
M E A S U R E M E N T AND QUALITY
IN O B J E C T - O R I E N T E D DESIGN

BY

R A D U MARINESCU

THESIS

Submitted in parţial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Faculty of Automatics and Computer Science of the

" PoUtehnica" University of Timişoara

Timişoara,
October 2002

Advisors:
Prof. Dr. rer.nat. Gerhard Goos

Prof. Dr. ing. loan Jurca

BUPT

M E A S U R E M E N T AND QUALITY
IN O B J E C T - O R I E N T E D DESIGN

BY
R A D U MARINESCU

THESIS

Submitted in parţial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Faculty of Automatics and Computer Science of the

" Pohtehnica" University of Timişoara

Timişoara,
October 2002

Advisors:
Prof. Dr. rer.nat. Gerhard Goos

Prof. Dr. ing. loan Jurca

BUPT

BIBLIOTECA CENTRALA / Q A)
UNIVERSITATEA •POLITEHNICA" I J . - / V ^ / ,

TIMIŞOARA '

What is not measurable make measurahle.

Galileo Galilei (1564 - 1642)

BUPT

ACKNOWLEDGMENTS

I consider myself fortunate and privileged to have Prof. Gerhard Goos as one
of my advisors. I am deeply indebted to him for shaping my path to research
by guiding me with his extensive knowledge and with his insightful discussions
and questions. At the same time, I want to thank him for the whole financial
support that made possible my regular research visits at Forschungszentrum
Informatik (FZI) Karlsruhe during all these years.

I am honored and especially grateful to have Prof. loan Jurca as the other
advisor of my thesis. I am particularly thankful for all the essential guidance
and permanent encouragement that I received from him. I owe him so much
for every occasion in which he trusted me fully, even when I shared with him
my craziest dreams. Without his full support, probably none of those dreams
would have become reality.

My thankful admiration goes to Dr. Joachim Weisbrod for decisively influ-
encing the beginning of my scientific career. Without his guidance, his support,
and his enthusiasm for all of my early achievements, I would have never reached
the point where I stand today.

I owe a lot of gratitude to Doru Gîrba for all our fascinating and fruitful
discussions (especially during meals). I am very thankful for the enthusiasm with
which he shared and enlarged my vision, for permanently motivating and helping
me to go on. Without him, most of my visions would have remained abstract,
and my ideas shallow. Thank you Doru for the privilege of collaborating with
you, and for being the great friend that you are.

This work would not have been possible without the whole environment in
the PROST research group at FZI Karlsruhe. First of all, I want to thank
Benedikt Schulz for the many times he challenged me when I was losing focus,
but also for encouraging me every time I was strugghng. His highly competent
advices, his permanent availability and his genuine friendship will always remain
very precious to me. I greatly enjoyed working with Markus Bauer. Thank you,
Markus, for all the fruitful discussions and for all the great help I got from you
on such many occasions. I am very grateful for the privilege of having worked
together with all my other colleagues at PROST, especially with Christoph An-
driessens, Holger Bar, Dr. Oliver Ciupke, Jorn Eisenbiegler, Thomas GenBler,
Dr. Helmut Melcher, Laura Olson and Olaf Seng. I want also to thank Dr.
Thomas Lindner for his support and encouragement while he was at FZI, but
also after he moved. Last, but not least, I want to thank Mrs. Gabriele Grofi
and Hilke Meffert for the miraculous way in which they always succeeded in
solving my complicated administrative/bureaucratic issues.

Working with the members of the LOOSE research group (LRG) in Timişoara
is such an extraordinary experience. I want to thank them for all the lessons
I learnt as a result of our thrilling discussions both in regular meetings and in
private talks. The team-spirit in LOOSE and the maturity of its members is so
very refreshing for me. Individually, I want to thank Daniel Raţiu and Mircea
Trifu for the three years we spent together working on the implementation and

BUPT

VI

refinement of the meta-model that eventually became part of this thesis. I want
to thank them both for always giving their best and sacrificing their extra-time
just for the joy of working together. I ara indebted to Dani in a special way for
challenging and assisting me continuously through the last days (and nights) to
make this thesis syntactically "perfect". It is hard to express how much I owe
Răzvan FiHpescu for reviewing most of this thesis. His amazing English skills,
doubled by his special patience in reading essentially improved the quality of
the written text and lent it the current elegance of expression. I also want to
express my sincere thanks to Iulian Dragoş and Petru Mihancea for their highly
competent and careful reviews of several parts of the thesis, which improved the
writing from both a semantical and a syntactical point of view.

Special thanks to Adrian Trifu for all our unforgettable discussions that
essentially sharpened my arguments and for his remarkable reviews of several
parts of this thesis. I also want to thank Adi for introducing me to the fascinat-
ing world of space shuttle launchings and for all great time we had in Karlsruhe
eating broasted chicken and ice-cream.

Sincere thanks to Ciprian Chirilă and Antonio Rusu for their great contri-
bution to implementing and refining my ideas. Working together with them
helped me a lot in making these ideas applicable.

Very special thanks to all my friends who didn't let me forget that life is more
than writing a PhD thesis. I am deeply indebted to Martin and Inge Linder for
all their precious Iove in the Lord and for making me feel at home every time I
was staying with them in Karlsruhe. I want to thank Radu and CăTă, and of
course Liana, for sharing over the years all my joys and disappointments and for
all encouragement and refreshment I received through them in so many ways.

I would like to warmly thank my parents for all their Iove, for all their mental
and financial support and for believing in me even when I didn't. In particular
I am very thankful to my mom for the "academic" answers to all the profound
questions of my childhood and to my dad for teaching me to approach all things
systematically.

My most special thanks are for Cristina for the unique way in which she
loves and understands me day by day. I am so grateful to her for the many
times she put aside her wishes and plâns, and encouraged me to finish writing
this thesis. Thank you for teaching me daily the "mysterious equations of Iove".
I am so proud and grateful to have you by my side.

Above all, I thank God for all the talents He blessed me with, for His merciful
and faithful guidance over all these years and, most importantly, for saving me
and granting me a spirit of wisdom and revelation to see His plan. After all, it
is only this that fundamentally counts.

Timişoara, Marinescu
October 31, 2002

BUPT

Contents

1 Introduction 1
1.1 Problem Defînition 1

1.1.1 Object-Oriented Design 1
1.1.2 Software Measurement 2
1.1.3 Problems 3

1.2 Goal and Approach 4
1.3 Organization 5

2 Objec t -Or ien ted Design and Measurement 7
2.1 Object-Oriented Programniing 7

2.1.1 Data Abstraction . . 8
2.1.2 Encapsulation 9
2.1.3 Modularity 9
2.1.4 Inheritance 10
2.1.5 Interfax:es and Polymorphism 10

2.2 Good Object-Oriented Design 11
2.2.1 Low Coupling 13
2.2.2 High Cohesion 15
2.2.3 Manageable Complexity 16
2.2.4 Proper Data Abstraction 17

2.3 Software Measurement 18
2.3.1 Classification of Measurements 19
2.3.2 Representational Theory of Measurement 19

2.4 Object-Oriented Design Metrics 22
2.4.1 Measures of Coupling 22
2.4.2 Measuring the Inheritance Lattice 22
2.4.3 Cohesion Metrics 23
2.4.4 Measurement of Size and Structural Complexity 25

3 Measuremen t and Design Quali ty 27
3.1 Classification of Approaches 27
3.2 Definition and Interpretation of Metrics 28

3.2.1 The Strive for Rigorous Metric Definitions 29
3.2.2 Goal-Question-Metric Paradigm 30

vii

BUPT

CONTENTS
VIII

on
3.3 Design Recovery

3.3.1 Finding Refactorings via Metrics 31
3.3.2 The Class Blueprint 32

3.4 Identification of Design Probiems 33
3.4.1 Design Principles and Heuristics 33
3.4.2 Quantification of Design Principles 35
3.4.3 Identification of Structural Probiems 35
3.4.4 FYameworks Consolidation Based on Metrics 36

3.5 Refined Statement of Goals 37

4 Detection Strategies 39
4.1 A Goal-Driven Measurement Process 40

4.1.1 Investigation Goals 41
4.1.2 Phases of the Process 41

4.2 A Meta-Model for Object-Oriented Systems 42
4.2.1 Composed Entities 45
4.2.2 Primitive Entities 50
4.2.3 Relations Between Entities 51

4.3 Detection Strategy 53
4.3.1 Definition . 53
4.3.2 The Filtering Mechanism 54
4.3.3 Methodology for Selecting Data Filters 57
4.3.4 The Composition Mechanism 58

4.4 Defining Detection Strategies 59
4.4.1 Template for Describing a Detection Strategy 61

5 Detection of Design Flaws 63
5.1 Design Flaws 63

5.1.1 Classification 65
5.2 Design Flaws in Methods 66

5.2.1 Feature Envy 66
5.2.2 GodMethod 68

5.3 Flaws of Class Design 69
5.3.1 God Classes 70
5.3.2 Shotgun Surgery 71

5.4 Flaws of Subsystem Structure 73
5.4.1 God Package 74
5.4.2 Wide Subsystem Interface 76

5.5 Lack of Patterns 77
5.5.1 Lack of Bridge 78
5.5.2 Lack of Strategy 81

5.6 Conclusive Remarks 84

BUPT

CONTENTS ix

6 Fac tor -St ra tegy Quali ty Models 87
6.1 Quality Models 87

6.1.1 Factor-Criteria-Metric Models 88
6.1.2 Example: A FCM Model for Maintainability 89
6.1.3 Limitations of FCM Quality Models 91
6.1.4 Hybrid Approach to Quality Models 93

6.2 Factor-Strategy Quality Models 93
6.3 Evaluation of Factor-Strategy Models 96

6.3.1 Quantification and Ranking of Quality Factors 96
6.3.2 Identification of Causes for Poor Quality 99

6.4 Building Factor-Strategy Quality Models 100
6.4.1 Quality Goals 100
6.4.2 Stepwise Construction of Factor-Strategy Models 103
6.4.3 A Factor-Strategy Model for Maintainability 104

6.5 Conclusion 107

7 Evaluat ion 109
7.1 The Experimental Setup 110

7.1.1 Evaluation Goals and Criteria 110
7.1.2 Evaluation Approach 112
7.1.3 The Case-Study 113

7.2 Tool Support : 114
7.2.1 Phases of the Inspection Process 114
7.2.2 The Unified Meta-Model 115
7.2.3 Meta-Model Extractors 117
7.2.4 ProDeOOS 119

7.3 Evaluation of Detection Strategies 120
7.3.1 Two Evaluation Methods 122
7.3.2 Results Summary 123
7.3.3 Assessment of the Evaluation Criteria 124
7.3.4 In-Depth Analysis: Detection of Cod Classes 125

7.4 Evaluation of Factor-Strategy Models 128
7.4.1 The Evaluation Methodology 128
7.4.2 Results Summary 128
7.4.3 Assessment of the Accuracy Criterion 128

8 Conclusions and Perspect ives 131
8.1 Summary 131
8.2 Evaluation of Contributions 133
8.3 Future Work 134

8.3.1 Refinement 134
8.3.2 Migration 134

8.3.3 Integration 135

Bibliography 143

A Factor-Stra tegy Quali ty Model for Maintainabi l i ty 145

BUPT

CONTENTS ix

List of Further Detection Strategies 149
B.l DataCIasses 149
B.2 ISPVioIation 150
B.3 Lack of State 151
B.4 Lack of Visitor 152
B.5 MLsplaced Class 153
B.6 Refused Bequest 154

BUPT

Chapter 1

Introduction

The gap between qualitative and quantitative statements, concerning object-
oriented software design can be bridged using higher-level, goal-driven methods
for measurement interpretation.

The goal of this work is to develop methods and techniques that provide a rele-
vant interpretation of measurement results applied to the investigation of object-
oriented software design. In this context, the central focus of this dissertation is
to support the quaUty a^sessment and i^mprovement of existing object-oriented
systems, by bridging the gap between quaUtative and quantitative statements.

1.1 Problem Definition
As Opdyke pointed out: "design is hard" [Opd92]; and object-oriented design in
spiţe of all the optimistic claims is not a bit easier. In addition to the inherent
difficulties of design, software industry began to place much more emphasis on
the quality of software products. In order to improve its quality we need to
be able to control it. This has in turn led to an increasing interest in software
measurement. Thus, the context and the motivation for this work come from
the fields of object-oriented design and software measurement. We will therefore
discuss them next pointing out the issues that are relevant for this work.

1.1.1 Object-Oriented Design
Object-oriented programming supports essential software development goals like
maintainability and reusability [Mey88] [Boo94] through mechanisms like en-
capsulation of data, inheritance and dynamic binding. Yet in the beginning of
object-OiTientation many software companies had the naive dream that the use
of objects will automatically increase the quality of their software and greatly
decrease the time spent on development and maintenance. It was hoped that
by introducing object-oriented mechanisms software systems will become more
flexible, more extensible and understandable, and that they will therefore be

BUPT

12 CHAPTER L INTRODUCTION

easier to maiintain.

Todav, the industry is confronted with a large number of software systems in
use, in the size of millions of lines of code. By their inherent size, complexity and
development times, they have reached the suitable shape for object-orientation.
Yet, most of these systems lack all of the aforementioned qualities: they are
instead monohthic, inflexible and hard to extend. We identified the foUowing
causes for this situation:

• Time Pressure. Often systems tend to start with a clear and rigorous
design, but then the developers are confronted with a lot of time con-
straints. This fight against the clock forces them to choose the fastest
design solution and not the one that keeps the integrity of the design.

• Changing Requirements. Requirements change in ways that cannot be
anticipated in the iniţial design. These changes often require essential
modifications on the architectural level. In many cases those who imple-
ment the changes are not aware of the iniţial design and because of this
the design becomes blurred.

• Immature Object'Oriented Designers. Most legacy systems of the "first
generation'' were written by programmers that had less understanding of
the principles of objeCt-oriented design. The ignorance of those principles
has Ied to a lot of poorly designed code.

As a conclusion, we may state that object-oriented programming is a basis
technology, that supports quality goals like maintainability and reusability but
just knowing the syntax elements of an object-oriented language or the concepts
involved in the object-oriented technology is far from being sufficient to produce
good software. A good object-oriented design needs design rules and practices
that must be known and used. Their violation will eventually have a strong
impact on the quality attributes. The market forces emphasize more and more
the need for quality in software system, but as De Marco points out: "you cannot
control what you cannot measure"[DeM82]. Thus the question that comes to
our mind is: can we quantify by the interpretation of software measures the
principles and rules of object-oriented design?

1.1.2 Software Measurement
Software measurement is concerned with mapping attributes of a software prod-
uct or process to a numeric value. These numbers become relevant concerning
quality when compared to each others or to standards [Som95]. This statement
touches a key issue of measurement interpretation: are measurement data rel-
evant by themselves, or do numbers become relevant only in the context of an
interpretation model? This thesis aims to show that numbers become relevant
to the assessment of design quality only when they are related to the principles
and rules of good design.

BUPT

LI. PROBLEM DEFINITION 3

As already stated, the context of this work is intimately related to one of the
major goals in software engineering, namely improving the control of the soft-
ware development process. This goal can be concretely attained at the code and
design level by:

• improving the quaUty of software products;

• anticipating and reducing maintenance requirements

• evaluating the productivity impacts of new tools and techniques

As an immediate result of this direction in software engineering research, soft-
ware metrics have been brought to the attention of many software engineers and
researchers. Software metrics can provide a quantitative means to control the
quality of software products. Back in 1990 Card already emphasized [CG90
that metrics should be employed for the evaluation of of software design from a
quality point of view.

In spiţe of the important role played by software meeisurement, there is still
a gap between how we do measure and how we could measure. Some of the
current problems with software measurement are discussed below:

• There are a large number of metrics, to the point where we can really
. speak about an inflation of metrics. But there are a lot of problems with

the definitions of metrics: oftentimes metrics definitions are imprecise,
confusing or incomplete which makes most of them hardly usable [Mar97a]
[BDW991

• Above the problems concerning metrics definitions are the issues related
to the interpretation of measurement results. In most of the cases no
interpretation model or very empirical ones are provided, so that the ap-
plicability and reliability of measurement results is drastically hampered.

Concerning the interpretation of measurement results, there is another
issue: in most cases individual measurements used in isolation do not
provide relevant clues regarding the cause of a problem. In other words,
a metric value may indicate an anomaly in the code but it leaves the
engineer mostly clueless concerning the ultimate cause of the anomaly.
Consequently, this has an important negative impact on the relevance of
measurement results.

1.1.3 Problems
The previous experiences of applying metrics for the assessment and improve-
ment of design quaUty in object-oriented systems are encouraging [Ern96], [MarOl],
[LDOl] but, as we have seen before, this approach raises a set of new problems.
These problems are summarized below:

BUPT

14 CHAPTER L INTRODUCTION

The interpretation of individual measurements is too fine-grained if met-
rics are used in isolation; this reduces the applicability and relevance of
metrics usage.

Thcre is a large gap between design principles and product measures. In
other words there is still an important gap between what we measure and
what is important in design. Thus, we raiss a methodology for expressing
principles and rules of design in a quantifiable manner.

There exists a lack of relevant feedback Unk in quality models. In other
words, we measure, we set thresholds, we identify suspects, but the metric
by itself does not provide enough information for a transformation of the
code that would improve quality Thus, the developer is provided only
with the problem and he or she must still empirically find the real cause
and eventually look for a way to improve the design.

• Many metric-based approaches related to the quality of the design use
only simple metrics, mainly because the meta-model used as a basis for the
computation of metrics is incomplete. It mostly misses cross-referencing
information, which in our view plays an important role in the quality of a
system design.

1.2 Goal and Approach
The goal of this work is to develop methods and techniques that provide a relevant
interpretation of measurements applied to the investigation of object-oriented
software design. In this context, the central focus of the thesis is to support
the quality assessment and improvement of existing object-oriented systems, by
bridging the gap between qualitative and quantitative statements.

A complementary goal of this dissertation is to define the methods and tech-
niques in a manner that would make them useful for the improvement of the
design in newly built systems. In other words, we want the software engineer
that uses this approach to be provided with explicit and quantifiable indications
on what good design is, indications that would allow him to better design the
next system he or she will be working on.

In order to reach these goals we proceed as follows: we first provide a mechanism
for interpreting measurement results both in isolation (the filtering mechanism)
and in correlation (the composition mechanism). The synthesis of these mech-
anisms is a higher level interpretation means for measurement results. This is
called detection strategy,

Having defined this higher-level mechanism for properly extracting and inter-
preting relevant results from a multiple set of measurement data, we prove that
it can be employed for different investigation goals and describe an usable ap-
proach for doing so.

BUPT

1.3. ORGANIZATION

As we already stated, our main focus is to provide an interpretation model
that would allow us to bridge the gap between qualitative statements (i.e. qual-
ity as it is perceived from outside the system) and quantitative statements (i.e.
quality as it is measurable at the source-code level). Tlierefore, after defining
the detection strategy mechanism, we will employ it for assessing the quality of
object-oriented systems, in a manner that will support also the eventual im-
provement of the quality. For that a two steps approach can be used:

• S tep 1: We will prove that design problems in the source-code can be de-
tected at different granularity levels, starting from the method-level, up to
micro-architectural flaws (e.g. the lack of applying design patterns). The
detection of design problems is based on defining quantified expressions of
design principles and heuristics and looking for the design fragments that
violate these rules.

• S tep 2: We propose a mechanism for defining a new type of quality-
model based on detection strategies. This new approach has two main
advantages over current approaches: the first is the increased simplicity
of constructing and understanding such quality trees in which quality is
expressed in terms of design principles; the second advantage is an en-
hanced ability to interpret quality models, because the new approach uses
a higher level interpretation mechanism, i.e. the detection strategies.

Concerning the use of this approach for design improvement for newly built
systems, the suite of detection strategies for the detection of design problems
provides the engineer with the means to learn in a concrete and repeatable
manner what is good and what is bad in object-oriented design.

1.3 Organizat ion
Chapter 2 defines a precise conceptual framework that will be used further on in
this dissertation. The framework covers on the one hand the fundamental con-
cepts used in the object-oriented paradigm and on the other hand it introduces
the key concepts of software measurement. Chapter 3 contains a state of the
art in the fields of measurement and quality assurance related to object-oriented
design. After pointing out the limitations of current approaches, at the end of
Chapter 3, the goals and requisites of the thesis are defined.

A new mechanism for defining measurements interpretation rules of any com-
plexity, called detection strategy, is defined in Chapter 4. Together with this
mechanism we introduce a method for quantifying informai rules related to de-
sign, i.e. transforming such rules into detection strategies. While the main
focus of Chapter 4 is on defining a proper mechanism and a method for relevant
measurement interpretation, Chapter 5 employs the new interpretation mecha-
nism for detecting design flaws in object-oriented systems. We identify several
abstraction layers on which detection strategies can be applied and propose a

BUPT

6 CHAPTER L INTRODUCTION

set of such strategies for each layer. Chapter 6 defines a new quality model
based on detection strategies, as the bridge between qualitative and quantita-
tive statements. A mechanism for describing such models is provided along with
the definition of a concrete quality model for evaluating maintainability.

Chapter 7 presents the tool kit designed to support the automatization of the
entire approach and evaluate the methods and techniques based on a relevant
case-study. Chapter 8 summarizes the thesis with its essential contributions and
points out to ongoing issues.

BUPT

Chapter 2

Object-Oriented Design and
Measurement

As pointed out in the first chapter this work is going to tackle the issue of us-
ing measdrement in order to assess and control the quaUty of object-oriented
design. This dissertation is therefore related to two major fields: software mea-
surement and object-oriented design. The goal of this chapter is to present the
foundations of these domains. During the rest of this work we will refer to the
concepts introduced here.

The chapter is structured in three parts: the first part is introducing object-
oriented programming together with its key mechanisms for the management of
software complexity. In the second part of this chapter we concentrate on the
question of what does good object-oriented design and on the criteria for obtain-
ing and assessing it. After discussing the object-oriented design, the last part of
this chapter deals with the foundations of software measurement. During this
final part the special emphasis lies on the aspects related to the interpretation of
measurement results. The final section is dedicated to product metrics defined
for the object-oriented paradigm.

2.1 Object-Oriented Programming
The essential factor that infiuenced the evolution of programming paradigms
was the necessity to deal with the increasing complexity of software programs
[Sch97] [CY91b]. Object-oriented programming provides us with a set of proper
mechanisms for the management of this complexity, namely: data abstraction,
encapsulation, modularity, inheritance, and polymorphism. In this section we
will discuss these mechanisms.

Booch defined object-oriented programming as follows [Boo94]:

BUPT

8 CHAPTER 2. OBJECT-ORIENTED DESIGN AND MEASUREMENT

Defin i t ion 2.1 Object-onented programming is an implementation method in
which progiyivis are orgamzed in object collections that cooperate among them-
selvcs, ench obiect representing an instance of a class; each class is part of a
class hierarchy and all classes are related through their inheritance relationships.

Analyzing the definition above we find three important elements of object ori-
ontation:

• objects and not algorithms are the fundamental logical blocks;

• each object is an instance of a class;

• classcs are linked among themselves through inheritance relationships.

In the context of the previous definition, we can now introduce Sommerville's
definition [Som95] of object-oriented design:

Defini t ion 2.2 (Ob jec t -Or i en t ed Design) Object-oriented design is a de-
stgn strategy where system designers think in terms of 'things' instead of opera-
tions or funcţiona. The executing system is made up of interacting objects that
mamtain their own local state and provide operations on that state information.

2.1.1 Data Abstraction
One of the fundamental ways used by all people in order to understand and
comprehend a complex issue is by using abstractions. A good abstraction is one
that underlines all the aspects that have relevance to the perspective from which
the object is being analyzed while at the same time suppressing or diminishing
all the other characteristics of the object. In the context of object-oriented
programming Booch offers us the following definition of an abstraction [Boo94]:

Definition 2.3 An abstraction expresses all the essential characteristics that
make an object different from some other object; abstractions offer a precise
definition of the object's conceptual borders from an outsider's point of view.

In conclusion in the process of creating an abstraction our attention is focused
solely towards the exterior aspect of the object and as such on the object 's behav-
ior while at the same time ignoring the implementation of this very behavior.
In other words abstractions help us distinguish clearly between ''what an object
does'' and '' how the object does it".

An object's behavior is characterized through a sum of services or resources
the object offers to some other fellow objects. Such a behavior in which an
object (server) offers services for other objects (clients) is described in the so-
called client'Server modei The entirety of the services offered by a server object
constitutes the object's contract or responsibility towards other objects. Re-
sponsibilities are fulfilled by means of certain operations (also called: methods

BUPT

2.1. OBJECT-ORIENTED PROGRAMMING 9

or member functions). Each object's operation is characterized by a unique sig-
nature composed from: a name, a list of formal parameters and a return type.
The sum of an object's operations and their corresponding rules for calling con-
stituie the objecVs protocol.

2.1.2 Encapsulation
Just as abstractions are used for identifying an object's protocol, encapsulation
deals with selecting an implementation and treating it as a secret of that par-
ticular abstraction. The encapsulation process will be viewed therefore as the
action of hiding the implementation from most client objects. In a more concise
way we can define encapsulation as follows:

Definition 2.4 Encapsulation is the process of splitting the elements that form
the structure and behavior of an abstraction into individual compartments; en-
capsulation is used for separating the ^'contractual" interface from its implemen-
tation.

The definition above makes clear that an object has two distinct parts: the ob-
ject's interface (protocol) and the implementation of this interface. Abstraction
is the process that defines the object's interface and encapsulation defines the
object's representation (structure) together with the interface implementation.
The concealment of an object's structure and method implementation make up
the so-called information hiding notion.

Encapsulation provides a set of advantages:

• By separating the object interface from the object's representation one
can modify the representation without affecting the various clients in any
way because these depend on the server object's interface and not its
implementation.

• Encapsulation allows you to modify programs efficiently, with a limited
and localized effort.

2.1.3 Modularity
The purpose of splitting a program into modules is to reduce the costs associated
with redesign and verification issues by allowing you do this for every module
independently [Par72] [BPP81]. The classes and objects obtained after the
abstraction and encapsulation processes must be grouped and then deposited in
a physical form called a module. Modules can be viewed as physical containers
in which we declare the classes and objects that result after the logic level design.
These modules form therefore the program's physical architecture. A program
can be split into a number of modules that can be compiled separately but that
are connected (coupled) among themselves. The languages that support the
module concept also make the distinction between the module's interface and
its implementation. We can say that encapsulation and modularization go hand
in hand.

BUPT

10 CHAPTER 2. OBJECT-ORIENTED DESIGN AND MEASUREMENT

2.1.4 Inheritance
Abstractions are a good thing but in most non-trivial applications we will find a
greater number of abstractions that we can simultaneously comprehend. Encap-
sulation helps us with this complexity by hiding the interior of our abstractions.
Modularity helps by offering the means of grouping abstractions that are iogi-
cally linked among themselves. AII these, although useful, are not enough. A
group of abstractions often forms a hierarchy and by identifying this hierarchy
we can greatly simplify the problem understanding.

The most important class hierarchies in the object paradigm are: the class
hierarchy (a " relationship) and the object hierarchy {''part of" relationship)

Class Hierarchy

Inheritance defines a relation araong classes in which a class shares its structure
and behavior with one or more other classes (we talk about simple and multi-
ple inheritance). The existence of an inheritance relationship is the diflFerence
between object-oriented programming and object based programming.

Prom a semantic point of view inheritance indicates an "is a" relationship. For
example a bear "is a" mammal so there is an inheritance relationship between
the bear and mammal classes. Even as a programming issue this remains the
best test for detecting the inheritance relationship between two classes A and
B: A inherits B only if we can say that "A is a kind of B". If A " is not a"
B, then A shouldn't inherit B. In conclusion inheritance implies a hierarchy of
the generalization/specialization type in which the class that derives specializes
the more generalized the structure and behavior of the class from which it was
derived.

Object Hierarchy

Aggregation is a relationship between two objects in which one of the objects is
part of the other object. FVom a semsaitic point of view, aggregation indicates
a "part o f relationship. For example there is such a relation between a wheel
and a car because we can say that "a wheel is part of a car"

2.1.5 Interfaces and Polymorphism
Interfaces

As we mentioned earlier, the sum of all function signatures for the functions that
can be called by clients of that particular object class form the class's interface.
Interfaces are fundamental in object-oriented systems. The objects are known
inside the system only through their interfaces. There is no other way of finding
out something about the object or asking it to do something except by using
its interface. An object^s interface says nothing about its implementation -
therefore different objects can implement the same interface in different ways.

BUPT

2.2. GOOD OBJECT-ORIENTED DESIGN 11

This means that two objects with identical interfaces can have wildly different
implementations!

Binding

When a certain operation is requested, the way in which the operation will be
fulfilled depends not only on the operation itself but also on the object that will
receive and execute the request by calling one of its member functions. This
happens because there can be more than one objects that can respond to a
particular request. In other words, the requested operation specifies the desired
service and the concrete object represents the individual implementation of that
service. The association between a requested operation and the object that will
provide the concrete implementation of the operation through one of its member
functions is called binding. Depending on the moment when this binding takes
place, we difFerentiate between two types of binding:

• Static binding (early binding) - the association is created at compilation
time. This binding is based on the types system known to the compiler
through the various class declarations and the corresponding fixed (and
therefore rigid) association of a class for each object.

• Dynamic binding (late binding) - the association isn't created when the
program is compiled but rather it takes place when the program is running
(at run-time)

Polymorphism

In this manner, when binding dynamically, the request for an operation does
not lead to the automatic correspondence between that operation and a cer-
tain implementation, the correspondence takes place only when the program is
running. The main advantage of dynamic binding is the possibility of substi-
tuting objects that have identical interfaces at run-time. The option of using
some object in another object's stead when both objects share the same inter-
face is called polymorphism. Polymorphism is therefore one of the fundamental
concepts of object-oriented programming.

2.2 Good Object-Oriented Design
In the previous section we introduced the key mechanism involved in object-
oriented design. But, as in chess, knowing the chess pieces and the moves
doesn't make you a good chess player. In this section we will therefore discus
what a good design is and what makes the difFerence between a good and a bad
design.

The quality of a design has an essential impact on the whole development
process. Considering the lifecycle of a software system, the design phase is
responsible for no more than 10 - 15% of the total effort; yet, up to 80% of

BUPT

12 CHAPTER 2. OBJECT-ORIENTED DESIGN AND MEASUREMENT

the costs are invested in the correction of erroneous design decisions that arise
during this phase iBMP87). So. what is good design? Coad defines good design
as follows:

A good design is one that balances trade-offs to minimize the total
cost of the system over its entire lifetime. [CY91b].

Thus, a good design is reflected by the minimization of costs, i.e. the costs of
creating the design, transforming it into a proper implementation, testing, de-
bugging and maintaining the system. Coad also emphasizes the fact that from
the formerly mentioned cost categories, the most substantial one is related to
maintenance, therefore he concludes: "f/ie most important charactenstic of a
good desxgn is that it leads to an easily maintained implementation.

More recently, Pfleeger also discusses the characteristics of a good software
design in following terms:

High-qualxty designs should have characteristics that lead to qual-
ity products: ease of understanding, ease of implementation, ease
of testing, ease of modification, and correct translation from re-
qnirements specification, Modifiability is especially important, since
changes to requirements or changes needed for fault correction some-
times result in design change. (Pfl98)

AII these statements above drove us to the following couple of conclusions:

• It is hard to comprehend and quantify the "goodness" of a design by itself;
therefore we have to apply the biblical principie: " by their fruit you will
vecognize them'\ i.e. we can get an understanding of the quality of the
design only by regarding its "fruits": testing efforts, maintenance costs
and the number of reusable fragments.

• We need criteria for evaluating a design not in order to build "perfect"
software but to help us avoid badness. Therefore, good design is a matter
of avoiding those chairacteristics that lead to bad consequences [CY91b].

It is impossible to establish an objective and general set rules that would lead
automatically to high-quality design if they would be applied. But on the other
hand heuristic knowledge reflects and preserves the experience and quality goals
of the developers. They also help the beginners to evaluate and improve their
design. Therefore, we are going to discuss next the most relevant criteria of
good object'oriented design^ and show the reflection of these criteria in terms of
design rules and heuristics. According to those criteria, a good object-oriented
design should have a manageable complexity, should provide a proper data
abstraction and it should reduce coupling while increasing cohesion.

*We considered a critcrion to be relevant if several authors identified it as such.

BUPT

2.2. GOOD OBJECT-ORIENTED DESIGN 13

2.2.1 Low Coupling
In an object-oriented design, coupling is "the interconnectedness between its
pieces'' [CY91b]. Coupling is an important criterion when evaluating a design
because it captures a very desirable characteristic: a change to one part of a
system should have a minimal impact on other parts; also the understanding of
one module should require the understanding of few other modules.

We are interested in coupling from the perspective of quality evaluation because
an excessive coupling plays a negative role on many externai quality attributes^.
We identified the following impact of high coupling on quality attributes:

• Reusability. The reusability of classes and/or subsystems is low when the
coupling between these is high, because a strong dependency of an entity
(class, subsystem) on the context where it is used, i.e. the rest of the given
system, makes the entity hard to reuse in a different context.

• Modularity. Normally a module (subsystem) should have a low coupling
to the rest of the modules. A high coupling between the different parts
(modules) of a system has a negative impact on the modularity of the
system and it is a sign of a poor design, in which the responsibilities of
each part are not clearly defined.

• Understandability and Testability. A low self-sufRciency of classes makes
a system harder to understand. When the control-flow of a class depends
on a large number of other classes, it is much harder to follow the logic
of the class because the understanding of that class requires a recursive
understanding of all the externai pieces of functionality on which that
class relies. It is therefore preferable to have classes that are coupled to a
small number of other classes.

Coad and Yourdon identify two categories of coupling: coupling between ob-
jects by method invocations {interaction coupling) and coupling between classes
through inheritance relations {inheritance coupling) [CY91b]. Budd proposes a
more refined classification of coupling types [Bud91], ending up with a ranked
list of coupling types (see Table 2.1) in which some coupling types are more
acceptable or desirable than others. The five types of coupling identified by
Budd are:

• Internai data coupling occurs when one class is allowed to modify the local
data values (instance variables) in another module (class).

• Global data coupling occurs when two or more modules (classes) are bound
together by their reliance on common global data structures.

• Sequence (control) coupling occurs when one module has to perform op-
erations in a certain fixed order, but the order is controlled by another
module.

^See also section 6.1 for a more detailed discussion on quality attributes

BUPT

14 CHAPTER 2. OBJECT-ORIENTED DESIGN AND MEASUREMENT

• Parameter coupling occurs when one module must invoke services and
routines from another, and the oniy relationships are the number and
ty-pe of parameters supplied and the type of the value returned.

• Inheritance coupling describes the relationship a class has with its parent
clajss (or classes^).

T y p e of coupl ing R a n k
Internai data coupling Strongly undesirable
Global data coupling Undesirable
Sequence coupling Undesirable
Parameter coupling Benign option
Inheritance coupling Useful, but sometimes dangerous

Table 2.1: A ranked list of the difFerent coupling types [Bud91)

The different aspects of coupling are quantified using a lau-ge variety of met-
rics. In Section 2.4.1 we summarize the metrics on interaction coupling and in
Section 2.4.2 the measure related to the inheritance lattice.

Ru les a n d Heur i s t i cs on Coupl ing

The principie of low coupling is reflected by all the authors that propose design
rules and heuristics for object-oriented programming. Although having different
forms or emphases they all converge in saying that coupling should be kept low.
We will illustrate next, by citing three different design rules on coupling, each
of these coming from a difFerent author:

Law of D e m e t e r . A method M of an object O shoxild invoke only
the methods of the following kinds of objects: itself; its parameters;
any objects it creates/instantiates or its direct component objects
lLH89j

Keep the complexity of a message connection as low as possible. If
a message connection involves more than three parameters, examine
to see if it can be simplified [CY91b] (JF88).

