POLITEHNICA UNIVERSITY TIMISOARA

ELECTRONICS AND TELECOMMUNICATIONS
FACULTY

NEURAL NETWORK APPLICATIONS FOR
RADIOCOVERAGE STUDIES IN MOBILE
COMMUNICATION SYSTEMS

Ph. D. Thesis

Eng. Ileana Popescu

BIBLIOTECA CENTRALA
UNIVERSITATEA *POLITEHANICA"
TIMISOARA

Supervisors: Prof. Dr. Eng. Ioan Nafornita
Prof. Dr. Philip Constantinou

2003

BUPT



Acknowledgement

[ am greatly indebted to the thesis supervisor Professor loan Nafornitd for his

encouragement and constructive criticism at all stages of this research.

I am also greatly indebted to the thesis co-supervisor Professor Philip Constantinou for

his technical support and constructive criticism at all stages of this research.

[ am also grateful to the Rector of University of Oradea, Professor Teodor Maghiar,
for giving me the opportunity to conduct part of my research activities in the Mobile
Radiocommunications Laboratory at the National Technical University of Athens, Greece.

Special thanks are extended to all my colleagues from the Mobile
Radiocommunications Laboratory, NTUA, for all their support, encouragement, help and

sometimes patience during the long hours spent together.

Very special thanks are also given to all my friends for keeping my moral up and

being next to me during this work.

BUPT



Abstract

The purpose of the thesis is the applications of Artificial Neural Networks in
predicting the propagation path loss for telecommunication systems. The tremendous growth
of wireless communication systems and especially mobile radio systems requires radio
coverage prediction models that provide accurate results and fast processing time for several
types of environments, which includes a large number of parameters describing the outdoor
and indoor environment.

Neural Networks models are proposed for the prediction of propagation path loss in
different environments (urban, suburban and indoor), through which some important
disadvantages of both statistical and deterministic propagation models can be overcome. The
proposed Neural Networks models are designed based on propagation measurement results. In
order to examine the validity of the Neural Networks models, the predicted path loss by them
is compared to the measured values and to the path loss obtained by applying empirical
models.

Within the proposed models, environmental characteristics are considered more subtly
than in standard statistical models, what usually provides greater accuracy of the model. On
the other side, the Neural Network models are not computationally extensive as the
deterministic models. The implementation of the proposed Neural Networks models requires

a database that is easy to obtain.

BUPT



Rezumat

Scopul prezentei lucrdri este folosirea Retelelor Neuronale Artificiale pentru predictia
pierderilor prin propagare in sistemele de telecomunicatii. Dezvoltarea puternica a sistemelor
de comunicatie fara fir si in special a sistemelor radio mobile necesitd modele de predictie a
acoperirii radio care sd furnizeze rezultate precise §i un timp de procesare mic, in cazul
diferitelor medii de propagare a undelor radio.

Retelele Neuronale Artificiale sunt sisteme de procesare a informatiei care incearca si
imite comportarea creierului uman. Aplicatii ale Retelelor Neuronale Artificiale sunt foarte
numeroase. Clasificatori, procesoare de semnal, optimizatoare si regulatoare au fost deja
implementate. Desi existd numeroase tipuri de Retelele Neuronale Artificiale, caracteristicile
comune ale acestora sunt [Haykin, 94]:

» Imposibilitatea definini unor formule analitice exacte

» Precizia necesara: de ordinul a citeva procente

» Cantitatea de date procesate: medie

» Adaptabilitate la mediu, care permite retelelor si invete de la un mediu in schimbare

» Structurd paraleld, ceea ce permite retelelor sa ofere o viteza de calcul mare.
Toate aceste caracteristici ale Retelele Neuronale Artificiale recomanda utilizarea lor pentru
predictia intensitatii cAmpului in diverse medii de propagare. Predictia intensitatii campului
poate fi descrisd ca o transformare a unui vector de intrare contindnd informatii topografice si
morfo-grafice intr-o valoare de iesire dorita. Transformarea necunoscuti este o functie scalara
de mai multe variabile (mai multe intréri si o singurd iesire). Datoritd influentelor complexe
ale mediului natural, functia de transformare nu poate fi descrisa analitic. Este cunoscuta doar
in puncte discrete, pentru care existd disponibile valori masurate. sau in cazuri in care
conditiile de propagare sunt clar definite, ceea ce permite aplicarea unor reguli simple cum ar
fi, de exemplu, propagarea in spatiul liber.

Problema predictiei pierderilor prin propagare intre doud puncte poate fi tratata ca o
functie de mai multe intrari i o singuri iesire. Intririle contin informatii despre pozitiile
emititorului si a receptorului, cladirile inconjuritoare, frecventi, etc, in timp ce iesirea
reprezintd pierderea prin propagare corespunzitoare intrarilor respective.

Din acest punct de vedere, cercetirile in modelarea pierderilor prin propagare consti

In gasirea intririlor si a functiei care aproximeazi cel mai bine pierderea prin propagare.

BUPT



Capacitatea de aproximare a functiilor, caracteristica retelele neuronale artificiale, justifica
utilizarea lor pentru modelarea pierderilor prin propagare.

Retelele neuronale cu propagare inainte indeplinesc criteriille de utilizare pentru
scopuri de predictie deoarece nu permit nici o reactie dinspre iesire (intensitatea cAmpului sau
pierderea prin propagare) spre intrare (date topografice sau morfografice).

Predictia intensititii cAmpului este o sarcina foarte complexa si dificila. In cele mai
multe cazuri nu existd conditii de vizibilitate clard intre emitator si receptor. Multe metode de
predictie a intensititii cdmpului au fost propuse in literaturd [COST231, 99]. Pentru a
imbunatati precizia predictiei, modelele de predictie trebuie sd fie adaptabile la fiecare caz
special si aceasta necesitd dezvoltarea unor sisteme de predictie cu o flexibilitate structurala
ridicati.

in general, modelele de predictie sunt empirice (denumite si statistice) sau teoretice
(deterministice), sau o combinatie a celor doua. In timp ce modelele empirice se bazeaza pe
masuritori, modelele teoretice se bazeazd pe principiile fundamentale ale fenomenelor de
propagare a undelor radio.

Principalul avantaj al modelelor empirice este faptul ci toate influentele mediului sunt
luate in considerare implicit. Pe de altd parte, precizia modelelor empirice depinde nu doar de
precizia masurdtorilor dar §i de asemanirile dintre mediul analizat §i cel in care au fost
efectuate masuratorile.

Datorita faptului ca modelele deterministice sunt bazate pe principiile fizicii, ele pot fi
aplicate in diferite medii, fard a afecta precizia predictiei. De obicei, implementarea lor
necesitd o bazd de date mare a caracteristicilor mediului, conditie uneori imposibil de obtinut.
Algoritmii acestor modele sunt de obicei foarte complecsi si necesiti un timp mare de calcul.
Datorita acesui fapt, implementarea modelelor deterministice este de obicei restrinsi la zone
de dimensiuni mici ale celulelor micro- sau medii interioare. Totusi, in cazul in care modelele
teoretice sunt corect implementate, precizia obtinuti poate fi mai mare decit in cazul
modelelor empirice.

Problema principald a modelelor empirice clasice este precizia nesatisficitoare, in

timp ce modelele deterministice necesiti un timp de calcul ridicat.

i

BUPT



Contributii

Prezenta lucrare prezinti rezultatele cercetarii in domeniul aplicatiilor bazate pe Retele
Neuronale Artificiale pentru predictia pierderilor prin propagare in diferite medii (urban,
suburban si interior). Modelele propuse sunt urmétoarele:

» Modelul de predictie MLP - NN in mediul urban,
Modelul de predictie MLP - NN in mediul suburban,
Modele hibride de predictie MLP - NN in mediile urban §i suburban,
Modelul de predictie MLP - NN in mediul interior,
Modelul de predictie RBF - NN in mediul urban,
Modelul de predictie RBF - NN in mediul suburban,
Modele hibride de predictie RBF - NN in mediile urban si suburban,
Modelul de preditie RBF - NN in mediul interior.

In sub-capitolele 7.2.2 — 7.2.5 sunt comparate retele neuronale de tip MLP (Perceptron

V V V V V V V

Multistrat) cu diferite structuri si diferiti algoritmi de antrenare. Intr-o prima fazi, este
investigatd comportarea retelei MLP - NN antrenati cu algoritmul Levenberg-Marquardt, cu
numar diferit de neuroni in unul sau doua straturi ascunse. In urma acestor simuldri, este
stabilitq reteaua neuronald cu configuratia optimd iar In continuare, sunt investigate
performantele algoritmului Resilient Backpropagation si a versiunii Powell-Beale a
algoritmului gradientului conjugat.

In sub-capitolele 7.3.1 — 7.3.4 sunt analizate modele bazate pe retele neuronale cu
functii de bazi radiale (Generalized Radial Basis Function Neural Networks RBF-NN).
Performantele tuturor modelelor RBF-NN cu diferiti parametri de intrare sunt evaluate prin
compararea statisticilor erorilor de predictie, in functie de eroarea medie absoluti, deviatia
standard, eroarea medie patraticd si coeficientul de corelatie dintre valoarea prezisa si cea
masurata.

In modelele propuse, bazate pe rejele neuronale artificiale, caracteristicile mediului
sunt luate in considerare de maniera mult mai subtild decit in modelele statistice obisnuite,
ceea ce in general duce la o precizie mai mare a predictiei. Pe de alta parte, modelele propuse
nu necesitd timp mare de calcul iar implementarea lor necesitd o bazi de date usor de obtinut.

In comparatie cu alte modele de predictie investigate, modelele propuse, bazate pe
refele neuronale prezinti o precizie foarte buni. Avantajul principal al acestor modele consta
in faptul ci sunt ugor de adaptat la medii specifice si conditii de propagare complexe. In unele

cazuri, precizia poate fi imbunatititi prin antrendri suplimentare ale retelei neuronale.

iii

BUPT



Rezultatele sunt caracterizate intotdeauna de o anumita deviatie, dar precizia obtinutd este
suficienta pentru predictie.

Rezultatele obtinute de un sistem bazat pe refeaua MLP-NN, folosit pentru predictie,
sunt interesante. Dar rezultatele obtinute de un sistem MLP-NN, care combina intr-o abordare
neliniard rezultate ale algoritmilor clasici pentru pierderea prin propagare si date fizice,
deschid noi céi de investigare. Algoritmii contin o cantitate considerabild de cunostinte-expert
cu privire la propagarea undelor terestre; utilizarea retelelor neuronale artificiale pentru
predictia intensitatii cAmpului permite integrarea eficientd a acestor cunostinte precum §i a
altor informatii, de exemplu informatii topografice.

Analiza modelarii hibride a predictiei pierderilor prin propagare aratd cd retelele
neuronale pot f1 utilizate in modele adaptive. Prin introducerea unor parametrii aditionali, este
posibila chiar o extensie a modelelor empirice. In contrast cu algoritmii de autoregresie,
retelele neuronale oferd multiple avantaje datoritd abilitdtii lor de a reprezenta dependente cu
o neliniaritate ridicatd a mai multor parametri simultan, incluzind informatii care nu pot fi
tratate analitic. In plus, aplicarea simultani a tuturor informatiilor disponibile conduce la
rezultate bune chiar si in cazul in care se dispune de o bazi de date sdraca. Se arati ca aceasta
abordare flexibild si cu randament mare de calcul poate fi utilizatd pentru calibrare si ca o
extensie a modelelor de predictie conventionale.

Avantajul utilizarii retelelor neuronale este acela cd un model de propagare particular
poate fi proiectat si ia in considerare tipuri diferite de medii, pe baza masuratorilor efectuate
in mediul dorit. Rezultatele simuldrilor au aratat ca abordarea bazati pe utilizarea retelelor
neuronale furnizeazd o predictiec mai precisa a intensititii cAmpului decit cea a modelelor

empirice analizate in aceasti lucrare.

iv

BUPT



Contents

1.

Introduction
1.1 Y (o102 L3 (o) 1 DU 1
1.2 TRESIS CONMIIIDULION . . . ettt et e e e e e e, 3

2. Neural Networks

2. INOAUCTION. . ..o e 6
2,11, DEfINIION. ...ttt et e e 6
2.1.2. Benefits of neural networks.............oiiiiiiiiiiii i 7
2.1.3. Themodel of @aneUron......... ..ot e, 9
2.1.4. Knowledge representation................ocouiuiiiiiiiiiiiiiiiiiiiii e 13
0 DR TR - 11 0 o (0ot PO 14
2.1.6. Supervised l€arning...........c..oiiiiiiiiiii e 18
2.1.7. Unsupervised leamning...............c.ooiiiiiiiiiiiiii 20
2.1.8.  Function @approXImMatiOn. ...........coceititititeieentit et ie it aaaeneens 20

2.2, ThE PEICEPIION. .. .. ee ettt et et ettt e ettt eaae 22
22,1, IDITOAUCHION. ..ottt ettt ettt et et et e e ettt e 22
2.2.2. Perceptron convergence theorem..............cooioiviiiiiiiiiiiiniii 24

2.3, Multilayer PEICEPITON. .. e uttiett ettt e e 25
23,1 INOdUCHION. .. ...ttt e e et aeane 25
2.3.2. Training algorithms for MLP... ... ... e 27

2.3.2.1. The backpropagation (BKP) algorithm..................... 28
2.3.2.2. Advanced learning algorithms in MLP................. e 33

A. Heuristic improvements of the BKP algorithm............................... 34

B. Conjugate gradient algorithms..................c.ooi 35

C. Quasi—Newton algorithms..................coco 36

D. Levenberg-Marquardt algorithm...................... 37

2.33. Generalization...........cooiiniiiiii i e 37
234, Cross —validation............ooiiiiiiiiiii i 38

2.4, Radial Basis FUNCHONS. ..........ooiii i e 40
2,410 INTOAUCHION. .. ..eitiinit i e e 40
2.4.2. Structure of RBF networks..........c.oooiiiiiiii e 42
2.4.3. Radial basis fUnctions.............c.coeiiiiiiiiiiii e 43
2.4.4. Learning strategies with RBF-NN.......... ..., 44
2.45. ARBF-NNalgorithm. ... e 52
2.4.6. Issues with RBF-NN learning.............cccooiiiiiiiiiiiiiiiii e, 53
2.4.7. The General Regression Neural Network..................cociiiii e, 54
2.4.8. Comparison of RBF networks and MLP..................oooiiiiiiiiiiiiiiiini e, 56

3. Mobile radio channels

3.1 INtrOUCHION. ...t e e e e 57

3.2. Representation of a mobile radio signal......................cooi 58

3.3 Fadings. .. ..o e 58

3.4. Obtaining meaningful propagation loss data from measurements............................ 59

3.5. Modeling reqQUITemMentS. .. .. ..ottt ettt e e e e ee e 63

Propagation mechanisms for mobile communication systems

4.1 INrOdUCHION. ..ottt e e 64
4.2. Propagation in fre€e SPACe..........c.oeuiiiininiiii i 66
4.3, RefleCtion.......c.oouiiniiii i 67
4.3.1. The Fresnel reflection coefficients ....................cccoiiiiiiiniiiiii e, 67
4.3.2. Ground reflection (2-ray) model................oooiiiiiiiiiiii e, 68
4.4. Diffraction over irregular terrain. ....................oouiiiiiii e, 70
4.4.1. Fresnel zone GEOMELTY.........ouiuitiiiiiii e e 72
4.42. Diffraction 0SSES. .. .....ocuviuiuiiiiii i 73
4.5, SCAETIIZ. .. oo ittt ittt ittt et et e et et e e e et e e e ean e 77

