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Motto 

AU of physics is either impossible or trivial. It is impossible until you 

understand it and then it becomes trivial. 

- Emest Rutherford 
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Chapter 1 

Introduction 

The starting poiiit of this thesis is the general opinioii about the evident gap be-

tween object-oriented modelling languages and programming languages. Many 

companies do not use yet UML, which is the standard of object-oriented mod-

ehng languages since many years. Indeed, even they use UML in the analyzing 

phase they prefer to jump over implementat ion model for application. Instead 

they are using to have only an ad-hoc model that resides directly in implemen-

tation. First explanation consists in contradiction between generality of UML 

and specificity of application model after implementation in a programming 

language. 

1.1 The Problem 

UML is used in a wide area of contexts, by people coming from different cultures, 

many of them considering (more or less justified) their case special and asking 

for a deviation from the standard in the form of a particular tuning of UML. A 

hard-coded UML precise semantics would preclude the existence of these tunings 

and thus would be practically unacceptable. 

We are in a situation where on one hand we need precise semantics to really 

make the UML a communication mean, while on the other hand we do not need 

too much precision because the domains on which UML is to be applied are so 

different that they can not be unified under a single semantics. The response 

of OMG is the introduction of profiles as standard means to adapt the UML to 

some domain-specific needs. 

1.2 The Goal 

The goal of this research, as the title say, is to bridge the gap between object-

oriented modeling and programming languages. 

The problem appears when the UML is used to create an implementation 

model. After the implementation of this model, the application will contain 
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itself an intrinsic model. Because a prograiiiming languages has a rnore precise 

semantic than UML, this two models will be diflferent. If the specification change 

the problems will appear at reengineering phase. 

If we think at UML Profile solution, the problem is how to specify this profile 

in order to fill the gap. This problem is harder if we think in terms of number 

of existing programming languages, each of them with different versions and 

flavors. 

The approach presented in this thesis tries to use meta-information about a 

progrgimming language described in a meta-language and to generate automat-

ically a well tailored profile adapted to it. 

This solution goes beyond the presented goal. This suggests a wider frame-

work which allow also extensions of the programming languages not only gen-

eration of tailored profile. This way the programming language and the corre-

sponding profile can become closer to real applications and domains. 

1.3 Organizat ion 

Chap t e r 2 presents an overview on state of the art in the fields of modeling 

languages and meta-programming. It contains discussions and critics about 

existing approaches and tries to define exactly the problem. 

The OFL-Model is presented in Chap t e r 3. This model represents a para-

metric meta-model that allows description of object oriented programming lan-

guages. This chapter presents main concepts behind this model and represents 

an analyze of good and poor aspects of this model. 

The model extension proposed in Chap t e r 4 is the result of conclusions 

extracted from previous section. It enables customization of language modifiers 

and enrich the adaptable semantics of the OFL-Model 

Chap t e r 5 represents the main section of this thesis. During this chapter is 

developed the approach regarding generation of OFL-ML profiles. It describes 

the OFL-Meta-Profile and the Virtual Meta-Model that resides behind it. It 

contains also all the rules that axe used to generate a specific OFL-ML Profile. 

Chap t e r 6 presents working framework and the tools support necessary to 

validate the approaches presented in the previous two chapters. 

Chap t e r 7 siunmarizes the thesis and point out the research perspectives 

of presented approach. 
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Chapter 2 

State of the Art 

There are several options in the field of object oriented modelling languages and 

meta-languages extensions. There are also several approaches to reduce the gap 

between models and implementations. This section tries to offer an overview of 

sonie of those in a criticai manner. 

2.1 Design Methods 

2.1.1 Unified Modelling Language - UML 

The Unified Modelling Language (UML) [OMG03b, RJB98] is a graphical lan-

guage for visualizing. specif>ing, constructing, and docunienting the artifacts of 

a softAvare-intensive system. 

The Logical Model [Red03] in UML is used to model the static structural 

elements. It is a static view of the objects and classes that make up the de-

sign/analysis space. Typically, a Domain Model is a looser, high level view of 

Business Objects and entities, while the Class Model is a more rigorous and 

design focused model. The Logical Model captures and defines the objects, en-

tities and building blocks of a system. Classes are the generalized templates 

from which run-time objects are created. Components are built from classes. 

Classes (and interfaces) are the design elements that correspond to coded or 

developed software artifacts. 

The Unified Modelling Language is, as its name implies, a modelling lan-

guage and not a method or process. UML is made up of a very specific notation 

and the related grammatical rules for constructing software models. UML in 

itself does not prescribe or advise on how to use that notation in a software 

development process or as part of an object-oriented design methodology. UML 

supports a rich set of graphical notation elements. It describes the notation 

for classes, components, nodes, activities, work fiow, logical, objects, states and 

how to model relationships between these elements. UML also supports the 

notion of custom extensions through stereotyped elements. The UML provides 

significant benefits to software engineers and organizations by helping to build 
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rigorous, traceable and niaintainable iiiodels, which support the full software 

developiiient life-cycle. 

A Class is a standard UML construct used to detail the pattern froin which 

objects will be produced at run-time. A class is a specification and an object 

is an instance of a class. Classes may be inherited from other classes (that is, 

they inherit all the behavior and state of their parent and add new functionality 

of their own), have other classes as attributes, delegate responsibilities to other 

classes and implement abstract interfaces. To gain a more precise semantic real 

models use a variety of stereotypes and related constraints applied to UML class 

element. They cire used to model different types of classes belonging to object 

oriented langnages (like Java Abstract Class, Java Interface, C+-I- abstract class 

etc.) . 

The Class Model [Fra99] is at the core of object-oriented development and 

design - it expresses both the persistent state of the system and the behavior 

of the system. A class encapsulates state (attributes) and offers services to 

manipulate that state (behavior). Good object-oriented design limits direct 

access to class attributes and offers services which manipulate attributes on 

behalf of the caller. This hiding of data and exposing of services ensures data 

updates are only done in one place and according to specific rules - for large 

systems the maintenance burden of code which has direct access to data elements 

in many places is extremely high. 

To keep more semantic, a class model could also contain the implementation 

encapsulated at the level of method body in a special tagged value. 

Logical UML elements may be related in a variety of ways. The following 

relationships are the most common: association, aggregation and inheritance 

relationships. 

Association relationships capture the static relationships between entities. 

These generally reiate to one object having an instance of another as an attribute 

or being related in the sense of owning (but not being composed of). We will 

use this element but in conjunction with stereotypes that define reiationship 

semantics. 

Aggregation relationships define whole/part relationships. The stronger 

form of aggregation is composition and infers that a class not only collects 

another class, but is actually composed of that collection. There are also many 

other fiavors for aggregation. 

Inheritance describes the hierarchical relationship between classes [Ewi, Cai'88, 

Por92]. It describes the family tree. Classes may inherit attributes and behavior 

from a parent class (which may in turn be the child of another class). This tree 

of inherited characteristics and behavior allows the designer the ability to collect 

common functionality in root classes (ancestors) and refine and specialize that 

behavior over one or more generations (children). Scope specifiers (public, pro-

tected and private) determine which elements may be inherited and which are 

not visible. Inheritance is modelled in UML by using the generalization relation-

ship element. A better model for Inheritance is obtained through stereotypes 

and tagged values added to UML generalization. This way it can make distinc-

tion between different types of import relationships like class inheritance and 

10 
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sub-typing. UML visibility modifiers represent a real problem for programmers 

[FSOL GliOO]. They are used to define scope of inherited elements through re-

lationship but also to define some level of protection. Instead of that, we will 

tr>' to define an adaptive specification for this modifiers [PL03] that model the 

existing access control and protection specifiers from the target language. More-

over, following this way we can add support for other king of features modifiers 

that address various semantic (like optimizat ion or services). 

UML Dynamic Relationships [vdA02] are the messages passed between classes 

(objects at rmi time). A Sequence Diagram illustrates this message passing and 

the sequence in which it occurs. These model elements have an association to 

each other refiected at run time by the passing of messages to each other. We do 

not consider Dynamic Relationships in this thesis. However, a future research 

will analyze the opportunity to provide Instantiation Relationships (that are 

objects to classes relationships). This relationships model the link between ap-

plication run-time instances (objects) and class meta-instances (meta-objects). 

In UML, a logical model element and the attributes, associations and op-

erations that it contains, may all be further specified with constraints [SC02, 

Wec97]. These constraints are essential if we want to catch a specific semantic. 

These are the UML contractual rules that apply to an element and/or its 

features. Typically they fall into one of three t>TDes: 

• Pre-conditions - which must be true prior to the operation or existence of 

an element 

• Post-conditions - which must be true after the use or destruction of an 

object 

• Invariants - which must always be true for the life and use of an object 

Any modehng language need support for these rules as assertions. In UML 

they are modelled in OCL [HHB02, BHOO]. 

As the class model develops, classes (and interfaces) may be organized into 

logical units or packages in UML. These collect related elements (and in some 

implementations will govern the visibility of operations and attributes) by ele-

ments outside the package. 

In all programming languages packages are used mainly as design structures 

for supporting a better organization of user application elements. It corre-

sponds to UML package concept and to class libraries organizational model in 

object oriented programming languages. Generally, a package is a grouping of 

model elements. It may contain different kinds of model elements. Each model 

element can be directly owned by a single package. However, packages can 

reference other packages, so the whole usage network is a graph. The depen-

dencies among the elements belonging to different packages create dependencies 

between packages. This dependencies could be used to write constraints. 

11 
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2.1.2 UML Profile 

UML is defined by its meta-model [ObjOl, Lem98]. In [Des99] it is discussed how 

specific domains, which require a specialization of the general UML meta-model, 

can define an UML profile. The goal is to focus UML to describe more precisely 

the considered domains. Even as concrete UML profiles have started to emerge 

[OMG02b, OMGOL OMG03a, OMG02a], use of the profiling mechanism is still 

discussed [DSB99, AKOO]. 

An UML Profile consists of a set of UML extensions (stereotypes, tagged 

values, constraints) and is supplemented by specifications of the mappings of the 

domain concepts to those extensions. and specifies additional well-formedness 

rules (expressed in OCL or in natural language). 

V i r t u a l Me ta-Mode l of Stereotypes The UML specification makes the 

following comment in its discussion of Stereotypes [OMG03b]: 

The stereotype concept provides a way of classifying (marking) elements so 

that they behave in some respects as if they were instances of new ''virtuaV 

metamodel constructs. 

In the UML meta-model, a Stereotype is a GeneralizableElement. Thus it 

is legal to define Generalization (inheritance) Relationships among Stereotypes. 

Furthermore, a GeneralizableElement is a ModelElement, and Dependency Re-

lationships can be defined among ModelElements. Thus it is legal for Stereo-

types to participate in Dependency Relationships. 

In the UML meta-model, a Stereotype extends one or more elements of the 

meta-model. 

Some abstract Stereotypes are defined and, in keeping with UML notation, 

abstractness is denoted by italicizing the Stereotypes name. In UML an abstract 

GeneralizableElement cannot be instantiated. The abstract Stereotypes are 

useful for avoiding repetition in multiple Stereotypes that logically have common 

properties. 

Using U M L No t a t i o n for V i r t u a l Meta-mode l ing . In light of these facts, 

the specification takes the following approach to using UML notation to express 

the virtual meta-model: 

• The model is expressed via class diagrams. 

• Each Stereotype plays the client role in a Dependency Relationship with 

the UML metaclass that it extends. These Dependencies are stereotyped 

<^baseElement^. We use this as non-standard notation because relation-

ships afford greater clarity than TaggedValues. 

• Each Stereotype is expressed via a Classifier box, even though a Stereo-

type is not a Classifier. The keyword ^stereotype» does NOT represent 

a stereotype itself - it is simply a notational marker for the underlying 

Stereotype meta-class. 

12 
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• Generalization Relationships amoiig Stereotypes are expressed in the stan-

dard UML fashion. 

2.1.3 Considerations About UML Semantics Included in 
Profîles 

Alniost anyone will admit the need for a precise UML semantics [BCROO, ObeOO, 

HeyOl]. Next issues reveal the problems that appear when trying to achieve this 

goal. We try to respond at least partially to this problems when we propose our 

meta-profile. 

The granulcirity problem. Part of the precise UML semantics should be 

contained in domain-specific parts. i.e. profîles. The question that naturally 

arises from this is what do we put in the basic UML and what do we put in the 

domain specific parts? 

Semantics defined in profîles. A possible approach is to leave the UML 

definition as it is today. Each profile should contain all the semantics that 

describes it. The advantage is that this allows almost any "UML semantics" to 

exist. This approach does nothing for increasing the UML precision, it only gives 

semantics to UML dialects. One of the main goals of asking for a precise UML, 

which is to ensure that UML offers a communication means between modelei^, is 

compromised, as the same UML model may be understood differently in different 

contexts. Actually, this approach would lead to the transformation of UML from 

a modelling language to a modelhng paradigm. If no concept had any semantics, 

then UML would only be a vocabulary of terms with different meanings in 

different contexts. Concretely this approach would consist of leaving the UML 

definition as it is today (possible removing inconsistencies and omissions, if they 

are found), and adding precise semantics into UML profiles. 

Semantics shared between profile and meta-model. Another approach 

would be to add semantics into profiles, but to also add more information into 

the UML definition. A possible solution is to define the concepts, relationships 

between them, constraints, some more precise semantics of them in the common 

UML. Moreover, for each concept it is stated explicitly in the common UML 

whether it can or cannot be refined (or redefined) in a profile. The advantage 

is that the impact of different variants is reduced and localized and anytime 

someone will look at a UML model it will be clear which elements are susceptible 

of having a semantics different from the common one. In the same spirit we 

could imagine not only having concepts whose semantics can be refined, but 

also having concepts without semantics, so that any UML profile should clearly 

state what is the meaning of that concept in its context. 

Flavors of the flavors Assuming we know how to partition the semantic 

between the common UML and the specific profile, the next questions that 

13 
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comes is how much information the couple common UML plus specific profile 

should contain? We take as a concrete example the under-work UML profile 

for real-time [RFPRT], as it is one of the first profiles demanded by the OMG. 

The purpose of the real-time profile is to oflFer specific means appropriate for the 

real-time domain. Although it solves many of the UML problems, it still may 

need further refinement. The real-time domain is itself vast, and a single profile 

could not address every specific demand. As a result, if one would compare the 

L^ML profile for real-time with a solution dedicated to a specific real-time field, 

such as the SDL [SDL] primary designed for telecommunication, the conclusion 

would be that the real-time profile offers less than the existing solutions and 

may still need further refinements. 

Although the problem of not having a precise semaiitics has been often 

signaled, having a precise semantics of UML is still an aspiration. 

2.1.4 UML Act ion Semantics Model 

Action Semantics Model [SPH^Ol, MTAL99, RFBLOOl] is a promising tech-

nology included in last version of UML specification. It aims to provide both a 

meta-model integrated into the UML meta-model, and a model of execution for 

the statements (application code or constraints). As a OMG standard, the Ac-

tion Semantics eases the move to tool interoperability, and allows for executable 

modeling and simulation. 

The fundamenta l elements defined by this model are presented 

below. 

• Action - fundamental unit of computaţional behavior; 

• Action semantics are based on proven concepts from computer science. 

Act ion semantics remove assumptions about specific compu t i ng 

environments in user models. 

• Execution engines, programming languages, implementation details: 

• Do not require specification of software components, tasking structures or 

forms of transfer of control; 

• Yet allows modelers to produce executable specifications. 

A n action takes some input values, possibly accesses the state of 

the containing system, performs some processing, possibly modifîes 

the state of the system, and produces some set of ou tpu t values. The 

required inputs and outputs of an action are specified as P ins of the 

action. 

• Input pins - hold values to be consumed by the action; 

14 
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• Output pins - hold valiies generated by the action. 

• Pins are type conform. The type of the output pin is the same as or is a 

descendant of the type of the input pin; 

• A single output pin can be connected to zero or more input pins; 

• Each input pin can have at niost one connection. 

A Da t a Flow sequences execution of two actions by carrying da ta 

between them i.e. provides impl icit sequencing. 

• A data flow has source and destination pins; 

• Output pins of one action are input pins of some other action. 

A Control Flow defînes a sequencing dependency between two ac-

tions i.e. provides explicit sequencing. 

• The successor action of the flow may not execute until the predecessor 

action has completed execution. 

The model specification maximizes action concurrency. 

• It treats all actions as executing concurrently unless exphcitly sequenced 

by a flow of data or control. 

Following constraints are defîned for Pr imi t ive Actions. 

• A primitive action is one that cannot be decomposed into other actions. 

Primitive actions do not contain any sub-actions i.e. nested actions; 

• Primitive actions include purely mathematical functions, such as arith-

metic and string functions. 

A Procedure is a set of actions tha t may be attached as a un i t to 

other parts of the user model , for example, as the body of a method . 

• Procedure is an action container; a set of actions within a model e.g. body 

of a method; 

• Procedure provides a context for action execution; 

• Procedure takes a single object as argument and produces a single reply 

object as result; 

• Multiple arguments or results possible i.e. represented as object attributes. 

U M L : K inds of actions. 

15 
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New Data Types may be defined using meta-model Data Types 

e.g. Uniimitedinteger. 

• Defines a data type whose range is the nonnegative integers augmented 

bv the special value unliniited: 

• Are iised for the upper bound of multiphcities. 

Read Actions get values, while Write Actions modify values and 
create and destroy objects and links. Read and Write Actions share 
the structures for identifying the attributes, links, and variables that 
they are accessing. 

• Variables: 

• Attributes; 

• Links. 

Composite Actions are provided for conditionals and iteration. In 

both cases, there is a need to group actions together so they may be 

executed (or not) as unit. Such groupings may be nested, and may 

accept and receive control fiows. 

• Group, condiţional and loop actions Computation actions: 

• Math is N/A, left to the implementation to define as needed - ApplyFunc-

tionAction, CodeAction, MarshalAction... 

Collection actions: contain a subaction, an embedded action that 
is executed once for each element in the input collection. 

• Iterate: applies a subaction to each of the elements in a collection repeat-

edly within a loop: 

• Filter: selects a subset of the elements in a collection into a new collection; 

• Map: action applies a subaction in parallel to each of the elements in a 

collection. 

Messaging Actions exchange messages among objects. 

• Actions for synchronous, asjaichronous invocation Jumps; 

• Break, continue, exceptions Surface languages may define their own ac-

tions. 

16 
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2.1.5 J-UML 

In inost parts J-UML [Kai99], an extension of UML, can be understood as a 

subset of UML, i.e. customized UML. J-UML is however totally Java oriented 

- supporting only and fully the graphical OOD/OOA of the actual Java source 

code. J-UML is not by any means trying to diminish the important value of 

language independent modelling. On the contrary: it tries to build a bridge - or 

'adapter' -between these two distant worlds. It defînes how to transfer, 'map', 

UML models into actual Java implementations. 

The J-UML motto is: 

"You can't design am^hing that can't be straightforwardly transferred to 

Java." 

I can say that our goal is quite the same with a small change: Java will 

be replaced by "target programming language (Java, C+-f-,)". Because of this 

change, the manner of UML customization differs significatively. 

J-UML tries to solve this contradiction specific to any language independent 

modeling environment: there are always several ways to implement any language 

independent model (like UML) in any specific language environment (like Java). 

J-UML provides notation for a Java Class as an extension of UML Class rep-

resentation. It adds new compartments like Events compartment and Exception 

compartment to handle special Java class syntax. 

J-UML use UML visibility specifiers (-h, # , -) to define the visibility of class 

for proprieties interchangeable with keywords pubhc, protected and private. The 

main difference is on interpreting the absence of specifiers: UML considers by 

default the propriety as public but J-UML considers it to have package visibility 

(like in Java). In addition of that all Java modifiers, like static or synchronised, 

could be used. Using of UML specifiers is not a good point. 

J-UML has a special notation to refer the Java API classes. Using this 

notation, classes that do not belong to application model can be used, even 

if their implementat ion is not visible from the model. UML does not provide 

anything like that but other systems, like Express-G [Sch91] with "defined data 

types", does. The intent is to cover two aspects of programming: using basic 

types defined by the language-binding and reusing code from libraries or other 

projects. The main impediment is the "opacity" related with the last. The 

internai structures of them are hidden and could not be seen. As a result of 

that a "no control" policy has to be used. The meaning of this policy is to pass 

all responsibilities to the language-binding compiler. No verification is made by 

modeling tool related with the usage of those descriptions. 
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2.2 Programming Languages Extensions and Meta-

languages 

2.2.1 Java Extensions 

OpenJa\-a [TCKIOO] is an exteiisible language based on Java. The OpenJava 

MOP (Metaobject Protocol) [TatOO] is the extension interface of the language. 

Through the MOP, the programmers can customize the language to implement 

a new language niechanism. OpenJava helps people who want to develop better 

Java libraries, that is, easy-to-use and efficient ones. It also helps people who are 

developing their own extended Ja\'a languages. OpenJava can also be regarded 

as a toolkit for constructing a Java preprocessor. The special feature of the 

OpenJava MOP is its class meta-object API, through which programmers can 

handle source code as object oriented language constructs. i.e. classes, methods, 

fields. etc. Though its translation it is performed at compile-time, interfaces 

are similar to Java Refiection API at runtime and easy to use for high-level 

translations [Gui98]. For instance, getting information about methods, adding 

methods, modifying methods and so on are easier. 

Other extensions of the Java refiection are Reflexive Java [Wu98], Dalang 

[WS98] and metaXa (metaJava) [GolQS, GK97]. They all share the same orien-

tat ion to Internet, the same concerns (transactions, security, concurrency, dis-

tribution, mobility and persistency). All use the separation between meta-code 

and the application base code. At the same time they provide the customization 

of methods invocation. For instance metaXaoflFers "before" and "after" routines 

for method invocation and makes possible to customize routine computation on 

one object through several meta-objects that are associated with it by links. 

The models briefly described above aim to open Java language in a structured 

way. Each of them provides characteristics close to our approach : before and 

after methods routines, attaching of several meta-objects to the same base level 

object of the application etc. The main diff"erences is our goal of obtaining the 

language independence. 