When we make a change we want to be able to jump to a single
clear point in the system and make the change. When you can't do
that you [..] either one class suffers many different changes ^diver-
gent change; or one change affects many classes ^ho tgun Surgery]
Arvange things so that, ideally, there is a one-to-one link between
common changes and classes (FBB"^99).

'if we consider the c ^ of multiple inheritance or the transitive closure of its parents.

BUPT

2.2. GOOD OBJECT-ORIENTED DESIGN 15

We axgued above about the necessity of having low-coupled systems. Yet, a
tension exists between the aim of having low coupled systems and the fact that
an amount of collaboration among objects (and thus coupUng) is necessary in
all non-trivial systems. Therefore, the goal in improving the quahty of a system
from this point of view is to reduce any unnecessary couphng.

2.2.2 High Cohesion
Cohesion is the complementary aspect of couphng. It describes the "degree to
which the elements of a portion of design contribute to the carrying out of a
single, well-defined purpose" [CY91b]. High cohesion at tiie class level signifies
that all of the elements of the class are strongly related. The balance between
low coupling and high cohesion is usually called modularity [Mey88] [Ern96].
The lack of cohesion affects essentially the quality of a system by reducing its:

• Reusability. Usually the lack of cohesion is due to the fact that more than
one functionality is incorporated in a single class. Such classes are hard
to reuse because of they are mixed with other functions that are usually
of no interest for the context in which they are going to be reused.

• Understandability. Because classes with low cohesion do not focus on one
and only one piece of functionality they are very hard to understand.
Normally such classes include'a large number of methods that do not all
belong semantically together. Therefore, it is often hard to group the
related methods in order to understand the services offered by the class.

• Modularity. If we consider cohesion at the module (subsystem) level, then
a weak cohesion means that the system is not properly divided in subsys-
tems, thus it has a lack of modularity.

Rules and Heuris t ics on Cohesion

Similar to coupling, there are many rules and guidelines that underline the
need of high cohesion in methods, classes, and also inheritance relations. In this
context, Coad and Yourdon state the following design rule on methods cohesion:

A method should carry one, and only one, function. A method that
carries out multiple functions is undesirable. One clue is the size of
the method: a method requiring 150 program statements, or one with
deeply nested blocks should be looked upon with suspicion! [CY91b].

Most of the design rules related to cohesion address are at the class level. Riel
defines the following set of cohesion heuristics, which are also stated by several
other authors [Lak96] [JF88]:

• A class should capture one and only one abstraction.
• Keep related data and behavior in one place.
• Spin off non-related information into another class, i.e. non-

communicating behavior.

BUPT

16 CHAPTER 2. OBJECT-ORIENTED DESIGN AND MEASUREMENT

The third tvpe of cohesion is the one related to the inheritance relations. A
subclass is misplaced in a class hierarchy if semantically it is not a specialization
of its base class. A sign of low inheritance cohesion is the selective use of the
interface from the base class. Riel addresses this issue in several heunstira
|Rie96). Next we quote next a description of the Refusid Bequest "bad-smell
that captures best the symptoms of a low-cohesive inheritance relation:

Refused Bequest. If a subclass inherits methods and data from its
parvnts, but dots not use them, then it "smells" bad. The smell of
refused bequest is much stronger ifthe subclass is reusing behavior but
does not want to support the interface of the superclass [FBB+99).

•

Riel phrases the Refused Bequest flaw, in terms of a design heuristics, by the
following statement ''Do not override a base class method with a NOP (NOP-
eration) method' [Rie96].

There are several metrics that quantify the principie of tight cohesion. There-
fore, in Section 2.4.3 we present the definitions of the most important metrics
on cohesion, with a special emphasis on metrics that measure class cohesion.

2.2.3 Manageable Complexity
Software systems tend to depart more and more from the principie of sim-
plicity and become increasingly complex. The increase in size and complexity
drastically afFects several quality attributes, especially understandability and
maintainability:

• Understandability, Classes that are huge and complex are hard to under-
stand by humans especially if the class is also low cohesive, incorporating
more than one functionahty.

• Maintainability. Because of the difficulty of understanding the code, such
classes are also hard to maintain, as any change to a part requires in
principie the comprehension of the whole class.

• Relxability and Testability. A class that is too complex is not only hard to
understand, but because of this it also haurd to test, which in effect makes
classes more error-prone and consequently reduces their reliability.

In Wirth's "plea for a lean software" (Wir95], the author states that "reducing
rxfmplexity and size must be the goal in every step in system specijication, design,
and in detailed programming". Design rules and heuristics that are related to the
issue of size and complexity require the limitation of the size of modules (classes,
methods, packages) and the simplification of the complexity of the control-flow.
Guidelines for object-oriented design hint at the maximum number of attributes
or methods in a class, at the depth of the inheritance hierarchy or at the size of
a class interface. We selected three design rules to iilustrate the guidelines on
reduced complexity.

BUPT

2.2. GOOD OBJECT-ORIENTED DESIGN 17

A cldss with 50-100 methods is probably a too complex abstraction
and it should be split [JF88]

Distribuie system intelligence horizontally as uniformly as possibly,
that iSy top-level classes in a design should share the work uniformly.
[Rie96]

Reduce the number of arguments, as messages with 6 or more argu-
ments are hard to read. Reduce the size of methods. Eliminate case
analysis. [JF88]

The reader may observe from the design rules above, that they are very eas-
ily quantifiable. As a consequence an important number of (object-oriented)
metrics were defined in the literature to measure the aspect of complexity. We
summarized them in Section 2.4.4. Reading through the definitions of these
metrics offers an even deeper understanding of the different aspects of complex-
ity.

2.2.4 Proper Data Abstraction
As we have seen in Section 2.1.1, data abstraction is an important character-
istic of an object-oriented design. The, most important quahty attribute that
is influenced by data abstraction is understandability^ because system with a
proper data abstraction display a good-level of modulaxity, which makes them
easy comprehensible. The abstraction process is first appUed after the analysis
phase in order to distill in the iniţial object-model^ - in which objects are repre-
sentations of concrete entities from the problem domain - the abstract classes
that model a more general concept.

The design rules related to choosing a proper data abstraction can be grouped
mainly in two categories: the first category is related to the complexity of the
identified abstractions] the second category deals with the morphology of class
hierarchies. The design guidelines in the first category measure the degree of
abstraction for a given class. Thus, a class that represents an improper abstrac-
tion may either contain too many or no reasonable abstraction. If a class is too
complex, it is very probable that it captures more than one abstraction. Such a
class is probably not only excessively complex, but also non-cohesive. Thus, we
observe that in this point the cohesion, complexity and abstraction good-design
criteria converge. In this context, Johnson and Foote emphasize that " a class
should represent a well-defined abstraction, not just a bundle of methods and
variable definition^^ [JF88].

The other category of design guidelines is related to the shape and composi-
tion of class hierarchies. Several authors [Rie96], [Lak96], [JF88] emphasized
that hierarchies should be deep and narrow, with the top of the hierarchy being
abstract, and that subclasses being specializations of their base-classes, avoiding
inheritance to achieve code reuse.

fa

BUPT

18 CHAPTER 2. OBJECT-ORIENTED DESIGN AND MEASUREMENT

Note that all the previouslv cited design rules are mapping the issue of proper
data abstraction to the structural aspects of the design. Therefore, d e s i ^ met-
rics can capture and quantify deviations from the abstraction critena of good-
design. As a consequence of the previous discussion on this criteria, the metrics
that are adequate for this purpose are those related to the size and complex-
ity of abstractions (see Section 2.4.4) and those that measure the inheritance
hierarchy (see Section 2.4.2).

2.3 Software Measurement
We open this section with a set of general definitions on measurement, and
measurement related concepts. The definitions are based on [FP97]:

Definition 2.5 (Measurement) Measurement is defined as the process by
which numbers or symbols are assigned to attributes of entities in the real world
in such way as to describe them according to clearly defined rules,

This definition of measurement requires some explanations and several further
definitions. The concepts used in this definition such as entity or attribute will
be defined next.

Definition 2.6 (Entity) We define an entity as the subject of the measure-
ment process. An entity might be an object, or a software specification or a
phase of a project.

Definition 2.7 (Attribute) An attribute is a feature or property of the en-
tity. For examplej an attribute of a software specification is its lengthj and an
attribute of a project phase may be its duration.

Informally, the assignment of numbers and symbols must preserve any intuitive
and empirical observations about the attributes and entities. In most situations
an attribute may have different intuitive meanings to different people. Thus we
have to define a model:

Definition 2.8 (Model) A model is the expression of a viewpoint conceming
the entity being measured.

Once a model has been chosen it becomes also possible to determine relations
between the attributes that describe the entity being measured. The need for
defining good models is particularly relevant in software engineering measure-
ment. For example, even a simple metric like the length of a program requires
a w l l defined model of programs, which enables us to identify unique lines un-
ambiguously. Similarly, the measurement of the effort spent on a phase of a
project needs a clear ''model" of the phase, which at least makes clear when the
process begins and ends.

BUPT

2.3. SOFTWARE MEASUREMENT 19

2.3.1 Classification of Measurements
We will classify the measurement activities using two difFerent criteria. The first
classification uses as criteria the way the measurement is realized. There are two
types of measurement corresponding to this type of classification:

• Direct Measurement of an attribute is a measurement that does not depend
on the measurement of any other attribute. In most of the cases the direct
measurement is simpler.

• Indirect Measurement of an attribute is the measurement that involves the
measurement of one or more other attributes. The indirect measurement
is normally more sophisticated.

The second classification analyzes the problem from another viewpoint. The
criteria used for this second classification is the use of measurement Corre-
sponding to this criteria there also two broad uses of measurement:

• Assessment Measurement of an attribute is a measurement that deter-
mines the current measure of an attribute, that is the value of the attribute
at the present moment of time.

• Predictive Measurement of an attribute is a measurement that depends on
a mathematical model relating A to some existing measures of yli, . . . ,
An- It gives a prediction of the future measure of A ba^ed on the present
measures of Ai, . . . , A^.

2.3.2 Representational Theory of Measurement
Although there is no universally agreed upon theory of measurement, most
approaches are devoted to resolving the following three main issues [Fen94]:

• Which types of attributes can be measured? (representation problem)

• How to define measurement scales? (scales and scale types)

• What kind of statements about measurements are meaningful? (meaning-
fulness)

We will present a brief overview of the representational theory of measurement,
pointing to the manner in which it addresses these three issues.

Empirical Rela t ion Sys tem

Direct measurements of a particular attribute possessed by a set of entities must
be preceded by the intuitive understanding of that attribute. This intuitive
understanding leads to the identification of the empirical relations between the
entities.

Definition 2.9 The set of entities C, together with the set of empirical relations
R, is called an empirical relation system (C, R) for the attribute in question.
Examp^s: For the attribute "height of people" we cam imagine empirical rela-
tions like "is tall", "taller than" and "much taller than".

BUPT

20 CHAPTER 2. OBJECT-ORIENTED DESIGN AND MEASUREMENT

Representation Condition
The measurement of the attribute that is characterized by the empirical relation
system (C, fl) reqiiires a mapping M into a numerical relation system
Specifically, M maps entities in C to numbers (or symbols) in N , and empirical
relations are mapped to numerical relations in F , in such way that all the
empirical relations are preserved. This is the so^called representation condition,
and the mapping M is called representation. Formally we may express the
representation M as follows:

Deflnition 2-10 The representation condition asserts that the correspondence
betxueen empirical and numerical relations goes two ways. Suppose for example
the binary relation is mapped by M to the numerical relation <. Then, formally,
we have the following expression of the representation condition:

Vx,y G C and € fi, 3 e P : x < y M{x) < M[y)

Example : We will use again the previous example. Suppose C is the set of all
people and R contains the relation "taller than". A measure M of height would
map C into the set of real numbers 7^ and "taller than" to the relation " > " .
The representation condition states that person A is taller than person B if and
only if M{A) > M{D).

Scale. Representation Problem

Based on the aspects defined and discussed previously in this section we can
give now the definition of the scale:

Deflnition 2.11 Being given an empirical relation system E = {C,R), a nu-
merical (formal) relation system F = {N,P) and a measure M : E F, the
triplet [E,F,M) is called a scale.

Having defined all these elements, we can look back at the issues that should
be solved by a theory of measurement, and we cein already answer the first
question: which types of attributes can be measured? This question can be
expressed formally as follows: being given an empirical relation system E and a
formal relation system F , the question that appears is: is there a representation
so that (JB, F, M) is a scale? This problem is called the representation problem.
If such a measure exists, then the attribute described by the empirical relation
system E is measurable. In other words, an attribute of a set of entities is
measurable if and only if it is possible to find a representation that satisfies the
representational condition.

If the representation problem is solved, then we can examine the next issue.
Supposing that for an empirical relation system E and a formal relation system
F we have found a measure, we can ask how unique this measure really is. For
example, there are many different measurement representations for the normal

BUPT

2.3. SOFTWARE MEASUREMENT 21

empirical relation system for the attribute of height of people. However, any
two representations M and M' are related in a very specific way: there is al-
ways a proportionality relation. This problem is called the uniqueness problem.
Therefore we define any admissible transformation as follows [FP97]:

Definit ion 2.12 The transformation from one valid representation into an-
other is called an admissible transformation. Formally, this definition can be
expressed as follows: let {E, F, M) be a scale. A representation M' is an admis-
sible transformation^ if {E,F,M') is also a scale.

Hierarchy of Scale Types

There are different scale types and they can be ordered in a hierarchy that re-
flects the richness of knowledge concerning the empirical relation system [Fen94].
We normally start with a crude understanding of an attribute and a means of
measuring it. Accumulating data and analyzing the results leads to the clari-
fication and re-evaluation of the attribute. Consequently, the set of empirical
relations is refined and enriched and the accuracy of measurement is improved.
In increasing order of sophistication, the best known scale types are: nominal,
ordinal, interval, ratio and absolute (see Table 2.2).

If we know the scale type, we can determine rigorously what kind of state-

Scale T y p e Admissible
Transformat ion

Stat ist ical
Opera t ion

Example

Nominal 1-1 mapping from M to M' Density of values labelling,
Ordinal Monotonie incr. function:

M(x) > M{y)
M\x) > M'{y)

Median,
" > " relation

air quality,
preferences

Interval M' = aM + b{a > 0) mean, standard
deviation

relative time
temper.(C,F)

Ratio M' = aM{a > 0) geometrical
mean

length,
temper.(K)

Absolute Identity
M' = M

all above number of
students

Table 2.2: Scales of Measurement [FP97]

ments about measurements are meaningful, and which are not. A statement
involving a measurement is meaningful if its truth or falsity remains unchanged
under any admissible transformation of the measures involved. The notion of
meaningfulness also enables us to determine what kind of operations we can
perform on different measures. For example, it is meaningful to use means for
computing the average of a set of data measured on a ratio scale, but not on an
ordinal scale. Medians are meaningful for an ordinal scale but not for a nominal
one (Table 2.2).

BUPT

22 CHAPTER 2. OBJECT-ORIENTED DESIGN AND MEASUREMENT

2.4 Object-Oriented Design Metrics
The goal of this section is to discuss the most important object-oriented metrics
defined in the literature in the context of good object-oriented design. In order
to offer a systematic approach, we selected four internai charactenstics that
are essential to object-orientation, - i.e. coupling, inheritance, cohesion and
structural complexity - and classified the metrics based on these criteria. At
the same time, for each characteristic, we discussed its impact on the externai
quality attributes (e.g. maintainability, testabihty, reusability).

2.4.1 Measures of Coupling
There are various ways of counting coupling. Next we briefly present these
types of definitions, illustrating them by some relevant measures found in the
literature.

Number of Collaborators

The declaration of an object of a remote class creates a potential collaboration
between the two classes. This is measured by metrics like Fan - Out [TS92],
DAC [LH93] or CBO [CK94] {Fan - Out = CBO). If two classes are col-
laborators, then a value of pne is added the Fan-Out irrespective of how many
messages flow between the two collaborators.

Number of Services

A second way of measuring coupling is this: when two classes collaborate, count
the number of unique services accessed, i.e. the number of distinct remote
methods invoked. One measure that counts the number of remote methods is
RFC [CK94), defined as the total number of methods that can be invoked from
a given class: RFC = NLM 4- NRM where NLM represents the number of
local methods and NRM the number of remote methods. Thus, the NRM
term of RFC is a coupling measure based on counting the remote services.

Number of Accesses

If one remote method is accessed from different parts of the client class, each
access could be counted once. This is the approach taken by Li and Henry in
defining the MPC metric, which is the "number of send statements defined in
a class [LH93] (also proposed in [LK94)). A similar type of definition is used
by Rajaraman and Lyu in defining coupHng at the method level. Their method
coupling MC measure [RL92] is defined as the number of non-local references
in a method.

2.4.2 Measuring the Inheritance Lattice
The need to measure inheritance structure is emphasized by all authors. They
suggest that the measurement should refer to the depth and the node density of

BUPT

2.4. OBJECT-ORIENTED DESIGN METRICS 23

the hieraxchy lattice. The measurement can be done both at the class and the
system abstraction level. At the class level, Chidamber and Kemerer define the
Depth of Inheritance Tree (DIT) [CK94] measure, also known in Hterature as
nesting level [LK94) or class-to-root depth [TS92]. At the system level maximum
and average DIT can be defined [HS96].

)

At the class-level the numher of classes inheriting a specific operation [TS92],
the numher of overridden methods (NORM) and new added methods [LK94] can
also be defined. Related to these measures, Lorenz and Kidd [LK94] define the
Specialization Index (SIX) metric as:

NORM' DIT
IWM

where NOM represents the total number of methods for the class. This mea-
sure is useful in differentiating between implementation suh-classing (low values
for SIX) and specialization suh-classing (high values of SIX).

Chidamber and Kemerer [CK94] introduce the numher of children metric (NOC),
suggesting that classes high in the class hierarchy should have more subclasses
than those lower down. Lorenz and Kidd [LK94] talk about an extension of this
metric that counts not only the immediate subclasses, but also all the descen-
dants for a given class [NOD)^ which is in our opinion more relevant than NOC.

Yeap and Henderson-Sellers discuss two measures designed to evaluate the po-
tential reuse within class hierarchies, especially for those found or destined to
be part of a class library. Both measures are defined at the system level.

The Reuse Ra t io (U) is given by the number of super-classes divided by the
total number of classes. A value near to 1 is characteristic for a linear hierarchy
(poor design), and a value near to O indicates a shallow depth and a large num-
ber of leaf classes. The Specialization Rat io (S) is given as the number of
subclasses divided by the number of super-classes. A value near to 1 indicates
a poor design, while a high value indicates a good capture of the abstractions
in the super-classes.

As Henderson-Sellers [HS96] correctly observes, further work on inheritance
metrics is urgently required, to address at least the following issues: renam-
ing and redefinition of methods, genericity and of course polymorphism, which
no one has yet seriously addressed so far. In [Mar99] [Mar98] we took the first
steps towards a rigorous approach of inheritance measurements. Another recent
contribution on the measurement of polymorphism is found in [PL99].

2.4.3 Cohesion Metrics
The definition of object-oriented cohesion metrics had an interesting evolution:
it started with an iniţial metric, called Lack of Cohesion in Methods (LCOM),

BUPT

24 CHAPTER 2. OBJECT-ORIENTED DESIGN AND MEASUREMENT

followed by several improvement proposed by different authors. We are covering
them in the coming sections, following the evolution of these definitions.

Lack of Cohesion in Methods - LCOM

The definition of this metric proposed by Chidamber and Kemerer [CK94] can
be informally summarized as follows: LCOM represents the diflFerence between
the number of pairs of methods in a class that use common instance variables
and the number of pairs of methods that do not use any common variables.

Henderson-Sellers [HS96] notes that there are two major problems with LCOM:
first, there are a large number of dissimilar examples, all of which give a O value
for LCOM; second, there is no guideline for the interpretation of any particular
value. This suggests that the requirements of LCOM have to include the ability
to give values across the full range of values, and the measure must give values
that can be uniquely interpreted in terms of cohesion.

Consequently, he defines an improved version of LCOM, named LCOM*, that
considers the notion of perfect cohesion and then represents every particular
case as a percentage of this perfect value.

Tight and Loose Class Cohesion

Another critic of the LCOM metric comes from Bieman and Kang in [BK95].
According to them, LCOM is eflfective in identifying the most non-cohesive
classes, but it is not effective in distinguishing between partially cohesive classes.
In their paper, the authors propose two cohesion measures that aie sensitive to
small changes in order to evaluate the relationship between cohesion and reuse.

The definitions of the two measures are based on the access of instance variables
by method pairs belonging to that class. Two methods are considered to be di-
rectly connected if both access at least one common instance variable of the class.
Two methods are considered to be indirectly connected if they access a common
instance variable through the invocation of other methods. Consequently, the
two measures are defined as follows:

• Tight ClcLss Cohesion {TCC) is the relative number of directly connected
methods.

• Loose Class Cohesion [LCC) is the relative number of directly or indirectly
connected methods.

In [Mar97a] we have evaluated the utility of these two {TCC and LCC) metrics
for detecting cohesion related design flaws, and found out that TCC is extremely
useful for this purpose, while LCC proved not to be appropriate.

BUPT

2.4. OBJECT-ORIENTED DESIGN METRICS 25

2.4.4 Measurement of Size and Structural Complexity

Applying size metrics at thq system level we can get a good overview of the
dimensions of the system, while using complexity metrics we axe able to make
a first assessment of the structural complexity of the given system. Applying
this category of metrics at the class level we expect, on the one hand, to detect
the classes that play an important role in the design, and on the other hand, to
find the classes that are exceedingly large or complex, i.e. classes that tend to
become "god-classes" (see Section 5.3.1).

Size Metr ics

As object-oriented systems have various levels of abstraction (e.g. system level,
class level, method level) size measures can be defined for each level. At the
system level a commonly used metric is number of classes in the system [TS92]
[LK94], which can be divided in number of abstract and concrete classes [TS92].
At the lowest abstraction level, method size [Lor93] can be indicative of the
"object-orientedness" of a class, as classes with too large methods suggest a tra-
diţional conception. A similar indicative may be, at the class level, the number
of methods per class. A very low value may suggest that some classes should be
merged, while excessively high values indicate the need to decompose some of
the classes. Li and Henry define two size metrics [LH93]: SIZEl is the number
of semicolons in a class and SIZE2 is the number of attributes plus the number
of externai methods for a class.

It seems that size and structural complexity measures are mainly based on
two simple metrics: Number Of Attributes {NOA) and Number of Methods
{NOM) per class. Lorenz and Kidd [LK94] differentiate between the number
of instance variable {NIV) and the number of class variables [NCV), where
NOA = NIV + NCV.

If counting only the attributes of complex types we come back to the defini-
tion of the DAC metric [LH93] discussed earlier in the context of coupling
measures. In counting NOM we can differentiate on the one hand between
externai (public) methods {NEM) and internai (private) ones {NHM), and
on the other hand between instance [NIM) and class methods [NCM), where
NOM = NEM + NHM = NIM + NCM.

St ruc tura l Complexi ty Measures

Unlike simple data-like attributes, methods are not coherent in the distribution
of their size and structural complexity. In order to measure the structural com-
plexity for a class, instead of counting the number of methods, the complexities
of all methods must be added together. This is the essence of the Weighted

BUPT

26 CHAPTER 2. ODJECT-OIUENTED DESIGN AND MEASUREMENT

Method per aoss {WMC) metric of Chidamber and Kemerer [CK94]:

n

t=l

where c» is the static complexity of each of the n methods of the class. If c» is
considered unitary, we then are back to the NOM size metric, i.e. WMC =
NOM, The authors of the metric note that ''complexity is deliberately not
defined more specifically here in order to allow for the most general application
of the metric' (CK94]. This measure could be used in reverse engineering for
detecting the central control classes in a system, based on the assumption that
these classes are more complex than the others (model capture).

BUPT

Chapter 3

Measurement and Design
Quality

The quality assessment and improvement of object-oriented design is hard. Soft-
ware metrics are a powerful means to evaluate and control the quality of design.
However metrics also pose some problems of their own: it is hard to provide a
relevant interpretation for software mea^urements.

Therefore, before presenting our approach, we will provide in this chapter the
state-of-the-art of existing approaches related either with the qualitative evalua-
tion of the design or with the relevant interpretation of object-oriented metrics.

3.1 Classification of Approaches
We have shown that one of the main difRculties resides in the gap that exists
between quality as it is perceived and expressed from outside the software sys-
tem, and the measurable characteristics of the system that can be assessed at
the design and implementation level.

Therefore, we need approaches, strategies and techniques that would bridge
this gap. Such an approach must have the following characteristics:

• Relevant measurement in terpre ta t ion. The approach should increase
the relevance of measurements interpretation, by providing precise met-
rics definitions and interpretation models that can be efficiently applied
for the evaluation of design. But the interpretation of measurements in
isolation is in most cases not enough. Therefore, the approach must pro-
vide mechanisms for composing the interpretation models of individual
metrics.

• Quantif icat ion of design principles and rules. The approach must
provide a methodology for transforming informai design rules and prin-

27

BUPT

28 CHAPTER 3. MEASUREMENT AND DESIGN QUALITY

ciples into a quantifiable (measurabie) expression. This would allow the
engineer to inspect the design and validate it against these rules, at source
code level.

• Connec t ion be tween ex t e rna i qua l i ty a n d des ign. The approach
must support a quality model in which externai quality attributes are
expressed in terms of the design characteristics, more precisely, in terms
of design principles and rules that can be measured.

As a consequence of the aforementioned issues, we classifîed the existing work
in this field and identified the following three categories:

1. Measurements Interpretation. Contributions that fall in this category are
focused on providing proper means for defining metrics and interpret-
ing measurement results. The contributions that fall in this category are
mainly concerned with questions like: How to define metrics in an unam-
biguous manner? How to make measurements interpretation more usable
and relevant? In Section 3.2 we are going to cover some of the main ef-
forts related to the enhancement of the reliability and efEciency of metrics
definitions and interpretation models.

2. Design Inspection. Moving on, we see this current work related to the
approaches that apply metrics or complementary techniques for design
inspection. Here we identify here two subclasses of contributions: one is
dealing with the recovery of design information or design decisions from
code (Section 3.3) while the main concern of the other category of contribu-
tions is to find ways to identify and localize design problems (Section 3.4).
Thus, the approaches related to design inspection are looking for answers
to the following question: How to apply metrics in order to understand
and evaluate the design of object-oriented systems?

3. Quality Models. Finally, research in this direction is concerned with pro-
viding a proper quality model, as a means to bridge the gap between ex-
ternai quality attributes and metrics. In Chapter 6 we propose a new type
of quality model that starts exactly from the drawbacks of the traditional
approach (i.e. the Factor-Criteria-Metric paradigm). Therefore, in order
to increase the readability of this work, we postpone the entire discussion
on existing approaches concerning quality models till Section 6.1.

3.2 Definition and Interpretation of Metrics
In this section, we are going to discuss the main contributions related to the way
metrics are defined and interpreted. We first describe the two frameworks for
metrics definition proposed by Briand et.al. and afterwards, we discuss about
paradigms for the interpretation of metrics, as these are strongly related with
our work.

BUPT

3.2. DEFINITION AND INTERPRETATION OF METRJCS 29

3.2.1 The Strive for Rigorous Metric Definitions
As already mentioned in the first chapter, through the last decades, software
metrics have been brought to the attention of the software engineering commu-
nity, as they provide a quantitative means to control the quaUty of software.
As a consequence, an impressive number of metrics have been defined in the
past, to the point where we can really speak about an inflation of such metric
definitions. But there are a lot of problems with these definitions. This fact has
been emphasized in the past by numerous authors. We summarized the main
critiques as follows:

• Many times in the literature we find multiple metrics measuring the same
attribute in different manners and offering contradictory results. This is
mainly because the measures do not properly capture the attribute to be
measured [Fen94] [FP97].

• Often, measures are not accepted in the industry because the concepts
they work with are not precisely defined [BSB96].

• Empirically defined measures are "highly parochial, highly limited and
highly unscientific" [HS96]. Thus, their use is restricted to the strict con-
text in which they are defined and their proper use in other contexts is
extremely reduced.

Because of all these reasons, in recent years several works addressed the issue
of metrics definitions. Kitchenham, Pfieeger and Fenton proposed a framework
for measurement validation [KPF95) based on identifying the elements of mea-
surement and their properties (structure model), identifying how these elements
are defined when constructing a measure (definition models), and defining ap-
propriate theoretical and empirical methods for validating the properties and
definition models. Yet, we have only found one reference in the literature, where
the framework was applied [HCN98] for the validation of a metrics suite.

Briand et al. noticed that the definition of metrics in general, and object-
oriented metrics in particular, lacks a standard terminology and formalism.
Consequently, the potential uses of many existing metrics become unclear, and
the relation between complementary measures that should be used together are
hardly specifiable. Therefore, the authors propose two comprehensive frame-
works, one for measuring coupling [BDW99] and the other for measuring co-
hesion in object-oriented systems [LB98]. The main contribution of that work
is that it offers a standardized terminology and formalism that ensures the
consistency of all metrics definitions and provides a means to classify metrics
belonging to the same category.

Briand et al. affirm that the frameworks are intended to ^^ support the definition
of new measures and the selection of existing ones based on a particular goal of
measuremenf [BDW99]. Yet, although a proper formalism is an indispensable
basis for this intention, the process of properly selecting and correlating metrics

BUPT

30 CHAPTER 3. MEASUREMENT AND DESIGN QUALITY

for a particular goal needs mechanisms situated at a higher level of abstraction
than those provided by such a framework. In conclusion, a rigorous framework
for metrics definitions is absolutely necessary in order to build higher-level ap-
proaches that would eventually serve a given measurement goal, as we will prove
in the following chapter (see relation between Section 4.2 and Section 4.3).

3.2.2 Goal-Question-Metric Paradigm
As we noted in the previous statement, any measurement activity must have
clear objectives [Fen94). Measurements are often not goal-oriented and there-
fore, the collected data roves to be of no use in the end. At the beginning of
each experiment, it must be clear if the goal of the measurement is assessment
or prediction of attributes, which are the entities involved in the experiment
and which are the significant attributes to be measured. In this context, the
Goal-Question-Metric (GQM) model (BR88] spells out the necessary obligations
for setting objectives before embarking on any software measurement activity.

The GQM approach provides a framework involving three steps (Figure 3.1):

1. List the major Goals o{ measurement.

2. From each goal derive ţhe Questions that must be answered to determine
if the goals are met.

3. Decide what Metrics must be collected in order to answer the questions.

The goal indicates the purpose for collecting the data. The questions tell us
how to use the data and they help in generating only those measures that are
related to the goal. In many cases, several measurements are needed to answer
a single question; likewise, a single measurement may apply to more than one
question.

What is missing from the GQM approach is the model based on which mea-
sures are combined to provide an answer to the question. Therefore, the iniţial
GQM paradigm was improved by Shepperd (She90) by an additional component
that connects GQM with models and theories, as depicted in Figure 3.1.

The GoaUQuestion-Metric paradigm is only an abstract approach that needs to
be instantiated for different investigation goals. As we will see in the next chap-
ter, a methodologj^ for defining higher-level interpretation rules (Section 4.4)
must be based on the improved version of the Goal-Question-Metric approach.

3-3 Design Recovery
Design recovery involves the examination of a legacy code in order to reconstruct
design decisions taken by the original implementers. Some approaches are based
on analyzmg both the source code and the executable images, but as we base

BUPT

3.3. DESIGN RECOVERY 31

Goal
Identification

Intuitions
r V''

{ j , ̂ ^ ̂ ^ ^ " '

, I
i Models

1

m

Questions

m

n

Metrics

Figure 3.1: The Goal-Question-Metrics Paradigm [BR88]. Dotted elements rep-
resent Shepperd's improvement [She90] of the iniţial approach.

our approach on static analysis, we will consider next only those approaches
that capture the design by analyzing the structure of the code.

3.3,1 Finding Refactorings via Metrics
A recent paper [DDNOO] describes a suite of metrics-based heuristics that can
be used for the detection of refactorings operated through successive versions
of a software system. For each heuristic, the authors identify a set of adequate
metrics, based on the previously discussed GQM approach. These metrics are
then combined in a quantifiable rule, based on a step-wise defined "receipt" - as
named by the authors. Formally, the "receipt" is expressed in terms of metrics
variations between the successive versions of the analyzed system. The metrics
used for this purpose are all simple size measures referring to methods, classes
and inheritance lattices. Some of the refactorings that the authors claim to
detect are: Split into Superclass^ Merge with Subclass, Move to Subclass, Split
Method.

In relation with the goal statement of this dissertation, the main contribu-
tion of this work is that it describes a detection technique, which uses object-
oriented metrics to identify design fragments that have particular properties. In
this context, the idea to express the detection rule as a "quantifiable heuristic"
by combining metrics (more precisely, metric variations) is especially valuable.
Moreover, the heuristics proposed in that paper find those parts of a system
that are often refactored; therefore, these parts are supposed to have an un-

BUPT

32 CHAPTER 3. MEASUREMENT AND DESIGN QUALITY

stable design. It is probable that such design fragments present some sort of
design.flaws. This aspect relates it even more with our "quest" for quality at
the le vel of design.

Yet this approach has also several disadvantages. The fact that the technique is
based on several versions is a major limitation, as for most of the systems this
precondition cannot be fulfilled. Another drawback, noted even by the authors,
is its lack of scalability with respect to the number of changes. Thus, if a num-
ber of subsequent transformations were applied on the same code fragment the
technique becomes very imprecise. A third limitation is its high dependency on
the assumption of name preservation. Consequently, if design entities (e.g. a
class) are renamed in later versions, the approach becomes unusable for those
entities.

3.3.2 The Class Blueprint

Lanza and Ducasse present in (LDOlJ a new approach on code and design un-
derstanding, and more precisely on the understanding of classes based on met-
rics combined with a new visualization technique, which they call the "class
blueprint". The authors decompose the elements of a class into five layers (e.g.
the initialization layer, containing the methods used for constructing objects;
the interface layer consisting of the methods that can be invoked from outside
the class)

In a "class blueprint" the elements of a class are graphically represented as
boxes whereby their shape, size and color reflect semantical information. The
two dimensions of the box are given by two metrics, - e.g. for attributes, the two
dimensions are: the number of accesses from within the class, and respectively
the number of accesses from outside the class. The color is used to represent
supplementary information, e.g. the layer to which the entity belongs, or the
fact that a method is overridden.

Based on the "class blueprint" the two authors propose a categorization of the
classes, from two perspectives: first they look at each class in isolation, and then
they enhance the categorization by adding the inheritance perspective. Another
especially interesting aspect is a technique that allows the Identification of three
types of suspicious class blueprints.

The main contribution of the above approach is that it helps the engineer vi-
sually detect in an easy manner the classes with special "property-patterns",
during the development or reengineering of a system. The fact that the shape
of the boxes representing classes and methods are given by metric values brings
it close to the desirable approach described in the beginning of this chapter.

But this approach has also two important limitations: first, the filtering mech-
anism is missing, i.e. in this approach the engineer must visually detect the

BUPT

3.4. IDENTIFICATION OF DESIGN PROBLEMS 33

class-patterns from the whole image, which makes the approach hard to use for
larger systems. The second limitation is referring to the mechanism by which
metrics can be combined in a box: due to the visual representation, the approach
limits the number of metrics that can be used to two, which is insuflicient for
the representation of complex rules. In addition to that, the way of combining
metrics in order to express metrics-based rules is limited to a direct and simple
combination given by the relation that exists between the height and the width
of the box.