BUPT



4.6. Propagation mechanisms inray theory...................... 79

5. Propagation Prediction Models

5.1. General ConsStderations. .. ... .coutiutit ittt e e 83
5.2. Propagation models for macro-cells...............coo 84
5.2.1. Themodel of OKUMUIA..........ooiitiiiiii e, 85
5.2.2. Hataprediction model...........coooiiiiiiiiiiiiii 87
523. TheEgli’smodel..........oiiiii 88
52.4. COST231-Hatamodel.............coiiiiiiii e, 89
5.2.5. COST 231-Walfisch-Ikegami model.............c....coiiiiiiiii 90
5.2.6. Walfischand Bertoni model..............c.coooiiiiiiiiii 93
527, Xi@MOAEL .. .ottt 93
5.2.8. Sakagami—Kuboimodel................ooiiiiiiii 95
5.2.9. The Log-distance path loss model..................oooii 96
5.2.10. DISCUSSIOMS. .. .. ututn ittt e et et e e e et e e et e e eeeneaneanann 97
5.3. Micro — cell propagation models. ..o 98
5.3.1. Model 1. Two—ray model..........c..coooiiiiiiiiiiii 98
5.3.2. MoOAel 2. e e 99
5.3.3. Model 3. Wideband PCS model...............c.coooiiii i 100
534, Modeld. Leemodel.........cooooiiuiiiiiiiii i 101
5.3.5. COST 231 mMOdelS....eeneiniiiiiii e 104
5.3.6. Model based on UTD and Multiple Image Theory......................c..ooia. 105
5.3.7.  DASCUSSIOMS .. cuetnttnt ittt ittt ettt a e et e et et e et e a e ee et een e e e rteee e 106
5.4. Indoor propagation models...............o i 108
5.4.1. Indoor radio propagation €NVIrONMENt. ............ouvetiuiiininiiianineininenenenn. 108
5.4.2. Empirical narrowband models............... .o 109
542,10 Model 1. 109
5422 Model 2. ... 110
5.4.2.3. Model 3. Floor Attenuation Factor model........................c.o. 110
5.4.2.4. Model 4. The COST 231 —Motley model.............c.coooeiiiiiiiiiin.. 111
5.4.2.5. Model 5. Lafortune model............cooooiiiiiiiiiiiiiii 112
5.4.2.6. Model 6. The Multi-wall model..................coiiii, 113
5.4.3. Deterministic Models...........ooeiuiniiiiiiiiii e 114
5.4.3.1. Ray-launching model (RLM)........c.ociiiiiiiiiiiiiiiiiiii e, 114
5.43.2. Ray Tracing method...... ... ..o, 116
6. Neural networks applications for propagation prediction
6.1. OutdoOT ENVITONIMENL. .. ...\ ettt ittt et et e e e et e e et et e e et e e e e anee 117
6.2. INdOOT ENVIFOIMIMENT. .. ...\ttt ittt ettt e et e et e e eaae 123

7. Proposed neural network models

7.1. The MEeASUTEIMENTS. .. ... eu. ettt e et e et et e e et et et e e e e e aaeeeas 129
7.2. Proposed MLP-NN models for the prediction of propagation path loss.................... 131
7.2.1. MLP implementation of Hata’s formula and knife-edge diffraction model...... 133
7.2.2. Proposed MLP-NN models for propagation prediction in urban
ENVITOMMENT. ... e\ueeenenen ettt et et et en e ae et aea e e et aaeaeatae etenanansaaanaeaens 135
7.2.3. Proposed MLP-NN models for propagation prediction in suburban
L2 ) (o)1) 1511 L PPN 142
7.2.4. Hybrid model based on MLP-NN............ccoiiiiiiiiiiiiiiic e, 146
7.2.5. Proposed MLP-NN models for propagation prediction in indoor
S A0 11111 11 S U 153
7.3. Proposed RBF-NN models for the prediction of propagation path loss.................... 156
7.3.1.  Proposed RBF-NN models for propagation prediction in urban
EOVITOMINENE. .. ...\ \ttitit ittt ettt e e et et e e e et sea et e aetenaneaarnananes 156
7.3.2. Proposed RBF-NN models for propagation prediction in suburban
ENVITOMIMENL. .. ... ettt e et e e e e e eae et e e e et entaeaeseenaananeraaannnns 159
7.3.3. Hybrid models based on RBF-NN.............cccccoiiiiiiiiiiiiiiiiiieeieenene, 161

BUPT



7.3.4. Proposed RBF-NN model for propagation prediction in indoor

3 1172146) 111115 || SO P 163

R T 0 1YoV T3 (o] o T 165
7.5, COMCIUSIONS. .. ittt e e e et e e e e e 170
7.6, FUMhEr WOTK. .. e e et e et 171
APPENAIX ..ot 172
APPENAIX 2. .. it e e 173
APPENAIX 3. .. e 174
F N o7 1 T PP 176
|25 (2 (=11 o1 178
Published papers.........c.ouininiiii e 186
Y 188

BUPT



List of figures

4.1.
4.2.
4.3.

4.4.

4.5.

4.6.
4.7.
4.8
4.9

5.1
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.

7.1.
72

7.3

7.4

7.5

Propagation loss prediction as a function of several inputs............................ 2
The nonlinear model of @ NEUTON...... ..ottt 9
Affine transformation produced by the presence of abias.....................coo 10
Types of activation functions: (a) - the threshold function; (b) — the piecewise

linear function; (c) - the logistic function and (d) - the hyperbolic tangent function............ 12
Error-Correction learning. .. .......c..oiuin ittt e 14
Learning with ateacher...... ...t 19
Unsupervised 1eaming.............coooiiniiiiiiii i, 20
System IdentifiCation. ........c.oouiiti i e 21
Inverse system MOdeling. .. ... ..ot e 21
The PEICEPITON. .. ..ttt et e e e 23
Decision boundary for a two classes pattern classification problem............................... 24
Multilayer perceptron with a single hidden layer...................... 26
The capability of the MLP to design complex decision boundaries: (a)-single

perceptron; (b) — MLP with one hidden layer; (c¢) — MLP with two hidden layers............... 27
[llustration of the early stopping rule based on cross validation............................ 40
Architecture of a RBE-NIN. ... i e 43
The SOFM-NN with two input nodes and output nodes organized

N a two-dIMeENSIONAl AITAY .......iutitt ittt e et et e et e e eeeaaeae 48
General regression neural network......... ..o 55
Obtaining the local mean.......... ... 60
Propagation overa plane earth........ ... . 68
Two-ray ground reflection model........... ... 69
Knife-edge diffraction geometry when the transmitter and

the receiver are not at the same height........ ... ... 71

The knife-edge diffraction equivalent geometry. The point T denotes the transmitter
and R denotes the receiver, with an infinite knife-edge obstruction blocking the

line-of-sight path. ....... .o e 71
Family of ellipsoids defining the first three Fresnel zones around the

transmitter and the receiver of aradiopath........... ... 72
Knife — edge diffraction: (a) h and v positive, (b) h and v negative....................c.ooii 74
Knife — edge diffraction with ground reflections. ... 75
Diffraction over a CylNder. ... ......ooiuiiiiii i 76
Surface roughNEsS CIItEIION. .. ... oui et et it ee et it e e eae e aeaeaneniannns 77

Typical propagation situation in urban areas and definition of the parameters

used in the COST231-Walfisch-Ikegami model...............c.ocioiiiiiii 90
Definition of the Street Orentation. ... ... ... ..iiuit it it 91
Radio propagation paths and geometrical parameters. ..............ocoierieiiiiieneniininenininnen. 95
TWO-Tay MOAEL. ...t e e e 98
The propagation mechanism of low-antenna height at the cell site............................... 102
(a) 2-D view of the reception sphere; (b)- Ray launcing...............c.cooiiiiiiiiiiiiiinnn . 115
RAY tTaCINE. ... .o ettt e e 116
The building topology and the transmitter posSitions................coovviiviiiiiiiiiananiennn, 131
Comparison between predicted values achieved by neural network and knife-edge

diffraction model versus the distance between the diffraction point and receiver.............. 134
Performance of MLP-NN on the test set, with different number of neurons in 1

and 2 hidden layers, 5 inputs, LOS case, urban environment..................c.cccoeienennnnn... 136
Performance of MLP-NN on the test set, with RP and PB training algorithms,

5-10-10-1, LOS case, urban €nvironment. .. .. ....covoueeinetee e e e et eeaee e 136
Measured and predicted path loss for LOS case in urban environment.......................... 137

BUPT



1.6

7.7

7.8

79

7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25
7.26
727
7.28
7.29
7.30
731
7.32
733
734
7.35
7.36

7.37

Pertormance of MLP-NN on the test set, with different number of neurons in

1 and 2 hidden layers, 6 inputs, NLOS case, urban environment................................. 139
Performance of MLP-NN on the test set, LM algorithm, 11 inputs, different number

of neurons in 1 and 2 hidden layers, NLOS case, urban environment........................... 139
Performance of MLP-NN on the test set, with RP and PB training algorithms,

6-16-16-1, NLOS case, urban environmeNt. ... .......ooovuueiiiirie e eiiie e eiiee e aieneenn, 140
Performance of MLP-NN on the test set, RP and PB training algorithms,

11-16-16-1, NLOS case, urban envIronmMeENt. .. ........couviiierieiiiiiireeeeeeeiiereeeeranns 140
Measured and predicted path loss for NLOS case with hgs<hgos, urban case................... 141
Measured and predicted path loss for NLOS condition with hgs>hgof, urban case............. 142
Performance of MLP-NN on the test set, LM algorithm, different number of

neurons in | and 2 hidden layers, 5 inputs, suburban environment............................... 143
Performance of MLP for LM training algorithm, different number of neurons

in 1 and 2 hidden layers, 7 inputs, suburban environment...................ocoii 144

Performance of MLP-NN, 5-12-12-1, RP and PB algorithms, suburban environment........ 144
Performance of MLP-NN, 7-12-12-1, RP and PB algorithms, suburban environment........ 145

Comparison between the measured and the predicted propagation path loss by

the neural model and the CWI model for one particularroute...................cooooiiiin.. 145
The schematic diagram of the training ProCess..........c.couvitiiiiiiiiiiiiiiiiiie e 146
The schematic diagram of the prediCtion..............ccoiiiiiiiiiiiiiiiiiiiii i i, 147
Performance of hybrid MLP-NN, LM algorithm, 1 and 2 hidden layers,

5 Inputs, Urban eNVIFOMMENT . .. ....o..intiti e 147
Performance of hybrid MLP-NN, LM algorithm, 1 and 2 hidden layers,

6 Inputs, urban enVIrONMENt ... ... ... oottt e 148
Performance of hybrid MLP-NN, 5-16-16-1, PB and RP training algorithms,

different number of epochs........ ... 148
Performance of hybrid MLP-NN, 6-16-16-1, PB and RP training algorithms,

11 18o%: 1102 1041 £0) 111 4 12 1 SO 149
The comparison between the prediction made by the proposed error correction model,

CWI model and measurements in case of a particular route, urban environment............... 150
Performance of hybrid MLP-NN, LM algorithm, 4 inputs, 1 and 2 hidden layers,

suburban enVITONMENLt. ....... ... ittt e e e e 151
Performance of hybrid MLP-NN, LM algorithm, S inputs, 1 and 2 hidden layers,

suburban envVIFONMENL. ... ... ittt 151
Performance of hybrid MLP-NN, RP and PB algorithms, 4-17-17-1,

Suburban ENVIFOMIMENL. .. .......ut ettt et et et ettt et e e e e eans 151
Performance of hybrid MLP-NN, 5-17-17-1, RP and PB algorithms,

suburban enVIrONMENt. ... .. ... ot 152
The comparison between the prediction made by the proposed hybrid model,

CWI model and measurements for a particular route, suburban case............................ 152
Performance of MLP-NN, 10 inputs, LM training algorithm, 1 and 2 hidden

layers, indOOr ENVITONMENL. ... ...ttt et et e e e e e e e e e eenanens 154
Performance of MLP-NN, RP and PB algorithms, 10-14-14-1, indoor environment.......... 154
Comparison between predictions and measurements with the transmitter in position

2 and the receiver located in sector A, along the main corridor: a) normalized received

POWET, ) Path 0SS, .. ..ttt 156
Measured and predicted path loss for LOS case, urban environment............................ 157
Measured and predicted path loss, in case of a particular route, NLOS case,

Urban ENVIFOMIMENL. ... ... ittt ittt et et eee et e et e e e et e e e e e aas 159
Measured and predicted propagation path loss by the proposed RBF 7

model and the CWI model, suburban environment.................c.ooviiiiiiiiiiiiiiiinnnn.. 160
Prediction made by the proposed RBF11 hybrid model, CWI model and

measurements, Urban €NVIFONIMENt. .. .......o.uueete ettt e e e e e 162
Prediction made by the proposed hybrid model RBF13, CWI model and

MEASUrements, SUDUIDAN CASE...........c.iiunit ittt e e e e e e 163
Comparison between predictions and measurements with the transmitter

in position 2 and the receiver located in sector A, along the main corridor:

a) normalized received power; b) path 10SS..........ooovuiiiiiiiiiiii e, 164

BUPT



List of tables

7.1.

7.2
7.3

7.4
1.5

7.6
7.7

7.8

7.9

7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20

Al

Om VETSUS 2 o i e e e e 61
Definition of Cell tyPe. .. ...cnii i 83
Parameters for the wideband microcell model at 1900 MHz........................ 101
Wall types for the Multi-Wall model..............coi 114

Comparison between the proposed MLP-NN model and the other empirical models,

LOS CaS€. ...ttt e 137
Comparison between the prediction models in LOS case, for a particular route.................138
Comparison between the MLP-NN approach and the other empirical models

o T A I A0 o T 141
MLP-NN models and other empirical models in NLOS case, for hgs>h,eor and hgs<hoef......142
Comparison between the proposed MLP-NN model and other empirical models,

SUbUrban ENVITONIMENT. .. ....c..itnt ittt ettt et et et eee et ean e e enens 146
Comparison between the proposed hybrid MLP-NN based approach and the CWI

model In urban enVIFONMENT. ... .. ..ottt ettt e veeneen 149
Comparison between the proposed hybrid MLP-NN model and CWI model,

suburban enVIrONIMEDT. .........ouuinii et et e et 153
Results of the prediction, MLP-NN, indoor environment.............ccovieieiniineneinneneennn 155
Proposed RBF-NN model and other empirical models, LOS case, urban environment....... 157
RBF-NN models for NLOS case, urban environment................cooeeiiiiiiiiiiiiiinnnnnn... 158
Proposed RBF3 model and other empirical models, NLOS case, urban environment......... 158
Generalized RBF-NN models, suburban environment ..............coviiiiiiiiiiiiiiiiiinnnnn. 160
Proposed RBF7 model and the other empirical models suburban case........................... 160
Hybrid RBF-NN models for NLOS case, urban environment...............c.ooovieiiinninnnnn. 161

Proposed RBF11 model and the CWImodel..............cooiiiiiiiiiiiiii e 161

Hybrid RBF-NN models, suburban case..............ccccooiiiiiiiiiiiiiiiiiiii e 162
Comparison between the proposed RBF13 hybrid model and the CWI model................. 162
Results of the prediction, indoor environment................cooiiiiiiiiiiiiiieieineeanns. 163
Proposed NN models performance in different environments......................cooooieili. 166
Background studies, outdoor environment. ................coouiiiiiiiiiiiii e 168
Summary of the LMS algorithm............ ... 177

BUPT



1. Introduction

1.1. Motivation

The purpose of the thesis is the applications of Artificial Neural Networks (ANN) in
predicting the propagation path loss for telecommunication systems. The tremendous growth
of wireless communication systems and especially mobile radio systems requires radio
coverage prediction models that provide accurate results and fast processing time for several
types of environments, which includes a large number of parameters describing the outdoor
and indoor environment.

During last years Artificial Neural Networks (ANN) have experienced a great
development. Artificial neural networks are information processing systems that aim to copy
the behavior of human brain. ANN applications are already very numerous. Classificators,
signal processors, optimizers and controllers have already been realized. Although there are
several types of ANN’s all of them share the following features [Haykin, 94]:

- Exact analytical formula impossible

- Required accuracy: some percent

- Quantity of data to process: medium

- Environment adaptation that allows them to learn from a changing environment
(different terrain databases and terrain)

- Parallel structure that allows them to achieve high computation speed.

These characteristics of ANN’s make them suitable for predicting field strength in
different environments. The prediction of field strength can be described as the transformation
of an input vector containing topographical and morphographical information (e.g. path
profile) to the desired output value. The unknown transformation is a scalar function of many
variables (several inputs and a single output), because a huge amount of input data has to be
processed. Owing to the complexity of the influences of the natural environment, the
transformation function cannot be given analytically. It is known only at discrete points where
measurement data are available or in cases with clearly defined propagation conditions which

allow to apply simple rules like free space propagation, etc.