2.2.2 C++ Extensions 

As mentioned within its name, OpenCH-+ [Chi99, Chi95] has been designed in 

order to provide new capabilities to C-h-h language but avoiding tendentious 

tasks for programmer, such as the modelling of a type system. The main uses of 

OpenC-h+ are the development of syntactical/semantical extensions of C-f-+. 

This approach focuses on efficiency and handles meta-information at compile 

time. Main services of OpenC-l-+ are object assignment, handling of differ-

ent kind of expressions, function invocation, creation and deletion of instances, 

access and updates of variables. In order to handle its customization, the meta-

programmer has to build a meta-class, which inherits from the meta-class Class. 

He also has to redefine the routine bodies that are selected according to C-f-f-

extension that he intends to implement (each routine corresponds to a customiz-

able concept); the new contents of these routines correspond to the new piece 
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of generated code related to the semantical action that is considered. Iguana 

[GC96, DSC'^QO] allows the meta-programmer to select the concepts that should 

be reified independently from each other. Modification of default semantics is 

implemented by inheriting from the class that describes the reification and spe-

ciahzes the methods that may be found within it. The set of meta declarations 

is encapsulated within the concept of protocol and it is allowed to build a new 

protocol derived from existing ones. The protocols that are used in a class are 

selected at declaration time. The main reified and customizable concepts are 

method invocation, creation and deletion of objects, message receiving, feature 

search, activation / deacti\^tion of semantical controls. 

Both OpenC-hH- and Iguana are based upon the same existing language for 

which an open programming environment is proposed. Our approach has to be 

a little bit different according to the fact that it proposes a model that is not 

based on any particular language. Another important distinction is marked by 

the central position of links. This corresponds to the strong determination to 

isolate the meta-code which handles the relationships between entities from the 

meta code that handle the class semantics. 

2.3 Design Patterns 

A design pattern [GHJV94] provides a scheme for refining the subsystems or 

components of a software system, or the relationships between them. It describes 

a commonly recurring structure of communicating components that solves a gen-

eral design problem within a particular context. A design pattern is a pattern 

whose form is described by means of software design constructs, for example ob-

jects, classes, inheritance, aggregation and use-relationship. The design pattern 

identifies the pairticipating classes and their instances, their roles and collabora-

tions, and the distribution of responsibilities. Each design pattern focuses on a 

particular object-oriented design problem or issue. It describes when it applies, 

whether or not in can be applied in view of other design constraints, and the 

consequences and trade-offs of its use. Design patterns are focussed on design 

problems and not on a language. Despite of this, programming languages give 

their own flavors to usage of a design pattern [Coo98]. 

2.4 Discussion 

The easiest way to fill the gap between design and implementation model is 

to restrict UML to an existing language's capabilities. In that case we can 

speak about Java-UML, C-I-+-UML etc. The main problem resides in loosing 

the "universal" characteristic of UML and in problems related in addition of 

"non-standard" elements. A relevant example (J-UML) was analyzed in this 

chapter. 

We try to make an "open restriction" of UML. It is like creating an open 

set of UML restrictions related with languages like Java, C-h-h etc. or with 
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extension of that of languages. In that case we want to move the " universality" 

at the level of OFL meta-prograiiiming instead of the level of modelling. As a 

result, our approach will represent in sonie way a collection of UML restriction. 

Since the collection is open we can say that OFL and OFL-ML do not really 

restrict in fact the UML. they just uses it's model in other way. 

Our approach does not change the meaning of UML: 

• We propose to the user to define its semantics for a class or a relationship 

using the semantics of OFL and to associate to these semantics a set of 

tags. 

• We want to change the way of using the UML elements. On the one hand 

is possible to define whatever programming element is needed at the level 

of OFL meta-programming and to use it in OFL-ML. On the other hand 

is not allowed to use an element in OFL-ML, which hcis no corespondent 

at the level of OFL. 

The main benefit of our approach will be the possibility to have a direct and 

an exactly matching implementation for the model but not forgetting the fact 

that we are at the design level. 
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Chapter 3 

The OFL model 

3.1 Intuitive approach 

OFL is the acronyin for Opeii Flexible Languages [CreOlb, CCL99, LCC02, 

CCLOO]and the name of a meta-model for object oriented programming lan-

guages based on classes. It is developing in France at University "Sophia An-

tipolis" of Nice. It relies on three essential concepts of object oriented languages: 

the descriptions that are a generalization of the notion of class, the relationships 

such as inheritance or aggregation and the langnages themselves. OFL provides 

a customization of these three concepts in order to adapt their operaţional se-

mantics to the programmer's needs. It is then possible to specify new kind of 

relationships and classes that could be introduced in an existing programming 

language in order to improve its expressiveness, its readability and its capabili-

ties to evolve. 

The OFL-ML (OFL Modelling Language) is intended to be an meta-profile 

that allows automatic generation of UML profiles tailored for OFL-languages. 

It is based on OFL and on UML profiles. OFL-ML will be design as a key 

feature in implementation of the OFL Framework [PesOl, PLOO]. It is intended 

to allows using of OFL extension for existing object programming languages. 

The meaning of extension is that: is not possible to remove any kinds of classes 

and relationships that already exist within the language but only to add new 

kind of classes and relationships [CL02b]. For example it is not possible to 

remove the kind of class called "interface" in Java but only to add another kind 

of class if needed. 

The existing programming language is selected by defining a binding be-

tween an UML Profile and this language. AU method bodies will be imple-

mented according to the syntax of this language. Indeed, OFL does not provide 

customization at the level of methods body. 

One of the main goals of our approach is to allow programmer to reduce 

the gap between UML modelling structures and the target language used for 

implementation. By target language we mean the object oriented programming 
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language reified or extended using OFL. 

The intent is to avoid the necessity to develop separate UML extensioii for 

everj' target object oriented language. As intended, this iiiodelling language 

will be closer with implementation language than UML is. This goal could 

be achieved based on OFL feature to extend modelling capabilities of target 

language. This way our approach will avoid usage of general modeling features. 

Instead. the OFL specific features will be used. 

The advantage of this solution coniparing with custom UML languages like 

J-UML [Kai99] resides in its independence to the implementation language. 

The advantage related with reflective languages, like Iguana [GC96], Open 

C+-h [Chi99] or Open Jav^a [TCKIOO], consists in a considerably less meta-

programming work, tanks to the OFL. Also, unlike OFL Framework, the reflec-

tive language does not provide support to graphical modeling. The modeling 

tools in this framework will be a combination between a modelling tool, like 

Raţional Rose, and an IDE (Integrated Development Environment), like IBM 

Visual Age. Although. commercial modeling tools could use with an OFL-ML 

Profile [Des99]. 

3.2 Overview of OFL Model 

OFL was first designed as a meta-object protocol such as that of CLOS (Com-

mon Lisp Object System) [KDRB91]. However, more open and complete that 

CLOS, it has quickly become ver>' difficult and boring first to program and then 

to use it. So it was switched to a hyper-generic approach to solve this problem. 

Genericity is the ability to customize the behavior of a class in an object lan-

guage just as in the Eiffel [Mey02, Mey97] or C-f-f (template) [Str97, Koe95] 

generic classes. Hyper-genericity [Des94] is the ability to customize the behav-

ior of the language itself. Rather than allowing redefining language behaviors 

thanks to algorithms, OFL propose a set of parameters. These algorithms, al-

ready implemented, take into account the values of these parameters to achieve 

the desired behavior. These algorithms are called OFL-Actions and they define 

the operaţional semantics. 

At first reading the OFL approach can be summed up as the search for 

a set of parameters whose value determines the operaţional semantics of an 

object language based on classes. It defines a set of parameter [CCCLOl], which 

represents the main features of the behaviors of these three important notions 

that are called concept-relationship, concept-description and concept-language. 

For instance, concerning the concept-relationship, the value of the Cardinality 

parameter allows to specify if it is simple or multiple. As for the concept-

description we have for instance the Generator parameter, which determines 

whether the concept-description can or cannot create own instances. 

The operaţional semantics of each concept must adapt to the value of its 

parameters. This is achieved thanks to a set of action's algorithms whose exe-

cution depends on these values. For example, the assignment of an object to an 

attribute, the dynamic binding of the features, the sending of messages and lots 
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OFL 

OKL-coacrpCs 

Figure 3.1: The OFL Architecture 

of other behaviors are expressed according to parameters of coiicept-relationship 

and concept-description. OFL links two facets to each action: the first illus-

trates the static part inside an interpreter or a compiler; the second represents 

the dynamic aspect integrated within the runtime. The distribution of the code 

into these two facets depends on implementat ion choices of the OFL model. 

Figure 3.1 illnstrates how to use the OFL Model to describe an application. 

The notation follows the UML convention. Three levels of modelling are shown: 

1. the apphcation level includes the program's descriptions and objects (OFL-

instances and OFL-data). 

2. the language level describes the components of the programming language 

{OFL-components like ComponentJavaClass or ComponentJavaExtends), 

and 

3. the OFL level represents the reification of those components {OFL-concepts 

and OFL-atoms). 

The OFL atoms represent the reification of the non-customized entities of the 

model. The relationships, descriptions and languages have their own OFL atoms 

to describe the part of their structure and their behavior, which are not cus-

tomized. 
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The OFL components iiiherit froin atoms and represents reification of lan-

guage entities [reiationships and descriptions). Each component keeps a set 

of characteristics that represents meta-information for program entities (OFL 

instances) such as lists of attributes and methods for a description component 

or lists of redefined features for relationship components. The language itself 

is a component. It's main function is to put together the reiat ionships and 

descriptions which are supplied to the programmer. 

In order to describe an application, the programmer uses the services sup-

plied by the language level. He creates OFL-instances, which are the descrip-

tions and the relationships of his application by instantiation of the OFL-

components. At runtime, the application objects, called OFL-data, are instances 

of the OFL-instances representing the descriptions. 

3.2.1 OFL Level: OFL-Concepts and OFL-Atoms 

The OFL model is a meta-model for the programming language (language level) 

and a meta-meta-model for the programs itself (application level). OFL cus-

tomize three important notions: relationships, descriptions and languages. How-

ever, a lot of other components need to be reified such as objects, methods, 

assertions, etc. in order to modelling a language completely. The OFL level 

includes two t}ipes of entities: 

• the OFL-Concepts which describes the customizable part of the relation-

ships, descriptions and languages, and 

• the OFL-Atoms which describes the non-customizable part of these three 

concepts as well as all the other components. 

Also assertions are described in each OFL-concept and OFL-atom in order to 

keep the model consistent. 

OFL-Concep ts Figure 3.2 shows the whole of the classification of the OFL-

concepts. Let's remember that only the OFL-Concepts are customized in the 

OFL model. The meta-programmer's task is to create an OFL-Component, 

i.e. an instance of an OFL-Concept, by giving a value to each of its parameters. 

Thus he decides on the behavior of each future instance of the OFL-Component. 

If the operaţional semantics, which the meta-programmer wants to bind to an 

OFL-Component, does not match the actions planned, then he has to modify 

the code of those actions. 

The OFL model is left open by this possibility which should not be used 

but in very specific context. Indeed, in that case, the meta-programmer's job is 

much heavier than just giving values to parameters. 

The Concepts-Relationships. A concept-relationship is an entity represent-

ing a kind of relationship. A concept-relationship is consequently a meta-

relationship. Among the relationships, which are to be found in lots of object-

oriented languages based on classes and object design methods, we may mention 

for example inheritance, aggregation, composition, generalizat ion, etc. However 
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Figure 3.2: The OFL Concepts 

a given method or laiiguage seldom owiis all of these relationships and usually 

uses some of them in order to simulate others. For example the generalization 

in UjML describes a generalisation as well as an inheritance, a strict sub-typing, 

etc. 

Around thirty parameters define the semantics of all the OFL model's concept-

relationship. Figure 1 illustrates the classification of the concepts-relationships. 

Concerning the inter-description relationships, we distinguish between the im-

port relationships (generalisation of the inheritance mechanism) and the use 

relationships (generalisation of the aggregation mechanism). 

OFL also takes into account the relationship between objects and classes, 

which are used, for example to model the instantiation relationship existing 

between an object and its class. It is also possible to model the relationship 

between objects. Yet, OFL mainly care about inter-description relationships. 

A Concept-Description allows defining the notion of class and all that looks 

like a class such as the interfaces in Java. Therefore a concept-description is a 

kind of meta-class. 

For instance it can be noticed that even if they look the same the Eiffel, C-I-+ 

or Java, classes show some notable differences. Around twenty parameters are 

necessary to describe the behavior of a description in the OFL model. Each 

concept-description is compatible with a set of concepts-relationships. For in-

stance, in Java, the concept-description interface is compatible with the concept-

relationship implementation but it is incompatible with between-classes-inheritance. 

The Concept-Language is an important and yet simple notion. It models a 

language. In particular, each language includes a set of concepts-descriptions 

and a set of concepts-relationships, which are compatible with at least one of 
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Figure 3.3: The OFL Atoms 

the concepts-descriptions. 

The concepts-languages are hardly customized and their inain function is to 

federate the concepts-relationships and concepts-descriptions that are compati-

ble with them. 

OFL-Atoms They represent the reification of the non-customized entities of 

the model. Figure 3.3 illustrates a part of those OFL-Atoms. The relationships, 

descriptions and languages have their own OFL-Atoms to describe the part of 

their structure and their behavior, which are not customized. For instance in an 

apphcation all the features of a description aie instances of an heir of feature, 

all the expressions are instances of expression or of one of its heirs and all the 

objects are instances of object. Thus OFL gives a full reification of the entities 

found at the application runtime. 

3.2.2 Language level: OFL-Components 

The language level describes different types of relationships and descriptions, 

which can be used in the modelled language. The relationships are instances of 

concept-relationship, the description are instances of concept-description. The 

language itself is an instance of concept-language. Its main function is to put 

together the relationships and descriptions which are supplied to the program-

mer. 
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3.2.3 Application Level: OFL-Instances and OFL-Data 

To describe an application, the prograninier uses the services supplied by the 

laiiguage level. He creates OFL-Instances, which are the descriptions and the 

relationships of his application by instantiation of the OFL-Coniponents. At 

runtime, the application objects, called OFL-Data, are instances of the OFL-

Instances representing the descriptions. 

OFL-Instances Each description or relationship described by the prograni-

nier is niodelled by an OFL-Instance. The OFL Instances for a description 

correspond to a class written by a prograninier in an object-oriented language. 

The OFL Instances of a relationship keep the information for relationship cus-

tornization. 

OFL-Data In the application, each description instance is modelled at run-

time by an OFL-Data entity. The OFL-Data objects are not instances of OFL-

Components because the behaviors of the application's objects are not custoniiz-

able according to the OFL. 

3.3 Programmer and Meta-programmer: sepa-

ration of tasks 

According to the model, the programmer and the meta-programmer tasks are 

clear separated. The programmer has to make the application model and to 

wTite the code for its implementation. Indeed, his work will be on the applica-

tion level. For model specification he has to use a modelling language designed 

to provide OFL features. For cod implementation he can choose between dif-

ferent object oriented languages supported by the OFL implementation. The 

sjmtax used will be the original language syntax but the semantics of model 

reified in apphcation types will be changed according to the meta-programmer 

OFL definitions. Usually this means much more constrains in accessing classes 

features. The meta-programming works is locahzed on the OFL Components 

level. His work consists in three different tasks. The first task consists in creat-

ing components that wrap over the language entities (mainly descriptions and 

relationships). The second one consists in providing modified components by 

changing parameters values. The last one implies much more work in both 

defining parameters and changing the action code for new components. The 

programmer will use those components to create the application model. 

3.4 The Integration in the Existing Meta-Models 

OFL is a meta-model that describes object-oriented languages based on classes 

and customizes the operaţional semantics of their descriptions and relationships. 

The state of the art, in the field of meta-model shows quite a diversity. We can 
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find Reflective Java, Dalang, metaXa, OpenC-}-+, Iguana etc. These meta-

models are usually able to describe one another. Fiom a general point of view, 

OFL is close to OpenC-|-+ by its customization model expressiveness and is 

close to Iguana by technical aspects: the customizable meta Information and the 

encapsulation of semantics (the OFL concept of language versus Iguana concept 

of protocol). Generally, OFL is quite difFerent compering with all because its 

language independence. 

For OFL, the most significant one is MOF (Meta Object Facility) [ObjOl]. 

OFL do not aim to compete against MOF but to other a less general model 

closer to the programmer. MOF describes a class concept, an association con-

cept and a package concept. A MOF class allows to define attributes, the type 

of which can be simple or described by a class, and to specify operations. Let us 

point out that OFL and MOF have the same approach concerning the method 

bodies that have to be described according to an independent language (bind-

ing). OFL and MOF both draw from the OMG UML and IDL notation and 

syntax. A MOF association allows to define any relationship that occurs be-

tween a number of MOF source classes and a number of MOF target classes. 

The semantics of the relationship described by such an association is imple-

mented thanks to the attributes and the operations of the MOF classes. The 

MOF packages allow encompassing the MOF classes and associations. OFL 

may be described according to MOF and supply the latter with an additional 

layer on top of it allowing customizing the operaţional semantics of the MOF 

classes and associations. Finally, OFL can also be described thanks to XML 

[W3C00. RayOh BDW^Ol] and XML-Schemas [ODW^Ol, DTV02]. 

Finally, we can consider relationships between OFL and Desigu Patterns. 

Desigu Patterns technology take in account a lot of aspects controlled by OFL 

model. Using OFL parameters, meta-programmer could control the granularity 

of classes. could make distinction between different relationships like inheritance 

and sub-typing and could implement several types of use relationships like dele-

gation or aggregation. For instance, OFL can make a clear distinction between 

association and aggregation. Because OFL model deal also with run-time rela-

tionships, it can manage compile-time and run-time structures explicitly. The 

OFL model could be used to simplify usage of design patterns or even to apply 

some of patterns automatically. Other way is to integrate directly some patterns 

into the OFL apphcation model in order to support programmer to choose the 

best model for its application or to do automatic transformations to application 

model. 
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Chapter 4 

Extending the OFL Model 

Through OFL-Modifiers 

OFL model provides a customization of main aspects of the semantics of a 

laiiguage through actions and parameters, but the customization provided can 

deal only with features than are enough general for being applicable to most 

existing object oriented programming languages. Practicai experience points 

out the necessity to capture more of the semantics of these languages. To 

achieve that it is necessary to add new elements to the original OFL Model 

[CreOlb. CL02a]. 

In order to preserve simplicity, a large part of the language reification is 

not customizable in the OFL Model philosophy. However, in order to achieve 

acceptance in programmers' community, some other customizations are needed. 

Generally, this additional semantics is handled by keywords (modifiers) in ex-

isting languages. 

One main goal of introducing modifiers is to limit the number of components 

within an OFL-language. Using modifiers we avoid necessity to define one dif-

ferent component for any different combination of parameters. For instance, is 

better not to have both public java-class and package java-class components dif-

ferentiated by a parameter visibility. Instead, we can imagine just one java-class 

component and something else (like modifiers) allowing ensuring that access is 

public. 

Another goal of modifiers is to improve the fiexibility at the level of meta-

progranmiing by providing a clean way to extend a language with new capabil-

ities. 

According to that we propose a generic approach which allows to define rules 

for implementing access controls or additional semantics for language compo-

nents. The general idea is to apply these rules to an application in order to 

provide for example metrics, error reporting, and design or debugging facilities. 

Thanks to these rules we can had constraints to language entities in order to 

enrich, when it is necessary, the expressiveness of a language construction. 
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Coiiiparing with other approaches found in [ACL03, Sch02, BROl], we focus 

on a generic technique independent from languages. Also, instead to define a 

formalism which depicts access control niechanisms, we propose an approach 

that describes how to implement these mechanisms at a meta-programming 

level. 

Following those goals we pay a special attention to not change the general 

aspect of the OFL model. 

Considering these issues we propose to add at the level of language com-

ponents the ability to define different kinds of modifiers and to add reification 

elements according to that. 

OFL modifiers are used together with other language entities in order to 

change protection or other semantic aspects of them. Some of them have an 

equivalent in ke>^vords that may be found in some programming lang"uages, 

others could be added in order to simplify programming task. 

4.1 The OCL Language 

Starting from the point that most of the OFL modifiers relay on constraints 

[Pes03] to be applied to the program entities, we choose OCL as the language 

for specifying these constraints. OCL [CW02, WK98] is a formal language 

which allows to express side effect-free constraints. The Object Management 

Group (OMG) defines OCL (Object Constraint Language) [OMGOO] as a pcirt 

of UML L3 standsird specification. Main motivation regarding that choice is 

programming language independence of OCL and general acceptance of this 

language. 

OCL is designed to express side eflfect-free constraints. It was used by OMG 

in the UML Semantics document [Sof97] to specify the rules of the UML meta-

model. Each rule in the static semantics sections in the UML Semantics docu-

ment contains an OCL expression, which is an invariant for the involved class. 

The usage of OCL is important because in object-oriented modelling a graph-

ical model, like a class model, is not enough for a precise and unambiguous 

specification. There is a need to describe additional constraints about the ob-

jects in the model. Such constraints are often described in natural language. 

Practice has shown that this will always result in ambiguities. In order to write 

unambiguous constraints, so-called formal languages have been developed. The 

disadvantage of traditional formal languages is that they are useable to persons 

\v\th a strong mathematical background, but difficult for the average business 

or systeni modeler to use. 

OCL has been developed to fill this gap. It is a formal language that remains 

easy to read and write. It has been developed as a business modelling language 

within the IBM Insurance division, and has its roots in the Syntropy method 

[CD94]. 

OCL is a pure expression language [Gri99]. Therefore, an OCL expression 

is guaranteed to be without side effect; it cannot change anything in the model. 

This means that the state of the system will never change because of an OCL ex-
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pression, even though an OCL expressioii can be used to specify a state chaiige, 

e.g. in a post-condition. AU values for all objects, including all links, will not 

change. Whenever an OCL expression is evaliiated, it simply delivers a value. 

OCL is not a prograniming language, so it is not possible to write program 

logic or flow control in OCL. 

OCL is a t>T3ed language, so each OCL expression has a type. In a correct 

OCL expression all types used must be type conformant. 

OCL can be used for a number of different purposes: 

• to specify invariant on classes and t̂ ^pes in a class model 

• to specify' type invariant for UML Stereotypes 

• to describe pre- and post conditions on Operations and Methods 

• to describe Guards 

• as a navigation language 

• to specify constraints on operations 

We use OCL to describe constraints introduced by modifiers. It can be also 

used to specify pre and post conditions for OFL-entities at the level of OFL-ML 

implementation. 