3-4 Identification of Design Problems
In Section 2.2 we discussed a set of criteria for good design. According to those
criteria, a good object-oriented design should have a manageable complexity,
should provide a proper data abstraction, and it should reduce coupling while
increasing cohesion. Why do we need these criteria? On one hand, we need
them because they help us define what good design is; but on the other hand
they can also serve a more pragmatic goal: they help us design systems that
avoid badness. We are not trying to build perfect software systems, but software
that can overcome the challenges over its lifetime [CY91a]. Thus, good design
is more a matter of avoiding those characteristics that lead to bad consequences.

Therefore, in this section we are covering the existing contributions related
to the identification and localization of design weaknesses that lead to systems
that are "rotting"[MarOO].

3.4.1 Design Principles and Heuristics
Although it is impossible to define a general set of objective rules in order to
evaluate the quality of a design, heuristic knowledge reflects and preserves the
experience and quality goals of the developers. They also help beginners evalu-
ate and improve their design. Design rules contain criteria for the identification
of criticai design fragments and they also suggest the code transformation that
should be performed (e.g. "If a class has too many methods, split it!").

In the context of this work the terms: design principie, design mie and de-
sign heuristic should be understood as defined in [Ern96]:

Defînition 3.1 (Design Heuristic) A statement or an informationj distilled
from the experience of working with a software development methodology, whose
application improves the quality of the design is called a design heuristic.

Definition 3.2 (Design Rule) A design heuristic that states an imperative or
an interdiction conceming the characteristics of a design is called design rule.

Defînition 3.3 (Design Principie) A design heuristic that expresses an ab-
stract criterion for the evaluation of a design is called a design principie.

BUPT

34 CHAPTER 3. MEASUREMENT AND DESIGN QUALITY

The impact on quality of applying design principles in object-oriented p t e m s
was repeatedly proven by experiments [BBDOl), [BBDD97], [AM96]. In a re-
cent experiment conducted by Briand et.al. [BBDOl], the authors analyzed the
impact of applying design principles such as those defined by Coad and Yourdon
[CY91a] (CYQlb) on the maintainability of object-oriented designs.

A literature survey showed a constant and important preoccupation for this
issue: beginning with the design guidelines initially proposed by Johnson and
Foote (JF88] in 1988, enriched by Riel (Rie96l and Lakos [Lak96]. Most of these
rules, guidelines and heuristics are synthesized in [Băr98].

While in the past, several authors have proposed criteria for a good object-
oriented design (CY91b) [Pfl98l (Mey88l, others were concerned with identify-
ing and formulating design principles (Mey88] [MarOO] [Lis88], rules [CY91b]
[Mey91], and heuristics (Rie96l [JF88) [Lak96] [LH89] that would help develop-
ers fulfill those criteria while designing their systems.

An alternative approach to disseminate heuristical knowledge about the qual-
ity of the design is to identify and describe the symptoms of bad-design. This
approach is used by Fowler in his book on refactorings [FBB"^99] and by the
"anti-patterns" community (BMB"^98l as they try to identify situations when
the design must be structurally improved. Fowler describes around twenty code-
smells - or "bad smells" as the author calls them - that address symptoms of
bad design, often encountered in real software systems.

AII the approaches mentioned in this section have two important drawbacks:

1. The first major limitation of the design rules and guidelines is their hetero-
geneoxis level of abstraction, The rules, even when proposed by the same
author (e.g. Riel (Rie96]), may vary from very concrete and ' 'sharp" rules
(e.g. "a class should not contain more than six objects" or "avoid multiple
inheritance") to abstract and general guidelines (e.g. "Avoid centralized
control" or "Minimize the coupling between classes"). Because of this
heterogeneity this heuristic knowledge is hardly applicable in a coherent
and systematic manner. In practice, we noticed that concrete rules tend
to be fervently applied, while the genergil guidehnes tend to be ignored.
But usually the heuristics with a higher impact on the quality of design
are unfortunately those that are more abstract, as they touch the essence
of good-design in a manner that is more widely applicable. These remarks
bring us to the second drawback.

2. One of the main reasons why sharp and concrete rules are more appealing
to an engineer is the fact they are easy to quantify. Most of the software
design metrics are based or inspired by concrete design rules. Unfortu-
nately, most of the heuristical knowledge is hard to quantify in terms of
a single metric. Therefore, the quantification of most design heuristics is
still very vague.

BUPT

3.4. IDENTIFICATION OF DESIGN PROBLEMS 35

Although we partially agree with Fowler stating that "no set of metrics rivals
informed human intuition" [FBB"^99], the latter has a big disadvantage: it does
not scale up with the dimensions of today's software. Therefore, in order to
find and improve design fragments that violate the principles of good design
we need mechanisms and methodologies that support the quantifîcation of this
heuristical knowledge.

3.4.2 Quantifîcation of Design Principles
In a suite of articles [Mar96b], [Mar97c], [Mar97b], [Mar96c] summarized in
[MarOO], Martin synthesizes a number of object-oriented design principles. The
principles are organized in two levels of abstraction: principles for the class de-
sign and principles for package architecture. Beyond the main contribution of
putting together the major principles of object-oriented design, Martin's papers
bring another contribution which is relevant to our work: the aut hor proposes
a set of metrics for quantifying a couple of design principles [Mar97c].

We will illustrate Martin's approach by one of these quantified principles, i.e.
Stability Dependency Principie (SDP). This principie, related to the stability
of packages, is first formulated in abstract terms, as follows: '' Depend in the
direction of stahilitx/\ In this form, the principie is hard to apply. Yet, the au-
thor "distills" the principie and identifies two direct measures: one measuring
the efferent coupling (Ce) of the package and another measuring the afferent
coupling (Ca). Based on these two metrics, Martin defines the instability factor
I as :

1 = Ce
Ce+Ca

and rephrases the principie as follows: ^^ Depend upon packages whose I metric is
lower than yours^^. In other words he succeeded in expressing the SDP principie
in terms of metrics. This highly increases the usability of this principie, and
also allows to automatically check whether a given package structure is "SDP
compliant".

Unfortunately, Martin's approach is limited to the quantifîcation of two princi-
ples, both defined at the package level. Thus, the author does neither provide
nor suggest a systematic methodology for quantifying further design principles
or rules.

3.4.3 Identification of Structural Problems
In [Ciu99], [CiuOl] we find an alternative approach to problem detection based
on violations of design rules and guidelines. The rules are specified in terms of
queries, usually implemented as Prolog clauses. This approach focuses on struc-
tural properties that can be fully automatically detected, pointing directly to
the "criticai design fragments". These properties are specified as "sharp" rules,
the result of applying such a query being a bipartite decomposition of the enti-
.ties of the system, i.e. those that violate the rule and the others. Compared to

BUPT

36 CHAPTER 3. MEASUREMENT AND DESIGN QUALITY

this method, the metrics-based approach is focused more on " f ^ z y " guidelines
- e g "a class should not be strongly coupled to other classes . This requires
a multi^partite decomposition of the entities (e.g. "very strong coupled , nor-
mally coupled", "loosely coupled").

Thus, this approach is supposed to detect "dark" parts of the system in a
highly-automatized manner, but it can hardly detect the "gray" areas of a
project, which are more often encountered in software systems. Therefore, an
approach is needed that can also detect the "gray" parts of a design. This type
of detection is more difficult because the measurement results always need an
interpretation to bring us to the criticai design fragments.

Concerning its relation to design measurements, although Ciupke takes advan-
tage of some simple metrics for identifying several design problems, his approach
is not based on metrics. In fact, the author deUmits his approach from the
metrics-based ones, as he doubts both the ability of metrics to serve for the
Identification of design problems, and the ability of such approaches to be ex-
tensible with respect to the set of detectable problems. In the following chapter,
we will prove both hypotheses as wrong.

Another limitation of this approach is its omission to explicitly reiate the de-
tection of design problems td any higher-level quality goal. Because of this, the
approach can't help us understand the relevance of the detected problems in
respect to the investigation goal. In conclusion, the approach is an important
contribution towards the improvement of design structure in object-oriented
systems, but because of the before-mentioned reasons it is unable to reach the
goal that we stated in the beginning.

3.4.4 Frameworks Consolidation Based on Metrics

In her dissertation Karin Erni [Ern96) (EL96] proposes a metrics-based approach
for improving the consolidation phase of framework development, by speeding-
up the detection of "hot spots" in the framework. Erni noticed that in order
to detect design problems, metrics must be used in correlation, and they must
be used in conjunction with a quality model. Thus, the author introduces the
multi-metric concept, as an n-tuple of metrics expressing a quality criterion (e.g.
modularity). Thus, Erni suggests that a multi-metric should be regarded as a
quality profilc. In other words, a quality criterion in Erni's approach becomes
associated with a multi-metric instead of being associated with a number of
metrics [MRW77]. The metrics that are part of a multi-metric may be weighted
by the user depending on its their degree of relevance to the quality criteria that
they are associated with. Based on the inheritance or dependency contexts, a
multi-metric may even characterize even a cluster of related classes.

The main contribution of Erni's work is that it provides one of the first metrics-
based approaches for the identification of design problems. In this context, her

BUPT

3.5. REFINED STATEMENT OF GOALS 37

emphasis on defining and using a higher-level measurement interpretation mech-
anism, and her quality-driven approach, makes it a valuable contribution to the
state-of-the-art.

But is a multi-metric a proper mechanism to bridge the gap between an ex-
ternai quality goal (e.g. reusability) and the quaHty measured at the level of
the design structure? After a detailed anaJysis of the approach, we noticed
several drawbacks that severely hmit its further usabiUty:

• Multi-metrics lack abstraction and encapsulation. As a higher-level "qual-
ity profile", we expected multi-metrics to hide the multitude of component-
metrics from the engineers, so that they can "forget" about numbers and
reason in the more abstract terms of principles and rules of good-design.
But using Erni's approach the engineer must still interpret and reason
in terms of numbers. The reader may argue that multi-metrics are the
expression of a quality criteria. But this does not add considerably more
abstraction than the one provided by the association between a quality
criteria and a set of metrics, in a Factor-Criteria-Metric quality model
[MRW77]; and therefore, - as we will explain in detail in Section 6.1.3 -
this is far from being satisfactory.

• Multi-metrics lack specificity. As a (parţial) consequence of the previous
remark, multi-metrics are unable to describe a higher-level design problem
in terms of metrics; multi-metrics allow us to build "metric-clusters", but
they do not support the definition of flexible metrics-based design rules.
Because of this, it is very hard to find improvement solutions, as the results
of a multi-metric are not explicitly associated with a higher-level design
problem. Thus, with multi-metrics we are still in the sphere of symptoms,
rather than moving to the sphere of real design problems.

• Trend-analysis is not applicable for single-version systems. Erni uses
trend-analysis techniques to identify the suspects from the results of a
multi-set. This is an interesting and useful approach for the cases where
multiple versions of the analyzed systems are available. But in most of
the cases, especially for legacy systems, the only available axtifact is the
source-code of a single version of the system. Thus this part of Erni's
approach is strictly limited to multi-version systems.

3.5 Refined Statement of Goals
This chapter has analyzed the different approaches and techniques related to the
assessment of design quality in object-oriented systems using software metrics.
We reached now the point where we draw a line, and based on the limitations and
drawbacks encountered in the analyzed approaches, we refine the goals of this
dissertation. For a systematic approach, we will follow, in a step-wise fashion,
the sequence of criteria presented in the beginning of this chapter (Section 3.1)

BUPT

38 CHAPTER 3. MEASUREMENT AND DESIGN QUALITY

for the characterization of an ideal approach and the classification of existing
approaches:

• Def îne composable measurement interpretation models. In other
words, the first precise goal would be to provide a mechani^ that sup-
ports the composition of interpretation models for metrics ia higher-level
expressions that would provide more meaningful interpretation results.

• Define a methodology, usable in practice, for quantifying infor-
mai rules related to the design. Such a methodology must depend
only on the source code of the analyzed system, and it must be scalable,
i e. it must be especially applicable on large-scale systems. This way, for
the first time, we will be able to measure what is important for the design
and not only those isolated aspects currently captured by metrics. This
would increase the relevance of measurement for the assessment of design.

• Define a suite of quantified expressions of design rules and heuris-
tics that can identify can identify poorly-designed fragments. The suite
must be usable to detect real design flaws and not only symptoms of poor
design. These quantified rules must be defined so that they are able to
capture relevant design problems at different levels of abstrax:tion, from
the method level up to the issues related to subsystem-design.

• Define a new quality model that allows externai quality attributes to
be expressed in terms of the quantified expression of good design knowl-
edge, i.e. let the quaUty attributes "communicate" with design principles
and rules, not with large sets of measurement results that are hard inter-
pret. Obviously, if this goal is reached, the new quality model will provide
the link between externai quality attributes and the metrics-based rules
that evaluate the conformance to the principles of good object-oriented
design.

BUPT

Chapter 4

Detection Strategies

In the beginning we stated that the goal of this work is to increase the relevance
of measurement interpretation in order to support the assessment and improve-
ment of quality in object-oriented systems. In the previous chapter we identified
a set of desirable characteristics for an approach that would address this goal.
After analyzing several approaches, the following conclusion was reached: in
spiţe of the increasing number of efforts in this field, there is still an uncovered
gap between the things that we measure'at the design and implementation level,
and the things that are really important in terms of quaUty characteristics. This
gap is caused mainly by the fact that the abstraction level of all mechanisms
currently used for interpreting metrics results is too low to capture the design
aspects that are relevant for the assessment and especially for the improvement
of design quality.

Through the next three chapters, the current one included, we propose a com-
plete approach for closing this gap between qualitative and quantitative state-
ments concerning object-oriented design. The approach is based on higher-level,
goal-driven methods for measurement interpretation.

In the given context, this chapter introduces a new concept and mechanism,
called Detection Strategy, which supports the definition of higher-level interpre-
tation rules, in order to increase the relevance of measurement results. Any
interpretation is deemed relevant only if it provides the engineer with Informa-
tion that is useful in the context of the investigation goal.

The chapter starts with a description of the phases of the measurement pro-
cess (Section 4.1) used throughout this work. In any discussion regarding the
measurement process two questions impose themselves as particularly relevant:

• What is the object of our measurements?

• How do we interpret the results in a relevant manner?

39

BUPT

40 CHAPTER 4. DETECTION STRATEGIES

Therefore, in the foUowing part of the chapter (Section 4.2), we define the
boundaries of our measurement activities in terms of a meta-model for object-
oriented systems.

The last part of the chapter (Section 4.3) deals with the problem of relevant
measurement interpretation. In this context we introduce the concept of Detec-
tion Stmtegy as the proper mechanism for bridging the gap between higher-level
investigation goals and measurements, by defining quantified rules that are ca-
pable of expressing an investigation goai. We will both present the anatomy of
a detection strategy and also provide a methodology for defining instances of
this mechanism.

4.1 A Goal-Driven Measurement Process

When assessing the quality of object-oriented design by using metrics a num-
ber of two aspects can be identified: a precise investigation goal and a precise
approach, i.e. o metrics-based one. On the other hand, the only available (and
reliable) input is the source-code. In this context we need a goal-driven mea-
surement process to describe the phases of going from the source code to the
results expected for the investigation goal that drives the measurements. The
phases of such a process are described in Figure 4.1.

Source Abstract ^
Code

7

Metrics

Investigation
Goâl

î [nsjpecţ Interesting
Deisign Entities

I I I I

^ Interpret

Compute

Metric
Results

Figure 4.1: The phases of a goal-driven measurement process

BUPT

4.L A GOAL-DRJVEN MEASUREMENT PROCESS 41

4.1.1 Investigation Goals
Before describing the phases of the measurement process we want to take a closer
look to tlie issue of investigation goals. The investigation goal is the driving
force for applying metrics, the reason why the source code is analyzed using
metrics. Generally speaking, metrics can serve a wide range of investigation
goals, from cost and eflFort estimation to evaluation and comparison of tools and
methods. But focusing on product metrics and especially on those that quantify
the structure of object-oriented programs at least the following investigation
goals can be identified:

• Code Understanding. In order to understand and to manipulate an object-
oriented legacy system, it is necessary to capture its design, its architecture
and the relationships between the different elements of its implementation.
A common problem with many systems is the lack of proper documen-
tation. Consequently, we need reverse-engineering techniques to extract
design information from the code. [BBC"'"99a].

• Identification of Reusable Components. In the last decade important ef-
forts were invested in extending the scope of reuse beyond the traditional
reutilization of different libraries, up to the identification and extraction
of components found in legacy systems [CB88] [TriOl], or even to extract
frameworks [BBC"'"99a]. Thus, a possible goal for investigating the struc-
ture of a system would be to find these reusable components.

• Detection of Design Weaknesses. Probably the most frequent goal, and
also the one that is closest to the interest of this thesis, is the use of metrics
to detect flaws that occur at design level.

4.1.2 Phases of the Process
The first phase of the measurement process deals with the transformation of
source code into a more abstract representation form, in which only those el-
ements are kept that are relevant in respect to the measurement activities to
be performed. The first phase of the process is thus an abstraction phase. The
resulting representation is usually called meta-model oi semantic graph. A meta-
model has the main advantage of being easier to manipulate and understand
than the code itself. AU the metrics are defined as queries on the meta-model.

The second phase of the process is the definition of metrics. Although uncount-
able number of metrics has been defined in the literature, most of them have
confusing definitions [She90] [Zus92]. The main cause for this is the lack of a rig-
orous definition of the measured entities [KPF95), i.e. of a precise meta-model.
In our view, the definition of metrics is strongly related to an investigation goal.
Metrics should be defined out of the necessity to contribute to the quantification
of a specific investigation goal.

BUPT

42 CHAPTER 4. DETECTION STRATEGIES

The third phase of measurement requires the computation of metrics. Met-
rics computations are defined as sequences of queries on the meta^model. There
are different concrete implementations imaginable, depending on the implemen-
tation of the model, but in all cases the meta-model can be seen as a repository
of design information, while metrics are queries defined on this repository. As a
result of computing a metric, a number is associated to each program element
of a certain type, measured by that metric.

The last phase, i.e. the interpretation of measurement results, is probably the
most criticai step as it cannot be fully automatized, like the previous phase
which involved the computation of metrics. This interpretation is based on an
interpretation model for that particular metric. During the interpretation phase,
the iniţial data set of measurement results is filtered, keeping only those program
elemente (and their correspondent metric value) that are supposed to be inter-
esting for the engineer, in conformity with the interpretation model, whereby
the interpretation models are dictated by the investigation goals. As depicted
in Figure 4.1 this phase is decisively influenced by the investigation goal, as the
entire interpretation is driven by it. This explains why we often find in the
literature definitions of metrics together with interpretation models that are ir-
relevant for our context. The lack of relevance is due to the divergence of the
investigation goals. The interpretation process cannot be completely automa-
tized, and therefore the interpretation of results must be manually validated in
the initiaJ source-code (see Fig 4,1).

4.2 A Meta-Model for Object-Oriented Systems
In informai terms, a meta-model is an attempt to describe the world around
us for a particular purpose [Pid02|. Two aspects of the previous definition are
essential. "an attempt to describe the world" and "for a particular purpose".
In the context of this work, the "world" is the structure of object-oriented pro-
grams, while the '' particular purpose" is identified with our goal to analyze the
quality of software by static analysis techniques [JROO] applied on the structure
of object-oriented systems.

The structure of an object-oriented system consists of a set of design entities
(e.g. classes, methods) and the relationships existing between them (e.g. inher-
itance, containment). On the other hand, our meta-model disregards dynamic
elements (e.g. objects), as they cannot be determined before runtime. In addi-
tion, many important systems cannot be rim independently, and so, there's no
access to dynamic information.

Based on the considerations above we provide the following definition of a meta-
model:

BUPT

4,2, A META-MODEL FOR OBJECT-ORIENTED SYSTEMS 4 3

Definition 4.1 (Meta-Model) A meta-model for an object-oriented system
is a precise definition of the design entities and their types of interactions, used
for defining and applying static analysis techniques.

Thus, a good meta-model should therefore capture oniy those types of entities
that are relevant for the analysis, together with the properties of those entities
and the relationships that exist between them. In a measurement context, the
meta-model defines the boundaries of our measurement activities. In our view
a meta-model is composed of the following elements:

• Design Entities (e.g. classes, packages)

• Properties of design entities (e.g. the visibility level of attributes)

• Relations between the entities (e.g. methods access attributes)

By analyzing the different design entities that appear in object-oriented sys-
tems, we reached the conclusion that they belong to different categories and
consequently have different compositions. The constructs and rules used to de-
scribe the meta-model are therefore distilled in the form of a meta-meta-model.
The meta-meta-model is depicted in Figure 4.2^.

The design entities that appear in our meta-model fall into two categories:

Entity
Identity
container: Entity

has Properties Property
kIndOf
value

conlams
Entities

has Relatioris
K ^ ^

Relatlon has Relatioris
K ^ ^ kIndOf
I Q ' relatedEntlty: Entity

Figure 4.2: The meta-meta-model capturing the constructs and rules of the
meta-model

primitive and composed entities. Primitive entities have an identity (i.e. a name
that identifies them, like "Class", "Package" etc.) and a set of properties. In
addition to these, composed entities have a list of contained entities, which are
primitive or composed entities.

^Relating it to similar efforts, our meta-meta-model can seen as a simplified view of the
models defined in [KPF95]

BUPT

44 CHAPTER 4. DETECTION STRATEGIES

In order to facilitate the usage of the meta-model, we decided to express it
in terms of sets and reiations. Each entity type will be represented by a set that
contains all the entities of that type. The entities that make up our meta-model
are depicted in Figure 4.3.

The meta-model is composed of 7 + 1 entities: three of these are composed

Local
Variable

Parameter Global Variable Local
Variable

*

*

^ A
Variable

Figure 4.3: The entity types that make up our meta-model together with the
containment relations that exist between them. The dark-colored entities repre-
sent the composed entity types, while the hght-colored ones depict the primitive
entity types.

(Package, Class and Method), while the other four are primitive (Attribute, Pa-
rameter, Local Variable and Global Variable). The eighth one (Variable) is an
abstract entity that was introduced in order to factorize the common properties
of all variables.

BUPT

4,2, A META-MODEL FOR OBJECT-ORIENTED SYSTEMS 45

In the context of metrics-based analysis techniques, the aforementioned clas-
sification of design entities has a particular relevance: it provides a pertinent
explanation about why metrics are defined and computed only for some entity
types (i.e. packages, classes, and methods). In terms of primitive and composed
entities a rule is shaping up stating that reasonabie metrics are defined and com-
puted only for composed design entities. The explanation resides basically in
the distinctive aspects that exist between the two, i.e. the fact that a composed
entity can contain other entities and that it can have relations with other en-
tities (see Figure 4.2). As direct measurements (see Section 2.3.1) are mainly
"counting"^ the different entities contained in, or related to a measured entity,
it becomes obvious why the object of measurement is restricted to composed
design entities.

4.2.1 Composed Entities
As mentioned at the beginning of this section, a composed entity type is one
that contains other entities. The aforementioned meta-model supports the fol-
lowing composed entities: Package, Class and Method. In order to describe a
composed entity we have to specify its properties, containment structure (i.e.
the entities that it contains), relations and container entity. The properties of
an entity are classified in a set of categories. For each category a complete set
of potential values was identified. The values in each category are mutually
exclusive. The properties of any entity can therefore be seen as an n-tuple of
values, where n represents the number of property categories. An overview of
the properties and containment relations for the composed entities is provided
in Figure 4.4.

In this section we will introduce one by one the three composed entities that
appear in our meta-model. The backbone of the presentation is given by the
elements enumerated above. In order to enhance readability, a final section was
dedicated (Section 4.2.3) to present the types of relations that a composed entity
might have with other design entities. Some of the elements introduced next
will be defined in a formal manner strongly relying on the formal definitions
provided by Briand et.al. in [BDW99], [LB98].

Classes

From the point of view of the static structure, an object-oriented system consists
of a set of classes, C. A class is a compound structure encapsulating data and
funcţional elements [BDW99 .

Properties. We identified three property categories for a class. Thus any
class in our model will be associated with a 3-tuple of properties: one for each
category. The three categories of properties are:

^This "counting" can be filtered based on the properties of the counted entities, so that
only subsets are counted

BUPT

46 CHAPTER 4. DETECTION STRATEGIES

Entif/
Type Container Contained

Entity Type Kind Of

Properties

Possible Values

Abstract) on
• concrete
• abstract
• interface

CItss Package
• Method
• Attnbute
• Class (inner)

Visiblity
• nomnal
• Inner
• public (Java)

Reusability
• user-deRned
• user-extended
• librarv

Package —
• Class
• Package —

Visibility

• private
• protected
• package (Java)
• public
• free(C+-»-)
• normal

Kind
• constructor
• destructor
• accessor

Method Class • Parameter • friend (C++) Method Class • Local Variable Instanbation • class (static)
• object(instance)

Reuse

• normal (defined)
• overridden
• inherited
• library

Abslracbon • concrete
• abstract

Bmdmg • static
• dynamic (virtual)

Figure 4.4: The Properties of Composed Entities

Ah.stractioi^ property. From the abstraction's perspective, a class can be:
concrcte. abstract or interface-definition. A concrete class is one that pro-
vidos an implementation for all its methods. On the opposite side we fînd
interfacps. which define just a set of method signatures without providing
an implementation for any of them. Between the two extremes we find
aVxstract classes, which contain at least a method without implementa-
tion; the abstract classes may also encapsulate data (as concrete classes
do) and contain implementation of methods. Some languages (e.g. JAVA)
provide distinct language mechanisms to differentiate between all these
three types of classes; others (e.g. C++) although differentiating between
concrete and abstract classes, do not provide any extra mechanism for
mierfaces. In such a language an interface is modelled by externai con-
ventions as an abstract class that contains only abstract methods.

BUPT

4,2, A META-MODEL FOR OBJECT-ORIENTED SYSTEMS 47

• Visibility property. DifFerent classes may have difFerent visibility levels,
going from inner, through package and up to public classes^. An inner
class is one that is defined within another class, being directly visible only
from within that class. A class with a "package" visibility is only accessible
for the classes belonging to the same package, while "public" classes are
those that are visible and accessible from any package in the system. The
visibility property is relevant especially for coupling-related metrics.

• Reusability property. The last type of class properties is related to the de-
gree of reuse for that class. The reusability may vary from library classes
that are completely reusable, without any implementation or effort re-
quired on the side of the developer, up to classes that are designed and
implemented by a developer "from scratch" {user-defined). An interme-
diate degree of reuse is given by classes that partially reuse an already
implemented class by extending it and overriding some of the previously
defined functionality {user-extended). As the reuse of a class involves a
second part (the reused class) we will analyze this issue in some more
detail in Section 4.2.3, where we discuss the relations among composed
entities.

Containment Structure. A class may contain three types of entities: At-
tributes, Methods and other Classes. While the attributes for a class represent
the data set encapsulated within the class, the set of methods specifies the be-
havior of the class. Finally, the classes contained in a class are the inner classes,
those earlier mentioned in this section.

Container Entity. As seen in Figure 4.3, the container entity of a class is
a package. Having made this statement, it may appear that we axe ignoring
inner classes. In reality, they are not neglected as this aspect is covered by the
visibility property.

Methods

Usually a class ce C contains a set of methods M(c) that implement the control
flow of the program. Other names used for "method" in different programming
languages are: operation, service or member-function. The set of all methods
in the system, M{C), is defined for notational purposes.

Properties. From the funcţional point of view methods are the central ele-
ment and therefore posses a rich set of properties. By classifying them, a number
of six categories of properties was identified, and this means that each method
will be characterized by a 6-tuple of properties - one property of each category.

^This visibility property is mainly based on the Java language mechanisms, although inner
classes are also known in C-h-f [ES90). Yet, even though not language independent, we decided
to include it based on the most inclusive principie. In languages like C+H- we could only
differentiate between inner classes and the rest of the classes, which would then be considered
to be public

BUPT

48 CHAPTER 4. DETECTION STRATEGIES

• Vtsibtlity prvperty, Methods can have different visibility levels varying
from methods that are accessible only from the class they are defined
into (private), followed by the methods that are accessible from derived
classes (protected), then continuing with methods that are visible only to
classes from the same package (package) and ending with the methods
that build the interface of the class {public). In addition to these, the
global (free) functions that appear in hybrid languages like C + + {global)
are also considered.

• Role propeHy. A method can have different roles within a class: with the
exception of the usual methods {normal), a class has two special kinds of
methods related to the creation {constructor) and destruction {destructor)
of its instances. Another kind of special methods are the get/set meth-
ods {accessor) through which the data encapsulated in the class can be
manipuiated'*.

• Instantiation property. Considering the mechanisms for method-invocations,
one notices that methods can be either called via objects {object methods)
or be invoked independently of the existence of any instance {class meth-
ods).

• Reuse property. There are several kinds of methods with the respect to
the reuse property: if a method is implemented from scratch, then it is
considered a {normal (new)) method, where no reuse occurred; if a method
of a class is not implemented at all but it is inherited from an ancestor
of the class, then a total code reuse took place. A special case of reuse is
one in which only the signature of a previously defined method is reused,
meaning that the new method overrides another one inherited from an
ancestor class {overridden). Finally, there is also a fourth category of
methods, i.e. the library methods that are simply used without requiring
any implementation effort on the developer's side.

• Abstraction property. As seen before in the class-related property, it is
mainly the abstraction property of methods that decides the homonymous
property for classes. A method can be provided with either a concrete
implementation {concrete), or it may consist only of the method-signature
that makes it an abstract method.

• Dinding property. This method property captures the way an implemen-
tation is bound to the invocation of the method with a given signature.
There are two known possibilities: either the method is bound at compile-
time {static) or it is late-bound {dynamic ("virtualj) meaning that we are
dealing with a polymorphic call.

Based on the reusability property category, the following definitions can now be
provided [BDW99]:

^Wc do not discuss here the quality impact of using accessor-methods. This aspect is
partially covered in Section 2.2 and in Section 5.3.1

BUPT

4,2, A META-MODEL FOR OBJECT-ORIENTED SYSTEMS 49

Defînition 4.2 (Declared Methods. Implemented Methods) For each class
c G C , let

• MD{C) C M(C) be the set of methods declared in c, i.e. methods that c
inherits but does not override, or virtual methods of c

• M/(c) C M(c) be the set of methods implemented in c, i.e. methods that
c inherits but overrides or non-virtual^ non-inherited methods of c.

• where M{c) = MD{C) U ^ /̂(C) and MD{C) F) Mi{C) = 0

Defînition 4.3 (Inherited, Overriding and New Methods) For each class
ceC, let

• ^ I N H { C) ^ M(c) be the set of inherited methods of c

• MOVR{C) C M(C) be the set of overriding methods of c

• Mi^Ewic) C M(c) be the set of non-inherited, non-overriding methods

Containment Structure. In this meta-model, a method contains two types
of entities: Parameters and Local Variables\ both of these are primitive entities
and are described in the next section.

Defînition 4.4 (Parameters. Local Variables) For each method m G M{C)
let Far{m) be the set of parameters of the method m, and LocVar(m) be the set
of local variables declared in the implementation of method m.

Container Entity. The container entity for a method is a Class entity. An
exception from this rule occurs in languages that allow methods to exist without
any encapsulation in a class (e.g. C4-+). In the model considered here these
methods are recognized by the value of their visibility property, which is set to
free.

Packages

In large systems classes are too small-grained to support the complete struc-
turing of the system. In order to achieve this, packages (or subsystems) are
used for a further, higher-grained level of system decomposition. This can be
provided as part of a programming language (e.g. the package concept in JAVA)
or as an externai convention (e.g. by using a hierarchical directory structure).

Properties. Because packages are only a simple, high-level structuring mech-
anism that in some cases is not even reflected in a language construct, there are
no properties associated with it.

Containment Structure. A package (subsystem) may contain a set of other
Packages and/or Classes. The relation is usually, but not necessarily, hierarchi-
cal.

BUPT

50 CHAPTER 4. DETECTION STRATEGIES

C o n t a i n e r Ent i ty . No other entity type that contains the Package entity is
defined because the systeni is considered as being decomposed in packages.

4.2.2 Primitive Entities

Tho primitive entities that are considered in this model are: Attribute, Parame-
ier. Local Variahle and Global Variable. It becomes obvious from this enumera-
tion that all the primitive entities are in fact those program elements that hold
data. These items are usually called Variables.

Primitive entities being all variables, share a set of properties but are also based
mainly on their container entity. the container of any Attribute entity is there-
fore a Class entity, while the container of the Parameter and Local Variable
entities is a Method. The Global Variable entity is a special case of variable that
occurs only in hybrid languages Hke C-h-h and it was added to the meta-model
because this work also addresses systems implemented in such languages. Just
like the free methods, a Global Variable has no container except for the package
that contains the file in which the global variable is defined.

The properties of all the primitive entities are summarized in Figure 4.5.

Entity
Type Container

Appiicable to
Properties

Category Possible Values

Parameter
1

Method
AH Vanables

Type
• built-in
• user-defined
• fibrary

Local VanabiG i

Method
AH Vanables

Aggregabon • simple
• array Global Vanable —

AH Vanables

Aggregabon • simple
• array

Attnbule

1 __j

Class

Attributes only Visibility

• private
• protected
• package (Java);
• public

Figure 4.5: The Properties of Primitive Entities

P r o p e r t i e s . Two categories of properties that characterize all the variables
were identified. An additional category (i.e. Visibility) was introduced for a
complete description of the Attribute entity In this manner, any parameter,
local variable or global variable will be characterized by a 2-tuple of properties,
while attributes will be described using a 3-tuple, as follows:

• Type propej ty. Each variable must have a type. The type can be a built-in
type, provided by the programming language (predefined), or it can be a
nser^defined type. Special cases of user-defined types are those that are
part of a Itbrary. Sometimes in metrics definitions we want to distinguish
between these two situations.

BUPT

4,2, A META-MODEL FOR OBJECT-ORIENTED SYSTEMS 51

• Aggregation property. The aggregation property addresses the storing ca-
paciiy of a variable. Prom this point of view a variable may store a s-ingle
value {simple) or a set of valiies [array).

• Visibility property. Similar to methods, an Attrihute entity, being a mem-
ber of a class, caii have different visibility levels: it can be completely
hidden within the class {private)\ it can be accessible also from derived
classes {protected); it can be made visible only to classes from the same
package {package) or it can be declared as part of the interface of the class
{public).

In addition the previous properties, an Attrihute entity, may be implemented
in a class or inherited. Therefore, we can now provide the following definitions
[BDW99]:

Defînition 4.5 (Declared Attrihute. Implemented Attrihute) For each
class c e Cy let A{c) be the set of attributes of class c. A{c) = Ao{c)[J Ai{c)
where

• AD{C) C A{C) is the set of attributes declared in c, i.e. attnbutes that c
inherits;

• ^/(c) Q M{c) is the set of attributes implemented in c, i.e. non-inhented
attribute.

4.2.3 Relations Between Entities
In Figure 4.6 we summarize the types of relations that exist between the entities
from the meta-model.

Entity
Type

F

Kind Of

ielation

Second Entity

Class
exlend Class

Class implemenl Class
[Abstract! on == interface]

Package

access Attribute
access Variable

Method call Method Method
overhde Method

implemenl Method
[Abstraction == abstract]

Figure 4.6: The Relations of the Composed Entities

BUPT

52 CHAPTER 4. DETECTION STRATEGIES

Remark. In order to understand the relations identified in this meta-model,
an important remark should be made at the beginning of this section: for each
entity, we consider only those relations in which it directly interacts with other
entities. Based on this principie, the relations "inherited" from the entities con-
tained within a composed entity were disregarded.

For example, although we may speak about "a class accessing a method" or
a ''class calling another class", these relations appear in our model only for
the Method entity and not for the Class entity, as only the Method entity of
a class stays in a direct "access"-relation with a Variable entity. A corollary
of the previousiy enounced principie states that the relations are transitive, i.e.
a composed entity transitively inherits all the relations of its component entities.