BUPT



The problem of predicting propagation loss between two points may be seen as a
function of several inputs and a single output. The inputs contain information about the
transmitter and receiver locations, surrounding buildings, frequency, etc while the output

gives the propagation loss for those inputs (figure 1.1).

Transmitter

Receiver

Buildings

Propagation loss

) 4

F(x)

v

Frequency

4

Distance

Figure 1.1. Propagation loss prediction as a function of several inputs

From this point of view, research in propagation loss modeling consists in finding both
the inputs and the function F(x) that best approximate the propagation loss. Given that ANN’s
are capable of function approximation, they are useful for the propagation loss modeling.

The feedforward neural networks are very well suited for prediction purposes because
do not allow any feedback from the output (field strength or path loss) to the input
(topographical and morphographical data).

The prediction of field strength level is a very complex and difficult task. In most
cases, there are no clear line-of-sight (LOS) conditions between the transmitter and the
receiver. Many field strength prediction methods have been proposed in the literature
[COST231, 99]. Usual databases include classification of land usage and urban areas but a lot
of questions still remain. Cities and open ranges are quite different in structure and may also
be different in the way of database classification. Propagation models should be adapted to
every special case to improve accuracy. As a consequence, the development of prediction
systems with a high structural flexibility it is very desirable.

Generally, the prediction models can be either empirical (also called statistical) or
theoretical (also called deterministic), or a combination of these two. While the empirical
models are based on measurements, the theoretical models deal with the fundamental

principles of radio wave propagation phenomena.

BUPT



In the empirical models all environmental influences are implicitly taken into account
regardless of whether or not they can be separately recognized. This is the main advantage of
these models. On the other hand, the accuracy of the empirical models depends not only on
the accuracy of the measurements but also on similarities between the environment to be
analyzed and the environment where the measurements are carried out.

The deterministic models are based on the principles of physics and due to that, can be
applied in different environments without affecting the accuracy. Their implementation
usually requires a great database of environmental characteristics that is sometimes
impossible to obtain. The algorithms of these models are usually very complex and lack in the
computational efficiency. Due to that, the implementation of the deterministic models is
usually restricted to the smaller areas of micro-cell or indoor environments. However, if the
deterministic models are implemented correctly, greater accuracy of the prediction can be
expected than in the case of empirical models.

The main problem of the classical empirical models is the unsatisfactory accuracy,
while the theoretical models lack in computational efficiency. On brief, characteristics of a
field strength prediction system for mobile radio can be summarized as follows:

- Exact analytical formula impossible
- Required accuracy: some percent (around 6 dB in field strength level)
- Quantity of data to process: medium

- Flexibility to adapt to different terrain databases and terrain.

1.2. Thesis contributions

This thesis presents the results of the research in the area of Neural Networks (NN)
applications for prediction of propagation path loss in different environments (urban,
suburban and indoor). The proposed NN models are the follows:

» MLP - NN prediction model in urban environment,

MLP - NN prediction model in suburban environment,

Hybrid MLP - NN models in urban and suburban environment,
MLP - NN model for indoor environment,

RBF - NN prediction model in urban environment,

RBF - NN prediction model in suburban environment,

vV V V V V V

Hybrid RBF - NN models in urban and suburban environment,

BUPT



» RBF - NN model for indoor environment.

In section 7.2.2 — 7.2.5 a number of comparisons are made for Multilayer Perceptron
Neural Networks (MLP-NN) with different architectures and different training algorithms. At
a first step, the performance of the MLP-NN trained with Levenberg-Marquardt (LM)
algorithm, with different numbers of neurons in one and two hidden layer was investigated.
These simulations were done with the use of early stopping method. Following these
simulations, the MLP-NN with the optimum configuration is established and investigations
are done on the performance of two other training algorithms: the Resilient Backpropagation
(RP) and the Powell-Beale (PB) version of the conjugate gradient algorithm.

In section 7.3.1 — 7.3.4 a number of Generalized Radial Basis Function Neural Networks
(RBF-NN) models are studied. The performance of all RBF-NN models with different input
parameters is evaluated by comparing their prediction error statistics based on absolute mean
error, standard deviation, root mean square error and the correlation between predicted values
and measurement data.

Within the proposed models, environmental characteristics are considered more subtly
than in standard statistical models, what usually provides greater accuracy of the model. On
the other side, the NN models are not computationally extensive as the deterministic models.
The implementation of the proposed NN models requires a database that is easy to obtain.

In comparison with other field strength prediction models, the proposed NN models
showed very good accuracy. The main advantage of the proposed NN models lays in the fact
that the models should be easily adjusted to some specific environments and complex
propagation condition. In more specific local cases, the accuracy can be improved by some
additional NN training. Results are always connected with some uncertainty but accuracy may
be sufficient for prediction purpose.

The results obtained by a pure MLP-NN system used for prediction are very
interesting. But the results obtained by a MLP-NN system that combines a nonlinear NN
approach, results of classical propagation loss algorithms and physical data open new ways of
investigations. The algorithms carry a considerable expert knowledge on terrestrial wave
propagation; the use of NN as field strength prediction model allows to efficiently integrate
this knowledge as well as topographic and land cover information.

The hybrid modeling approach for the prediction of propagation path loss is studied
and it is shown that NN can be used in highly adaptive models. By introducing of additional
parameters during the training process even an extension of empirical models is feasible. In

contrast to well-known regression algorithms, NNs offer many advantages owing their ability

4

BUPT



to represent highly nonlinear dependencies of many parameters simultaneously, including
information that cannot be treated analytically. In addition, the application of all available
information at the same time is a way of getting the most even from poorly defined databases.
It is shown that this flexible and computationally effective approach can be used for
calibration and as an extension of conventional prediction models.

The advantage of the NN approaches is that a particular propagation model can be
constructed to take account of various types of environments based on measurement data
taken in the desired environment. This approach enhances the flexibility of the NN based
prediction model to adapt to the terrain database of the environment. Simulation results have
shown that the NN approach provides more accurate prediction of field strength loss than that
of the empirical models studied in this work. This verifies the effectiveness of the best
approximation capability of the NN.

W

BUPT



2. Neural Networks

2.1. Introduction

In this chapter, the fundamental characteristics of artificial neural networks are briefly
presented. The next sections are focused on the feedforward neural networks known as Multi-

layer Perceptron (MLP) and Radial Basis Functions (RBF) networks.

2.1.1. Definition

Artificial neural networks (ANN), commonly referred to as neural networks (NN), can
be defined as a large number of units (also called neurons) organized in different layers that
are interconnected. These units are simple processors that operate only on their local data and
on the inputs they receive via the connections. It is interesting to note that this model stems
from the recognition that the brain operates in a completely different manner than
conventional digital computers. The analogy between ANN and the human brain has been
summarized in [Haykin, 94] as follows:

“A neural network is a massively parallel-distributed processor made up of simple
processing units, that has a natural propensity for storing exponential knowledge and making
it available for use. It resembles the brain in two aspects:

1. Knowledge is acquired by the network from its environment through a learning
process.
2. Interneuron connection strengths, known as synaptic weights, are used to store the
acquired knowledge”.
The procedure used to perform the learning process is called learning algorithm, the function
of which is to modify the synaptic weights of the network in an orderly fashion to attain a
desired design objective. The modification of synaptic weights provides the traditional
method for the design of neural networks. It is also possible for a neural network to modify its
own topology, which is motivated by the fact that neurons in the human brain can die and new
synaptic connections can grow [Haykin, 99].

In [Schalkoff, 97] the following definition of artificial neural network is given:

“A structure (network) composed of a number of interconnected units (artificial
neurons). Each unit has an input/output (I/O) characteristic and implements a local

computation or function. The output of any unit is determined by its I/O characteristics, its

6

BUPT



interconnection to other units, and (possibly) external inputs. Although ‘hand crafting’ of the
network is possible, the network usually develops an overall functionality through one or
more forms of training”.

Neural networks are in fact a diverse family of networks. The overall function or
functionality achieved is determined by the network topology, the individual neuron
characteristics, the learning (or training) strategy and training data.

2.1.2. Benefits of neural networks

A neural network derives its computing power through its structure and its ability to learn,
and therefore to generalize. Generalization can be defined as the ability of the trained neural
network to produce reasonable outputs for inputs not encountered during the training process.
The use of neural networks gives the following properties and capabilities [Haykin, 94]:

1. Nonlinearity. A neuron can be linear or nonlinear. A neural network formed by

interconnections of nonlinear neurons, is itself nonlinear.

2. Input-output mapping. A popular paradigm of learning, called learning with a teacher

or supervised learning, involves modification of the synaptic weights of a neural
network by applying a set of labeled training examples or task examples. Each
example consists of a unique input signal and a corresponding desired response. The
network is presented with an example picked at random from the set and the synaptic
weights (free parameters) of the network are modified to minimize the difference
between the desired response and the actual response of the network produced by the
input signal in accordance with an appropriate statistical criterion. The training of the
network is repeated for many examples in the set until the network reaches a steady
state where there are no further significant changes in the synaptic weights. The
previously applied training examples may be reapplied during the training session but
in a different order. Thus the network learns from the examples by constructing an
input-output mapping for the problem at hand.

3. Adaptivity. Neural networks have a built-in capability to adapt their synaptic weights
to changes in the surrounding environment. In particular, a neural network trained to
operate in a specific environment can be easily retrained to deal with minor changes in
the operating environmental conditions. Moreover, when it is operating in a non-

stationary environment, a neural network can be designed to change its synaptic

BUPT



weights in real time. It should be emphasized, however, that the adaptivity does not
always lead to robustness; indeed, it may do the opposite.

. Evidential response. In the context of pattern classification, a neural network can be
designed to provide information not only about which particular pattern to select but
also about the confidence in the decision made. This latter information may be used to
reject ambiguous patterns, should they arise, and thereby improve the classification

performance of the network.

Contextual information. Knowledge is represented by the structure and the activation
state of the network. Every neuron in the network is potentially affected by the global
activity of all other neurons in the network. Consequently, a neural network deals with
contextual information naturally.

. Fault tolerance. A neural network, implemented in hardware form, has the potential to

be fault tolerant or capable of robust computation. For exampie, if a neuron or its
connecting links are damaged, due to the distributed nature of information stored in
the network, the damages have to be extensive before the overall response of the
network is degraded seriously. Thus, in principle, a neural network exhibits a graceful
degradation in performance rather than catastrophic failure. In order to be assured that
the neural network is in fact fault tolerant, it may be necessary to take corrective
measures in designing the algorithm used to train the network.

. VLSI implementability. Due to its massively parallel nature, a neural network may be

fast for the computation of certain task. This feature makes neural networks well
suited for implementation using very-large-scale-integrated (VLSI) technology.

. Uniformity of analysis and design. Basically, neural networks enjoy universality as

information processors. Neurons, in one form or another, represent an ingredient
common to all neural networks. This commonality makes it possible to share theories
and learning algorithms in different applications of neural networks. Modular
networks can be built through a seamless integration of modules.

. Neurobiological analogy. The design of a neural network is motivated by the analogy

with the brain. Neurobiologists look to (artificial) neural networks as a research tool
for the interpretation of neurobiological phenomena. Engineers look to neurobiology
for new ideas to solve problems more complex than those based on conventional hard-

wired design techniques.

BUPT



2.1.3. The model of a neuron

An elementary neuron with m inputs is shown in Figure 2.1. The three basic elements
of the neural model are:

1. A set of synapses or connecting links, each of which is characterized by a weight of its
own. A signal x; (j=I, ..., m) at the input of synapse j connected to neuron k is
multiplied by the synaptic weight wy;.

2. An adder for summing the input signals weighted by the respective synapses of the
neuron. This operation constitutes a linear combiner.

3. An activation function for limiting the amplitude of the output of the neuron. Neurons
may use any differentiable transfer function fto generate their output.

The model depicted in Figure 2.1 also includes an externally applied bias, noted by,
that has the effect of increasing or lowering the net input of the activation function, depending

on whether it is positive or negative, respectively.

v Output
> f(.) >
‘ Yk
X "\_/}
Figure 2.1. The nonlinear model of a neuron

In mathematical terms:

m
Uk = 2 WKjXj (2.1)

=1
and
i = flug +by) 2.2)

where x; (j = 1,2,...,m) are the input signals, wy; are the synaptic weights of the neuron k, m is
the number of the inputs, uy is the linear combiner output due to the input signals, by is the

bias, f(.) is the activation function and yx is the output signal of the neuron.

BUPT



The bias by is an external parameter of the neuron k. The use of bias by has the effect
of applying an affine transformation to the output ui of the linear combiner in the model of
Figure 2.1, as shown by
vk = uk + bg (2.3)

In particular, depending on whether the bias by is positive or negative, the relationship
between the induced local field or activation potential vy of neuron k and the linear combiner

output uy is modified as illustrated in Figure 2.2.

Induced local
field, v, b >0

Linear combiner's
output, u,

Figure 2.2. Affine transformation produced by the presence of a bias

It is possible to reformulate:

m

VK= 2 WijX] (2.4)
=0

and

Vi =flvk) 2.5)

In equation (2.4) it was added a new synapse with the input xo= 1 and the weights wyg = by.

Types of activation functions

The activation function f(v) defines the output of a neuron in terms of the induced

local field v. In this section are presented several basic types of activation functions.

1. The threshold function (Figure 2.3a):
f)-{

In engineering literature this form of threshold function is commonly referred to as a

1 v>0

0 v<0 (2:6)

Heaviside function. Such a neuron, whose activation function is the threshold function, is

10

BUPT



referred to in the literature as the McCulloch-Pits model. In this model, the output of the
neuron takes on the value of 1 if the induced local field of that neuron is nonnegative, and 0
otherwise. This statement describes the all-or-none property of the McCulloch-Pitts model
[Haykin, 99].

2. The piecewise linear functions (Figure 2.3b):

1 vZl
2
1 ]
f(v)=14v - <v<s (2.7)
0 vs—l
| 2

where the amplification factor inside the linear region of operation is assumed to be unity.
The following two situations may be viewed as special forms of the piecewise linear function
[Haykin, 99]:
- A linear combiner arises if the linear region of operation is maintained without
running into saturation.
- The piecewise-linear function reduces to a threshold function if the amplification

factor of the linear region is made infinitely large.

3. The sigmoid function is the most common form of activation function used in the
design of artificial neural networks. Sigmoid functions are defined by the following
characteristics [Haykin, 94]:

» Strictly increasing functions,

> Asymptotically limited,

»> Smoothness.

Two sigmoid functions are of particular interest for neural network implementation. First, the

logistic function, depicted in Figure 2.3¢ and defined by

1
f(v)= s exp(cav) (2.8)

where a is the slope parameter of the sigmoid function. By varying the parameter a, sigmoid
functions of different slopes are obtained. The slope at the origin equals a/4. In the limit, as
the slope parameter approaches infinity, the sigmoid function becomes the threshold function.

Whereas a threshold function assumes the value of 0 or 1, a sigmoid function assumes a

11

BUPT



continuous range of values from 0 to 1. Note also that the sigmoid function is differentiable,

whereas the threshold function is not.

0de - [ O hom —mim e e o

02 - o2b. L .

f(v)

c) d)

Figure 2.3: Types of activation functions: (a) - the threshold function; (b) — the piecewise linear function;

(c) - the logistic function and (d) - the hyperbolic tangent function

The activation functions defined above range from 0 to 1. Sometimes it is desirable to
have the activation function range from —1 to +1. In this case, the activation function is an odd
function of the activation potential v. The corresponding form of the threshold function,
which range from -1 to +1, is commonly referred to as the signum function. The hyperbolic
tangent function, depicted in Figure 2.3d, is the corresponding form of a sigmoid function and
is defined by:

_ 1-exp(~v)

tanh(v) (2.9)

1+ exp(-v)

12

BUPT



2.1.4. Knowledge representation

The following generic definition for the term “knowledge” is given in [Haykin, 99]:
“Knowledge refers to stored information or models used by a person or machine to interpret,
predict, and appropriately respond to the outside world”.

