irifomiation about de-

scription's packages. In this assertion the descriptions are accessed through

source^ and target^ members of the reiat ionship component instance {seif).

AII these modifiers are incompatible. For methods, the incompatible modi-

fiers set contains also the abstract modifier.

Mod i f î e r Ac t ions Interference with model actions is minimal. Assertions are

added to control features access through relationships and no action rewriting

is necessary. Indeed, modifiers for basic access control generally do not redefine

any actions.

As an exception we can consider protected modifier for Java features. Action

is needed in this case to express a particular semantic presented in Figure 4.2.

Method m of class C have access to protected member / of B. This happens

because class A, which declare the member /, and class C belongs to the same

package. To express this semantics we need to rewrite the lookup action for

features. This action has to ensure access to protected members for any feature

that is declared by an ancestor belonging to same package with the class that

access the feature.

4.3.3 Basic Access Control Modifiers for Descriptions

Modi f i e r Assert ions. The assertions of basic access control modifiers for

descriptions are defined at the level of relationship components and at the level

of description component itself. They should be tested each time a relationship

involving that description is created and each time an instance of description is

created. The last situat ion deals with relationships that enable polymorphism.

According to these assumptions, the assertion associated to such modifier should

become a post-condition for the look-up OFL action.

The following example refers the Java language semantics for class access

control. Please note that this example does not consider interfaces, abstract

classes and inner classes.

Java class modifiers: { public, package}

context ComponentJavaClassExtends

inv: seif.source.package = seif.target.package

OR
(seif.source.package <> seif.target.package

^The source is the class which declares the relationship. In Java, for an extends relationship
this is the class which declare the keyword extends.

^the target is the class which is addressed by the relationship. In Java, for an extends
relationship this is the class whose name is mentioned after the keyword extends.

40

BUPT

packagel

ClassC
IpublicJ

pabUr void mu {
B b = at\s B(i:
onf(b.l

paclo)ge2

ChvssA
tpublic)

piotrrtediiil f:

ClassB
{public}

Figure 4.2: Java protected modifier semantics

implies

seif.source.modifiers->includes('public'))

A class can extend another class from the same package and a class can extend

a public class from other package.

context ComponentJavaAggregation

inv: seif.source.package = seif.target.package

OR

(seif.source.package <> seif.target.package

implies

seif.source.modifiers->includes('public'))

The following assertion address dependencies between classes, which are not

covered by OFL ciistoniization.

context Description::

lookupCaccessed: Description):Description

post: seif.package = result.package

OR

seif.package <> result.package

implies

result.modifiers->includes('public')

Next we consider the Java language semantics for interfaces access control.

The example does not consider inner interfaces.

Java interface modifiers: { public, package}

context ComponentJavaInterfaceExtends

41

BUPT

inv: seif.source.package = seif.target.package

OR

(seif.source.package <> seif.target.package

implies

seif.source.modifiers->includes('public'))

An interface can exteiid aiiother interface froin thc same package and an inter-

face can extend a public interface from other package.

context ComponentJavaimplements

inv: seif.source.package = seif.target.package

OR

(seif.source.package <> seif.target.package

implies

seif.source.modifiers->includes('public'))

A class can implements an interface fi'oin the same package and a class can

implements a public interface from other package.

context ComponentJavaAggregation

inv: seif.source.package = seif.target.package

OR

(seif.source.package <> seif.target.package

implies

seif.source.modifiers->includes('public'))

A CISLSS can declare an attribute of a type of an interface from the same package

and of a t̂ -pe of a public interface from other package.

To handle dependencies between classes and interfaces we use the same post-

condition for lookup action previous defined for class modifiers.

Modi f ie r Act ions For those modifiers, assertions are also added to control

features access through relationships. Post-conditions are used to filter the look-

up action result. Modifiers do not redefine any actions.

4.4 Complex Access Control Modifiers

Complex access control modifiers define protection at the level of special rights

like writing / reading an attribute, calling / redefining a method or extending

/ instantiating a description.

4.4.1 Examples of Native Complex Access Control Modi-
fiers

J ava Language . Java language does not include complex access control mod-

ifiers for attributes. It includes final modifier for methods and classes and in-

terfaces.

42

BUPT

Modifier final associated to a method disedlow redefinition.

A modifier with same name in context of classes and interfaces is used to

avoid extension.

Otlier language mechanisms (like making all constructors private) could be

used to control instantiation of classes.

C + + Language . C-h+ does not provide any specific modifiers to control

rights for using an entity.

Changing access rights to constructor does also control at the level of class

instantiation like in Java.

Eiffel Language . Frozen and deferred modifiers from Eiffel could be consid-

ered in this category.

Frozen, appearing before a feature name express that the declaration is not

subject to redefinition in descendants.

Deferred modifier permits declaration of a feature without an implementa-

tion. This transfers to proper descendants the responsibility for providing an

implementation through a new declaration, called an "eflFecting" of the feature.

4.4.2 Complex Access Control Modifiers for Methods

Rights concerning method usage address mechanisms like calling or redefining.

Modifiers presented in the previous section do not make distinction between

these mechanisms.

Modi f ie r Assert ions. Implementation of control implies assertions at the

level of OFL entities reifying corresponding mechanisms. Redefinition mecha-

nism is reified in OFL by redefinedFeatures characteristic of relationship com-

ponents. Access control is done by invariant for these components. Calling

mechanism is reified in execute action. Assertion concerning calling rights is

implemented in a post-condition for this action.

The following example is an implementation of final modifier for Java meth-

ods.

context Component JavaClassExtends

inv: seif.redefinedFeatures->forali(f:Feature I

f.typeOfFeature = method

implies
NOT f.modifiers->includes('final'))

Final modifier is compatible with public, protected, package and private modi-

fiers and can be present in a composition to them. Its invariant will be added

to the component invariant.

Modi f ie r Act ions . Complex access control modifiers for methods require

some times rewriting of the execute OFL action.

43

BUPT

4.4.3 Complex Access Control Modifiers for Attributes

Riglits conceriiing attribute usage address control agaiiist reading or writing.

Protectioii on writing is achieved by a pre-condition at the level of assign action.

We can consider here a proposal of Cook and Rumpe [CKMR99] for defining

a read-only modifier for attributes. They conclude that is useful to constraint

the visibility of an attribute to be readable, but not changeable. The concept

of a read-only-modifier is introduced in combination with private and protected

modifiers.

Modi f ie r Assert ions Assertioiis for attribute complex modifiers resides in

pre and post conditions at the level of assign OFL action.

Modi f i e r Ac t ions Necessity for action writing resides in complexity of con-

sidered semantic.

As an example we consider a modifier that implements a heavy writing pro-

tection for an attribute. By heavy protection we mean to protect not only the

reference of the object against writing but also the internai state of the referred

object.

A solution that lacks in effîciency is to give access to a clone of the object

that contains attribute and to look after that if any changes appear. To ensure

this control, attribute access action should be embedded in the following code:

// cloning the original object

aux = deep_clone(f)

// original action

// (any kind of action that may imply changing

// of attribute's internai state)

*action(aux)

// test if the object preserve same state

if (not deep_compare(f, aux))

generate_error("Could not write attribute")

end_if

destroy_object(aux)

Actions that permit changing of attribute's internai state are considered the

following OFL-actions: evaluate-parameters, attach-parameters, detach- param-

eters, assign, execute etc.

4.4.4 Complex Access Control Modifiers for Descriptions

Description may be extended, used or instantiated.

Modi f ie r Assert ions Extension is controlled through invariant on inheri-

tance relationship components. To control client-supplier relationship, invariant

is attached to use relationship components.

44

BUPT

As ani exaniple we consider the Java final modifier in context of a descrip-

tion. The invariant for Java extends relationship will check absence of this

modifier at the level of target description of relationship.

context ComponentJavaClassExtends

inv: NOT seif.target.modifiers->includes('finalO

Modi f ie r Ac t ions For description modifiers, actions are necessary to control

instantiation. Instead, niost of the tiines a precondition at the level of create-

instance action is enough to ensure all semantics.

4.5 Optimizat ion Modifiers

Optimization modifiers are used to transmit hints to the compiler in order to

generate a smaller or faster code. Because these modifiers have no impact on

application model semantics they have only to be passed to final compiler.

4.5.1 Examples of Native Optimization Modifiers

J ava Language . Java has one optimization modifier for attributes - volatile

- two optimization modifiers for methods - native and strictfp - and one opti-

mization modifier for descriptions - strictfp.

An attribute that is declared as volatile refers to objects and primitive values

that can be modified asynchronously by separate threads of execution. They

are treated in a special way by the compiler to control the manner in which they

can be updated.

A native method is a method written in a language other than Java. In a

way it is declared like an abstract method.

The effect of the strictfp modifier is to make all fioat or double expressions

within the method body be explicitly FP-strict. Within a FP-strict expression,

all intermediate values must be elements of the fioat value set or the double

value set, implying that the results of all FP-strict expressions must be those

predicted by IEEE 754 arithmetic on operands represented using single and

double forrnats.

The effect of the strictfp modifier in context of a class or an interface is to

make all fioat or double expressions within the class or interface declaration be

explicitly FP-strict. This imphes that all methods declared in the class, and all

nested types declared in the class, are implicitly strictfp. Also all fioat or double

expressions within all variable initializers, instance initializers, static initializers

and constructors of the class will also be FP-strict.

C + + Language . C-h+ language contains also optimization modifiers. The

C-h-f- specification defined inline for functions and mutable and volatile for mem-

ber attributes.

45

BUPT

The inlme modifier for a member function is a hint for the compiler that is

should atteinpt to generate code far a call od function inline rather through the

usiial function call mechanisms.

The mutable modifier specifies that a member attribute should be stored in a

way that allows updating - even when it is a member of a const object. In other

words mutable means "can never be const". Declaration of mutable member is

appropriate when only part of the object is allowed to change.

A volatile specifier is a hint to a compiler that an attribute may change its

value in way not specified by the language, so that aggressive compiler opti-

mization must be avoided.

EifFel Language . Analyzing EifFel we find also optimization modifiers. In-

dexing and obsolete modifiers for a class could be considered in this category

The opţional Indexing parts have no direct effect on the semantics of the

class. They serve to associate information with the class, for use by tools for

archiving and retrieving classes based on their properties. This is particularly

important in the approach to software construction promoted by Eiffel, based

on libraries of reusable classes: the designer of a class should help future users

find out about the availability of classes fulfilling particular needs. We choose

to implement that part like a modifier because OFL does not contain any cus-

tomization according to that. Because indexing part could appear in two dif-

ferent places - one at the beginning and one at the end - we define two difFerent

modifiers Startlndexing and Endindexing.

The obsolete clause in a class indicates that the class does not meet current

standards. The advice for developers is against continuing to use it as supplier

or parent but without to harm existing systems which rely on this class. Declar-

ing a class as Obsolete does not affect its semantics. Instead, some language

processing tools may produce a warning when they process a class that relies,

as client or descendant, on an obsolete class.

4.5.2 Optimization Modifiers for Attributes

Optimization modifiers for attributes deal mainly with memory allocation and

persistency.

Modi f ie r Assert ions Assertions for optimization modifiers have to be writ-

ten just to avoid usage of incompatible modifiers. No other constraints are

necessary.

If we consider Java modifiers, volatile is incompatible with final. Because

final keyword has no reification in OFL (4.2) the assertion have to ensure that

the propriety isConstant is set to false.

context AtomAttribute

inv: seif.modifiers->includes('volatile')

implies

46

BUPT

seif.isConstant = false

Modi f ie r Act ions In case of using an OFL translator to native code, actions

for these modifiers have just to copy them to the final translated code.

In case of an OFL compiler, it could consider directly those modifiers to

make optimizations. Another possibility is to ignore these modifiers if that

optimizations are not compulsory.

4.5.3 Optimization Modifiers for Methods

Optimization modifiers for methods concerns in accelerating calling mechanism

and in dealing with methods written and compiled in other languages.

Modi f ie r Assert ions Assertions for optimization modifiers concerns usage of

incompatible modifiers. No other constraints are necessairy.

In the case of native modifier in Java, it is incompatible with synchronized

modifier. Also, a constructor method could not be declared as native. The

lack of a possible native constructors is an arbitrary language design choice that

makes it difficult for an implementation of the virtual machine to verify that

superclass constructors are always properly invoked during object creation.

context AtomMethod

inv: seif.modifiers->includes('native')

implies

seif.isConstructor = false

and

seif.body->isEmptyO

and

NOT seif.modifiers->includes('synchronized')

Modi f ie r Ac t ions These modifiers needs same kind of actions as optimization

modifiers for attributes. In case of designing of an OFL compiler for the OFL

language reification, attention must be payed to make a correct linking with

outside code.

4.5.4 Optimization Modifiers for Description

Optimization modifiers for descriptions are used for version and documentation

management. They could be used also to organize library of classes.

Modi f ie r Assert ions No assertion are needed.

47

BUPT

Modi f îe r Ac t ions Actions could be desigiied to generate errors or warniiigs

in case of version conflicts or to generate class documentation. These actions

could be executed by inodelling tools or be translators or compilers. Special

tools could also run them in order to find desired classes in libraries or to check

compatibilities.

4.6 Service Modifîers

4.6.1 Examples of Native Service Modifîers

J ava Language . Java has three modifîers that could be part of this classifi-

cation. These are synchronized for methods and transient for attributes.

Java virtual machine can support many threads of execution at once. Threads

may be supported by having man}' hardware processors, by time-slicing a sin-

gle hardware processor, or by time-slicing many hardware processors. To help

programmer to use threads. Java provide mechanisms for synchronizing the con-

current activity of threads through synchronized keword. A Java synchronized

method is a niethod that must acquire a lock on an object or on a class before

it can be executed. For a class {static) method, the lock associated with the

Class object for the methods class is used. For an instance method, the lock

associated with this (the object for which the method was invoked) is used.

An attribute that is declared as transient is not saved as part of an object

when the object is serialized. The transient keyword identifies an attribute that

does not maintain a persistent state.

C + + Language . We do not identify any native service modifier in C-f-4-

language.

Eiffel Language . Eiffel also does not include any service modifier.

4.6.2 Service Modifîers for Attributes

Service modifiers for attributes address services that deal with objects state (like

persistency).

Modi f îe r Assert ions Most of the assertions for these modifiers deal just

with incompatible modifiers. A particular situation result because OFL does

not provide customization at the level of attributes. To cover this situation,

modifier assertion has to test if usage of the considered service is permitted or

not in context of description that declare the attribute.

Modi f ie r Ac t ions Service modifier actions will implement the service or will

make link with components that provide considered service.

48

BUPT

4.6.3 Service Modifiers for Methods

Service modifiers tor methods address services that deal vvith execut ion (ex.

coiicurrency).

Mod i f î e r Assert ions Service modifier assertions has to ensure that a partic-

ular kind of method (ex: a constructor or a destructor) support or not targeted

service. Similarly to attributes, OFL does not provide customization at the

level of methods. Because all methods have same kind of reification, as OFL-

AtornAttribute instance. inforrnation regarding them are characteristics at the

level of those instances.

Additionally, incompatible modifiers have to be considered.

Modi f î e r Act ions Service modifîer actions will implement the considered

service. Most of those actions will be dynamic actions injected at compiling

time.

4.6.4 Service Modifiers for Descriptions

Service modifiers for descriptions have to deal with all kind of services.

Mod i f î e r Assert ions Assertion will have to ensure that all relationships that

involve the current description are compatible with the service provided. If

we consider persistency, a composition relationship could imply that target of

relationship should be also persistent if the source is persistent. In other words,

assertions have to verif>^ that all composition parts could be made persistent.

Modi f î e r Ac t ions Service modifier actions will implement the service. Most

of these actions will specialize actions of modifiers for attributes and methods.

4.7 Additional Modifiers

We consider here all modifiers that could not be included in previous categories.

These modifiers are used to change the semantics of accompanied entity in a

manner non-customizable in OFL. Semantics changing implied by native mod-

ifiers is handled by a native compiler of the corresponding language. When an

OFL application model is translated in native language code these modifiers are

just written into the generated source code. A custom OFL compiler for the

considered language binding must take care to generate the correct semantic for

native modifiers.

4.7.1 Examples of Native Additional Modifiers

J ava Language . For Java language we do not identify any modifiers that

could be considered in this category.

49

BUPT

C+4- Language . In this category, C-h-f has modifiers like const for methods

and explicit for constructors (that are also a kind of method).

The const modifier used for a method indicated that the method do not

modif\' the state of an object.

In C-h-h, explicit constructors will be invoked only exphcitly. That disallows

imphcit conversions.

Eiffel Language . Eiffel contains agent keyword that modify the semantics of

a method parameter.

The keywwd agent is used to transmit a routine as a parameter for other

routine. It avoids confusion with an actual routine call when transmit parame-

ter. Indeed, when transmit tlie parameter, the routine is not called yet. Instead,

the routine is pass to calhng routine as an agent.

Modi f ie r Assert ions Assertions have to deal with incompatible modifiers for

all additional modifiers. Because this category is a very general one, no other

assumptions could be made regarding other necessary assertions.

Modi f ie r Ac t ions We can assume that all modifiers from this category in-

volve hard action writing. Each of them address a very specific sematic. Meta-

programmer has to identify first what OFL actions are involved in expressing

considered semantics.

As example, if we consider the explicit native C-l—I- modifier, semantics are

expressed at the level of before-create-instance and create-instance OFL actions.