In Chapter 2 the different relations that appear in object-oriented systems were
discussed (see Section 2.1). Therefore, in this section only a set of notational
definitions for these relations will be provided.

Class Inheritance. Interface Implementation

There can exist two types of direct relations among classes: either a class is the
specialization of another class, or it is the implementation of an interface class.
Thus for a class c € C we can define the following sets of related classes:

• Parents{c) C C, the set of classes directly inherited by class c. In lan-
guages that do not allow multiple inheritance, the cardinality of this set
is obviously either zero or one. The transitive closure of parent classes de-
fines the set of ancestors: Ancestors{c) C C {Parents{c) C Ancestors{c))

• Children{c) C C, the set of classes directly inheriting from class c. The
transitive closure of children classes defines the set of descendants:
Descendants{c) C C {Children{c) C Descendants{c))

Interfaces{c) C {i € C\abstraction{i) = ''interface''}, the set of inter-
faces implemented by class c.

Method Invocations. Variable References

In order to define measures of the coupling for a class c, it is necessary to define
the set of methods that are called by any method m E M(c) and the set of
variables referenced by any method of the class c. They are defined as follows
[LB981:

Definition 4.6 (Called Methods) LetceC,me M/(c), and m' G M(C).
Then m' € CM{m) <=» 3d € C such that m' G M{d) and the body of m has a
method invocation where m' is invoked for an object of type class rf, or m! is a
class method of type class d.

Definition 4.7 (Variable References) For each m e M{c) let VR{m) be the
set of vanables referenced by method m.

BUPT

53 CHAPTER4. DETECTION S T R A T E G I E S

4-3 Detection Strategy
As we have seen in the beginning of this chapter, the main issue in applying
software metrics for the assessment of quality in object-oriented design is to
get a relevant interpretation of the measurement results. In the previous chap-
ter (Section 3.2) the limitations of existing interpretation models for individual
metrics were pointed out. In order to synthesize the main point of our criticism
we will use a medical metaphor: interpretation models can offer an understand-
ing of symptoms reflected in abnormal measurement results, but they cannot
bring the anderstanding of the disease that caused the symptoms. The bottom-
up approach, - i.e. to go from abnormal numbers to the recognition of design
diseases - is impracticable because the symptoms captured by single metrics,
even if perfectly interpreted, may occur in several diseases. The interpretation
of individual metric results is too fine-grained to point out the disease. This
leaves us with a major gap between the things that we measure and the things
that are in fact important at the design level with respect to a particular inves-
tigat ion goal.

In order to overcome this limitation, in the rest of this chapter we will
introduce a high-level, goal-oriented investigation mechanism that will allow
us to define a usable top-down investigation approach. For the first time we
will be able to express and detect in a quantifiable manner the things that are
important for the assessment and improvement of the design. In this context,
answers to the following questions will be provided:

• How to interpret individual results? We will discuss the different mech-
anisms for d a t a fi l tering and provide a concrete methodology for the
selection of the adequate filter, based on the assumption that for different
measurement goals, different filtering mechanisms should be used.

• How to correlate the interpretation of a multiple set of results! Concerning
this question the answer is the composit ion mechanism provided by the
detection strategy.

• How to go from a concrete investigation goal to a detection strategy that
quantifies that goal?

4.3.1 Definition
The main issue in working with metrics is how should we deal with measurement
results. How can all those numbers help us improve the quality of our software?
As stated earlier, most of the times a metric alone cannot help very much in
answering this question and therefore metrics must be used in combination to
provide relevant information. But how should we combine metrics in order to
make them serve our purposes?

The main goal of the mechanism presented below is to provide the engineers

BUPT

54 CHAPTER 4. DETECTION STRATEGIES

with a mechanism that will allow them to work with metrics on a more abstract
level, which is conceptually much closer to the real intentions in using metrics.
The 'mechanism defined for this purpose is cailed detection strategy:

Defini t ion 4.8 (Detect ion St ra tegy) A detection strategy is the quantifi-
able expression of a rule by which design fragments that are conforming to that
rule can be detected in the source code.

A detection strategy is therefore a generic mechanism for analyzing a source code
model using metrics.

R e m a r k s

1. In the context of the previous definition, " quantifiable expression of a rule''
means that the rule must be properly expressible using software product
metrics.

2. One of the main goals of this dissertation is to use detection strategies to
express rules that will help us detect design problems in object-oriented
software system, i.e. to find those design fragments that are affected by
a particular design flaw. At this point we want to emphasize that the
detection strategy mechanism and the whole technique is not limited to
problem detection, but it can serve other purposes as well.

For example different investigation goals could be reverse engineering
(model capture, design recovery) [Cas96], detection of design-patterns
[MarOl], identification of components in legacy systems [TriOl], etc.

The use of metrics in the detection strategies is based on the mechanisms of
filtering and composit ion. In the following sections we will describe the two
mechanisms in more detail.

4.3.2 The Filtering Mechanism
Defini t ion 4.9 (Da ta Fi l ter) A data filter is a mechanism (a set operator)
through which a subset of data is retained from an iniţial set of measurement
resultsy based on the particular focus of the measurement

The key issue in filtering data is to reduce the iniţial data set, so that only those
values are retained that present a special characteristic. This is usually called
data reduction [Hoe54]. The purpose for doing that is to detect those design
fragmenta that have special properties captured by the metric. Considering the
iniţial set as being sorted, a data filter defines a contiguous data subset Thus,
in order to define a data filter we need to define the values for the bottom and
upper limits of the filtered subset.

The limits of the subset are defined based on the type of data filter. In the

BUPT

55 CHAPTER4. DETECTION S T R A T E G I E S

context of measurement activities applied to software, we usiially search for ex-
treme (abnormal) values or values that are in a particular range. Therefore we
identify two types of filters:

• Marginal Filter - a data filter in which one margin of the result set is
implicitly identified with the corresponding limit of the iniţial data set.'

• Interval Filter - a data filter in which both the lower and the upper limit
of the resulted subset are explicitly specified in the definition of the data
set.

Type of
Data Filter

Limit Specifiers Filter Example

Semantical

• 1
Relative

• TopVa lues (10) ,

• BottomValu«a(5%)

Marginal
Semantical

Absolute
• Hlgh«rThan(20)

• LowerThan(6)

Statistical 1
• Box-Plot

Type of
Data Filter Specification Filter Example

Interviil
Composition of two marginal filters.
witti semantical limit specifiers of
opposite polarities

Between(20,30) :=

HigharTtian(20) A LowerThan(3 0)

Figure 4.7: Classification of Data Filters

Based on the previous two definitions, we identify a set of characteristics and
further classifications of the two types of data filters (see Figure 4.7). In the
following, we will discuss these aspects in more detail.

Marginal Filters

Depending on how we specify the limit(s) of the resulted data set, marginal
filters can be sub-divided into two categories:

1. Semantical For the filters belonging to this category we must specify two
parameters: a threshold value and a direction. The threshold value indi-
cates the one margin that must be explicitly specified, while the direction
tells us if the threshold value is the upper or the lower limit of the filtered
data set. We named this category semantical because in the context of
measurement interpretation, the selection of the parameters is based on
the particular semantic of the metric, captured by the interpretation model
for that metric. The quality of a detection strategy strongly depends on
the proper selection and parametrization of a filtering mechanism.

2. Statistical. In contrast to the semantical filters, statistical ones do not
need an explicit specification for a threshold, as it is determined directly
from the iniţial data set by using statistical methods (e.g. box-plots,
standard deviation). However, the direction still must be specified just
like in the case of semantical filters. Statistical filters are built based on

BUPT

56 CHAPTER 4. DETECTION STRATEGIES

the assumption that all the measured entities of the system are structurally
designed using the same style and therefore the measurement results are
comparable.

Through this work we used a set of concrete data filters that can be grouped as
follows (see also Figure 4.7), based on the previous classifications:

• Absolu te Semantical Fil ters: HigherThan and LowerThan. These fil-
tering mechanisms can be parameterized with a numerical value represent-
ing the threshold. We will use such data filters to express "sharp" design
rules or heuristics, - e.g. "a class should not be coupled with more than
6 other classes. Piease note that the threshold is specified as a parameter
for the filter, while the two possible directions are captured by the two
concrete filters.

• Rela t ive Semantical Filter: TopValues and BottomValues. These
filters are delimitating the filtered data set by a parameter that specifies
the numfter of entities to be retrieved, rather than specifying the maximum
(or minimum) value allowed in the result set. Thus, the values in the result
set will be relative to the original set of data. The used parameters may be
absolute (e.g. "keep the 20 entities with the highest values") or percentile
(e.g. " retrieve the 10% of all measured entities having the lowest values").
This kind of filters is useful in contexts where rather than indicating precise
thresholds we would like to consider the highest (or lowest) values from
a given data set. They should be therefore used for the quantification of
design heuristics that are rather fuzzy, not specifying precise thresholds
(e.g. "methods of high complexity should be split"). For such design rules
concepts of "high" and "low" are relative to the iniţial data set.

Stat is t ical : BoxPlots. Box-plots are a statistical method by which the
abnormal values in a data set can be detected [FP97] [CCKT83]. Data
filters based on such statistical methods, which are of course not limited to
box-plots, are useful in the quantification of rules that although "fuzzy",
concern with extreme values in a data set (e.g. "Avoid packages with
an excessively high number of classes"). Again, we have to specify the
direction of the outlier values based on the semantics of the design rule
that is quantified.

With the exception of box-plots, all the previously mentioned data filters are
trivial, well known and need no further explanations. The definition of the
box-plots technique is described in Figure 4.8.

Interval Fi l ters

At first sight, for an interval data filter we need to specify two threshold values.
But, in the context of detection strategies, where in addition to the filtering
mechanism we also have a composition mechanism, interval filters are in all
cases reducible to a composition of two marginal filters of opposite directions.

BUPT

57 CHAPTER4. DETECTION S T R A T E G I E S

lower tail

lower quartile

\ r

median

/

scaii

upper quartile uppertail outiier

± ± ± ±

Box-Plot Element Definit ion
median (m) the middle-ranked Item In the data set
upper quart i le (u) median of the values that are more than m
lower quart i le (1) median of the values that are less than m
box length (d) d = u - l
upper tail (ut) ut = u + 1.5 d
lower tail (It) It = l - 1 . 5 d

Figure 4.8: The box-plot technique as statistical method used for abnormal
measurement values [FP97]

In Figure 4.7 a simple example illustrates how the interval filter Between(20,30)
can be composed out of two (semantical) marginal filters, i.e. HigherThaii(20)
and LowerThan(30).

Metrics and Data Filters

Filtering mechanisms are always related to a metric as described next:^

MetricExpression
Metric

Filter

"(" Metric Filter ")"
<problem-specific metric from a repository>
HigherThan | LowerThan I TopValues |
BottomValues | BoxPlots

4.3.3 Methodology for Selecting Data Filters

In order to summarize the previous description of individual data filters, in
the following, we provide a brief methodology by stating a set of rules. The
rules should guide the engineer in deciding which type of data filter should be
applied on the results of a particular metric, while quantifying the design rules
or heuristics.

Rule 1 Choose an absolute semantical filter when quantifying design rules
that specify explicitly concrete threshold values.

^The description is given in the form of a set of grammar rules of the SOD language. More
details are provided in Section 7.2.4

BUPT

58 CHAPTER 4. DETECTION STRATEGIES

Rule 2 Choose a relative semantical filter when the design rule is defined in
terms of fuzzy marginal values, like "the high/low values" or "the highest/lowest
values".

Rule 3 For large systems, parameterize relative semantical filttrs using per-
centile values. On the other hand, use absolute parameters when applying a
relative semantical filter on small-scale systems.

Rule 4 Choose a statistical filter for those cases where the design rules make
reference to extremely high/low values, without specifying any precise threshold.

4.3.4 The Composition Mechanism
As stated at the beginning of this section, a detection strategy is the "quantifi-
able expression of design rule". Thus, in contrast to simple metrics and their
interpretation models, a detection strategy should be able to quantify entire
design rules. As a consequence, in addition to the filtering mechanism that
supports the interpretation of individual metric results, we need a second mech-
anism to support a correlated interpretation of multiple result sets - this is the
composition mechanism. The composition mechanism is based on a set of oper-
ators that "glue" different metrics together in an "articulated" rule.

Definition 4.10 (Composition Operators) The operators used to compose
a set of metrics into an "articulated" rule are called composition operators.

We defined three composition operators: and, or and butnot . The composition
operators can be seen from two different viewpoints:

• the Logical Viewpoint. From the logical perspective, the three operators
are the reflection of the " joint-points" of a design rule quantified by the de-
tection strategy, in which the "operands" are in fact a description of design
characteristics (symptoms). They allow easy reading and understanding
of the detection strategy because through the composition operators the
quantified rule becomes similar to the original, informai one. From this
point of view, for example, the and operator suggests the co-existence of
both the symptom described on the left side of it as well as the existence
of the symptom presented on the right side.

• the Set Viewpoint. The set viewpoint helps us understand how the final
result of a detection strategy is built (Figinre 4.9). Through the filtering
mechanism the iniţial set of measurement results for each metric involved
in the strategy (Mi . . . Mn) is reduced to a set of design entities (and
their measured values) that were considered interesting in conformity with
the interpretation model (F i . . .F„). After that, the several filtered sets
must be combined using the composition operators. Thus, in terms of set
operators, the and operator will be mapped to intersection the or
operator to reunionC\J") and the butnot operator to set minus

BUPT

4.4. DEFINING DETECTION STRATEGIES 59

^
• • . > ^

Result Set filter^
piiţeSti^et; Ml piiţeSti^et;

Composition' compose^
Rules ^ >

Result Set
Mn

filter, Milt^redlet

Figure 4.9: The filtering and composition mechanisms from a set viewpoint

An Example: Detect ing Data-Classes

Let's assume that vve want to find a set of classes that exhibit their data in the
interface. We decided to use two metrics: the fîrst one to count the number of
pubUc attributes (NOPA) and the other one to count the number of accessor-
methods (NOAM). We decide that the classes we want to find are those with
the most pubUc data from the project, but that they should not have less than
3 pubhc attributes or 5 accessor-methods. Therefore, the following detection
rule (in SOD) is used:

DataClasses :=

(NOPA, HigherThanO) and NOPA, TopValues(10y.)) or

(NOAM, HigherThan(5) and NOAM, TopValues(10y,))

4.4 Defîning Detection Strategies
The starting point for this approach is an informai description of a rule related
to the design. This is the rule that we try to quantify. In the recent years we
have often found in the literature various forms of descriptions for such rules,
especially in the context of reengineering [Cas98]. As we have seen in 3.4, R.
Martin discusses the main design principles of object-orientation and shows that
their violation leads to a "rotting design" [MarOO].

The approach consists of the following sequence of steps:

1. Analysis of the Design-Rule. After choosing the design-rule that should be
quantified, the first step is to express the informai description of the rule
in a quantitative manner. In other words, we have to describe how the rule

BUPT

60 CHAPTER4. DETECTION STRATEGIES

is related to the design entities (e.g. for a rule describing a design flaw we
may have class inflation, excessive method length) and the relationships
among them (e.g. highly coupled subsystems). The result of this step is
the definition of a concrete strategy for detecting the conforming entities
based on the analysis of the informai description.

2. Selection of Metrics. Based on the quantitative description of the design
rule, those metrics must be found or defined that are most suitable for
the measurement of the characteristics of the sought design structure. At
the end of this step, the detection strategy can be expressed as a specific
combination of the selected metrics.

3. Detection of Candidates, The third step is to measure the system based
on the defined detection strategy, using the chosen metrics. The result of
this step is a list of design fragments that are supposed to be conforming
to that design-rule.

4. Examination of Candidates. The last step is to examine the identified
design fragments and to decide, based on the source-code and on other
information sources, if the candidates are indeed what we were seeking or
if the proposed detection strategy didn't really properly capture the iniţial
(informai) design-rule.

^ Analyils Qetection

k

technique
Select Metrics

s z :

PŞtectiofii

: • large ̂ fM complex clâsses ij
; 'i'nprh|c6Heslfe' ' .. ;
i • aceess miiy ''fbrâfgh' data •

-Tf

i
/ . . . i

• « § ^

Figure 4.10: The steps for transforming an informai design rule in a detection
strategy. In the bottom part of the picture the transformation is exemplified by
using the description of the "Behavioral God-Class" design problem [Rie96]

Concerning these four steps, there is an important distinction to be made be-
tween them: while the first two steps describe the definition of the detection

BUPT

4.4. DEFINING DETECTION STRATEGIES 61

technique (see Figure 4.10), the last two describe how to apply the technique
on the examined system. Thus, after a detection technique is defined and vali-
dated, only the last two steps must be covered for detecting a particular rule in
a given system.

4.4.1 Template for Describing a Detection Strategy
We describe each particular detection strategy using a consistent format. This
format grants a uniform structure to the detection process, making it easier to
understand and apply. The definition of a detection strategy is divided into
sections, according to the following template.

• Name. Each detection strategy should have a name. Similar to patterns
[GHJV94], the name of a detection strategy provides the strategy with an
identity, which increases its communication level. In order to be useful,
the name must capture the particular aspect quantified and detected by
the strategy. As we will see in Chapter 6, when strategies are used as
parts of quality models, their name becomes an important vehicle of se-
mantical knowledge. In that context it helps the engineer not only find
criticai design fragments, but also allows immediate reasoning about de-
sign improvements.

• Motivation. In this section the design-rule is shortly explained with a
special focus on its impact on the structure and quality of the design
(e.g. flexibility, maintainability, etc). Prom this description we derive
the characteristics of the structural design entities (e.g. classes, methods,
subsystems) that are affected by the corresponding design problem.

• Strategy. This section describes the concrete strategy to use in order to
find the conforming entities. The strategy is based on the characteristics
of the design-entities that were presented in the Motivation section.

• Metrics. As our approach is a metrics-based one, we need to select those
metrics that we are going to use for the detection of a particular design
rule. This section introduces the metrics that are needed to support the
detection strategy described above. For each metric three aspects must
be provided: the definition of the metric, its interpretation model and
the specification of outliers. Note that a metric might be used in several
detection techniques and while the definition of the metric is independent
of the context in which it is used, its interpretation model and sometimes
the outliers are related to the technique.

BUPT

62 CHAPTER 4. DETECTION STRATEGIES

BUPT

Chapter 5

Detection of Design Flaws

There is no perfect software design. Like all human activities, the process of
designing software is error prone and object-oriented design makes no excep-
tion. The flaws of the design structure have a strong negative impact on quaUty
attributes such as flexibiUty or maintainability. Thus, the identification and de-
tection of these design problems is essential for the evaluation and improvement
of software quahty.

The goal of this chapter is to show how structural flaws in object-oriented design
can be quantifled and identified using the concept of detection strategy from the
previous chapter. In other words, we will apply the higher-level interpretation
mechanism deflned in Chapter 4 to a concrete investigation goal, i.e. the detec-
tion of design problems.

In order to do this we first deflne the concept of design flaw in the context
of this work (Section 5.1) and then classify these flaws according to the gran-
ularity of the design entity affected by them. Based on this cleissification, we
build through the rest of the chapter a coherent suite of detection strategies
that address a set of well-known design problems found in the literature. The
chapter is closed by several summarizing conclusions.

5.1 Design Flaws
In the context of this work we define design flaws as follows:

Definition 5.1- (Design Flaw) The structural characteristic of a design en-
tity or design fragment that expresses a deviation from a given set of criteria
typifying the high-quality of a design is called a design flaw.

The different parts of this definition express concisely the boundaries of the
object of our further investigation. Therefore we will analyze each part of the
definition and provide additional explanations that will increase the precision
of the concept of design flaw as used in this work:

63

BUPT

64 CHAPTER 5. DETECTION OF DESIGN FLAWS

• ''The structural characteristic...". There are various types of flaws that
may affect the quality going from erroneous or error-prone implementa-
tions to missing or incoherent documentation. This part of the defini-
tion limits our work to the analysis of those flaws that can be mapped
to the design structure. Thus, we are not deaUng with rules concern-
ing the compliance of the code with coding standards or implementation
rules (e.g. "avoid assignments inside conditions", or "capitaUze words in
class-names"); neither do we refer to flaws related to the quality of the
development process or documentation.

• "... characteristic of a design entity...In conformity with this deflnition,
a design flaw is a negative property of a design entity and not the entity
itself, 85 the same entity (or fragment) may be affected by more than one
flaw.

• "... of a design entity or design fragment...", Trivially, a design entity
is a method, a class or a package^ of the analyzed system. But a design
flaw oftentimes does not afl'ect only an isolated entity, but also several
other entities that are connected by different types of association relations.
Thus, a design fragment stsinds for a "cluster" of such collaborating design
entities.

• "... a set of criteria typifying the high-quality of design". We may classify
flaws in funcţional and non-functional flaws. This part of the deflnition
delimits our approach from others that are deaUng with the detection of
funcţional flaws (i.e. bugs); among these we may mention Zeller's ad-
vanced methods of detecting funcţional flaws (failures) [CZOO] [Zel99].
Therefore, this deflnition part links our work to the non-functional is-
sues of good-design. As stated in the previous deflnition, good design is
characterized by a set of criteria, as discussed in Chapter 2 (Section 2.2).

• "... deviation from a given set of criteria". Evaluating a given design in
terms of deviations from a set of good-design criteria requires a quantifl-
cation of these criteria. As discussed in the previous chapters, on the one
hand each criterion is reflected by concrete, paradigm-speciflc design rules
and guidelines (Section 2.2) while on the other hand, using the approach
described in the previous chapter makes these concrete rules quantiflable
when expressed in terms of detection strategies (Section 4.3).

Remark

Design flaws are hard to deflne, because sometimes we encounter situations in
which a code fragment might be considered flawed in one case while in another
case, a similar, mostly identical design fragment is justiflable and may not be
considered a design flaw. This brings us to the question of how to differentiate
between these cases.

^"Design entity" in the context of this definition corresponds to the deflnition of the corn-
posed design entity as defîned in Section 4.2

BUPT

5.1. DESIGNFLAWS 65

From this point of view we identify two types of programming:

• Implementation of Algorithms and Data Structures. This includes all those
program fragments that implement different algorithms or data-structures
that have a well-founded theoretical background. To this category belong
for example sorting algorithms, graph-related algorithms or the imple-
mentation of container classes. The main characteristic of these program
fragments is that they are written in a compact manner and their under-
standing is only accessible to those who know the theory on which the
implementation relies.

• Organizational Programming. This refers to those relevant paxts of the
code that implement (capture) the whole semantic of the application.
Here, different algorithms are combined and different data-structures are
used in manners determined by the semantical logic of the application.
There is no theoretical foundation for this part of the programs.

The difference between the two types of programming becomes relevant when
we want to assess the quality of the design and consequently when we go on the
quest for design flaws. The main difference lies in the level of maintainability
concern for the two categories: which is very low for the former category while
being extremely high for the latter.

5.1.1 Classifîcation
There are several ways in which design flaws can be classified; they could be
cla^sified according to their abstraction level or to the good-design criteria they
are deviating from. In this chapter we decided to classify design flaws according
to the granularity level of the design entity affected by each flaw. Regarding
the meta-model, we identified three types of design entities for which relevant
metrics can be defined: methods, classes and subsystems (packages). As the
detection strategies that we will use to localize the design flaws are based on
metrics, the detection of flaws will obviously occur at these three levels of gran-
ularity.

In addition to the method, class and subsystem level, we introduce in this
chapter a fourth one: the micro-design level. Design-flaws that occur at this
level affect not only a class, but a cluster of classes. A typical case for such
flaws is a design fragment where a particular design pattern should have been
applied, but the pattern solution was ignored. In Section 5.5 we will present an
approach for the detection of such flaws.

In order to lend a coherent structure to the general discussion on each cate-
gory of design flaws, we will focus the presentations on the relation to the good-
design criteria specified in Section 2.2. As a consequence, we will introduce each
detectable design flaw in terms of deviations from these criteria.

BUPT

66 CHAPTER 5. DETECTION OF DESIGN FLAWS

5.2 Design Flaws in Methods
In the context of an object-oriented system, a raethod is the smallest design
fragment that can be affected by a design flaw. On the other hand, meth-
ods are the uitimate containers of the controi-flow and behavior of the system.
FYom this point of view, the large majority of the principles and rules of struc-
tured programming [PJ88j are apphcable at the method level. Yet, because this
work is focused on the quality of object-oriented design, we decided to address
the issues related to good procedural design in a "shallow" manner, taking into
account only those aspects that are relevant in the context of object-orientation.

Excepting the specific flaws directly related to structured programming, de-
sign flaws at the method level are related either to an unequal distribution of
the functionality between the methods of a class, or to a misplacement of a
method within a class. In terms of good-design criteria, an unequal distribu-
tion of functionality is a deviation from the criteria of manageable complexity
(Section 2.2.3) while the misplacement of a method afFects both the cohesion
(Section 2.2.2) of the system and is a sign of an improper data abstraction (Sec-
tion 2.2.4).

We identified two design flaws at the method level, one for each of the two
aforementioned cases:

1. Fea tu re Envy (Section 5.2.1) is one of the "bad-smells" described in
[FBB"'"99] and it is related to the misplacement of a method within a
class.

2. God M e t h o d (Section 5.2.1) is defined as a composition of lower-level
symptoms described by several authors ([FBB''"99], [JF88] and [Rie96])
that captures the characteristics of a malign method, affected by an ex-
cessive size and complexity.

Next, we will describe in detail the detection strategies for both design flaws.

5.2.1 Feature Envy
Motiva t ion Objects are a mechanism for keeping together data and the op-
erations that process the data. This flaw [FBB-»-99] refers to those methods
that seem more interested in the data of another class than the one of its own
class. These methods access directly or via accessor-methods a lot of data from
another class. This might be a sign that the method was misplaced and that it
should be moved to another class.

S t r a t egy The detection is based on counting the number of data members
that are accessed (directly or via accessor-methods) by a method from outside
the class where the method under scrutiny is defined.

BUPT

5.2. DESIGN FLAWS IN METHODS 67

This problem can be solved if the method is moved into the class that has
the greatest coupling factor with the aforementioned method. If only a part of
the method suffers from a feature envy it might be necessary to extract that
part into a new method and after that to move that method into the "envied"
class.

Met r i c s

1. Access of I m p o r t - D a t a (AID)

• Definition: AID is the amount of data members accessed in a method,
either directly or via accessor-methods^.

• Implementation Details: These are the attributes of all the classes
from which the definition-class of the method is not derived.

2. Access of Local D a t a (ALD)

• Definition: ALD counts the number of the data members accessed
in the given method, which is local to the class where the method is
defined.

• Implementation Details: Inherited data should be counted too.

3. N u m b e r of I m p o r t Classes (NIC)

• Definition: This metric counts the number of externai classes from
which the given method uses data.

S t r a t e g y

FeatureEnvy := ((AID, HigherThan(4)) and (AID, TopValues(107,))

and (ALD, LowerThanO)) and (NIC, LowerThanO))

R e m a r k . In analyzing this design flaw we detected two alternative detection
methods. Here they are:

L C o u n t all dependenc ies . Another way to detect Feature Envy would
be to consider all the dependencies of the measured method, instead of
considering only the data-members accessed by a particular method. In
this case we would count both the dependencies on the class where the
method is defined, and those on the other classes defined in the system.

2. Ignore dispers ion. We used the NIC metric in the detection strategy
because we were focused on detecting those methods that can be easily
moved to another class and this involves a reduced dispersion of the classes
on which the methods relies. But we might want sometimes to eliminate
this restriction and in this case we will again find methods that rely on
data taken from many other classes. Although in this case moving the
method is not obvious, such methods might still require refactoring.

^ For more comments on accessor-methods please refer to the NOAM metric

BUPT

68 CHAPTER 5. DETECTION OF DESIGN FLAWS

5.2.2 God Method
Motiva t ion Oftentimes a method starts as a "normal" method but then more
and more functionality is added to it, until it gets out of control becoming
impossible to maintain or understand. Thus, God Methods tend to centralize
the functionality of a class, in the same way God-Classes (see Section 5.3.1)
centralize the functionality of an entire subsystem, or sometimes even of a whole
system.

S t r a t egy We defined the strategy for detecting this design flaw based on the
presumed convergence of three simple bad-smells described in [FBB'*'99]. Thus,
we are looking for the following symptoms:

• Long methods. They are undesirabie because they afFect the understand-
ability and testability of the code. Long methods tend to do more than
one operation, and they are therefore using lots of temporary variables
and parameters, which make them more error-prone.

• Long Parameter List Long parameter lists are hard to understand, they
are difficult to use because they tend to change all the time. Long parame-
ter lists are reminiscent of the procedural programming, where parameters
were a proper alternative to global data.

• Sxvitch Statements. The intensive use of switch statements is in almost all
cases a clear symptom of a non object-oriented design, in which polymor-
phism is ignored^. There are two essential problems with switch state-
ments: they maike the design inflexible and they tend to duplicate the
code.

Met r i cs

1. Lines Of Code (LOC)

• Definition: LOC is the number of lines of code in a method, including
comments and white-Unes.

2. Number Of Parameters (NOP)

• Definition: NOP is the number of parameters that build the signature
of a method.

3. Number Of Local Variables (NOLV)

• Definition: NOLV counts how many local variables are declared
within a method.

^On the other hand, we should note that the excessive use of polymorphic methods in-
troduces furthcr testability and analysability problems [Bin99l. Yet, the emphasis in the
context of this design flaw lies on a very frequent case in which legacy systems migrated from
structured to object-oriented programming.

BUPT

5.3. FLAWS OF CLASS DESIGN 69

4. M a x i m u m N u m b e r Of Branches (M N O B)

• Definition: MNOB is defined as the maximum number of i f - e l s e
and/or case branches in a method.

S t r a t e g y

GodMethod := (LOC, TopValues(20y,)) butnotin (LOC, LowerThan(70)) and

((NOP, HigherThan(4) or (NOLV, HigherThan(4))) and

(MNOB, HigherThan(4))

R e m a r k Instead of the MNOB metric we could alternatively use McCabe's
cyclomatic number [McC76] as a measure of the complexity of the method.

5.3 Flaws of Class Design
Most of the flaws described in the literature, in connection with object-oriented
design, are related to class-design. Each of the four criteria discussed in Sec-
tion 2.2 are expressed by a multitude of design rules and heuristics. These rules
are at different granularity levels, yet most of them are expressible in the terms of
the design structure. We briefly discuss hext the most relevant design-flaws for
which we defined detection strategies, pointing out for each case the deviations
from the good-design criteria and the impact on externai quality characteristics:

• D a t a Classes [FBB+99] [Rie96). Data-classes are dumb data holders
and almost certainly other classes are strongly relying on them. The
lack of funcţional methods may indicate that related data and behavior
are not kept in one place; this is a sign of an improper data abstraction
(Section 2.1.1). Data classes impair the maintainability, testability and
understandability of the system.

• G o d Classes (Section 5.3.1). In a good object-oriented design the intel-
ligence of a system is uniformly distributed among the top-level classes
[Rie96]. This design flaw refers to those classes that tend to centralize the
intelligence of the system. An instance of a god-class performs most of the
work, delegating only minor details to a set of trivial classes and using the
data from other classes. God-classes deviate from the principie of man-
ageable complexity (Section 2.2.3), as they tend to capture more than one
abstraction (Section 2.1.1); consequently, such pathological classes tend
to be also non-cohesive (Section 2.2.2). Thus, god-classes have a negative
impact on the reusability and the understandability of that part of the
system that they belong to.

S h o t g u n Su rge ry (Section 5.3.2) [FBB+99]. This bad-smell is encoun-
tered every time when a change operated in a cla^s involves a lot of small
changes to a lot of different classes. When the changes are all over the

BUPT

70 CHAPTER 5. DETECTION OF DESIGN FLAWS

place, they are hard to find and therefore it is very possible to miss an im-
portant change. Thus, this design flaw strongly afFects the maintainability
of the system.

• Refused Bequest [FBB"'"99]. A subclass inherits some of the methods
and the data of its parents. This design flaw refers to the case when the
subclasses don't use the members of their ancestors that were particularly
designed to be reused by the descendants. This might be a sign that the
hierarchy is wrong, although if the child class refuses only the inherited
implementation things might not be that bad; but if the descendant re-
fuses the interface then the hierarchy is definitely wrong. As we already
discussed in Section 2.2.2 this design flaw is a violation of the principie of
cohesive inheritance relationships.

5.3.1 God Classes
Motiva t ion In a good object-oriented design the intelligence of a system is
uniformly distributed among the top-level classes [Rie96]. This design flaw
refers to those classes that tend to centralize the intelligence of the system. An
instance of a god-class performs most of the work, delegating only minor details
to a set of trivial classes and using the data from other classes. This has a
negative impact on the reusability and the understandability of that part of the
system. This design problem can be partially assimilated with Fowler's Large
Class bad-smell.

S t ra t egy The detection of god-classes is based on the three characteristics
of these classes: they are expected to access a lot of data from "lightweight"
classes (either directly or through accessor-methods), they are expected to be
large and to have a lot of non-communicative behavior. Like we did before, we
will first detect the classes that strongly depend on the data of "lightweight"
classes. After that, we will filter the first list of suspects, by eliminating all the
small and cohesive classes.

Met r ics

1. Access To Foreign D a t a (ATFD) [MarOl]

• Definition: ATFD represents the number of externai classes from
which a given class accesses attributes, directly or via accessor-methods.
The higher the ATFD value for a class, the higher the probability that
the class is or is about to become a god-class.

• Implementation Details: Inner classes and superclasses are not counted.

2. Weighted M e t h o d Count (W M C) [CK94]

• Definition: WMC is the sum of the statical complexity of all methods
in a class. If this complexity is considered unitary, WMC measures
in fact the number of methods (NOM).

BUPT

5.3. FLAWS OF CLASS DESIGN 71

• Implementation Details: We recommend the use of McCabe's cyclo-
matic number [McC76] for the quantification of method complexity.

I

3. T igh t Class Cohesion (T C C) [BK95]

• Definition: TCC is defined as the relative number of directly con-
nected methods. Two methods are directly connected if they access
a common instance vajriable of the class.

Ru le

GodClasses := ((ATFD, TopValues(207.)) and (ATFD, HigherThan(4)))
and ((WMC, HigherThan(20)) or (TCC, LowerThan(0.33))

5.3.2 Shotgun Surgery
Mot iva t ion This design flaw means that a change in a class implies many
(small) changes to a lot of different classes [FBB"''99]. Changes that are dis-
persed over many places are hard to find. Thus, Shotgun Surgery influences the
maintainability of the code. In other words, this design flaw tackles the issue
of strong implementation coupling and it regards not only the coupling strength
but also the coupling dispersion.

S t r a t e g y We want to find those classes in which a change would significantly
affect many other places in the source-code by their instability. In detecting
the classes most affected by this smell, we will consider not only the coupling
strength, but also the coupling dispersion. We identified three potential "vic-
tims" of changes in a class:

• methods that directly access an attribute that has changed

• methods that call a method which has changed its signature

• methods that override a method which has changed its signature

We define the coupling strength by the number of places (methods) that must
be changed if we operate a modification in a changing class (server-class). Thus,
a measure that counts the strength of a coupling is given by the cardinality of
the set of methods that access an attribute and of a set of methods that call or
override a method of the changing class. An alternative would be to "weight"
the coupling on the client methods: for each client-method we count how many
distinct members of the server-class have been used.

The other factor that influences the impact of a change is the dispersion of
the resulting changes, i.e. the number of classes (subsystems) that must be
inspected because of a change in a given class.

Based on all the considerations above, the detection technique is now very sim-
ple to describe: first, we look for the cleisses with a strong change impact, aud

BUPT

72 CHAPTER 5. DETECTION OF DESIGN FLAWS

from these we retain for further manual inspection the classes that have a high
dispersion of the change.