The challenge of the neural network is to learn the model of the environment in which
operates and to maintain this model sufficiently accurately independent of any changes that
this environment might undergo. [Haykin, 99] contends that knowledge in the world can be
classified in two major categories:

» A prior knowledge about the environment in which the network operates. This
knowledge can be communicated to the NN engineer by a subject matter expert and
there are ways of incorporating this knowledge into the design of the NN.

» Observations (measurements) of the world, obtained by means of sensors designed to
probe the environment in which the neural network is supposed to operate. Quite often
these observations are noisy or incomplete, or both because of errors due to sensor
noise and system imperfections. In any event, the observations so obtained provide the
pool of information from which the examples used to train the neural network are
drawn.

The training of the NN using the available observations proceeds as follows: Each example
(observation) consists of an input-output pair; an input signal and the corresponding desired
response for the NN. Thus, a set of examples represents knowledge about the environment of
interest. This set of input-output pairs is referred to as a set of training data or training sample.

In a neural network of specified architecture, knowledge representation of the
surrounding environment is defined by the values taken on by the free parameters (i.e.
weights and biases) of the network. The subject of knowledge representation inside an
artificial neural network is, however, very complicated, because a particular weight in a
neural network is affected by many inputs to it, and the knowledge about a single input to the
NN is distributed amongst many interconnection weights. Nevertheless, there are four rules
for knowledge representation that are of a general commonsense nature [Haykin, 99]:

1. Similar inputs from similar classes should usually produce similar representations
inside the network, and should therefore be classified as belonging to the same
category.

2. Items to be categorized as separate classes should be given widely different

representations in the network.

BUPT



If a particular feature is important, then there should be a large number of neurons

(U3

involved in the representation of that item in the network.
4. Prior information and invariances should be built into the design of a neural network,

thereby simplifying the network design by not having to learn them.

2.1.5. Learning processes

The property that is of primary significance for a neural network is the ability of the
network to learn from its environment and to improve its performance through learning. A
neural network learns about its environment through an interactive process of adjustments
applied to its synaptic weights and bias levels. The learning in the context of neural networks
is defined as [Haykin, 99]:

“Learning is a process by which the free parameters of a neural network are adapted through
a process of stimulation by the environment in which the network is embedded. The type of
learning is determined by the manner in which the parameter changes take place”.

A prescribed set of well-defined rules for the solution of a learning problem is called a
learning algorithm. Basically, learning algorithms differ from each other in the way in which
the adjustment to a synaptic weight of a neuron is formulated. Another factor to be considered
1s the manner in which a neural network, made up of a set of interconnected neurons, relates

to its environment.

a). Error correction learning [Haykin, 99]

Consider the simple case of a neuron k constituting the only computational node in the

output layer of a feedforward neural network, as depicted in Figure 2.4.

One or more

Input vectori | layers of ﬂ’ Qutput
E hidden neuron k
' neurons

Figure 2.4. Error-correction learning

Neuron k is driven by a signal vector x(n) produced by one or more layers of hidden

neurons that are themselves driven by an input vector applied to the source nodes (i.e. input

14

BUPT



layer) of the neural network. The argument n denotes the time step of an iterative process
involved in adjusting the synaptic weights of neuron k. The output signal of neuron k is
denoted by yi(n). This output signal, representing the only output of the neural network, is
compared to a desired response, denoted by di(n). Consequently, an error signal, denoted by

ex(n), is produced. By definition, we thus have
ex(n)= dx(0)- yy (n) (2.15)

The error signal ex(n) actuates a control mechanism, the purpose of which is to apply a
sequence of corrective adjustments to the synaptic weights of neuron k. The corrective
adjustments are designed to make the output signal yi(n) come closer to the desired response
di(n) in a step-by-step manner. This objective is achieved by minimizing a cost function or

index performance, E(n), defined in terms of the error signal ex(n) as:

E()==ei(n) (2.16)

N | =

That is, E(n) is the instantaneous value of the error energy. The step-by-step adjustments to
the synaptic weights of neuron k are continued until synaptic weights are essentially
stabilized. At that point the learning process is terminated.

The learning process described herein is referred to as error-correction learning. In
particular, minimization of the cost-function E(n) leads to a learning rule commonly referred
to as the delta-rule of Widrow-Hoff rule [Widrow, 1960]. Let wyj(n) denote the value of
synaptic weights wy; of neuron k excited by element x;(n) of the signal vector x(n) at time step
n. According to the delta rule, the adjustment Awij(n) applied to the synaptic weights wy; at
time step n is defined:

Awyj(n)=pe(n)xj(n) (2.17)
where L is the learning rate parameter (a positive constant that determines the rate of learning
as the learning process proceeds from one step to another). In other words, the delta rule may
be stated as [Haykin, 99]:

“The adjustment made to a synaptic weight of a neuron is proportional to the product of the
error signal and the input signal of the synapse in question”.

Having computed the synaptic adjustments Awy(n), the update value of synaptic
weight wy; is determined by

wig (0 +1)= wij(n)+ A wy(n) (2.18)

In effect, wy;(n) and wij(n+1) may be viewed as the old and new values of synaptic weight

Wy, respectively.

15

BUPT



In practice, the learning rate parameter p plays a key role in determining the
performance of error-correction learning and the choice of p also has a profound influence on
the accuracy of the learning process. It is therefore important that p is carefully selected to

ensure that the stability or convergence of the iterative learning process is achieved.

b). Memorv — based learning

In memory-based learning, all (or most) of the past experiences are explicitly stored

N

in a large memory of correctly classified input-output examples: {(Xi’di)}i=1’ where x;

denotes an input vector and d; denotes the corresponding desired response. Without loss of
generality, the desired response is restricted to be a scalar. For example, in a binary pattern
classification problem there are two classes, denoted by C, and C;, to be considered. In this
example, the desired response d; takes the value 0 (or —1) for class C; and the value 1 for class
C,. When classification of a test vector X, (not seen before) is required, the algorithm
responds by retrieving and analyzing the training data in a “local neighborhood” of Xie.
All memory-based learning algorithms involve two essential ingredients:

» Criterion used for defining the local neighborhood of the test vector X;es.

» Learning rule applied to the training examples in the local neighborhood of Xies;.
The algorithms differ from each other in the way in which these two ingredients are defined.
In a simple yet effective type of memory-based learning known as the nearest neighbor rule,
the local neighborhood is defined as the training example that lies in the immediate

neighborhood of the test vector X.. In particular, the vector

Xy e{x,,xz,...,xN} (2.19)

is said to be the nearest neighbor of Xe; if

min d(x;, X, ) = d{xy, X, ) (2.20)
where d(X;, Xeeqr) is the Euclidean distance between the vectors x; and Xq. The class associated

with the minimum distance, that is, vector xy’, is reported as the classification of X This

rule is independent of the underlying distribution responsible for generating the training
examples [Haykin, 99].

c). Hebbian learning

To formulate Hebbian learning in mathematical terms, consider a synaptic weight wy
of neuron k with presynaptic and postsynaptic signals denoted by x; and yj, respectively. The
adjustment applied to the synaptic weight w; at time step n is expressed in the general form

16

BUPT



Awkj(n)= F(yk(n),xj(n)) (221)
where F(-,") is a function of both postsynaptic and presynaptic signals. The signals x;(n) and
yk(n) are often treated as dimensionless. The formula of equation (2.21) admits many forms,

all of which qualify as Hebbian. In what follows, we consider two such forms [Haykin, 99].

Hebb's hypothesis

The simplest form of Hebbian learning is described by
Awyj(n)=nyy (n)x;n) (2.22)
where p is a positive constant that determines the rate of learning. Equation (2.22) clearly
emphasizes the correlational nature of a Hebbian synapse. The repeated application of the
input signal (presynaptic activity) x; leads to an increase in yx and therefore exponential
growth that finally drives the synaptic connection into saturation. At that point no information

will be stored in the synapse and selectivity is lost.

Covanance hypothesis

One way of overcoming the limitation of Hebb’s hypothesis is to use the covariance
hypothesis introduced in [Sejnowski, 77a,b]. In this hypothesis, the presynaptic and post
synaptic signals in equation (2.22) are replaced by the departure of presynaptic and

postsynaptic signals from their respective average values over a certain time interval. Let x

and y denote the time-averaged values of the presynaptic signal x; and postsynaptic signal yy,
respectively. According to the covariance hypothesis, the adjustment applied to the synaptic
weight wy; is defined by

Awy(n)= H[x i Q](yk - §] (2.23)

where p is the learning rate parameter. The average values constitute presynaptic and
postsynaptic thresholds that determine the sign of synaptic modification.
In both cases, Hebb’s hypothesis and the covariance hypothesis, the dependence of

Awy; on Yy is linear; however, the intercept with the y-axis in Hebb’s hypothesis is at the

origin, whereas in the covariance hypothesis itisaty, = y.

The following observations can be made from equation (2.23) [Haykin, 99]:
03& Yo

Ll 1

J ——

BUPT



> Svnaptic weight wy; is enhanced if there are sufficient levels of presynaptic and

postsynaptic activities, that is, the conditions X; > x and yx > y are both satisfied.

» Svnaptic weight wy; is depressed if there is either
- a presynaptic activation (i.e. X; > x ) in the absence of sufficient postsynaptic
activation (i.e. vy < y), or
- a postsynaptic activation (i.e. yx > y) in the absence of sufficient presynaptic

activation (i.e. x; < X)
This behavior may be regarded as a form of temporal competition between the incoming

patterns [Haykin, 99].

d). Competitive learning

In competitive learning the output neurons of a neural network compete among
themselves to become active. Whereas in a neural network based on Hebbian learning several
output neurons may be active simultaneously, in competitive learning only a single output
neuron is active at any one time.

There are three basic elements to a competitive learning rule [Rumelhart, 85]:

» A set of neurons that are all the same except for some randomly distributed synaptic
weights and which therefore respond differently to a given set of input patterns.

» A limit imposed on the “strength” of each neuron.

» A mechanism that permits the neurons to compete for the right to respond to a given
subset of inputs, such that only one output neuron, or only one neuron per group, is
active at a time. The neuron that wins the competition is called a “winner-takes-all”
neuron.

Accordingly the individual neurons of the network learn to specialize on ensembles of similar

patterns; in so doing they become feature detectors for different classes of input patterns.

2.1.6. Supervised learning

An essential ingredient of supervised learning is the availability of an external teacher,
as indicated in Figure 2.5. The teacher may be thought as having knowledge of the

environment that is represented by a set of input-output examples. The environment is,

18

BUPT



however. unknown to the neural network of interest. Suppose now that the teacher and the
neural network are both exposed to a training vector drawn from the environment. The teacher
is able to provide the neural network with a desired response for that training vector. The
desired response represents the optimum action to be performed by the neural network. The
network parameters are adjusted under the combined influence of the training vector and the
error signal. The error signal is defined as the difference between the desired response and the
actual response of the network. This adjustment is carried out iteratively in a step-by-step
manner. The knowledge of the environment available to the teacher is transferred to the neural
network through training as fully as possible. When this condition is reached, the teacher may
be dispensed and let the neural network deal with the environment completely by itself
[Haykin, 94].

Vector descnbing
state of the
environment

Environment —» Teacher

Desired
response

Leammg r&sponse
system - .

Error signal

Figure 2.5. Learning with a teacher

The form of supervised learning described above is the error-correction learning
discussed previously. It is a closed-loop feedback system, but the unknown environment is
not included in the loop. As a performance measure for the system we may think in terms of
the mean-square error or the sum of squared errors over the training samples, defined as a
function of the free parameters of the system. This function may be viewed as a
multidimensional error-performance surface with the free parameters as coordinates. The true
error surface is averaged over all possible input-output patterns. Any given operation of the
system under the teacher’s supervision is represented as a point on the error surface. For the
system to improve performance over time and therefore learn from the teacher the operating
point has to move down successively towards a minimum point of the error surface; the
minimum point may be a local minimum or a global minimum. A supervised learning system

is able to do this with the useful information it has about the gradient of the error surface

19

BUPT



corresponding to the current behavior of the system. The gradient of an error surface at any
point is a vector that points in the direction of steepest descent. In fact, in the case of
supervised learning from examples, the system may use an instantaneous estimate of the
gradient vector, with the example indices presumed to be those of time. The use of such an
estimate results in a motion of the operating point on the error surface that is typically in the
form of a “random walk”. Nevertheless, given an algorithm designed to minimize the cost
function, an adequate set of input-output examples and enough time permitted to do the
training, a supervised learning system is usually able to perform tasks such as pattern

classification and function approximation [Haykin, 99].
2.1.7. Unsupervised learning

In unsupervised learning there is no external teacher to oversee the learning process,
as indicated in Figure 2.6. Suppose that the neural network is exposed to a training vector
drawn from the environment. Since the teacher is absent in this setting, we are not able to

provide the neural network with a desired response for the training vector.

Vector describing
state of the e
environment > Learning

. system

Environment

Figure 2.6. Unsupervised learning

Instead, a provision is made to identify a measure of the quality of the representation
that the network is required to learn and the free parameters of the network are optimized with
respect to that measure. After training is over, a grouping of the training inputs presented to

the network is achieved, based on the similarity measure imposed by the network.

2.1.8. Function approximation

The choice of a particular learning algorithm is influenced by the learning task that a
neural network is required to perform. In [Haykin, 99] are described six learning tasks that
apply to the use of neural networks: pattern association, pattern recognition, function
approximation, control, filtering and beamforming. The learning task of interest in this section

is that of function approximation.

20

BUPT



Consider a nonlinear input-output mapping described by the functional relationship
[Haykin. 99]:
d =f(x) (2.24)

where the vector x is the input and the vector d is the output. The f(-) is assumed to be
unknown. Consider {(Xi’di)}i}—il being a set of labeled examples. The requirement is to design a

neural network that approximates the unknown function f(-) such that the function F(-)
describing the input-output mapping actually realized by the network is closed enough to f(-)

in an Euclidean sense over all inputs, as shown by
[F(x)-f(x) <e for all x (2.25)

where ¢ is a small positive number. Provided that the size N of the training set is large enough
and the network has an adequate number of free parameters, than the approximate error € can
be made small enough for the task.

The described approximation problem is a perfect candidate for supervised learning
with x; playing the role of input vector and d; serving the role of desired response.

The ability of a neural network to approximate an unknown input-output mapping may
be exploited in two important ways [Haykin, 99]:

» System identification. Consider that equation (2.24) describe the input-output relation

of an unknown memoryless (time invariant) multiple input — multiple output (MIMO)
system. The set of labeled examples {(Xiadi)}iri | may be used to train a neural network

as a model of the system. Let y; denote the output of the neural network produced in
response to an input vector x;. The difference between d; (associated with x;) and the
network output y; provides the error signal vector e;, as depicted in Figure 2.7. This
error signal is in turn used to adjust the free parameters of the network to minimize the
squared difference between the outputs of the unknown system and the neural network

in a statistical sense, and is computed over the entire training set.

Unknown

A 4

Error
.!

Input vector

—
%, System output Modal output
Input vector d inverse Y, ) X
a Neural X > () —> model >
”| network | . *
model Y "4
Figure 2.7. System identification Fig. 2.8. Inverse system modeling

21

BUPT



> Inverse system. Suppose next it is given a known memoryless MIMO system whose
input-output relation is described by equation (2.24). The requirement in this case is to
construct an inverse system that produces the vector x in response to the vector d. The
inverse system may thus be described by
x=f'd) (2.26)
where the vector-valued function £'(-) denotes the inverse of f(-). Note, however, that
(") is not the reciprocal of f(-); the use of superscript —1 is merely a flag to indicate

an inverse. In many situations encountered in practice, the vector-valued function f{(*)
is much too complex. Given the set of labeled examples {(xi,di)}iril a neural network

approximation of f'(-) may be implemented by using the scheme shown in Figure 2.8.
In the situation described here, the roles of x; and d; are interchanged; the vector d; is
used as the input and x; is treated as the desired response. Let the error signal vector e;
denote the difference between x; and the actual output y; of the neural network
produced in response to d;. As with the system identification problem, this error signal
vector is used to adjust the free parameters of the neural network to minimize the
squared difference between the outputs of the unknown inverse system and the neural

network in a statistical sense and is computed over the complete training set.