4.8 Conclusion and discussions

In this paper we proposed to extend the OFL Model. The main goal of this

extension was to add customization of the access control mechanism and of

additional non-covered semantics. We introduced the notion of OFL modifier

to provide a clean way for control implementation. For better imderstanding of

the concept we present in sections 4 and 5 examples of several native modifiers

reification.

As future work we proposed to add support for OFL modifiers and to inte-

grate them in all OFL tools. We also plan to extend the modifiers with high level

actions. The OFL modeling tool will execute these actions to ensure automatic

model correction.

50

BUPT

Chapter 5

The OFL-ML Meta-Profile

The specification for an OFL modeling language (OFL-ML) [PCL03b] set out

the necessity to provide a standard way to express the semantics of an OFL-

languagt application using UML-like notation and thus to support OFL applica-

tions modelling with standard UML tools. The term OYL-language means a lan-

guage reified or expressed in OFL (ex: OFL-Java, OFL-C-h+, OFL-myJavaExtension

etc.).

We define an OFL-ML Profile as an UML Profile that is generated auto-

matically and customized for every language expressed in OFL. Indeed, each

existing language reified in OFL or a possible extended language expressed in

OFL need their own associated OFL-ML Profile.

Our goal is to design a meta-model which allow us to generate OFL-ML

Profiles. We name this meta-model as OFL-ML meta-profile.

Considering that, the OFL-ML will be a meta-profile for each possible UML

Profile designed for a programming language. Indeed, each instance of OFL-

ML in context of a particular OFL-language is an UML Profile for that language.

We name this profile "OFL-ML-Profile for OFL-language". This way will exists

OFL-ML Profile for OFL-Java", "OFL-ML Profile for OFL-myExtendedJava"

or "OFL-ML Profile for OFL-C-f-h'' and so on.

In a simplified way, OFL-ML could be considered as a kind of Profile-

Ternplate. To obtain a specific UML Profile for an OFL-language, OFL-ML

has to be instantiated using OFL meta-information as components, parameters,

characteristics and modifiers.

AII properties of UML meta-model elements contained in the OFL-ML may

be used to express an object model that conforms to the resulted profile. Based

on that, modelling tools that handle UML Profiles could generate a XML rep-

resentation of an OFL-language application.

The main purpose of OFL-ML meta-profile is to provide to programmer an

UML Profile designed to support development for OFL applications. Using this

profile with a modeling tool, the programmer could generate a representation

for the application that could be processed later by an OFL-translator, OFL-

compiler or other tools.

51

BUPT

UML Profiles provide a generic extension mechanism for building UML mod-

els in particular doniains. They are based on additional Stereotypes and Tagged

values that are applied to Elenients. Attributes, Methods, Links, Link Ends and

more. A profile is a collection of such extensions that together describe some

particular modelling problem and facilitate modelling constructs in that doniain.

In [Des99] it is discussed hovv specific domains that require a specialization of

the general UML meta-model can define an UML profile to focus UML to more

precisely describe the domain. Even as concrete UML profiles have started to

emerge, use of the profiling mechanism is still discussed [DSB99, AKOO]. On

OFL-ML profile generation we consider recommendation found in "UML Profile

White Paper" [Des99]. Because it is not a final accepted opinion about Profiles,

this paper is not yet an official OMG white paper.

An OFL-ML profile are planed to be used vvith standaj'd UML modeling

tools or with new modeling tools special designed for it. It could be used to

test and validate the model, to apply design patterns in automatic way, to

collect metrics or to generate XML representation of OFL-code. The OFL

information contained by OFL-ML entities represent a real help to achieve all

these goals. It is obvious that in the last case, all this information will fill the

XML representation of application elements.

5.1 Supported Elements and Definitions

5.1.1 OFL Model

Specification of OFL-ML meta-profile is based on OFL model definition found

in [CreOlb] extended with OFL Modifiers [PL03, PCL03a]. The OFL elements

modelled by OFL-ML meta-profile are:

OFL-atoms OFL-atoms represent the reification of the non-customized enti-

ties of the model. Example of atoms are AtomAttribute, AtomMethod,

AtomParameter etc.

OFL-componen ts OFL-components inherit from OFL-atoms and represent

reification of language entities {relationships and descriptions).

OFL-parameters OFL-parameters contains values that determine the oper-

aţional semantics of an object oriented language. OFL-ML use only pa-

rameters that have impact on the level of application model.

OFL-componen ts characteristics Each OFL-component keeps a set of char-

acteristics that represents meta-information for program entities such as

lists of attributes and methods for a description component or lists of rede-

fined features for relationship components. As specified, OFL-ML use only

those characteristics that have impact on the level of application model.

52

BUPT

5.1.2 OFL-Modifiers

OFL-Modifiers [PL03] represent an extension of the OFL Model as presented in

[CreOlb]. They are used to express additional semantics that is not customizable

by OFL. OFL-ML meta-profile will express this semantics using mainly tagged

values. These tagged values will be added to the generated UML-Profile. Also,

modifiers assertions, which contain in fact considered semantics, have to be

translated into Profile constraints. In this paper we try to identify assertion

transformation rules that are necessary if we consider an automatic generation

of profile.

5.1.3 UML Profile

The notion of the UML profile appeared in the UML L3 standard as a means of

structuring UML extensions (tagged values, stereot^-pes and constraints). UML

is a modelling language used in a large number of application domains and

all types of software applications. However, each domain has specific notions

and particular needs. which are handled by UML through extensions which are

grouped into UML Profiles.

OFL-ML is based on UML Profile specification found in [Des99, OMG02a,

Sof99]. An UML Profile:

• Identifies a subset of the UML meta-model (which may be the entire UML

meta-model).

• Specifies well-formedness rules beyond those specified by the identified

subset of the UML meta-model. Well-formedness rule is a term used in

the normative UML meta-model specification [OMG03b] to describe a set

of constraints written in natural language and UMLs Object Constraint

Language (OCL) that contributes to the definition of a meta-model ele-

ment.

• Specifies standard elements beyond those specified by the identified sub-

set of the UML meta-model. Standard element is a term used in the

UML meta-model specification to describe a standard instance of an UML

stereotype, tagged value, or constraint

Specifies semantics, expressed formal or in natural language, beyond those

specified by the identified subset of the UML meta-model.

5.1.4 OCL

The OCL convenience operations for UML Meta-model elements presented in

this section can be applied generally to UML version L5 (0L03.2003) and are

not specific to the UML Profile defined by OFL-ML. They are defined in order

to produce more compact and readable OCL. Indeed, they are used in UML

profiles already approved by OMG [OMG02a, OMGOl] in the same way we

intend to do here.

53

BUPT

For ModelElement.

[1] The operation allStereotypes results in a Set containiiig the ModelElements

Stereotype and all Stereotypes inherited by that Stereotype (as opposed

to all Stereotypes inherited by the ModelElement).

allStereotypes : Set(Stereotype);

allStereotypes = seif . stereotype->unioii

(seif . stereotype. generalization. psirent. allStereotypes)

[2] The operation isStereotyped determines whether the ModelElement has a

Stereotype whose name is eqiial to the input name.

isStereotyped : (stereotypeName : String) : Boolean;

seif.stereotype.name = stereotypeName

[3] The operation isStereokinded determines whether the ModelElement has a

Stereotype whose name is equal to the input name or if it has a Stereotype

one of whose ancestors name is equal to the input name.

isStereokinded : (stereotypeName : String) : Boolean;

seif.allStereotypes->exists (

stereotype I stereotype.name = stereotypeName)

There are some OCL convenience operations defined in this specificat ion

that apply more narrowly to certain extensions of UML that the profile

defines. These operations appear inline with the Constraints for those

specific extensions.

For Classifier

[1] The operation navigableOppositeEnds results in a Set containing all navi-

gable AssociationEnds that are opposite to the Classifier.

navigableOppositeEnds : Set(AssociationEnd);

navigableOppositeEnds

= seif.oppositeAssociationEnds ->

select(end I end.isNavigable)

[2] The operation allEnds results in a Set containing all AssociationEnds for

which the Classifier is the type.

allEnds : Set(AssociationEnd);

allEnds = seif.associations ->

collect(assoc I assoc.connection)

[3] The operation nonNavigableNearEnds results in a Set containing all Asso-

ciationEnds that are adjacent to the Classifier and that are non-navigable.

54

BUPT

nonNavigableNearEnds : Set(AssociationEnd);

nonNavigableNearEnds =

seif.allEnds->select

(end I end.type = seif and not end.isNavigable)

[4] The operation navigahleEnds results in a Set containing all navigable As-

sociationEnds for which the Classifier; that is, seif is the type.

navigableEnds : Set(AssociationEnd);

navigableEnds = allEnds ->
select (end I end.isNavigable)

5.2 OFL-ML Definit ion

5.2.1 Identified Subset of UML

OFL-ML diagranis are based on UML Static Structures Diagrams (Class Di-

agrams). An UML class diagram is a graph of Classifîer elements connected

by their various static relationships. These elements belong to standard UML

packages.

The OFL-ML extends the following standard UML packages: Core and

Model Management. Figure 5.1 shows the model elements that form the struc-

tural backbone of the meta-model and figure 5.2 shows the model elements that

define relationships. The abstract syntax for the Model Management package

is expressed in graphic notation in Figure 5.3.

UML use standard visibility markers to express access control at the level of

a classifier and feature. These markers has no meaning for an OFL-ML profile.

They are covered by tagged values that represents corresponding access control

modifiers. The reason resides in difficulty of an automatic translation between

access control modifiers and these markers. Yet, if a meta-programmer manual

intervention is accepted, mapping between these elements should be considered.

The following concrete metaclasses, and implicitly all super-metaclasses of

these metaclasses, are used:

5.2.2 From Core - Backbone

The backbone of the core package is shown in fig. 5.1.

A t t r i b u t e An attribute is a named slot within a classifier that describes a

range of values that instances of the classifier may hold.

Class A class is a description of a set of objects that share the same attributes,

operations, methods, relationships, and semantics.

Classifier A classifier is an element that describes behavioral and structural

features; it comes in several specific forms, including class, data type, inter-

face, component, artifact, and others that aie defined in other metamodel

packages.

55

BUPT

Commen t A comment is an annotation attached to a model element or a set

of model elements. It has no semantic force but may contain information

useful to tlie modeler.

Constra int A constraint is a semantic condition or restriction expressed in

text.

Da taType A data type is a type whose values have no identity (i.e., they are

pure values). Data types include primitive built-in types (such as integer

and string) as well as definable enumeration types (such as the predefîned

enumeration type boolean whose literals are false and true).

ElementOwnersh ip Element ownership defines the visibility of a ModelEle-

ment contained in a Namespace.

Feature A feature is a property, like operation or attribute, which is encapsu-

lated within a Classifier.

Namespace A namespace is a part of a model that contains a set of Mod-

elElements each of whose names designates an unique element within the

namespace.

Opera t ion An operation is a service that can be requested froni an object to

effect behavior. An operation has a signature, which describes the actual

parameters that are possible (including possible return values).

Parameter A parameter is an unbound variable that can be changed, passed,

or returned. A parameter may include a name, type, and direction of

communication.

ProgrammingLanguageDataType A data type is a t̂ -pe whose values have

no identity (i.e., they are pure values). A programming language data

type is a data type specified according to the semantics of a particular

programming language, using constructs available in that language.

From Cere - Relat ionships The UML relationships described in the core

package are presented in fig. 5.2.

Abstract ion An abstraction is a Dependency relationship that relates two el-

ements or sets of elements that represent the same concept at different

levels of abstraction or from different viewpoints.

Association An association declares a connection (link) between instances of

the associated classifiers (e.g., classes). It consists of at least two associ-

ation ends, each specifying a connected classifier and a set of properties

that must be fulfilled for the relationship to be valid.

Associat ionEnd An association end is an endpoint of an association, which

connects the association to a classifier. Each association end is part of one

association.

56

BUPT

VistWArBl
KSprolTiiftn llMtMfn
ntvftfucp NaiK«(nc«
c««floofWfilMO. tfcp̂ t̂înrv

•ctefhorĥra*

higefl» ne*
so«re(kM rm
CUBHICCl '̂ «MWHfri

••oŵfnĉ
0-1

«ccnfckwdE' bmil

•'faoeyactf
—

Pmfwlri
isttsl Rcokai
lsL«af ODOcsoa
sAitsct Bootan
'loiAaREdKH M̂neiaâdKin

OetoJMuf isttsl Rcokai
lsL«af ODOcsoa
sAitsct Bootan
'loiAaREdKH M̂neiaâdKin

• tDftMorar̂du» EtoiftioidieaUv
. ciitta»!

luiUnTriA»
pajw«pt-«Bqe. I rfwoufcafcn

SfUTtjrafeanre
nlip», luaţM̂ ,
cftjMEucor.
br̂jCccp̂ ScopelQncl
cnjjrrig cidwfcgWrt

aa&ulc-f

i&o»iVY ttaoicdn
|ur;nclor ^'^turanki

I

coB«anMXtncrt fctadorkfMni

'tKtmooi'odire

AnbiA>

nsMTi [AoMJx] tesocuftacni

<jpMîtoi IJ€ih3d
ccnajra«:> caiCoKUioK-iQnd
tSttMi BOO^
islaar noclo;*!
ist&kal Boaam
specmaăux S»ni

1 *>î>- PTocedBEijţiaMion ccnajra«:> caiCoKUioK-iQnd
tSttMi BOO^
islaar noclo;*!
ist&kal Boaam
specmaăux S»ni

Figure 5.1: The UML Core Package - Backbone

Dependency A term of convenience for a Relationship other than Associa-

tion. Generalizat ion, Flow, or metarelationship (such as the relationship

between a Classifier and one of its Instances).

Genera l i za t ion A generalization is a taxonomic relationship between a more

general element and a more specific element. The more specific element is

fully consistent with the more general element (it has all of its properties,

members, and relationships) and may contain additional information.

Usage An usage is a relationship in which one element requires another element

(or set of elements) for its full implementation or operation.

From M o d e l Managemen t The main elements of the model management

package are shown in fig. 5.3.

57

BUPT

Figure 5.2: The UML Core Package - Relationships

58

BUPT

•impcrtedEtemenl

Elementhport
vi&iblityAlsibilIyKind

alias : Natne

isSpecrfcalbn: Booban

dassift^r

f.iodeîBe.'Tfen:
î rTCora.i

"TT

•or»\nsdElemert

Nîimospîic^
(Hvm Ccr^j

0..1

Et-mBntO/.re-iship
iflCm GCF>»

n̂smespoce

ffiory CcfOf

Packac^

L A

Sibsŷ tom Mojel

islnstantiab̂ : Boolean

Figure 5.3: The UML Model Management Package

E l e m e n t i m p o r t An element import defines the visibility and alias of a model

element included in the namespace within a package, as a result of the

package importing another package.

Package A package is a grouping of model elements.

5.2.3 The Virtual Meta-model

Def in i t ion . A virtual meta-model is a formal model of a set of UML ex-

tensions, expressed in UML. The virtual meta-model for the UML Profile for

OFL-ML is presented in this chapter as a set of class diagrams. More infor-

mation about virtual meta-models can be found in [OMG02a, OMGOl]. The

semantics of stereotypes described in this virtual meta-model is given in the

next sections.

Representa t ion of Stereotypes. The virtual meta-model represents a

Stereotype as a Class stereotyped stereotype. The Class that represents the

Stereotype is the client of a Dependency stereotyped baseElement, whose sup-

plier is the UML meta-model element being extended.

59

BUPT

Figure 5.4: Virtual Model for OFL Basic Types

Represen ta t ion of Tagged Values. The virtual meta-model represents

a TaggedValue associated with a Stereotype as an Attribute of the Class that

represents the Stereot}^pe. The Attribute is stereotyped <^TaggedValue^. An

expression of the form < x, y, ...,2; > indicates that the TaggedValue value is a

comma-delimited tuple. An expression of the forni (x, z) indicates that the

value is an enumerat ion.

A big challenge for OFL-ML is to generate a clean and understandable profile

in an aut ornat ically way. To following rules are designed to help this aspect:

• every OFL-component will be represented through an individual stereo-

type

• every coinbination of characteristics values of OFL non-custoniizable el-

ements(reified by OFL-atoms) will generate a different stereotype. This

rule is based on the UML stereotype definition:''... a stereotype may be

used to indicate a difference in meaning or usage between two model ele-

ments with identical structure'\

• additional OFL-elements (like OFL-modifiers or OFL-assertions) will be

considered in generated tagged values or constraints of constructed profile

5.2.4 Virtual Metamodel of OFL-ML.

Figure 5.4 presents stereotype used to model the basic types defined by a lan-

guage. These types are managed as a characteristic of OFL-language compo-

nent, which is actually a list. Stereotype is derived from UML programming

language data type.

Figure 5.5 shows stereotype used to model OFL-description components.

This stereot>'pe is derived from UML class. An UML class is a description of a

set of objects that share the same attributes, operations, methods, relationships,

and semantics.

60

BUPT

Figure 5.5: Virtual Model for OFL-description Components

Figure 5.6: Virtual Model for Externai Description

Figure 5.6 present a stereotype used to model an Externai Description. This

element does not exists in the OFL-model. It is defined at the level of OFL-

ML and specify a Descr-iption that has no OFL reification. It is necessary for

helping usage of class libraries that have no OFL representation. The stereotype

is derived from UML classifier.