Metrics

1. Changing Methods (CM)

• Definition: CM is defined as the number of distinct methods in the
system that would be potentially afFected by changes operated in the
measured class.

• Implementation Details: The methods potentially affected are all
those that access an attribute and/or call a method and/or redefine
a method of the given class.

2. Weighted Changing Methods (WCM)

• Definition: For each method that would be counted by the CM met-
ric, we attach a "weight", The weight is defined as the number of
distinct members from the server-class that are referenced in that
method.

• Implementation Details: WCM is computed as the sum of the weights
of all the methods affected by changes.

3. Changing Classes (CC)

• Definition: The CC metric is defined as the number of client-classes
where the changes must be operated as the result of a change in the
server-class.

Rule

ShotgunSurgery := ((CM, TopValues(20y.)) and (CM, HigherThan(lO)))
and (CC, HigherThan(5))

Remarks

1. If two classes affect by changes TV methods, the class that has its changes
spread over more classes is worse than the one that has them all in one
class. This is the reason why we used a metric (CC) that measures the
dispersion of the changes.

2. We could also imagine this strategy with a difFerent perspective on the
CC metric: thus, if all the cheinges are in one or two classes we should
consider the possibility of moving a member to that class.

3. An alternative way to define the Shotgun Surgery detection strategy would
be to count not only the methods that are coupled to the changing class,
but instead to sum up the strength of each couple. For this purpose we
defined the WCM metric that might substitute the CM metric in the
detection strategy.

BUPT

5.4. FLAWS OF SUBSYSTEM STRUCTURE 73

4. The metrics described before are dealing with probabilities. If we would
deal with this problem at the (server) method level (i.e. server-method -
Number Of Client-Methods - Number Of Client-Classes) we would find
those methods that are really affecting the rest of the system. Thus, the
Shotgun Surgery detection strategy can be also defined at the method
level.

5. This design fiaw is apparently related to the issue of crosscutting concems,
especially emphasized in Aspect-Oriented Programming (AOP). The re-
latedness consists in the impact of change: both Shotgun Surgery and
crosscutting concern deal with the tendency of changes to affect multiple
modules. The main distinction between the two is the level of abstraction:
the issues related to crosscutting concerns are more abstract than the ones
described by the Shotgun Surgery flaw. Crosscutting concerns, represent a
"particular goal, concept, or area of interest" [Lad02] (e.g. logging, error-
handling) and consequently the trouble caused by them is due to a change
of policy or approach related to the given concern. In Shotgun Surgery we
are dealing with the impact of changes in a class.

5.4 Flaws of Subsystem Structure
Lajge-scale software applications require some kind of high level organizat ion.
Although the class is a very useful unit for organizing small applications, it is
too finely grained to be used as an organizational unit for large applications. As
a consequence we need a design entity " larger" than a class in order to organize
large applications (see Section 4.2). Thus, a subsystem^ is used to represent
a logical grouping of declarations that can be imported into other programs
[Mar97b].

Martin [Mar97b] [Mar97c] and Lakos [Lak96] have defined principles and de-
sign rules that should guide the organization of software at the subsystem level.
Moreover, as we have discussed in Section 3.4.2, Martin already made the first
steps towards the quantification of the principles of subsystem organization.
Therefore, the detection strategies presented in this section should be regarded
as a continuation of these efforts.

We identified two classes of flaws that may affect the subsystem structure: co-
hesion and dependency (coupling) flaws. The commonality of cohesion flaws is
that they tend to group classes in an inadequate manner, which leads either to a
few oversized subsystems or to an inflation of very small subsystems. As Martin
points out [Mar97b], there is a tension between three package cohesion princi-
ples: while the "Release-Reuse Equivalence Principie" (REP) and the "Common
Reuse Principie" (CRP) are focused on facilitating the reuse, the "Common Clo-

"̂ We use here the term "subsystem" considering it synonymous with the Java's "package"
or Booch's (Boo94] "class category" concept.

BUPT

74 CHAPTER 5. DETECTION OF DESIGN FLAWS

sur^ Principie" (CCP) is oriented on making the maintenance more convenient.
We defined detection strategies for the following cohesion flaws:

• God Package (Section 5.4.1). By strictly applying the CCP principie, the
packages tend to become very large and non-cohesive. Another symptom
of this flaw is the large number of clients of the package (i.e. classes from
other packages) that use excessively this package.

• Inf la t ion of Atomic Packages. By applying the REP and CRP princi-
ples, the packages tend to become very small, almost "atomic". In contrast
to the "God-Package" flaw, clients of packages affected by this flaw tend
to use classes from a large number of other packages.

• Misplaced Class. In "God Packages" it happens often that a class needs
the classes from other packages more than those from its own package. In
this case, especially if the class uses mainly another package, we could try
moving the class to that package.

At the architectural level, applications can be described as a "network of inter-
related packages'' [MarOO]. Therefore the dependency flaws that may occur at
this level have a major influence on the quality of the design; these flaws rep-
resent violations of the coupling criteria (Section 2.2.1). We identified and
quantified the following set of dependency flaws:

• Uns tab le Dependency , In conformity with the "Stable Dependency
Principie*' (SDP) a package should depend only on packages that are more
stable than itself [MarQTcJ. The violation of this principie has a strong
negative impact on the changeability of the software. We could formulate
this violation as follows: a package that depends on another one which is
more unstable than itself. This design flaw is detectable using the stability
metrics defined by Martin.

• W i d e Subsys tem Interface (Section 5.4.2). The flaw refers to the situ-
ation where this interface is very wide, which causes a very tight coupling
between the package and the rest of the world and this is undesirable. An
alternative name for this flaw is Lack of Fagade and a usual correction
method is to apply the Fagade design pattern [GHJV94].

We will illustrate the detection technique for subsystem flaws by presenting next
the detection strategies for both cohesion and dependency flaws.

5.4.1 God Package
Motiva t ion By strictly applying the Common Closure Principie (CCP) [MarOO],
the packages tend to become very large and non-cohesive. Another symptom of
this flaw is the large number of clients of the package (i.e. classes from other
packages) that use excessively this package. The consequence is that clients of
this package must check out everything in that package even if that change does
not aff"ect them in any way.

BUPT

5.4. FLAWS OF SUBSYSTEM STRUCTURE 75

S t r a t e g y We want to find those packages which are very large and which are
heavily used by classes from outside the package under scnitiny We believe
that if the classes that use the package are spread among many packages there
will be an increase of the probability that the used package is a "god-package".
A final aspect that we want to capture is the cohesion of the package, âs "god-
packages" are expected to have a lot of classes that don't communicate a lot
with each other.

Me t r i c s

1. Package Size (PS)

• Definition: PS is the number of classes that are defined in the mea-
sured package.

• Implementation Details: Inner cleisses are not counted.

2. N u m b e r Of Cl ient Classes (N O C C)

• Definition: NOCC represents the number of classes from other pack-
ages that use the measured package.

• Implementation Details: A class uses a package if it calls methods,
accesses attributes or extends a class defined in that package.

3. N u m b e r Of Cl ient Packages (N O C P)

• Definition: NOCP is the number of other packages that use the mea-
sured package.

• Implementation Details: A package uses another package if at least
one if its classes is using that package.

4. Package Cohes ion (P C)

• Definition: PC is defined as the relative number of class pairs from
a package between which a dependency exists.

• Implementation Details: A class A depends on another class B, if
class A calls methods and/or accesses attributes from class B and/or
extends class B. In computing PC, we count these class pairs and
divide their number by the maximum number of class pairs. For a
package with n classes, the maximum number of class pairs is:

n (n - l)
2

Inner classes should not be counted.

Ru le

GodPackage := ((PS, HigherThaii(20)) and (PS, TopValues(257,)) and
(NOCC, HigherThan(20)) and (NOCP, HigherThanO))

BUPT

76 CHAPTER 5. DETECTION OF DESIGN FLAWS

5.4.2 Wide Subsystem Interface
Motivat ion This flaw is inspired by the motivation for the Fagade design pat-
tern [GHJV94). Similar to classes, we can also speak about the interface of a
subsystem, This interface consists of the classes that are accessed or, more pre-
cisely, are accessible from outside the package. The flaw refers to the situation
where this interface is very wide, this causing a very tight coupling between the
package and the rest of the world, which is undesirable. In most of the cases the
interface can be reduced by introducing a Faţade class. If this does not help it
might be a sign that the "God-Package" flaw has also crept in. In this case the
possibility of relocating some of the classes should be cqnsidered.

S t r a t egy We have based our definition for this pathological case on the fact
that most probably each subsystem is encapsulated in a separate package. Thus,
we can talk about a subsystem interface, the same way as we do for classes. The
interface of a subsystem is comprised of the set of classes from that package
which are accessible from outside the package. This pathological case appears
when we are dealing with packages with a rich interface, with lots of classes from
the package being accessed from outside, which leads to a very tight coupling
between this package and the rest of the system. In other words, this patho-
logical case manifests itself through a package with the following characteristics
(Fig. 5.1):

• a large number of classes from the package are accessed from outside the
peickage;

• a high ratio of classes from the package are used

Figure 5.1: The pathological case for Fagade

BUPT

5.5. LACK OF PATTERNS 77

Met r i c s

1. Package In t e r f ace Size (PIS)

• Definition: PIS is the number of classes of a package that are used
from outside the package.

• Implementation Details: A class uses a package if it calls methods,
accesses attributes or extends a class defined in that package.

2. Package Usage R a t i o (P U R)

• Definition: The PUR metric is defined as the relative number of
classes from the measured package that are used from outside that
package.

• Implementation Details: The number of used classes will be divided
by the total number of classes in the package, from which we exclude
the inner classes, i.e. PS^. Thus

P U R ^ " '
PS

Rule

WideSubystemInterface := (PIS, HigherThan(lO)) and

(PUR, HigherThan(0.75))

5.5 Lack of Patterns
Motivated by our intention to quantify and detect common design flaws en-
countered in object-oriented systems, we developed an approach based on the
following idea: because patterns are elegant solutions to common design prob-
lems, we want to capture the deficiencies of the design that would result from
ignoring the pattern-based solutions in contexts were these would be highly
recommendable. The assumption that missing patterns generates poor design
is also in conformity with the authors of the best-known book on design pat-
terns [GHJV94] that discuss in the "motivation" section for several patterns
the design deficiencies that would result from ignoring the pattern solution.
Surprisingly or not, this makes the "classical" catalogue of design patterns a
source for identifying and defining new types of design flaws. For these flaws,
assuming that we succeeded in detecting them, there is already a solution for
the improvement of the design, i.e. the one offered by the pattern.

In [RusOl] we defined in detail the steps of this approach and evaluated its
feasibility. We started from the entire catalogue of design patterns [GHJV94]
and first we eliminated those patterns for which it was impossible to define a
detection strategy based strictly on static analysis information. After this step

^for the definition of PS see Section 5.4.1

BUPT

78 CHAPTER 5. DETECTION OF DESIGN FLAWS

we kept 10 out 23 patterns. These detection strategies where then applied on
several case-studies and based on the experimental results we kept only those
that proved to be efBcient. We ended up with six patterns for which the afore-
mentioned approach proved to be feasible. These are: Bridge, Fagade, State,
Strategy, Visitor and Singleton. Note that among the six patterns there are
creational as well as structural and behavioral patterns.

The "Lack of Patterns'' category of design flaws is on a higher level of abstrac-
tion than the previous one. In terms of detection strategies this distinction can
be expressed as follows: in the case of a detection strategy defined to capture
a " missing pattem'', knowing only the design entity returned by the strategy is
not enough to locate a flaw as this always affects a design fragment. Thus, the
strategy must explicitly specify the "role" of the detected entity in the flaw and
the rule by which the other entities belonging to the flaws fragment can be iden-
tified. This is well exemplified on the "Lack of Bridge" strategy (Section 5.5.1).

In conclusion» we may say that the approach helped us identify and capture
a set of new design flaws. There are still several causes that partially limit its
applicability: first, it is not possible to express the flawed structure by metrics
for every design pattern; second, symptoms are often overlapping for different
patterns; third, during the experiments we encountered many false-positive re-
sults.

From the six patterns for which we defined detection strategies we selected
two for a detailed analysis: one that detects a missing structural pattern, i.e.
Bridge (Section 5.5.1) and one detecting a missing behavioral pattern, i.e. Strat-
egy (Section 5.5.2).

5.5.1 Lack of Bridge

Motiva t ion The Bridge [GHJV94] design pattern is used to decouple an ab-
straction from its implementation, so that the two may vary independently.
When we have several implementat ions for a cer tain abstract ion, the usual so-
lution is to use inheritance: an abstract class defines the interface and concrete
subclasses provide the implementations. However, this solution is inflexible be-
cause the abstraction and its implementations are statically linked. Thus, the
following problems may appear:

• if we have a lot of abstractions, organized in a rich hierarchy, by adding
the implementation subclasses this hierarchy becomes very complex;

because of the static link between abstraction and implementation, mod-
ifying the abstraction implies the modification of all its implementations;

when we add a new abstraction, it is necessary to write all the subclasses
that provide the implementations for this abstraction.

BUPT

5.5. LACK OF PATTERNS 79

St ra tegy Prom the description above it is obvious that the pathological case
associated with this design pattern appears as an "inflation" of classes: a rich
class hierarchy, in which the subclasses are divided in two categories:

1. implementation subclasses — these are concrete subclasses which imple-
ment the interface of their superclass;

2. specialization subclasses — these are abstract subclasses, representing ab-
stract specializations of their superclass.

Each specialization subclass will have its own subset of implementation sub-
classes. The situation described above may appear in two difFerent ways which
represent the two pathological cases for this design pattern:

1. a "deep" class hierarchy, with implementation classes for every abstract
subclass, probably also for the hierarchy superclass (Fig. 5.2);

Abstmction

OperatioriO

ImpleroentationB Ijnplemen ta tion A Rejînementl Refinement2
OperatlonO OperarionQ OperationO Operationi)

A

RcfllmplB RefllmplA
OptrtliionO OperalionO

Rd2Inip1A. RenimplB
OpemtionO OperalionO

Figure 5.2: The first pathological case for Bridge

2. a degenerate version of the previous case: a "shallow and wide" class
hierarchy, where most (or all) of the concrete implementation subclasses
are derived from the same base class; in this case we have a hierarchy with
a lot of classes on the first level (Fig. 5.3).

Metr ics

1. N u m b e r Of Descendants (NOD)

• Definition: NOD is the number of classes directly or indirectly de-
rived from the measured class.

BUPT

80 CHAPTER 5. DETECTION OF DESIGN FLAWS

Ahstraction

OperatiortO

— Z ^

[mplemfntationB
Operaţi onQ

tmpInneiitatioiiA
OpcrationQ

ReflImplB ReflfmplA RfCImplA Ref2Inip1B
OpentionQ OperadonO OpeiadonO OpcrationO

Figure 5.3: The second pathological case for Bridge

2. Height of Inher i t ance Tree (HIT)

• Definition: HIT is computed as the maximum number of levels of
derivation (inheritance) for the given class.

• Implementation Details: HIT is complementary to the Depth of In-
heritance Tree (DIT) metric. While DIT measures the longest path
upwards for a class in the inheritance-tree, HIT measures the longest
path downwards in the inheritance-tree.

3. Leaves R a t i o (LR)

• Definition: LR is defined as the number of " leaf-classes" divided by
the total number of descendant classes (NOD) in the hierarchy tree
rooted by the measured class.

• Implementation Details: A "leaf-class" is a derived class that has no
further classes derived from it.

4. Child R a t i o (CR)

• Definition: If we consider the definitions of Number Of Children
(NOC) [CK94] and Number Of Descendants (NOD), then CR is de-
fined as:

CR - ^^^

5. N u m b e r Of Publ ic M e t h o d s (N P u b M)

• Definition: NPubM is the number of public methods defined in the
measured class.

• Implementation Details: Constructors and the destructor of the class
should not be counted.

BUPT

5.5. LACK OF PATTERNS 81

Ru le

LackOfBridge := LackOfBridge-deep or LackOfBridge-shallow
LackOfBridge-deep := (NOD, HigherThan(8)) and

((HIT,HigherThaii(l)) and (LR,HigherThan(0.66)))
and (NPubM, HigherThan(3))

LackOfBridge-shallow := (NOD, HigherThan(6)) and
((CR,HigherThan(0.75)) and (HIT,HigherThan(0)))
and (NPubM, HigherThanO))

R e m a r k s

• We chose the threshold values for the NOD and the LR metrics, consider-
ing the minimal situation of 2 implementation classes and 2 specialization
classes. In the case of a deep hierarchy this leads to a minimum number
of 8 classes (see Fig. 5.2) and in the case of a shallow one the lowest NOD
values is 6 (see Fig. 5.2). In a similar manner we computed the LR and
CR threshold values.

• The threshold values mentioned before are calculated for the situation
where the pathological cases are "pure". Yet, sometimes you will en-
counter degenerate situations, where for example there is only one imple-
mentation subclass, or where the two pathological cases are mixed. If we
want to capture these cases too, we have to reduce the thresholds for the
different metrics (NOD, LR, CR) because these class hierarchies are not
so rich but are a potential danger if the design evolves.

• The role of the NPubM is the following: without it, the strategy would
capture also the roots of some class hierarchies that probably are part of
the Strategy design-pattern. Because we wanted to avoid that situation,
we introduced this metric filtering out those root-classes that defined a
small interface that is then implemented by a number of subclasses.

5.5.2 Lack of Strategy
Mot iva t ion When we need several algorithms to solve a certain problem, the
Strategy [GHJV94] design pattern offers the solution of defining a family of al-
gorithms; these algorithms are encapsulated and organized in a class hierarchy,
so they can be easily interchanged.

There are two types of poor design that can be imagined related to the ig-
norance of the pattern solution; they differ by the method used to implement
the algorithm family. Thus, we identified the following two pathological cases:

L AU the algorithms are encapsulated in one big class (fig. 5.4); this class
will be very complex, with some methods having large condiţional struc-
tures, namely those methods in which the algorithms are implemented.

BUPT

82 CHAPTER 5. DETECTION OF DESIGN FLAWS

Also, there is the possibility that these methods will access algorithm-
specific attributes, which are probably not accessed anywhere else. Thus
the cohesion of these classes is relatively low due to the algorithm-specific
data.

Context
swiicli(which_algorithni) ^

^ case ALG^l: AlgorithiTi IQ ;
break;

case ALG_2: Algorithin20 ;
bieak ;

)

ConicxtlntcrfaccO
AlgorithmlnterfaceO ^

Algorithm 10
AIgorithra20

swiicli(which_algorithni) ^

^ case ALG^l: AlgorithiTi IQ ;
break;

case ALG_2: Algorithin20 ;
bieak ;

)

ConicxtlntcrfaccO
AlgorithmlnterfaceO ^

Algorithm 10
AIgorithra20

swiicli(which_algorithni) ^

^ case ALG^l: AlgorithiTi IQ ;
break;

case ALG_2: Algorithin20 ;
bieak ;

)

swiicli(which_algorithni) ^

^ case ALG^l: AlgorithiTi IQ ;
break;

case ALG_2: Algorithin20 ;
bieak ;

)

Figure 5.4: The first pathological case for Strategy

2. Another possibility is the appearance of a class hierarchy (probably shal-
low and wide), where each subclass ofFers a diflFerent implementation of the
algorithm (fig. 5.5). It is very likely that the only difference between the
base class and its subclasses the overriding of the methods that implement
the algorithm.

Figure 5.5: The second pathological case for Strategy

St ra t egy For the first pathological case described before we are looking for
classes with a high level of complexity (methods with large condiţional struc-
tures) and low cohesion.

The second pathological case implies class hierarchies with a special structure:

BUPT

5.5. LACK OF PATTERNS 83

the subclasses have a low number of public methods of their own, most of them
overridden (to implement the algorithm).

Metrics

1. Weighted Method Count (WMC) [CK94]

• Definition: WMC is the sum of the statical complexities of all meth-
ods in a class. If this complexity is considered unitary, WMC mea-
sures in fact the number of methods (NOM).

• Implementation Details: We recommend the use of McCabe's cyclo-
matic number [McC76] for the quantification of method complexity.

2. Tight Class Cohesion (TCC) [BK95]

• Definition: TCC is defined as the relative number of directly con-
nected methods. Two methods are directly connected if they access
a common instance variable of the class.

3. Number Of Public Methods (NPubM) [LK94

• Definition: NPubM is the number of public methods defined in the
measured class.

• Implementation Details: Constructors and the destructor of the class
should not be counted.

4. Number Of Methods (NOM) [LK94]

• Definition: NOM is the number of methods defined (not inherited)
in the measured class.

• Implementation Details: Constructors and the destructor of the class
should not be counted.

5. Average Number of Overridden Methods (ANOM)

• Definition: The ANOM metric is defined as the average number of
methods from the measured class that are redefined in the classes
directly derived from it.

• Implementation Details: ANOM is computed by counting the number
of methods that were overridden in each class derived from the base
class that we are measuring, by summing them up and dividing the
sum by the number of derived classes.

BUPT

84 CHAPTER 5. DETECTION OF DESIGN FLAWS

Rule

LackOfStrategy := LackOfStrategy-OneClass or
LackOfStrategy-ClassHierarchy

LackOfStrategy-OneClass :=

(WMC, HigherThan(20) and (WMC, TopValues(25y.))) and

(NOM, HigherThan(20)) or (TCC, LowerThanOS'/.))

LackOfStrategy-ClassHierarchy :=

(ANOM, HigherThan(l.O)) and

(NPubM, HigherThanO))

Remarks

1. We introduced the NOM metric in the OneClass sub-strategy in order to
be sure to also "catch" the classes that might have a higher cohesion than
the threshold, but which are very large.

2. We introduced the NPubM metric in the ClassHierarchy sub-strategy,
in order to eliminate the cases of class hierarchies where the base class
defines a small interface that is then implemented by all the subclasses
(e.g. in case of applying the Strategy pattern the algorithms hierarchy
tree would have such a shape).

5.6 Conduşive Remarks
Looking back at the entire chapter there are several remarks and conclusions
that summarize the entire discussion:

• Detection strategies help us encapsulate the detection process for a given
design flaw. In this context the name of the strategy is essential because
it allows the engineer to reason in the abstract terms of what must be
detected and not in the chasm of how it is detected.

We managed to define strategies for all levels of abstraction from the lowest
one (the method level), up to level of micro-architectures (i.e. clusters of
classes).

The catalogue is far from being complete. The intention was to illustrate
how detection strategies can be applied for finding design fiaws. Purther
strategies should be defined to extend the detectable design problems fol-
lowing the methodology defined in the previous chapter (see Section 4.4)
and applied over and over again through this chapter.

The fact that we identified just structural design problems is not an in-
trinsic limitation of the detection strategy concept. The limitation is due
to the fact that the metrics used through this work are exclusively design

BUPT

5.6. CONCLUSIVE REMARKS 85

metrics that rely on the static design structure. In other words the upper
limit of the definable detection strategies is set by the Hmits of the meta-
model. Thus, the approach is apphcable also to other types of design flaws
(e.g. code duphcation) as long as the meta-model contains the necessary
information to detect the flaws.

• Using a medical metaphor, detection strategies are means to detect a
design "disease" based on a correlation of "symptoms". Each symptom
is captured by a metric, more precisely by the interpretation model for a
given metric. The composition mechanism (Section 4.3.4) of the detection
strategy allows a flexible composition of the symptoms in a quantifiable
expression of a design "disease", which is a design flaw.

• Sometimes symptoms overlap and therefore we encountered in this chapter
metrics that appeared in several strategies.

• In most cases a design is not affected by a singular design flaw. There-
fore, in order to obtain a real picture of a design's quality these detection
strategies should not be used in isolation. In order to give their highest
benefit, detection strategies need a coherent framework that would reiate
them to quality. In other words they must be used in the context of a
quality model. In the coming chapter we will deflne a new type of quality
model, that improves the existing approaches by taking advantage of the
detection strategies deflned in this chapter.

BUPT

86 CHAPTER 5. DETECTION OF DESIGN FLAWS

BUPT

Chapter 6

Factor-Strategy Quality
Models

We measure because we want to evaluate and eventually improve the quality of
the design. We want to bridge the gap between how quality is perceived and how
it is assessed through measurements at the design level. This chapter proposes
a new approach to quality models called - the Factor-Strategy Quality Model.
More precisely, this approach is based on detection strategies that quantify rules
directly related to the quality of design, as the ones we described in Chapter 5

This new quality model may be regarded in a way as the end-result of all the
mechanisms and techniques defined in the previous two chapters and the ac-
complishment of the initially stated goal of this dissertation.

The chapter starts with a presentation of the Factor-Criteria-Metric (FCM)
approach including a discussion on the limitations of this well-known quality
model. After that, we introduce the concepts of the Factor-Strategy approach
to quality models as an alternative that eliminates the main drawbacks of the
FCM paradigm. It improves the FCM approach by expressing and evaluating
quality factors in terms of measurable expressions of good-style design heuristics
and rules. In this context, we also introduce the mechanisms for evaluating a FS
quality model. The last part of this chapter deals with the issues related to the
constructiori of FS quality models and exemplifies them by proposing a quality
model for maintainability. The chapter ends with an evaluative conclusion.

6.1 Quality Models
Without an assessment of product quality, speed of production is meaningless.
This observation has led software engineers to develop models of quality whose
measurements can be combined with those of productivity. In this section we
discuss the decompositional approach to quality models, known as the Factor-

ul

BUPT

88 CHAPTER 6. FACTOR-STRATEGY QUALITY MODELS

Use Factor

Usablllty

Product Reliability
operatfon

Reliability

Efficlency

Reusablllty

Product
revigion

MflJntaJnabilIty

Portablllty

Testability

Cri ter ia

Communicadveness r

Accuntqf y
Consistenqr 1-

Device Efficlency

Accessibllîty

ComplatenfttB

Stiucturftdnttsfi

ConclBn«st

Lftfllblllty

Self-descripqvenes8 |"

TnLccablIity

Metrlcs

Figure 6.1: A FCM Quality Model [FP97]

Critena-Metric, and point out the limitations in applicability of this approach
together with a very recent contribution that addresses these limitations.

6.1.1 Factor-Criteria-Metric Models
One of the most frequently used quality models is the decompositional ap-
proach used both by McCall [MRW77] and Boehm [BBK78], commonly known
as the Factor-Criteria-Metric quality model (FCM). FCM models are usually
constructed in a tree-like fashion, similar to the one depicted in Figure 6.1.
The upper branches hold important high-level quality factors related to soft-
ware products, such as reliability and maintainability, which we would like to
quantify. Each quality factor is composed of lower-level criteria^ such as struc-
turedness and conciseness. These criteria are easier to understand and measure
than the factors themselves, thus actual metrics are proposed for them. The tree
describes the relationships between factors and criteria, so we can measure the
factors in terms of the dependent criteria measures. This notion of divide-and-
conquer has been implemented as a standard approatch to measuring software
quality [IS091]. Thus, there are three elements that build a FCM model:

BUPT

6.1. QUALITY MODELS 89

1. quality factors - i.e. high-level key attributes that express the quality as
perceived by the user.

2. quality criteria - i.e. lower-level attributes that are closer to the devel-
opers' perspective. Each quaUty factor is expressed in terms of quahty
criteria based on the belief that there is an isomorphic relation between
the quahty of software as perceived by the user and the quahty of code
and design; in other words the internai characteristics of the code have an
effect on externai quality attributes.

3. quality metrics - i.e. a set of code-based metrics that each quality criteria
is mapped into.

6.1.2 Example: A FCM Model for Maintainability
In order to illustrate the concepts of the FCM quality model, we will now present
as an example a quality model inspired from a widely-spread commercial tool for
software auditing and quality assurance [TelOO]. The quality model is depicted
in Figure 6.2. We have chosen this example not oniy because it illustrates the
FCM concept, but also because its evaluat ion mechanisms are similar to the
ones we used in this work.

The quality goal of this model is maintainability that is decomposed in four
quality factors, in conformity with the decomposition found in [IS091]. These
factors are: analysability, changeability, stability and testability. As we are go-
ing to revisit this example later in this chapter (Section 6.4.3) we will present
next the definitions of the four maintainability factors, as they appear in [IS091]:

Defînition 6.1 (Analysability) Attributes of software that bear on the effort
needed for diagnosis of deficiencies or the causes offailureSj or for identification
of the parts to be modified.

Definition 6.2 (Changeability) Attributes of software that bear the effort
needed for modifîcation, fault removal or for environmental change.

Definition 6.3 (Stability) Attributes of software that bear on the risk of un-
expected effect of modifications.

Defînition 6.4 (Testability) Attributes of software that bear on the effort
needed for validating the modified software.

After decomposing maintainability in the four quality criteria, the model as-
sociates a set of metrics with each criterion, in order to provide a quantifiable
expression for it. Based on the values computed for each of these metrics, a
score is calculated for each quality criteria by using a mathematical formula.
In other words, a quality criterion can be regarded as a higher-Ievel indirect
measurement, computed from the metrics associated with it.

BUPT

90 CHAPTER 6. FACTOR-STRATEGY QUALITY MODELS

Factor

Mainţalpai^lr^

Criteria Metrics

WMC

NBC

Anâiyzability DepMelh

FANIN

FAN OUT

COMF

Changeability ENCAP

USABLE

SPECIAL

Stability AUTONOM Stability AUTONOM

NOC

CdBC

Testability CDUsers Testability
TESTAB

\
TESTAB

\ CDUsed

Figure 6.2: The T E L E L O G I C quality model at the class level. In this model
there is only one quality factor, as the focus of the tool lies on the assessment
of maintainabihty.

For example, testability for a class is considered to depend on the unit test
effort for the class's methods, the number of times this test effort should be
repeated (number of inherited classes) and the number of used classes. Con-
sequently, testability is computed (see Figure 6.2) as the mathematical sum
between two direct metrics - i.e. Number of Base Classes (NBC) and Number
of Directly Used Classes (CDUsed) - and an indirect one (TESTAB) which is
defined as the sum of: the number of the class's methods, the number of out-
side attribute uses, and the number of calls to functions defined outside the class.

The Telelogic quality model is evaluated in a stepwise manner, as follows:

1. For each criterion a value is computed from the values of the metrics
associated with that criterion based on a mathematical formula.

2. The value for each criterion is classified in one of the four quality cate-
gories: EXCELLENT, GOOD, FAIR or POOR. Each of these categories
has a numeric quality scores associated with it.

3. For each factor again a value is computed based on the quality score of the
criteria associated with that factor. From the evaluation point of view, the

BUPT

6.1. QUALITY MODELS 91

association between a factor and its criteria is defined by the mathematical
formula used to compute the value of that quality factor.

4. The final step is to map the computed values of the quality factors to a
quality category, as it was done for the criteria.

The results of evaluating the quality of a system using this quality model are
summarized in a report. One of the main functions of the report is to reveal the
design entities that cause a reduced quality. Although the report offers indeed
a list of classes and methods that reduce quality, it is very hard to understand
the real causes of the poor quality as the only thing that is provided is a vector
of 10-15 metrics values, out of which some are marked to exceed a threshold
specified by the quality model. This brings us to one of the major limitations
of the FCM quality models: their incapacity to detect the real design causes of
poor quality. In the following section we are going to discuss in more detail the
limitations of the FCM quality models.

6.1.3 Limitations of FCM Quality Models
Although this approach is cited throughout the whole software engineering lit-
erature and is implemented in several commercial CASE tools it has two main
drawbacks that limit its usability. These limitations are discussed through the
rest of this section.

Obscure mapping of quality criteria into metrics

The first striking question that came to my mind while analyzing different FCM
models was: how are the quality criteria mapped into metrics? The answer to
this question is essential because it affects the usability and reliability of the
whole model.

The question can be rephrased as follows: How is the quality of design quan-
tified? As we have pointed out earlier (see Section 2.2), in order to assess the
quality of a design we need a set of criteria (e.g. low coupling, high cohesion,
manageable complexity, good structuredness) that must be eventually mapped
to the design principles and rules that characterize the design paradigm (e.g.
object-orientation) that was used while developing the software.

Unfortunately, in the FCM approach this explicit mapping between quality cri-
teria on one hand and rules and principles of design and coding on the other
hand is missing. To be more precise, the mapping is not missing, but is implic-
itly and obscurely contained in the mapping between the quality criteria and the
quality metrics. Thus, the answer to the previous question is: quality criteria
are mapped into metrics based on a set of rules and practices of good-design.
But this mapping is "hidden" behind the arrows that link the quality criteria
to the metrics, making it in most of the cases impossible to trace back.

BUPT

92 CHAPTER 6. FACTOR-STRATEGY QUALITY MODELS

This observation reveals a first important drawback of the FCM quality
models: if the model is a fixed one, it will be hard io understand, because we
can only guess what are the rules and principles that dictated the mapping.
In case of a " user-defined" model the model is hard to define, because when we
mentally model quality we reason in terms of explicit design rules and heuristics,
keeping the quality criteria implicitly contained in the rules. Yet, when it comes
to defining a FCM quality model, things are totally on the other way around:
quality criteria are explicit while design rules are implicit.

Poor capacity to map quality problems to causes

The second drawback is related to the efBciency and relevance of interpreting the
results from a FCM quality model. After all, we build quality models because
we seek an answer to the following questions:

Diagnosis. What are the design and implementation problems that affect
the quality of my software?

• Location. Where are those problems located in the code?

Treatment. What do I need to change, at the design level, to improve the
quality of my software?

When analyzing a software system using a FCM model - and let us consider the
ideal case in which the model produces a perfect association between quality
factors and the design structure - we get the quality status for the difFerent
factors that we are interested in (e.g. the maintainability is quite poor, while
portability stays at a fair level). We are also able to identify a set of program-
ming entities (e.g. classes or methods) that are supposed to be responsible for a
poor status of a certain quality factor. We can find these suspect entities based
on the values and the interpretation rules (e.g. threshold values) of the difFerent
quality metrics used in the model. Thus, it appears that FCM solves both the
diagnosis and the location issues.

But as soon as we so-rive at the question concerning the treatment, we reached
the limits of the FCM model, because the model doesn't help us find the real
causes of the quality flaws detected by it. A treatment can only be imagined
when knowing the disease not only a set of symptoms, The cause of this is
the fact that abnormal metric values - even if the metrics are provided with a
proper interpretation model - are just symptoms of a design or implementation
disease and not the disease itself.

FCM models confront their user with a large set of measurement results, which
in most of the cases are not fully understood, in spiţe of the interpretation guide-
lines given for the metrics. The multitude of abnormal values is rather puzzling
for the engineer than is assisting him to find the proper code transformation
that would improve the design. The fact that the metrics are linked to a quality
criterion is not solving the problem, much the same way as knowing that high

BUPT

6.4. DUILDING FACTOR-STRATEGY QUALITY MODELS 93

fever is related to an infection is not helping to find a cure.

As already mentioned before, a software engineer developing a new system or
redesigning a legacy system is reasoning in terms of good-design rules and prac-
tices, not in terms of abnormal numbers. Therefore, any improvement of design
or implementation, that would eventually bring an overall improvement of qual-
ity, is expected to be motivated by the guidelines of good-design. But design
principles and rules are only implicit in a FCM model, so that when using the
model we are faced with abnormal numbers instead of explicitly dealing with
the deviations from good-design practices.

Summarizing, the second major drawback of the FCM model is that it does
not offer any relevant feedback concerning the causes of quality flaws, thus hin-
dering an efRcient transformation of the code that would improve quality. Con-
sequently, the developer is provided only with the problem and he or she must
still empirically find the real cause and eventually look for a way to eliminate
the design flaw and improve the design.