2.2. The perceptron

The perceptron has marked an important step in the development of artificial neural
network for two main reasons. First learning algorithms, allowing the training of the neural
network to partition the input space into two regions, were found. Moreover, Rosenblatt
[Rosenblatt, 58] proved that when the training example belong to two linear separable classes,
the perceptron algorithm would always converge and drawn the decision surface in the form

of a hyper-plane between the two classes.
2.2.1 Introduction

The perceptron is the simplest and the best-known model of neural network. It was
proposed in 1958 in [Rosenblatt, 58] as the first model for learning with a teacher. The

perceptron is built around a nonlinear neuron, namely, the McCulloch-Pitts model of a neuron

22

BUPT



[Haykin. 94]. The model consists of a linear combiner followed by a hard limiter, as depicted

in Figure 2.9:

v Output
f() ——
y
Hard
limiter
Figure 2.9. The perceptron
The hard limiter input or the activation potential v of the neuron is
m
V=.ZWiXi+b (227)

1=1
The hard limiter performs the signum function f(v)

f(v)={+1 v20

2.28
-1 v<O ( )

The goal of the perceptron is to correct classify the set of inputs Xy, X3, ..., X, Into one
of two classes, denoted C, and C,. The decision rule for the classification is to assign the
point represented by the inputs X, X3, ..., Xp to class C, if the perceptron output y is +1 and to
class C, if it 1s —1.

In the simplest form of the perceptron there are two decision regions separated by a
hyperplane defined by

m
i=1wixi+b =0 (3.29)

In Figure 2.10 it is depicted the case of two input variables x; and x;, for which the
decision boundary takes the form of a straight line. A point (x;, x;) that lies above the
boundary line is assigned to class C; and a point (x;, X3) that lies below the boundary line is
assigned to class C,. The effect of the bias is to shift the decision boundary away from the

origin.

23

BUPT



Class C, Class C,

Decision boundary
WX, + W, X, + b= 0

Figure 2.10. Decision boundary for a two classes pattern classification problem

The synaptic weights w;, wa, ..., Wy, of the perceptron can be adapted on an iteration-

by-iteration basis, using an error-correction rule known as the perceptron convergence
algorithm [Haykin, 99].

2.2.2. Perceptron convergence theorem

In order to derive the error-correction learning algorithm, the following variables and

parameters are defined:

» ndenotes the iteration step in applying the algorithm,

> x(n) = [1, X, (n), x,(n)...,x_ (n)]T is the (m+1)-by-1 input vector,
w(n)= [1, w,(n)w,(n)...,w_(n)]" is the (m+1)-by-1 weight vector,

b(n) is the bias treated as a synaptic weight driven by a fixed input equal to 1,

d(n) is the destred response,

vV V V V

y(n) is the actual response (quantized),

» uis the learning rate parameter (a positive constant less than unity).
The linear combiner output is written in the compact form
v(n)=Y w;(n)x;(n)=w"(n)x(n) (2.30)
1=0
where wy(n) represents the bias b(n).
The perceptron convergence algorithm can be summarized as follows [Haykin, 99]:

1. Imitialization. Set w(0) = 0. Then perform the following computations for time step n =
1,2, ...

24

BUPT



89

Activation. At time step n, activate the perceptron by applying continuous-valued
input vector x(n) and desired response d(n).

Computation of actual response. Compute the actual response of the perceptron

y(n)= f[wT(n)x(n)J (2.31)
where f(-) is the signum function.

(V8]

4. Adaptation of the weight vector. Update the weight vector of the perceptron
w(n+1)=w(n)+p [d(n)— y(n)]x(n) (2.32)

where

()= {+1 if x(n) belongs to class C, (2.33)

-1 if x(n) belongs to class C
is the quantized desired response and d(n) - y(n) plays the role of an error signal.

5. Continuation. Increment time step n by one and go back to step 2.
The learning rate parameter p is a positive constant, limited to the range 0 < p < 1. When
assigning a value to it inside this range, two conflicting requirements has to be taken into
account [Lippmann, 1987]:

> Averaging of past inputs to provide stable weight estimates, which requires a small ,

> Fast adaptation with respect to real changes in the underlying distributions of the

process responsible for the generation of the input vector x, which requires a large p.

2.3. Multilayer perceptron (MLP)

It has been shown in section 2.2 that the perceptron could only design linear decision
boundaries. This might provide extremely restrictive for a wide range of problems. Some
problems can involve classes that are not linearly separable. By creating a network organized
in different layers, as depicted in Figure 2.11, it is possible to implement complex decision

boundaries [Lippmann, 87].
2.3.1. Introduction

The multilayer perceptron (MLP) is a neural network that consists of an input layer of
source nodes, one or more hidden layers of nodes and an output layer, also made up of
neurons. The source nodes provide physical access point for the application at hand. The

neurons in the hidden layers act physically inaccessible from the input end or output end of

25

BUPT



the network. The neurons in the output layers present to a user the conclusions reached by the

network in response to the input signals.

Output
layer

Input Hidden
layer layer

Figure 2.11. Multilayer perceptron with a single hidden layer.

Figure 2.11 depicts a multilayer perceptron with a pair of input nodes, a single hidden
layer of neurons and a single output neuron. Two key characteristics of such a structure are
immediately apparent from this figure [Haykin, 96]:

1. A multilayer perceptron is a feedforward network, in the sense that the input signals
produce a response at the output of the network by propagating in the forward
direction only. There is no feedback in the network.

2. The network may be fully connected, as shown in figure 2.11, in that each node in a
layer of the network is connected to every node in the layer adjacent to it.
Alternatively, the network may be partially connected in that some of the synaptic
links may be missing. Locally connected networks represent an important type of
partially connected networks; the term local refers to the connectivity of a neuron in a
layer of the network only to a subset of possible inputs.

The number of nodes in the input layer is determined by the dimensionality of the
observation space that is responsible for the generation of input signals. The number of nodes
in the output layer is determined by the required dimensionality of the desired response. Thus,
the design of a multilayer perceptron requires that we address three issues [Haykin. 96]:

1. The determination of the number in the hidden layers,
2. The determination of the number of neurons in each of the hidden layers,
3. The specification of the synaptic weights that interconnect the neurons in the

different layers of the network.

26

BUPT



Figure 2.12 presents the decision boundaries that can be produced using the

perceptron and the MLP with one and two hidden layers and two inputs.

» >
»

A
v

Figure 2.12. The capability of the MLP to design complex decision boundaries: (a) - single perceptron;
(b) — MLP with one hidden layer; (c¢) - MLP with two hidden layers

Figure 2.12 indicates that the perceptron can only draw linear decision boundaries.
When one hidden layer of neurons is added, it is then possible to implement arbitrary complex
convex decision boundaries [Lippmann, 87]. It was shown later that neural networks with
only one hidden layer are able to create regions arbitrarily close to any non-linear decision
boundary [Makhoul, 89]. Finally, with two hidden layer it is also possible to design any
decision boundary [Lippmann, 87]. Moreover, certain problems can be solved with a small
number of neurons and two hidden layers, whereas a network with only one hidden layer
would require an infinite number of neurons. The choice of the number of hidden layers in the

multilayers perceptrons is generally open.

2.3.2. Training algorithms for MLP

In the previous sections, a general presentation of the artificial neural networks was
given. It has been shown that artificial neural networks are adaptive algorithms and therefore
require a training algorithm to adapt their synaptic weights. The derivation of the
backpropagation algorithm (BKP) [Rumelhart, 86] marked an important point in the
development of ANN. Using this algorithm made it possible to efficiently perform the weight
adaptation of MLP and widened the range of possible areas of applications for ANN. The
training algorithm is in fact performed in two separate steps. First, the derivative of the error
function to be minimized is computed with respect to the weights of the neural network. This
procedure corresponds to the propagation of errors backwards in the network and is the BKP
algorithm itself. Then, these derivatives can be used in conjunction with some other

algorithms, such as gradient descent (GD), to update the weights of the network.

27

BUPT



2.3.2.1. The backpropagation (BKP) algorithm

First some notations are presented. A fully connected MLP consisting of N layers is

considered. Each layer k of the neural network is made of N{¥) neurons. The internal activity
level and the function signal of the i™ neuron in the layer k are noted yi(k)(n) and

xi(k)(n) respectively and are computed according to the following equations:

k-1
WO =5 WD) @34)

1=
x00 (@) = fly¥(a)) (2.35)
where w%k) is the synaptic weight connecting the i™ neuron in the layer k to the j* neuron in

the layer k-1 and f represents the nonlinear activation function of the neuron that maps the
internal activity level to output.
The error function to be minimized is denoted as E and it is expressed as a sum of the

error functions over the number of training examples in the following form:

E=YE, (2.36)

The error function E, is assumed to be differentiable with respect to the outputs of the
network. Using activation functions that are differentiable, such as sigmoid functions, ensures
the derivability of the error functions E, with respect to the weights in the network. Using the
chain rule for partial derivatives, the following equation can be written:

SE, _ 5E, Oy
k k
5WI(Jj 8y§) BW@

(2.37)

Hence:

5
ﬁ% - s?‘)-xgk-‘) (2.38)
]

with

Sgk)_ SEH -

= (2.39)
) yi(kj

28

BUPT



The coefficients 8?() are referred to as local errors and are the only parameters to be

estimated in the network in order to compute the whole set of derivatives. For the output

layer, the local errors can be easily computed through the following formula:

NK): SEn _ 6En e (\IK) .
o 5 y(NK) esxl(NK)f(yll ) (2.40)

For the first hidden layer the chain rule for the partial derivatives is used again:

Nk+l (k+l)
5lk) = 8En _ 'y 8Ey OYm (2.41)

Syik m=1 Syg:”) Syi(k)

which then leads to:
6?() - Ni*‘sgn), wg:l). f'(ygk)) (2.42)
m=1

Equation (2.40) allows the computation of the derivatives with respect to all the weights in the
neural network starting from the output layer and processing backward through hidden layers.

The BKP algorithm makes it possible to compute the derivatives of the error function
to be minimized with respect to the weights for the whole network. Knowing these derivatives
values, it is then possible to update the weights using a simple gradient-descent (GD)
algorithm:

wi(@+1)= wi(@)-p-s8)@)- x*-V(n) (2.43)

where p is the adaptation step.

In the application of the BKP algorithm, two distinct passes of computation are
distinguished: the forward pass and the backward pass. In the forward pass the synaptic
weights remain unaltered throughout the network and the function signals (that propagate
forward through the network) of the network are computed on a neuron-by-neuron basis. In
other words, the forward phase of computation begins at the first hidden layer by presenting it
with the input vector and terminates at the output layer by computing the error signal for each
neuron this layer. The backward pass, on the other hand, starts at the output layer by passing
the error signal leftward through the network, layer by layer, and recursively computing the
local gradient for each gradient. This recursive process permits the synaptic weights of the
network to undergo changes in accordance with the equation (2.43).

Sequential and batch modes of training

In practical applications of the BKP algorithm, learning results from the many

presentations of a prescribed set of training examples to the multilayer perceptron. One

29

BUPT



complete presentation of the entire set during the learning process is called an epoch. The
learning process is maintained on an epoch-by-epoch basis until the synaptic weights and bias
levels of the network stabilize and the average squared error over the entire training set
converges to some minimum value. It is good practice to randomize the order of presentation
of training examples from one epoch to the next [Haykin, 99].

In the sequential mode of BKP leaming (also referred to as on-line, pattern,
incremental or stochastic mode) the gradient is computed and the weights are updated after
the presentation of each training example. In the batch mode of BKP learning the weight are
changed after the presentation of all the training examples.

From an “on-line” operational point of view, the incremental mode of training is
preferred over the batch mode because it requires less local storage for each synaptic
connection and, given that the patterns are presented to the network in a random fashion, the
use of pattern-by-pattern updating of weights makes the search in weight space stochastic in
nature. This in turn makes it less likely for the BKP algorithm to be trapped in a local
minimum. In the same way, the stochastic nature of the incremental mode makes it difficult to
establish theoretical conditions for convergence of the algorithm. In contrast, the use of batch
mode of training provides an accurate estimate of the gradient vector; convergence to a local
minimum is thereby guaranteed under simple conditions [Haykin, 99].

When the training data are redundant (i.e. the data set contains several copies of
exactly the same pattern), it was found that unlike the batch mode, the incremental mode is
able to take advantage of this redundancy because the examples are presented one at a time.

This is particularly when the data set is large and highly redundant [Haykin, 99].

Stopping Criteria
One of the differences between the BKP learning rule (generalized delta rule) and the

perceptron learning rule is that the perceptron learning rule will converge to a solution, if such
a solution exists, in a finite number of steps, while the BKP learning rule can go on forever
without ever reaching a time when all the actual outputs are equal to the desired outputs.
Hence, stopping criteria must be established to designate the end of the training process. It
may be formulated a sensible convergence criterion for BKP learning as follows [Haykin, 99]:
“The back-propagation algorithm is considered to have converged when the Euclidean norm
of the gradient vector reaches a sufficiently small gradient threshold”.

The drawback of this convergence criterion is that, for successful trials, learning time

may be long and also requires the computation of the gradient vector.

BUPT



In [Haykin, 99] is suggested a different criterion of convergence:
“The back-propagation algorithm is considered to have converged when the absolute rate of
change in the average squared error per epoch is sufficiently small”.

The rate of change in the averaged squared error is typically considered to be small
enough if it lies in the range of 0.1 to 1 percent per epoch. Sometimes a value as small as 0.01
percent per epoch is used. Unfortunately, this criterion may result in a premature termination

of the learning process [Haykin, 99].

Heuristics for making the BKP algorithm perform better
It is often said that the design of a neural network using the BKP algorithm is more of

an art than a science in the sense that many of numerous factors involved in the design are the
results of one’s personal experience. There are methods that will significantly improve the
BKP algorithm’s performance [Haykin, 99].

1. Incremental versus batch update. The incremental mode is computationally faster than
the batch mode, especially when the data set is large and highly redundant.

2. Maximizing information content. As a general rule, every training example presented
to the BKP algorithm should be chosen on the basis that its information content is
largest possible for the task at hand. Two ways of achieving this aim are: (1) the use of
an example that results in the largest training error and (2) the use of an example that
is radically different from all those previously used.

3. Activation function. A MLP trained with the BKP algorithm may, in general, learn
faster (in terms of the number of training iterations required) when the sigmoid
activation function built into the neuron model of the network is antisymmetric (i.e.
odd function of its argument) than when it is nonsymmetric.

4. Desired response. It is important that the desired response be chosen within the range
of the sigmoid activation function. More specifically, the desired response for a
neuron in the output layer of a MLP should be offset by some amount away from the
limiting value of the sigmoid activation function, depending on whether the limiting
value is positive or negative. Otherwise the BKP algorithm tends to drive the free
parameters of the network to infinity and thereby slow down the learning process by
driving the hidden neurons into saturation.

5. Normalizing the inputs. Each input variable should be preprocessed so that its mean
value, averaged over the entire training set, is close to zero, or else it is small

compared to its standard deviation. In order to accelerate the BKP learning process,

31

BUPT



the normalization of the inputs should also include two other measures: (1) the input
variables contained in the training set should be uncorrelated and (2) the decorrelated
input variables should be scaled so that their covariances are approximately equal.

. Initialization. The first step in BKP learning is to initialize the network. The
customary practice is to set all the free parameters (weights) in the MLP to random
numbers that are uniformly distributed inside a small interval of values, symmetric
around zero. The wrong choice of initial weights can lead to a phenomenon known as
premature saturation. There are ways to counter this premature saturation problem.
One way is to choose the weights converging to a node i in the MLP uniformly
distributed over an interval of the form [-ai/F; ai/Fi], where «; is an appropriately
chosen constant and F; is the fan-in of the nodes that are affecting node i (or the
number weights converging to node i). In this way it can be guarantee that the output
of a node in the MLP structure will not be initially saturated to an incorrect value.
Another way to avoid the premature saturation problem is to design an error function
whose minimization will guarantee the correct mapping for the training data
[Christodoulou, 01].

. Learning from hints. Learning from a set of training examples deals with an unknown
input-output mapping function f(-). In effect, the learning process exploits the
information contained in the examples about the function f(-) to infer an approximate
implementation of it. The process of learning from examples may be generalized to
include learning from hints, which is achieved by allowing prior information that it
may exist about the function f(-) to be included in the learning process. Such
information may include invariance properties, symmetries or any other knowledge
about the function f(-) that may be used to accelerate the search of its approximate
realization, and more importantly, to improve the quality of the final estimate.