Figure 5.7 shows how to represent an OFL-package. Generated profile will

contain entities that inherit from this stereotype and denote specific language

class organization mechanisms. The stereotype is derived from UML package.

In figure 5.8 we show the stereotypes used to represent 0FL-/ea^i£re5. Stereo-

types are derived from UML attribute and rnethod. Also, stereotypes are special-

ized based on OFL-Atom Attribute characteristics: is Description Attribute and

isConstant, and OFL-AtomMethod: isConstructor and isDestructor.

Stereotype for association end that belongs to OFL- UseRelationship are pre-

sented in figure 5.9. These stereotypes follows same rules as features stereotypes.

61

BUPT

OFL.ML

ModeIManagement::Packâ

<<baseEl6meni>> ,

<<stgraoţ)fp6»
OFLPvloge

Figure 5.7: Virtual Model for OFL Package

QFL^ML I

Figure 5.8: Virtual Model for OFL Features - attributes and methods

62

BUPT

OFUML

Core::AsfocUtio]i£nd

f «bttscEJement»

«stereo t ype»

OFLAssociatioiiEnd

T
«ste ieotype»

OFLConstantAsracutioiiEiid

«stcreotype»

OFLClassAssocUtionEnd

«stereotjrpe»

OFLConstantClasfAssocialbiiEiid

Figure 5.9: Virtual Model for Association End

Figure 5.10 presents stereotypes used to represent OFL-relationships. Stereo

tj-pes are derived frorn UML generalization and association.

5.3 The OFL Type Representations

This section describes all the Stereotypes introduced in the Virtual Meta-model

for OFL-BasicType. OFL-ML-ExtemalDescription and OFL-Description. It

adds the necessary TaggedValues, Constraints, and Common Model Elements

to complete the Profile.

These stereotypes could be used in modelling tools to generate correspond-

ing instances of OFL elements and to fill them with appropriate information.

Thereby, the following elements are considered to be generated: instances of

OFL-Primitive Type components and OFL-Description components. The re-

sult will be an OFL representation for application in XML.

5.3.1 The OFL BasicType Element

An OFL BasicType is a model of a primitive type found in the language binding

such as int boolean, char (fiom Java) etc.

Stereotypes and Tagged Values. The OFL-ML basic types are represented

by UML ProgramrningLanguageDataType from Core package with the <^OFLBasicType:$>

stereotype.

63

BUPT

OFL-ML

CoR::ReUt»iiship

s

I

CoTe::AsMcUtionEBd

CoTe::Gc]ienlifatiDii C«ie::AMO(tttiom

<baseEleinent» /

zL
«stereotjrpe»

OFLImportReUtionliV

«b»eEleinent»

/

/ <4»seâkBent>

«stereo type»

OFLUseRelationsUp

v̂ '̂ MseEkmeni»

«stcreotype»

OFLMLBisicTypeCoaap«fitioji
«stereotype»

OFLMLBaswT]rpeCbMC«ii90ftbn

Figure 5.10: Virtual Model for OFL Relationships

Constra in ts . AII ^OFLBas icType^ stereotyped elements has direct corre-

spondeiice in characteristic OFL-languge.basicTypes.

Elements Genera t ion . A profile element stereotyped <^OFLBasicType:$>

will be generated for each element of the list OFL-language.basicTypts. AII

strings contained by this list will became a name for a profile element.

Examp le . If we consider Java language, eiglit elements will be considered.

Those elements will have following names:

• boolean

• char

• byte

• short

• int

• long

• float

• double

64

BUPT

5.3.2 The OFL Description Element

OFL Description Components represent reification of Class types in different

progrannning languages. They are created by the meta-progranimer when he

model the language. If we consider support for automatic code generation,

OFL-ML has to include elements representation for all these components.

Stereotypes and Tagged Values. The abstract stereotype OFLDescriptionType:^

is the base for all the concrete stereotypes representing OFL Description of the

considered language. The name of the generated stereotypes are the name of

the OFL components with "Component'' prefix removed (ex. for a component

ComponentJavaClass, a stereotype nained <^JavaClass:^ will be created).

Tagged values are created to express all OFL-modifiers associated with that

component. These tags have boolean values and taike the name from modifier

keyword attribute.

Constra in ts . Constraints related with components stereotypes have to con-

sider parameter values, characteristics and associated OFL Modifiers constraints

for that component. Not all OFL parameters are considered but only that one

which have impact on static model of the application.

This paragraph presents constraints that have to be generated for all stereo-

types derived from abstract stereotjT^e <^OFLDescriptionType:^. Each of them

will consider parameter values, characteristics and modifiers associated with

corresponding OFL component. Thus all constraints related with stereotype

<^JavaClass:$> consider parameter values, characteristics and modifiers associ-

ated with component ComponentJavaClass defined by OFL-Java.

Parame te r ConceptDescr ip t ion : :a t t r ibu te . This parameter specify if

the description could declare or not attributes. Legal values are allowed and

forbidden. Constraint related with value forbidden of this parameter will ensure

an empty attribute compartment:

context: OFLDescriptionType (Cere::Class)

seif.allAttributes->size = O

The operation allAttrihutes results in a Set containing all Attributes of the Class

itself and all its inherited Attributes. It is defined in [OMG03b] as a standard

operation on classifies.

allAttributes : set(Attribute);
allAttrihutes =

seif.allFeatures->select(f I f.oclIsKindOf(Attribute))

Paramete r ConceptDescr ip t ion : :methods . This parameter specify if the

description could declare or not methods. Legal values are allowed and forbid-

den. Constraint related with value forbidden of this parameter will ensure an

empty method compartment:

65

BUPT

context: OFLDescriptionType(Core::Class)

se i f.allMethods->s ize = O

The operat ion allMethods results in a Set containing all Methods of the Class

itself and all its inherited Methods.

allMethods : set(Methods);

allMethods =

seif.allFeatures->select(f I f.oclIsKindOf(Method))

O F L Modi f iers Constra in ts . All modifiers constraints defined for the con-

sidered description component will be added in the generated profile. These

constraints have to be transformed to deal with profile tagged values and stereo-

t}ipes instead OFL entities. Transformations that should be made to deal with

profile tagged values are very basic. The purpose is to translate OFL-Atoms

and OFL-Components attributes into the corresponding tagged values.

Regarding modifiers assertions that deal with OFL-Description components,

only parameter modifier inherited from OFL-AtomDescription is involved. It

has to be translated into taggedValue with same name like the modifier. Indeed,

transformations are based on the following two rules:

• Syntax:

s e i f . m o d i f i e r s - > i n c l u d e s m o d i f i e r . n a m e ')

is translated in:

seif.stereotype.taggedValue

->select (name = 'modif ier_naine')->size = 1

• and syntax:

NOT seif.modifiers->includes('modifier_name')

is translated in:

seif.stereotype.taggedValue
->select(name = 'modifier^name')->size = O

These constraints test presence or absence of tagged value that corresponds to

a given modifiers in context of considered entity.

Elements Genera t ion . A profile stereotype derived from OFLDescriptionType:^

will be generated for each OFL component. For a language with description

types reified in OFL by components: ComponentLanguageDescriptionTypel,

ComponentLanguageDescriptionType2 etc, resulting hierarchy is presented in

figure 5.11.

66

BUPT

Figure 5.11: Generated stereotypes for Descriptions Components

Examp le . Considering Java language, following description types are iden-

tified [CCL02, CreOla]: class, abstract class, interface, static member class,

abstract static member class, static member interface, member class, abstract

member class, local class, abstract local class and anonymous class. Indeed, the

OFL model for Java will contain eleven components derived from OFLCompo-

nentDescription.

Stereotypes generated for Java language are shown in figure 5.12.

Modifiers supported by these description components are summarized in

table 5.1.

\ M o d i f i e r

D e s c r i p t i o n

B a ^ i c Access

C o n t r o l

C o m p l e x Acces s

C o n t r o l

O p t i m i z a t i o n S e r v i c e A d d i t i o n a l

C l a s s p u b l i c , p a c k a g e f i n a l s t r i c t f p

A b s t r a c t C l a s s p u b l i c , p a c k a g e s t r i c t f p

I n t e r f a c e p u b l i c , p a c k a g e f i n a l s t r i c t f p -
S t a t i c M e i i i b e r C I a s s p u b l i c , p r o t e c t e d

p r i v a t e , p a c k a g e

f i n a l s t r i c t f p

A b s t r a c t S t a t i c M e r a b e r C l a s s p u b l i c , p r o t e c t e d

p r i v a t e , p a c k a g e

s t r i c t f p

S t a t ic M e r u b e r I n t e r face p u b l i c , p r o t e c t e d

p r i v a t e , p a c k a g e

f i n a l s t r i c t f p -

M e m b e r C i a s s p u b l i c , p r o t e c t e d

p r i v a t e , p a c k a g e

f i n a l s t r i c t f p •

A b s t r a c t M e m b e r C l a s s p u b l i c , p r o t e c t e d

p r i v a t e , p a c k a g e

s t r i c t f p

L o c a l C I a s s final s t r i c t f p -
A b s t r a c t L o c a l C I a s s final s t r i c t f p -
A n o n y m o u s C l a s s final s t r i c t f p

Table 5.1: Modifiers for Java Description Components

Table 5.2 presents the generated tagged values corresponding to these mod-

ifiers.

No OFL-Java component has OFL parameters ConceptDescription::attribute

and ConceptDescription::methods set to forbidden. Indeed, even Java interface

could have attributes {final static). As a result, no constraints will be added to

the generated profile for these parameters.

For Java components, only constraints dealing with incompatible modifiers

67

BUPT

OFL-ML I

OFLDescîdonTjfpe

JwnOau

«sHno^»
JxraAkftnc tClsn

JanStetkMenWiClan

itmtStatkliIenkerCbsf

hanAMmmjimmtCiMMt

JsviAtetndLicalCbM

JoaUcalClMf

«ikrto^»
JaraAbftnrtMeii*erCli«

< *MTtof^pt > >
JivtMeBdbcrClasf

<<Mtrtotjfpt»
jMnStMSkWtw^OMttAn

Figure 5.12: Generated stereotypes for OFL-Java Descriptions Components

are defined regarding basic access control modifiers and optimization modifiers

If we consider JavaClass component, action control modifier assertion for

that component is:

context ComponentJavaClass

inv: seif.modifiers->includes('public')

implies

NOT seif.modifiers->includes('package')

The transformed constraint for generated profile is very close to the original

one:

context JavaClass:lOFLDescriptionType (Cere::Class)

inv: seif.stereotype.taggedValue

->select(name='public')->size=l

implies

seif.stereotype.taggedValue

->select(name='package')->size=0

Complex modifier final will be considered further, when relationships con-

straints will be presented.

5.3.3 Additional constraints.

OFL parameters, characteristics and modifiers does not cover all language se-

mantic. There is no option for automatic extraction of constrains from OFL

actions. To solve these situations, additional constraints should be added by

68

BUPT

Stereotype Tagged Values

JavaClass {public}, {package}, {final}, {strictfp}

JavaAbstractClass {public}, {package} {strictfp}

Ja\^Interface public , {package}, {final}, {strictfp}

StaticMemberClass public

private

, {protected}, {final}, {strictfp}

}, {package}

AbstractStaticMemberClass public}, {protected}, {strictfp}

private}, {package}

StaticMemberInterface public}, {protected}, {final}, {strictfp}

private}, {package}

MemberClass public}, {protected}, {final}, {strictfp}

private}, {package}

AbstractMemberClass public}

private

, {protected}, {strictfp}

, {package}

LocalClass final}. strictfp}

AbstractLocalClass [final}, strictfp}

AnonymousClass final}, {strictfp}

Table 5.2: Tagged Values for Java Description Componeiits Stereotypes

meta-programmer. These constraints follow the same rules like OFL Assertions

added with the same goal. As an example, if we considering Java Interfaces, the

following rule has to be expressed:

An interface should not contain attributes that are noi final (constant) and

static (class attribute).

This rule will have an associated OFL-assertion at the level of Component-

Javalnterface.

context: ComponentJavainterface inv: self->featiires->forAlK

aiOFLAttribute I

a.isConstant and a.isDescriptionFeature)

The OCL constrain added into profile to cover this rule is (for transformat ion

see Section 5.4.1):

context: Javainterface:OFLDescriptionType(Core::Class)

self->allAttributes

->forAll (a I a.oclIsKindOf(Attribute) implies

a.isStereokindedC'OFLConstantClassAttribute"))

5.3.4 The Externai Description Element

The Externai Description element does not exists in the OFL-model. It is

defined at the level of OFL-ML and specify a Description that belong to "outside

world" (outside current project). This description is written usually in original

69

BUPT

language and have no O F L I n fo rma t i on a^sociated. I t is useful especial ly when
app l i ca t i on access descr ip t ions com ing f r om class l ibrar ies.

O F L - M L cou ld not t rea t the Externai Descriptions i n the same manner as
n o r m a l 0¥L-Descriptions are t rea ted. T h e m a i n imped imen t is the i r opacity.
T h e in te rna i s t ruc tu res of t h e m are h idden and cou ld no t be seen t h r o u g h usual
OFL-relationships. As a resul t o f t h a t , j u s t few prof i le const ra in ts cou ld be
def ined for t hem.

O F L - M L defines special re la t ionships t o deal w i t h ex te rna i descr ip t ions.
Those re la t ionsh ips are cal led " e x t e r n a i re la t ionsh ips" . For more i n f o r m a t i o n
see the sect ion " E x t e r n a i Re la t ionsh ips" . A n ex te rna i descr ip t ion cou ld be in-
vo lved o n l y in ex te rna i re la t ionsh ips and can act on ly as a ta rge t .

T h e usage of ex te rna i descr ip t ions is adequate on l y i f t he goal o f O F L -
app l i ca t i on mode l l i ng is t o o b t a i n executable code. C o n t r o l o f semant ics in-
vo lved by these ent i t ies is done in t h a t case by f ina l compi le r or l inker .

S t e r e o t y p e s a n d T a g g e d V a l u e s The re is on ly one s tereotype invo lved i n
ex te rna i descr ip t ion representat ion. I t is presented in figure 5.6.

A lso , one tagged value are specif ied here. T h i s is the taggedValue { ex ter -
n a l P a t h = importPathSpecification } . I t al lows speci f icat ion o f the place where
t he resource is o r ig ina ted . T h e value of t h i s t ag is a s t r i ng t h a t depends m u c h
on language s>Titax re la ted w i t h us ing ex te rna i resources (ex. o f legal values are
" i m p o r t j ava .u t i l .Vec to r " for Java or " # i n c l u d e ' M y A p p . h ' " for C -h - f) .

C o n s t r a i n t s Us ing of ex te rna i descr ip t ions are heăvy l iked w i t h specif ic lan-
guage semantics. Just l igh t con t ro l cou ld be made. Cons t ra in ts re la ted w i t h
ex te rna i descr ip t ions are added at the level o f re la t ionsh ips t h a t cou ld invo lve
these elements.

E l e m e n t s G e n e r a t i o n O n l y one prof i le element s tereotyped as < ^ O F L E x t e r n a l
D e s c r i p t i o n » w i l l be generated. As a l ready presented, t h i s s tereotype w i l l be
tagged w i t h an extemalPath tagged value. T h e value of th is tag w i l l be inc luded
in the generated source file. For models t h a t are in tended to be used i n o ther
purpose t h a n execut ion th is t ag may be ignored.

I n case of languages w i t h complex i m p o r t i n g syn tax , me ta -p rog rammer cou ld
def ine add i t i ona l tags for th is stereotype.

E x a m p l e F igu re 5.13 presents examples of ex te rna i descr ip t ions representa-
t i o n for Java and C - I - + .

5.4 The OFL Feature Representations
Features represents p r im i t i ves declared by an OFL -Desc r i p t i on . T h e y descr ibe
the s ta te (a t t r i bu tes) and the behav ior (methods) of t he considered descr ip t ion .
Eve ry feature has associated a name and a l ist of modi f iers .

70

BUPT

Java A p p I O F l ^ M L

< < OFLExterrhilDtscTiptioTi > >
VeciDT

{extenialPath (import jff/a.util.VectoO}

C-H- App I

< < OFLExfsrnalDeicription > >
MyCppChf.

{exteiMlPathCttnchide TvlyCppClassJi-;)}

Figure 5.13: Example of using Externai Description Stereotype

These stereotypes could be used in modelling tools to generate correspond-

ing instances of OFL elements and to fill them with appropriate information.

Thereby, the following elements are considered to be generated: instances of

OFL-Attribute atoni and OFL-Method atom.

5.4.1 The OFL Attributes

Attributes inherit form feature and keep values that describe the state of the

description. An attribute has a name, a type, an iniţial value and a set of

modifiers.

An OFL-attribute defînition whose type is a language basic type (modelled

as OFLBasicType) is represented as:

• An UML Attribute of a Class stereotyped with a stereotype derived from

-cOFLDescriptionType^ corresponding to the OFL-description that the

attribute is defined in.

An OFL-attribute whose type is an OFL-description is represented as:

• An UML Association between the Class stereotyped with a stereotype

derived from <OFLDescript ionType» that declare the attribute and the

UML stereotype that represents the OFL-description type of the attribute.

The name of the attribute is used as the role name for the attribute type

AssociationEnd of this Association.

Stereotypes and Tagged Values.