As a notation convention for this document, the underlined word before 

an OCL expression determines the context for the expression. Also, the OCL 

expression itself will be on italic. 

In OCL, a number of basic types are predefined and available to the modeler 

at all time: Boolean, Integer, Real, String and Enumeration. It is also defined 

a number of operations on these predefined types. 

In addition, all descriptions coming from the OFL Model are types in OCL 

that is attached to the model. 

The type Collection, which is predefined in OCL, plays an important role in 

writing constraints. It includes a large number of predefined operations to enable 

the OCL expression author (the modeler) to manipulate collections. Consistent 

with the definition of OCL as an expression language, collection operations never 

change collections. They may result in a collection, but rather than changing 

the original collection they project the result into a new one. 

Collection is an abstract t}TDe, with the concrete collection types as its sub-

types. OCL distinguishes three different collection types: Set, Sequence, and 

Bag. A Set is the mathematical set. It does not contain duplicate elements. 

A Bag is like a set, which may contain duplicates, i.e. the same element may 

be in a bag twice or more. A Sequence is like a Bag in which the elements are 

ordered. Both Bags and Sets have no order defined on them. Sets, Sequences 

and Bags can be specified by a literal in OCL. 

OCL defines a number of operators for collection manipulation: 

• SELECT and REJECT - allows to specify a selection from a specific col-

lection 

31 

BUPT



• COLLECT - allows to specify a collection which is derived froni sonie other 

collection, but which contains different objects from the original collection 

(i.e. it is not a sub-collection) 

• FORALL - allows to specify a Boolean expression, which must hold for all 

objects in a collection 

• EXISTS - allows to specify- a Boolean expression which must hold for at 

least one object in a collection 

• ITEFL^TE - allows building one accunmlation value by iterating over a 

collection. It is a very generic. The operations Reject, Select, forAll, 

Exists and Collect can all be described in terms of Iterate 

4.2 The OFL Modifiers 

An intuitive definition of a modifîer entity is the following: a modifier is a 

language keword that is used in composition with other key^^wds to change 

their semantics. An important issue is that a modifier keyword have no stand-

alone meaning. 

0¥L-modifiers are designed to reify those entities in order to ensure better 

OFL customization for programming languages. Generally, modifiers imply 

constraints added to the application model in order to achieve a fine control. 

Not all language modifiers are intended to be reified by OFL modifiers. 

Semantics changes induced by some of them are very deep and relay in different 

OFL components. We name them component modifiers. Following list presents 

situation for three well known object-oriented languages: Java [GJSBOO, Fla99, 

LYJW96], C-h-h [Str97, Lip99, Str94] and Eiffel [Mey02, Mey91]. 

4.2.1 Component Modifiers in Commercial Languages 

Java language. 

abstract {class dec larat ion} An abstract class is a class that is incomplete, 

or to be considered incomplete. The reification for a class declared abstract 

in Java results in several OFL description components for abstract class, 

static abstract nested class, abstract inner class and abstract local class. 

All these components has parameters generator and destructor set to value 

false. 

f inal { a t t r i bu te dec larat ion} A final attribute may only be assigned to once. 

Once a final attribute has been assigned, it always contains the same value. 

To model this kind of attribute in OFL we use an OFL-Atom Attribute that 

has property is Constant set to true. 

stat ic {feature dec larat ion} If a feature (attribute or method) is declared 

static, there exists exactly one incarnation of the feature, no matter how 
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many instances (possibly zero) of the class may eventually be created. A 

static attribute, sometimes called a class variable, is incarnated when the 

class is initialized. A static method, called as class method, is always iii-

voked without reference to a particular object. The O FL-Atom Attribute 

aiid OFL-AtomMethod that reifies these entities has the isDescriptionFea-

ture property set to false. 

C + + language. 

stat ic {membe r dec larat ion} In C-f-h a variable that is part of a class, yet 

is not part of an object of that class, is declared as static member. There is 

exactly one copy of a static member instead of one copy per object. Simi-

larly, a function that needs access to members of a class, yet doesn't need 

to be invoked for a particular object, is called a static member function. 

The OFL reification resides in O FL-Atom Attribute and OFL-AtomMethod 

entities, which have the isDescriptionFeature property set to false. 

EifFel language. 

expcuided {class dec larat ion} Declaring a class as expanded indicates that 

entities declared of the corresponding type will have objects as their run-

time values. (By default, values are references to objects.). These classes 

will be reified by description components corresponding to expanding class 

and generic expanding class. Those components could not be target for 

client aggregation relationship or generically derivation. Instead, they 

could be target only for inheritance, expanded client relationship and ex-

panded generically derivation. 

Figure 4.1 illustrates the OFL model extended with OFL-Modifiers. We define 

three kind of modifîers for entities which support their semantics. These types 

are: description-modifier, method-modifier and attribute-modifier. The OFL 

modifiers components inherit from OFL-modifiers and represent reification of 

language modifiers. 

4.2.2 Definition of an OFL-Modifier 

An OFL-modifier is defined by a modifier name, a context (an entity against 

it is defined). a keyword, modifier assertions (OCL constraints) and a set of 

associated actions (modifîed OFL-actions). 

Modi f ie r Name . The name is used to identify the modifier. It should be a 

legal identifîer related with OFL and the language binding. 

Modi f ie r Con tex t . Type of entity that accepts the modifier is denoted by 

its context. Context could be description, relationship, attribute or method. 
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Figure 4.1: The extension of the OFL model through OFL-Modifiers 

Modi f i e r Keyword . The modifier keyword represents the string representa-

tion of the modifier in the language syntax. 

Modi f i e r Assert ions. We use OCL to specify the modifier constraints through 

assertions. 

These constraints reside in invariant for OFL components or in pre and post 

conditions for OFL actions. Implementation of control implies assertions at the 

level of OFL entities reifying the corresponding mechanisms. Indeed, they will 

be attached to corresponding OFL-Components and OFL-Actions. 

Another solution could be to define the assertion within the OFL-Modifier 

itself but the drawback is that one modifier has to know about other modifiers 

and this decrease its reuse capabilities. 

Considering that, the role of an OFL-Modifier is to help meta-programmer 

to manage and organize assertions. 

For assertions we use notation that have the same meaning as in OCL defi-

nition [OMGOO]. The seif keyword refers the current instance of the associated 

component. 

The OCL modifier assertions are written in context of the OFL model defi-

nition; as a result of that, all types defined by the OFL model could be used in 

assertions. 

Some component features correspond to OCL collection type and support 

OCL collection operators. For instance, 

component.modifiers —• includes('modifier name') 

that tests if the component has modifier 'modifier name' attached to it or not. 
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Modi f ier ' s Act ions . Modifier's actions axe OFL-Actions rewritten to con-

sider new semantics. The modifier keeps references to all rewritten action, help-

ing meta-programmer to manage them. Actions play different roles depending 

of the complexity of the considered modifier. Most modifiers do not need action 

rewriting. They have just a set of assertions attached to theni. 

In order to build a complex semantics from simpler ones and to extend mod-

ifiers, we define a modifier composition operator. This operator specifies how to 

combine assertions and actions that belongs to composed modifiers. In the con-

text of composition operation we state the definition of "compatible modifiers" 

and 'Mncompatible modifiers''. Two modifiers defined in the same context are 

compatible if they can be the parts of a composition. They are incompatible 

if their actions and assertions are not disjmictive. Actions and assertions are 

not disjunctive if their semantics interfere. According to that we extent the 

definition of OFL-Modifier by adding a characteristic named incompatible mod-

ifier set. One modifier keeps in this set information about all modifiers that are 

incompatible with it. 

In the composition process, two aspects of modifiers are addressed: the 

assertions and the actions associated with it. For compatible modifiers all inter-

actions will be just cumulative. For the assertions, which are OCL expressions, 

other constraints can be composed using the AND logical operator. Because 

OCL avoids side effects, composition of assertions is commutative. Actions may 

be called in a random order. Indeed, if there are some interactions at the level of 

action semantics, the modifiers are incompatible and the composition operator 

cannot be applied. 

To deal with incompatible modifiers we define an invariant at the level of 

OFL entity representing the modifier context. 

Following example consider the Java public modifier for attributes. For bet-

ter understanding we consider a 'package' modifier replacing all default visibility 

for attributes. The OFL reification for an attribute is the OFL-AtomAttribute. 

When define ax:cess control modifiers for Java attributes, we attach an invariant 

to this entity. 

incompatible modifiers set for public is {protected, private, package} 

context AtomAttribute 

inv: seif.modifiers->includes('public') 
implies 
NOT ( 
seif.modif iers->includes('private') 

OR 
seif.modifiers->includes('package') 

OR 
seif.modifiers->includes('protected') 
) 

In order to cover all situations an invariant should be added for each modifier 

considered. 
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In the context of a langiiage extension niade by a nieta-programnier we 

can distinguish two kind of modifiers. An OFL-modifier could represent the 

reifîcation of a modifier that belongs to the language binding - we name it 

native modifier - or could be a custom modifier added by the meta-programmer 

in order to enrich language semantic. 

The native modifiers will have the same meaning, related with the language 

binding components, like in the original language. The meta-programming task 

will consist in describing the meaning and the behavior of modifiers according 

with their definition. When a meta-programmer adds new extension for the 

language (new components) he has the responsibility to extend the definition of 

the modifiers according to the new entities. 

In the following sections we try to provide an orthogonal approach in order 

to define both native and custom modifiers. 

Next we present a classification based on the semantics behind modifiers. 

The meaning of semantics in this context is related with the aspect of entity 

semantics that is changed by the modifier. To evaluate semantic changes, we 

consider all the OFL-Actions that are involved. The identified classes are: 

4.2.3 Modifiers Classification Regarding OFL Impiemen-
tation Issues 

Access Con t ro l Modi f iers The importance of a systematic approach on 

access control mechanism represents an actual topic of research in the field 

of object oriented technology [Aba98, Ard02, CNP89, Sny86]. Even the UML 

standard [OMG03b], which was planned to be language independent, lacks in 

defining protection mechanisms. Flower and Scott emphasize this aspect [FSOl]: 

"When you are using visibility, use the rules of the language in which you 

are working. When you are looking at UML model from elsewhere, be wary of 

the meaning of visibility markers, and be aware how those meanings can change 

from language to language." 

OFL Model also lacks in customization of access control mechanisms [PL03]. 

Modifiers represent a way to add this customization. Considering the OFL-

Actions involved by the semantics we can split these modifiers into two subcat-

egories: basic modifiers and complex modifiers. 

Basic Access Con t ro l Modif iers . Some modifiers add constraints to some 

facets of the language which are customizable in OFL by setting values to 

some of the parameters and characteristics built in the OFL Model To 

implement these modifiers, meta-programmer has to write only assertions 

at the level of one or several OFL-Components. They do not imply any 

action rewriting. We call them basic modifiers. 

Comp l ex Access Con t ro l Modif iers . Some other modifiers address mech-

anisms that are implemented in OFL through pieces of code wrote by 

meta-programmer. To implement these modifiers, he has to rewrite some 

of the OFL-Actions and/or to extend their assertions. Because writing 

actions is a more complicated job, we call them complex modifiers. 
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AII the time complex modifiers implies protection and some tinie they 

implies also visibility (ex. protected-write [CKMR99]). 

Op t im i z a t i o n Modi f iers These modifiers have no impact at the level of ap-

plication model semantics. They are used only to estabhsh optimization strate-

gies for compilers or, more generally, translators (ex. inhne, volatile, register 

etc.) 

Service Modi f iers Service modifiers are used to introduce new kind of ser-

vices like custom look-up, persistency or concurrency; They could have impact 

at the level of model semantic or only at the level of code generation. (ex. 

persistent, synchronised etc.) 

Add i t i o n a l Modi f iers In addition to previous considered modifiers languages 

has also other keywords used to change semantics in a not customizable manner 

in OFL. The meaning of these additional modifier is to force compiler to treat 

in a special way the entity that declare the modifier. This category does not 

include modifiers that change the reification component for considered entity 

(this subject was discussed in .sec. 4.2). The modified semantics is handled by 

the native compiler (ex. explicit, agent etc.). 

4.3 Basic Access Control Modifiers 

Most of access-control modifiers add constraints regarding the way features 

could be reached by other entities that are connected through different kinds of 

relationships. They imply only constraints related with mechanisms reified by 

OFL relationships (d>Tiamic relationships like the one that links an instance to 

its class could also be considered). According to that they could be considered 

as basic modifiers. Their implementation relies only on assertions at the level of 

OFL-components dealing with the description that involve those relationships. 

4.3.1 Examples of Native Basic Access Control Modifiers 

J ava Language . Java [GJSBOO] has several modifiers used for basic access 

control: public, protected, private, and default (to be more expressive we named 

it package). 

Java class members (attributes and methods) that are declared public can 

be accessed any^vhere that the class in which they are declared can be accessed. 

Members that are declared as protected can be accessed within the package 

in which they are declared and in subclasses of the class in which they are 

declared. 

Members that are declared as private are only accessible in the class in which 

they are defined and not in any of its subclasses. 
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Class members that have no access control modifier associated is considered 

to have default visibility. These members can be accessed only from within the 

package in which they are declaied. 

A Java class. abstract class or interface that is declared as public can be 

referenced outside its package. If a class is not declared as public, it can be 

referenced only within its package. 

To achieve symmetry on defining modifiers we augmented the default Java 

visibility for both class and members with an implicit package modifier. 

C + + Language . For C-f—f- language [Str97] the public, protected and private 

modifiers has slightly different meaning as in Java [Ard02]. It has no "package" 

resolution but has instead a special class of visibility denoted by friend. 

Using the friend ke>^vord, a class can giant access to non-member functions 

or to another class. These friend functions and friend classes are permitted to 

access private and protected class members. The public and protected ke>'words 

do not apply to friend functions, as the class has no control over the scope of 

friends. 

If a member of a C-I-+ class is private, its name can be used only by member 

functions and friends of the class in which it is declared. 

A protected member can be used only by member functions and friends of 

the class in which it is declared and by member functions and friends of classes 

derived from this class. 

A public member can be used by any function. 

The default access for C-f + class members is private. 

These modifiers could be used to change access control through inheritance 

between classes. 

When preceding the name of a base class, the public keyword specifies that 

the public and protected members of the base class are public and protected 

members, respectively, of the derived class. 

The protected keyword use for inheritance specifies that the public and pro-

tected members of the base class are protected members of its derived classes. 

Finally, when preceding the name of a base class, the private keyword speci-

fies that the public and protected members of the base class are private members 

of the derived class. 

EifFel Language. In Eiffel [Mey02] there are two constructions that can deal 

with access modifiers; these are feature and export In this language some of the 

protection semantics are hidden in the language philosophy. For instance, the 

writing protection has no direct meaning for an attribute because access to an 

attribute from outside class is considered as a query (and it is not possible to 

write into a result of a query). 

4.3.2 Basic Access Control Modifiers for Features 

Modi f ie r Assert ions. The assertions of basic access control modifiers for 

features (attributes and methods) are defined at the level of OFL-Relationship 
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components that maiiage export of those features. They should be tested each 

time a reiationship involving that feature is created. An invariant at the level 

of description that own the feature is not necessary. Basic niodifiers do not 

protect features against the description itself. Independently of the language 

s\Titax we can consider three possibihties: the feature belongs to current class 

or it is inherited through ai\ inheritance relationship from a direct or indirect 

ancestor or it is accessed through an use relationship (current clsiss is a client 

of description that owtis the feature). In the last situation we consider that the 

current description could access supplier description. Indeed, this problem is 

covered by description's access control. By current class we mean the class that 

accesses the feature. 

If we consider the Java syntax, features belonging to a class or inherited 

by the class, are accessed using this keyword as qualifier. This keyword could 

be explicit or imphcit (non-qualified features). Features accessed through an 

use relationship are explicit qualified with the supplier name. To consider all 

situations, an invguriant is needed for every component of import relationship 

t>TDe and use relationship type defined for that language. 

The following example presents invariants for extends Java inter-class rela-

tionship and Java aggregation relationship. 

Java features basic modifiers: {public, protected, private, package} 

cont ext Component JavaC1as sExt ends 

inv: seif.showedFeatures->forall(f:Feature I 

f.modifiers->includes('public') 

OR 

f.modifiers->include('protected')) 

inv: seif.redefinedFeatures->forali(f:Feature | 

f.modifiers->includes('public') 

OR 

f.modifiers->include('protected')) 

inv: seif.hiddenFeatures->forali(f:Feature I 

f.modif iers->includes('private')) 

The invariant says that all showed and redefined features through an ex-

tend relationship should have modifiers public or protected attached. All hidden 

features have private modifier. 

context ComponentJavaAggregation 

inv: seif . showedFeatures->f o r a l K f :Feature I 

f.modifiers->includes('public') 

OR 

(( f.modifiers->include('package') OR 

f.modif iers->include('protected')) 

AND 

seif.source.package = seif.target.package))) 

inv: seif.hiddenFeatures->forali(f:Feature I 

f.modif iers->includes('private') 
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OR 
(( f.modifiers->include('package') OR 

f. modif iers->iiiclude (' protected')) 

AND 
seif.source.package <> seif.target.package))) 

In addition to previoiis assertioii. this one tests also irifomiation about de-

scription's packages. In this assertion the descriptions are accessed through 

source^ and target^ members of the reiat ionship component instance {seif). 

AII these modifiers are incompatible. For methods, the incompatible modi-

fiers set contains also the abstract modifier. 

Mod i f î e r Ac t ions Interference with model actions is minimal. Assertions are 

added to control features access through relationships and no action rewriting 

is necessary. Indeed, modifiers for basic access control generally do not redefine 

any actions. 

As an exception we can consider protected modifier for Java features. Action 

is needed in this case to express a particular semantic presented in Figure 4.2. 

Method m of class C have access to protected member / of B. This happens 

because class A, which declare the member /, and class C belongs to the same 

package. To express this semantics we need to rewrite the lookup action for 

features. This action has to ensure access to protected members for any feature 

that is declared by an ancestor belonging to same package with the class that 

access the feature. 

4.3.3 Basic Access Control Modifiers for Descriptions 

Modi f i e r Assert ions. The assertions of basic access control modifiers for 

descriptions are defined at the level of relationship components and at the level 

of description component itself. They should be tested each time a relationship 

involving that description is created and each time an instance of description is 

created. The last situat ion deals with relationships that enable polymorphism. 

According to these assumptions, the assertion associated to such modifier should 

become a post-condition for the look-up OFL action. 

The following example refers the Java language semantics for class access 

control. Please note that this example does not consider interfaces, abstract 

classes and inner classes. 

Java class modifiers: { public, package} 

context ComponentJavaClassExtends 

inv: seif.source.package = seif.target.package 

OR 
( seif.source.package <> seif.target.package 

^The source is the class which declares the relationship. In Java, for an extends relationship 
this is the class which declare the keyword extends. 

^the target is the class which is addressed by the relationship. In Java, for an extends 
relationship this is the class whose name is mentioned after the keyword extends. 
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Figure 4.2: Java protected modifier semantics 

implies 

seif.source.modifiers->includes('public')) 

A class can extend another class from the same package and a class can extend 

a public class from other package. 

context ComponentJavaAggregation 

inv: seif.source.package = seif.target.package 

OR 

( seif.source.package <> seif.target.package 

implies 

seif.source.modifiers->includes('public')) 

The following assertion address dependencies between classes, which are not 

covered by OFL ciistoniization. 

context Description:: 

lookupCaccessed: Description):Description 

post: seif.package = result.package 

OR 

seif.package <> result.package 

implies 

result.modifiers->includes('public') 

Next we consider the Java language semantics for interfaces access control. 

The example does not consider inner interfaces. 

Java interface modifiers: { public, package} 

context ComponentJavaInterfaceExtends 
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inv: seif.source.package = seif.target.package 

OR 

( seif.source.package <> seif.target.package 

implies 

seif.source.modifiers->includes('public')) 

An interface can exteiid aiiother interface froin thc same package and an inter-

face can extend a public interface from other package. 

context ComponentJavaimplements 

inv: seif.source.package = seif.target.package 

OR 

( seif.source.package <> seif.target.package 

implies 

seif.source.modifiers->includes('public')) 

A class can implements an interface fi'oin the same package and a class can 

implements a public interface from other package. 

context ComponentJavaAggregation 

inv: seif.source.package = seif.target.package 

OR 

( seif.source.package <> seif.target.package 

implies 

seif.source.modifiers->includes('public')) 

A CISLSS can declare an attribute of a type of an interface from the same package 

and of a t̂ -pe of a public interface from other package. 

To handle dependencies between classes and interfaces we use the same post-

condition for lookup action previous defined for class modifiers. 

Modi f ie r Act ions For those modifiers, assertions are also added to control 

features access through relationships. Post-conditions are used to filter the look-

up action result. Modifiers do not redefine any actions. 

4.4 Complex Access Control Modifiers 

Complex access control modifiers define protection at the level of special rights 

like writing / reading an attribute, calling / redefining a method or extending 

/ instantiating a description. 

4.4.1 Examples of Native Complex Access Control Modi-
fiers 

J ava Language . Java language does not include complex access control mod-

ifiers for attributes. It includes final modifier for methods and classes and in-

terfaces. 

42 

BUPT



Modifier final associated to a method disedlow redefinition. 

A modifier with same name in context of classes and interfaces is used to 

avoid extension. 

Otlier language mechanisms (like making all constructors private) could be 

used to control instantiation of classes. 

C + + Language . C-h+ does not provide any specific modifiers to control 

rights for using an entity. 

Changing access rights to constructor does also control at the level of class 

instantiation like in Java. 

Eiffel Language . Frozen and deferred modifiers from Eiffel could be consid-

ered in this category. 

Frozen, appearing before a feature name express that the declaration is not 

subject to redefinition in descendants. 

Deferred modifier permits declaration of a feature without an implementa-

tion. This transfers to proper descendants the responsibility for providing an 

implementation through a new declaration, called an "eflFecting" of the feature. 

4.4.2 Complex Access Control Modifiers for Methods 

Rights concerning method usage address mechanisms like calling or redefining. 