. Learning rates. All neurons in the MLP should ideally learn at the same rate. The last
layers usually have larger local gradients that the layers at the front end of the
network. Hence, the learning rate parameter should be assigned a smaller value in the
last layers than in the front layers. Neurons with many inputs should have a smaller
learning rate parameter than neurons with few inputs so as to maintain a similar
learning time of all neurons in the network. In [LeCun, 93] it is suggested that for a
given neuron, the learning rate should be inversely proportional to the square root of

synaptic connections made to that neuron.

32

BUPT



2.3.3.2. Advanced learning algorithms in MLP

The basic backpropagation algorithm described in section 2.3.2.1 is a gradient descent
algorithm based on the estimation of the instantaneous sum-squared error for each layer. The
simplest implementation of the BKP learning updates the network weights and biases in the
direction in which the performance function decreases most rapidly — the negative of the
gradient. An iteration of this algorithm can be expressed as (based on equation (2.43)) (the
weight update):

AW(n)=W(a+1)-W(n)=-p -V, E(n)=—p-g(n) (2.44)
where W(n) is a vector of current weights and biases (iteration n), g(n) is the current gradient
and p is a positive constant called learning rate. The performance of the algorithm is very
sensitive to the proper setting of the learning rate: if the learning rate is set too large the
algorithm will become unstable and if the learning rate is set too small, the algorithm will take
a long time to converge.

Such an algorithm is slow for three basic reasons [Haykin, 94]:

1. It uses an instantaneous sum-squared error E(W) to minimize the mean squared error,
denoted J(W), over training epoch (iteration). The gradient of the instantaneous is not

a good estimate of the gradient of the mean squared error. Therefore, satisfactory

minimization of this error requires more iterations of the training process.

2. It is a first-order minimization algorithm that is based on the first-order derivatives (a

gradient). Faster algorithms use also the second derivatives (the Hessian matrix).

3. The error propagation serializes computations on the layer-by-layer basis.
The mean squared error, J(W), is a relatively complex surface in the weight space, possibly
with many local minima, flat sections, narrow irregular valleys and saddle points. The
complexity of the error surface is the main reason that the behavior of the simple steepest
descent minimization algorithm can be very complex and may have oscillations around a
local minimum.

The faster algorithms fall into two main categories. The first category use heuristic
techniques that were developed from an analysis of the performance of the standard steepest
descent algorithm. The heuristic techniques discussed are: the momentum technique, the
adaptive learning rate backpropagation and the resilient backpropagation. The second
category of fast algorithms uses standard numerical optimization techniques. In this chapter
will be presented three types of numerical optimization techniques for neural networks: the

conjugate gradient, the quasi-Newton and the Levenberg-Marquardt techniques.

33

BUPT



In the next section we will consider improvements to the basic backpropagation
algorithms based on heuristic methods. These methods aim to an improvement of the
algorithm by making modifications to its parameters or to the form.

A. Heuristic improvements of the BKP algorithm

Al. The momentum term

The BKP algorithm provides an “approximation” to the trajectory in weight space
computed by the method of steepest descent (appendix 1). The smaller is the learning rate
parameter y, the smaller the changes to the synaptic weights in the network will be from one
iteration to the next and the smoother will be the trajectory in weight space. However, this
improvement is attained at the cost of a slower rate of learning. If the learning rate parameter
u is chosen too large in order to speed up the rate of learning, the resulting large changes in
the synaptic weights assume such a form that the network may become unstable (oscillatory).
A simple method of increasing the rate of learning yet avoiding the danger of instability is to
modify the delta rule of equation (2.43) by including a momentum term.

One simple method to avoid an error trajectory in the weight space being oscillatory is
to add to the weight update a momentum term (denoted €2) that is proportional to the weight
update at the previous step. Momentum allows a network to respond not only to the local
gradient, but also to recent trends in the error surface. Acting like a low pass filter, this
modification to the steepest descent algorithm is able to ignore small features in the error

surface. Without momentum a network may get stuck in a shallow local minima.

AW(n)=-p-g(n)+Q-AW(n-1) (2.45)

A2. Adaptive learning rate

An adaptive learning rate during the training process will attempt to keep the learning
step size as large as possible while keeping the learning stable. A typical strategy is based on
monitoring the rate of change of the mean square error and can be described as follows:

- If the mean square error J is decreasing consistently, that is VJ is negative for a prescribed
number of steps, then the learning rate is increased linearly:

uo+)=po)+a, a>0 (2.46)

- If the error has increased (V] > 0), the learning rate is exponentially reduced:

un+1)=p-u@), O0<p<l (2.47)

34

BUPT



A3. Resilient backpropagation

Multilayer neural networks typically use sigmoid transfer function in the hidden
layers. Sigmoid functions are characterized by the fact that their slope must approach zero, as
the input gets large. This causes a problem when using steepest descent, since the gradient can
have a very small magnitude and therefore causes small changes in the weights and biases.
The purpose of the resilient backpropagation algorithm is to eliminate these effects of the
magnitudes on the partial derivatives. Only the sign of the derivatives is used to determine the
direction of the weight update, the magnitude of the derivative has no effect on the weight
update. The update value for each weight and bias is increased by a factor y whenever the
derivative of the performance function with respect to that weight has the same sign for two
successive iterations. The update value is decreased by a factor y whenever the derivative with
respect to that weight changes sign from the previous iteration. If the derivative is zero, there
are no changes in the update value. Whenever the weights are oscillating the weight change
will be reduced. If the weight continues to change in the same direction for several iterations,
then the magnitude of the weight change will be increased. Generally, the resilient
backpropagation algorithm converges much faster than the previous algorithms.

B. Conjugate gradient algorithms

In most of the training algorithm discussed in the previous section, a learning rate is
used to determine the length of the weight update (step size). In most of the conjugate
gradient algorithms the step size is adjusted at each iteration. In the conjugate gradient
algorithms a search is performed along conjugate directions to determine the step size that
will minimize the performance function along that line. All of the conjugate gradient
algorithms start by searching in the steepest descent direction (negative of the gradient) on the
first iteration (g denotes the current gradient):

p(0) =-g(0) (2.48)

A line search is then performed to determine the optimal distance to move along the search
direction:

w(n+1)=w(n)+ p(n)p(n) (2.49)
where next value of the weight vector w(n+1) is obtained from the current value of the weight

vector, w(n), by moving it in the direction of a vector p(n) (n is the time step).

35

BUPT



Then the next search direction is determined so that it is conjugate to previous search
directions. The general procedure for determining the new search direction is to combine the

new steepest descent direction with the previous search direction:
p(n+l) =-g(n) +PB(n)p(n) (2.50)
where B(n) are scaling factors to be determined and are selected so that the direction p(n+1)

and p(n) are conjugate with respect to the Hessian matrix, v2J(w)=H, that is,

p(n+1)-H-pl(n)=0 (2.51)

For all conjugate gradient algorithms, the search direction will be periodically reset to
the negative of the gradient. The standard reset point occurs when the number of iterations is
equal to the number of network parameters (weights and biases) but there are another reset
methods that can improve the efficiency of training. In our application the neural networks is
trained with the Powell-Beale version of the conjugate gradient algorithm. This method was
proposed by Powell [Powell, 77], based on the earlier version proposed by Beale [Beale, 72].
For this technique the restart takes place if there is very little orthogonality left between the
current gradient and the previous gradient. This is tested with the following inequality:

2
¢T(n-1)g(n) ’ >0.2- ”g(n) " (2.52)
If this condition is satisfied, the search direction is reset to the negative of the gradient.

g(n)g' (n)

The Fletcher-Reeves update formula is: B(n) = T
gn-Ng (n-1)

(2. 53)

T
The Polak-Ribiére formula is: B(n) = (B(w) - g(n _Tl))' g () (2. 54)
g(n-N)g (n-1)

In summary, the conjugate gradient algorithm involves: Initial searching p(0) = - g (0);

line minimization with respect of p; calculation of the next search direction as in equation

(2.50) and B from one of the above presented formula.
C. Quasi-Newton Algorithms

Newton’s method [appendix 2] is an alternative to the conjugate gradient methods for

fast optimization. The basic step of Newton’s method is:
w(n+1)=w(n)- H"(n)g(n) (2. 55)
where H is the Hessian matrix (second derivatives) of the performance index at the current

values of the weights and biases. The Hessian matrix provides additional information about

36

BUPT



the shape of the performance index surface in the neighborhood w(n). Newton’s method often
converges faster than conjugate gradient methods. However, it requires computations of the
inverse of the Hessian matrix that is relatively complex and expensive.

The quasi-Newton method (also called secant method) is based on Newton’s method
but do not require the calculation of the second derivatives. An approximate Hessian matrix is
updated at each iteration of the algorithm. The update is computed as a function of the
gradient.

D. Levenberg-Marquardt algorithm

One problem with the Newton’s algorithm is that the approximate Hessian matrix may
not be invertible. To overcome this problem in the Levenberg-Marquardt algorithm a small
constant p is added such as the weight update rule becomes:

Aw =w(n+1)—w(n) = = [T (w)-J+p1] - JT(w) - e(w) (2. 56)

where J(w) is the Jacobian matrix that contains the first derivatives of the network errors with
respect to the weights and biases, I is the identity matrix, e(w) is a vector of the network
errors and p is a small constant. For large values of u the JT(w) J(w) terms become negligible
and learning progresses according to JT(w) e(w), which is gradient descent. Whenever a
step is taken and error increases, p is increased until a step can be taken without increasing
error. However, if p becomes too large, no learning process takes place (i.e. p! I w) e(w)
approaches zero). This occurs when an error minima has been found. For small value of 1, the

above expression becomes the Gauss-Newton method [appendix 3].
2.3.3. Generalization

After the presentation of the training set to the neural network, it is hoped that the
weights have converged to a point allowing a good operation when the data set is presented.
The ability of the network to operate on unknown data (test data never used in training the
network) is referred to as generalization. The generalization mainly depends on three
parameters [Haykin, 94]:

1. The training process (number of training examples and the extent to which they
represent the classes to be classified),

2. The network configuration (number of hidden layers and neurons),

3. The complexity of the problem to be solved.

37

BUPT



Clearly, there is no control over the latter. In the context of the other two factors, the issue of
generalization may be viewed from two different perspectives [Haykin, 99]:

» The architecture of the network is fixed (hopefully in accordance with the physical
complexity of the underlying problem) and the issue to be resolved is that of
determining the size of the training set needed for a good generalization to occur.

» The size of the training set is fixed and the issue of interest is that of determining the
best architecture of network for achieving good generalization.

The choice of the network architecture impacts on the training procedure. In [Hush, 89] it is
shown that a small number of training examples would imply better performance when only
one hidden layer is considered rather than two. This is due to the high flexibility and the large
number of free parameters associated with three layer neural networks, which then call for a
long training procedure in order to converge. The influence of the number of neurons in the
network and the number of training examples on the generalization capabilities of the network
are closely linked. [Huang, 91] has proved that, for a given size of training examples, the
number of neurons in the network necessary to implement the training data is of the order of
the number of training examples. If the network is oversized, the training data will be
memorized and the generalization will not be possible. Hence, the neural network should be
complex enough in order to be able to draw decisions boundaries complex enough to solve
the problem at hand. Nevertheless, as the number of neurons increases, the length of the
required training sequence will increase. It is therefore important to keep the size of the
network as low as possible in order to reduce the transmission overhead induced by the

training sequence.

2.3.4. Cross - validation

The network selection problem may be viewed as choosing, within a set of candidate
model structures, the “best” one according to a certain criterion. Cross-validation is a standard
tool used in statistical prediction and model selection in control theory. First, the available
data set is randomly partitioned into a training set and a test set. The training set is further
partitioned into two disjoint sets: estimation subset (used to select the model) and validation
subset (used to test or validate the model).

The motivation here is to validate the model on a data set different from the one used
for parameter estimation. In this way, the training set may be used to assess the performance

of various candidate models, and thereby choose the “best” one. There is, however, a distinct

38

BUPT



possibility that the model with the best-performing parameter values so selected may end up
overfitting the validation subset. To guard against this possibility, the generalization
performance of the selected model is measured on the test set, which is different from the
validation subset. The use of cross-validation is appealing particularly when we have to
design a large neural network with good generalization as the goal. For example, cross-
validation may be used to determine the multilayer perceptron with the best number of hidden
neurons and when it is best to stop training.

On the basis of the results reported in [Kearns, 96], 80 percent of the training set could
be assigned to the estimation subset and the remaining 20 percent are assigned to the

validation subset.

Early stopping method of training

A multilayer perceptron trained with the backpropagation algorithm learns in stages
and during the training process the mean square error decreases with an increasing number of
epochs: it starts from off at a large value, decreases rapidly and then continues to decrease
slowly as the network makes it way to a local minimum on the error surface. With good
generalization as the goal, it is very difficult to figure out when is the best to stop training. In
particular, it is possible for the network to end up overfitting the training data if the training
session is not stopped at the right point.

In the early stopping method of training the estimation subset of examples is used to
train the network, in the usual way, with the observation that the training session is stopped
periodically and the network is tested on the validation subset after each period of training.
More specifically, the periodic estimation-followed-by-validation process proceeds as follows
[Haykin, 99]:

> After a period of estimation (training), the synaptic weights and bias levels of the
multilayer perceptron are all fixed, and the network is operated in its forward mode.

The validation error is thus measured for each example in the validation subset.

» When the validation phase is completed, the estimation (training) is resumed for

another period, and the process is repeated.

39

BUPT



Validation
sample

Mean
squared
efror

Training
sample
0 Early Numbe- “fe--¢ch-
stopping
point

Figure 2.13. Illustration of the early stopping rule based on cross validation

From Figure 2.13 it can be noticed that the model does not as well on the validation
subset as it does on the estimation subset. The estimation learning curve decreases
monotonically for an increasing number of epochs and the validation learning curve decreases
monotonically to a minimum, it then starts to increase as the training continues. What the
network is learning beyond the minimum point on the validation learning curve is essentially
noise contained in the training data. This heuristic suggests that the minimum point on the
validation learning curve be used as a sensible criterion for stopping the training session.

If the training data are noise free, both of the estimation and validation errors cannot
be simultaneously driven to zero and this implies that the network does not have the capacity
to model the function exactly. The best that can be done in that situation is to try to minimize,
for example, the integrated squared error that is (roughly) equivalent to minimizing the usual

global mean-square error with a uniform input density.