Ins tance At t r ibu tes . Whenever a new instance of a description is cre-

ated, a new attribute associated with that instance is created for all of this

71

BUPT

kiiid of attributes. OFL treats them by setting the value of isDescriptionAt-

tribute characteristic of the OFL-attribute instance to false. OFL-ML represents

those attributes usiiig «cOFLAttr ibute» stereotype for basic type attributes or

«:OFL-AssociationEnd» for attributes that represent aggregation with other

descriptions.

Class A t t r i bu tes . For a class exists exactly one incarnatioii of each at-

tribute of this kind, no matter how inany instances (possibly zero) of the

class may eventually be created. In OFL these attributes are modelled by

trae value in the isDescriptionAttribute characteristic of OFL-AtomAttribute

instance. OFL-ML represents these attributes using «cOFLClassAttribute»

stereotATDe for basic type attributes and <^OFLClassAssociationEnd» for at-

tributes that represent aggregation with other OFL-descriptions.

Cons tan t A t t r i bu tes . Constant attributes are attributes that could not

change their value after initialization. OFL use the OFL-attribute's isConstant

characteristic to model them. If this characteristic has value true, the attribute

is constant and OFL-ML will represent it through <cOFLConstantAttribute::^,

<^OFLConstant Class Attr ibute» , <OFLClassAssociationEnd:$>, respectively

<COFLConstantClassAssociationEnd» stereotjT^e.

Tagged values are created to express all OFL-modifiers associated with an

OFL-attribute. These tags have boolean values and take the name from modifier

keyword attribute.

Constra in ts . All modifiers constraints defîned for AtomAttribute will be added

in the generated profile. For incompatible modifiers, constraint transformat ion

is the same as presented in Section 5.3.2. Transformation of constraints regard-

ing stereotypes for attributes are the following:

• Syntax:

a.isConstant

is translated into:

a.isStereokindedC'OFLConstantAttribute")

This transformation refer constant attributes. OFL use AtomAttribute.isCostant

to keep this information. OFL-ML will represent this as an UML Attribute

stereokinded as <OFLConstantAttr ibute» .

• Syntax:

72

BUPT

a.isDescriptionAttribute

is translated into:

a.isStereokindedC'OFLClassAttribute")

This traiisformation refer class attributes. OFL use AtoiiiAttribute.isDescriptionAttribute

to keep this informat ion. OFL-ML will represent this as an UML Attribute

stereokinded as <OFLClassAttr ibute>.

• Syntax:

a. isConstant

AND

a.isDescriptionAttribute

is translated into:

a.isStereokindedC'OFLConstantClassAttribute")

This transformation refer class attributes that are constant. OFL use Atom-

Attribute.isConstant and AtomAttribute.isDescriptionAttribute to keep this in-

formation. OFL-ML will represent this as an UML Attribute stereokinded as

<OFLConstantClassAttribute>.

Elements Genera t ion . Four profîle stereotypes will be generated automat-

ically for basic types attributes and four for association end that corresponds

with relationships of the kind of OFL-UseRelationships. These stereotypes are

presented in table 5.3.

To increase expressiveness of the profîle, meta-programmer could derive

new stereotypes from <^OFLAttribute> and give them suggestive named as

<cOFLJavaStaticAttribute», «:OFLJavaFinalAttribute>, respectively « :OFL

JavaFinalStaticAttribute». Same work could be done also for AssociatwnEnd

stereotypes. To help this task, a kind of "wizard" could be add to the profîle

generator tool. The additional stereot^^jes will inherit all generated constraints

from the standard ones.

Examp le . Profîle elements mapping to Java attributes are presented in table

5.4.

Table 5.5 presents tagged values generated for modifîers associated with

Java attributes. This corresponds to public, protected, package and private ac-

cess control modifîers, respectively volatile optimization modifîer and transient

service modifîer.

73

BUPT

Stereotype Applies To Definition

<OFLAt t r i bu t e> Attribute An attribute of a

basic type

<OFLConstantAttr ibute» Attribute A constant attribute

of a basic type

«cOFLClassAttribute» Attribute A class attribute

of a basic type

<OFLConstantClassAttribute» Attribute A constant class

attribute of a basic

type

«:OFLAssociationEnd> Attribute An attribute that

represent an OFL

use relationship

«:OFLConstantAssociationEnd> Attribute A constant attribute

that represent an OFL

use relationship

<cOFLClassAssociationEnd> Attribute A class attribute that

represent an OFL use

relationship

<^OFLConstantClassAssociationEnd» Attribute A constant class

attribute that represent

an OFL use relationship

Table 5.3: OFL-ML Attribute Stereotypes

5.4.2 The OFL Methods

Methods inherit from features and specify the behavior of the descriptioii.

Method elements could represent both procedures and functions. Functions

differs from procedures because they return a result.

Method declaration specify a list of parameters. This list could be empty or

not. If not, it contains a list of OFL-parameter elements.

Abstract methods are methods that are not implemented. An abstract meth-

ods has an empty body.

Additionally, OFL make distinction between normal methods, constructors

and destructors.

Stereotypes and Tagged Values Three stereotypes defined in the OFL-ML

virtual meta-model are used also in the generated profile: < O F L M e t h o d » ,

<cOFLConstructorMethod» and <OFLDestructorMethod». In addition, an

<^OFLParameter» is derived from UML-parameter element to express method

parameters. The returned value is represented in following the UML convention

as a parameter that have attribute 'kind = retum\

The standard attribute body of UML-Method element is used to keep the list

74

BUPT

S t e r e o t y p e J a v a M a p p i n g E x a m p l e
O F L . l a v a A t t r i b u t c

(: O F L A t t r i b u t c)

i n s t a n c e n o n - f i n a l J a v a

b a s i c t y p e s a t t r i b u t e s (for J a v a

b a s i c t y p e s see S e c t i o n 5 . 3 . 1)

c h a r a

O F L J a v a F i n a l A t t r i b u t e

(: O F L C o i i s t a n t A t t r i b u t e)

i n s t a n c e f i n a l J a v a b a s i c t y p e s

a t t r i b u t e s

f i n a l c h a r a

O F L J A v a S t ă t i c A t t r i b u t e

O F L C I a s s A t t r i b u t e)

s t a t i c (c l a s s) n o n - f i n a l

J u v u bas i c t y p e s a t t r i b u t e s

s t a t i c c h a r a

O F L J a v a F i n a l S t a t ic A t t r i b u t e

(; O F L C o n s t a n t C l a s s A t t r i b u t e)

s t a t i c (c l a s s) f i n a l

J a v a b a s i c t y p e s a t t r i b u t e s

f i n a l s t a t i c c h a r a

O F L J a v a A s s o c j a t i o n E i i d

(O F L A s s o c i a t i o n E n c l)

i n s t a n c e u o n - f i n a l J a v a

a g g r e g a t i o n a t t r i b u t e s

A C I a s s a

O F L J a v a F i n a l A s s o c i a t i o n E n d

(; O F L C o n s t a n t A s s o c i a t i o n E n d)

i n s t a n c e f i n a l J a v a

a g g r e g a t i o n a t t r i b u t e s

f i n a l A C I a s s a

O F L J a v a S t o t i c . \ R s o c i a t i o n E n d

l O F L C l a s s A s s o c i a t i o n E n d)

s t a t i c (c l a s s) n o n - f i n a l

J a v a a g g r e g a t i o n a t t r i b u t e s

s t a t i c A C I a s s a

O F L J a v a F i n a l S t a t i c A s s o c i a t i o n E n d

(r O F L C o n s t a n t C l a s s A s s o c i a t i o n E n d)

s t a t i c (c l a s s) f i n a l J a v a

a g g r e g a t i o n a t t r i b u t e s

f i n a l s t a t i c A C I a s s a

Table 5.4: OFL-ML Stereotypes of Java Attribute

of statements that represents the method body. The UML represents that list

like ProcedureExpression. that is actually a hst of strings. When code are gen-

erated from the model, these strings have to be translated into OYlu-Statement

elements. Other possibility is to represent the body using UML-Actions Seman-

tic Model. This option will be discussed at the end of this chapter.

For abstract methods, OFL-ML use attribute is Abstract inherited from UML-

Operation element. If true, then the operat ion does not have an implementation

and the method body will be empty. If false, the operation must have an im-

plementation in the description or inherited from an ancestor.

To stop method overriding, UML use Operation isLeaf boolean attribute.

If true, then the implementation of the operation may not be overridden by

a descendant class. If false, then the implementation of the operation may

be overridden by a descendant class (but it need not be overridden). If we

consider automatic generation of profile, OFL-ML could not use directly this

attribute. In OFL rights about method overriding or redefining are specified

through modifiers rather than characteristics.

Method parameters are represented as a list of UML-paTameter elements.

An \JML-parameter is an unbound variable that can be changed, passed, or

returned. A parameter may include a name, type, and direction of communi-

cation. If we consider reification of parameter semantics (as the Eiffel agent

parameter modifier) constraints have to be added at the level of these elements.

Other constraints could be added related to parameters semantics. The

standard attribute kind of the \JML-parameter element could represent follow-

ing values:

in An input Parameter (may not be modified).

Gut An output Parameter (may be modified to communicate information to

the caller).

i nou t An input Parameter that may be modified.

re tu rn A return value of a call.

75

BUPT

Stereotype Tagged Values

OFLAttributes {public}, {protected}, {private}, {package}

{volatile}, {transient}

OFLConstant Attributes {public}, {protected}, {private}, {package}

{transient}

OFLClassAttributes {public}, {protected}, {private}, {package}

{volatile}, {transient}

OFLConstantClassAttributes {public}, {protected}, {private}, {package}

{transient}

OFLAssociationEnd {public}, {protected}, {private}, {package}

{volatile}, {transient}

OFLConstant AssociationEnd {public}, {protected}, {private}, {package}

{transient}

OFLClassAssociationEnd {public}, {protected}, {private}, {package}

{volatile}, {transient}

OFLConstantClassAssociationEnd {public}, {protected}, {private}, {package}

{transient}

Table 5.5: Tagged Values for Java Attribute Stereotypes

Tagged values are created to express all OFL-modifiers associated with an

OFL-method. These tags have boolean values and take the name from modifier

keyword attribute.

Constra in ts Some constraints are imported fiom UML semantics. In fact,

all usage of standard UML attributes implies also constraints.

In this context, from UML-BehavioralFeature which UML-Method inherit

from, we have:

• All Parameters should have a unique name.

se i f .paraineter->

f o r A l K p l , p2 I pl.name = p2.name impl ies p l = p2)

The type of the Parameters should be included in the Namespace of the

Classifier.

seif .paraineter->forAll(p I

seif.owner.namespace.allContents->includes (p.type))

Also, as for attributes, all modifiers constraints defined for AtomMethod will

be added.

76

BUPT

Elements Genera t ion . Four stereotypes will be geiierated for inethods. These

are <^OFLMethod:^, <^OFLConstructorMethod:^, <^OFLDestructorMethod:^

and <^OFLParame-ter:$>. First tree stereotypes apply to UML Method ele-

ment. The last one apply to UML Paranieter. <^OFLConstructorMethod:^

corresponds to a OFL-method that have attribute isConstructor set to true.

<^OFLDestructorMethod^ corresponds to a OFL-method that have attribute

isDestructor set to true. As mentioned in the section 5.4. L to increase expres-

siveness of the profile elements, meta-programmer could decide to derive specific

stereotj-pes from the generated ones.

Generated tags will correspond to OFL-method modifiers defined for con-

sidered language.

No tags will be generated for abstract methods and, if is the case, for non-

overriding methods. Instead, the profile will use standcird UML attributes as

mentioned in the previous section.

Following list presents transformation rules for constraints related with meth-

ods.

• Syntax:

m.isConstructor

is translated into:

m.isStereokindedC'OFLConstructorMethod")

This transformation refer constructor methods. OFL use AtomMethod. is-

Constructor to keep this information. OFL-ML will represent this as an UML

Method stereokinded as <OFLConstructorMethod>.

• Syntax:

m.isDestructor

is translated into:

m.isStereokindedC'OFLDestructorMethod")

This transformation refer destructor methods. OFL use AtomMethod.isDestruc-

tor to keep this information. OFL-ML will represent this as an UML Method

stereokinded as -cOFLDestructorMethod».

Both characteristics body and parameters are collection also in OFL and in

UML, so collection operation could be applied on both in same way.

77

BUPT

S t e r e o t y p e J a v a M a p p i n g E x a m p l e
O F L M c t h o d

(M e t h o d)

s t a n d a r d J a v a n i e t l i o d r e t u r n T y p e u M e t h o d (l i s t O f P a r a n i e t e r r t)

O F L C o n s t r u c t o r M e t h o d

(O F L M e t h o d)

a J a v a c o n s t r u c t o r m e t h o d

m u s t h a v e s a m e n a m e as t h e

c l ass i t se l f a n d n o r e t u r n t y p e

c I a s s N a m e (l i s t O f P a r a m e t e r f «)

O F L F i n a l i z e M e t h o d

(: O F L D e s t r u c t o r M e t h o d)

a J a v a f i n a l i z e r

(n o t c x a c t i y a d e s t r u c t o r)

p r o t e c t e d v o i d f i n a l i z e ()

Table 5.6: OFL-ML Stereotypes of Java Method

Examp le . Profile elements mapping to Java methods are presented in table

5.6.

Tagged values generated for modifiers associated with Java methods are

presented in table 5.7. This corresponds to public, protected, package, private

and final access control modifiers, respectively native and strictfp optimization

modifiers and synchronized service modifier.

To handle java language, additional tagged value is need to express exception

mechanism. Considering that OFL does not provide any customization for

exceptions handling, this tagged value have to be added manually. We propose

a tag {javaThrows = string}. The value of this tag will represent a comma-

delimited list of names of Java Exception Classes throw7i by considered method.

Stereotype Tagged Values

OFLMethod [public}, {protected}, {private}, {package}, {final}

native}, {strictfp}, {synchronized}, {javaThrows}

OFLConstructorMethod

1

public}, {protected}, {private}, {package}

[javaThrows}

OFLFinahzeMethod {protected}

{javaThrows}

Table 5.7: Tagged Values for Java Method Stereotypes

Constraints that correspond to access control modifiers are generated using

same translation as presented in the previous section.

For native modifier the assertion has also to be transformed.

context AtomMethod

inv: seif.modifiers->includes('native')
implies

seif.isConstructor = false
and

seif.body->isEmpty()
and

NOT seif.modifiers->includes('synchronized')

Transformation are made using already presented transformation rules.

78

BUPT

context OFLMethod (Core::Method)

inv: seif.stereotype.taggedValue

->select(name = 'native')->si2e = 1

implies

NOT seif.isStereotyped('OFLConstructorMethod')

and

seif.body->isEmpty()

and

seif.stereotype.taggedValue

->select(name = 'synchronized')->size = O

Add i t i o n a l constraints. As we mentioned in 5.3.2, the generated constraints

will not cover all language model semantics.

For Java, all method parameters have to have attribute kind set to value iii,

except one that is set to retum.

An Java method could not be abstract unless it is contained be a Java

Interface or a Java abstract class.

context OFLMethod (Core::Method)

inv: let owner:Classifier = seif.specification.owner

in

(owner.isStereokinded('JavaAbstractClass')

or

owner. isStereokinded(' JavsLAbstractMemberClass')

or

owner.isStereokinded('JavaAbstractStaticMemberClass')

or

owner.isStereokinded('JavaAbstractLocalClass')

or

owner.isStereokinded('Javainterface')

or

owner.isStereokinded('JavaStaticMemberInterface'))

Following Java constraint is related with a finalize method. A finalize

method has to be declared as protected, return no value (has void gis return

type) and throws Throwable exception.

context OFLFinalizeMethod (Core::Method)

inv: seif.stereotype.taggedValue
->select(name = 'protected')->size = 1

and
seif.parameter->select(p I

p.kind = return
implies

(p.type.isStereotyped('OFLBasicType')
and

p.type.name = 'void')

79

BUPT

)
and

sei f .s tereotype. taggedValue

->select (tag I tag.name = 'javaThrows'

impl ies tag .va lue = 'ThrowableO

5.5 The OFL Relationship Representations

This section describes all the Stereotypes introduced in the Virtual Meta-model

for OFL-ImportRelationship and OFL-UseRelationship. It also adds the neces-

sary TaggedValues, Constraints. and Common Model Elenients to complete the

Profile.

These stereotypes could be used in inodelling tools to generate correspond-

ing instances of OFL elements and to fill them with appropriate information.

Thereby, the following elements are considered to be generated: instances of

OFL-Import Relationship components and OFL-Use Relationship components.

This version of OFL-ML does not consider dynamic relationships reified by

OFL-ObjectToClassRelationhip and OFL-ObjectToObjectRelationship. That

is because OFL-ML profiles could represent only static models corresponding to

UML Static Class Diagrams.

5.5.1 The OFL Import Relationship

The OFL-import relationship is a generalization of the inheritance mechanism

found in object oriented languages. The meta-programmer has responsibility to

create an OFL relationship component for each import relationships existing in

the modelled language. OFL-ML will generates necessary elements in order to

represents all these components.

5.5.2 Stereotypes and Tagged Values.

The abstract stereotype <cOFLImportRelationship> is the base for all the con-

crete stereotypes representing OFL ImportRelationhip components of the con-

sidered language. The name of the generated stereotypes are the same as the

name of the OFL components with "Component" prefix removed (ex. for a com-

ponent " Component JavaExtends". a stereotype named <^JavaExtends» will be

created).