Modifiers presented in the previous section do not make distinction between 

these mechanisms. 

Modi f ie r Assert ions. Implementation of control implies assertions at the 

level of OFL entities reifying corresponding mechanisms. Redefinition mecha-

nism is reified in OFL by redefinedFeatures characteristic of relationship com-

ponents. Access control is done by invariant for these components. Calling 

mechanism is reified in execute action. Assertion concerning calling rights is 

implemented in a post-condition for this action. 

The following example is an implementation of final modifier for Java meth-

ods. 

context Component JavaClassExtends 

inv: seif.redefinedFeatures->forali(f:Feature I 

f.typeOfFeature = method 

implies 
NOT f.modifiers->includes('final')) 

Final modifier is compatible with public, protected, package and private modi-

fiers and can be present in a composition to them. Its invariant will be added 

to the component invariant. 

Modi f ie r Act ions . Complex access control modifiers for methods require 

some times rewriting of the execute OFL action. 

43 

BUPT



4.4.3 Complex Access Control Modifiers for Attributes 

Riglits conceriiing attribute usage address control agaiiist reading or writing. 

Protectioii on writing is achieved by a pre-condition at the level of assign action. 

We can consider here a proposal of Cook and Rumpe [CKMR99] for defining 

a read-only modifier for attributes. They conclude that is useful to constraint 

the visibility of an attribute to be readable, but not changeable. The concept 

of a read-only-modifier is introduced in combination with private and protected 

modifiers. 

Modi f ie r Assert ions Assertioiis for attribute complex modifiers resides in 

pre and post conditions at the level of assign OFL action. 

Modi f i e r Ac t ions Necessity for action writing resides in complexity of con-

sidered semantic. 

As an example we consider a modifier that implements a heavy writing pro-

tection for an attribute. By heavy protection we mean to protect not only the 

reference of the object against writing but also the internai state of the referred 

object. 

A solution that lacks in effîciency is to give access to a clone of the object 

that contains attribute and to look after that if any changes appear. To ensure 

this control, attribute access action should be embedded in the following code: 

// cloning the original object 

aux = deep_clone(f) 

// original action 

// ( any kind of action that may imply changing 

// of attribute's internai state ) 

*action(aux) 

// test if the object preserve same state 

if (not deep_compare(f, aux) ) 

generate_error("Could not write attribute") 

end_if 

destroy_object(aux) 

Actions that permit changing of attribute's internai state are considered the 

following OFL-actions: evaluate-parameters, attach-parameters, detach- param-

eters, assign, execute etc. 

4.4.4 Complex Access Control Modifiers for Descriptions 

Description may be extended, used or instantiated. 

Modi f ie r Assert ions Extension is controlled through invariant on inheri-

tance relationship components. To control client-supplier relationship, invariant 

is attached to use relationship components. 
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As ani exaniple we consider the Java final modifier in context of a descrip-

tion. The invariant for Java extends relationship will check absence of this 

modifier at the level of target description of relationship. 

context ComponentJavaClassExtends 

inv: NOT seif.target.modifiers->includes('finalO 

Modi f ie r Ac t ions For description modifiers, actions are necessary to control 

instantiation. Instead, niost of the tiines a precondition at the level of create-

instance action is enough to ensure all semantics. 

4.5 Optimizat ion Modifiers 

Optimization modifiers are used to transmit hints to the compiler in order to 

generate a smaller or faster code. Because these modifiers have no impact on 

application model semantics they have only to be passed to final compiler. 

4.5.1 Examples of Native Optimization Modifiers 

J ava Language . Java has one optimization modifier for attributes - volatile 

- two optimization modifiers for methods - native and strictfp - and one opti-

mization modifier for descriptions - strictfp. 

An attribute that is declared as volatile refers to objects and primitive values 

that can be modified asynchronously by separate threads of execution. They 

are treated in a special way by the compiler to control the manner in which they 

can be updated. 

A native method is a method written in a language other than Java. In a 

way it is declared like an abstract method. 

The effect of the strictfp modifier is to make all fioat or double expressions 

within the method body be explicitly FP-strict. Within a FP-strict expression, 

all intermediate values must be elements of the fioat value set or the double 

value set, implying that the results of all FP-strict expressions must be those 

predicted by IEEE 754 arithmetic on operands represented using single and 

double forrnats. 

The effect of the strictfp modifier in context of a class or an interface is to 

make all fioat or double expressions within the class or interface declaration be 

explicitly FP-strict. This imphes that all methods declared in the class, and all 

nested types declared in the class, are implicitly strictfp. Also all fioat or double 

expressions within all variable initializers, instance initializers, static initializers 

and constructors of the class will also be FP-strict. 

C + + Language . C-h+ language contains also optimization modifiers. The 

C-h-f- specification defined inline for functions and mutable and volatile for mem-

ber attributes. 
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The inlme modifier for a member function is a hint for the compiler that is 

should atteinpt to generate code far a call od function inline rather through the 

usiial function call mechanisms. 

The mutable modifier specifies that a member attribute should be stored in a 

way that allows updating - even when it is a member of a const object. In other 

words mutable means "can never be const". Declaration of mutable member is 

appropriate when only part of the object is allowed to change. 

A volatile specifier is a hint to a compiler that an attribute may change its 

value in way not specified by the language, so that aggressive compiler opti-

mization must be avoided. 

EifFel Language . Analyzing EifFel we find also optimization modifiers. In-

dexing and obsolete modifiers for a class could be considered in this category 

The opţional Indexing parts have no direct effect on the semantics of the 

class. They serve to associate information with the class, for use by tools for 

archiving and retrieving classes based on their properties. This is particularly 

important in the approach to software construction promoted by Eiffel, based 

on libraries of reusable classes: the designer of a class should help future users 

find out about the availability of classes fulfilling particular needs. We choose 

to implement that part like a modifier because OFL does not contain any cus-

tomization according to that. Because indexing part could appear in two dif-

ferent places - one at the beginning and one at the end - we define two difFerent 

modifiers Startlndexing and Endindexing. 

The obsolete clause in a class indicates that the class does not meet current 

standards. The advice for developers is against continuing to use it as supplier 

or parent but without to harm existing systems which rely on this class. Declar-

ing a class as Obsolete does not affect its semantics. Instead, some language 

processing tools may produce a warning when they process a class that relies, 

as client or descendant, on an obsolete class. 

4.5.2 Optimization Modifiers for Attributes 

Optimization modifiers for attributes deal mainly with memory allocation and 

persistency. 

Modi f ie r Assert ions Assertions for optimization modifiers have to be writ-

ten just to avoid usage of incompatible modifiers. No other constraints are 

necessary. 

If we consider Java modifiers, volatile is incompatible with final. Because 

final keyword has no reification in OFL (4.2) the assertion have to ensure that 

the propriety isConstant is set to false. 

context AtomAttribute 

inv: seif.modifiers->includes('volatile') 

implies 
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seif.isConstant = false 

Modi f ie r Act ions In case of using an OFL translator to native code, actions 

for these modifiers have just to copy them to the final translated code. 

In case of an OFL compiler, it could consider directly those modifiers to 

make optimizations. Another possibility is to ignore these modifiers if that 

optimizations are not compulsory. 

4.5.3 Optimization Modifiers for Methods 

Optimization modifiers for methods concerns in accelerating calling mechanism 

and in dealing with methods written and compiled in other languages. 

Modi f ie r Assert ions Assertions for optimization modifiers concerns usage of 

incompatible modifiers. No other constraints are necessairy. 

In the case of native modifier in Java, it is incompatible with synchronized 

modifier. Also, a constructor method could not be declared as native. The 

lack of a possible native constructors is an arbitrary language design choice that 

makes it difficult for an implementation of the virtual machine to verify that 

superclass constructors are always properly invoked during object creation. 

context AtomMethod 

inv: seif.modifiers->includes('native') 

implies 

seif.isConstructor = false 

and 

seif.body->isEmptyO 

and 

NOT seif.modifiers->includes('synchronized') 

Modi f ie r Ac t ions These modifiers needs same kind of actions as optimization 

modifiers for attributes. In case of designing of an OFL compiler for the OFL 

language reification, attention must be payed to make a correct linking with 

outside code. 

4.5.4 Optimization Modifiers for Description 

Optimization modifiers for descriptions are used for version and documentation 

management. They could be used also to organize library of classes. 

Modi f ie r Assert ions No assertion are needed. 
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Modi f îe r Ac t ions Actions could be desigiied to generate errors or warniiigs 

in case of version conflicts or to generate class documentation. These actions 

could be executed by inodelling tools or be translators or compilers. Special 

tools could also run them in order to find desired classes in libraries or to check 

compatibilities. 

4.6 Service Modifîers 

4.6.1 Examples of Native Service Modifîers 

J ava Language . Java has three modifîers that could be part of this classifi-

cation. These are synchronized for methods and transient for attributes. 

Java virtual machine can support many threads of execution at once. Threads 

may be supported by having man}' hardware processors, by time-slicing a sin-

gle hardware processor, or by time-slicing many hardware processors. To help 

programmer to use threads. Java provide mechanisms for synchronizing the con-

current activity of threads through synchronized keword. A Java synchronized 

method is a niethod that must acquire a lock on an object or on a class before 

it can be executed. For a class {static) method, the lock associated with the 

Class object for the methods class is used. For an instance method, the lock 

associated with this (the object for which the method was invoked) is used. 

An attribute that is declared as transient is not saved as part of an object 

when the object is serialized. The transient keyword identifies an attribute that 

does not maintain a persistent state. 

C + + Language . We do not identify any native service modifier in C-f-4-

language. 

Eiffel Language . Eiffel also does not include any service modifier. 

4.6.2 Service Modifîers for Attributes 

Service modifiers for attributes address services that deal with objects state (like 

persistency). 

Modi f îe r Assert ions Most of the assertions for these modifiers deal just 

with incompatible modifiers. A particular situation result because OFL does 

not provide customization at the level of attributes. To cover this situation, 

modifier assertion has to test if usage of the considered service is permitted or 

not in context of description that declare the attribute. 

Modi f ie r Ac t ions Service modifier actions will implement the service or will 

make link with components that provide considered service. 
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4.6.3 Service Modifiers for Methods 

Service modifiers tor methods address services that deal vvith execut ion (ex. 

coiicurrency). 

Mod i f î e r Assert ions Service modifier assertions has to ensure that a partic-

ular kind of method (ex: a constructor or a destructor) support or not targeted 

service. Similarly to attributes, OFL does not provide customization at the 

level of methods. Because all methods have same kind of reification, as OFL-

AtornAttribute instance. inforrnation regarding them are characteristics at the 

level of those instances. 

Additionally, incompatible modifiers have to be considered. 

Modi f î e r Act ions Service modifîer actions will implement the considered 

service. Most of those actions will be dynamic actions injected at compiling 

time. 

4.6.4 Service Modifiers for Descriptions 

Service modifiers for descriptions have to deal with all kind of services. 

Mod i f î e r Assert ions Assertion will have to ensure that all relationships that 

involve the current description are compatible with the service provided. If 

we consider persistency, a composition relationship could imply that target of 

relationship should be also persistent if the source is persistent. In other words, 

assertions have to verif>^ that all composition parts could be made persistent. 

Modi f î e r Ac t ions Service modifier actions will implement the service. Most 

of these actions will specialize actions of modifiers for attributes and methods. 

4.7 Additional Modifiers 

We consider here all modifiers that could not be included in previous categories. 

These modifiers are used to change the semantics of accompanied entity in a 

manner non-customizable in OFL. Semantics changing implied by native mod-

ifiers is handled by a native compiler of the corresponding language. When an 

OFL application model is translated in native language code these modifiers are 

just written into the generated source code. A custom OFL compiler for the 

considered language binding must take care to generate the correct semantic for 

native modifiers. 

4.7.1 Examples of Native Additional Modifiers 

J ava Language . For Java language we do not identify any modifiers that 

could be considered in this category. 
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C+4- Language . In this category, C-h-f has modifiers like const for methods 

and explicit for constructors (that are also a kind of method). 

The const modifier used for a method indicated that the method do not 

modif\' the state of an object. 

In C-h-h, explicit constructors will be invoked only exphcitly. That disallows 

imphcit conversions. 

Eiffel Language . Eiffel contains agent keyword that modify the semantics of 

a method parameter. 

The keywwd agent is used to transmit a routine as a parameter for other 

routine. It avoids confusion with an actual routine call when transmit parame-

ter. Indeed, when transmit tlie parameter, the routine is not called yet. Instead, 

the routine is pass to calhng routine as an agent. 

Modi f ie r Assert ions Assertions have to deal with incompatible modifiers for 

all additional modifiers. Because this category is a very general one, no other 

assumptions could be made regarding other necessary assertions. 

Modi f ie r Ac t ions We can assume that all modifiers from this category in-

volve hard action writing. Each of them address a very specific sematic. Meta-

programmer has to identify first what OFL actions are involved in expressing 

considered semantics. 

As example, if we consider the explicit native C-l—I- modifier, semantics are 

expressed at the level of before-create-instance and create-instance OFL actions. 

4.8 Conclusion and discussions 

In this paper we proposed to extend the OFL Model. The main goal of this 

extension was to add customization of the access control mechanism and of 

additional non-covered semantics. We introduced the notion of OFL modifier 

to provide a clean way for control implementation. For better imderstanding of 

the concept we present in sections 4 and 5 examples of several native modifiers 

reification. 

As future work we proposed to add support for OFL modifiers and to inte-

grate them in all OFL tools. We also plan to extend the modifiers with high level 

actions. The OFL modeling tool will execute these actions to ensure automatic 

model correction. 
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Chapter 5 

The OFL-ML Meta-Profile 

The specification for an OFL modeling language (OFL-ML) [PCL03b] set out 

the necessity to provide a standard way to express the semantics of an OFL-

languagt application using UML-like notation and thus to support OFL applica-

tions modelling with standard UML tools. The term OYL-language means a lan-

guage reified or expressed in OFL (ex: OFL-Java, OFL-C-h+, OFL-myJavaExtension 

etc.). 

We define an OFL-ML Profile as an UML Profile that is generated auto-

matically and customized for every language expressed in OFL. Indeed, each 

existing language reified in OFL or a possible extended language expressed in 

OFL need their own associated OFL-ML Profile. 

Our goal is to design a meta-model which allow us to generate OFL-ML 

Profiles. We name this meta-model as OFL-ML meta-profile. 

Considering that, the OFL-ML will be a meta-profile for each possible UML 

Profile designed for a programming language. Indeed, each instance of OFL-

ML in context of a particular OFL-language is an UML Profile for that language. 

We name this profile "OFL-ML-Profile for OFL-language". This way will exists 

OFL-ML Profile for OFL-Java", "OFL-ML Profile for OFL-myExtendedJava" 

or "OFL-ML Profile for OFL-C-f-h'' and so on. 

In a simplified way, OFL-ML could be considered as a kind of Profile-

Ternplate. To obtain a specific UML Profile for an OFL-language, OFL-ML 

has to be instantiated using OFL meta-information as components, parameters, 

characteristics and modifiers. 

AII properties of UML meta-model elements contained in the OFL-ML may 

be used to express an object model that conforms to the resulted profile. Based 

on that, modelling tools that handle UML Profiles could generate a XML rep-

resentation of an OFL-language application. 

The main purpose of OFL-ML meta-profile is to provide to programmer an 

UML Profile designed to support development for OFL applications. Using this 

profile with a modeling tool, the programmer could generate a representation 

for the application that could be processed later by an OFL-translator, OFL-

compiler or other tools. 

51 

BUPT



UML Profiles provide a generic extension mechanism for building UML mod-

els in particular doniains. They are based on additional Stereotypes and Tagged 

values that are applied to Elenients. Attributes, Methods, Links, Link Ends and 

more. A profile is a collection of such extensions that together describe some 

particular modelling problem and facilitate modelling constructs in that doniain. 

In [Des99] it is discussed hovv specific domains that require a specialization of 

the general UML meta-model can define an UML profile to focus UML to more 

precisely describe the domain. Even as concrete UML profiles have started to 

emerge, use of the profiling mechanism is still discussed [DSB99, AKOO]. On 

OFL-ML profile generation we consider recommendation found in "UML Profile 

White Paper" [Des99]. Because it is not a final accepted opinion about Profiles, 

this paper is not yet an official OMG white paper. 

An OFL-ML profile are planed to be used vvith standaj'd UML modeling 

tools or with new modeling tools special designed for it. It could be used to 

test and validate the model, to apply design patterns in automatic way, to 

collect metrics or to generate XML representation of OFL-code. The OFL 

information contained by OFL-ML entities represent a real help to achieve all 

these goals. It is obvious that in the last case, all this information will fill the 

XML representation of application elements. 

5.1 Supported Elements and Definitions 

5.1.1 OFL Model 

Specification of OFL-ML meta-profile is based on OFL model definition found 

in [CreOlb] extended with OFL Modifiers [PL03, PCL03a]. The OFL elements 

modelled by OFL-ML meta-profile are: 

OFL-atoms OFL-atoms represent the reification of the non-customized enti-

ties of the model. Example of atoms are AtomAttribute, AtomMethod, 

AtomParameter etc. 

OFL-componen ts OFL-components inherit from OFL-atoms and represent 

reification of language entities {relationships and descriptions). 

OFL-parameters OFL-parameters contains values that determine the oper-

aţional semantics of an object oriented language. OFL-ML use only pa-

rameters that have impact on the level of application model. 

OFL-componen ts characteristics Each OFL-component keeps a set of char-

acteristics that represents meta-information for program entities such as 

lists of attributes and methods for a description component or lists of rede-

fined features for relationship components. As specified, OFL-ML use only 

those characteristics that have impact on the level of application model. 
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5.1.2 OFL-Modifiers 

OFL-Modifiers [PL03] represent an extension of the OFL Model as presented in 

[CreOlb]. They are used to express additional semantics that is not customizable 

by OFL. OFL-ML meta-profile will express this semantics using mainly tagged 

values. These tagged values will be added to the generated UML-Profile. Also, 

modifiers assertions, which contain in fact considered semantics, have to be 

translated into Profile constraints. In this paper we try to identify assertion 

transformation rules that are necessary if we consider an automatic generation 

of profile. 

5.1.3 UML Profile 

The notion of the UML profile appeared in the UML L3 standard as a means of 

structuring UML extensions (tagged values, stereot^-pes and constraints). UML 

is a modelling language used in a large number of application domains and 

all types of software applications. However, each domain has specific notions 

and particular needs. which are handled by UML through extensions which are 

grouped into UML Profiles. 

OFL-ML is based on UML Profile specification found in [Des99, OMG02a, 

Sof99]. An UML Profile: 

• Identifies a subset of the UML meta-model (which may be the entire UML 

meta-model). 

• Specifies well-formedness rules beyond those specified by the identified 

subset of the UML meta-model. Well-formedness rule is a term used in 

the normative UML meta-model specification [OMG03b] to describe a set 

of constraints written in natural language and UMLs Object Constraint 

Language (OCL) that contributes to the definition of a meta-model ele-

ment. 

• Specifies standard elements beyond those specified by the identified sub-

set of the UML meta-model. Standard element is a term used in the 

UML meta-model specification to describe a standard instance of an UML 

stereotype, tagged value, or constraint 

Specifies semantics, expressed formal or in natural language, beyond those 

specified by the identified subset of the UML meta-model. 

5.1.4 OCL 

The OCL convenience operations for UML Meta-model elements presented in 

this section can be applied generally to UML version L5 (0L03.2003) and are 

not specific to the UML Profile defined by OFL-ML. They are defined in order 

to produce more compact and readable OCL. Indeed, they are used in UML 

profiles already approved by OMG [OMG02a, OMGOl] in the same way we 

intend to do here. 
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For ModelElement. 

[1 ] The operation allStereotypes results in a Set containiiig the ModelElements 

Stereotype and all Stereotypes inherited by that Stereotype (as opposed 

to all Stereotypes inherited by the ModelElement). 

allStereotypes : Set(Stereotype); 

allStereotypes = seif . stereotype->unioii 

(seif . stereotype. generalization. psirent. allStereotypes) 

[2 ] The operation isStereotyped determines whether the ModelElement has a 

Stereotype whose name is eqiial to the input name. 

isStereotyped : (stereotypeName : String) : Boolean; 

seif.stereotype.name = stereotypeName 

[3 ] The operation isStereokinded determines whether the ModelElement has a 

Stereotype whose name is equal to the input name or if it has a Stereotype 

one of whose ancestors name is equal to the input name. 

isStereokinded : (stereotypeName : String) : Boolean; 

seif.allStereotypes->exists ( 

stereotype I stereotype.name = stereotypeName) 

There are some OCL convenience operations defined in this specificat ion 

that apply more narrowly to certain extensions of UML that the profile 

defines. These operations appear inline with the Constraints for those 

specific extensions. 

For Classifier 

[1 ] The operation navigableOppositeEnds results in a Set containing all navi-

gable AssociationEnds that are opposite to the Classifier. 

navigableOppositeEnds : Set(AssociationEnd); 

navigableOppositeEnds 

= seif.oppositeAssociationEnds -> 

select(end I end.isNavigable) 

[2 ] The operation allEnds results in a Set containing all AssociationEnds for 

which the Classifier is the type. 

allEnds : Set(AssociationEnd); 

allEnds = seif.associations -> 

collect(assoc I assoc.connection) 

[3 ] The operation nonNavigableNearEnds results in a Set containing all Asso-

ciationEnds that are adjacent to the Classifier and that are non-navigable. 
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nonNavigableNearEnds : Set(AssociationEnd); 

nonNavigableNearEnds = 

seif.allEnds->select 

(end I end.type = seif and not end.isNavigable) 

[4 ] The operation navigahleEnds results in a Set containing all navigable As-

sociationEnds for which the Classifier; that is, seif is the type. 

navigableEnds : Set(AssociationEnd); 

navigableEnds = allEnds -> 
select (end I end.isNavigable) 

5.2 OFL-ML Definit ion 

5.2.1 Identified Subset of UML 

OFL-ML diagranis are based on UML Static Structures Diagrams (Class Di-

agrams). An UML class diagram is a graph of Classifîer elements connected 

by their various static relationships. These elements belong to standard UML 

packages. 