2.4. Radial Basis Function networks

2.4.1. Introduction

The backpropagation algorithm for the design of a multilayer perceptron as described
in the previous section may be viewed as the application of a recursive technique known in
statistics as stochastic approximation. A completely different approach is considered in this
section by viewing the design of a neural network as a curves fitting (approximation) problem

in a high dimensional space. According to this viewpoint, learning is equivalent to finding a

40

BUPT



surface in a multidimensional space that provides a best fit to the training data, with the
criterion for “best fit” being measured in some statistical sense. Correspondingly,
generalization is equivalent to the use of this multidimensional surface to interpolate the test
data.
The construction of a Radial Basis Function (RBF) Neural Network (or RBF-NN)
involves three layers of nodes with entirely different roles.
1. The input layer, made up of source nodes, where the inputs are applied
2. The hidden layer, where radial basis functions are applied on the input data; this layer
applies a nonlinear transformation from the input space to the hidden space; in most
applications the hidden space is of high dimensionality.
3. The output layer, where the outputs are produced.
Radial basis function (RBF) Neural Networks can solve any approximation problem.
Park and Sandberg [Park, 93] proved that RBF neural networks (RBF-NN) are capable of
universal approximation. Broomhead and Lowe in 1988 [Broomhead, 88] were the first to
explore the use of RBFs in the design of NNs and to show how RBF-NNs model nonlinear
relationships and implement interpolation. Mitchelli [Mitchelli, 86] showed that RBF-NNs
can produce an interpolating surface that exactly passes through all the pairs of the training
set. However, in applications the exact fit is neither useful nor desirable since it may produce
anomalous interpolating surfaces. Poggio and Girosi viewed the learning process as an ill-
posed problem, in the sense that the information in the training data is not sufficient to
uniquely reconstruct the mapping in regions where the data are not available.
A popular choice of the radial basis functions at the hidden layer is Gaussian functions (i.e.
they resemble multidimensional Gaussian probability density functions) with appropriate
centers (means) and autocovariance matrices. One of the major differences between RBF
neural networks and MLP neural networks (with one hidden layer) is that RBFs (which can be
thought of as activation functions) have localized centers. That is, they provide a nonzero
output for portions of the input space that is closely concentrated around the center of the
RBF. This is not true for the activation functions used in the hidden layers of the MLPs.
Another major difference is that if we choose the parameters of the RBFs a priori (e.g.,
centers of Gaussian and autovariances of Gaussians), then the learning of weights can focus
only on the weight parameters converging to the output layer of the RBF network. Hence, in
this case, the learning process of an RBF neural network becomes equivalent to the learning
process of a single layer perceptron. Since the learning of the weights of a single layer

perceptron is much faster process than the learning of weights of an MLP, the convergence to

41

BUPT



a solution for such an RBF network can be orders of magnitude faster than the convergence to
a solution for the MLP. Of course, the problem remains how to choose the centers and the
autocovariance matrices of the Gaussian functions. One of the most straightforward
approaches to making this choice was proposed in [Moody, 89]. In [Moody, 89], Moody and
Darken proposed a K-means clustering procedure to choose the means of the Gaussian
functions and a P-nearest neighbor heuristic to determine the diagonal elements of the
autocovariance matrices; the nondiagonal elements of the autocovariance matrices; the
nondiagonal elements of the autocovariances matrices are arbitrarily chosen to be equal to
zero. The weights converging to the output layer are updated according to a supervised least
mean square procedure (e.g., delta rule of a single layer perceptron). This learning approach
[Moody, 89] is a classic example of hybrid learning, where unsupervised methods are used to
find the parameters (weights) associated with the hidden layer, while a supervised procedure
is utilized in learning the weights converging to the output layer. Another way of finding the
centers of the Gaussian in an RBF-NN is by utilizing the self-organizing-feature map (SOFM)
neural networks (SOFM-NN), introduced by Kohonen [Kohonen, 90]. The K-means
procedure and the SOFM procedure to find the centers of the Gaussian in an RBF-NN will be
discussed later. Since {Moody, 89], a variety of supervised approaches to learn the parameters
of the hidden layer in the RBF-NN have been proposed. The supervised procedures to learn
the centers and autocovariance matrices tend to make the training process more time-
consuming. On the other hand, supervised procedures to find centers and autocovariances of

Gaussian leads us to trained RBF neural networks that tend to generalize better.

2.4.2. Structure of RBF networks

Figure 2.14 depicts the block diagram of a RBF-NN with M input nodes, K hidden
nodes (plus the bias node 0) and one output node. The input-output mapping performed by the
RBF-NN may be expressed as:

K
y=Y w, o(x;v,)+w, 2.57)
k=1

The term @(u; vy) is the k™ radial basis function that computes the “distance” between an
input vector x and its own center vy; the output signal produced by the k™ hidden node is a
nonlinear function of the distance. The scaling factor wy in equation (2.57) represents the
weight that connects the k™ hidden node to the output node of the network. The constant term

Wy represents the bias.

The input-output mapping performed by the RBF-NN is accomplished in two stages:
42

BUPT



> A nonlinear transformation that maps the input space onto an intermediate space
> A linear transformation that maps the intermediate space onto the output space.
The nonlinear transformation is defined by the set of radial basis functions ¢y and the

linear transformation is defined by the set of weights wi, k=1,2, ..., K.

9, (x)=1

Input layer Hidden layer Output layer

Figure 2.14. Architecture of a RBF-NN
2.4.3. Radial basis functions

At the heart of RBF network is the hidden layer that is defined by a set of radial basis
functions from which the network derives its name. The following functions are of particular
interest in the study of RBF networks [Haykin, 99]:

1. Gaussian,

2
olr)= exr{— r—z] (2.58)

o

2. Multiquadratic function

o) = (r2+52) 2 (2.59)

3. Inverse — multiquadratic function

1
(P(T) = W (2.60)

4. Piecewise linear approximation

43

BUPT



o(r)=r (2.61)

5. Cubic approximation

o(t) =13 (2.62)
6. Thin plate spline

2
olr)= [—) ln(i) for some 6>0 and r=20 (2.63)

Of these examples, the Gaussian function is the most commonly used in practice.
Given an input vector x, the k™ Gaussian radial basis function of the RBF network is defined
as follows:
1
(p(x;vk)=eXp£-——,-“x—vk“2), k=1,2,....K (2.64)
Oy
where vy is the center, oy is the width and ||x-vi|| denotes the Euclidean distance between x
andvb
Substituting equation (2.64) in (2.57), the input-output mapping realized by a

Gaussian RBF network may be reformulated as follows:
S 1

y= Z W, expl ——
k=1 O'k

From a design point of view, the requirement is to select suitable values for the parameters of

the K Gaussian radial basis functions, namely &x and v, k = 1, 2, ..., K, and solve for the
weights of the output layer.

x—kaZJ (2.65)

2.4.4. Learning strategies with RBF-NN

There are a number of choices for these functions ¢, and all of these choices guarantee
that the resulting RBF-NN structure can implement any continuous mapping from an input
space of arbitrary dimensionality to an output space of arbitrary dimensionality. The most
popular choice for the function ¢ is a multivariate Gaussian function with an appropriate

mean and autocovariance matrix. That is,
1 -
0, (x):exp—E(x—vk)TZk' (x-v,) (2.66)

where vy is the mean vector and Xy is the autocovariance matrix of the multivariate Gaussian
function corresponding to hidden node k. Given the above expression for the functions ¢
involved in the hidden layer of the RBF-NN structure, we can see that we have at our disposal
a lot of parameters that can be modified to achieve our objective. These parameters are the

44

BUPT



mean vectors and the autocovariance matrices of each Gaussian function in the hidden layer
and the interconnection weights from the hidden to the output layer. There are four primary
learning strategies that have been proposed in the literature for changing the parameters of an

RBF-NN.

A. Fixed centers selected at random

In this learning strategy, the means (centers) of the Gaussian functions are chosen
randomly from the training data set. In other words, each v is chosen to be equal to one of the
training input patterns Xx, selected randomly from the training data. In effect, the standard

deviation (i.e. width) oy for each Gaussian radial basis functions is fixed at the common value:

c= 9y (2.67)

K

where K is the number of centers and dn. is the maximum distance between the chosen

centers. This formula ensures that the individual radial basis functions are not too peaked or
too flat; both of these extreme should be avoided [Haykin, 99].

The only parameters that would need to be learned in this approach are the linear
interconnection weights from the hidden layer to the output layer. These interconnection

weights are chosen in a way that minimizes the error function
P

E(w;)=> EP(w,) ) (2.68)
p=l

where P represents the number of the training patterns. One way of finding the weights that
minimize the aforementioned error function is by following the gradient descent procedure
that modifies the weights by an amount proportional to the negative gradient of E(w;). The
minimum of the above error function is zero if the transformed input patterns at the hidden
layer are linearly independent. If an exact solution does not exist, an approximate solution can

be found by using the pseudoinverse of a matrix. The constraints can be put into a matrix

form

® W=D (2.69)

where © is the Nx(K+1) matrix of the transformed input patterns, the W matrix is a (K+1)x1
vector of interconnection weights from the hidden-to-output layer, and D is the Nx1 vector of

desired outputs. The pseudoinverse approach gives a solution for (2.69) that is of the form
W=(@®"®) oD (2.70)
In (2.70) it is assumed that the G matrix has (K+1) linearly independent columns. In the case

where the RBF-NN has many output nodes (i.e., I output nodes), the solution will be given by

45

BUPT



(2.70). where W is now a matrix (K+1)*I of interconnection weights, and @ is a matrix N*[ of

desired outputs [Christodoulou, 01].

B. Self-organized selection of centers

The main problem with the method described above is the fact that the random
selection of centers is arbitrary and it might lead to poor performance of the network if the
centers are not chosen properly. One way of overcoming this limitation is to use some kind of
clustering procedure to define the centers of the Gaussian functions in the RBF-NN. Popular
clustering procedures that have been proposed include the K-means algorithm [Tou, 74] and
the SOFM [Kohonen, 90]. A clustering approach involves two steps:

» The unsupervised learning algorithm for the selection of the centers of the Gaussian
radial basis functions.
> The supervised learning algorithm for the computation of the interconnection weights

from the hidden to the output layer.

K-means clustering procedure

The K-means clustering algorithm [Duda, 73] places the centers of the Radial Basis
Functions in only those regions of the input space where significant data are present. A
description of the K-means algorithm may be found in [Haykin, 99]:

1. Initialization. Choose random values for the initial centers vi(0); the only restriction is
that these initial values be different. It may also be desirable to keep the Euclidean
norm of the centers small.

2. Sampling. Draw a sample vector x from the input space with a certain probability. The
vector X is input into the algorithm at iteration n.

3. Similarity matching. Let k(x) denote the index of the best-matching (winning) center
for input vector x. Find k(x) at iteration n by using the minimum distance Euclidean

criterion:

k(x) = arg min|x(n)~ v, (n) k=12,.,K (2.71)

where vi(n) is the center of the k™ radial basis function at iteration n.

4. Updating. Adjust the centers of the radial basis functions using the update rule:

e AT

2.72
v, (n), otherwise ( )

where p is a learning rate parameter that lies in the range 0 < p <1.

46

BUPT



5. Continuation. Increment n by 1, go back to step 2, and continue the procedure until no
noticeable changes are observed in the centers vy.

Once the centers are identified by the K-means clustering algorithm, the variances of
the Gaussians are chosen to be equal to the mean distance of every Gaussian center from its
neighboring Gaussian centers.

A limitation of the K-means clustering algorithm is that it can only achieve a local
optimum solution that depends on the initial choice of cluster centers. Consequently,
computing resources may be wasted in that some initial centers get stuck in regions of the
input space with a scarcity of data points and may therefore never have the chance to move to
new locations where they are needed. The network result in possible an unnecessarily large
network. To overcome this limitation of the conventional K-means clustering algorithm,
[Chen, 95] proposed the use of an enhanced K-means clustering algorithm due to
[Chinunrueng, 94] that is based on a cluster variation weighted measure that enables the
algorithm to converge to an optimum or near optimum configuration, independent of the
initial center locations [Haykin, 99].

Having identified the individual centers of the Gaussian radial basis functions and
their common widths using the K-means clustering algorithm or its enhanced version, the next
stage is to estimate the interconnection weights from the hidden to the output layer. A simple
method for this estimation is the least-mean-square (LMS) algorithm (appendix 4). The vector
of output signals produced by the hidden units constitutes the input vector to the LMS
algorithm. Note also that the K-means clustering algorithm for the hidden units and the LMS
algonithm for the output unit(s) may proceed with their own individual computations in a

concurrent fashion, thereby accelerating the training process.

The Self~-Organizing Feature Map (SOFM) Clustering Procedure

The SOFM-NN consists of an input layer of nodes, where the inputs to the NN are
applied, and an output layer of nodes, where the groupings of the inputs are formed. Most
often, the nodes in the output layer of an SOFM-NN are organized in a two-dimensional array
(Figure 2.15, where an SOFM-NN, with many output nodes, organized in a two-dimensional
array, and two input nodes, is shown).

Each input is fully connected to every output node, and a weight is assigned to each
connection. Training is performed in an unsupervised way using the Kohonen learning
algorithm [Kohonen, 90]. The Kohonen learning algorithm belongs to the broader class of

competitive algorithms, which can be viewed as a procedure that learns to group input

47

BUPT



patterns in clusters in a way inherent to the data. To train the SOFM-NN, continuous valued
input vectors are presented in random sequence to the network. The mapping from the
external input patterns to the network’s activity patterns is realized by correlating the input
patterns with the connection weights. After enough input patterns have been presented,
weights converging to output nodes of the SOFM-NN specify cluster centers that represents

the input patterns.

Figure 2.15. The SOFM-NN with two input nodes and output nodes organized in a two-dimensional array

The two most central issues to the Kohonen learning algorithm are the weight
adaptation process and the idea of a topographical neighborhood of nodes. The network
operates in two phases: the similarity matching phase and the weight adaptation phase. The
SOFM-NN can be described in a number of easy to implement steps [Christodoulou, 01]:

1. Initializing the network. Define vip, 1 £k <K and 1 £ m < M, to be the weight from
input node m to output node k, where M is the dimensionality of the input patterns and

K is the number of nodes in the network. Choose the number of training iterations

equal to ngax.

2. Similarity matching phase. Present an input pattern x(p) from the training collection of

P input patterns and compute the Euclidean distance of this input pattern from each

weight vector associated with the output nodes.

d, =Y (xuP)~ Vi)’ (2.73)

M
m=i

3. Selecting the minimum distance. Find the index kmax of the output node that minimizes
dy. That is

d,_ = mgn d, (2.74)
4. Weight adaptation phase. Update the weights converging to node kqax and the weights

converging to all the other nodes j that are in the neighborhood Ny max of the winning
node kmax. Specifically,

48

BUPT



Vi (1 +1) = Vi, () + 1 (1 K g )(0) [, (p) - Vi ()]
for keN, ), 1Sm<M (2.75)

where

5

“-

h(k,k . )=exp (2.76)

2\cln
where 1 — I max 1 the distance between the nodes k and kpax. All the weights converging to
nodes that are not the winning node or the nodes in the neighborhood of the winning node
remain unaitered.
5. Checking the stopping criterion. If n = npa, stop. Otherwise, go to step 2 and present

the next in sequence input pattern.

C. Supervised selection of centers

Although learning strategies A and B are simple to implement and converge on a
solution relatively quickly, they have been criticized because of their heuristic way of
choosing the centers and covariance matrices of the Gaussian functions at the hidden layer.
Heuristic approaches of choosing the centers and covariances of the Gaussian functions lead
to RBF-NNs that are suboptimal (i.e., they do not generalize well when exposed to data with
which they have not been trained). One way around this problem is to apply a gradient
descent procedure to choose the centers of the Gaussians or the centers and the covariances of
the Gaussians. In the following are demonstrated the equations that pertain to the changes of
weights and the centers of the Gaussians in the case where the covariance matrices are
assumed to be diagonal of constant variance.

The first step in the development of this supervised learning procedure is to define the
error function associated with the RBF-NN, when p™ input pattern is presented at the input
layer of the RBF-NN

B (w) =32 ()~ 6)] exe)

The gradient descent procedure tells us that the change of wy should be proportional (constant
of proportionality designated as p) to the negative gradient. That is,

SE?

Aw, = —u& (2.78)
dw,

It can be easily obtained that

Aw, = P'[diz(p)—}’iz(p)](pk [x(p)] (2.79)

49

BUPT



As in the MLP case. it can be seen that a weight from a hidden to an output nodes needs to be
changed by an amount that is proportional to the error of the node to which the weight
converges and proportional to the output of the node from which the weight emanates.

To calculate the amount of change required by each one of the centers of the Gaussian
functions, we apply again the gradient descent rule to determine that
SEr(w)

dv,

Av, =— (2.80)

and finally,
Av, = ug[df(p)—ys@)]wm[x@)]z: (x(p)- v, ) 2.81)

In the special case where the variances of the Gaussian functions in the hidden nodes are

equal, equation (2.81) simplifies to

Av, =g, [x(p)lg[as@—ys(p)]w (x(p)-v.) @82

It is not difficuit to see that the weight change equation, (2.82) resembles the weight change
equations obtained for the MLP case. The error terms for the output layer nodes and the
hidden layer nodes of the RBF-NN are identical with the error terms produced in the MLP
case. The only term that is missing, compared to the MLP expression, is the output of the
node with which the corresponding v component is associated.

The error function that we focused on above is the error associated with a particular
pattern presentation (input pattern p). In this case, we apply weight changes after every
pattern presentation in a continuous update or pattern-by-pattern update. If instead of
considering the error function of (2.77), the cumulative error function (the sum of squared
errors over all the output nodes and input patterns) defined as follows
Ew)= 3 ()= 33 [026)- 26 @8

- pol in
is considered, then weight updates are applied after the presentation of all the input patterns in
the training list in a batch update. The corresponding change of the weights and centers

equations are provided as follows:

sy =k Y )=y 0o ) @8

av, =Y Y8 0)- v )] waor KON =5 (x(p) - v,) (285)

p=l i=1

for Gaussians with unequal variances, and

50

BUPT



av, =3 Y[ 6)- v )] wao K0 (x6)- v,) 286)

p=1 1=l

for Gaussians with equal variances.