All relationships stereotyped as specialization of «:OFLImportRelationship>

will have associated a set of tagged values. Values of these elements correspond

to some OFL-AtomRelationship characteristics. These tagged values are pre-

sented in table 5.8.

In addition, one tagged value will exists for each modifier associated with a

relationship component.

80

BUPT

TaggedValue

N a m e

TaggedValue

Value

C o m m e n t

abstractedFeatures string

(list of feature naines)

list of concrete methods

that are abstracted

effectedFeatures string

(list of feature names)

list of abstract methods

that are effected

hiddenFeatures string

(list of feature names)

list of features that

are hidden

redefinedFeatures string

(list of feature names)

list of features that

are redefined

renamedFeatures string

(list of feature names)

list of features that

are renamed

removedFeatures string

(list of feature names)

list of features that

2Lre removed

show^iFeatures string

(list of feature names)

list of features that pass

the relationship unchanged

Table 5.8: OFL-ML Tagged Values for OFLlmportRelationhip

Constra in ts . AU modifiers constraints defined at the level of relationship

componeiits will be added. Transformation rules will translate all character-

istics of relationships components into corresponding tagged values. Followiiig

rules will apply:

• Syntax:

seif.relationshipCharacteristic->forali(f:Feature I

f.modif iers->includes('modif ier_name'))

is translated in:

seif.stereotype.taggedValue

->forall(t:taggedValue I

(t.name = 'reiationshipCharacteristic' and

t.values->includes(feature_name))

imply

seif.parent.features->forali(f:Feature I

f.name = feature_naine imply

f.stereotype.taggedValue->

select(name = 'modifier_name')->

size = 1))

Following example apply to Java private modifier in context of <^JavaClassExtends»

stereotype.

• Syntax:

81

BUPT

seif . hiddeiiFeature->f orali (f : Feature |

f.modifiers->includes('private'))

is translated in:

seif.stereotype.taggedValue
->forall(t:taggedValue |

(t.name = 'hiddenFeatures' and

t. values->iiicludes (feature_naine))

imply

seif.parent.features->forali(f:Feature I

f.name = feature.name

imply

f.stereotype.taggedValue->

select(name = 'private')->

size = 1))

Additionally, the generated profile will contains constrgiints regarding each

stereotj-pe which corresponds to language relationship components. The generic

name ComponentRelationhip designate these stereotypes. Indeed, each OFL-

ML generic constraint presented next will have one instance for each component

into the generated OFL-ML Profile.

Parame te r ConceptRe la t ionsh ip : :card ina l i ty . This parameter spec-

ify the cardinality of relationship as an integer value n in the meaning of cardi-

nahty 1-n. This specify that relationship has one source (child) description and

could have between 1 and n target (parent) descriptions. As an example, for

simple inheritance n = 1 and the cardinality is 1-1. For a general relationship

n could be oc.

Constraint related with this parameter will check conformance with cardi-

nality specification. If cardinality is oc no constraint is necessary.

OFL-ML: if cardinality ^ CXD

context ComponentRelationhip(OFLImportRelationship)

inv: seif.child.generalization->select(gen I

gen.isStereotyped('ComponentRelationship')

and

gen.child = seif.child)->size = n

Parame te r ConceptRe la t ionsh ip : : repet i t ion . Repetition denote if a di-

rect repetition of target (parent) is permitted or not. The possible values of

this parameter are allowed and forbidden. Value allowed make sense just in a

relationship with cardinality n < l (1-1).

If the cardinality value n '\s 1 or if the repetition value is allowed, no con-

straint is necessary.

82

BUPT

OFL-iML: if cardinahty ^ 1 and repetition = forbuiden

context ComponentRelationhip (OFLImportRelationship)

inv: seif.parent.generalization->select(gen I

gen.isStereotypedC'ComponentRelationship')

and

gen.child = seif.child)->size = 1

Parameter ConceptRelationship::circularity. Circularity parameter

express tlie possibility to create cycles iising considered relationship compo-

nent. Constraint make sense only if parameter contain v-alue forbidden.

OFL-ML: if circularity = forbidden

context ComponentRelationhip (OFLImportRelationship)

inv: let dp(d:Classifier) =

d.generalisation.select(g I

g.isStereotypedC'ComponentRelationshipO)

->collect(g.parent) in

allParents(p:Set(Classifier)) =

seif.dpCself.child)->union((seif.dpCself.child)-p)

->collect(np I

np. allPsirents (p->including(self . child)))) in

NOT seif.child.allParents(Set{})->includes(seif.child))

First OCL let expression {dp) calculates all direct parents of a Classifier in the

meaning of considered relationship. Expression allParents calculates all parents

of a Classifier. Parameter p contain all already visited parents and is used to

stop recursions. Constraint check if the source of relationship is included or not

in its list of parents.

Parameter ConceptRelationship::feature_variance. This parameter

specify the type of variance of relationship concerning rnethod parameters,

method result and attributes. The value is a triplet where each component

could have one of the following valiies:

covariant elements that change on redefinition need to have same type or a

sub-type like original one (defined by the source).

contravar iant elements that change on redefinition need to have same type or

a super-type hke original one (defined by the source).

nonvar iant elements could not change the type on redefinition.

non_appl icab le parameter is not applicable

83

BUPT

Constraint has to consider first three values separately for each triplet com-

ponent.

AII constraint use the tbllowing definitions for direct parent and all parents

of a Classifier:

context Classifier

def: directParent =

seif.generalisation->collect(g.parent)

def: allParentsCp:Set(Classifier)) =

seif.directParent->union((self->directParent-p)

->collect(np I np.allParents(p->including(self))))

Constraints regarding method parameters \^riance are presented next.

OFL-ML: if feature.variance for method parameter = covariant

context ComponentRelationhip (OFLImportRelationship)

inv: seif.redefinedFeatures->forAll(

m I m.oclIsKindOf(Method) implies

m.parameters->forAll(

p I p.kind <> return

implies

seif.source.features->forAll(rm I

rm.oclIsKindOf(Method)

implies

if (rm.name = m.name and

rm.parameters->count O = m.parameters->coiint ())

rm.parameters->forAll(rp I

rp.name = p.name

implies

p.allParents(Set{})

->including(p.type)->include(rp.type)))

))

OFL-ML: if featurejuartance for method parameter = contravanant

context ComponentRelationhip (OFLImportRelationship)

inv: seif.redefinedFeatures->forAll(

m I m.oclIsKindOf(Method) implies

m.parameters->forAll(

p I p.kind <> return

implies

seif.source.features->forAll(rm I

rm.oclIsKindOf(Method)

implies

if (rm.name = m.name and

rm.parameters->coiint O = m.p2Lrameters->count ())

rm.parameters->forAll(rp I

84

BUPT

rp.name = p.name

implies

rp.allParents(Set{})

->including(rp.type)->include(p.type)))

))

OFL-ML: if featiire.vanance for uietlwd paraintitr = nonvariaiit

context ComponentRelationhip (OFLImportRelationship)

inv: seif.redefinedFeatures->forAll(

m I m.oclIsKindOf(Method) implies m.paraineters->forAll(

p I p.kind <> return

implies

seif.source.features->forAll(rm |

rm.oclIsKindOf(Method)

implies

if (rm.name = m.name and

rm .parameters->count O = m .parameters->co\int O)

rm.p2Lrameters->forAll(rp I

rp.name = p.name

implies

p.allParents

->including(p.type)->include(rp.type)))

))

For method result variance constraints are the same but the temi 'p.kind

O retum' are replaced by 'p.kind = retum\

Next list show constraints for attribute variance.

OFL-ML: îf feature.variance for attributes = covariant

context ComponentRelationhip (OFLImportRelationship)

inv: seif.redefinedFeatures->forAll(

a I a.oclIsKindOf(Attribute) implies

seif.source.features->forAll(ra I

ra.oclIsKindOf(Attribute)

implies

ra.name = a.name

implies

a.type.allParents

->including(a.type)->include(ra.type)))

OFL-ML: if feature.variance for attributes = contravaiiant

context ComponentRelationhip (OFLImportRelationship)

inv: seif.redefinedFeatures->forAll(

a I a.oclIsKindOf(Attribute) implies

seif.source.features->forAll(ra I

85

BUPT

ra.oclIsKindOf(Attribute)
implies

ra.name = a.name
implies

ra.type.allParents->including(ra.type)

->include(a.type)))

OFL-ML: if featare.variance for method pararneter = nonvariant

context ComponentReiationhip (OFLImportRelationship)
inv: seif.redefinedFeatures->forAll(

a I a.oclIsKindOf(Attribute) implies
seif.source.features->forAll(ra I

ra.oclIsKindOf(Attribute)

implies

ra.name = a.name

implies
a.type=ra.type)))

Pararneter ConceptRe la t ionsh ip : :abs t rac t ing . This pararneter spec-

ify if relationship permits or not to abstract inethods (to transform iiiethods

that pass relationship from impleinented to abstract status). Permitted values

are mandatory. allowed and forbidden. The OFL-ML constraint for this pararn-

eter refer only first and last value.

OFL-ML: if abstracting = mandatory

context ComponentRelationhip (OFLImportRelationship)

inv: seif.parent.features->forAll(

m I m.oclIsKindOf(Method) implies

NOT m.isAbstract

implies

seif.stereotype.taggedValue

->forAll(t I t.name='abstractedFeatures'

implies t.value->include(m)))

OFL-ML: if abstracting = forbidden

context ComponentRelationhip (OFLImportRelationship)
inv: seif.stereotype.taggedValue

->select(name='abstractedFeatures')->size=0

Pararneter ConceptRelat ionship: :ef fect ing . This pararneter specify if

relationship permits or not to effect methods (to implements methods that pass

relationship). Permitted values are mandatory, allowed and forbidden. The

OFL-ML constraint for this parameter refer only first and last value.

OFL-ML: if effecting = mandatory

86

BUPT

context ComponentRelationhip (OFLImportRelationship)

inv: seif.paxent.features->forAll(

m I m.oclIsKindOf(Method) implies

m.isAbstract

implies

seif.stereotype.taggedValue

->forAll(t I t .naine='effectedFeatures'

implies t.value->include(m)))

OFL-ML: ?/ effectwg = forbidden

context ComponentRelationhip (OFLImportRelationship)

inv: seif.stereotype.taggedValue

->select(name=' efectedFeatures')->si2e=0

Parameter ConceptRelationship::maiskîng. The masking parameter
establish if features could be hidden or not when pass a relationship. Legal

values are mandatory, allowed and forbidden.

OFL-ML: if masking = mandatory

context ComponentRelationhip (OFLImportRelationship)

inv: seif.paxent.features->forAll(

fiFeature I

seif.stereotype.taggedValue

->forAll(t I t.name='hiddenFeatures'

implies t.value->include(f)))

OFL-ML: if masking = forbidden

context ComponentRelationhip (OFLImportRelationship)
inv: seif.stereotype.taggedValue

->select(name='hiddenFeatures')->size=0

Parame te r ConceptRe la t ionsh ip : : redef in ing . This parameter indicate

if the redefinition of features is mandatory, allowed or forbidden.

OFL-ML: if redefimng = mandatory

context ComponentRelationhip (OFLImportRelationship)
inv: seif.parent.features->forAll(

f:Feature I

seif.stereotype.taggedValue
->forAII(t I t.name='redefinedFeatures'

implies t.value->include(f)))

OFL-ML: if redefining - forbidden

context ComponentRelationhip (OFLImportRelationship)
inv: seif.stereotype.taggedValue

->select(name='redefinedFeatures')->size=0

87

BUPT

Parame te r Concep tRe la t i onsh ip : : renaming . This paiaineter indicate

if reiiaiiiiiig of features that pass coiisidered relationship is mandatory, allowtd

or forbidden.

OFL-ML: if renaming = rnandatory

context ComponentRelationhip (OFLImportRelationship)

inv: seif.parent.features->forAlK

f:Feature |

seif.stereotype.taggedValue

->forAll (t I t. iiame=' renamedFeatures'

implies t.value->include(f)))

OFL-ML: if renaming = forbidden

context ComponentRelationhip (OFLImportRelationship)
inv: seif.stereotype.taggedValue

->select(name='renamedFeatures')->size=0

Parame te r ConceptRe la t ionsh ip : : remov ing . This parameter estab-

lish if removing of features is rnandatory, allowed or forbidden.

OFL-ML: if removing = rnandatory

context ComponentRelationhip (OFLImportRelationship)

inv: seif . pairent. f eatures->f orAll (

f.-Feature I

seif.stereotype.taggedValue

->forAll(t I t.name='removedFeatures'

implies t.value->include(f)))

OFL-ML: if removing = forbidden

context ComponentRelationhip (OFLImportRelationship)
inv: seif.stereotype.taggedValue

->select(name='removedFeatures')->size=0

Parame te r ConceptRe la t ionsh ip : :showing . This parameter is oppo-

site for masking. It indicate if the primitive is make again visible after it was

masked. Possible values are mandatory, allowed and forbidden.

OFL-ML: if showing = mandatory

context ComponentRelationhip (OFLImportRelationship)
inv: seif.parent.features->forAll(

f:Feature I

seif.stereotype.taggedValue
->forAll(t I t.name='showedFeatures'

implies t.value->include(f)))

88

BUPT

OFL-ML: if showing = foTbiddtn

context ComponentRelationhip (OFLImportRelationship)

inv: seif.stereotype.taggedValue

->select (naine=' showedFeatures') ->size=0

Character is t ic AtomLanguage : :va l i dRe la t ionsh ips . Tliis character-

istic indicate descriptioiis types that could act as sources and targets for con-

sidered relationship. Values are triplets of <coinponentRelationship, compo-

nent DescriptionSource, coniponentDescriptionTarget>. The OFL-ML will add

a constraint that check for legal source type according to that.

Next we present generated constraints consider the value {< componentRela-

tionship, LanguageDescriptionTypeSourcel, LanguageDescriptionTypeTargetl>,

<componentRelationship, LangiiageDescriptionTypeSorce2, LanguageDescription-

T>'peTarget2>, ... } for this characteristic.

context ComponentRelationhip (OFLImportRelationship)

inv: let st = self.child in

(

st. isStereotjrpedC'LanguageDescriptionTypeSourcel')

or

st. isStereotypedC' LanguageDescriptionTypeSource2')

or

)

context ComponentRelationhip (OFLImportRelationship)

inv: let st = self.parent in

(

st.isStereotyped('LanguageDescriptionTypeTargetl')

or

st. isStereotypedCLanguageDescriptionTypeTarget2')

or

)

Elements Genera t ion . A profîle stereotype derived from ^OFLImportRelat ionsh ip»

will be generated for each OFL component. For a language with import reiation-

ships reified in OFL by components: ComponentLanguagelmportRelationshipl,

ComponentLanguageImportRelationship2 etc, resulting hierarchy is presented

in figure 5.14.

Tagged values will be generated for each relationship component according

to values of OYL-parameters: abstracting, effecting, masking, redefining, re-

naming, removing and showing. Indeed, tags will be added considering values

mandatory and allowed for these parameters.

Constraints are generated regarding OFL-ML generation-conditions. These

condition was presented as statements like:

89

BUPT

OFL-ML

Core::Relationslup

Core:: Genenliffttion

^ «baseElement»

«stereotjrpe»

OFLIiiiportRelatio]is)i9

«stereotype»

LanguigpbnportRelatiomhjp 1

«steieotjrpe»

Uiiguâ Iii9ortRelatio]ish92

Figure 5.14: Generated stereotypes for Import Relationships Components

OFL-AIL: if condition

The test condition will be evaluated by the module that generates the OFL-

ML profile.

Examp le . Considering Java language, following import relationships are iden-

tified [CCL02, CreOla]: between classes inheritance (JavaClassExtends), be-

tween interfaces inheritance (JavaInterfaceExtends), concretizat ion (JavaCon-

cretization) and implementation (Javaimplenients).

TaggedValues that corresponds to these stereotypes are shown in table 5.9.