The OFL-ML extends the following standard UML packages: Core and 

Model Management. Figure 5.1 shows the model elements that form the struc-

tural backbone of the meta-model and figure 5.2 shows the model elements that 

define relationships. The abstract syntax for the Model Management package 

is expressed in graphic notation in Figure 5.3. 

UML use standard visibility markers to express access control at the level of 

a classifier and feature. These markers has no meaning for an OFL-ML profile. 

They are covered by tagged values that represents corresponding access control 

modifiers. The reason resides in difficulty of an automatic translation between 

access control modifiers and these markers. Yet, if a meta-programmer manual 

intervention is accepted, mapping between these elements should be considered. 

The following concrete metaclasses, and implicitly all super-metaclasses of 

these metaclasses, are used: 

5.2.2 From Core - Backbone 

The backbone of the core package is shown in fig. 5.1. 

A t t r i b u t e An attribute is a named slot within a classifier that describes a 

range of values that instances of the classifier may hold. 

Class A class is a description of a set of objects that share the same attributes, 

operations, methods, relationships, and semantics. 

Classifier A classifier is an element that describes behavioral and structural 

features; it comes in several specific forms, including class, data type, inter-

face, component, artifact, and others that aie defined in other metamodel 

packages. 
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Commen t A comment is an annotation attached to a model element or a set 

of model elements. It has no semantic force but may contain information 

useful to tlie modeler. 

Constra int A constraint is a semantic condition or restriction expressed in 

text. 

Da taType A data type is a type whose values have no identity (i.e., they are 

pure values). Data types include primitive built-in types (such as integer 

and string) as well as definable enumeration types (such as the predefîned 

enumeration type boolean whose literals are false and true). 

ElementOwnersh ip Element ownership defines the visibility of a ModelEle-

ment contained in a Namespace. 

Feature A feature is a property, like operation or attribute, which is encapsu-

lated within a Classifier. 

Namespace A namespace is a part of a model that contains a set of Mod-

elElements each of whose names designates an unique element within the 

namespace. 

Opera t ion An operation is a service that can be requested froni an object to 

effect behavior. An operation has a signature, which describes the actual 

parameters that are possible (including possible return values). 

Parameter A parameter is an unbound variable that can be changed, passed, 

or returned. A parameter may include a name, type, and direction of 

communication. 

ProgrammingLanguageDataType A data type is a t̂ -pe whose values have 

no identity (i.e., they are pure values). A programming language data 

type is a data type specified according to the semantics of a particular 

programming language, using constructs available in that language. 

From Cere - Relat ionships The UML relationships described in the core 

package are presented in fig. 5.2. 

Abstract ion An abstraction is a Dependency relationship that relates two el-

ements or sets of elements that represent the same concept at different 

levels of abstraction or from different viewpoints. 

Association An association declares a connection (link) between instances of 

the associated classifiers (e.g., classes). It consists of at least two associ-

ation ends, each specifying a connected classifier and a set of properties 

that must be fulfilled for the relationship to be valid. 

Associat ionEnd An association end is an endpoint of an association, which 

connects the association to a classifier. Each association end is part of one 

association. 
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Figure 5.1: The UML Core Package - Backbone 

Dependency A term of convenience for a Relationship other than Associa-

tion. Generalizat ion, Flow, or metarelationship (such as the relationship 

between a Classifier and one of its Instances). 

Genera l i za t ion A generalization is a taxonomic relationship between a more 

general element and a more specific element. The more specific element is 

fully consistent with the more general element (it has all of its properties, 

members, and relationships) and may contain additional information. 

Usage An usage is a relationship in which one element requires another element 

(or set of elements) for its full implementation or operation. 

From M o d e l Managemen t The main elements of the model management 

package are shown in fig. 5.3. 
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Figure 5.2: The UML Core Package - Relationships 
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Figure 5.3: The UML Model Management Package 

E l e m e n t i m p o r t An element import defines the visibility and alias of a model 

element included in the namespace within a package, as a result of the 

package importing another package. 

Package A package is a grouping of model elements. 

5.2.3 The Virtual Meta-model 

Def in i t ion . A virtual meta-model is a formal model of a set of UML ex-

tensions, expressed in UML. The virtual meta-model for the UML Profile for 

OFL-ML is presented in this chapter as a set of class diagrams. More infor-

mation about virtual meta-models can be found in [OMG02a, OMGOl]. The 

semantics of stereotypes described in this virtual meta-model is given in the 

next sections. 

Representa t ion of Stereotypes. The virtual meta-model represents a 

Stereotype as a Class stereotyped stereotype. The Class that represents the 

Stereotype is the client of a Dependency stereotyped baseElement, whose sup-

plier is the UML meta-model element being extended. 
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Figure 5.4: Virtual Model for OFL Basic Types 

Represen ta t ion of Tagged Values. The virtual meta-model represents 

a TaggedValue associated with a Stereotype as an Attribute of the Class that 

represents the Stereot}^pe. The Attribute is stereotyped <^TaggedValue^. An 

expression of the form < x, y, ...,2; > indicates that the TaggedValue value is a 

comma-delimited tuple. An expression of the forni (x, z) indicates that the 

value is an enumerat ion. 

A big challenge for OFL-ML is to generate a clean and understandable profile 

in an aut ornat ically way. To following rules are designed to help this aspect: 

• every OFL-component will be represented through an individual stereo-

type 

• every coinbination of characteristics values of OFL non-custoniizable el-

ements(reified by OFL-atoms) will generate a different stereotype. This 

rule is based on the UML stereotype definition:''... a stereotype may be 

used to indicate a difference in meaning or usage between two model ele-

ments with identical structure'\ 

• additional OFL-elements (like OFL-modifiers or OFL-assertions) will be 

considered in generated tagged values or constraints of constructed profile 

5.2.4 Virtual Metamodel of OFL-ML. 

Figure 5.4 presents stereotype used to model the basic types defined by a lan-

guage. These types are managed as a characteristic of OFL-language compo-

nent, which is actually a list. Stereotype is derived from UML programming 

language data type. 

Figure 5.5 shows stereotype used to model OFL-description components. 

This stereot>'pe is derived from UML class. An UML class is a description of a 

set of objects that share the same attributes, operations, methods, relationships, 

and semantics. 
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Figure 5.5: Virtual Model for OFL-description Components 

Figure 5.6: Virtual Model for Externai Description 

Figure 5.6 present a stereotype used to model an Externai Description. This 

element does not exists in the OFL-model. It is defined at the level of OFL-

ML and specify a Descr-iption that has no OFL reification. It is necessary for 

helping usage of class libraries that have no OFL representation. The stereotype 

is derived from UML classifier. 

Figure 5.7 shows how to represent an OFL-package. Generated profile will 

contain entities that inherit from this stereotype and denote specific language 

class organization mechanisms. The stereotype is derived from UML package. 

In figure 5.8 we show the stereotypes used to represent 0FL-/ea^i£re5. Stereo-

types are derived from UML attribute and rnethod. Also, stereotypes are special-

ized based on OFL-Atom Attribute characteristics: is Description Attribute and 

isConstant, and OFL-AtomMethod: isConstructor and isDestructor. 

Stereotype for association end that belongs to OFL- UseRelationship are pre-

sented in figure 5.9. These stereotypes follows same rules as features stereotypes. 
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OFL.ML 

ModeIManagement::Packâ  

<<baseEl6meni>> , 

<<stgraoţ)fp6» 
OFLPvloge 

Figure 5.7: Virtual Model for OFL Package 

QFL^ML I 

Figure 5.8: Virtual Model for OFL Features - attributes and methods 
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OFUML 

Core::AsfocUtio]i£nd 

f «bttscEJement» 

«stereo t ype» 

OFLAssociatioiiEnd 

T 
«ste ieotype» 

OFLConstantAsracutioiiEiid 

«stcreotype» 

OFLClassAssocUtionEnd 

«stereotjrpe» 

OFLConstantClasfAssocialbiiEiid 

Figure 5.9: Virtual Model for Association End 

Figure 5.10 presents stereotypes used to represent OFL-relationships. Stereo 

tj-pes are derived frorn UML generalization and association. 

5.3 The OFL Type Representations 

This section describes all the Stereotypes introduced in the Virtual Meta-model 

for OFL-BasicType. OFL-ML-ExtemalDescription and OFL-Description. It 

adds the necessary TaggedValues, Constraints, and Common Model Elements 

to complete the Profile. 

These stereotypes could be used in modelling tools to generate correspond-

ing instances of OFL elements and to fill them with appropriate information. 

Thereby, the following elements are considered to be generated: instances of 

OFL-Primitive Type components and OFL-Description components. The re-

sult will be an OFL representation for application in XML. 

5.3.1 The OFL BasicType Element 

An OFL BasicType is a model of a primitive type found in the language binding 

such as int boolean, char (fiom Java) etc. 

Stereotypes and Tagged Values. The OFL-ML basic types are represented 

by UML ProgramrningLanguageDataType from Core package with the <^OFLBasicType:$> 

stereotype. 
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OFL-ML 

CoR::ReUt»iiship 

s 

I 

CoTe::AsMcUtionEBd 

CoTe::Gc]ienlifatiDii C«ie::AMO(tttiom 

<baseEleinent» / 

zL 
«stereotjrpe» 

OFLImportReUtionliV 

«b»eEleinent» 

/ 

/ <4»seâkBent> 

«stereo type» 

OFLUseRelationsUp 

v̂ '̂ MseEkmeni» 

«stcreotype» 

OFLMLBisicTypeCoaap«fitioji 
«stereotype» 

OFLMLBaswT]rpeCbMC«ii90ftbn 

Figure 5.10: Virtual Model for OFL Relationships 

Constra in ts . AII ^OFLBas icType^ stereotyped elements has direct corre-

spondeiice in characteristic OFL-languge.basicTypes. 

Elements Genera t ion . A profile element stereotyped <^OFLBasicType:$> 

will be generated for each element of the list OFL-language.basicTypts. AII 

strings contained by this list will became a name for a profile element. 

Examp le . If we consider Java language, eiglit elements will be considered. 

Those elements will have following names: 

• boolean 

• char 

• byte 

• short 

• int 

• long 

• float 

• double 
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5.3.2 The OFL Description Element 

OFL Description Components represent reification of Class types in different 

progrannning languages. They are created by the meta-progranimer when he 

model the language. If we consider support for automatic code generation, 

OFL-ML has to include elements representation for all these components. 

Stereotypes and Tagged Values. The abstract stereotype OFLDescriptionType:^ 

is the base for all the concrete stereotypes representing OFL Description of the 

considered language. The name of the generated stereotypes are the name of 

the OFL components with "Component'' prefix removed (ex. for a component 

ComponentJavaClass, a stereotype nained <^JavaClass:^ will be created). 

Tagged values are created to express all OFL-modifiers associated with that 

component. These tags have boolean values and taike the name from modifier 

keyword attribute. 

Constra in ts . Constraints related with components stereotypes have to con-

sider parameter values, characteristics and associated OFL Modifiers constraints 

for that component. Not all OFL parameters are considered but only that one 

which have impact on static model of the application. 

This paragraph presents constraints that have to be generated for all stereo-

types derived from abstract stereotjT^e <^OFLDescriptionType:^. Each of them 

will consider parameter values, characteristics and modifiers associated with 

corresponding OFL component. Thus all constraints related with stereotype 

<^JavaClass:$> consider parameter values, characteristics and modifiers associ-

ated with component ComponentJavaClass defined by OFL-Java. 

Parame te r ConceptDescr ip t ion : :a t t r ibu te . This parameter specify if 

the description could declare or not attributes. Legal values are allowed and 

forbidden. Constraint related with value forbidden of this parameter will ensure 

an empty attribute compartment: 

context: OFLDescriptionType (Cere::Class) 

seif.allAttributes->size = O 

The operation allAttrihutes results in a Set containing all Attributes of the Class 

itself and all its inherited Attributes. It is defined in [OMG03b] as a standard 

operation on classifies. 

allAttributes : set(Attribute); 
allAttrihutes = 

seif.allFeatures->select(f I f.oclIsKindOf(Attribute)) 

Paramete r ConceptDescr ip t ion : :methods . This parameter specify if the 

description could declare or not methods. Legal values are allowed and forbid-

den. Constraint related with value forbidden of this parameter will ensure an 

empty method compartment: 
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context: OFLDescriptionType(Core::Class) 

se i f.allMethods->s ize = O 

The operat ion allMethods results in a Set containing all Methods of the Class 

itself and all its inherited Methods. 

allMethods : set(Methods); 

allMethods = 

seif.allFeatures->select(f I f.oclIsKindOf(Method)) 

O F L Modi f iers Constra in ts . All modifiers constraints defined for the con-

sidered description component will be added in the generated profile. These 

constraints have to be transformed to deal with profile tagged values and stereo-

t}ipes instead OFL entities. Transformations that should be made to deal with 

profile tagged values are very basic. The purpose is to translate OFL-Atoms 

and OFL-Components attributes into the corresponding tagged values. 

Regarding modifiers assertions that deal with OFL-Description components, 

only parameter modifier inherited from OFL-AtomDescription is involved. It 

has to be translated into taggedValue with same name like the modifier. Indeed, 

transformations are based on the following two rules: 

• Syntax: 

s e i f . m o d i f i e r s - > i n c l u d e s m o d i f i e r . n a m e ' ) 

is translated in: 

seif.stereotype.taggedValue 

->select (name = 'modif ier_naine')->size = 1 

• and syntax: 

NOT seif.modifiers->includes('modifier_name') 

is translated in: 

seif.stereotype.taggedValue 
->select(name = 'modifier^name')->size = O 

These constraints test presence or absence of tagged value that corresponds to 

a given modifiers in context of considered entity. 

Elements Genera t ion . A profile stereotype derived from OFLDescriptionType:^ 

will be generated for each OFL component. For a language with description 

types reified in OFL by components: ComponentLanguageDescriptionTypel, 

ComponentLanguageDescriptionType2 etc, resulting hierarchy is presented in 

figure 5.11. 
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Figure 5.11: Generated stereotypes for Descriptions Components 

Examp le . Considering Java language, following description types are iden-

tified [CCL02, CreOla]: class, abstract class, interface, static member class, 

abstract static member class, static member interface, member class, abstract 

member class, local class, abstract local class and anonymous class. Indeed, the 

OFL model for Java will contain eleven components derived from OFLCompo-

nentDescription. 

Stereotypes generated for Java language are shown in figure 5.12. 

Modifiers supported by these description components are summarized in 

table 5.1. 

\ M o d i f i e r 

D e s c r i p t i o n 

B a ^ i c Access 

C o n t r o l 

C o m p l e x Acces s 

C o n t r o l 

O p t i m i z a t i o n S e r v i c e A d d i t i o n a l 

C l a s s p u b l i c , p a c k a g e f i n a l s t r i c t f p 

A b s t r a c t C l a s s p u b l i c , p a c k a g e s t r i c t f p 

I n t e r f a c e p u b l i c , p a c k a g e f i n a l s t r i c t f p -
S t a t i c M e i i i b e r C I a s s p u b l i c , p r o t e c t e d 

p r i v a t e , p a c k a g e 

f i n a l s t r i c t f p 

A b s t r a c t S t a t i c M e r a b e r C l a s s p u b l i c , p r o t e c t e d 

p r i v a t e , p a c k a g e 

s t r i c t f p 

S t a t ic M e r u b e r I n t e r face p u b l i c , p r o t e c t e d 

p r i v a t e , p a c k a g e 

f i n a l s t r i c t f p -

M e m b e r C i a s s p u b l i c , p r o t e c t e d 

p r i v a t e , p a c k a g e 

f i n a l s t r i c t f p • 

A b s t r a c t M e m b e r C l a s s p u b l i c , p r o t e c t e d 

p r i v a t e , p a c k a g e 

s t r i c t f p 

L o c a l C I a s s final s t r i c t f p -
A b s t r a c t L o c a l C I a s s final s t r i c t f p -
A n o n y m o u s C l a s s final s t r i c t f p 

Table 5.1: Modifiers for Java Description Components 

Table 5.2 presents the generated tagged values corresponding to these mod-

ifiers. 

No OFL-Java component has OFL parameters ConceptDescription::attribute 

and ConceptDescription::methods set to forbidden. Indeed, even Java interface 

could have attributes {final static). As a result, no constraints will be added to 

the generated profile for these parameters. 

For Java components, only constraints dealing with incompatible modifiers 
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OFL-ML I 

OFLDescîdonTjfpe 

JwnOau 

«sHno^» 
JxraAkftnc tClsn 

JanStetkMenWiClan 

itmtStatkliIenkerCbsf 

hanAMmmjimmtCiMMt 

JsviAtetndLicalCbM 

JoaUcalClMf 

«ikrto^» 
JaraAbftnrtMeii*erCli« 

< *MTtof^pt > > 
JivtMeBdbcrClasf 

<<Mtrtotjfpt» 
jMnStMSkWtw^OMttAn 

Figure 5.12: Generated stereotypes for OFL-Java Descriptions Components 

are defined regarding basic access control modifiers and optimization modifiers 

If we consider JavaClass component, action control modifier assertion for 

that component is: 

context ComponentJavaClass 

inv: seif.modifiers->includes('public') 

implies 

NOT seif.modifiers->includes('package') 

The transformed constraint for generated profile is very close to the original 

one: 

context JavaClass:lOFLDescriptionType (Cere::Class) 

inv: seif.stereotype.taggedValue 

->select(name='public')->size=l 

implies 

seif.stereotype.taggedValue 

->select(name='package')->size=0 

Complex modifier final will be considered further, when relationships con-

straints will be presented. 

5.3.3 Additional constraints. 

OFL parameters, characteristics and modifiers does not cover all language se-

mantic. There is no option for automatic extraction of constrains from OFL 

actions. To solve these situations, additional constraints should be added by 
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Stereotype Tagged Values 

JavaClass {public}, {package}, {final}, {strictfp} 

JavaAbstractClass {public}, {package} {strictfp} 

Ja\^Interface public , {package}, {final}, {strictfp} 

StaticMemberClass public 

private 

, {protected}, {final}, {strictfp} 

}, {package} 

AbstractStaticMemberClass public}, {protected}, {strictfp} 

private}, {package} 

StaticMemberInterface public}, {protected}, {final}, {strictfp} 

private}, {package} 

MemberClass public}, {protected}, {final}, {strictfp} 

private}, {package} 

AbstractMemberClass public} 

private 

, {protected}, {strictfp} 

, {package} 

LocalClass final}. strictfp} 

AbstractLocalClass [final}, strictfp} 

AnonymousClass final}, {strictfp} 

Table 5.2: Tagged Values for Java Description Componeiits Stereotypes 

meta-programmer. These constraints follow the same rules like OFL Assertions 

added with the same goal. As an example, if we considering Java Interfaces, the 

following rule has to be expressed: 

An interface should not contain attributes that are noi final (constant) and 

static (class attribute). 

This rule will have an associated OFL-assertion at the level of Component-

Javalnterface. 

context: ComponentJavainterface inv: self->featiires->forAlK 

aiOFLAttribute I 

a.isConstant and a.isDescriptionFeature ) 

The OCL constrain added into profile to cover this rule is (for transformat ion 

see Section 5.4.1): 

context: Javainterface:OFLDescriptionType(Core::Class) 

self->allAttributes 

->forAll ( a I a.oclIsKindOf(Attribute) implies 

a.isStereokindedC'OFLConstantClassAttribute") ) 

5.3.4 The Externai Description Element 

The Externai Description element does not exists in the OFL-model. It is 

defined at the level of OFL-ML and specify a Description that belong to "outside 

world" (outside current project). This description is written usually in original 
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language and have no O F L I n fo rma t i on a^sociated. I t is useful especial ly when 
app l i ca t i on access descr ip t ions com ing f r om class l ibrar ies. 

O F L - M L cou ld not t rea t the Externai Descriptions i n the same manner as 
n o r m a l 0¥L-Descriptions are t rea ted. T h e m a i n imped imen t is the i r opacity. 
T h e in te rna i s t ruc tu res of t h e m are h idden and cou ld no t be seen t h r o u g h usual 
OFL-relationships. As a resul t o f t h a t , j u s t few prof i le const ra in ts cou ld be 
def ined for t hem. 

O F L - M L defines special re la t ionships t o deal w i t h ex te rna i descr ip t ions. 
Those re la t ionsh ips are cal led " e x t e r n a i re la t ionsh ips" . For more i n f o r m a t i o n 
see the sect ion " E x t e r n a i Re la t ionsh ips" . A n ex te rna i descr ip t ion cou ld be in-
vo lved o n l y in ex te rna i re la t ionsh ips and can act on ly as a ta rge t . 

T h e usage of ex te rna i descr ip t ions is adequate on l y i f t he goal o f O F L -
app l i ca t i on mode l l i ng is t o o b t a i n executable code. C o n t r o l o f semant ics in-
vo lved by these ent i t ies is done in t h a t case by f ina l compi le r or l inker . 

S t e r e o t y p e s a n d T a g g e d V a l u e s The re is on ly one s tereotype invo lved i n 
ex te rna i descr ip t ion representat ion. I t is presented in figure 5.6. 

A lso , one tagged value are specif ied here. T h i s is the taggedValue { ex ter -
n a l P a t h = importPathSpecification } . I t al lows speci f icat ion o f the place where 
t he resource is o r ig ina ted . T h e value of t h i s t ag is a s t r i ng t h a t depends m u c h 
on language s>Titax re la ted w i t h us ing ex te rna i resources (ex. o f legal values are 
" i m p o r t j ava .u t i l .Vec to r " for Java or " # i n c l u d e ' M y A p p . h ' " for C -h - f ) . 

C o n s t r a i n t s Us ing of ex te rna i descr ip t ions are heăvy l iked w i t h specif ic lan-
guage semantics. Just l igh t con t ro l cou ld be made. Cons t ra in ts re la ted w i t h 
ex te rna i descr ip t ions are added at the level o f re la t ionsh ips t h a t cou ld invo lve 
these elements. 

E l e m e n t s G e n e r a t i o n O n l y one prof i le element s tereotyped as < ^ O F L E x t e r n a l 
D e s c r i p t i o n » w i l l be generated. As a l ready presented, t h i s s tereotype w i l l be 
tagged w i t h an extemalPath tagged value. T h e value of th is tag w i l l be inc luded 
in the generated source file. For models t h a t are in tended to be used i n o ther 
purpose t h a n execut ion th is t ag may be ignored. 