6.1.4 Hybrid Approach to Quality Models
In [SBOl] and [SBLOl] the authors criticize the FCM models and propose an
improvement to such predictive quality ^models. The authors emphasize that
the use of precise threshold values and their interpretation in the absence of for-
mal models, as well as the crudeness of the derived rules which can only serve
to build naive models are the two diseases of current approaches for building
predictive models. They propose a novei approach by building fuzzy decision
processes that combine both software metrics and heuristic knowledge [FNOO]
from the field. The authors claim that this hybrid approach would improve
efficiency of quality prediction and provide a more comprehensive explanation
of the relationship that exists between the observed data and the predicted soft-
ware quality characteristics.

A criticai view on the paper reveals that while the fuzzification of threshold
values seams applicable and well founded [Kos96), the second part containing
decomposition of heuristic knowledge is far from being traceable. In addition to
that, no case studies are provided in the paper so that the practicability of the
approach is not yet proved. In conclusion, we believe that this approach will
become useful in the future especially on the side of a proper parametrization of
the interpretation models of the metrics. Yet it does not offer a comprehensive
approach for an improved quality model.

6.2 Factor-Strategy Quality Models
The drawbacks of the FCM quality models are in essence due to the fact that
quality is mapped to a large set of measurements that are only implicitly related
to the rules and principles of good-design. These drawbacks can be eliminated if

BUPT

94 CHAPTER 6. FACTOR-STRATEGY QUALITY MODELS

the quality of code and design would be explicitly assessed in terms of deviations
from a set of quantifiable good-design principles and heuristics. Therefore, based
on the detection strategy concept introduced in Chapter 4 and its "instances"
defined in Chapter 5, - i.e. strategies for problem detection - we propose a new
type of quality models, called Fac to r -S t ra t egy . This approach is intended to
improve the FCM paradigm with respect to the two major drawbacks discussed
earlier.

Def în i t ion 6.5 (Fac to r -S t ra tegy Qual i ty M o d e l (FS)) A model used for
the assessment of software quality that decomposes quality in a set of high-level
quality factors and maps each factor to a set of strategies that quantify deviations
from rules of good design is called a Factor-Strategy Quality Model.

In the previous definition we distinguish the following components of a Factor-
Strategy quality model:

1. Qua l i ty Fac to r s have precisely the same meaning as in the FCM models,
i.e. high-level attributes used as an expression of quality as perceived by
the user.

2. S t ra teg ies are the means used to detect and quantify the flaws at the
design and implementation level that negatively rebound upon quality
factors. A strategy entapsulates a metrics-based mechanism for finding
deviations from a particular rule of good design. The strategy in a Factor-
Strategy quality model is in fact an instance of the detection strategy con-
cept (see Section 4.3) defined for Identification and localization of design
flaws (see Chapter 5).

In Figure 6.3 we illustrated the concept of a Factor-Strategy model. At first
sight it becomes obvious that FS models still use a decompositional approach,
but after decomposing quality in factors, these factors are not anymore associ-
ated directly with a bunch of numbers, which proved to be of a low relevance for
an engineer. Instead, quality factors are now expressed and evaluated in terms
of detection strategies, which are the quantified expressions of the good-style
design rules for the object-oriented paradigm.

Therefore we may state in more abstract terms that in a Factor-Strategy model,
quality is expressed in terms of principles, rules and guidelines of a program-
ming paradigm. The set of detection strategies defined in the context of a FS
quality model encapsulate therefore the knowledge-box of good design for the
given paradigm. The larger the knowledge-box, the more accurate the quality
assessment is. In our case the detection strategies are defined for the object-
oriented paradigm, and thus in the right side of Figure 6.3 we depicted a sample
of a knowledge-box of object-oriented design.

The knowledge-box as such is indispensable for any quality model. Although not
visible at first sight, it is also present in the FCM models. The knowledge-box is
not obvious in the FCM approach because of its implicit character. The entire

BUPT

6.4. DUILDING FACTOR-STRATEGY QUALITY MODELS 95

p i U i P

Figure 6.3: A Factor-Strategy quality model. The picture does not represent a
complete model. It only illustrates the new concept of a model in which quality
is assessed explicitly in terms of deviations from a set of design principles, rules
and heuristics, which are quantified in terms of Detection Strategies

BUPT

96 CHAPTER 6. FACTOR-STRATEGY QUALITY MODELS

knowledge about the programming paradigm is captured in the association of
criteria with metrics. Using a metaphor, we might say that the knowledge-box is
behind the arrows that Hnk criteria with metrics. Of course, the metrics are also
paradigm-specific, but the design and programming principles ţhat the metrics
reflect are implicit. They may be inferred from the construction of the model,
but they are not explicit. Thus, the novelty of the FS approach resides in the
explicitness of the principles and rules that support the quaUty of a system. This
explicitness is supported by the use of detection strategies as quantifications of
these rules and principles.

6.3 Evaluation of Factor-Strategy Models
After defining the new Factor-Strategy quaUty model, we move to describe the
evaluation mechanisms of the model. At the same time we take a closer look at
the relationships between the key elements of this new type of quality model.

The assessment of quality for a software system based on a quality model in-
volves two main aspects: the quantification and ranking of the quality status of
the analyzed system and the identification of the causes for low quaUty. Next,
we are going to discuss these two aspects.

6.3.1 Quantification and Ranking of Quality Factors
This aspect requires mechanisms for computing a high-level metric for each
quality factor {quantification) and for mapping this metric value on a scale that
would allow us to draw qualitative conclusions on the system with respect to
that quality factor {ranking).

Ranking of Strategy Results

The ranking of a detection strategy with respect to a quality factor is the pro-
cess by which the results of a detection strategy are mapped to a number that
expresses the quality of the analyzed system from the point of view of the design
rule quantified by that particular detection strategy. This process is graphically
depicted in Figure 6.4.

In this chapter we express a detection strategy (cr) as a vector of pairs, where
each pair consists of a metric (/ii) that belongs to strategy a and a parameter
(TTÎ) used in filtering the data associated with that metric,

> , . . . , < / in , TTn >)

When applying a detection strategy on a software system, we get two results:

1. The set of suspect entities detected by the strategy: =
where n^^) represents the number of suspect entities for strategy a .

BUPT

6.3. EVALUATION OF FACTOR-STRATEGY MODELS 97

Detection Strategy

a{<^tl.7^l Un,>)

/ gyniu gmax ^^ \

^r,rin grnar. ^ ^

detect
suspects

5rjiin Qinax p
X m ^m ^ n /

! place score
; in matrix

Matrix of
Ranks

M)

compute / A map to
quality score quality ranking

Set of Suspects

Figure 6.4: The process of computing a quality score from the results of running
a detection strategy over the analyzed system and eventually transforming the
score into a quahty ranking using a matrix of ranks

2. For each suspect design entity a vector of values representing the
measurement results for each of the lYietrics involved in the detection strat-
egy- = where m^̂ ^ represents the number of metrics
involved in detection strategy a.

Based on this information a quality for the detection strategy can
be computed. This strategy score can be regarded as a higher-level metric; a
metric applied to the detection strategy. For the computation of the quality
score, at least the following computation methods can be used:

Number of Suspects:
si-) = n^-)

based on the interpretation that the more suspect design entities are re-
ported by a detection strategy the lower the quality of the design is.

Relative Number of Suspects:

n
where n represents the total number of measured entities.
This computation method has the advantage over the previous method
that it takes into account the size of the analyzed system, which is an
advantage if we want to compare quality among systems of different sizes.

Weighted Number of Suspects:

1=1

BUPT

^min ^ m o x
Ri

gmin ^ m a x
Rk

c m t n gmax
Rm

98 CHAPTER 6. FACTOR-STRATEGY QUALITY MODELS

where wl""̂ is the weight of each suspect entity. The weight could be com-
puted for each suspect entity based on the vector of measurement results.
This would allow a differentiation, for example, between a class that was
considered a suspect because of a single measurement value slightly be-
yond the threshold Hmits and another class where all the measurement
values in the metrics vector are far beyond the admissible limits.

After computing the raw quality score, the score is mapped to a ranked score
that is a normalized value taken from a matrix of ranks. In the matrix of ranks,
the first and the second elements designate an interval of (raw) scores that will
be mapped to the ranked score, given in the last (third) column. Thus, having
a score and a rank matrix:

the retrieved ranked score will be Rk, where k is the first line in the ranking
matrix that satisfies the condition:

^ j^min ^maxj

Ranking of Quality Factors

In a Factor-Strategy quality model, a quality factor ($) is modelled as a vector
of pairs, where each pair consists of a detection-strategy (ajt) and its ranked-
score {Rk) that was computed in the previous step. Thus, a quality factor looks
as follows

i>{<auRi >)

This vector is the starting point for the computation of a (ranked) quality score
for that quality factor. The ranking process is similar to the one previously
presented for ranking strategy results. The process is depicted in Figure 6.5.

Compared to the ranking of strategies, there are only two minor diflFerences:
the formula for the computing of the raw quality score and the content of
the matrix of ranks (II*). This time the formula for computing is based
on the set of ranked scores (i î i . . . Rk), each score having a weight that repre-
sents the relevance of that particular detection strategy in the context of the
quantified quality factor. In other words, a ranked score Ri may be weighted
differently for different quality factors. If we want to treat equally all the strate-
gies that are associated with a factor, S^^^ is simply the average of the ranked
score.

BUPT

6.3. EVALUATION OF FACTOR-STRATEGY MODELS 99

Quality Factor

$(< auRi >,...,< >) compute
quality score

"^apto; J P ,
quality ranking ^ ^ ,

place score
in matrix

Rk

grniîi gtnax p^
\ ^m

Matrix of
Ranks

Figure 6.5: The mechanism for computing a score for a quality factor from the
rankings of the associated strategies.

6.3.2 Identification of Causes for Poor Quality
While the previous section deals with the issue of how good the design is, this
section is concerned with the following consequent issue: if the quahty of the
system is not satisfactory, which paris of the design need improvement and what
is the concrete improvement that is needed in order to increase the overall qual-
ity of the system.

As we already discussed in Section 6.1.3, the Factor-Criteria-Metric can also
identify design fragments that are potential causes for poor quality based on
the abnormal values for the different metrics associated with a quality factor.
However the major limitation of the FCM approach is its intrinsic incapacity
to support the engineer in finding the information that would allow him or her
to find an adequate remedy. In other words, we identify the flawed entities, but
we don't know the exact flaw; we just know a set of symptoms.

Factor-Strategy quality models solve this problem by associating quality char-
acteristics ^vith detection strategies, instead of metrics. Therefore, because de-
tection strategies quantify violations of concrete design rules and guidelines, the
design entities reported as flawed by a strategy can be associated with the con-
crete design disease captured by that strategy.

As we have seen earlier, one result of a strategy is the set of suspect design
entities:

Based on these sets of suspects for each detection strategy we can make two
statements concerning the identification of design flaws and flawed entities in a
Factor-Strategy model:

BUPT

100 CHAPTER 6. FACTOR-STRATEGY QUALITY MODELS

The set of design flaws that affect the quality of a system modelled using
a FS model, is given by the subset of detection strategies associated with
the model, that return a non-empty set of suspects.

• The set of design entities that are responsible for a poor quality in a system
modelled using a FS model, is given by the reunion of the suspect sets of
all detection strategies associated with the model.

R e m a r k . A special case occurs when a design entity (e.g. a class) appears
in the suspect sets of more than a single detection strategy. In this case, the
conclusion is that the suspect entity is indeed flawed, but the flaw is not uniquely
classifiable using the given set of detection strategies. In this case, the manual
inspection phase is especially important, in order to identify the real flaw and
eventually refine the quality model.

6.4 Building Factor-Strategy Quality Models
After we have defined the Factor-Strategy quality model and its evaluation
mechanisms, now we move our attention to the issue of building concrete FS
models. In this context, first we summarize the potential quality goals and then
propose a methodology for constructing the model. The final part of the section
will provide a concrete example of a FS quality model for maintainability. This
quality model will then be used in Chapter 7 (see Section 7.4) to evaluate the
usability and efficiency of this new approach to quality models.

6.4.1 Quality Goals
The quality goal is the driving force for defining and using a particular quality
model. McCall [MRW77] defined a triangle of quality (see Figure 6.6), as he
identified three different perspectives on the quality of software products: oper-
ation, revision and transition. For each of these three views he identifies a set
of high-level, desirable properties - i.e. a set of quality goals.

The scope of this thesis is limited to the assessment of product quality as
reflected by the quality of code and design, using static analysis techniques. Be-
cause of that, although the Factor-Strategy principie can be used for each and
every quality goal, we cannot build FS models for all quality goals using the
detection strategies defined in Chapter 5, as these are entirely based on design
metrics. As a consequence, we want to identify a subset of quality goals for
which FS models are entirely definable, based on the approach found in this
dissertation. We place the entire discussion in the context of reengineering as
we show that this approach will help us identify the quality goals.

This work emerged from the context of reengineering research [BBC"^99b],
[Cas98), [BBC"^99a). A re-engineering operation will be driven by one of several
goals (Figure 6.7); but above all of these goals, there is one abstract goal, i.e. to

BUPT

6.4. DUILDING FACTOR-STRATEGY QUALITY MODELS 101

Maintainability Portability

Flexibility . Reusability
Testability ^ ^ Interoperability

P R O D U C T R E V I S I O N • M B ^ . T Ţ R A N S I T I O N

P R O D U C T O P E R A T I O N

Correctness Usability Efficiency
Reliability Integrity

Figure 6.6: McCall's Triangle of Quality

improve different aspects of quality, by renovating the structure of an existing
system. Most of the works on software analysis have their roots in this con-
text [CC90] [CC92] [MWT94]. Furthermore, in the recent years it was observed
[CiuOl] that reengineering activities are not only relevant for legacy systems,
but they can be efficiently applied in each iterative and incremental develop-
ment process, especially in lightweight development processes [Bec99] where the
design structure is often subject to change.

Therefore, the quality goals that are assessable based on design information
can be identified by using the reengineering perspective and analyzing the ma-
jor reengineering goals. The association of quality goals with reengineering goals
is both relevant and accurate.

An existing system can evolve in one of two ways depending on its business-
values: enhancement, if the business-value of the entire system is high, or reuse
if parts of the system are of a particularly high value.

Enhancement . If the business-value of the system as a whole is high then
the high-level goal is to enhance the system. Going into more detail we identify
three types of enhancement: funcţional^ non-functional and environmentai

Improving a system from the funcţional point of view requires that the structure
of the existing system would support further funcţional extensions. In terms of
quality goals this means that the system must be flexible.

The non-functional enhancements include those changes that improve the qual-
ity of the system without the addition of any funcţional extensions. Improve-

BUPT

102 CHAPTER 6. FACTOR-STRATEGY QUALITY MODELS

High-Level
Goal

Type of
Enhancement

Reengineering
Goal

Quality
Goals

Funcţional Make the system easier to
exîend (to add new functionality) Flexibility

Reduce the effort of migrating to Portabllity

Enhancement Non-Functional a new technology Enhancement Non-Functional Make the system easier to
maintain

Maintainability
Testability

Environmental Reduce the effort of bringing the
system to a new platform Portability

Reuse Component / Framework
Extraction

Increase the modularity of the
system

Reusability
Flexibility

Figure 6.7: A synthesis of the main quaUty goals directly related to the structure
of a software system

mcnts that fall into this category are those that increase either the ma in t a in -
abi l i ty of the system or its tes tabi l i ty . Another non-functional enhancement
is to increase the performance of the system by migrating it to a new technology.
This is reflected again at the structural level by an increase in flexibility.

A third type of enhancements is concerned with the environment of the sys-
tem. The quality goal that relates to this issue is to increase por t ab i l i t y , i.e.
to reduce the effort of bringing the system to a new platform.

Reuse . Sometimes, the system as a whole has lost most of its business-values,
yet some of its parts are still highly \^uable . Those parts of the system should
be extracted so as to be reused. Therefore, the high-level goal is to increase
the reusab i l i ty of the iniţial system. In order to do that, the modularity (see
Section 2.2) of the system must be increased.

Using the reengineering perspective as a starting point we identified a sub-
set of quality goals that are directly related to the structural (design and im-
plementation) aspects of a software system. In Figure 6.7 we summarized the
previous discussion in the form of a table. The central point of this table is
the association of reengineering goals with quality attributes that are directly
related with the structure of the software system. Taking now another look at
McCairs triangle of quality (Figure 6.6) we observe that none of the quality
goals related to the structure belongs to the product operation category; they
all belong to the product revision or transition category. The explanation is
simple: the quality goals related to product operation are mainly pointing to
the dynamic and semantic aspects of the system.

Based on the previous observations we may state that the special target of
FS quality models based on structural detection strategies is the revision and

BUPT

6.4. DUILDING FACTOR-STRATEGY QUALITY MODELS 103

transition of software systems.

6.4.2 Stepwise Construction of Factor-Strategy Models
The main issue in constructing any type of quality model is how to build the
association between the higher and the lower levels of the model; for example,
in building a Factor-Criteria-Metric model we would be concerned with how
to associate the quality factors with the proper criterion, or how to choose the
metrics for a given criterion. As the Factor-Strategy models are also based on
a decompositional approach the association is still the relevant issue. Based on
the previous considerations from this chapter, we identified two distinct aspects
on this matter of association: a semantical and a computaţional aspect.

• The semantical aspect must sustain the validity of choosing a particular
decomposition for a higher-level element into lower-level ones. In other
words, it must explain the raţionale behind the association; it must answer
the question: why and how do we choose a particular decomposition for
a higher-level element of the model?

• The computaţional aspect must tackle the issue of quantifying the associ-
ation, i.e. it must answer the following question: How is the quality score
for the higher-level element to be computed from the quality scores of the
lower-level elements associated with it? Obviously, the computaţional as-
sociation follows the semantical one. In other words, we must first define
an association that "stands" semantically, and only then the focus must be
set to finding the association formula that quantifies it. The association
formula must reflect the "participation level" of each lower-level element
within the higher-level aspect of quality.

In constructing a Factor-Strategy model there are two association that must be
done: the decomposition of the quaHty goal in quality factors 3.nd the association
between quality factors and detection strategies that can express and detect
design flaws that affect the given quality factor. For each of these associations,
next we will discuss both the semantical and the computaţional aspects.

Decomposi t ion of t h e Quali ty Goal in Quality Factors

There are two possible approaches to address the semantical aspect of the as-
sociation between a quality goal and a set of quality factors: we can either rely
on a predefined decomposition found in the literature or go for a user-defined
one. The former option has the advantage of a wider acceptance and validation,
while the latter is more flexible and adaptable to the particular investigation
needs. In this dissertation we decided to rely on an existing and widely ac-
cepted decomposition, i.e. the one found in the IS09126 standard [IS091]. For
the general case we recommend using a hybrid solution: start from a predefined
decomposition found in the literature that comes closest to your ideal model
and then slightly customize it until it matches your perspective on quality.

BUPT

104 CHAPTER 6. FACTOR-STRATEGY QUALITY MODELS

This association is orthogonal to the programming paradigm used for the de-
sign and implementation of the system. The decompositions found in literature,
in spiţe of many diflFerences, keep the higher level of quality decomposition \
abstract enough to make it independent of the development paradigm. As a
consequence, in a FS model the decomposition of a quality goal in factors is
not different in any aspect to that found in the FCM approach. Therefore, the
computaţional aspect of this association does not raise additional discussions at
the conceptual level.

Association of the Quality Factors with Detect ion Strategies

Detection strategies used in FS models capture deviations of a design from de-
sign rules and guidelines. The authors of such good-design rules impUcitly or
explicitly reiate them to quality factors, or to abstract design principles (e.g.
abstraction, modularity, simplicity) that can be easily mapped to quality factors
(see Section 2.2). Therefore, the semantical aspect of the association between
quality factors and detection strategies becomes self-evident in the FS approach.
This is one of the main advantages of the FS models over the FCM approach,
where the correspondent association is subject to severe drawbacks, as we have
already pointed out in Section 6.1.3.

There are two actions related to the computaţional aspect of the association
between factors and their set of strategies:

1. Compute a quality score for each detection strategy. In Section 6.3.1 we
have defined two mechanisms for computing a quality score from the re-
sults of a detection strategy: first, a formula to compute the raw-score,

must be established mainly based on the number of suspects; second,
a matrix of ranks based on which the raw-score S^^^ is transformed into a
quality scores R f̂̂ .̂

2. Compute a quality score for the quality factor. This score is also computed
based on an algorithm (Section 6.3.1), that involves again two mechanisms:
first, an association formula in which the operands are the quality scores
{RD computed for the strategies; second, a matrix of ranks that trans-
forms the raw-score for the quality factor into a quality score R ĵ̂ ^ -

6.4.3 A Factor-Strategy Model for Maintainability
We want to open this section with a disclaimer: the quality model that we are
going to present below raises no claim of completeness. Moreover, we believe
that a complete and universally acceptable quality model is impossible to define
at least because of the following reasons:

^By intention, we didn't name this level the factors level because some authors refer to
it as the criteria level. In order to avoid confusion in terminology we referred to it as the
"higher-level of quality decomposition".

BUPT

6.4. DUILDING FACTOR-STRATEGY QUALITY MODELS 105

• There is no objective argument for adding or removing a component from
the model [KW86].

• The "knowledge-box" used in the model - i.e. the detection strategies
defined for the model - is limited and we see no possibihty of claiming
completeness in ţhis aspect.

In the context of the previous disclaimer, why do we still propose this concrete
model? The motivation is twofold:

1. First, we want to illustrate the steps and mechanisms involved in the
construction of a FS quality model. Thus, we want to illustrate how
metrics are encapsulated in detection strategies and how quality factors
are associated with these strategies that quantify deviations from good
design rules.

2. The second reason is that we want to illustrate how the drawbacks of the
FCM approach are eliminated, by comparing the newly proposed model
with the one defined in Section 6.1.2.

For describing FS quality models, during our research we defined a simple de-
scription language, called QMDL^. The language is inspired from the descrip-
tion language used in Telelogic [TelOO] to describe FCM quality models (see
Section 6.1.2). The decision to define QMDL as a variant of a description lan-
guage used in connection with FCM quality models was deliberate, as we believe
that this would simplify the understanding of both the commonalities and the
differences between the FCM and the FS approach.

Next, we will sketch out a step-by-step building of a quality model for maintain-
ability. In this section we just illustrate the construction steps and mechanisms.
The full annotated description of the proposed quality model for maintainability
(in QMDL) is provided in Appendix A.

Decomposit ion of Maintainability in Quality Factors

In conformity with the ISO-9126 standard [IS091] maintainability is decom-
posed in the following four factors: analysability, changeability, stability and
testability. Because we want to weight equally the four factors in the evaluation
of maintainability, we will use the average value of the scores computed for each
quality factor. Using (QMDL) the association formula for maintainability is
expressed as follows:

Maintainability := avg(Changeability, Analysability,
Testability, Stability)

Obviously, any other mathematical formula might have been used depending
on the special emphasis of the quality evaluation. For example, if the emphasis
would have been on the analysability aspect of maintainability, the previous
formula could have been replaced by an weighted average:

^QMDL is the abbreviation from Quality Models Description Language

BUPT

106 CHAPTER 6. FACTOR-STRATEGY QUALITY MODELS

Maintainability := (Changeability + 3*Aiialysability +
Testability -»- Stability) / 6

Associat ing Quality Factors with Detect ion Strategies

We briefly illustrate the process of association between a factor and a set df
strategies using the Stability factor, which is in this model an aspect of main-
tainability. The definition of stability was provided in Section 6.1.2.

Analyzing the definitions of the design flaws that are detectable using the current
set of detection strategies ^ we have selected the strategies associated with six of
these flaws, i.e. those that affect directly stability. These are: ShotgimSurgery,
GodClasses, DataClasses , GodMethod, LackOfState andLackOfSingleton.

After the semantical association between the Stability factor and the six strate-
gies, we focus on the computaţional aspect, using the following sequence of
steps:

S t e p 1: Choose a formula for computing the raw-score S^^^ for each strategy.
In our case we have used for all the strategies the simplest formula, i.e. the raw
score is the number of suspects (see Section 6.3.1) detected by that strategy.

S t e p 2: Choose an adequate matrix of ranks for each strategy. Using this ma-
trix we place the raw-score in the context of quality, i.e. the matrix of ranks
tells us how good or bad a raw-score is with respect to the quality factor. We
used three levels of tolerance in ranking the raw-scores for the strategies, and
consequently we defined three matrices: a severe one (SevereScoring), a per-
missive one (TolerantScoring) and one in between the two (MediumScoring).
For the design flaws that in our view had the highest impact on stability we
applied the SevereScoring matrix.

For example, we believe the design flaws that affect stability in the highest de-
gree are ShotgunSurgery (see Section 5.3.2) and GodClasses (see Section 5.3.1).
Therefore, we computed their quaUty score {R "̂̂)̂ using the SevereScoring ma-
trix, which is defined as follows:

SevereScoring {
0 0 10. /* EXCELLENT */
1 1 9, /* VERY GOOD */
2 4 7, /* GOOD */
5 7 5, /» ACCEPTABLE */
8 +00 3 / * POOR */ },

For the rest of the design flaws we used the MediumScoring matrix.

^Please refer to Appendix B for definitions and further details on the complete set of
detection strategies defined during this research.

BUPT

6.5. CONCLUSION 107

S t ep 3: Define a formula for computing the raw score for tlie factor. Becausc
we intended to weight equally the six strategies when computing a score for
stability, we used the average function (avg). Throughout the model we applied
the same function for computing the raw-scores for quaiity factors.

S t ep 4: Choose the matrix of ranks for computing the quaiity score for the
factor. The raw-score computed during the previous step must also be placed
in a matrix of ranks in order to retrieve a normaiized quahty score. As we
reached the last step, we can now "reveal" the quantified definition of Stability
in QMDL:

Stability := avg(ShotgunSurgery(SevereScoring),
GodClasses(SevereScoring),
DataClasses(MediumScoring),
GodMethod(MediumScoring),
LackOfState(MediumScoring),
LackOf Singleton(MediiimScoring))

9 10 10. /* EXCELLENT */
7 9 8, /* GOOD */
5 7 6, /* ACCEPTABLE */
0 5 4 /* POOR */

6.5 Conclusion
In this chapter we presented a new approach to quahty models, the Factor-
Strategy models. By defining this approach we put together all the elements
defined in the previous chapters in a coherent framework, that allowed us to
prove the thesis stated at the beginning, i.e. that the gap between quahtative
and quaniitative statements, concerning object-oriented software design can be
bridged. While detection strategies represent the higher-Ievel mechanism for
measurement interpretation, the Factor-Strategy quahty model provides a goal-
driven approach for applying the detection strategies for quahty assessment.

The Factor-Strategy approach presented in this chapter has two major improve-
ments over the classical approaches:

1. First, the construction of the quahty model is far easier because the quai-
ity of the design is naturally and explicitly linked to the principles and
good-style rules of object-oriented design. Our approach is in contrast
with the classical Factor-Criteria-Metric approach, where in spiţe of the
decomposition of externai quaiity factors into measurable criteria, quai-
ity is eventually linked to metrics in a way that is far less intuitive and
natural.

BUPT

108 CHAPTER 6. FACTOR-STRATEGY QUALITY MODELS

2. Second, the interpretation of the strategy-driven quality model occurs at
a higher abstraction level, i.e. the level of design principles, and therefore
it leads to a direct identification of the real causes of quality flaws, as they
are reflected in flaws at the design level. As we pointed out earlier, in this
new approach quality is expressed and evaluated in terms of an explicit
knowledge-box of object-oriented design.

Besides the improvement of the quality assessment process, the detection strate-
gies used in the context of a Factor-Strategy quality model proved to have a
further applicability, at the conceptual level: for the first time a quality factor
could be described in a concrete and sharp manner with respect to a given pro-
gramming paradigm. This is achieved by describing the quality factors in terms
of the detection strategies that capture design problems that aflFect the quality
factor, within the given paradigm.

BUPT

Chapter 7

Evaluat ion

Through the last three chapters we described a complete approach for bridg-
ing the gap between qualitative statements and measurements. We started by
showing that one of the main causes for this gap is the abstraction level of mea-
surements interpretation, which is too low to capture the design aspects that
are relevant for evaluating and improving the quality of object-oriented design.
Consequently, we introduced detection^ strategies as a mechanism for defining
and using higher-level interpretation rules, in order to increase the relevance
of measurement results. Additionally, we provided a methodology for building
concrete detection strategies, according to a particular investigation goal. The
next step was to define proper detection strategies for the Identification and
location of structural design problems. For this purpose we defined a coherent
suite of detection strategies that address a set of well-known design problems in-
formally described in the literature. But we observed that in order to give their
highest benefit, the detection strategies that build the suite should be correlated
and explicitly related to quality, in an adequate quality framework. Therefore,
the final step of the approach was to define a new type of quality model, based
on detection strategies, that improves conceptually and methodologically previ-
ously existing approaches. By taking this final step we reached the iniţial goal,
i.e. to bridge the gap between qualitative and quantitative statements concern-
ing object-oriented design.

In this chapter we will evaluate the practicai applicability of the entire ap-
proach. For this purpose we designed a real-world experiment, implemented an
adequate toolkit and applied the previously described methods and techniques.

The chapter begins with a presentation of the entire experimental setup (Sec-
tion 7.1). In this context, we define a set of evaluation criteria, describe the
industrial case-study to be analyzed, design the experiment and defend its rele-
vance for the approach described by this work. The second part of this chapter
describes the toolkit that was developed in order to support the approach (Sec-
tion 7.2). We emphasize the necessity of the toolkit in order to ensure the

109

BUPT

110 CHAPTER 7. EVALUATION

scalability of the methods and techniques defined by this thesis. The third part
of the chapter presents and discusses the results of the experiment. It is orga-
nized in two sections: first, we evaluate the usability of defining and appiying
detection strategies for the concrete investigation goal defined in Chapter 5, i.e.
the detection of design problems in object-oriented systems (Section 7.3); sec-
ond, we vaUdate the accuracy and efficiency of the new Factor-Strategy quality
model defined in Chapter 6.

7.1 The Experimental Setup
In this section we describe the evaluation approach. First, we define a set of
criteria that represents the evaluation goal. Next we design the experiment and
defend its relevance to the approach to be evaluated. Finally, we describe the
industrial case-study used as the basis for our evaluation.

7,1.1 Evaluation Goals and Criteria
Before describing the evaluation approach we want to define the goal for the
entire evaluation process, by identifying the criteria that are relevant for this
experiment. Thus, the goal of this experiment is to validate the approach by eval-
uating the scalabili ty and the accuracy of its key mechanisms. The approach
defined by this dissertation contains two key mechanisms:

• De tec t ion S t ra tegy - is the higher-level interpretation mechanism used
for quantifying informai design-related rules related to a given investiga-
tion goal. The methodological applicability of this mechanism has been
alreaxiy proved in Chapter 5, where we successfully defined more than 15
concrete detection strategies for a particular investigation goal, i.e. the
quantification and detection of several design fiaws, placed on difFerent
granularity and abstraction levels. Therefore, in this chapter (Section 7.3),
we accomplish the validation of the detection strategy mechanism, by also
evaluating its practicai usability. In order to do this, we evaluate the ability
of the before-mentioned suite of detection strategies to correctly identify
and localize design problems in a "real-world" object-oriented system.

• Fac to r -S t ra tegy Quali ty Model - is the new type of quality model,
defined in Chapter 6. in which every quality attribute is associated with
a set of quantified expression of rules of "good design". We claimed that
this new type of quality model would support not only the assessment of
quEility at the design level, but also its improvement, by identifying and
locating the real quality problems of the system. Therefore, in this chapter
(Section 7.4) we want to evaluate the validity of the previous statement,
by analyzing the results of appiying the FS model for maintainability
(Section 6.4.3) on a large-scale legacy system.

In the following, we briefiy explain the meaning of the two evaluation criteria,
i.e. scalability and accuracy, in the context of this chapter.

BUPT

7.1. THE EXPERIMENTAL SETUP 111

Scalability

An approach is scalable if it continues to be efRciently usable when applied
to large-scale systems. This work was mainly focused on the identification of
design problems that affect the quality of an object-oriented system. Design
problems in a system with a size up to a few hundred LOC can be easily found
by reading through the code; if the analyzed project is in the size of a few thou-
sand LOC, design flaws can still be locaHzed, using a minimal tool support of
general use (e.g. using facilities of an IDE). But when we come to large-scale
industrial systems in the range of hundreds or millions of LOC, and most object-
oriented software systems are in this range, rudimentary approaches don't scale
up. Therefore, our approach must address the issue of problem detection in
large-scale systems, in order to be useful. In conclusion, scalability is extremely
important.

Analyzing the two aforementioned mechanisms of our approach, it is obvious
that the scalability of the entire approach depends on the scalability of detec-
tion strategies. For a detection strategy that identifies design problems, there
are two aspects related to scalability:

1. A detection strategy is scalable if the number of suspect entities detected
by the strategy is much smaller than the total number of design entities
of that type that exists in the analyzed project. This kind of scalability is
influenced by the definition of the strategy, more precisely to the proper
parametrization of the detection strategy (see Section 4.4).

2. A detection strategy is scalable if the execution time needed to retrieve
the list of suspects stays in generally acceptable ranges. This aspect of
scalability is identified with the scalability of tool support (Section 7.2).

Accuracy

An approach is accurate if the obtained results are in conformance with the
right or agreed results. This definition may be applied to the concrete context
of problem detection and quality assurance as follows:

• Accuracy of Detection Strategies. The accuracy of the strategies defined
for the detection of design flaws, presents two distinct aspects:

1. A detection strategy is accurate if it exclusively and correctly localizes
flawed design entities or fragments. From this point of view the key
questions are: How many design flaws were overseen {false negatives)?
How many false problems did it report {false positives)?

2. A detection strategy is accurate if the identified suspect entities are
indeed affected by the respective design flaw.

Accuracy of the Factor-Strategy quality model. The accuracy of FS models
is given by its ability to precisely reflect the quality level of the analyzed

BUPT

112 CHAPTER 7. EVALUATION

system with respect to the specified quality goal. Additionally, a FS model
is accurate if it is able to correctly identify and localize structural problems
that reduce the quality level of the system.

7.1.2 Evaluat ion Approach
For the evaluation, we are going to use two successive versions of a large-scale,
industrial object-orierited system (Section 7.1.3), for which we know that the
second version is a reengineered and enhanced version of the first system. We
also know that the design was substantially improved in order to increase its
maintainability.

The evaluation approach is based on two basic assumptions:

1. Assumpt ion 1: AII major design problems that troubled the developers
in the first version, were eliminated during the reengineering process, and
consequently will not be found anymore in the second version. Thus, we
do not assume that all the design problems have been eliminated, as we
know that the reengineering operation was driven by a set of priorities -
in this case related to the improvement of maintenance. But we assume
that most relevant problems have been deal with.

2. Assumpt ion 2: The level of maintainability for the reengineered version
of the system is higher (better) than the one of the iniţial version of the
system, as the reengineering goal was to increase maintainability.

Relevance of t h e Approach

The experimental approach that we are going to use is relevant for the evaluation
of the approach defined by this dissertation because of a number of reasons,
enumerated in the following:

1. Analyzing a large-scale industrial case-study gives us the opportunity to
evaluate the scalability of the approach.

2. By analyzing two successive versions of a system which are also part of a
"before-and-after reengineering" scenario, allows us to set up an evaluation
methodology that assesses the accuracy of the detection strategies. Thus,
based on A s s u m p t i o n l we can automatically identify the false positive
suspects, i.e. entities that were erroneously reported as flaws by a given
detection strategy. This evaluation methodology is described in detail in
Section 7.3.

3. Taking advantage of the supplementary information that the goal of the
original reengineering process was to improve maintainability, we can eval-
uate the accuracy and relevance of the information provided by the Factor-
Strategy quality model for maintainability, defîned in Section 6.4.3. In
conclusion, based on Assumpt ion2 we can define a simple method to

BUPT

7.1. THE EXPERIMENTAL SETUP 113

evaluate the FS quality model. This method is discussed in detail in Sec-
tion 7.4.