Valid sources and targets for components are presented in table 5.10. Example

Stereotype Tagged Values

JavaClassExtends {redefinedFeatures}, {hiddenFeatures}

{effectedFeatures}

JavaInterfaceExtends {redefinedFeatures}

JavaConcretization {redefinedFeatures}, {hiddenFeatures}

{effectedFeatures }(niandatory)

Javaimplements {redefinedFeatures}, {effectedFeatures}

Table 5.9: Tagged Values for Java Import Relationship Components Stereotypes

of generated constraints for valid sources and targets for JavaInterfaceExtends

relationship are given bellow.

context JavaInterfaceExtends (OFLImportRelationship)

90

BUPT

Stereotype Valid Sources Valid Targets

JavaCla:>sExtends {JavaClass}

{JavaAbstractClass}

{Ja\^aStaticMemberClass}

{JavaAbstractStaticMemberClass}

{ JavaMemberClass }

{JavaAbstractMemberCIass}

{JavaLocalClass}

{JavaAbstractLocalClass}

{Java AnonyniousClass}

{JavaClass}

{JavaAbstractClass}

{JavaStaticMemberClass}

{JavaAbstractStaticMemberClass}

{JavaMemberClass}

{JavaAbstractMemberCIass}

{JavaLocalClass}

{JavaAbstractLocalClass}

JavaInterfaceExtends {Javalnterface}

{JavaStaticMemberInteface}

{Javalnterface}

{JavaStaticMemberInteface}

JavaConcretization {JavaClass}

{JavaStaticMemberClass}

{JavaMemberClass }

{JavaLocalClass}

{JavaAnonymousClass}

{JavaAbstractClass}

{JavaAbstractStaticMemberClass}

{JavaAbstractMemberCIass}

{JavaAbstractLocalClass}

Javaliiiplements {JavaClass}

{JavaAbstractClass}

{JavaStaticMemberClass}

{JavaAbstractStaticMemberClass}

{JavaMemberClass }

{JavaAbstractMemberCIass}

{JavaLocalClass}

{JavaAbstractLocalClass}

{JavaAnonymousClass}

{Javalnterface}

{JavaStaticInterface}

Table 5.10: Valid sources and targets for Java Import Relationship Coniponeiits

Stereotypes

inv: let st = self.child in

(

)

st.isStereotypedC'Javainterface')

or

st.isStereotypedC'JavaStaticMemberInteface')

context JavainterfaceExtends (OFLImportRelationship)

inv: let st = self.parent in

(

st.isStereotypedC Javainterface')

or

st.isStereotypedC'JavaStaticMemberInteface')

91

BUPT

5.5.3 The OFL Use Relationships

The OFL-use relationship is a generalizat ion of the aggregation niechanisni

found in object oriented languages. The meta-progianimer has responsibility

to create an OFL relationship component for each kind of use relationships ex-

isting in the modelled language. OFL-ML will generates necessary stereotypes,

tagged ualues and constraints in order to represents all these coniponents.

Stereotypes and Tagged Values. The abstract stereotype <OFLUseRelat ionship>

is the base for all the concrete stereotypes representing OFL UseRelationhip

coniponents of the considered language. As for import relationships presented

in the section above, the name of the generated stereotypes are the same as the

name of the OFL components with "Component" prefix removed (ex. for a com-

ponent "ComponentJavaAggregation", a stereotype named <^JavaAggregation»

will be created).

TaggedValue

Name

TaggedValue

Value
Comment

hiddenFeatures string

(list of feature names)

list of features that

are hidden

renamedFeatures string

(list of feature names)

list of features that

are renamed

removedFeatures string

(list of feature names)

list of features that

are removed

shownFeatures string

(list of feature names)

list of features that pass

the relationship unchanged

Table 5.11: OFL-ML Tagged Values for OFLUseRelationhip

Also, same way as for import relationship, all use relationships stereotyped

as specialization of <$:OFLUseRelationship::^ will have associated a set of tagged

values that corresponds to some OFL-AtomRelationship characteristics. These

tagged values are presented in table 5.11.

Constra in ts . All associations that correspond to an OFL use relationship

must have exactly two ends that correspond to source and target of relationship.

context ComponentRelationhip(OFLUseRelationship) inv:

se i f.allConnections->s ize = 2

Some constraints regarding parameters of OFL-concept-relationship gener-

ated for import relationships are valid also for use relationships. In this context,

the OFLUseRelationship stereotype will replace OFLImportRelationship as an-

cestor of ComponentRelationship stereotype. Also, \JML-associations attribute

will replace the \]ML-generalization. This attribute is a set that contains all

association relationships in which considered classifier is involved. Considering

92

BUPT

paranieter ConceptRelatioiishiprxardiiiality, transfoniied coiistraint will be the

following:

OFL-ML: if cardinality ^ oo

context ComponentRelationhipCOFLUseRelationship)

inv : se i f . c h i l d . a s soc i a t i ons->se l ec t (assoc I

assoc. isStereotypedC'ComponentRelat ionship')

and

assoc . ch i l d = s e i f . c h i l d) ->s i z e = n

The list of paraineters that are v'alid in context of an use relationship is:

• cardinality

• repetition

• circularity

• masking

• renaming

• removing

• showing

Parame te r ConceptRe la t ion : :dependence . This pairameter specify if

instances of target description have a life time dependent or independent of

source description. Possible values are dependent and independent

This parameter has meaning just for an use relationship.

OFL-ML links this parameter with aggregation attribute of UML-association-

End element. Possible values for this attribute are:

aggregate The target class is an aggregate; therefore, the source class is a part

and must have the aggregation \ l̂ue of none. The part may be contained

in other aggregates. This value is mapped to independent values of the

OFL dependence parameter.

compos i te The target class is a composite; therefore, the source class is a part

and must have the aggregation value of none. The part is strongly owned

by the composite and may not be part of any other composite. This \ l̂ue

is mapped to dependent values of the OFL dependence parameter.

OFL-ML: if dependance = independent

context ComponentRelationhip(OFLUseRelationship)
inv: seif.conection->select(assocEnd I

assocEnd.aggregation = aggregate)->size = 1

93

BUPT

OFL-ML: if dependance = dependent

context ComponentRelationhipCOFLUseRelationship)
inv: seif.conection->select(assocEnd I

assocEnd.aggregation = composite)->size = 3

Constraints related with characteristic AtoiiiLangTiage::validRelationships

are the same as presented for import relationships (see section above).

E lemen ts Genera t ion . OFL-ML will generates one stereot>T)e derived from

«:OFLUseRelationship» for each OFL use relationship component.

Tagged values will be generated also for each use relationship according

to values of OFL-parameters masking, renaming, removing and showing. As

already presented, tags will be added considering values mandatory and allowed

for these parameters.

Examp le . If we consider Java language, following use relationship components

are identified [CCL02, CreOla]: aggregation (JavcLAggregation), class aggrega-

tion (JavaClass Agregat ion), composition (JavaComposition) and class compo-

sition (JavaClassComposition). Because the last two components imply only

Java primitive types, which are OFL-ML basic types, they are represented by

stereotj-pes derived from basic tj^De composition (presented in section 5.5.4).

TaggedValues that correspond to these stereotypes are presented in table

5.12. The deletedFeatures specify the features that are deleted passing this

relationship (ex. features declared with private modifier). Table 5.13 presents

Stereotype r ?agged Values

JavaAggregation deletedFeatures}

JavaClassAggregation deletedFeatures}

Table 5.12: Tagged Values for Java Use Relationship Components Stereotypes

valid sources and targets for these relationships. Constraints and tags will be

added regarding parameters values.

For JavaAggregation we will have:

• cardinality = oc (no OFL-ML constraint)

• circularity = allowed (no OFL-ML constraint)

• repetition = allowed (no OFL-ML constraint)

• removing = allowed (no OFL-ML constraint but 'removedFeatures' gen-

erated tag)

For JavaClassAggregation we will have:

• cardinality = OG (no OFL-ML constraint)

94

BUPT

Stereotype Valid Sources Valid Targets

Java Aggregat ion {JavaClass}

{JavaAbstractClass}

{JavaStaticMemberClass}

{JavaAbstractStaticMemberClass}

{ J avaA lember C lass }

{JavaAbstractMemberClass}

{JavaLocalClass}

{JavaAbstractLocalClass}

{JavaAnonymousClass}

{JavaClass}

{JavaAbstractCl2LSs}

{Javainterface}

{JavaStaticMemberClass}

{JavaAbstractStaticMemberClass}

{ JavaMemberClass }

{JavaAbstractMemberClaiss}

{JavaLocalClass}

{JavaAbstractLocalClass}

{JavaAnonymousClass}

{JavaStaticMemberInteface}

JavaClassAggregation {JavaClass}

{JavaAbstractClass}

{Javainterface}

{JavaStaticMemberClass}

{JavaAbstractStaticMemberClass}

{JavaMemberClass}

{JavaAbstractMemberClass}

{JavaLocalClass}

{JavaAbstractLocalClass}

{JavaAnonymousClass}

{JavaStaticMemberInteface}

{JavaClass}

{JavaAbstractClass}

{Javainterface}

{JavaStaticMemberClass}

{JavaAbstractStaticMemberClass}

{JavaMemberClass}

{JavaAbstractMemberClass}

{JavaLocalClass}

{JavaAbstractLocalClass}

{JavaAnonymousClass}

{JavaStaticMemberInteface}

Table 5.13: Valid sources and targets for Java Use Relationship Components

Stereotypes

• circularity = allowed (no OFL-ML constraint)

• repetition = allowed (no OFL-ML constraint)

• removing = allowed (no OFL-ML constraint but 'reniovedFeatures' gen-

erated tag)

5.5.4 The Basic Type Composition

Basic type composition association stereotypes are used to represent composi-

tion with language primitive types. The relationship corresponds to primitive

type attribute declaration by a description. This relationship is all time com-

position because basic tynpes instances represents values but not objects.

Stereotypes and Tagged Values. Stereotypes have to be derived from two

stereotypes <OFLMLBasicTypeCompo-sition» and <OFLMLBasicTypeClassComposition».

The first represents instance association and the second represents class associ-

ation. No tagged values are necessary.

95

BUPT

Constraints . An OFLMLBasicTypeCornpositioii represents a coinpositioii.

context OFLMLBasicTypeComposition (Core::Association)

inv: seif.conection->select(assocEnd I

assocEnd.aggregation = composite)->size = 1

An OFLMLBasicTypeComposition could have as a target only an OFLBa-

sicT^-pe.

context OFLMLBasicTypeComposition (Core::Association)

inv: seif.conection->forAll(assocEnd I

assocEnd.aggregation = composition

implies

assocEnd.participant.isStereokinded(OFLBasicType))

A <$:OFLBasicType»-stereotyped Classifier may not participate in any As-

sociations with navigable opposite AssociationEnds.

context OFLBasicType (Core: :PrograininingLanguageDataType)
inv: seif.navigableOppositeEnds->isEmpty

An OFLMLBasicTypeComposition could have only OFLAssociationEnd as

a target end.

context OFLMLBasicTypeComposition (Core::Association)
inv: seif.conection->forAll(assocEnd I

assocEnd.aggregation = composition
implies

assocEnd.isStereotyped(OFLAssociationEnd))

An OFLMLBasicTypeClassComposition could have only OFLClassAssocia-

tionEnd as a target end.

context OFLMLBasicTypeClassComposition (Core::Association)

inv: seif.conection->forAll(assocEnd I

assocEnd.aggregation = composition

implies

assocEnd.isStereotyped(OFLClassAssociationEnd))

E l e m e n t s Generation. Usually maxim two stereotypes are generated: one

derived from <OFLMLBasic-TypeComposition> and one from <$:OFLMLBasicTypeClassComposition>.

If considered language have more than two type of relationships involving basic

types, additional constraints could be also necessary.

No tagged values are necessary.

96

BUPT

Figure 5.15: Example of usiiig OFLML ExternalImportRelationship

Examp le . For Java laiiguage we will have two relationship coiiiponents that

involve Java primitive types: composition (JavaComposition) and class coiii-

position (JavaClassConipositioii). The JavaComposition stereotype is derived

from OFLMLBasicT>TDeComposition and the JavaClassComposition is derived

from OFLMLBasicTypeClassComposition.

5.5.5 The Externai Import Relationship

Externai import relationships involve externai descriptions. Externai descrip-

tions are presented in sec. 5.3.4 and represents descriptions imported from

externai class libraries. These descriptions are usually opaque and they could

not be involved in OFL relationships.

OFL-ML use standard \]ML-generalization to represent these values.

Stereotypes and Tagged Values. No stereotypes and tagged values are

necessary.

5.5.6 Constraint s.

Any generalization relationship that is not stereotyped has to have an externai

description as target.

context generalization
inv: seif.stereotype->isEmpty

implies

seif.parent.isStereokinded(OFLExternalType)

Elements Genera t ion. No stereot>'pes or tagged values are generated. Only

presented constraint is added to the profile.

Examp le . An example of using an externai import relationship in OFL-ML

Java profile is presented in fig. 5.15.

97

BUPT

«OFLExtemalD«scnptk)n»
Vector

{exteniaPfttli< import ulU. Vector J)

aVec-

«JfltvaClass>

MjCkut

Figure 5.16: Exaiiiple of iisiiig OFLML ExternalUseRelatioiiship

5.5,7 The Externai Use Reiationship

Externai use relationships involve externai descriptions. Treatment of externai

use relationship is done in same way as for externai import relationship.

OFL-ML use standard VML-association to represent these values.

Stereotypes and Tagged Values. No stereotypes and tagged values are

necessary.

Constra in ts . Any association relationship that is not stereotyped has to have

an externai description at one end.

context association

inv: seif.stereotype->isEmpty

implies

seif.connection->select(assocEnd I

assoEnd.participant.isStereotyped(OFLExternalDescription))

->size = 1

Elements Genera t ion. No stereotypes or tagged values are generated. Only

presented constraint is added to the profile.

Examp le . An example of using an externai use relationship in OFL-ML Java

profile is presented in fig. 5.16.

5.6 The OFL Model Organization

OFL organizes application elements into OFL-packages. An OFL-package will

contain a group of Description, Relationships and other OFL-packages. OFL-

package is intended to maps to different module organization founded in existing

object oriented langiiages.

98

BUPT

5.6.1 The OFL Package

An VML-package is a gTOuping of model elemeiits. In the nietaniodel, Package is

a subclass of Namespace and GenerulizableElement A Package contains Mod-

elElenients like Packages, Classifiers. and Associatiojis. A Package niay also

contain Constraints and Dependencies between ModelElements of the Package.

Stereotypes a nd Tagged Values. An OFL package is represented by an

UML package (from Model Management) stereot>'ped as OFL Package». OFL

package containment (nesting) is niodelled by Namespace containment of one

<$:OFLPackage»-stereotyped UML package within another. For each consid-

ered OFL-language stereotypes must be derived from <$:OFLPackage». Be-

cause current version of OFL does not provides customization for package or-

ganization, these stereotypes have to be created by the meta-programmer.

Constra in ts . An OFLPackage could contain only OFLDescriptionTypes, OFLEx-

ternalDescriptions, OFLImportRelationships, OFLUseRelationships and other

OFLPackages .

context OFLPackge (ModelManagament::Package)

inv: seif.ownedElement->forAll(el I

el.isStereokinded('OFLDescriptionType') or

el.isStereokindedC'OFLExternalDescription') or

el.isStereokindedC'OFLImportRelationships) or

el.isStereokindedC'OFLUseRelationships) or

el.isStereokinded('OFLPackage'))

Elements Genera t ion . Profile package stereotypes must be generated man-

ually by the meta-programmer. If necessary, it could add also tagged values to

catch additional semantics of model organization.

Examp le . A Java Package maps to an <OFLJavaPackage>, which is derived

from <C0FL-Package». The simple name of the OFL Package is the simple

name of the Java Package. A hierarchy of Java Packages maps to a hierarchy

of OFL-packages.

PackageName is the fully-qualified name of the Java Package. The fully-

qualified name of a top level Java Package is its simple name. The fully-qualified

name of a Java Package contained by another Java Package is the fully-qualified

name of the containing Java Package, followed by followed by the simple

name of the Java Package. The fully-qualified name of a Java Package maps to

the fully-qualified name of the corresponding OFLPackage by replacing every

occurrence of". ' ' with

99

BUPT

5.7 Modelling Example Using an OFL-Java Pro-

file

As an example we consider the following Java code:

// file: Vehicle.java //

package OFLML^JavaCars;

abstract class Vehicle {

public int type;

public abstract void stsirtO;

}
/* Class Vehicle is the base for all vehicle hierarchy */

// file: Color.java //
package OFLML_JavaCars;

public class Color { }

// file: Car.java //

package OFLML_JavaCars;

public class Car {

public Color color;

public void setColor(Color c) {};

public Color getColorO {

return color; };

public void start() {};

}

Figure 5.17 gives an example of a model for application wliich use an OLF-

ML profile for OFL-Java:

• three descriptions: Vehicle, Car. and Color,

• one Java concretization relationship: Car is a concretization of the ab-

stract class Vehicle,

• one Java aggregation relationship: Car has an attribute of the Color type.

The diagram corresponds to above Java code. The OFL-ML Java Profile

elements used have bin defined according to previous sectioiis. The diagram

was generated with Objecteering UML Modeler version 5.2.2 [Sof03a].

100

BUPT

OFLML^JavaC<us

«JavaAbstmrtClass»

V^Kk

tjrpe : int
starîQ

«JavaConcretrratjOB»

{effectedFefttviresCstait')) «JavaAssoctttionEnd»
color

<«JavaClass»

Car

{pubbc}

setCobiO
getColoil)
stmQ

«JsvaClass»

Color
{pAhc}

«JfvaAggregaîion»

Figure 5.17: Example of using OFLML Java Profile

5.8 Conclusions and Future Work

5.8.1 Conclusions

This paper has presented an approach for generation of UML profiles for aji

object oriented languages described in OFL. This approach is based on a profiles

meta-languages named OFL-ML. We present on detail generation mechanisms

of OFL-ML and its drawbacks related with some language semantics. Then,

based on this meta-language, we present an OFL-Java Profile that is generated

based on OFL-ML rules.

To define a profile, OFL-ML use meta-information existing at the level of

OFL. Profiles elements are generated based on following OFL entities:

• OFL-DescriptionComponents

• OFL-AtomAttribute

• OFL-AtomMethod

• OFL-ImportRelationshipConiponents

• OFL-UseRelationshipComponents

• OFL-Package

To complete the Profile, for each elements, additional taggedValues and OCL

constraints are also generated.

101

BUPT

Because each OFL-ML Profile respect UML 1.5 standard specification, gen-

erated profiles are guaranteed to be used with conimercial UML niodelling tools

that support profile mechanisms.