I n case of languages w i t h complex i m p o r t i n g syn tax , me ta -p rog rammer cou ld 
def ine add i t i ona l tags for th is stereotype. 

E x a m p l e F igu re 5.13 presents examples of ex te rna i descr ip t ions representa-
t i o n for Java and C - I - + . 

5.4 The OFL Feature Representations 
Features represents p r im i t i ves declared by an OFL -Desc r i p t i on . T h e y descr ibe 
the s ta te (a t t r i bu tes ) and the behav ior (methods) of t he considered descr ip t ion . 
Eve ry feature has associated a name and a l ist of modi f iers . 
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Java A p p I O F l ^ M L 

< < OFLExterrhilDtscTiptioTi > > 
VeciDT 

{extenialPath (import jff/a.util.VectoO} 

C-H- App I 

< < OFLExfsrnalDeicription > > 
MyCppChf. 

{exteiMlPathCttnchide TvlyCppClassJi-;)} 

Figure 5.13: Example of using Externai Description Stereotype 

These stereotypes could be used in modelling tools to generate correspond-

ing instances of OFL elements and to fill them with appropriate information. 

Thereby, the following elements are considered to be generated: instances of 

OFL-Attribute atoni and OFL-Method atom. 

5.4.1 The OFL Attributes 

Attributes inherit form feature and keep values that describe the state of the 

description. An attribute has a name, a type, an iniţial value and a set of 

modifiers. 

An OFL-attribute defînition whose type is a language basic type (modelled 

as OFLBasicType) is represented as: 

• An UML Attribute of a Class stereotyped with a stereotype derived from 

-cOFLDescriptionType^ corresponding to the OFL-description that the 

attribute is defined in. 

An OFL-attribute whose type is an OFL-description is represented as: 

• An UML Association between the Class stereotyped with a stereotype 

derived from <OFLDescript ionType» that declare the attribute and the 

UML stereotype that represents the OFL-description type of the attribute. 

The name of the attribute is used as the role name for the attribute type 

AssociationEnd of this Association. 

Stereotypes and Tagged Values. 

Ins tance At t r ibu tes . Whenever a new instance of a description is cre-

ated, a new attribute associated with that instance is created for all of this 

71 

BUPT



kiiid of attributes. OFL treats them by setting the value of isDescriptionAt-

tribute characteristic of the OFL-attribute instance to false. OFL-ML represents 

those attributes usiiig «cOFLAttr ibute» stereotype for basic type attributes or 

«:OFL-AssociationEnd» for attributes that represent aggregation with other 

descriptions. 

Class A t t r i bu tes . For a class exists exactly one incarnatioii of each at-

tribute of this kind, no matter how inany instances (possibly zero) of the 

class may eventually be created. In OFL these attributes are modelled by 

trae value in the isDescriptionAttribute characteristic of OFL-AtomAttribute 

instance. OFL-ML represents these attributes using «cOFLClassAttribute» 

stereotATDe for basic type attributes and <^OFLClassAssociationEnd» for at-

tributes that represent aggregation with other OFL-descriptions. 

Cons tan t A t t r i bu tes . Constant attributes are attributes that could not 

change their value after initialization. OFL use the OFL-attribute's isConstant 

characteristic to model them. If this characteristic has value true, the attribute 

is constant and OFL-ML will represent it through <cOFLConstantAttribute::^, 

<^OFLConstant Class Attr ibute» , <OFLClassAssociationEnd:$>, respectively 

<COFLConstantClassAssociationEnd» stereotjT^e. 

Tagged values are created to express all OFL-modifiers associated with an 

OFL-attribute. These tags have boolean values and take the name from modifier 

keyword attribute. 

Constra in ts . All modifiers constraints defîned for AtomAttribute will be added 

in the generated profile. For incompatible modifiers, constraint transformat ion 

is the same as presented in Section 5.3.2. Transformation of constraints regard-

ing stereotypes for attributes are the following: 

• Syntax: 

a.isConstant 

is translated into: 

a.isStereokindedC'OFLConstantAttribute") 

This transformation refer constant attributes. OFL use AtomAttribute.isCostant 

to keep this information. OFL-ML will represent this as an UML Attribute 

stereokinded as <OFLConstantAttr ibute» . 

• Syntax: 
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a.isDescriptionAttribute 

is translated into: 

a.isStereokindedC'OFLClassAttribute") 

This traiisformation refer class attributes. OFL use AtoiiiAttribute.isDescriptionAttribute 

to keep this informat ion. OFL-ML will represent this as an UML Attribute 

stereokinded as <OFLClassAttr ibute>. 

• Syntax: 

a. isConstant 

AND 

a.isDescriptionAttribute 

is translated into: 

a.isStereokindedC'OFLConstantClassAttribute") 

This transformation refer class attributes that are constant. OFL use Atom-

Attribute.isConstant and AtomAttribute.isDescriptionAttribute to keep this in-

formation. OFL-ML will represent this as an UML Attribute stereokinded as 

<OFLConstantClassAttribute>. 

Elements Genera t ion . Four profîle stereotypes will be generated automat-

ically for basic types attributes and four for association end that corresponds 

with relationships of the kind of OFL-UseRelationships. These stereotypes are 

presented in table 5.3. 

To increase expressiveness of the profîle, meta-programmer could derive 

new stereotypes from <^OFLAttribute> and give them suggestive named as 

<cOFLJavaStaticAttribute», «:OFLJavaFinalAttribute>, respectively « :OFL 

JavaFinalStaticAttribute». Same work could be done also for AssociatwnEnd 

stereotypes. To help this task, a kind of "wizard" could be add to the profîle 

generator tool. The additional stereot^^jes will inherit all generated constraints 

from the standard ones. 

Examp le . Profîle elements mapping to Java attributes are presented in table 

5.4. 

Table 5.5 presents tagged values generated for modifîers associated with 

Java attributes. This corresponds to public, protected, package and private ac-

cess control modifîers, respectively volatile optimization modifîer and transient 

service modifîer. 
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Stereotype Applies To Definition 

<OFLAt t r i bu t e> Attribute An attribute of a 

basic type 

<OFLConstantAttr ibute» Attribute A constant attribute 

of a basic type 

«cOFLClassAttribute» Attribute A class attribute 

of a basic type 

<OFLConstantClassAttribute» Attribute A constant class 

attribute of a basic 

type 

«:OFLAssociationEnd> Attribute An attribute that 

represent an OFL 

use relationship 

«:OFLConstantAssociationEnd> Attribute A constant attribute 

that represent an OFL 

use relationship 

<cOFLClassAssociationEnd> Attribute A class attribute that 

represent an OFL use 

relationship 

<^OFLConstantClassAssociationEnd» Attribute A constant class 

attribute that represent 

an OFL use relationship 

Table 5.3: OFL-ML Attribute Stereotypes 

5.4.2 The OFL Methods 

Methods inherit from features and specify the behavior of the descriptioii. 

Method elements could represent both procedures and functions. Functions 

differs from procedures because they return a result. 

Method declaration specify a list of parameters. This list could be empty or 

not. If not, it contains a list of OFL-parameter elements. 

Abstract methods are methods that are not implemented. An abstract meth-

ods has an empty body. 

Additionally, OFL make distinction between normal methods, constructors 

and destructors. 

Stereotypes and Tagged Values Three stereotypes defined in the OFL-ML 

virtual meta-model are used also in the generated profile: < O F L M e t h o d » , 

<cOFLConstructorMethod» and <OFLDestructorMethod». In addition, an 

<^OFLParameter» is derived from UML-parameter element to express method 

parameters. The returned value is represented in following the UML convention 

as a parameter that have attribute 'kind = retum\ 

The standard attribute body of UML-Method element is used to keep the list 
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S t e r e o t y p e J a v a M a p p i n g E x a m p l e 
O F L . l a v a A t t r i b u t c 

( : O F L A t t r i b u t c ) 

i n s t a n c e n o n - f i n a l J a v a 

b a s i c t y p e s a t t r i b u t e s ( for J a v a 

b a s i c t y p e s see S e c t i o n 5 . 3 . 1 ) 

c h a r a 

O F L J a v a F i n a l A t t r i b u t e 

( : O F L C o i i s t a n t A t t r i b u t e ) 

i n s t a n c e f i n a l J a v a b a s i c t y p e s 

a t t r i b u t e s 

f i n a l c h a r a 

O F L J A v a S t ă t i c A t t r i b u t e 

O F L C I a s s A t t r i b u t e ) 

s t a t i c ( c l a s s ) n o n - f i n a l 

J u v u bas i c t y p e s a t t r i b u t e s 

s t a t i c c h a r a 

O F L J a v a F i n a l S t a t ic A t t r i b u t e 

(; O F L C o n s t a n t C l a s s A t t r i b u t e ) 

s t a t i c ( c l a s s ) f i n a l 

J a v a b a s i c t y p e s a t t r i b u t e s 

f i n a l s t a t i c c h a r a 

O F L J a v a A s s o c j a t i o n E i i d 

( O F L A s s o c i a t i o n E n c l ) 

i n s t a n c e u o n - f i n a l J a v a 

a g g r e g a t i o n a t t r i b u t e s 

A C I a s s a 

O F L J a v a F i n a l A s s o c i a t i o n E n d 

( ; O F L C o n s t a n t A s s o c i a t i o n E n d ) 

i n s t a n c e f i n a l J a v a 

a g g r e g a t i o n a t t r i b u t e s 

f i n a l A C I a s s a 

O F L J a v a S t o t i c . \ R s o c i a t i o n E n d 

l O F L C l a s s A s s o c i a t i o n E n d ) 

s t a t i c ( c l a s s ) n o n - f i n a l 

J a v a a g g r e g a t i o n a t t r i b u t e s 

s t a t i c A C I a s s a 

O F L J a v a F i n a l S t a t i c A s s o c i a t i o n E n d 

( r O F L C o n s t a n t C l a s s A s s o c i a t i o n E n d ) 

s t a t i c ( c l a s s ) f i n a l J a v a 

a g g r e g a t i o n a t t r i b u t e s 

f i n a l s t a t i c A C I a s s a 

Table 5.4: OFL-ML Stereotypes of Java Attribute 

of statements that represents the method body. The UML represents that list 

like ProcedureExpression. that is actually a hst of strings. When code are gen-

erated from the model, these strings have to be translated into OYlu-Statement 

elements. Other possibility is to represent the body using UML-Actions Seman-

tic Model. This option will be discussed at the end of this chapter. 

For abstract methods, OFL-ML use attribute is Abstract inherited from UML-

Operation element. If true, then the operat ion does not have an implementation 

and the method body will be empty. If false, the operation must have an im-

plementation in the description or inherited from an ancestor. 

To stop method overriding, UML use Operation isLeaf boolean attribute. 

If true, then the implementation of the operation may not be overridden by 

a descendant class. If false, then the implementation of the operation may 

be overridden by a descendant class (but it need not be overridden). If we 

consider automatic generation of profile, OFL-ML could not use directly this 

attribute. In OFL rights about method overriding or redefining are specified 

through modifiers rather than characteristics. 

Method parameters are represented as a list of UML-paTameter elements. 

An \JML-parameter is an unbound variable that can be changed, passed, or 

returned. A parameter may include a name, type, and direction of communi-

cation. If we consider reification of parameter semantics (as the Eiffel agent 

parameter modifier) constraints have to be added at the level of these elements. 

Other constraints could be added related to parameters semantics. The 

standard attribute kind of the \JML-parameter element could represent follow-

ing values: 

in An input Parameter (may not be modified). 

Gut An output Parameter (may be modified to communicate information to 

the caller). 

i nou t An input Parameter that may be modified. 

re tu rn A return value of a call. 
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Stereotype Tagged Values 

OFLAttributes {public}, {protected}, {private}, {package} 

{volatile}, {transient} 

OFLConstant Attributes {public}, {protected}, {private}, {package} 

{transient} 

OFLClassAttributes {public}, {protected}, {private}, {package} 

{volatile}, {transient} 

OFLConstantClassAttributes {public}, {protected}, {private}, {package} 

{transient} 

OFLAssociationEnd {public}, {protected}, {private}, {package} 

{volatile}, {transient} 

OFLConstant AssociationEnd {public}, {protected}, {private}, {package} 

{transient} 

OFLClassAssociationEnd {public}, {protected}, {private}, {package} 

{volatile}, {transient} 

OFLConstantClassAssociationEnd {public}, {protected}, {private}, {package} 

{transient} 

Table 5.5: Tagged Values for Java Attribute Stereotypes 

Tagged values are created to express all OFL-modifiers associated with an 

OFL-method. These tags have boolean values and take the name from modifier 

keyword attribute. 

Constra in ts Some constraints are imported fiom UML semantics. In fact, 

all usage of standard UML attributes implies also constraints. 

In this context, from UML-BehavioralFeature which UML-Method inherit 

from, we have: 

• All Parameters should have a unique name. 

se i f .paraineter-> 

f o r A l K p l , p2 I pl.name = p2.name impl ies p l = p2) 

The type of the Parameters should be included in the Namespace of the 

Classifier. 

seif .paraineter->forAll( p I 

seif.owner.namespace.allContents->includes (p.type)) 

Also, as for attributes, all modifiers constraints defined for AtomMethod will 

be added. 
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Elements Genera t ion . Four stereotypes will be geiierated for inethods. These 

are <^OFLMethod:^, <^OFLConstructorMethod:^, <^OFLDestructorMethod:^ 

and <^OFLParame-ter:$>. First tree stereotypes apply to UML Method ele-

ment. The last one apply to UML Paranieter. <^OFLConstructorMethod:^ 

corresponds to a OFL-method that have attribute isConstructor set to true. 

<^OFLDestructorMethod^ corresponds to a OFL-method that have attribute 

isDestructor set to true. As mentioned in the section 5.4. L to increase expres-

siveness of the profile elements, meta-programmer could decide to derive specific 

stereotj-pes from the generated ones. 

Generated tags will correspond to OFL-method modifiers defined for con-

sidered language. 

No tags will be generated for abstract methods and, if is the case, for non-

overriding methods. Instead, the profile will use standcird UML attributes as 

mentioned in the previous section. 

Following list presents transformation rules for constraints related with meth-

ods. 

• Syntax: 

m.isConstructor 

is translated into: 

m.isStereokindedC'OFLConstructorMethod") 

This transformation refer constructor methods. OFL use AtomMethod. is-

Constructor to keep this information. OFL-ML will represent this as an UML 

Method stereokinded as <OFLConstructorMethod>. 

• Syntax: 

m.isDestructor 

is translated into: 

m.isStereokindedC'OFLDestructorMethod") 

This transformation refer destructor methods. OFL use AtomMethod.isDestruc-

tor to keep this information. OFL-ML will represent this as an UML Method 

stereokinded as -cOFLDestructorMethod». 

Both characteristics body and parameters are collection also in OFL and in 

UML, so collection operation could be applied on both in same way. 
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S t e r e o t y p e J a v a M a p p i n g E x a m p l e 
O F L M c t h o d 

( M e t h o d ) 

s t a n d a r d J a v a n i e t l i o d r e t u r n T y p e u M e t h o d ( l i s t O f P a r a n i e t e r r t ) 

O F L C o n s t r u c t o r M e t h o d 

( O F L M e t h o d ) 

a J a v a c o n s t r u c t o r m e t h o d 

m u s t h a v e s a m e n a m e as t h e 

c l ass i t se l f a n d n o r e t u r n t y p e 

c I a s s N a m e ( l i s t O f P a r a m e t e r f « ) 

O F L F i n a l i z e M e t h o d 

( : O F L D e s t r u c t o r M e t h o d ) 

a J a v a f i n a l i z e r 

( n o t c x a c t i y a d e s t r u c t o r ) 

p r o t e c t e d v o i d f i n a l i z e ( ) 

Table 5.6: OFL-ML Stereotypes of Java Method 

Examp le . Profile elements mapping to Java methods are presented in table 

5.6. 

Tagged values generated for modifiers associated with Java methods are 

presented in table 5.7. This corresponds to public, protected, package, private 

and final access control modifiers, respectively native and strictfp optimization 

modifiers and synchronized service modifier. 

To handle java language, additional tagged value is need to express exception 

mechanism. Considering that OFL does not provide any customization for 

exceptions handling, this tagged value have to be added manually. We propose 

a tag {javaThrows = string}. The value of this tag will represent a comma-

delimited list of names of Java Exception Classes throw7i by considered method. 

Stereotype Tagged Values 

OFLMethod [public}, {protected}, {private}, {package}, {final} 

native}, {strictfp}, {synchronized}, {javaThrows} 

OFLConstructorMethod 

1 

public}, {protected}, {private}, {package} 

[javaThrows} 

OFLFinahzeMethod {protected} 

{javaThrows} 

Table 5.7: Tagged Values for Java Method Stereotypes 

Constraints that correspond to access control modifiers are generated using 

same translation as presented in the previous section. 

For native modifier the assertion has also to be transformed. 

context AtomMethod 

inv: seif.modifiers->includes('native') 
implies 

seif.isConstructor = false 
and 

seif.body->isEmpty() 
and 

NOT seif.modifiers->includes('synchronized') 

Transformation are made using already presented transformation rules. 
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context OFLMethod (Core::Method) 

inv: seif.stereotype.taggedValue 

->select(name = 'native')->si2e = 1 

implies 

NOT seif.isStereotyped('OFLConstructorMethod') 

and 

seif.body->isEmpty() 

and 

seif.stereotype.taggedValue 

->select(name = 'synchronized')->size = O 

Add i t i o n a l constraints. As we mentioned in 5.3.2, the generated constraints 

will not cover all language model semantics. 

For Java, all method parameters have to have attribute kind set to value iii, 

except one that is set to retum. 

An Java method could not be abstract unless it is contained be a Java 

Interface or a Java abstract class. 

context OFLMethod (Core::Method) 

inv: let owner:Classifier = seif.specification.owner 

in 

( owner.isStereokinded('JavaAbstractClass') 

or 

owner. isStereokinded(' JavsLAbstractMemberClass') 

or 

owner.isStereokinded('JavaAbstractStaticMemberClass') 

or 

owner.isStereokinded('JavaAbstractLocalClass') 

or 

owner.isStereokinded('Javainterface') 

or 

owner.isStereokinded('JavaStaticMemberInterface')) 

Following Java constraint is related with a finalize method. A finalize 

method has to be declared as protected, return no value (has void gis return 

type) and throws Throwable exception. 

context OFLFinalizeMethod (Core::Method) 

inv: seif.stereotype.taggedValue 
->select(name = 'protected')->size = 1 

and 
seif.parameter->select(p I 

p.kind = return 
implies 

( p.type.isStereotyped('OFLBasicType') 
and 

p.type.name = 'void') 
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) 
and 

sei f .s tereotype. taggedValue 

->select ( tag I tag.name = 'javaThrows' 

impl ies tag .va lue = 'ThrowableO 

5.5 The OFL Relationship Representations 

This section describes all the Stereotypes introduced in the Virtual Meta-model 

for OFL-ImportRelationship and OFL-UseRelationship. It also adds the neces-

sary TaggedValues, Constraints. and Common Model Elenients to complete the 

Profile. 

These stereotypes could be used in inodelling tools to generate correspond-

ing instances of OFL elements and to fill them with appropriate information. 

Thereby, the following elements are considered to be generated: instances of 

OFL-Import Relationship components and OFL-Use Relationship components. 

This version of OFL-ML does not consider dynamic relationships reified by 

OFL-ObjectToClassRelationhip and OFL-ObjectToObjectRelationship. That 

is because OFL-ML profiles could represent only static models corresponding to 

UML Static Class Diagrams. 

5.5.1 The OFL Import Relationship 

The OFL-import relationship is a generalization of the inheritance mechanism 

found in object oriented languages. The meta-programmer has responsibility to 

create an OFL relationship component for each import relationships existing in 

the modelled language. OFL-ML will generates necessary elements in order to 

represents all these components. 

5.5.2 Stereotypes and Tagged Values. 

The abstract stereotype <cOFLImportRelationship> is the base for all the con-

crete stereotypes representing OFL ImportRelationhip components of the con-

sidered language. The name of the generated stereotypes are the same as the 

name of the OFL components with "Component" prefix removed (ex. for a com-

ponent " Component JavaExtends". a stereotype named <^JavaExtends» will be 

created). 

All relationships stereotyped as specialization of «:OFLImportRelationship> 

will have associated a set of tagged values. Values of these elements correspond 

to some OFL-AtomRelationship characteristics. These tagged values are pre-

sented in table 5.8. 

In addition, one tagged value will exists for each modifier associated with a 

relationship component. 
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TaggedValue 

N a m e 

TaggedValue 

Value 

C o m m e n t 

abstractedFeatures string 

(list of feature naines) 

list of concrete methods 

that are abstracted 

effectedFeatures string 

(list of feature names) 

list of abstract methods 

that are effected 

hiddenFeatures string 

(list of feature names) 

list of features that 

are hidden 

redefinedFeatures string 

(list of feature names) 

list of features that 

are redefined 

renamedFeatures string 

(list of feature names) 

list of features that 

are renamed 

removedFeatures string 

(list of feature names) 

list of features that 

2Lre removed 

show^iFeatures string 

(list of feature names) 

list of features that pass 

the relationship unchanged 

Table 5.8: OFL-ML Tagged Values for OFLlmportRelationhip 

Constra in ts . AU modifiers constraints defined at the level of relationship 

componeiits will be added. Transformation rules will translate all character-

istics of relationships components into corresponding tagged values. Followiiig 

rules will apply: 

• Syntax: 

seif.relationshipCharacteristic->forali(f:Feature I 

f.modif iers->includes('modif ier_name')) 

is translated in: 

seif.stereotype.taggedValue 

->forall(t:taggedValue I 

( t.name = 'reiationshipCharacteristic' and 

t.values->includes(feature_name) ) 

imply 

seif.parent.features->forali(f:Feature I 

f.name = feature_naine imply 

f.stereotype.taggedValue-> 

select(name = 'modifier_name')-> 

size = 1 ) ) 

Following example apply to Java private modifier in context of <^JavaClassExtends» 

stereotype. 