D. Supervised selection of centers and variances

In the previous learning strategy, it is described a procedure that finds the centers of
the Gaussian through a supervised procedure. It is possible to extend this procedure to the
case where not only the centers of the Gaussians but also the covariances matrices of the
Gaussians are chosen in a supervised way. Once more, the objective is to minimize the sum of
the squared differences between the actual and the desired outputs, defined in equation (2.77)

where

y,»(p)=§w&q>k [x(p)] (2.87)

If the gradient descent procedure is applied on the error function with independent
parameters wy, vk and X, we obtain the following equations for the change of these

parameters:

aw, = u, |42 (0)- v’ (o) 0. [x(p)] (2.88)
ave =1, Y 2 0)- v 0)) wao KON 25 () v, ) (2.89)

i=l

R OB RN (xp)-v.) (56)-v,) 2.90)

where in the above equations yw, gy and py are the corresponding learning rates of the
parameters w, v and X, respectively. If the error function of interest is the cumulative error
function E(w) of equation (2.83), we first calculate the error changes of the weights and
network parameters (centers, covariance functions of Gaussians) for every pattern
presentation and then we sum up these changes to obtain the required weight/parameter

change. The weight/parameter change for every pattern presentation is provided by equations
(2.88)-(2.90).

E. Comparison of RBF-NN learning strategies
The methods that first choose the centers and the variances of the Gaussians through

some kind of heuristic procedure tend to converge to a solution faster than the methods that
employ supervised means of changing centers and variances of the Gaussians. On the other

hand, heuristic procedures to choose the centers and variances of the Gausssians sometimes

51

BUPT



leads to trained networks that do not generalize very well. In [Wettschereck, 92] was
experimented a number of approaches to improve the performance of a RBF-NN. The
conclusions of this study were that
> Supervised selection of the centers of the Gaussians improved the performance of the
network considerably, compared to heuristic techniques of choosing the Gaussian
centers,
> Simultaneous supervised learning of the centers and variances of the Gaussians
exhibited an inferior performance compared to the network where only supervised
selection of centers was implemented.
However, it was admitted that these results might be biased because of the fact that only a

specific problem was tested.
2.4.5. A RBF-NN algorithm

In this section, a step-by-step complete training process corresponding to the
supervised selection of centers is presented [Christodoulou, 01].

1. Select initial values for the weights from hidden to output layers. These weights are
chosen to be small random values. Select initial values for the centers of the Gaussian
in the hidden layer. These centers are randomly chosen from the training data. Select
initial values for the diagonal elements of the covariances of the Gaussian functions.
These variances are all chosen to be equal to some constant. The off-diagonal
elements of the covariances of the Gaussians are chosen to be equal to zero.

2. Present the p® input pattern at the input layer of the RBF-NN.

3. Calculate the outputs of the nodes in the hidden and output layers of the RBF-NN,
according to (2.91) and (2.92).

o) = exp{ -3 () v, )25 () v, ) @9
K
Vi ()= 2, waoix(p)] (2.92)

4. Compare the actual outputs at the output layer and the desired outputs. If
yi(p)=di(p) for 1 <i <1, go to step 5. If y2(p)=d(p) for some i, proceed to

change the weight/parameter values as follows:

aw, =uld?(p)-v2(p)] o, [x(p)] (2.93)

52

BUPT



v, = Wk[X(p)]Z[df(p)—Yf(p)]Wu( (x(p)- v, ) (2.94)

5. If p = P and the cumulative error function E(w) is smaller than a prespecified
threshold, we consider the training completed. If p = P and E(w) is larger than the
prespecified threshold, then we return to step 2 starting with the first input pattern of
index p = 1. If p # PT, we return to step 2, by increasing the pattern index p by one.

Note that the above algorithm procedure is the continuous update version of the algorithm.
The periodic update is very similar, with the only difference being that after every pattern
presentation we do not apply weight and parameter changes; instead we wait until all the
parameters are presented to implement a cumulative weight/parameter change according to
(2.84) and (2.86). The algorithmic procedure, when both the centers and the covariances of
the Gaussian are changing, is also very similar with the only difference being that in step 4 we
need to apply the changes to the covariance matrices designated by (2.90). Also, if the
unsupervised selection of the parameters is chosen, the algorithmic procedure is not that
different either. In this case, the centers and the covariances matrices will be chosen in step 1
and stay fixed thereafter. Beyond this point only weight changes will be enforced according to
(2.88) [Christodoulou, 01].

2.4.6. Issues with RBF-NN learning

The weights between the hidden and the output layer are, in most cases, initialized to
random numbers that are uniformly distributed in a small interval of values, symmetric
around zero. The centers of the Gaussians in learning strategies C and D could initially be
chosen to be the cluster centers of a K-means clustering applied on the input patterns, or K
randomly chosen input patterns. Once the centers of the Gaussian are chosen, a number of
heuristics can be applied to find the initial elements of the covariance matrices of the
Gaussians. The premature saturation problem will occur if the activation functions at the
output layer of the RBF-NN are of the sigmoid or hyperbolic tangent type. These types of
activation functions are most often used when the types of problems under consideration are
classification problems. All the equations presented so far for the RBF-NN learning strategies
assume that the activation functions at the output layer are linear. Linear activation functions
do not suffer from the premature saturation problem. The RBF-NN can operate in the
continuous update training mode (where changes of the weights/parameters are applied after

every pattern presentation), or in the periodic update training mode (where changes of the

53

BUPT



weights/parameters occur after the presentation of all the patterns), or finally in the hybrid
training mode (where changes of the weights parameters occur after a fixed number of
training pattern presentation; this fixed number is larger than one and smaller than the number
of patterns of P). The stopping criteria for RBF-NN learning are identical with the stopping
criteria mentioned for the backpropagation learning method. The number of hidden layers is
not an issue with the RBF-NN since we always have one hidden layer of nodes. The number
of nodes in the hidden layer should be chosen as large as possible to take advantage of the
increased dimensionality of the transformed space compared with the dimensionality of the
input space. At the same time, the number of nodes in the hidden layer should be as small as
possible if we are committed to designing the smallest possible NN structure. All the
variations of the backpropagation algorithm discussed in this chapter, can also be applied to
the RBF-NN algorithm, since they both are gradient descent procedures applied to same error
function [Christodoulou, 01].

2.4.77. The General Regression Neural Network

The general regression neural network (GRNN) is an NN architecture that shares a lot
of similarities with the RBF-NN. In this section we discuss the necessary background
information and the specifics of this architecture. The information included below is obtained
from [Christodoulou, 01].

Regression is the least-mean-squares estimation of the value of a variable of interest
based on observations of other variables that are related with the variable of interest. The term
general regression implies that the regression surface is not restricted by being linear. If the
variable of interest is the future value of an observed variable, the GRNN is a predictor. If
they are dependent variables related to input variables related to input variables in a process,
plant, or system, the GRNN can be used to model the process, plant or system.

Figure 2.16 is the overall network topology implementing the GRNN. As it can be
seen from the figure, the NN consists of two layers of nodes (excluding the input layer where
the input data are applied). The hidden layer units are very similar with the hidden layer units
of the RBF-NN discussed so far. Hence, the outputs of these units are of the form

o [x]= exp[— (x—v:)T (x—v:)/(2 cz)] (2.95)
when vy are the corresponding clusters for the inputs and v{ are the corresponding clusters

for the outputs obtained by applying a clustering technique of the input/output data that

produces K cluster centers.

54

BUPT



v, is defined as

vi= Y ) (2.96)

¥{p echuster k

N is the number of input data in the cluster center k, and

d(x,v:)=(x—v:)T(x—v:) (2.97)

with

vi= Y xp) (2.98)
x(p e cluster k

Hidden layer Output layer

Input layer

Figure 2.16. General regression neural network

The outputs of the hidden layer nodes are multiplied with appropriate interconnection
weights to produce the output of the GRNN. The weights for the hidden node k (i.e., wy) is
equal to

Y
vk

In the case where we have to estimate a vector y instead of a scalar y, the output layer consists

W, =

(2.99)

as many nodes as the number of components of the vector y and the weights from the hidden
layer nodes to output nodes are chosen according to (2.99), where now v] depends on the

component of the output vector that is estimated.

BUPT



2.4.8. Comparison of RBF and MLP neural networks

RBF networks and MLP are examples of nonlinear layered feedforward networks.
They are both universal approximators. These two networks differ from each other in several
important respects.
1. An RBF neural network has a single hidden layer, whereas an MLP may have one or
more hidden layers.
2. The kernel characterizing a hidden unit of the RBF network is defined, for example by
the Gaussian function

5
<

olx;x, )=exp [— o]

— J k=1,2,..., K (2.100)
(o)

where x is the input vector, xi¢ is the center of the k" unit and % is a common

bandwidth. The input-output map realized by the RBF network with K hidden units is

then defined by
K

y=Y wolsx,) (2.101)
k=1

By contrast, the kernel characterizing a hidden unit of the multilayer perceptron is

defined, for example, by the logistic function

1
, k=1,2,..,K 2.102
1+exp(-x! x) ( )

olxx, )=

The Radial Basis Function neural network is a local approximator, whereas the Multilayer

Perceptron is a global approximator.

56

BUPT



3. Mobile radio channels

3.1. Introduction

The mobile radio channel places fundamental limitation on the performance of
wireless communication systems. The transmission between the transmitter and the receiver
can vary from simple line-of-sight to one that is severely obstructed by buildings, mountains
and foliage. Unlike wired channels that are stationary and predictable, radio channels are
extremely random and do not offer easy analysis. Even the speed of motion impacts how
rapidly the signal level fades as a mobile terminal moves in space [Rappaport, 96].

In the mobile radio environment, a part of the electromagnetic energy radiated by the
transmitting antenna reaches the receiver antenna by propagating through different paths.
Along these paths, interactions that are commonly referred to as propagation mechanisms may
occur between the electromagnetic field and various objects. Possible interactions are specular
reflection on large plane surfaces, diffuse scattering from surfaces exhibiting small
irregularities or from objects of small size, transmission through dense material like walls or
floors, shadowing by obstacles like trees, etc. The attributes small and large are to be
understood here with respect to the wavelength. A detailed description of these propagation
mechanisms is given in Chapter 4.

The propagation of electromagnetic waves either near the ground or inside a building
due to diffraction, scattering, reflection and absorption of the incoming signal is broken into
several components that are attenuated and delayed differently. The signal at the receiver
antenna is thus composed of a direct component and a delayed, scattered component. The
direct path can be obstructed, depending on the antenna location and shadowing conditions.
The degree of shadowing varies very strongly with the movement of the mobile antenna,
leading to equivalent time fluctuations of the received power of the direct ray and delayed
components.

As a result of the multipath propagation, the received signal presents rapid fluctuations
that are characterized as fast fading or Rayleigh fading. In fast fading, the received signal
power may vary by as much as three or four orders of magnitude (30 or 40 dB) when the
receiver is moved by only a fraction of a wavelength. The median value of the received signal

strength also fluctuates due to large-scale variations along the path. The median value fadings

57

BUPT



are defined as slow fades or log-normal fading. Typically, the local average received power is
computed by averaging signal measurements over a measurement track of 5A to 40h. When

the received signal also includes the line-of-sight component, the envelope is Rice-distributed.
3.2. Representation of a mobile radio signal

The field strength can be represented as a function of distance in sp;ace (the spatial
domain) or as a function of time (the time domain). The received field strength (the envelope
r(x) of a received signal s(x) along x-axis in space) show severe fluctuation when the mobile
unit is away from the base station. Field strengths r(x) can be studied either by associating
them with geographical locations or by averaging a length of field strength data to obtain a so-
called local mean at each corresponding point. The speed of the mobile unit must remain
constant while the data are measured. Since the speed is kept constant, the time axis can be
converted to spatial axis. Both field strength representations are useful. The representation r(t)
in the time domain is used to study the signal fading phenomenon. The representation r(x) in
the spatial domain is used to generate the propagation path loss curve.

The mobile radio signal is received while the mobile unit is in motion. In this situation
the field strength (also called the fading signal) of a received signal with respect to time t, or
space X, is observed. When the operating frequency becomes higher, the fading signal

becomes more severe. The average signal level of the fading signal ;(x) or ;(t) decreases as

the mobile unit moves away from the base station transmitter.

3.3. Fadings

The received signal strength r(t) can be artificially separated into two parts by cause:
long-term fading m(t) and short-term fading ro(t) as
r(t) = m(t) ro(t) or  1(x)=m(x) ro(x)

Long-term fading is the average or envelope of the received fading signal. It is also

called a local mean since along the long-term fading each value corresponds to the mean
average of the field strength at each location point. The estimated local mean m(x)at point

X along x-axis can be expressed mathematically as

m(x) = L er(x)dx L x'fm(x)ro (x)dx (3.1)

2L Jn-L 2L -

58

BUPT



Assume that m(x;) is the true local mean, then at point x;
m(x = x,)=m(x = x,) x,-L<x<x,+L (3.2)
when L is properly chosen and the estimated local mean m(x;) becomes

m(x, )= m(x, )_?_lL— J:';L r, (x )dx (3.3)
To let m(x;) approach m(x;), the following relationship holds

1 exiel
7T b r,(x)dx — 1 (3.4)

The length L will be determined in section 3.4. The long-term signal fading m(x) is
mainly caused by terrain configuration and the built environment between the base station and
the mobile unit. The terrain configuration causes local mean (long-term fading) attenuation
and fluctuation, whereas the human-made environment also causes short-term fluctuation
(fading) in signal reception. Under certain circumstances the fluctuation of a long-term fade
caused by the terrain configuration can form a log-normal distribution because of the
statistical nature of the fluctuation. We must differentiate between the terms “radio path” and
“mobile path”. The former is the path that the radio wave travels and the other is the path that
the mobile unit travels. In [Lee, 93] are considered two cases: one is when mobile unit is
circling around the base station and the other is when the mobile unit is moving away from
the base station. In the first case the radio path does not correspond to the mobile path. In the
second case the fluctuation of the long-term fading received is affected by the radial terrain
contour where the mobile travels in a certain direction. The radio path corresponds to the
mobile path and the terrain contour where the mobile unit travels has a strong correlation with
the received signal.

Short-term fading is mainly caused by multipath reflections of a transmitted wave by
local scatterers such as houses, buildings and other human-built structures or by natural
obstacles such as forest surrounding a mobile unit. It is not caused by a natural obstruction

such as mountain or hill located between the transmitting site and the receiving site.
3.4. Obtaining meaningful propagation loss data from measurements

In a mobile radio environment the irregular configuration of the natural terrain, the
various shapes of architectural structures, changes in weather and changes in foliage

conditions make the predicting of propagation loss very difficult. In addition the signal is

59

BUPT



received while the mobile unit is in motion. There is no easy analytic solution to this problem.
Combining both statistics and electromagnetic theory helps to predict the propagation loss
with greater accuracy.

The local mean can be obtained by averaging a suitable spatial length L over a piece

of raw data as shown in Figure 3.1.

~~ r‘.“ ’, N, SN
’ v \ N i 4N\ ’ v A
- 4 “.' A / ) " A ’ [ ¥J
- \.I # \ \ 9
i P4 (%4 ] \ / " W)
v \/ v
a v \
5 {
&
3| T

(1) 2L=a0: IS THE WINDOW SIZE OF THE
RUMIING MEAN

() 50 SAMPLES ARE REEDED FOR A LENGTH OF 40

Figure 3.1. Obtaining the local mean

The length L can be treated as an average window over a long piece of raw data. If the
length L is too short, the short-term variation cannot be smoothed out and will affect the local
mean. [f the length L is too long, the averaged output cannot represent the local mean since it
washes out the detailed signal changes due to terrain variation. Therefore it is essential that

the suitable length L to be determined.

Determining the length [ [Lee, 93]
Let the short-term fading ry be a Rayleigh fading. Then

(fa(x)) = %(\/f_ ) (3.5)

where t’is the average power of the sh