Preseiited approach lias soiiie liniitations. It not consider following issues:

• other UML diagrams, additional to static class diagrams

• do not model OFLObjects

• do not address dynamic relationships like OFL-class-to-object-relationships

and OFL-object-to-object-relationships

• do not treat t̂ -pe niultiplicity (arrays or collection classes like java.util. Vector)

5.8.2 Future Work

We identify two main directions for future work.

First intend is to go deeper with language customization. Current version

of OFL provides just a light reification and no customization of semantics at

the level of routine body. Using UML definition of Action Model [OMG03b,

MTAL98], we intent to provide a way to represent also semantics at this level.

Our proposal is to extend the generated OFL-ML profile with UML-Actions for

routine body representation.

Briefly. UML actions represent:

• a fundamental unit of computaţional behavior

• action semantics are based on proven concepts from computer science

• action semantics remove assumptions about specific computing environ-

ments in user models:

- execution engines, PLs, implementation details

- do not require specification of software components, taisking struc-

tures or forms of transfer of control

- yet allows modelers to produce executable specifications

Considering usage of Action, all OFL parameter should be considered into

the Profile constraints. As some example we can consider:

ConceptDescription parameters .

• generator - specify if description could create or not instances. This

parameter will be involved in constraints at the level of all UML

Actions that implies creation of description instances.

• destructor - specify if description instances could be destroyed or not.

This parameter will be involved in constraints at the level of all UML

Actions that implies destroying of objects.

102

BUPT

ConceptRelationship parameters .

• direct_access - specify if the relationship allow direct access to a fea-

ture of target description. This parameter will be involved in con-

straints at the level of UML Read and Write Actions

• pol}TnophismJinplication - specify if considered relationship accept

or not polymorphism for instances of classes involved in. This pa-

rameter will be involved in constraints at the level of UML Read and

Write Actions and Messaging Actions

The second proposed task is to generate a representation in XML [CCCLOO]

or in a proprietary language representation of profile elements. We consider

here specifications for profile representation provided by some major tools like

Objecteering UML, Raţional Rose etc.

103

BUPT

Chapter 6

OFL-ML Tools Support and

Validat ion

Tools are the way most people interact witli a modeling langiiage. Therefore

one important concern is to help tools offer as much support as possible to the

modeler. We also use tools support to demonstrate the validity of the presented

approach.

6.1 The OFL Framework

The OFL fiamework presented here describes a set of tools that make possible

the implementation and usage of the OFL model. This implementation could

ser\̂e a language designer, to help him to try new modeling facilities (descrip-

tions and relationships types). It can assist an analyst to validate a model or

to extract metrics from application implementation model. Also it can help a

programmer who needs an extension of an existing language to be closer to a

specific domain. Basically there are four main tools included in the proposed

framework: OFL-Meta - a tool for meta-programniing work; OFL-ML tool for

application design and implementation or as an alternative the OFL-ML pro-

file generator; OFL-Parser for code generation and OFL Database that allows

interactions between previously mentioned tools and keeps OFL langiiages and

OFL applications meta-data. The framework architecture is presented in figure

6.L

As an implementation language we considered Java, a modern object ori-

ented language that permits a great portability and, furthermore, has powerful

libraries, essential in implementation of complex applications. Parts of pre-

sented tools were developed or are under development in collaboration with

researchers from "Sophia Antipolis" University of Nice. Some of them were cre-

ated as diploma projects by graduating students from "Politehnica" Lhiiversity

of Timişoara.

104

BUPT

OFL--\IETA 1
Grsphic incerfece

Gir. crater 1
•c i cn:

RiF

"OFT

Imformation

OFL-ML
Profile

Application
design
OFL'Nfl.

OFLAÎL tiiterface
OFL

informat ion

X 0 ? L Database

/ Paraiuecen and
actkni

[ir îTi î îa l r ^ i â a r ^ a i C ' r .]

JAVA CBLRTÎS

OFI-ML Graphk
objectz

Fînrana' râcra>̂ a£ict>l

OFL Parser

SNTitax intermediate

representation r:
\ I

.\pptkatian model
[tnr-jneolsir
rep-rsaraccl

Java

class

f Application model
[purr Jiv-a lanrjaze ap̂Ucaticn]

i t i n i i r . G '

Figiire 6.1: The OFL Fiarnework for OFL Applications Developiiient

105

BUPT

l | ^ n r i _ M E T A

F i e E d I U b r a y H r i p |

i < ? r : j P j C T

i ^ CU] . i rn-ipo-f-nK

1
I 3 De s cnp î i o n s

i 1

j 1

N a m e

Ndtiitf

Ai :uon

PO'^; f for ; o

C o r n i iif^ncv

t x i en : .DM_ : t e3 : on

î y c r

S i i i-c

Boo eon

l i oo e^an

a u : 3 l i : a l ! v l n n i n uav

• _ Vahie

j «v»-c iass

1 rr

l/ je l 'a i^ i?

t ' j e p a i s e

Va iue De f aun {

c '

L v j u a u ^ '

Irue

£P

au ' . :ma t ta i y

Figiiie 6.2: Using the OFL Meta Tool to describe an OFL-Language

6.1.1 The OFL-Meta Tool

The OFL-Meta tool is designed to help ineta-progranimers to describe an OFL-

Language or to extend an existing one. It allows in fact to define a new OFL-

Language and to add OFL-Components, OFL-Modifîers, OFL-Assertions and

OFL-Actions to it.

It presents a syntlietic view of the tree representing the OFL liierarchy. It

allows inspection of already made coniponents or creating of new coniponents.

These could be new coinponents desigiied froin the scratch or could be copies

of existing coniponents modifîed as needed as presented in figure 6.2.

6.1.2 The OFL-Database

AII tools from OFL-Framework are designed around OFL-Database. It repre-

sents a repository for OFL language coniponents and for OFL application enti-

ties. A nieta-programiner will use OFL Database to store inforniation about his

OFL-Langiiages. A programmer will use OFL Database to retrieve components

that he is planning to use and to store developed application. An early version

of OFL Database was considered a P J A M A [ADJ^96, ADJS96] implementa-

tion. The current version is developed in P O E T [Sof02, Sof03b] which is a free

object oriented database management system. References for OFL-Database

implementation could be founded in [Pes98, Cap99].This system supports the

ODMG specifications [CBB'^97], allows storage of Java Objects and export to

XML [Mic99].

6.1.3 The OFL-ML Modeling Tool

To implement OFL-ML we decide to implement both a dedicated modeling tool

and a profile generator. The reason is the incipient support for UML Profiles

included in standard UML modehng tools.

The OFL-ML modeling tool [PPOl] is designed to help progiannners create

OFL models. The architecture used is showed in figure 6.5. In this version, we

don't implement the package concept. Furthermore, we don't implement the

106

BUPT

GtJŴI «en«me|HWt|F*m«w|Rww|

J

jd

i

CUM. J

•1

1

H

CaoMi

Figure 6.3: OFL-ML Tool: Import Relationship Dialog Window - the List of

Characteristics

concept of local description, the reason for this decision being that the actual

version of OFL reification did not support the local description. We study

carefully the necessity to have two levels of visualization of the application

model of OFL-ML and we adopt the following solutions as presented in figures

6.3 and 6.4:

• The visualization of the import relationship characteristics (level two of

visualization) was not drawn on the model view. but we created a dialog

window, which presents the list of its characteristics. The advantage of

this solution is its capacity to allow visualization and modification of the

relationship parameter at the same time and in the same mode (reduce

the code). Instead of using two commands: one for the visualization

(that draws in model view) and one for the modification of the import

relationship parameters (normally a dialog box) the programmer has one

command for both cases. Another problem of the specification was the

overlapping of the draw parameters (of the import relationship), on top

of other elements of the model and in this situation the visibility of the

model is drastically reduced.

• To increase the contrast and visibility of the programmer's model we've

introduced the full colored termination for relationship (we draw a solid

triangle and a solid diamond instead of the empty geometrical shape).

• The use relationship is visible to the designer only on demand. This so-

lution was adopted in order to reduce the complexity of the model view

and to permit the programmer to concentrate on the modeling side of his

project. In conclusion, the model view only includes representations of the

107

BUPT

^ D p J o . o

File E<M Tool He«

a î

GasiU
Vr'tîci-ftB ' PâVinwter c) CiâÎA

I UŝReî-dlonitii;

I .^vOCi-S; -:
i

ClasaA

iL
SetecUtem

Figure 6.4: OFL ML Tool: Application Window

descriptions and import relationships, by default. The core of OFL doesn't

provide any support for storage or usage of graphical information of the

description representation. Consequently. we supplement the specifica-

tion with additional the classes. Analyzing the necessities of description

drawing, we find it essential to st ore the position of the description; other

information (frame of the description, the position of the relation) will be

generated at the run time. This approach reduces the space claimed by

the saved file on the disk. Another solution, vvhich we have considered,

is to automatically generate the graph of the model, but in this way the

organization of the model will be harder.

The application ofFers the programmer the possibility to create descriptions

and relationships in his project. Both description and relationship have a second

level of visualization, more detailed, which also permits the modification of the

parameter's characteristics.

6.1.4 The OFL-ML Profîles Generator

The OFL-ML Profiles Generator in under development. It has the mission

to generate both a Profile spcification in LaTex format and the XML Profile

representation.

This generator will consider all the rules presented in Chapter 5. As an

extension of it we think to also generate action routines in J-Language defined by

Objecteering Software [Sof03a]. This actions could be used into the Objecteering

108

BUPT

Figure 6.5: The OFL ML Tool Implementation Class Diagram

UML modeling tool in order to generate the XML representation of the OFL

application.

6.1.5 The OFL Parser

The OFL Parser [PTOl] could be described as a compiler for OFL applications.

In the current version it is a translator which generates pure Java code. The

generated code is augraented with OFL run-time information including both

OFL assertions and OFL actions.

The OFL Parser has a modular construction and could be adapted to gener-

ate information like metrics or to do some formal verification of the application

model.

6.2 Perspectives

We describe in this section five tools involved in OFL applications development.

We plan to adapt this tools in the future to follow changing of the UML Profile

standard. Also we start discussions with Objecteering for a future collaboration

that have as goal a possible integration of our approach into tools developed by

them.

109

BUPT

Chapter 7

Conclusions and

Perspectives

7.1 Conclusions

The main benefît of our approach is the possibility to have a direct and an exact

matching between model and iniplementation of an application. This desiderate

is achieved through two facilities supported bv our approach. The first one is

represented by the possibihty of prograniniing language tailoring through nieta-

langiiage extension niechanisnis. The second one resides in increasing seniatic

precision of modehng language based on generation of an UML Profile (OFL-

ML Profile). The backbone of both facilities is the meta-information existing

at the level of OFL.

The strong integration of our approach with standard programming and

modeling tools and technolog}' represents also a validation for it.

7.2 Author Contributions

The approach presented in this thesis brings a number of significant contribu-

tions to the field of object oriented programming and modeling languages. This

contributions are presented split in three categories.

Contribution at the level of OFL model extension

• Analysis of the OFL non-customizable elements that are used frequently

by programmers in practicai works

• Defînition of the Component Modifier and OFL Modifier

• Identification of Component Modifiers in Java, C-i-+ and Eiffel

110

BUPT

• Definit ion of new atoms and components in addition to original OFL

Model

• Classification of modifiers based on origin and semantic

• Definition of implementat ion rules for each category

• Reification of several modifiers belonging to Java, C-h-h and Eiffel

Contribution at the level of OFL-ML meta-profîle definition

• Analysis of main modeling and meta-modeling approaches

• Definition of a method which allowed to increase sematic precision for a

modeling language (an UML Profile) based on OFL meta-information

• Definition of the notions of OFL-ML Profile and OFL-ML Meta-profile

• Identification of the UML subset covering all OFL-ML Profiles

• Definition of the Virtual Meta-Model for OFL-ML Profile

• Definition for all modelling elements belonging to a generated profile

• Definition of generation rules for all elements considering OFL compo-

nents. parameters, characteristics aud actions

• Definition of a mechanism which allow to add constraints for the generated

profile

• Rules for automatic constraints generation

• Example of a elements generation considering OFL-Java language

Contribution at the level of tools implementation

• Definition of a framework which provides support for OFL application

developments

• Development and integration of various tools into the OFL Framework

7.3 Perspectives

As perspective we plan to develop and refine OFL and OFL-ML approgiches

by adding direct support for metrics extraction, aspect oriented programming

and service definitions. We plan also to keep the OFL-ML meta-profile up

to date with new versions for UML Profile standard. We also intend to test

our approach in at industry level by starting cooperation with modeling and

programming tools vendors hke Objecteering Software.

111

BUPT

Bibliography

[Aba98] M. Abadi. Protection in Programming Language Translation. In

Automata, Languages and Progmmming: 25th International Col-

loquLum. ICALP'98, Springer-Verlag, July 1998.

[ACL03] G. Ardourel. P. Crescenzo, and P. Lahire. Lamp : vers un Langage

de definition de Mecanismes de Protection pour Ies langages de

programmation a objets. In LMO 2003, Vannes, France. February

2003.

[ADJ-^96] M. P. Atkinson, L. Daynes, M. J. Jordan, T. Printezis, and

S. Spence. An orthogonally persistent java. SIGMOD Record,

25(4), 1996.

[ADJS96] M. P. Atkinson, L. Daynes, M. J. Jordan, and S. Spence. Design

issues for persistent Ja\^: A type-safe, object-oriented, orthogo-

nally persistent system. In Proceedings of the 7th Workshop on

Persistent Object Systems (POS'96), Cape May (NJ), USA, 1996.

[AKOO] C. Atkinson and T. Kiihne. Strict profiles: Why and how. In

UML 2000 - The Unified Modeling Language, Third International

Conference, University of York, UK, LNCS 1939, page 13. Springer

Verlag, October 2000.

[Ard02] G. Ardourel. Modelisation des Mechanisnies de Protection

dans Ies Langages a Objets. Phd thesis, University of Mont-

pellier, France, December 2002. http://wT\nv.lirinm.fr/ ar-

dourel/cv/these Ardourel.pdf.

[BCROO] E. Borger, A. Cavarra, and E. Riccobene. An ASM semantics for

UML activity diagrams. In Proceedings Algebraic Methodology and

Software Technology, 8th International Conference, AMAST 2000,

lowa City, lowa, USA, May 2000, LNCS. Springer, 2000.

[BDW^Ol] M. Birbeck, J. Duckett, A. Watt, S. Mohr, K. Williams, O. Gud-

mundsson, D. Marcus, and P. Kobak. Professional Xml (Program-

mer to Programmer). Wrox Press Inc, 2nd edition, May 2001.

112

BUPT

http://wT/nv.lirinm.fr/

[BHOO] T. Baar and R. Hăhnle. An integrated metamodel for OCL

t̂ -pes. In Proc. OOPSLA 2000, Workshop Refactoring the UML:

In Search of the Core, Mijineapolis, Minnesota, USA, 2000, 2000.

[BROl] C. Boyapati and M. Rinard. A Paranieterized Type System for

Race-Free Java Progranis. In ACM Conference on Object-Oiiented

Programming, Systems, Languages, and Applications (OOPSLA

2001), Tajnpa, Florida, October 2001.

[Cap99] A. Capouiilez. ROOPS: un Service parametrable de persistance

pour OFL. Technical Report I3S/RR-1999-15-FR, Laboratoire

d'Informatique, Signaux et Systmes de Sophia-Antipolis, France,

September 1999. http://ww.i3s.unice.fr/I3S/FR/.

[Car88] L. Cardelli. A semantics of multiple inheritance. Information and

Computation, 76(2/3), February 1988.

[CBB"^97] R. Cattell, D. Barry, D. Bartels, M. Berler, J. Eastman, S. Gamer-

nian, D. Jordan, A. Springer, A. Strickland, and D. Wade. Object

Database Standard : ODMG 2.0. Morgan Kaufmann Publishers,

Inc, 1997.

[CCCLOO] A. Capouiilez, R. Chignoli, P. Crescenzo, and P. Lahire. Modeling

Hypergeneric Relationships between Types in XML. In ETC'2000,

4th Edition of Symposium of Electronics and Telecommunications,

November 2000.

[CCCLOl] A. Capouiilez, R. Chignoli, P. Crescenzo, and P. Lahire. Hyper-

genericite pour Ies Langages a Objets : le Modele OFL. In

LMO'2001 (Langages et Modeles a Objets), page 16. Hermes Sci-

ence Publications, L'objet : logiciels, bases de donnes, reseaux,

volume 7, nr. 1-2/2001, January 2001.

[CCL99] R. Chignoh, P. Crescenzo, and P. Lahire. OFL: An Open

Object Model based on Class and Link Semantics Customiza-

tion. Technical Report 99-08, Laboratoire d'Informatique, Sig-

naux et Systmes de Sophia-Antipolis, France, March 1999.

http://www.i3s.unice.fr/I3S/FR/.

[CCLOO] A. Capouiilez, P. Crescenzo, and P. Lahire. How to improve

persistent-object management using relationship information? In

Proceedings of WOON 2000, Saint-Petersbomg, Russia, June 2000.

[CCL02] A. Capouiilez, P. Crescenzo, and P. Lahire. OFL: Hyper-

Genericity for Meta-Programming: an Application to Java. Tech-

nical Report I3S/RR-2002-16-FR, Laboratoire d'Informatique,

Signaux et Systmes de Sophia-Antipolis, France, April 2002.

http://ww\^^i3s.unice.fr/I3S/FR/.