7.1.3 The Case-Study
As already mentioned, we are going to a make a comparative analysis based
on two consecutive versions of a real-world system. The analyzed software
is a large-sized business application related to computer-aided route planning,
which covers everything from identification of ideal city routes to planning trav-
els through Europei The application is developed in C++. The application is
composed of a number of hierarchically organized subsystems.

The size characteristics of the first version of the system are summarized in
Table 7.1. Through the rest of this chapter, we will designate this version of
the system as SVl.^. SVl was developed between 1997-1998 by designers and

K L O C / K B y t e s Packages Classes M e t h o d s
93 / 3.000 18 152 1284

Table 7.1: Size of the first version of the system (SVl)

programmers quite familiar to object-orientation. This case-study is considered
a legacy system not because of its age, but because one year after the first ver-
sion was launched, the developers requested a reengineering of the system. This
proves that there were some design weaknesses that needed to be detected.

As it can be observed in Table 7.2, the second version of the system signifi-
cantly increased in size as more functionality has been added, but for us the
most interesting aspect is the comparison of the two systems from the reengi-
neering point of view.

K L O C / KBy te s Packages Classes Me thods
115.6 / 5.300 29 387 3446

Table 7.2: Size of the second version of the system (SV2)

^The system that constitutes our case-study is subject to a non-disclosure agreement, that
is why we cannot offer more information about it.

^standing for System Version 1. Similarly SV2 stands for System Version 2.

BUPT

114 CHAPTER 7. EVALUATION

_r

r >
Sourtes

(Java.C++)

parsing
Meta-Model

using

1 ..m

Definrtions of
Statistical

OutJiers

Detection
Strategy

r-sod)

^^cuting y^ith ^
PRODEOOS

List of
Suspects

Figure 7.1: An overview of the inspection process. The focus of the figure is set
on the artifacts involved in the process.

7.2 Tool Support
The following discussion concerning the tool support is structured as follows:
first we describe a design-inspection process based on detection strategies, an
by describing the phases of this process we identify three key elements. Conse-
quently, each of these elements, are discussed in a separate subsection. The ele-
ments that are essential for the tool support are: the meta-model (Section 7.2.2),
the tools that extract a design model from the source-code (Section 7.2.3), and
the tool that automatizes the execution of detection strategies and FS quality
models (Section 7.2.4).

7.2.1 Phases of the Inspection Process
The detection process associated with our approach consists of the following
steps (see Figure 7.1):

1. Cons t ruc t ion of t he Sys tem Model . In order to apply the metrics on
a given project, we need to have all necessary design information. This
is stored in a meta-model (see Section 4.2). The meta-model consists of
information about the design entities of the system and about the existing
relations among these entities. The extraction of this meta-model is a step
that must be done only one time per project. The concrete meta-model
implemented in our toolkit is described in Section 7.2.2.

BUPT

7.2. TOOL SUPPORT 115

2. Defini t ion of Detec t ion Strategy. In the previous chapters we have
defined detection strategies and how they can be expressed using the SOD
language. In brief, this step mainly consists in selecting a set of metrics
which are appropriate for detecting a particular design characteristic (e.g.
a design fliaw). Metrics are defined as queries on the meta-model built in
the previous step. For each metric we associate one or more statistical
operators, based on which we can specify which values are the outhers
of the metric. Finally metrics are combined in a strategy using logical
connectors. This step must be taken only when a new strategy is defined,
independent of the number of analyzed projects.

3. R u n n i n g t h e Detec t ion Strategy. After a detection strategy is defined,
we run it automatically using the P R O D E O O S tool in order to get the
detection results for the analyzed project. The result is a set of design
entities together with the values for the different metrics that were involved
in the detection strategy. This step is fully automatized. In Section 7.2.4
we discuss in detail the P R O D E O O S application.

4. Verifying t h e Resul ts . The results obtained in the previous step must
be manually inspected in order to decide if the suspects conform to the
rule quantified in the detection strategy.

The last two steps of the detection process are run for every project and every
detection strategy that must be checked for the analyzed project.

7.2.2 The Unified Meta-Model
The meta-model used in our approach is a structured collection of design infor-
mation extracted from the source code, on which the whole anaJysis takes place.
In order to assure that the detection process is language independent as much
as possible, we defined a unified format for the data tables containing the design
information from Java and C++. In order to interrogate the model in terms of
metrics, we use a relational-database server. Therefore, the Unified Meta-Model
is implemented as a set of 6 related database tables:

VARIABLES Table. The purpose of this table is to store the information con-
cerning variable declarations, i.e. global variables, class attributes, function/method
parameters and local variables (including block variables). The information ex-
tracted and stored in the table can be grouped as follows:

• Context Information. This includes the name of the class and the signature
of the function where the variable is declared.

• Information about the Variable. This includes the name, the base type and
the complete type (which differs from the base type for pointers, references
and arrays) of the variable.

BUPT

116 CHAPTER 7. EVALUATION

• Attributes of the Variable. From these fields we can learn what kind of
variable (e.g. global, parameter, etc.) that is and if the type is an abstract
data-type (A D T) .

METHODS Table. The purpose of this table is to store any types of methods
defined in the project, i.e. single functions, methods, operators, constructors
and destructors. For each method, the following inforraation is extracted:

• Context Information, The context consists of the name of the class where
the function is defined.

• Information about the Function. This includes the name, the list of pa-
rameter types and the return type of the function. If a parameter has
a "const" specifier this is also stored in the parameter hst. If the func-
tion returns a constant value the return type is prefixed by the "const"
specifier.

• Attributes of the Function. There are two fields in which the type of
function and the special storage specifiers (virtual, static) are kept. A
function can be "static", and methods can also be "virtual".

CLASSES Table. This table contains essential information about classes. The
information included in this table can be grouped in two categories:

• General Information. In this category we have the name of the class
and the visibility scope of the class. The visibility scope for a class is
different from "global" only for nested classes and for classes defined within
a particular namespace,

• Attributes of the Class. There are two special characteristics a class can
have: it might be abstract or/and generic (template). These two boolean
fields also belong to the information contained in the Classes table.

INHERITANCE RELATIONS Table. This table contains the information on di-
rect inheritance relationships. This information is structured in three fields: the
derived class, the parent-class and the inheritance attribute ("public", "private"
or "protected").

ACCESSES OF VARIABLES Table. The role of this table is to store all the
information about the accesses (uses) of variables. This table contains cross-
referencing information, and it relies on the information stored in the VARI -
ABLES and INHERITANCE RELATIONS tables, described before. We can group
the information stored in this table in three categories:

• Location of Access, i.e. the name of the function where the access takes
place, its parameters list and the class that the function belongs to;

BUPT

7.2. TOOL SUPPORT 117

• Accessed Variable, i.e. the name of the variable, its base-type, the kind of
variable (e.g. local, parameter), the name of the class where the variable
was declared, and two boolean-fields: one indicating if the variable has a
predefined or a user-defined type and the other indicating if the variables
has class-scope (is declared static).

INVOCATIONS OF METHODS Table. This table stores all the information in-
volved in the invocation (call) of a function or a method. Similarly to the
previous table, this one also contains cross-referencing design information, and
it relies on the information stored in the FUNCTIONS and INHERITANCE RELA-
TIONS tables. The data contained in the table can be grouped in two categories:

• Location of Invocation, i.e. the name of the function where the invocation
occurred, its parameters list and the class that the function belongs to.

• Invoked Method, i.e. the name and the parameter list of the invoked
function, the class in which the invoked method is defined, and the kind
of function (e.g. "single-function", "public-method").

7.2.3 Meta-Model Extractors
TableGen

In order to analyze C + + projects we developed TABLEGEN [Mar97a] that scans
a C-f + project and extracts the essential static design information from the
source code, storing it into ASCII tables. The tool is intended to be part
of laxger CASE and/or reengineering tools. The place of TABLEGEN in the
architecture of such a tool is at the lower level, whereby its role would be to
stand between the source-code and the higher levels of the tool, offering to
the latter all the necessary information upon which the design or reengineering
methods and techniques can be applied.

M e M o J

The relaţional form of the unified meta-model initially started from the analysis
of C + + source-code. Later we have defined M E M O J , in form of a Java library,
as an object-oriented meta-model mainly for Java sources. This meta-model
also stores the design information needed for code analysis, especially the one
which is necessary to compute the metrics involved in our detection strategies.
A brief summary of the M E M O J architecture is depicted in Figure 7.2. M E M O J
is based on the Java parsing technology of COMPOST [ALNOO]^. In order to
assure that we have indeed a unified expression of the meta-model for both
C++ and Java, we implemented the Java correspondent of TABLEGEN , called
JTABLES. AS a consequence, we are now able to analyze both Java and C+-h
projects on the same meta-model.

^Beginning with 2001 it became Sourceforge project, called RECODER. Further information
is available on http://recoder.sourceforge.net/

BUPT

http://recoder.sourceforge.net/

118 CHAPTER 7. EVALUATION

o
« 9 i

8 î
i 7

«

l i l i iMlil |
mU UnUiiiU

ti

IfP

Figure 7.2: The M E M O J Meta-model

BUPT

7.2. TOOL SUPPORT 119

R e m a r k The major advantage of using a meta-model is that it assures the
language-independency of the detection process. After the model for a given
project was built the rest of detectîon process is language independent (of course
only if the language stays in the realm of object-orientation). Currently we have
support for the C + + and the JAVA programming languages and we envision
future support for a third object-oriented language, probably ADA95.

7.2.4 ProDeOOS
PRODEGOS"^ is a tool that we designed and implemented [ChiOl] in order to
support detection strategies based on the SOD language. It allows us to create,
modify and execute detection strategies. The tool uses the SOD language for
defining strategies, while all the metrics are implemented as SQL queries based
on the information found in the Unified Meta-Model Repository.

PRODEOOS has a modular structure consisting of three main components:
the Design Inspector^ the Quality Studio^ and the Report Generator. We will
briefly describe these modules next.

The Design Inspec tor

This module operates on a tree structure that models the detection strategy.
Thus, in order to use this module the user must first load a SOD strategy file.
After the strategy file was loaded, at the user's click on the detection button (see
Figure 7.3) the results for each node are computed by executing the queries that
implement the metrics. Results are displayed in the right pane of the window,
as a table. The overall results of the strategy are displayed if the root node of
the tree is selected. Parţial results are also important for the analysis. They
are available by selecting a node from the detection tree.

The results consist of the measured entities and the values for the different
metrics that are involved in a detection strategy. If the value for a metric is not
displayed in the result table, this means that the value for that metric is not
criticai, i.e. it is not an outlier value.

The Quali ty Studio

This module is intended to support the automatic evaluation of the design
against a given quality model based on detection strategies. The quality models
are described using the S D Q T language. As a result of this evaluation, the
engineer fîrst gets a score for the quality of the evaluated attribute. But the
tool also allows the engineer to navigate through the quality tree and inspect all
the intermediary scores down to the detection strategies. This way it becomes
easy to trace back how the score was computed and thus quickly identify the
causes of a possible low score.

'^PROblem DEtector for Object-Oriented Systems

BUPT

120 CHAPTER 7. EVALUATION

Figure 7.3: The Design Inspector module

T h e R e p o r t Gene ra to r

P R O D E O O S as a tool is needed to run the strategies and the quality models
and retrieve the results. For the analysis of the results we don't need the tool
anymore, but just the results. So, we would like to have the "navigability"
offered by P R O D E O O S even after closing the tool. For this purpose, we defined
a Report Generator in P R O D E O O S that "freezes" the results in form of a multi-
frame HTML report. Saving the results in form of a navigable report has the
major advantage that the results can be analyzed by anyone and anywhere a
HTML browser is available. We designed the look and feel of the report to be
very similar to the main window of P R O D E O O S (see Figure 7 .4)

7.3 Evaluation of Detection Strategies
The evaluation was focused on the following desirable characteristics of a detec-
tion strategy used for the Identification of design flaws:

1. Detection Strategies should be an accurate mapping mechanism between
measurement results and design problems. Therefore, during evaluation,
we want to prove if abnormal nimibers are indeed pointing out to real
design problems

2. Detection Strategies should properly identify the problems, Thus, a strat-
egy is good if based on the symptoms (i.e. the measurement results) it
can detect the disease (i.e. the design flaw) that it claims to detect.

BUPT

7.3. EVALUATION OF DETECTION STRATEGIES 121

gicoptcttowy ; "
î . L'-MV. :•>:;•:: B «r .]

B CP •••••i B fe --v ::M:
Project: tgen
Detection Strategy:
DataClasses
I EntityName | WOC| NOPA NOAM|i

Data-classes are dumb data holders and almost certalnly
other classes are strongly relying on them. The lack of
funcţional methods may indicate that related data and
behavior are not kept In one place, this Is a sign of a non
object-oriented design. Data classes reduce the
maintainabllity. testablllty and understandabllity of the
system. We will detect data-classes based on their
characteristJcs: we search for "lightwelght" classes, l.e.
classes which provides almost no functionality through
Its interface. Next, we wlll look for the classes that deflne
many accessor methods (get/set methods) and for those
who declare data fieids in their Interface. Finally, we will
confrontthe lists and manually inspectthe ?lightwelght?
classes that declare many public attributes and those
who do provide many accessor methods.

Figure 7.4: Report generated with P R O D E O O S

3. Detection Strategies should be able io localize the problem. Therefore,
a strategy is good if it able to identify those design fragments that are
affected by a particular design flaw

Remarks

Although not obvious at first sight, there is a clear difFerence between the first
mentioned characteristic and this last one; while the first characteristic is limited
to the ability of detection strategies to be an efficient higher-level interpretation
mechanism for metric results that leads us to flawed design fragments, the la.st
characteristic is more challenging, as it requires from a detection strategy to
specifically identify the design flaw that it claims to detect.

The reader should also note that we do not suggest that there is a one-to-
one mapping between the design problem that affects a design entity and a
detection strategy. In other words, it is possible for an ill-designed entity to be
reported by two or more related strategies. This case will be illustrated later in

BUPT

122 CHAPTER 7. EVALUATION

Suspect Before?
(in SVl)

Suspect Afler?
(in SV2)

Conclusion

YES YES Fsllse Positive
Two possible conclusions:

• the strategy is hot precise enough
- because of the specific reengineering goal the

susj)ect design fraament was not refactored
YES NO j Real Flaw

Three possible situations:
" in the same package
- in a drfferent package
• not found at all

NO YES Special Case
Needs further investigation

Figurc 7.5: The decision table used to classify the suspects from the two versions
of the analyzed system, in conformity with Assumption L

this chapter (Section 7.3.4), as we will make an in-depth analysis on the results
of the God Class detection strategy.

7.3.1 Two Evaluation Methods
In the following we present Wo methods that we used to evaluate the scalability
and the accuracy of detection strategies.

A u t o m a t i c Classification

In Figure 7.5 we synthesized an approach that allows us to evaluate if the
detection strategies detect real design problems. The main idea is that we split
the suspects (indicated by a detection strategy) in the first version of a system
(SVl) in two categories: real flaws and false positives. We difFerentiate between
the two categories based on a corollary of Assumption i, namely: a suspect is
afFected by a false positive if it reoccurs in the list of suspects in SV2, for the
same detection strategy; otherwise a real flaw was detected. By dividing the
number of real flaws by the total number of suspects we get the accuracy rate
for the given detection strategy. The main advantages of this approach are that
it is highly objective and it can be easily automatized.

Manua l Invest igat ion

Because the Automatic Classification approach is "blind" based on a reasonable
yet fallible assumption, it doesn't give us the certainty that the classification
of the suspects, and consequently the computed accuracy factor are correct.
Therefore, we decided to use in addition to the described approach a further
manual investigation, which involves the manual inspection of all the suspects.

The manual investigation allows a proper evaluation of both accuracy aspects
that are relevant for a detection strategy, i.e. it allows us to identify those

BUPT

7.3. EVALUATION OF DETECTION STRATEGIES 123

suspect design fragments, which although ill-designed, are not afFected by the
design-flaw quantified by the detection strategy (see Section 7.1.1).

7.3.2 Results Summary

In this section we will just summarize the results for the two evaluation ap-
proaches; then, in the next section, we interpret these results in respect to the
evaluation criteria defined in Section 7.1.1. Figure 7.6 presents the results of ap-
plying a suite of detection strategies on the two versions of the analyzed system.
The table also contains the partitioning of the suspects in SVl in conformity
with the rules of the Automatic Classification approach (see Figure 7.5). In the
last column of the table we see the accuracy rate for each evaluated detection
strategy. The accuracy rate is computed as the number of real flaws divided by
the total number of suspects in SVl.

In Figure 7.7 we summarized the results of the Manual Investigation approach

Abstraction
Lever

Design Flaw Suspects
in SV1

Suspects
in SV2

False
Positives

Special
Cases

Real
Flaws

Accuracy
Rate

Methods
Feature Envy 40 15 11 4 25 63% Methods God Method 4 4 1 3 3 75%

Shotgun Surgery 15 • 7 6 1 9 60%

Classes Refused Bequest 22 6 4 2 18 81% Classes God Class 5 2 2 0 3 60%
Data Class 3 2 1 1 2 66%

God Package 2 1 1 0 1 50%

Packages Misplaced Class 4 2 1 1 3 75% Packages Wide Subsystem
Interface 5 1 1 0 4 80%

Micro
Arch'rteclure

Lack of Bridge 0 0 0 0 0 -
Micro

Arch'rteclure Lack of Strategy 4 2 2 0 2 50% Micro
Arch'rteclure Lack of Smgieton 4 5 2 3 2 50%

Figure 7.6: Accuracy scores for the suite of detection strategies based on the
Automatic Classification approach

for a subset of the previously analyzed strategies. In this case, we only analyzed
the suspects from the first version of the system (SVl). The total number of
suspects for a detection strategy is classified in three categories, after a manual
inspection: Correct Detection contains those suspects that proved to be affected
by the design flaws that the detection strategy claims to find; the Other Flaw
category contains the suspects that proved to be ill-designed but are affected by
another design problem than the one supposed to be captured by the strategy;
the last category. False Positive includes all the suspects that are not at all
affected by a design problem.

Using the manual investigation approach we can compute two types of ac-
curacy rates: a strict one that only counts the cases in which the "diagnosis"
was correct and looser one that counts all the suspects that were indeed ill-

BUPT

124 CHAPTER 7. EVALUATION

Abstraction
Level

Design
Flaw

Total
Suspects

Correct
Detection

Other
Flaw

False
Positive

Strict
Accuracy

Loose
Accuracy

Methods j
God Method

4 2 1 1 50% 75%

Shotgun Suryery 15 10 2 3 66% 80%
Classes God Clâss 5 3 1 0 80% 100%

Data Class 3 3 0 0 100% 100%

Packages
Wide Subsystem

Interface 5 3 1 1 60% 80%

Micfo- Lack of Strategy 4 3 1 0 75% 100%
Archrtecture Lack of Singleton 4 1 1 2 25% 50%

Figure 7.7: Accuracy scores for the suite of detection strategies based on the
Manual Investigation approach, applied to SVl

designed. Thus, the accuracy rates are computed as follows:
^ Cor rect Detection

Strict Accuracy =

LooseAccuracy =

TotalSuspects

Correct Detection + OtherFlaw
TotalSuspects

7.3.3 Assessment of the Evaluation Criteria
Scalabili ty

The first aspect of scalability, mentioned in Section 7.1.1, is concerned with the
relative number of design entities detected by a strategy. Analyzing the results
in Table 7.6 in connection with the size information about the SVl system (Ta-
ble 7.1) we see that at the class level the percentage of suspects is not higher
than 14.4% (for Refused Dequest), at the method level it reaches a maximum
of 3.1% (for Feature Envy), and at the subsystem level the percentage is also
not higher than 27.7%. AII of these values are a concrete proof that the way
strategies are defined reduces the analysis efFort considerably Therefore, from
this point of view, the detection strategies defined in Chapter 5 proved to scale
for large systems.

The other aspect of the scalability issue is related to execution time of de-
tection strategies. The time needed for the execution of detection strategies on
the latter version of the system (SV2)^ varied between a couple of seconds (e.g.
Wide Subsystem Interface, Data Classes) and several (3-5) minutes (e.g. Lack
of Strategy, Shotgun Surgery). The only outlier from this point of view proved
to be the Feature Envy stieitegy, which needed 1.5 hours to deliver the results®.
Comparing these times with the dimensions of the system we may conclude
that all the detection strategies proved to be scalable with respect to execution
times.

^At this we use SV2 as a "benchmark" because it is considerably larger than the first
version (S V l) and therefore the results are more relevant from the point of view of scalability

®A11 the before-mentioned times were measured with using a machine based on an AMD
Duron 800 CPU and 512 MB of RAM, running under Windows 2000

BUPT

7.3. EVALUATION OF DETECTION STRATEGIES 125

Accuracy

In Section 7.1.1 we distinguished between two aspects of the accuracy crite-
rion: one that evaluates the ability of a detection strategy to find ill-designed
code fragments (loose accuracy) and another one that deals with the abiUty of
a strategy to find only those design entities that are affected by the particular
flaws that the strategy claims to detect (strict accuracy). Using the Automatic
Classification approach we couid only measure the strict accuracy of the eval-
uated strategies. For all the strategies the accuracy rate was over 50%, while
the average accuracy is 64.5%. The strategies with the lowest accuracy rates
(50%) are: God Package^ Lack of Strategy and Lack of Singleton. While for the
God Package we believe that the low rate is due to the low absolute number of
suspects (2), for the other two cases we decided to include the strategies in the
subset of strategies used for the Manual Investigation approach in order to get
a clearer picture on the accuracy Based on the results of the manual approach
we conclude that the Lack of Strategy detection strategy proved to be extremely
accurate in the end, while the Lack of Singleton strategy proved to be a quite
imprecise instrument for detecting the flaw it was designed for.

Using the Manual Investigation evaluation method we could compute both the
loose and the strict accuracy rate. Because the manual investigation is a time
consuming operation we limited it to only a subset of detection strategies. The
average loose accuracy rate was in this case 83.57%, substantially higher than
the one obtained using the automatic approach. Thus, a first conclusion is
that the strategies that we defined so far have a high accuracy in detecting ill-
designed entities.

As we ccmpute the average of the strict accuracy rate the result is 65.1%. Thus,
in almost two out of three cases the suspect entity was indeed affected by the
expected design flaw, which we consider to be an acceptable accuracy rate.

7.3.4 In-Depth Analysis: Detection of God Classes
Applying t h e Detec t ion Strategy.

First, we applied the ATFD metric and found 5 outlier classes, with values be-
tween 7 and 4. Next, we computed the value for the other two metrics, WMC^.
With two exceptions, the ATFD outliers were also among the WMC outliers.
On the other hand, surprisingly, only two ATFD outlier classes proved to be
non-cohesive. The results are summaxized in Table 7.3.

Based on these results and on our selection criteria, we decided to pick up
the (CParser) class for an in-depth analysis, as it was among the outliers for
all the three metrics that compose the strategy. We inspected this class, by
analyzing its relations to the data-classes that it was using and the conclusion

"''For the WMC metric we used two definitions: the one based on unitary complexities
(NOM) and the other based on McCabe's cyclomatic complexity

BUPT

126 CHAPTER 7. EVALUATION

was that the CParser definitely centralizes almost all the functionality and uses
the other classes only to get or to set some data.

Class A T F D W M C T C C
CParser 7 75 0.28
SuperPolygonArray 5 54 —

StreetNameTable 5 44 —

CTownNearestSearch 4 — 0.25
TownView 4 43 —

Table 7.3: The suspect classes for the God Classes detection strategy. A dash
(—) indicates that the class is not among the outliers for that metric.

F indings

Rela t ion be tween class CParser and t h e p red ica te classes (CPredicate).
Class CParser parses a string representing a selection query (SELECT) and
keeps two lists: one containing the selected columns and one contadning the
predicates that compose the condiţional clause (WHERE) of the selection. The
predicates can be of difFerenţ types, - four are identified in the current version
but the number raay grow - each one being parsed diflFerently. In the current
implementation, for each predicate type a class is defined. These classes are in
fact "dumb" records (see Figure 7.8) that contain only the fields that keep the
specific data for each type of predicate. In the CParser class, for each predicate
type a method is defined that parses the predicate and sets the fields.

Improvement Proposal: The design can be improved by applying the Strategy
pattern (GHJV94) delegating the responsibility of parsing a particular predicate
to the class defined for that predicate (see Figure 7.9); consequently, the setting
of the predicate fields will also move inside the predicate classes. This way, the
CParser class is simplified, the predicate classes become "responsible" classes,
and the coupling of the parser class to the particular predicate classes is reduced.

R e m a r k . As the improvement solution was a pattern we naturally analyzed if
the CParser class was also among the suspects of the Lack of Strategy detection
strategy. And indeed it was! This is a concrete illustration of the remark from
the beginning of this section where we emphasized the fact that there is not
always a one-to-one mapping between a design problem and a strategy.

Re la t ion be tween classes CParser and CScanner. Class CScanner is in
fact a string tokenizer used by the CParser class to parse a SQL selection state-
ment. The CScanner class has a field that indicates the type of the current
token. If the token is a number or an identifier the scanner must also provide
the value of the number or the string. In the current design CScanner is a struc-
ture that exposes all the implementation details, and CParser directly reads the

BUPT

7.3. EVALUATION OF DETECTION STRATEGIES 127

CPars9r
VredicaleO
VllributePredicaleO
ângePredicaleO
T̂exIPredicaleO

ViearestPredicateO

void CParser:- PredicateQ |
swilch (eTmpToken = AciTokenO) (

case TYPEJOK; | AltribuloPredicaleO. broak;)
case RECTANGLEJOK : { RangePred.cateO, break;)
C â s e POINTTJOK • I NearestPredicateO; break; |
case ADDRESS TOk: | TextPredicatBQ. break;)

}

CPredicBie
r̂edicateType

<?lokenTypB
r̂edicateType

<?lokenTypB

-ii.
CAlIn-bulePedicaie
^maiValUB
înValue

CRangePradicalc CTgxtPredicale
ŝearchStn'ng

CNearestPredicale
^oinl
^dius
m̂lnElcments
ânElemenls

Figure 7.8: The CParser "God Class"

CParser ^ - predicate CPre(fKOle
r̂odicateO p̂arseO

CAttributePedicaie CRangePredicale
p̂arseO p̂arseO

î
CTen Predicate CNearcsiPredicale
p̂arseO p̂arseO

TZ bs
svyitch(lokenJypB) {

case TYPE_TOK: predicate = new CAMribulePredicate(m_pScanner, m_PredicList);
cas» POINT_TOK. predicate = nsw CN9areslPredical9(mjiScann0r, m PredicUsl),
// . .

)

predicat e->parseO:

Figure 7.9: The Reengineered version of CParser

fields from the tokenizer.

Improvement Proposal: The design couid be improved by setting the data fields
from CScaimer as private and introducing a method (e.g. scan) in the CScanner
class. This method should be overloaded so that it can accept three types of
parameters: a token-type identifier, a number or a string. If scan is called from
CParser with a string parameter, the method checks if the token is an identifier
and if so it copies the value to the parameter. If the token is not an identifier,
the method will throw an exception that will be caught in the CParser class.

BUPT

128 CHAPTER 7. EVALUATION

7.4 Evaluation of Factor-Strategy Models
In this section, we evaluate the efficiency of Factor-Strategy quality models,
based on the quality model for maintainability defined in the previous chapter
(Section 6.4.3). The evaluation will be based on the comparison between the
two versions of the case-study, and especially on the knowledge that the re-
engineering goal that drove the structural changes in the second version was
the enhancement of maintainability. Thus, the assumption that the level of
maintainability for the second version is higher than the one in the fîrst version
is a plausible assumption that can be used to evaluate the proposed quality
model.

7.4.1 The Evaluation Methodology
The evaluation approach for the Factor-Strategy approach to quality models
is very simple. We take the quality model built in the previous chapter for
assessing maintainability and apply it on the two versions of the system. As
the second version was reengineered with the goal of eliminating maintenance
difficulties, we want to see if our Factor-Strategy quality model properly reflects
the improvements.

A second evaluation criterion is to see if the model can help us identify the
major design flaws that made the difference in maintainability between the two
versions.

7.4.2 Results Summary
The results of applying our FS quality model on the two versions of the system
are synthesized in Figure 7.10. AII the scores were computed based on the eval-
uation mechanisms for the quality model described in Section 6.3. A complete
description of the quality model can be found in Appendix A. First of all, note
the difference of 1.12 points (on a 1 to 10 scale) of the maintainability score,
which indicates that the quality model captured a sensible improvement of the
level of maintainability. More than that, for each of the four quality criteria,
we can see that the model shows an improvement, varying from 0.75 points (for
Changeability) up to 1.4 (for Testability) and 1.33 (for Analysability).

7.4.3 Assessment of the Accuracy Criterion
The first observation concerning the accuracy of the FS model on maintain-
ability is that an increase of quality was "sensed" for all four quality factors.
In addition to this, the fact that the highest improvements were registered for
Testability and Analysability is an extremely positive signal concerning the accu-
racy of the model, as these two quality aspects are the most important ones, for
a system that is going to be extended with new functionality, like the analyzed

BUPT

7.4, EVALUATION OF FACTOR-STRATEGY MODELS 129

î !
1 SV1 svă

Quality Goa iJ Factor i Strategy Score Qualifier Score Qualifier

Maintainability

ilackOfBridgePeei)
iLackOfBrîdgeShaHow

iLackOfŞtrategyGocILlke
;LackOfStrategyHierarch
jLackOfState
;LackO^
ÎGodMê od
jbatagj^s
iGodCiasses
iSliotgunSuraeiy
GodPackage
ll̂ ^olatîoii

iLackOfStralegyGodLlke
](̂ riMethod

JDalaOassê
GodCIasses

^ B̂ÎlH?̂!?.® fl^L®®*
jM|siL|î!cê C|asş
GodPnckitge
teniporarYF|eid
Sllot̂ iinSiirgefyW

GodOasses
SliotgunSurgery
lackOfSingleton

iLâ LState
GodMethod

Goddawea
îlă̂ dfSingletort

6 , 9 5 8 , 0 7
7 ,68 8 8 ,33 8

0 10 0 10
0 1 0 " 0 10
0 10 0 10
4 e 2 10
0 10 0 10
5 5 1 9
4 8 5 8
3 7 2 9
5 5 2 9

15 3 7 3
1 9 2 9

10 6 11 3

6,67 6 8 8
0 1 0 " 0 10
A B 5 8
3 8 2 10
6 5 ' 2 9

22 3 6 6
0 10 0 10
1 9 2 9

31 4 20 5
33 3 18 5

6,2 6 7,6 8
4 7 6 5
3 8 2 10
5 5 2 9

15 3 7 6
4 8 8

7,33 8 8 .33 8
0 10 0 10
4 8 5 8
3 8 2 10
5 5 2 9

33 6 20 5
4 5 8

Figure 7.10: Results Summary. The numbers in the two "Score" columns are
given by the number of suspects reported by each detection strategy, while the
"Qualifier" is the corresponding score taken from the scoring table.

system is. Thus, these results tend to confirm our first hypothesis, i.e. that
FS quality models are efficient means for defining associations between externai
quality goals and the quality of the design structure.

Next, we wanted to identify what caused the difference between the maintain-
ability scores of the two versions. For this, we went through the strategy-level of
the quality-model and selected those with the most important score increases.
The results are synthesized in Figure 7.11 The answer to the question above
illustrates best the advantages of the Factor-Strategy approach: we do not re-
ceive - like in a usual FCM approach - a bunch of numbers (i.e. the compared

BUPT

130 CHAPTER 7. EVALUATION

Strategy
Iniţial System

(SV1)
Score Qualifier

Re-engineered System
(SV2)

Score Qualifier

Improvement

Wld« Subsystem
Interface 5 5 1 0 4 4

God Class 5 5 2 9 3 4
Refused Bequest 22 3 6 6 j 16 3

Data Class 3 7 2 9 1 2
Shotgun Surgery 15 3 1 7 3 8 0

Figure 7.11: The top of the most spectacular score improvements between SVl
and SV2. These results help us drive immediate conclusions on the major design
problems in SVl that hindered its maintenance.

measurement results) together with statements like "the results for metric X
and Y improved in the second version compared to the first one", which require
further effort to be converted into useful information for an engineer. Instead,
we can now reason and pick up conclusions directly from our quality model!

In this concrete case, when we analyze Figure 7.11 we can immediately drive
the following conclusions:

• The main problems are jelated to the class and package design rather than
methods implementation.

• The problems at the package level were strongly related to the interface of
the packages, i.e. the number of classes from outside the package directly
using it (Wide Subsystem Interface)

• The problems at the class level were basically related to the tendency to
centralize the intelligence of the system in a small number of classes (God
Class) that used several "dumb" data-holders {Data Class), an improper
class hierarchy {Refused Bequest) and an increased coupling level between
the classes {Shotgun Surgery)

The manual analysis of the SVl system, together with further information con-
cerning the iniţial weaknesses of the system fully confirmed the conclusions
above.

BUPT

Chapter 8

Conclusions and
Perspectives

8.1 Summary

The thesis of this dissertation, as stated at the beginning of this work, is: the
gap between qualitative and quantitative statements concerning object-oriented
software design can be bridged using a higher-Ievel, goal-driven approach for
mea^urements interpretation. In this context, the goal of this work was to de-
velop methods and techniques that provide such a relevant, goal-driven interpre-
tation of measurements applied to the investigation of object-oriented software
design. The idea of this approach is to use a decompositional approach that
formulates (expresses) the investigation goal in terms of metrics-based design-
related rules, called detection strategies.

In the last decade software metrics became more and more an important means
for assessing and controlling the quality of software systems in general and for
object-oriented systems in particular. We researched the former approaches,
covering the main contributions on measurement definition and interpretation,
the methods and techniques of design inspection and the various ways of defin-
ing quality models. During this research we discovered that there is still a large
gap between the use of individual measurements and the principles that rule the
construction of object-oriented software. Current approaches do not provide a
way to quantify such design principles and rules. In addition to that, as we an-
alyzed the existing approaches on quality models we discovered that a relevant
feedback link from the results of individual measurements to the quality factors
was missing. A metric in itself does not provide enough information for making
a decision for a code transformation that would improve quality. Thus, the de-
veloper is provided only with the problem, while he or she must still empirically
find the real cause and eventually look for a way to improve the design.

131

BUPT

132 CHAPTER 8, CONCLUSIONS AND PERSPECTIVES

In this context, our work introduced a new mechanism, named detection strategy,
for increasing the relevance and usability of metrics in object-oriented design by
providing a higher-level (more abstract level) means for interpreting measure-
ment results. A detection strategy was defined in this work as the quantifiable
expression of a rule by which design fragments that are conforming to that rule
can be identified in the source-code. The main goai of a strategy is to provide
the engineer with a mechanism that will allow him or her to work with metrics
on a more abstract level, which is conceptually much closer to his real intentions
in using metrics. Such rules may refer both to design recovery {understanding
of design) and the identification of design flaws {evaluation of design).

After introducing detection strategies, together with a methodology for trans-
forming an informai design rules into a quantifiable expression, we moved on to
apply the described mechanism to a concrete investigation goal strongly related
to design quality: the identification and localization of design flaws in object-
oriented systems, which are seen as violations of design principles, rules and
heuristics. Thus, we defined a suite of strategies for detecting design problems at
four levels of abstraction, starting with the lowest level of design problems at the
method level, going through the class and package and ending with strategies for
the detection of flaws at the micro-architectural level where we proposed strate-
gies for identifying design fragments where particular design patterns should
have been applied. Our iniţial assumption that design rules and heuristics can
be captured in form of metrics-based rules proved to be true as we ended with
a suite of over twenty detection strategies.