• Syntax: 
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seif . hiddeiiFeature->f orali (f : Feature | 

f.modifiers->includes('private')) 

is translated in: 

seif.stereotype.taggedValue 
->forall(t:taggedValue | 

( t.name = 'hiddenFeatures' and 

t. values->iiicludes (feature_naine) ) 

imply 

seif.parent.features->forali(f:Feature I 

f.name = feature.name 

imply 

f.stereotype.taggedValue-> 

select(name = 'private')-> 

size = 1 ) ) 

Additionally, the generated profile will contains constrgiints regarding each 

stereotj-pe which corresponds to language relationship components. The generic 

name ComponentRelationhip designate these stereotypes. Indeed, each OFL-

ML generic constraint presented next will have one instance for each component 

into the generated OFL-ML Profile. 

Parame te r ConceptRe la t ionsh ip : :card ina l i ty . This parameter spec-

ify the cardinality of relationship as an integer value n in the meaning of cardi-

nahty 1-n. This specify that relationship has one source (child) description and 

could have between 1 and n target (parent) descriptions. As an example, for 

simple inheritance n = 1 and the cardinality is 1-1. For a general relationship 

n could be oc. 

Constraint related with this parameter will check conformance with cardi-

nality specification. If cardinality is oc no constraint is necessary. 

OFL-ML: if cardinality ^ CXD 

context ComponentRelationhip(OFLImportRelationship) 

inv: seif.child.generalization->select( gen I 

gen.isStereotyped('ComponentRelationship') 

and 

gen.child = seif.child)->size = n 

Parame te r ConceptRe la t ionsh ip : : repet i t ion . Repetition denote if a di-

rect repetition of target (parent) is permitted or not. The possible values of 

this parameter are allowed and forbidden. Value allowed make sense just in a 

relationship with cardinality n < l (1-1). 

If the cardinality value n '\s 1 or if the repetition value is allowed, no con-

straint is necessary. 
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OFL-iML: if cardinahty ^ 1 and repetition = forbuiden 

context ComponentRelationhip (OFLImportRelationship) 

inv: seif.parent.generalization->select( gen I 

gen.isStereotypedC'ComponentRelationship') 

and 

gen.child = seif.child)->size = 1 

Parameter ConceptRelationship::circularity. Circularity parameter 

express tlie possibility to create cycles iising considered relationship compo-

nent. Constraint make sense only if parameter contain v-alue forbidden. 

OFL-ML: if circularity = forbidden 

context ComponentRelationhip (OFLImportRelationship) 

inv: let dp(d:Classifier) = 

d.generalisation.select(g I 

g.isStereotypedC'ComponentRelationshipO) 

->collect(g.parent) in 

allParents(p:Set(Classifier)) = 

seif.dpCself.child)->union((seif.dpCself.child)-p) 

->collect(np I 

np. allPsirents (p->including(self . child)))) in 

NOT seif.child.allParents(Set{})->includes(seif.child)) 

First OCL let expression {dp) calculates all direct parents of a Classifier in the 

meaning of considered relationship. Expression allParents calculates all parents 

of a Classifier. Parameter p contain all already visited parents and is used to 

stop recursions. Constraint check if the source of relationship is included or not 

in its list of parents. 

Parameter ConceptRelationship::feature_variance. This parameter 

specify the type of variance of relationship concerning rnethod parameters, 

method result and attributes. The value is a triplet where each component 

could have one of the following valiies: 

covariant elements that change on redefinition need to have same type or a 

sub-type like original one (defined by the source). 

contravar iant elements that change on redefinition need to have same type or 

a super-type hke original one (defined by the source). 

nonvar iant elements could not change the type on redefinition. 

non_appl icab le parameter is not applicable 
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Constraint has to consider first three values separately for each triplet com-

ponent. 

AII constraint use the tbllowing definitions for direct parent and all parents 

of a Classifier: 

context Classifier 

def: directParent = 

seif.generalisation->collect(g.parent) 

def: allParentsCp:Set(Classifier)) = 

seif.directParent->union((self->directParent-p) 

->collect(np I np.allParents(p->including(self)))) 

Constraints regarding method parameters \^riance are presented next. 

OFL-ML: if feature.variance for method parameter = covariant 

context ComponentRelationhip (OFLImportRelationship) 

inv: seif.redefinedFeatures->forAll( 

m I m.oclIsKindOf(Method) implies 

m.parameters->forAll( 

p I p.kind <> return 

implies 

seif.source.features->forAll( rm I 

rm.oclIsKindOf(Method) 

implies 

if (rm.name = m.name and 

rm.parameters->count O = m.parameters->coiint ()) 

rm.parameters->forAll( rp I 

rp.name = p.name 

implies 

p.allParents(Set{}) 

->including(p.type)->include(rp.type))) 

)) 

OFL-ML: if featurejuartance for method parameter = contravanant 

context ComponentRelationhip (OFLImportRelationship) 

inv: seif.redefinedFeatures->forAll( 

m I m.oclIsKindOf(Method) implies 

m.parameters->forAll( 

p I p.kind <> return 

implies 

seif.source.features->forAll( rm I 

rm.oclIsKindOf(Method) 

implies 

if (rm.name = m.name and 

rm.parameters->coiint O = m.p2Lrameters->count ()) 

rm.parameters->forAll( rp I 
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rp.name = p.name 

implies 

rp.allParents(Set{}) 

->including(rp.type)->include(p.type))) 

)) 

OFL-ML: if featiire.vanance for uietlwd paraintitr = nonvariaiit 

context ComponentRelationhip (OFLImportRelationship) 

inv: seif.redefinedFeatures->forAll( 

m I m.oclIsKindOf(Method) implies m.paraineters->forAll( 

p I p.kind <> return 

implies 

seif.source.features->forAll( rm | 

rm.oclIsKindOf(Method) 

implies 

if (rm.name = m.name and 

rm .parameters->count O = m .parameters->co\int O ) 

rm.p2Lrameters->forAll( rp I 

rp.name = p.name 

implies 

p.allParents 

->including(p.type)->include(rp.type))) 

)) 

For method result variance constraints are the same but the temi 'p.kind 

O retum' are replaced by 'p.kind = retum\ 

Next list show constraints for attribute variance. 

OFL-ML: îf feature.variance for attributes = covariant 

context ComponentRelationhip (OFLImportRelationship) 

inv: seif.redefinedFeatures->forAll( 

a I a.oclIsKindOf(Attribute) implies 

seif.source.features->forAll( ra I 

ra.oclIsKindOf(Attribute) 

implies 

ra.name = a.name 

implies 

a.type.allParents 

->including(a.type)->include(ra.type))) 

OFL-ML: if feature.variance for attributes = contravaiiant 

context ComponentRelationhip (OFLImportRelationship) 

inv: seif.redefinedFeatures->forAll( 

a I a.oclIsKindOf(Attribute) implies 

seif.source.features->forAll( ra I 
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ra.oclIsKindOf(Attribute) 
implies 

ra.name = a.name 
implies 

ra.type.allParents->including(ra.type) 

->include(a.type))) 

OFL-ML: if featare.variance for method pararneter = nonvariant 

context ComponentReiationhip (OFLImportRelationship) 
inv: seif.redefinedFeatures->forAll( 

a I a.oclIsKindOf(Attribute) implies 
seif.source.features->forAll( ra I 

ra.oclIsKindOf(Attribute) 

implies 

ra.name = a.name 

implies 
a.type=ra.type))) 

Pararneter ConceptRe la t ionsh ip : :abs t rac t ing . This pararneter spec-

ify if relationship permits or not to abstract inethods (to transform iiiethods 

that pass relationship from impleinented to abstract status). Permitted values 

are mandatory. allowed and forbidden. The OFL-ML constraint for this pararn-

eter refer only first and last value. 

OFL-ML: if abstracting = mandatory 

context ComponentRelationhip (OFLImportRelationship) 

inv: seif.parent.features->forAll( 

m I m.oclIsKindOf(Method) implies 

NOT m.isAbstract 

implies 

seif.stereotype.taggedValue 

->forAll(t I t.name='abstractedFeatures' 

implies t.value->include(m))) 

OFL-ML: if abstracting = forbidden 

context ComponentRelationhip (OFLImportRelationship) 
inv: seif.stereotype.taggedValue 

->select(name='abstractedFeatures')->size=0 

Pararneter ConceptRelat ionship: :ef fect ing . This pararneter specify if 

relationship permits or not to effect methods (to implements methods that pass 

relationship). Permitted values are mandatory, allowed and forbidden. The 

OFL-ML constraint for this parameter refer only first and last value. 

OFL-ML: if effecting = mandatory 
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context ComponentRelationhip (OFLImportRelationship) 

inv: seif.paxent.features->forAll( 

m I m.oclIsKindOf(Method) implies 

m.isAbstract 

implies 

seif.stereotype.taggedValue 

->forAll(t I t .naine='effectedFeatures' 

implies t.value->include(m))) 

OFL-ML: ?/ effectwg = forbidden 

context ComponentRelationhip (OFLImportRelationship) 

inv: seif.stereotype.taggedValue 

->select(name=' efectedFeatures')->si2e=0 

Parameter ConceptRelationship::maiskîng. The masking parameter 
establish if features could be hidden or not when pass a relationship. Legal 

values are mandatory, allowed and forbidden. 

OFL-ML: if masking = mandatory 

context ComponentRelationhip (OFLImportRelationship) 

inv: seif.paxent.features->forAll( 

fiFeature I 

seif.stereotype.taggedValue 

->forAll(t I t.name='hiddenFeatures' 

implies t.value->include(f))) 

OFL-ML: if masking = forbidden 

context ComponentRelationhip (OFLImportRelationship) 
inv: seif.stereotype.taggedValue 

->select(name='hiddenFeatures')->size=0 

Parame te r ConceptRe la t ionsh ip : : redef in ing . This parameter indicate 

if the redefinition of features is mandatory, allowed or forbidden. 

OFL-ML: if redefimng = mandatory 

context ComponentRelationhip (OFLImportRelationship) 
inv: seif.parent.features->forAll( 

f:Feature I 

seif.stereotype.taggedValue 
->forAII(t I t.name='redefinedFeatures' 

implies t.value->include(f))) 

OFL-ML: if redefining - forbidden 

context ComponentRelationhip (OFLImportRelationship) 
inv: seif.stereotype.taggedValue 

->select(name='redefinedFeatures')->size=0 

87 

BUPT



Parame te r Concep tRe la t i onsh ip : : renaming . This paiaineter indicate 

if reiiaiiiiiig of features that pass coiisidered relationship is mandatory, allowtd 

or forbidden. 

OFL-ML: if renaming = rnandatory 

context ComponentRelationhip (OFLImportRelationship) 

inv: seif.parent.features->forAlK 

f:Feature | 

seif.stereotype.taggedValue 

->forAll (t I t. iiame=' renamedFeatures' 

implies t.value->include(f))) 

OFL-ML: if renaming = forbidden 

context ComponentRelationhip (OFLImportRelationship) 
inv: seif.stereotype.taggedValue 

->select(name='renamedFeatures')->size=0 

Parame te r ConceptRe la t ionsh ip : : remov ing . This parameter estab-

lish if removing of features is rnandatory, allowed or forbidden. 

OFL-ML: if removing = rnandatory 

context ComponentRelationhip (OFLImportRelationship) 

inv: seif . pairent. f eatures->f orAll ( 

f.-Feature I 

seif.stereotype.taggedValue 

->forAll(t I t.name='removedFeatures' 

implies t.value->include(f))) 

OFL-ML: if removing = forbidden 

context ComponentRelationhip (OFLImportRelationship) 
inv: seif.stereotype.taggedValue 

->select(name='removedFeatures')->size=0 

Parame te r ConceptRe la t ionsh ip : :showing . This parameter is oppo-

site for masking. It indicate if the primitive is make again visible after it was 

masked. Possible values are mandatory, allowed and forbidden. 

OFL-ML: if showing = mandatory 

context ComponentRelationhip (OFLImportRelationship) 
inv: seif.parent.features->forAll( 

f:Feature I 

seif.stereotype.taggedValue 
->forAll(t I t.name='showedFeatures' 

implies t.value->include(f))) 
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OFL-ML: if showing = foTbiddtn 

context ComponentRelationhip (OFLImportRelationship) 

inv: seif.stereotype.taggedValue 

->select (naine=' showedFeatures') ->size=0 

Character is t ic AtomLanguage : :va l i dRe la t ionsh ips . Tliis character-

istic indicate descriptioiis types that could act as sources and targets for con-

sidered relationship. Values are triplets of <coinponentRelationship, compo-

nent DescriptionSource, coniponentDescriptionTarget>. The OFL-ML will add 

a constraint that check for legal source type according to that. 

Next we present generated constraints consider the value {< componentRela-

tionship, LanguageDescriptionTypeSourcel, LanguageDescriptionTypeTargetl>, 

<componentRelationship, LangiiageDescriptionTypeSorce2, LanguageDescription-

T>'peTarget2>, ... } for this characteristic. 

context ComponentRelationhip (OFLImportRelationship) 

inv: let st = self.child in 

( 

st. isStereotjrpedC'LanguageDescriptionTypeSourcel') 

or 

st. isStereotypedC' LanguageDescriptionTypeSource2') 

or 

) 

context ComponentRelationhip (OFLImportRelationship) 

inv: let st = self.parent in 

( 

st.isStereotyped('LanguageDescriptionTypeTargetl') 

or 

st. isStereotypedCLanguageDescriptionTypeTarget2') 

or 

) 

Elements Genera t ion . A profîle stereotype derived from ^OFLImportRelat ionsh ip» 

will be generated for each OFL component. For a language with import reiation-

ships reified in OFL by components: ComponentLanguagelmportRelationshipl, 

ComponentLanguageImportRelationship2 etc, resulting hierarchy is presented 

in figure 5.14. 

Tagged values will be generated for each relationship component according 

to values of OYL-parameters: abstracting, effecting, masking, redefining, re-

naming, removing and showing. Indeed, tags will be added considering values 

mandatory and allowed for these parameters. 

Constraints are generated regarding OFL-ML generation-conditions. These 

condition was presented as statements like: 
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Figure 5.14: Generated stereotypes for Import Relationships Components 

OFL-AIL: if condition 

The test condition will be evaluated by the module that generates the OFL-

ML profile. 

Examp le . Considering Java language, following import relationships are iden-

tified [CCL02, CreOla]: between classes inheritance (JavaClassExtends), be-

tween interfaces inheritance (JavaInterfaceExtends), concretizat ion (JavaCon-

cretization) and implementation (Javaimplenients). 

TaggedValues that corresponds to these stereotypes are shown in table 5.9. 

Valid sources and targets for components are presented in table 5.10. Example 

Stereotype Tagged Values 

JavaClassExtends {redefinedFeatures}, {hiddenFeatures} 

{effectedFeatures} 

JavaInterfaceExtends {redefinedFeatures} 

JavaConcretization {redefinedFeatures}, {hiddenFeatures} 

{effectedFeatures }(niandatory) 

Javaimplements {redefinedFeatures}, {effectedFeatures} 

Table 5.9: Tagged Values for Java Import Relationship Components Stereotypes 

of generated constraints for valid sources and targets for JavaInterfaceExtends 

relationship are given bellow. 

context JavaInterfaceExtends (OFLImportRelationship) 
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Stereotype Valid Sources Valid Targets 

JavaCla:>sExtends {JavaClass} 

{JavaAbstractClass} 

{Ja\^aStaticMemberClass} 

{JavaAbstractStaticMemberClass} 

{ JavaMemberClass } 

{JavaAbstractMemberCIass} 

{JavaLocalClass} 

{JavaAbstractLocalClass} 

{Java AnonyniousClass} 

{JavaClass} 

{JavaAbstractClass} 

{JavaStaticMemberClass} 

{JavaAbstractStaticMemberClass} 

{JavaMemberClass} 

{JavaAbstractMemberCIass} 

{JavaLocalClass} 

{JavaAbstractLocalClass} 

JavaInterfaceExtends {Javalnterface} 

{JavaStaticMemberInteface} 

{Javalnterface} 

{JavaStaticMemberInteface} 

JavaConcretization {JavaClass} 

{JavaStaticMemberClass} 

{JavaMemberClass } 

{JavaLocalClass} 

{JavaAnonymousClass} 

{JavaAbstractClass} 

{JavaAbstractStaticMemberClass} 

{JavaAbstractMemberCIass} 

{JavaAbstractLocalClass} 

Javaliiiplements {JavaClass} 

{JavaAbstractClass} 

{JavaStaticMemberClass} 

{JavaAbstractStaticMemberClass} 

{JavaMemberClass } 

{JavaAbstractMemberCIass} 

{JavaLocalClass} 

{JavaAbstractLocalClass} 

{JavaAnonymousClass} 

{Javalnterface} 

{JavaStaticInterface} 

Table 5.10: Valid sources and targets for Java Import Relationship Coniponeiits 

Stereotypes 

inv: let st = self.child in 

( 

) 

st.isStereotypedC'Javainterface') 

or 

st.isStereotypedC'JavaStaticMemberInteface') 

context JavainterfaceExtends (OFLImportRelationship) 

inv: let st = self.parent in 

( 

st.isStereotypedC Javainterface') 

or 

st.isStereotypedC'JavaStaticMemberInteface') 
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5.5.3 The OFL Use Relationships 

The OFL-use relationship is a generalizat ion of the aggregation niechanisni 

found in object oriented languages. The meta-progianimer has responsibility 

to create an OFL relationship component for each kind of use relationships ex-

isting in the modelled language. OFL-ML will generates necessary stereotypes, 

tagged ualues and constraints in order to represents all these coniponents. 

Stereotypes and Tagged Values. The abstract stereotype <OFLUseRelat ionship> 

is the base for all the concrete stereotypes representing OFL UseRelationhip 

coniponents of the considered language. As for import relationships presented 

in the section above, the name of the generated stereotypes are the same as the 

name of the OFL components with "Component" prefix removed (ex. for a com-

ponent "ComponentJavaAggregation", a stereotype named <^JavaAggregation» 

will be created). 

TaggedValue 

Name 

TaggedValue 

Value 
Comment 

hiddenFeatures string 

(list of feature names) 

list of features that 

are hidden 

renamedFeatures string 

(list of feature names) 

list of features that 

are renamed 

removedFeatures string 

(list of feature names) 

list of features that 

are removed 

shownFeatures string 

(list of feature names) 

list of features that pass 

the relationship unchanged 

Table 5.11: OFL-ML Tagged Values for OFLUseRelationhip 

Also, same way as for import relationship, all use relationships stereotyped 

as specialization of <$:OFLUseRelationship::^ will have associated a set of tagged 

values that corresponds to some OFL-AtomRelationship characteristics. These 

tagged values are presented in table 5.11. 

Constra in ts . All associations that correspond to an OFL use relationship 

must have exactly two ends that correspond to source and target of relationship. 

context ComponentRelationhip(OFLUseRelationship) inv: 

se i f.allConnections->s ize = 2 

Some constraints regarding parameters of OFL-concept-relationship gener-

ated for import relationships are valid also for use relationships. In this context, 

the OFLUseRelationship stereotype will replace OFLImportRelationship as an-

cestor of ComponentRelationship stereotype. Also, \JML-associations attribute 

will replace the \]ML-generalization. This attribute is a set that contains all 

association relationships in which considered classifier is involved. Considering 
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paranieter ConceptRelatioiishiprxardiiiality, transfoniied coiistraint will be the 

following: 

OFL-ML: if cardinality ^ oo 

context ComponentRelationhipCOFLUseRelationship) 

inv : se i f . c h i l d . a s soc i a t i ons->se l ec t ( assoc I 

assoc. isStereotypedC'ComponentRelat ionship') 

and 

assoc . ch i l d = s e i f . c h i l d ) ->s i z e = n 

The list of paraineters that are v'alid in context of an use relationship is: 

• cardinality 

• repetition 

• circularity 

• masking 

• renaming 

• removing 

• showing 

Parame te r ConceptRe la t ion : :dependence . This pairameter specify if 

instances of target description have a life time dependent or independent of 

source description. Possible values are dependent and independent 

This parameter has meaning just for an use relationship. 

OFL-ML links this parameter with aggregation attribute of UML-association-

End element. Possible values for this attribute are: 

aggregate The target class is an aggregate; therefore, the source class is a part 

and must have the aggregation \ l̂ue of none. The part may be contained 

in other aggregates. This value is mapped to independent values of the 

OFL dependence parameter. 

compos i te The target class is a composite; therefore, the source class is a part 

and must have the aggregation value of none. The part is strongly owned 

by the composite and may not be part of any other composite. This \ l̂ue 

is mapped to dependent values of the OFL dependence parameter. 

OFL-ML: if dependance = independent 

context ComponentRelationhip(OFLUseRelationship) 
inv: seif.conection->select( assocEnd I 

assocEnd.aggregation = aggregate )->size = 1 
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OFL-ML: if dependance = dependent 

context ComponentRelationhipCOFLUseRelationship) 
inv: seif.conection->select( assocEnd I 

assocEnd.aggregation = composite )->size = 3 

Constraints related with characteristic AtoiiiLangTiage::validRelationships 

are the same as presented for import relationships (see section above). 

E lemen ts Genera t ion . OFL-ML will generates one stereot>T)e derived from 

«:OFLUseRelationship» for each OFL use relationship component. 

Tagged values will be generated also for each use relationship according 

to values of OFL-parameters masking, renaming, removing and showing. As 

already presented, tags will be added considering values mandatory and allowed 

for these parameters. 

Examp le . If we consider Java language, following use relationship components 

are identified [CCL02, CreOla]: aggregation (JavcLAggregation), class aggrega-

tion (JavaClass Agregat ion), composition (JavaComposition) and class compo-

sition (JavaClassComposition). Because the last two components imply only 

Java primitive types, which are OFL-ML basic types, they are represented by 

stereotj-pes derived from basic tj^De composition (presented in section 5.5.4). 

TaggedValues that correspond to these stereotypes are presented in table 

5.12. The deletedFeatures specify the features that are deleted passing this 

relationship (ex. features declared with private modifier). Table 5.13 presents 

Stereotype r ?agged Values 

JavaAggregation deletedFeatures} 

JavaClassAggregation deletedFeatures} 

Table 5.12: Tagged Values for Java Use Relationship Components Stereotypes 

valid sources and targets for these relationships. Constraints and tags will be 

added regarding parameters values. 