113

BUPT

http://ww.i3s.unice.fr/I3S/FR/
http://www.i3s.unice.fr/I3S/FR/
http://ww/%5e%5ei3s.unice.fr/I3S/FR/

[CD94]

[Chi95]

[Chi99]

[CKMR99]

[CL02a]

[CL02b]

[CNP89]

[Coo98]

[CreOla]

[CreOlb]

[CW02]

[Des94]

S. Cook and J. Daniels. Designing Object Systems: Object-Oriented

Modelling mth Syntwpy. Prentice Hali, Ist edition, Noveniber

1994.

S. Chiba. A Metaobject Protocol for C-I-H-. In Proceedings of

the ACM Conference on Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA), October 1995.

S. Chiba. Open C-h-h 2.5 Reference Manual. University of Tsukuba,

Japan, http://ww^.csg.is.titech.ac.jp/ chiba/, May 1999.

S. Cook, A. Kleppe, R. Mitchell. and R. Rumpe. The Amster-

dam Manifesto on OCL. Technical Report TUM-I9925, Technical

University of Munchen, Germany, 1999.

P. Crescenzo and P. Lahire. Customisation of Inheritance.

In Springer Verlag, LNCS series, ECOOP'2002 (The Inheri-

tance Workshop) and Proceedings of the Inheritance Workshop at

ECOOP 2002, University of Jyvskyl, Finlande, page 7, June 2002.

P. Crescenzo and P. Lahire. Using both speciahsation and general-

isation in a progiamming language: Why and how? In OOIS 2002

(8th International Conference on Object-Oriented Information Sys-

tems) - MASPEGHI workshop, Montpellier, France. September

2002.

L. Cardelli, E. J. Neuhold, and M. Paul. T>Tpefull Programming.

In IFIP Advanced Seminar on Formal Methods in Programming

Langage Semantics, Lecture Notes in Computer Science. Springer

Verlag, 1989.

J. W. Cooper.

Wesley, 1998.

The Design Pattems Java Companion. Addison-

P. Crescenzo. OFL : Ies relations et descriptions d'Eiffel et

de Java. Technical Report I3S/RR-2001-06-FR, Laboratoire

d'Informatique, Signaux et Systmes de Sophia-Antipolis, France,

April 2001. http://ww.i3s.unice.fr/I3S/FR/.

P. Crescenzo. OFL: un Modele pour Parameter la Semantique

Operationnele des Langages a Objets - Application aux Relations

inter-classes. Phd. thesis, University of Nice, Sophia Antipolis,

France, December 2001. http://www.crescenzo.nom.fr/.

T. Clark and J.B. Warmer. Object Modeling With the Ocl: The

Raţionale Behind the Object Constraint Language. Springer Verlag,

Lecture Notes in Computer Science, 2263, April 2002.

P. Desfray. Object Engineering, the Fourth Dimension. Addison-

Wesley Publishing, 1994.

114

BUPT

http://ww.i3s.unice.fr/I3S/FR/
http://www.crescenzo.nom.fr/

[De599] P. Desfray. VVhite Paper on the Profile Mechanism, OMG document

a(i/99-04-07. http://w\\'w.onig.org, 1999.

[DSB99] D. F. D'Souza, A. Saiie, and A. Birchenough. First Class Exteri-

sibility for UML - Packaging of Profiles, Stereotypes, Patterns. In

2nd Int. Conf. on the Unified Modeling Language: UML'99, Fort

Collins, CO, USA, page 14. Springer-Verlag^LNCS series, UML'99,

October 1999.

[DSC^99] J. Dowling, T. Schafer, V. Cahill, P. Haraszti, and B. Redmond.

Using reflection to support dynamic adaptation of system soft-

ware: A case study driven evaluation. In OOPSLA '99 OORASE

- Workshop on Reflection and Software Engineering, DENVER,

COLORADO, November 1999.

[DTV02] L. Dykes, E. Tittel, and C. Valentine. XML Schemas. Sybex Inc.,

Ist edition, January 2002.

[Ewi] G. Ewing. Class inheritance: The mechanism and its uses.

http://citeseer.nj.nec.com/ewing94class.html.

[Fla99] D. Flanagan. Java in a Nutshell : A Desktop Quick Reference.

O'Reilly and Associates, 3rd edition, November 1999.

[Fra99] R. France. A problem-oriented analysis of basic UML static re-

quirements modeling concepts. In Proceedings of the 1999 ACM

SIGPLAN conference on Object-oriented programming, systems,

languages, and applications. ACM Press, 1999.

[FSOl] K. Flower and K. Scott. UML Distilled Second Edition. Addison-

Wesley, 2001.

[GC96] B. Gowing and V. Caliill. Meta-Object Protocols for C-f-h: The

Iguana Approach. In Proceedings of Reflexion'96, Ed. Kiczales,

California, April 1996.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns

- Elements of Reusable Object Oriented Software. Addison-Wesley

Publishing, 1994.

[GJSBOO] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language

Specification Second Edition. Addison-Wesley, 2000.

[GK97] M. Golm and J. Kleinoder. Metajava-a platform for adaptable

operating-system mechanisms. In Proceedings of the ECOOP 97

Workshop on Object-Orientation and Operating Systems, June 10,

1997, Jyvskyl, Finland, LNCS 1357, 1997.

115

BUPT

http://w//'w.onig.org
http://citeseer.nj.nec.com/ewing94class.html

[GliOO]

[Gol98]

[Gri99]

[Gui98]

[HeyOl]

[HHB02]

[Kai99]

[KDRB91]

[Koe95]

[LCC02]

[Lem98]

[Lip99]

[LYJW96]

M. Glinz. Problenis and Deficiencies of UML as a Requirements

Specification Language. In Proceedings of iht lOth International

Workshop on Software Specification and Design. IEEE Computer

Society, 2000.

M. Golm. met axa and the future of refiection. In Presented at the

OOPSLA Woî^kshop on Reflective Programming in C-h-h and Java,

October 18, 1998, Vancouver, Bntish Columbia, 1998.

W Grieskamp. .4 Set-Based Calculus and its Implementation. Phd.

thesis, Technischen Universităt Berlin, Germany, November 1999.

http://research.microsoft.com/users/wrwg/.

J. Guimares. Refiection for Statically Typed Languages. In

ECOOP 98, 12th European Conference on Object-Oriented Pro-

gramming Brussels, Belgium, July 1998.

T. Heyer. Semantic Inspection of Early UML Designs. In Proceed-

ings Workshop on Inspection in Software Engineering (WISE VI),

July 2001.

R. Hennicker, H. Hussmann, and M. Bidoit. Object Modeling with

the OCL: The Raţionale behind the Object Constraint Language,

volume 2263 of LNCS. Springer, 2002.

K. Kaitanen. J-UML Specification. Version 1.02, February 1999.

http://www.vtt.fi/tte/papers/j-uml.

G. Kiczales, J. Des Rivieres, and D. Bobrow.

MetaObject Protocol MIT-Press, 1991.

The Art of the

A. Koenig. Function objects, templates, and inheritance. Journal

of Object-Oriented Programming, September 1995.

P. Lahire, P. Crescenzo, and A. Capouillez. Le modele ofl au service

du metaprogrammeur - application a java. In Proceedings of LMO

2002 (Langages et Moddes a Objets), Montpellier, Pr^ance, January

2002.

R. Lemesle. Meta-modeling and modularity : Comparison between

MOF and CDIF formalisms. In OOPSLA '98 Workshop Model En-

gineering, Methods and Tools, October 1998.

S. B. Lippman. Essential C-h+. Addison-Wesley Pub. Co., Ist

edition, October 1999.

T. Lindholm, F. Yellin, B. Joy, and B. Walrath. The Java Vir-

tual Machine Specification. Addison-Wesley Pub. Co., 3rd edition,

September 1996.

116

BUPT

http://research.microsoft.com/users/wrwg/
http://www.vtt.fi/tte/papers/j-uml

[Mey91]

[Mey97]

[Mey02]

[Mic99]

[MTAL98]

B. Meyer. Eiffel : The Language. Prentice Hali, Ist edition, Octo-

ber 1991.

B. Meyer. Object-Oriented Software Construction. Professwnal

Technical Referencc. Prentice Hali, second edition, 1997.

B. Meyer. Eiffel: The Language.

http://www.inf.ethz.ch/ meyer/, 2002.

Online version at

[MTAL99]

[ObeOO]

[ObjOl]

A. Michard. XML Language and Applications. Eyrolles, 1999.

S. J. Meilor. S. R. Tockey, R. Arthaud, and P. LeBlanc. An Ac-

tion Language for UML: Proposal for a Precise Execution Seman-

tics. In The Unified Modeling Language, UML'98 - Beyond the

Notation. First International Workshop, Mulhouse, France. LNCS,

pages 307-318. Springer, June 1998.

S. J. Meilor, S. Tockey, R. Arthaud, and P. Leblanc. Software-

platform-independent, Precise Action Specifîcations for UML. In

UML'99, October 1999.

I. Ober. Defîning Precise Semantics for UML. In Workshop at

ECOOF'2000, Cannes, Fance, June 2000.

Object Management Group - OMG. Meta Object Fa-

cility Specification (MOF), Version 1.3.L November 2001.

http://www.omg.org/technology/documents/formal/meta.htm.

[ODW+01] N. Ozu, J. Duckett, K. Wilhams, S. Mohr, K. Cagle, O. Griffin,

I. Norton, F. Stokes-Rees, and J. Tennison. Professional XML

Schemas. Wrox Press Inc, Ist edition, July 2001.

[OMGOO] Object Management Group OMG. Object Constraint Language

Specification. Version 1.3, March 2000. http://\ww.omg.org.

[OMGOl] Object Management Group OMG. UML Profile for EJB Specifica-

tion, Version 1.0. http://www.omg.org, May 2001.

[OMG02a] Object Management Group OMG. UML Profile for CORB A Spec-

ification, Version 1.0. http://www.omg.org, April 2002.

[OMG02b] Object Management Group OMG. UML Profile for EDOC final

adopted specification, Version 1.0. http://www.omg.org, May 2002.

[OMG03a] Object Management Group OMG. UML Profile for Schedulability,

Performance and Time. Version 1.0. http://www.omg.org, January

2003.

[OMG03b] Object Management Group OMG. Unified Modelling Lan-

guage Specification, version 1.5, Ist ed., March 2003.

http://www^omg.org.

117

BUPT

http://www.inf.ethz.ch/
http://www.omg.org/technology/documents/formal/meta.htm
http:///ww.omg.org
http://www.omg.org
http://www.omg.org
http://www.omg.org
http://www.omg.org

[PCL03a]

[PCLOSb]

[Pes98]

[PesOl]

[Pes03]

[PLOO]

[PL03]

[Por92]

[PPOl]

[PTOl]

[RayOl]

[Red03]

D. Pescaru, P. Crescenzo, and P. Lahire. An Extension for

OFL Model through modifiers. Technical report, Laboratoire

d'Informatique, Signaux et Systnies de Sophia-Antipolis, Fiance,

Jully 2003.

D. Pescaru, P. Crescenzo, and P. Lahire. Automatic Profile Gen-

eration for OFL-Languages. Technical report, submited to Lab-

oratoire d'Informatique, Signaux et Systmes de Sophia-Antipolis,

France, October 2003.

D. Pescaru. A Java Object Oriented Environment for Databases. In

Third International Conferenct on Technical Infoj-rnatics, CONTI-

98, Timişoara, October 1998.

D. Pescaru. A Framework for an Hypergeneric System Implemen-

tation Based on OFL. PhD Report at "Politehnica" University of

Timişoara, Romania, October 2001.

D. Pescaru. Implementation for OFL Modifiers Assertions. sub-

mited to Buletinul Stiintific al Univ. "PoHtehnica" din Timişoara,

Vol.48(62)/03, ISSN 1224-600X, November 2003.

D. Pescaru and P. Lahire. OpenIDL: an Open Modeling Language

Based on IDL and OFL. In Fourth International Conference on

Technical Informatica, CONTI'2000, Timişoara, Romania, Octo-

ber 2000.

D. Pescaru and P. Lahire. Modifiers in OFL: An Approach for

Access Control Customization. In The 9th International Confer-

ences on Object-Orinted Information Systems - 00ISV3, WEAR

workshop, Geneva, Swizerland, September 2003.

H. H. Porter. Separating the subtype hierarchy from the inheritance

of implementation. Journal of Object-Oriented Programming, 4(9),

February 1992.

D. Pescaru and C. Papandonatos. An OFL-ML tool implementa-

tion. Buletinul Stiintific al Univ. "Politehnica" din Timişoara, nr.

46(60)/01, ISSN 1224-600X, October 2001.

D. Pescaru and E. Tundrea. OFLParser - Code Generator for

OFL-ML Models. Buletinul Stiintific al Univ. "Pohtehnica" din

Timişoara, nr. 46(60)/01, ISSN 1224-600X, October 2001.

E. T. Ray. Leaming XML

edition, February 2001.

O'Reilly and Associates Pub., Ist

P. V. Reddy. Toward Better Logical Models in UML. Published

by ETH Zurich, JOURNAL OF OBJECT TECHNOLOGY, 2003,

2003.

118

BUPT

[RFBLOOl] D. Riehle, S. Fraleigh. D. Bucka-Lasseii, and N. Omorogbe. The

Architecture of a UML Virtual Machiiie. In tht 2001 Conference

on Object-Oriented Programming Systems, Languages, and Appli-

cations (OOPSLA 01). ACM Press, 2001.

[RJB98] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling

Language reference manual. Addison-Wesley Longnian Ltd., Essex,

UK, 1998.

[SC02] J. L. Sourrouille and G. Caplat. Constraint checking in UML mod-

eling. In Proceedings of the Hth intemational conference on Soft-

ware engineering and knowledge engineering. ACM Press, 2002.

[Sch91] D. Schenck. EXPRESS Language Reference Manual. ISO

TC184/SC4/WG5 Document N14, March 1991.

[Sch02] N. Schirmer. Analasyng the Java Package/Access Concepts in Is-

abelle/HOL. In ECOOP Workshop on Formal Techniques for Java-

like Programs (FTfJP'2002), Malaga, Spain, June 2002.

[Sny86] A. Snyder. Encapsulation and Inheritance in Object-Oriented Pro-

gramming Languages. In Proceedings of OOPSLA '86, Object-

Oriented Programming Systems, Languages, and Applications.,

November 1986.

[Sof97] Raţional Software. UML semantics, September 1997.

http: / raţional. com / uml/html/semantics /.

[Sof99] SoftTeam. UML Profiles and the J Language: To-

tally control your application development using UML, 1999.

http://www.softeam.fi'/pdf/us/umLprofiles.pdf.

[Sof02] Poet Software. Developing object oriented databases using POET.

FastObjects web site - http://www.fastobjects.com, 2002.

[Sof03a] Objecteering Software. Objecteering 5.2.2 Manual, 2003.

http://www.objecteering.com/.

[SofOSb] Poet Software. POET XML White Paper. Poet web site -

http://www.poet.com/, 2003.

[SPH+01] G. Suny, F. Pennaneac, W . Ho, A. Guennec, and H. Jzquel. Using

UML Action Semantics for Executable Modeling and Beyond. In

CAiSE 2001, LNCS 2068, 2001.

[Str94] B. Stroustrup. The Design and Evolution of C-h-i-. Addison-W^sley

Pub. Co., Ist edition, March 1994.

[Str97] B. Stroustrup. The C+-h Programming Language. Addison-Wesley,

third edition, 1997.

119

BUPT

http://www.fastobjects.com
http://www.objecteering.com/
http://www.poet.com/

[TatOO] iM. Tatsiibori. OpenJava MOP API. Sourceforge Web site, October

2000. http://openjava.sourceforge.net/.

[TCKIOO] M. Tatsubori, S. Chiba, M. Killijian, and K. Itano. A Class-based

Macro System for Java. In Reflection and Software Engineering,

LNCS 1826, Spnnger Verlag, 2000.

[vdA02] \V. M. van der Aalst. Inheritance of Dynaniic Behaviour in UML.

In Proceedings of the Second Workshop on Modelling of Objects,

CoTnponents and Agents (MOCA 2002), Aarhus, Denrnark, August

2002, University of Aarhus. D. Moldt, editor, 2002.

[W3C00] Org. W3C. Extensible Markup Language XML, Version 1.0 sec.

ed., W3C Recoinmendation. http://www.w3c.org, October 2000.

[Wec97] W. Weck. Inheritance using contracts object composition. In

ECOOP'97 Workshops, Jyvdskylă, Finland, Lecture Notes in Com-

puter Science. Springer, June 1997.

[WK98] J. Warmer and A. Kleppe. The Object Constraint Language : Pre-

cise Modeling with UML. Addison-Wesley Pub. Co., Ist edition,

1998.

[WS98] I. Welch and R. Stround. Dalang - a Reflexive Java Extension,

PWRP'98. Technical Report UTCCP Report 98-4, University of

Tsukuba, Japan, October 1998.

[Wu98] Z. Wu. Reflexive Java and a Reflexive Component-based Transac-

tion Architecture. Technical Report UTCCP Report 98-4, Univer-

sity of Tsukuba, Japan, October 1998.

120

BUPT

http://openjava.sourceforge.net/
http://www.w3c.org