For JavaAggregation we will have: 

• cardinality = oc (no OFL-ML constraint) 

• circularity = allowed (no OFL-ML constraint) 

• repetition = allowed (no OFL-ML constraint) 

• removing = allowed (no OFL-ML constraint but 'removedFeatures' gen-

erated tag) 

For JavaClassAggregation we will have: 

• cardinality = OG (no OFL-ML constraint) 
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Stereotype Valid Sources Valid Targets 

Java Aggregat ion {JavaClass} 

{JavaAbstractClass} 

{JavaStaticMemberClass} 

{JavaAbstractStaticMemberClass} 

{ J avaA lember C lass } 

{JavaAbstractMemberClass} 

{JavaLocalClass} 

{JavaAbstractLocalClass} 

{JavaAnonymousClass} 

{JavaClass} 

{JavaAbstractCl2LSs} 

{Javainterface} 

{JavaStaticMemberClass} 

{JavaAbstractStaticMemberClass} 

{ JavaMemberClass } 

{JavaAbstractMemberClaiss} 

{JavaLocalClass} 

{JavaAbstractLocalClass} 

{JavaAnonymousClass} 

{JavaStaticMemberInteface} 

JavaClassAggregation {JavaClass} 

{JavaAbstractClass} 

{Javainterface} 

{JavaStaticMemberClass} 

{JavaAbstractStaticMemberClass} 

{JavaMemberClass} 

{JavaAbstractMemberClass} 

{JavaLocalClass} 

{JavaAbstractLocalClass} 

{JavaAnonymousClass} 

{JavaStaticMemberInteface} 

{JavaClass} 

{JavaAbstractClass} 

{Javainterface} 

{JavaStaticMemberClass} 

{JavaAbstractStaticMemberClass} 

{JavaMemberClass} 

{JavaAbstractMemberClass} 

{JavaLocalClass} 

{JavaAbstractLocalClass} 

{JavaAnonymousClass} 

{JavaStaticMemberInteface} 

Table 5.13: Valid sources and targets for Java Use Relationship Components 

Stereotypes 

• circularity = allowed (no OFL-ML constraint) 

• repetition = allowed (no OFL-ML constraint) 

• removing = allowed (no OFL-ML constraint but 'reniovedFeatures' gen-

erated tag) 

5.5.4 The Basic Type Composition 

Basic type composition association stereotypes are used to represent composi-

tion with language primitive types. The relationship corresponds to primitive 

type attribute declaration by a description. This relationship is all time com-

position because basic tynpes instances represents values but not objects. 

Stereotypes and Tagged Values. Stereotypes have to be derived from two 

stereotypes <OFLMLBasicTypeCompo-sition» and <OFLMLBasicTypeClassComposition». 

The first represents instance association and the second represents class associ-

ation. No tagged values are necessary. 
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Constraints . An OFLMLBasicTypeCornpositioii represents a coinpositioii. 

context OFLMLBasicTypeComposition (Core::Association) 

inv: seif.conection->select( assocEnd I 

assocEnd.aggregation = composite )->size = 1 

An OFLMLBasicTypeComposition could have as a target only an OFLBa-

sicT^-pe. 

context OFLMLBasicTypeComposition (Core::Association) 

inv: seif.conection->forAll( assocEnd I 

assocEnd.aggregation = composition 

implies 

assocEnd.participant.isStereokinded(OFLBasicType)) 

A <$:OFLBasicType»-stereotyped Classifier may not participate in any As-

sociations with navigable opposite AssociationEnds. 

context OFLBasicType (Core: :PrograininingLanguageDataType) 
inv: seif.navigableOppositeEnds->isEmpty 

An OFLMLBasicTypeComposition could have only OFLAssociationEnd as 

a target end. 

context OFLMLBasicTypeComposition (Core::Association) 
inv: seif.conection->forAll( assocEnd I 

assocEnd.aggregation = composition 
implies 

assocEnd.isStereotyped(OFLAssociationEnd)) 

An OFLMLBasicTypeClassComposition could have only OFLClassAssocia-

tionEnd as a target end. 

context OFLMLBasicTypeClassComposition (Core::Association) 

inv: seif.conection->forAll( assocEnd I 

assocEnd.aggregation = composition 

implies 

assocEnd.isStereotyped(OFLClassAssociationEnd)) 

E l e m e n t s Generation. Usually maxim two stereotypes are generated: one 

derived from <OFLMLBasic-TypeComposition> and one from <$:OFLMLBasicTypeClassComposition>. 

If considered language have more than two type of relationships involving basic 

types, additional constraints could be also necessary. 

No tagged values are necessary. 
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Figure 5.15: Example of usiiig OFLML ExternalImportRelationship 

Examp le . For Java laiiguage we will have two relationship coiiiponents that 

involve Java primitive types: composition (JavaComposition) and class coiii-

position (JavaClassConipositioii). The JavaComposition stereotype is derived 

from OFLMLBasicT>TDeComposition and the JavaClassComposition is derived 

from OFLMLBasicTypeClassComposition. 

5.5.5 The Externai Import Relationship 

Externai import relationships involve externai descriptions. Externai descrip-

tions are presented in sec. 5.3.4 and represents descriptions imported from 

externai class libraries. These descriptions are usually opaque and they could 

not be involved in OFL relationships. 

OFL-ML use standard \]ML-generalization to represent these values. 

Stereotypes and Tagged Values. No stereotypes and tagged values are 

necessary. 

5.5.6 Constraint s. 

Any generalization relationship that is not stereotyped has to have an externai 

description as target. 

context generalization 
inv: seif.stereotype->isEmpty 

implies 

seif.parent.isStereokinded(OFLExternalType) 

Elements Genera t ion. No stereot>'pes or tagged values are generated. Only 

presented constraint is added to the profile. 

Examp le . An example of using an externai import relationship in OFL-ML 

Java profile is presented in fig. 5.15. 
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Figure 5.16: Exaiiiple of iisiiig OFLML ExternalUseRelatioiiship 

5.5,7 The Externai Use Reiationship 

Externai use relationships involve externai descriptions. Treatment of externai 

use relationship is done in same way as for externai import relationship. 

OFL-ML use standard VML-association to represent these values. 

Stereotypes and Tagged Values. No stereotypes and tagged values are 

necessary. 

Constra in ts . Any association relationship that is not stereotyped has to have 

an externai description at one end. 

context association 

inv: seif.stereotype->isEmpty 

implies 

seif.connection->select( assocEnd I 

assoEnd.participant.isStereotyped(OFLExternalDescription)) 

->size = 1 

Elements Genera t ion. No stereotypes or tagged values are generated. Only 

presented constraint is added to the profile. 

Examp le . An example of using an externai use relationship in OFL-ML Java 

profile is presented in fig. 5.16. 

5.6 The OFL Model Organization 

OFL organizes application elements into OFL-packages. An OFL-package will 

contain a group of Description, Relationships and other OFL-packages. OFL-

package is intended to maps to different module organization founded in existing 

object oriented langiiages. 
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5.6.1 The OFL Package 

An VML-package is a gTOuping of model elemeiits. In the nietaniodel, Package is 

a subclass of Namespace and GenerulizableElement A Package contains Mod-

elElenients like Packages, Classifiers. and Associatiojis. A Package niay also 

contain Constraints and Dependencies between ModelElements of the Package. 

Stereotypes a nd Tagged Values. An OFL package is represented by an 

UML package (from Model Management) stereot>'ped as OFL Package». OFL 

package containment (nesting) is niodelled by Namespace containment of one 

<$:OFLPackage»-stereotyped UML package within another. For each consid-

ered OFL-language stereotypes must be derived from <$:OFLPackage». Be-

cause current version of OFL does not provides customization for package or-

ganization, these stereotypes have to be created by the meta-programmer. 

Constra in ts . An OFLPackage could contain only OFLDescriptionTypes, OFLEx-

ternalDescriptions, OFLImportRelationships, OFLUseRelationships and other 

OFLPackages . 

context OFLPackge (ModelManagament::Package) 

inv: seif.ownedElement->forAll(el I 

el.isStereokinded('OFLDescriptionType') or 

el.isStereokindedC'OFLExternalDescription') or 

el.isStereokindedC'OFLImportRelationships) or 

el.isStereokindedC'OFLUseRelationships) or 

el.isStereokinded('OFLPackage')) 

Elements Genera t ion . Profile package stereotypes must be generated man-

ually by the meta-programmer. If necessary, it could add also tagged values to 

catch additional semantics of model organization. 

Examp le . A Java Package maps to an <OFLJavaPackage>, which is derived 

from <C0FL-Package». The simple name of the OFL Package is the simple 

name of the Java Package. A hierarchy of Java Packages maps to a hierarchy 

of OFL-packages. 

PackageName is the fully-qualified name of the Java Package. The fully-

qualified name of a top level Java Package is its simple name. The fully-qualified 

name of a Java Package contained by another Java Package is the fully-qualified 

name of the containing Java Package, followed by followed by the simple 

name of the Java Package. The fully-qualified name of a Java Package maps to 

the fully-qualified name of the corresponding OFLPackage by replacing every 

occurrence of". ' ' with 
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5.7 Modelling Example Using an OFL-Java Pro-

file 

As an example we consider the following Java code: 

// file: Vehicle.java // 

package OFLML^JavaCars; 

abstract class Vehicle { 

public int type; 

public abstract void stsirtO; 

} 
/* Class Vehicle is the base for all vehicle hierarchy */ 

// file: Color.java // 
package OFLML_JavaCars; 

public class Color { } 

// file: Car.java // 

package OFLML_JavaCars; 

public class Car { 

public Color color; 

public void setColor(Color c) {}; 

public Color getColorO { 

return color; }; 

public void start() {}; 

} 

Figure 5.17 gives an example of a model for application wliich use an OLF-

ML profile for OFL-Java: 

• three descriptions: Vehicle, Car. and Color, 

• one Java concretization relationship: Car is a concretization of the ab-

stract class Vehicle, 

• one Java aggregation relationship: Car has an attribute of the Color type. 

The diagram corresponds to above Java code. The OFL-ML Java Profile 

elements used have bin defined according to previous sectioiis. The diagram 

was generated with Objecteering UML Modeler version 5.2.2 [Sof03a]. 
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Figure 5.17: Example of using OFLML Java Profile 

5.8 Conclusions and Future Work 

5.8.1 Conclusions 

This paper has presented an approach for generation of UML profiles for aji 

object oriented languages described in OFL. This approach is based on a profiles 

meta-languages named OFL-ML. We present on detail generation mechanisms 

of OFL-ML and its drawbacks related with some language semantics. Then, 

based on this meta-language, we present an OFL-Java Profile that is generated 

based on OFL-ML rules. 

To define a profile, OFL-ML use meta-information existing at the level of 

OFL. Profiles elements are generated based on following OFL entities: 

• OFL-DescriptionComponents 

• OFL-AtomAttribute 

• OFL-AtomMethod 

• OFL-ImportRelationshipConiponents 

• OFL-UseRelationshipComponents 

• OFL-Package 

To complete the Profile, for each elements, additional taggedValues and OCL 

constraints are also generated. 

101 

BUPT



Because each OFL-ML Profile respect UML 1.5 standard specification, gen-

erated profiles are guaranteed to be used with conimercial UML niodelling tools 

that support profile mechanisms. 

Preseiited approach lias soiiie liniitations. It not consider following issues: 

• other UML diagrams, additional to static class diagrams 

• do not model OFLObjects 

• do not address dynamic relationships like OFL-class-to-object-relationships 

and OFL-object-to-object-relationships 

• do not treat t̂ -pe niultiplicity (arrays or collection classes like java.util. Vector) 

5.8.2 Future Work 

We identify two main directions for future work. 

First intend is to go deeper with language customization. Current version 

of OFL provides just a light reification and no customization of semantics at 

the level of routine body. Using UML definition of Action Model [OMG03b, 

MTAL98], we intent to provide a way to represent also semantics at this level. 

Our proposal is to extend the generated OFL-ML profile with UML-Actions for 

routine body representation. 

Briefly. UML actions represent: 

• a fundamental unit of computaţional behavior 

• action semantics are based on proven concepts from computer science 

• action semantics remove assumptions about specific computing environ-

ments in user models: 

- execution engines, PLs, implementation details 

- do not require specification of software components, taisking struc-

tures or forms of transfer of control 

- yet allows modelers to produce executable specifications 

Considering usage of Action, all OFL parameter should be considered into 

the Profile constraints. As some example we can consider: 

ConceptDescription parameters . 

• generator - specify if description could create or not instances. This 

parameter will be involved in constraints at the level of all UML 

Actions that implies creation of description instances. 

• destructor - specify if description instances could be destroyed or not. 

This parameter will be involved in constraints at the level of all UML 

Actions that implies destroying of objects. 
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ConceptRelationship parameters . 

• direct_access - specify if the relationship allow direct access to a fea-

ture of target description. This parameter will be involved in con-

straints at the level of UML Read and Write Actions 

• pol}TnophismJinplication - specify if considered relationship accept 

or not polymorphism for instances of classes involved in. This pa-

rameter will be involved in constraints at the level of UML Read and 

Write Actions and Messaging Actions 

The second proposed task is to generate a representation in XML [CCCLOO] 

or in a proprietary language representation of profile elements. We consider 

here specifications for profile representation provided by some major tools like 

Objecteering UML, Raţional Rose etc. 
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Chapter 6 

OFL-ML Tools Support and 

Validat ion 

Tools are the way most people interact witli a modeling langiiage. Therefore 

one important concern is to help tools offer as much support as possible to the 

modeler. We also use tools support to demonstrate the validity of the presented 

approach. 

6.1 The OFL Framework 

The OFL fiamework presented here describes a set of tools that make possible 

the implementation and usage of the OFL model. This implementation could 

ser\̂e a language designer, to help him to try new modeling facilities (descrip-

tions and relationships types). It can assist an analyst to validate a model or 

to extract metrics from application implementation model. Also it can help a 

programmer who needs an extension of an existing language to be closer to a 

specific domain. Basically there are four main tools included in the proposed 

framework: OFL-Meta - a tool for meta-programniing work; OFL-ML tool for 

application design and implementation or as an alternative the OFL-ML pro-

file generator; OFL-Parser for code generation and OFL Database that allows 

interactions between previously mentioned tools and keeps OFL langiiages and 

OFL applications meta-data. The framework architecture is presented in figure 

6.L 

As an implementation language we considered Java, a modern object ori-

ented language that permits a great portability and, furthermore, has powerful 

libraries, essential in implementation of complex applications. Parts of pre-

sented tools were developed or are under development in collaboration with 

researchers from "Sophia Antipolis" University of Nice. Some of them were cre-

ated as diploma projects by graduating students from "Politehnica" Lhiiversity 

of Timişoara. 
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Figiiie 6.2: Using the OFL Meta Tool to describe an OFL-Language 

6.1.1 The OFL-Meta Tool 

The OFL-Meta tool is designed to help ineta-progranimers to describe an OFL-

Language or to extend an existing one. It allows in fact to define a new OFL-

Language and to add OFL-Components, OFL-Modifîers, OFL-Assertions and 

OFL-Actions to it. 

It presents a syntlietic view of the tree representing the OFL liierarchy. It 

allows inspection of already made coniponents or creating of new coniponents. 

These could be new coinponents desigiied froin the scratch or could be copies 

of existing coniponents modifîed as needed as presented in figure 6.2. 

6.1.2 The OFL-Database 

AII tools from OFL-Framework are designed around OFL-Database. It repre-

sents a repository for OFL language coniponents and for OFL application enti-

ties. A nieta-programiner will use OFL Database to store inforniation about his 

OFL-Langiiages. A programmer will use OFL Database to retrieve components 

that he is planning to use and to store developed application. An early version 

of OFL Database was considered a P J A M A [ADJ^96, ADJS96] implementa-

tion. The current version is developed in P O E T [Sof02, Sof03b] which is a free 

object oriented database management system. References for OFL-Database 

implementation could be founded in [Pes98, Cap99].This system supports the 

ODMG specifications [CBB'^97], allows storage of Java Objects and export to 

XML [Mic99]. 

6.1.3 The OFL-ML Modeling Tool 

To implement OFL-ML we decide to implement both a dedicated modeling tool 

and a profile generator. The reason is the incipient support for UML Profiles 

included in standard UML modehng tools. 

The OFL-ML modeling tool [PPOl] is designed to help progiannners create 

OFL models. The architecture used is showed in figure 6.5. In this version, we 

don't implement the package concept. Furthermore, we don't implement the 
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Figure 6.3: OFL-ML Tool: Import Relationship Dialog Window - the List of 

Characteristics 

concept of local description, the reason for this decision being that the actual 

version of OFL reification did not support the local description. We study 

carefully the necessity to have two levels of visualization of the application 

model of OFL-ML and we adopt the following solutions as presented in figures 

6.3 and 6.4: 

• The visualization of the import relationship characteristics (level two of 

visualization) was not drawn on the model view. but we created a dialog 

window, which presents the list of its characteristics. The advantage of 

this solution is its capacity to allow visualization and modification of the 

relationship parameter at the same time and in the same mode (reduce 

the code). Instead of using two commands: one for the visualization 

(that draws in model view) and one for the modification of the import 

relationship parameters (normally a dialog box) the programmer has one 

command for both cases. Another problem of the specification was the 

overlapping of the draw parameters (of the import relationship), on top 

of other elements of the model and in this situation the visibility of the 

model is drastically reduced. 

• To increase the contrast and visibility of the programmer's model we've 

introduced the full colored termination for relationship (we draw a solid 

triangle and a solid diamond instead of the empty geometrical shape). 

• The use relationship is visible to the designer only on demand. This so-

lution was adopted in order to reduce the complexity of the model view 

and to permit the programmer to concentrate on the modeling side of his 

project. In conclusion, the model view only includes representations of the 

107 

BUPT



^ D p J o . o 

File E<M Tool He« 

a î 

GasiU 
Vr'tîci-ftB ' PâVinwter c ) CiâÎA 
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Figure 6.4: OFL ML Tool: Application Window 

descriptions and import relationships, by default. The core of OFL doesn't 

provide any support for storage or usage of graphical information of the 

description representation. Consequently. we supplement the specifica-

tion with additional the classes. Analyzing the necessities of description 

drawing, we find it essential to st ore the position of the description; other 

information (frame of the description, the position of the relation) will be 

generated at the run time. This approach reduces the space claimed by 

the saved file on the disk. Another solution, vvhich we have considered, 

is to automatically generate the graph of the model, but in this way the 

organization of the model will be harder. 

The application ofFers the programmer the possibility to create descriptions 

and relationships in his project. Both description and relationship have a second 

level of visualization, more detailed, which also permits the modification of the 

parameter's characteristics. 

6.1.4 The OFL-ML Profîles Generator 

The OFL-ML Profiles Generator in under development. It has the mission 

to generate both a Profile spcification in LaTex format and the XML Profile 

representation. 

This generator will consider all the rules presented in Chapter 5. As an 

extension of it we think to also generate action routines in J-Language defined by 

Objecteering Software [Sof03a]. This actions could be used into the Objecteering 
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Figure 6.5: The OFL ML Tool Implementation Class Diagram 

UML modeling tool in order to generate the XML representation of the OFL 

application. 

6.1.5 The OFL Parser 

The OFL Parser [PTOl] could be described as a compiler for OFL applications. 

In the current version it is a translator which generates pure Java code. The 

generated code is augraented with OFL run-time information including both 

OFL assertions and OFL actions. 

The OFL Parser has a modular construction and could be adapted to gener-

ate information like metrics or to do some formal verification of the application 

model. 

6.2 Perspectives 

We describe in this section five tools involved in OFL applications development. 

We plan to adapt this tools in the future to follow changing of the UML Profile 

standard. Also we start discussions with Objecteering for a future collaboration 

that have as goal a possible integration of our approach into tools developed by 

them. 
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Chapter 7 

Conclusions and 

Perspectives 

7.1 Conclusions 

The main benefît of our approach is the possibility to have a direct and an exact 

matching between model and iniplementation of an application. This desiderate 

is achieved through two facilities supported bv our approach. The first one is 

represented by the possibihty of prograniniing language tailoring through nieta-

langiiage extension niechanisnis. The second one resides in increasing seniatic 

precision of modehng language based on generation of an UML Profile (OFL-

ML Profile). The backbone of both facilities is the meta-information existing 

at the level of OFL. 

The strong integration of our approach with standard programming and 

modeling tools and technolog}' represents also a validation for it. 

7.2 Author Contributions 

The approach presented in this thesis brings a number of significant contribu-

tions to the field of object oriented programming and modeling languages. This 

contributions are presented split in three categories. 

Contribution at the level of OFL model extension 

• Analysis of the OFL non-customizable elements that are used frequently 

by programmers in practicai works 

• Defînition of the Component Modifier and OFL Modifier 

• Identification of Component Modifiers in Java, C-i-+ and Eiffel 
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• Definit ion of new atoms and components in addition to original OFL 

Model 

• Classification of modifiers based on origin and semantic 

• Definition of implementat ion rules for each category 

• Reification of several modifiers belonging to Java, C-h-h and Eiffel 

Contribution at the level of OFL-ML meta-profîle definition 

• Analysis of main modeling and meta-modeling approaches 

• Definition of a method which allowed to increase sematic precision for a 

modeling language (an UML Profile) based on OFL meta-information 

• Definition of the notions of OFL-ML Profile and OFL-ML Meta-profile 

• Identification of the UML subset covering all OFL-ML Profiles 

• Definition of the Virtual Meta-Model for OFL-ML Profile 

• Definition for all modelling elements belonging to a generated profile 

• Definition of generation rules for all elements considering OFL compo-

nents. parameters, characteristics aud actions 

• Definition of a mechanism which allow to add constraints for the generated 

profile 

• Rules for automatic constraints generation 

• Example of a elements generation considering OFL-Java language 

Contribution at the level of tools implementation 

• Definition of a framework which provides support for OFL application 

developments 

• Development and integration of various tools into the OFL Framework 

7.3 Perspectives 

As perspective we plan to develop and refine OFL and OFL-ML approgiches 

by adding direct support for metrics extraction, aspect oriented programming 

and service definitions. We plan also to keep the OFL-ML meta-profile up 

to date with new versions for UML Profile standard. We also intend to test 

our approach in at industry level by starting cooperation with modeling and 

programming tools vendors hke Objecteering Software. 
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