As the ultimate goal of this dissertation was to demonstrate that the gap be-
tween qualitative and quantitative statements can be bridged, we focused next
our attention on the issue of quality models. As we did so, we discovered a gen-
eral diffîculty of classical approaches, which can be synthesized as follows: the
possibility to identify the real causes of quality weaknesses as perceived from
the outside (e.g. poor maintainability, low reuse level) is strongly hampered
by the fact that the metrics level in quality models is too fine-grained to allow
an understanding of the real design problems, which consequently hinders the
proper redesign decisions, for a long-term increase of quality. Therefore, we
defined a new quality model in which quality factors are expressed (in the sense
of decomposition) in a set of quantifiable rules that identify violations of design
principles, rules and heuristics. Of course, these quantifiable rules are given by
the suite of detection strategies defined earlier in this work. Thus, instead of
communicating directly with a "bunch" of numbers, which has a low relevance
level, in our approach quality is expressed and evaluated in terms of an explicit
"knowledge-box of object-oriented design'' containing the quantified expressions
of the good-style design rules for the object-oriented paradigm.

The approach was evaluated based on a case-study, containing two versions
of an industrial system, whereby between the first and the second version a
reengineering process took place. The evaluation consisted of two parts: firstly

BUPT

8.2. EVALUATION OF CONTRJBUTIONS 133

we assessed our suite of detection strategies for identifying (mining) design flaws
by comparing the results obtained on the first version of the case-study with its
second, reengineered version. The second part was focused on the assessment of
the quality model for maintenance that we built in the previous chapters. The
results from this case-study and from several other ones, proved on the one hand
that detection strategies are a means usable in practice for quantifying princi-
ples, rules and heuristics related to design. On the other hand the results proved
that the relevance of the information provided by the quality model based on
detection strategies is higher and more useful than the previous approaches.

8.2 Evaluation of Contributions
The approach presented in this work brings a number of essential contributions
to the field of quality assessment in object-oriented design based on software
metrics. These contributions are summarized below as follows:

• Defîni t ion of t he detection strategy concept as a proper means for a
higher-level measurement interpretation. Detection strategies are a means
for defining metrics-based rules. They offer an encapsulation of metrics
in a higher-level construct that permits a more meaningful interpretation
and usage. For the first time, detection strategies become a mechanism
for " articulating" (expressing, quantifying) rules related to the structure
of code and design in terms of metrics.

• A me thod usable in pract ice for quant i fying informai code- and
design-related rules. We defined not only the mechanism to objectify
and quantify such rules, but we also provided a methodology for moving
from informai descriptions of rules to detection strategies.

• A suite of detect ion strategies for the identification of well-known
design flaws. For the first time descriptions of design problems like
"Feature Envy" [FBB+99] or "God Classes" [Rie96] are quantifiable and
detectable. In addition to that, the suite also contains detection strategies
for identifying places in the source code where a particular design pattern
should have been applied.

• Definit ion of a quali ty model based on detect ion strategies. Al-
though the proposed model is also decompositional one, yet for the first
time in this model quality communicates with the principles, rules and
heuristics of good object-oriented design - objectified by the different de-
tection strategies - instead of being mapped to "pure numbers" (measure-
ment results). The main advantage of this new quality model is that it
leads to a direct identification of the real causes of quality flaws, as they
are reflected in flaws at the design level.

• S t rong tool suppor t for the high level of au tomat iza t ion and
scalability of the approach. The tool support is covering all the methods

BUPT

134 CHAPTER 8, CONCLUSIONS AND PERSPECTIVES

and techniques presented in this work from the definition and execution
of new metrics and detection strategies, up to the definition of complex
quality models based on detection strategies. The tool support has a high-
level of language-independency, as it works on a unified meta-model for
object-oriented languages. The provided tool support makes the approach
scalable, and we proved that by analyzing real-world systems containing
up to 1 MLOC.

• Concre te evaluation of t he concepts , m e t h o d s and techniques
defined and presented in this thesis, based on two versions of an industrial
case-study and a suite of smaller research and university projects.

8.3 Future Work
During our research we encountered a number of questions that we believe that
are worth of further investigation in the future. We classified the possible contin-
uations of this work in three categories: refinement, migration and integration.

8.3.1 Refinement
• T h e issue of threshold values. Although the work provides some an-

swers on the question of how to define and set the threshold values for
individual measurements some improvements are visible, as for example
the usage of fuzzification techniques [SBOl], [Kos96] or the building of
neural networks that would learn the proper values for the thresholds
[Mih02).

• Ref inement of a new s t ra tegy-based qual i ty model . In this work we
proposed a concrete quality model for the assessment of maintainability,
based on detection strategies. The question that we would like to answer
in the future is how can further quality factors be expressed in a similar
manner? A further question is: is it necessary to build domain-specific
quality models?

• Sui te of de tec t ion s t ra tegies for design recovery. We have described
in this work how detection strategies can be used taking the detection of
design problems as an investigation goal. Further investigation goals could
be considered in order to define similar suites. One of these goals could
be to have detection strategies for design recovery, which would be of
high interest if we consider the impressive number of legacy systems to be
reengineered.

8.3.2 Migration
• Migra t ion to emerging p rog ramming parad igms. The question here

is: How can the method and the strategies presented in this work be
used beyond the limits of object-orientation? Can we, for example, define

BUPT

8.3. FUTURE WORK 135

detaction strategies for adaptive (AP) or aspect-oriented programming
(AOP)? Which would be the invariants of the approach? Which are the
parts that are going to change?

• Migra t ion to new technologies. We evaluated our methods and tech-
niques mainly on "classicar object-oriented systems. In the recent years a
lot of technologies were developed for web-based applications (e.g. Enter-
prise Java Beans); therefore we are asking how can our approach support
these technologies?

• Detec t ion s t ra tegies for component Identification. Recent efforts
[TriOl] focused on developing methods and techniques for component iden-
tification in legacy systems. We believe that detection strategies are a
good means for expressing and composing the rules the identification of
"componentifiable" design rules.

8.3.3 Integrat ion
The whole approach presented in this thesis, rather than being theoretical is
very close to the world of practicai software engineering. Therefore, we assumed
from the beginning that the approach will become in the near future very in-
teresting for CASE tool providers. Some preliminary discussions with several
important companies justified our iniţial assumptions. This raises the question
of integration, i.e. how can the techniques and methods developed during this
dissertation be integrated in a commercial development environment?

BUPT

136 CHAPTER 8, CONCLUSIONS AND PERSPECTIVES

BUPT

Bibliography

[ALNOO] U. Assmann, A. Ludwig, and R. Neumann. Compost home page.
http://i44'^wwAnfoMni-karlsruhe.de/compost, March 2000.

AM96] F.B. Abreu and W. Melo. Evaluating the Impact of Object-
Oriented Design on Software quality. Proc. of Symposium on Soft-
ware Metrics METRICS '96, mar 1996.

[Băr98] H. Bar. Automatische Suche von Designproblemen in Objektorien-
tierten Systemen. Diplomarbeit, Universităt Kaxlsruhe, Mărz 1998.

[BBC"^99a] H. Bar, M. Bauer, O. Ciupke, S. Demeyer, S. Ducasse, M. Lanza,
R. Marinescu, R. Nebbe, O. Nierstrasz, M. Przybilski, T. Richner,
M. Rieger, C. Riva, A. Sassen, B. Schulz, R Steyaert, S. Tichelaar,
and J. Weisbrod. The FAMOOS Object-Oriented Reengineering
Handbook. European Union under the ESPRIT program Project
no. 21975 (FAMOOS), October, 1999.

[BBC'^99b] H. Bar, M. Bauer, O. Ciupke, T. Genssler, R. Marinescu, B. Schulz,
and J. Weisbrod. Sanierung objektorientierter Systeme. In Pro-
ceedings of the First German Workshop on Software-Reengineering,
1999.

[BBDOl] L.C. Briand, C. Bunse, and J.W. Daly. A Controlled Experiment
for Evaluating Quality Guidelines on the Maintainability of Object-
Oriented Designs. IEEE TYansactions on Software Engineering,
27(6), jun 2001.

[BBDD97] L.C. Briand, C. Bunse, J.W. Daly, and C. DifFerding. An Experi-
mental Comparison of the Maintainability of Object-Oriented and
Structured Design Documents. Empirical Software Engineering. An
International Journal, 2(3), 1997.

[BBK78] B.W. Boehm, J.R. Brown, and J.R. Kaspar. Characteristics of
Software Quality. TRW Series of Software Technology, Amsterdam,
North Holland, 1978.

[BDW99] L. Briand, J. Daly, and J. Wust. A Unified Framework for Coupling
Measurement in Object-Oriented Systems. IEEE Transactions on
Softw. Engineering, 25(1), jan/feb 1999.

137

BUPT

138 BIBLIOGRAPHY

(Bec99) K. Beck. Extreme Programming Explained: Embrace Change.
Addison-Wesley, 1999.

[Bin99) R. Binder. Testing Object-Oriented Systems: Models, Pattems, and
Tools. Addison-Wesley, 1999.

[BK95) J.M. Bieman and B.K. Kang. Cohesion and Reuse in an Object-
Oriented System. Proc. ACM Symposium on Software Reusability,
apr 1995.

[BMB+98] W.J. Brown, R.C. Malveau, W.H. Brown, H.W. McCormick, and
T.J. Mowbray. AntiPattems: Refactoring Software, Architectures,
and Projects in Crisis. John Wiley and Sons; ISBN-0471197130,
1998.

[BMP871

[Boo94]

[BPP81]

(BR881

[BSB96]

[Bud91]

[Cas96]

[Cas98]

[CB881

[CC90]

[CC92]

D. Bell, I. Morrey, and J. Pugh. Software Engineering - A Pro-
gramming Approach. Prentice-Hall, NJ, 1987.

G. Booch. Object-Oriented Analysis and Design with Applications.
Benjamin Cummings, Redwood City, 2 edition, 1994.

K.H. Britton, R.A. Parker, and D.L. Parnas. A Procedure for De-
signing Abstract Interfaces for Devii:e Interface Modules. In Inter-
national Conference on Software Engineering (ICSE), 1981.

V. Basili and D. Rombach. The TAME project: Towards
Improvement-Oriented Software Environments. IEEE Transactions
on Softw. Engineering, 14(6), jun 1988.

L.C. Briand, S.Morasca, and V.R. Basili. Property-Based Software
Engineering Measurement. IEEE Transactions on Softw. Engineer-
ing, 22(1), jan 1996.

T. Budd.
1991.

Object-Oriented Programming. Addison-Wesley, april

E. Casais. State-of-the-art in Re-engineering Methods. achievement
report SOAMET-Al.3.1, FAMOOS, October 1996.

E. Casais. Re-Engineering Object-Oriented Legacy Systems. Jour-
nal of Object-Oriented Programming, pages 45-52, January 1998.

G. Caldiera and V.R. Basili. Indetifying and Qualifying Reusable
Software Components. IEEE Computer, 23(5), may 1988.

E.J. Chikofsky and J.H. Cross. Reverse Engineering and Design
Recovery: A Taxonomy. IEEE Software, 7(1):13-17, January 1990.

E.J. Chikofsky and J.H. Cross, II. Reverse Engineering and Design
Recovery: A Taxonomy. In Robert S. Arnold, editor. Software
Reengineering, pages 54-58. IEEE Computer Society Press, 1992.

BUPT

BIBLIOGRAPHY 139

[CCKT83] J. Chambers, W. Cleveland, B. Kleiner, and P. Tukey. Graphical
Methods for Data Analysis. Wadsworth, 1983.

[CG90] D. Card and R. Glass. Measure Software Design Quality. Prentice-
Hall, NJ, 1990.

[ChiOl] C. Chirila. Instrument Software pentru Detecţia Carenţelor de
Proiectare în Sisteme Orientate-Obiect. Diploma Thesis (Advisor:
R.Marinescu), "Politehnica" University Timişoara, 2001.

[Ciu99] O. Ciupke. Automatic Detection of Design Problems in Object-
Oriented Reengineering. In Technology of Object-Oriented Lan-
guages and Systems - TOOLS 30, IEEE Computer Press, 1999.

[CiuOl] O. Ciupke. Problemidentifikation in objektorientierten Software-
strukturen. PhD thesis, Universităt Karlsruhe, 2001.

[CK94] S.R. Chidamber and C.F. Kemerer. A Metric Suite for Object-
Oriented Design. IEEE TYansactions on Software Engineering,
20(6):476-493, June 1994.

[CY91a] P. Coad and E. Yourdon. Object-Oriented Analysis. Prentice Hali,
London, 2 edition, 1991.

[CY91b] P. Coad and E. Yowrăon.^ Object-Oriented Design. Prentice Hali,
London, 2 edition, 1991.

[CZOO] H. Cleve and A. Zeller. Finding Failure Causes through Automated
Testing. In Fourth International Workshop on Automated Debug-
ging. Muenich (Germany), 28-30 August 2000.

DDNOO] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding Refactorings
via Change Metrics. In O OP SLA 2000 proceedings, 2000.

[DeM82] T. DeMarco. Controlling Software Projects; Management, Mea-
surement and Estimation. Yourdan Press, New Jersey, 1982.

[EL96] K. Erni and C. Lewerentz. Applying Design-Metrics to Object-
Oriented Frameworks. In Proceedings 3rd International Software
Metrics Symposium, pages 64-74, Los Alamitos, 1996. IEEE Com-
puter Science Press.

[Ern96) K. Erni. Anwendung multipler Metriken bei der Entwicklung ob-
jektorientierter Frameworks. PhD thesis, Universităt Karlsruhe,
Mnster, 1996.

[ES901 M.A. Ellis and B. Stroustrup. The Annotated C-h-h Reference Man-
ual. Addison Wesley, Reading, Massachusetts, 1990.

[FBB+991 M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refac-
toring: Improving the Design of Existing Code. Addison-Wesley,
1999.

BUPT

140 BIBLIOGRAPHY

[Fen94] N. Fenton. Software Measurement; A Necessary Scientific Base.
IEEE Transactions on Softw. Engineering, 20(3), mar 1994.

(FNOO) N.E. Fenton and M. Neil. Software metrics: A Roadmap. In ICSE
- Puture of SE Track, pages 357-370, 2000.

[FP97] N. Fenton and S.L. Pfleeger. Software Metrics: A Rigorous and
Practicai Approach. International Thomson Computer Press, Lon-
don, UK, second edition, 1997.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vhssides. Design Pattems:
Elements of Rexisable Object-Oriented Software. Addison-Wesley,
1994.

[HCN98] R. Harrison, S.J. Counsell, and R.V. Nithi. An Evaluation of the
MOOD Set of Object-Oriented Software Metrics. IEEE Transac-
tions on Softw. Engineering, 24(6), jun 1998.

[Hoe54] P.G. Hoel. Introduction to Mathematical Statistics, Wiley, 1954.

(HS96] B. Henderson-Sellers. Object-Oriented Metrics - Measures of Com-
plexity. Prentice-Hall,Sydney, 1996. •«

[IS091] International Standard Organization ISO. ISO-9126 - Informa-
tion Technology-Software Evaluation-Quality Characteristics and
Guidelines for Their Use. International Standard Organization,
Brussels, 1991.

(JF88) R.E. Johnson and B. Foote. Designing reuseable classes. Journal
of Object-Oriented Programming, l(2):22-35. June 1988.

[JROO] D. Jackson and M. Rinard. Software analysis: A roadmap. In
International Conference on Software Engineering^ 2000.

[Kos96] B. Kosko. Pazzy Engineering, Prentice Hali, 1996.

[KPF95] B. Kitchenham, S.L. Pfleeger, and N. Fenton. Towards a Frame-
work for Software Measurement Validation. IEEE Transactions on
Software Engineering, 21(12), dec 1995.

[KW86] B.A. Kitchenham and J.G. Walker. The meaning of quality. In
Conference on Software Engineering, 1986, 1986.

[Lad02] R. Laddad. I Want My AOP! Java World, (1), January 2002.

(Lak96] J. Lakos. Large-Scale C-h-h Software Design. Addison-Wesley, 1996.

[LB98] J. Wiist L. Briand, J. Daly. A Unified Framework for Cohesion
Measurement in Object-Oriented Systems. Empirical Software En-
gineering: An International Journal, 3(2), 1998.

BUPT

BIBLIOGRAPHY 141

[LDOl] M. Lanza and S. Ducasse. A Categorization of Clasvses based on
the Visualization of their Internai Structure: the Class Blueprint.
In OOPSLA 200î prvceedings, 2001.

[LH89] K.J. Lieberherr and I.M. Holland. Assuring good style for object-
oriented programming. IEEE Software, pages 38-48, September
1989.

LH93] W. Li and S. Henry. Maintenance Metrics for the Object Oriented
Paradigm. IEEE Proc. First International Software Metrics Symp.,
pages 52-60, may 1993.

[Lis88] B. Liskov. Data Abstraction and Hierarchy. ACM SIGPLAN No-
tices, 23(5), may 1988.

[LK94] M. Lorenz and J. Kidd. Object-Oriented Software Metrics. Prentice-
Hall Object-Oriented Series, Engiewood Cliffs, NY, 1994.

[Lor93] M. Lorenz. Object-Oriented Software Development: A Practicai
Guide. Prentice-Hall, NJ, 1993.

[Mar96a] R.C. Martin. Interface Segregation Principie. C-{--h Report, 1996.

[Mar96b] R.C. Martin. Open-Closed Principie. C-i-+ Report, 1996.

[Mar96c] R.C. Martin. The Liskov Substitution Principie. C-f-f Report, 1996.

[Mar97a] R. Marinescu. The Use of Software Metrics in the Design of
Object-Oriented Systems. Diploma Thesis, "Politehnica" Univer-
sity Timişoara, 1997.

Mar97b] R.C. Martin. Granularity. C-h+ Report, 1997.

[Mar97c] R.C. Martin. Stability. C-h-h Report, February 1997. An article
about the interrelationships between large scale modules.

[Mar98] R. Marinescu. An Object Oriented Metrics Suite on Coupling. Mas-
ter's thesis, "Politehnica" University Timişoara, 1998.

[Mar99] R. Marinescu. A Multi-Layered System of Metrics for the Measure-
ment of Reuse by Inheritance. In Proceedings of TOOLS Asia 1999,
pages 142-153. IEEE Computer Society, 1999.

[MarOO] R.C. Martin. Design Principles and Patterns. Object Mentor,
http://www. objectmentor. corn, 2000.

[MarOl] R. Marinescu. Detecting Design Flaws via Metrics in Object-
Oriented Systems. In Proceedings of TOOLS USA 2001, pages
103-116. IEEE Computer Society, 2001.

[McC76] T.J. McCabe. A Complexity Measure. IEEE Transactions on Soft-
ware Engineering, 2(4):308-320, dec 1976.

BUPT

http://www

142 BIBLIOGRAPHY

[Mey88) B. Meyer. Object-Oriented Software Construction. International
Series in Computer Science. Prentice Hali, Englewood Cliffs, 1988.

[Mey91) B. Meyer. Tools for a new culture - Lessons from the design of the
Eiffel libraries. Communications of the ACM, (2), february 1991.

[Mih02) P. Mihancea. The Meta-Architecture of the Detection Strategies
Tuning Machine. Technical Report at "Politehnica" University
Timişoara, 2002.

[MRW77] J.A. McCall, P.G. Richards, and G.F. Walters. Factors in Software
Quality, Volume L NTIS AD/A-049 014, NTIS Springfield, VA,
1977.

(MWT94] H.A. Miiller, K. Wong, and S.R. TQley. Understanding
Software Systems using Reverse Engineering Technology. In
The 62nd Congress of L'Assodation Canadienne Prancaise pour
VAvancement des Sciences Proceedings (ACFAS), 1994.

[Opd92) W. Opdyke. Refactoring Object-Oriented Prameworks. PhD thesis,
University of Dlinois at Urbana-Champaign, 1992.

[Par72] D.L. Parnas. On the Criteria To Be Used in Decomposing Systems
into Modules. Communications of the ACM, 15(12), dec 1972.

Pfl98] S.L. Pfleeger. Software Engineering - Theory and Practice.
Prentice-Hall, NJ, 1998.

Pid02] W. Pidcock. What is Meta-Modelling. Metamodeicom,
http://vrww.metamodel. com/metamodeling/, 2002.

[PJ88] M. Page-Jones. Practicai Cuide to Structured Systems Design (2nd
Edition). Prentice-Hall PTR, Englewood CUffs, NY, 1988.

[PL99) K. Periyasamy and X. Liu. A New Metrics Set for Evaluating
Testing EflForts for Object-Oriented Programs. In TOOLS 30, IEEE
Computer Society, 1999.

[Rie96] A.J. Riel. Object-Oriented Design Heuristics, Addison-Wesley,
1996.

[RL92] C. Rajaraman ând M.R. Lyu. Some Couphng Measnres for C + +
Programs. In Proceedings of TOOLS USA '92, Prentice-Hall, En-
glewood a i f f s , NJ, 1992.

[RusOl] A. Rusu. Strategii de Detecţie a Carenţelor de Proiectare în Sis-
teme Orientate-Obiect. Diploma Thesis (Advisor: R.Marinescu),
"Politehnica" University Timişoara, 2001.

BUPT

http://vrww.metamodel

BIBLIOGRAPHY 143

[SBOl] H.A. Sahraoui and M. Boukadoum. Extending Software Quality
Predictive Models Using Domain Knowledge. In 5th International
ECOOP Workshop on Quantitative Approaches in Object-Oriented
Software Engineering, 2001.

[SBLOl] H.A. Sahraoui, M. Boukadoum, and H. Lounis. Building Quality
Estimat ion models with Fuzzy Threshold Values. lObjet^ 17(4),
2001.

[Sch97] H. Schildt. C-i-+. Manual complet Editura TEORA, 1997.

[She90] M. Shepperd. Early Life-cycle Metrics and Software Quality Mod-
ules. Inf. Software Technologies, 32(4), 1990.

[Som95] I. Sommerville. Software Engineering. Sixth Edition. Addison-
Wesley, 1995.

[TelOO] Telelogic. Telelogic Tau Logiscope 5.1. - Audit Basic Concepts.
Telelogic AB, Malmoe, Sweden, 2000.

[TriOl] A. Trifu. Using Cluster Analysis in the Architecture Recovery of 0 0
Legacy Systems. Diploma Thesis, Karlsruhe and the "Politehnica"
University Timişoara, 2001.

[TS92] D.P. Tegarden and S.D. Sheetz. Object-oriented system complexity:
an integrated model of structure and perceptions. In O OP SLA '92
Workshop on Metrics for Object-Oriented Software Development
(Washington DC), 1992.

[Wir95] N. Wirth. A Plea for Lean Software. IEEE Computer, 28(2), jan/feb
1995.

[Zel99] A. Zeller. Yesterday, my program worked. Today, it does not. Why?
In Proceedings of ESEC/FSE 99, pages 253-267. Springer Verlag -
Lecture Notes on Computer Science, 1999.

[Zus92] H. Zuse. Properties of Software Measures. Software Quality Jour-
nal, 1:225-260, 1992.

BUPT

144 BIBLIOGRAPHY

BUPT

Appendix A

Factor-Strategy Quality
Model for Maintainability

This appendix contains the full description of the Factor-Strategy quality model
for maintainability proposed in Section 6.4.3. The language used to describe the
model is very similar to the one used in [TelOO]. Factor-Strategy quality models
described using this language can be evaluated using the P R O D E O O S toolkit
(Section 7.2.4).

First we see that the maintainability score is computed as an average between
the scores of the four criteria that compose it in conformity with the definition
of maintainability found in IS09126[IS091] (lines 01 and 02).

In the following lines (04 to 15) we see how the score for the Changeability
criteria is computed: first, a raw score is computed as an average from the
scores of the detection strategies that are related with the quality criteria (lines
04 to 09).After that, the raw score is mapped to a quality ranking, i.e. a nor-
malized score obtained from a matrix of ranks (see lines 10 to 15). The score
for the other three factor criteria (Analysability, Testability, Stability) are then
computed in a similar manner (lines 17 to 50).

The score for each detection strategy is computed in a similar manner: first
a raw score is computed mainly based on the number of suspects for the strat-
egy. That score is than mapped to a normalized score based on one of the matrix
of ranks{\\nes 54 to 74). Note that the same detection strategy can return a dif-
ferent score for different criteria based on the scoring mapper that was used.
For example, the DataClasses detection strategy is considered to affect more
severely the Changeability criteria and therefore its score is computed with a
different score mapper (compare line 07 with 19, 31 and 42).

145

BUPT

U6APPENDIX A. FACTOR-STRATEGY QUALITYMODEL FOR MAINTAINABILITY

01 Maintainability := avg(Chaiigeability, Analysability,
02 Testability, Stability)

03
04 Changeability := avg (LackOfBridgeDeep(MediumScoring) ,

05 LackOfStrategy(SevereScoring), LackOfState(MediumScoring),
06 LackOfFacade(SevereScoring), GodMethod(MediumScoring),

07 DataClasses(SevereScoring), GodClasses(SevereScoring),

08 Shotg\mSurgery(SevereScoring), GodPackage(SevereScoring),

09 ISPViolation(MediumScoring))

10 {
11 9 10 10, /» EXCELLENT */

12 7 9 8, /* GOOD */

13 5 7 6 , / * ACCEPTABLE */

14 0 5 4 / * POOR */

15 },

16
17 Analyzability := avg(LackOfStrategyGodLike(MediumScoring),

18 FeatureEnvy(TolerantScoring), GodMethod(MediumScoring),

19 DataClasses(MediumScoring), GodClasses(SevereScoring),

20 RefusedBequest(MediumScoring), MisplacedClass(TolerantScoring),

21 GodPackage(SevereScoring), TemporaryField(TolerantScoring),

22 ShotgunSurgeryWeighted(MediumScoring))

23 {

24 9 10 10, /* EXCELLENT */

25 7 9 8, /* GOOD */

26 5 7 6 , / * ACCEPTABLE */

27 0 5 4 / * POOR */

28 >,
29

30 Testability := avg(FeatureEnvy(MediumScoring),

31 GodMethod(SevereScoring), DataClasses(MediumScoring),

32 GodClasses(SevereScoring), ShotgunSurgery(MediumScoring),

33 LackOfSingleton(MediumScoring))

34 {

35 9 10 10, /* EXCELLENT */

36 7 9 8, /* GOOD */

37 5 7 6 , / * ACCEPTABLE */

38 0 5 4 / * POOR */

39 },

40

41 Stability := avg (LackOfState(MediumScoring),

42 GodMethod(MediumScoring), DataClasses(MediumScoring),

43 GodClasses(SevereScoring), LackOfSingleton(MediumScoring),

44 ShotgunSurgeryWeighted(SevereScoring))

BUPT

147

45
46 9 10 10. / * EXCELLENT •/
47 7 9 8, / * GOOD */
48 5 7 6, / * ACCEPTABLE •/

49 0 5 4 / * POOR */
50 };

51

52 /* Matrix of Ranks for the Strategies*/

53

54 SevereScoring {

55 0 0 10, EXCELLENT */
56 1 1 9. f* VERY GOOD */
57 2 4 7. /* GOOD */

58 5 7 5. /* ACCEPTABLE */
59 8 +00 3 /* POOR */

60 }.
61

62 MediumScoring •[

63 0 1 10. /* EXCELLENT */
64 2 4 8. /* GOOD */

65 5 10 6, /* ACCEPTABLE */
66 11 +00 3 / * POOR */ •

67

68

69 TolerantScoring {
70 0 3 10, /* EXCELLENT */
71 4 8 8, /* GOOD */

72 9 12 6, /* ACCEPTABLE */
73 13 +00 4 /* POOR */

74 };

BUPT

U8APPENDIX A. FACTOR-STRATEGY QUALITYMODEL FOR MAINTAINABILITY

BUPT

Appendix B

List of Further Detection
Strategies

The purpose of this appendix is to supplement the collection of detection strate-
gies defined in Chapter 5. For each class of design problems we briefly described
several concrete flaws, but we defined detection strategies only for two flaws in
each category. Therefore, in this appendix we want to provide the reader with
the definitions for the other detection strategies. We will use a simplified (and
sHghtly modified) form of the template defined in Section 4.4.1. Thus, for each
detection strategy we provide the literature source for the design fiaw that is
being quantified by the strategy, the detection rule, and the metrics that are
part of the detection rule.

B-1 Data Classes
Source

A. J. Riel. - Object-Oriented Design Heuristics [Rie96]

Rule

DataClasses := ((WOC, BottomValues(33y,)) and (WOC, LowerThanCO.aa)))
and ((NOPA, HigherThan(5)) or (NOAM, HigherThan(5)))

Metr i c s

1. Weight of a Class (W O C) [MarOl]

• Definition: WOC is the number of non-accessor methods in the in-
terface of the class divided by the total number of interface members.

• Implementation Details: Inherited members are not counted. The
members that belong to the interface of the class are the public,
non-inherited methods and data members of a class.

149

BUPT

150 APPENDIX B. LIST OF FURTHER DETECTION STRATEGIES

2. N u m b e r Of Publ ic A t t r i bu t e s (NOPA) [MarOl]

• Definition: NOPA is defined as the number of non-inherited at-
tributes that belong to the interface of a class.

3. N u m b e r Of Accessor M e t h o d s (N O A M) [MarOl]

• Definition: NOAM is defined as the number of the non-inherited
accessor-methods declared in the interface of a class.

• Implementation Details: The big problem is how to identify the
accessor-methods? We used the following "pattern": accessor-methods
are small-methods, with a unitary cyclomatic complexity, and we rely
on the name convention, stating that the names of accesor methods
are prefixed with the get (or Get) and se t (or Set) prefix.

B.2 ISP Violation
Source

R. Martin - Interface Segregation Principie [Mar96a]

Ru le

ISPViolat ion := ((CIW, TopValues(207.) bu tno t in (CIW, LowerThan(lO)))
and (AUF, LowerThan(0.5)) and (COC, HigherThanO))

Met r i cs

1. Class In te r face W i d t h (CIW)

• Definition: CIW is defined as the number of members of a class that
belong to the interface of the class.

• Implementation Details: The members that belong to the interface
of the class are the public, non-inherited methods and data members
of a class.

2. Clients Of Class (COC)

• Definition: The COC is defined as the number of classes that use the
interface of the measured class.

• Implementation Details: Inner classes are not counted. In the context
of this metric a class A uses the interface of a class C if (at least) it
calls a public method or accesses a public attribute of that class.

3. Average Use of In ter face (AUF)

• Definition: The AUF metric is defined as the average number of
interface members of a class that are used by other classes.

BUPT

B.3. LACK OF STATE 151

• Implementation Details: AUF is computed by suming up the number
of used members for each of the client-class^s and divide it by ţhe
number of client classes (COC).

B.3 Lack of State
Source

E. Gamma, R. Helm, R. Johnson, J. Vlissides. - Design Pattems: Elements of
Reusable Object-Oriented Software [GHJV94]. The State pattern.

Rule

LackOfState := (AMW, HigherThan(4)) and (NOA, HigherThan(3))
and ((WMC, HigherThan(lO)) or (NPubM, HigherThanO)))

Metrics

1. Average Method Weight (A M W)

• Definition: AMW is computed as the average cyclomatic complexity
for the class. This is measured by dividing the Weighted Method
Count(WMC) - computed based on McCabe cyclomatic complexity
measure - value for the class, by the number of methods in the class.
Thus,

WMC
AMW =

NOM
• Implementation Details: An alternative for this metric would be to

use another measure of method-complexity instead of McCabe's cy-
clomatic. The proposed metric is Maximum Number Of Branches
(MNOB)^ This measure would be even closer to our detection goal.

2. Number Of Attributes (NOA)

• Definition: NOA is the total number of attributes defined in a class.

• Implementation Details: Inherited attributes should not be counted.

3. Number Of Public Methods (NPubM)

• Definition: NPubM is the number of public methods defined in the
measured class.

• Implementation Details: Constructors and the destructor of the class
should not be counted.

^For a definition of this metric please refer to Section 2.4.4

BUPT

152 APPENDIX B. LIST OF FURTHER DETECTION STRATEGIES

4. We igh t ed M e t h o d C o u n t (WMC)[CK94]

• Definition: WMC is the sum of the statical complexity of all methods
in a class. If this complexity is considered unitary, WMC measures
in fact the number of methods (NOM).

• Implementation Details: We recommend the use of McCabe's cyclo-
matic number[McC76] for the quantification of method complexity.

B.4 Lack of Visitor
Source

E. Gamma, R. Helm, R. Johnson, J. Vhssides. - Design Pattems: Elements of
Reusable Object-Oriented Software [GEJYM]. The Visitor paLttern.

R u l e

LackOfVisitor := (ADR, HigherThan(0.5) and (NOD, HigherThan(3))

and (NPubM, HigherThaii(5))

M e t r i c s

1. O v e r r i d e R a t i o (O R) .

• Definition: The OR metric is computed between a base class and a
child class, as the relative numbers of methods from the interface of
the base class that are overriden in the derived class.

Implementation Details: Only the interface methods are counted (i.e.
the public methods). Constructors and destructor of the base class
are excluded.

2. A v e r a g e Over r ide R a t i o (A O R)

• Definition: The AOR metric is computed from the OR metric defined
before as the average OR value of the base class

• Implementation Details: For a base class C, let the set of the classes
directly derived from it be {Di\i = 1,N0C}, where NOC is the
number of child classes [CK94) for class C. Then, AOR is:

W c

3. N u m b e r Of D e s c e n d a n t s (N O D)

• Definition: NOD is the number of classes directly or indirectly de-
rived from the measured class.

BUPT

B.5. MISPLACED CLASS 153

4. Number Of Public Methods (NPubM)
t

• Definition: NPubM is the number of public methods defined in the
measured class.

• Implementation Details: Constructors and the destructor of the class
should not be counted.

B.5 Misplaced Class
Source

This detection strategy is home-grown based on the principles of package cohe-
sion found in: R. Martin - Design Principles and Design Pattems [MarOO]

Rule

MisplacedClass := (CL, LowerThan(0.33) and ((NOED, TopValues(25y,))
and (NOED, HigherThan(6))) and (DD, LowerThan(3))

Metrics

1. Number Of Externai Dependencies (NOED)

• Definition: NOED is the number of classes from other packages on
which the measured class depends on.

• Implementation Details: A class A depends on another class B, if
class A calls methods and/or accesses attributes and/or extends class
B.

2. Class Locality (CL)

• Definition: CL is computed as the relative number of dependencies
that a class has on its own package.

• Implementation Details: In order to compute the metric we will di-
vide the NOED value by the total number of classes on which the
measured class depends on. Inner classes should not be counted.

3. Dependency Dispersion (DD)

• Definition: DD is the number of other packages on which a class
depends.

• Implementation Details: The class depends on an package if it de-
pends on of the classes from that package.

BUPT

154 APPENDIX B. LIST OF FURTHER DETECTION STRATEGIES

B.6 Refused Bequest
Source

M. Fowler - Refactoring: Improving the Design of Existing Code [FBB"'"99].

Rule

RefusedBequest := ((AIUR, BottomValues(257.)) butnotin (DIT, LowerThand)))

and (AIUR, LowerThan(0.33)))

Metrics

1. Inheritance Usage Ratio (IUR)

• Definition: The IUR metric is a metric defined between a subclass
and one its ancestor classes, as the relative number of inheritance-
specific members from the ancestor class used in the derived class.

• Implementation Details: A member of an ancestor class is an inheritance-
specific member ii its usage is related to inheritance. We identify
following inheritance-specific members:

- protected data members and methods^
- non-private virtual methods

The IUR metric is computed by counting the number of inheritance-
specific members of the ancestor-class that are used in the subclass
and divide it by the total number of inheritance-specific members
fi:om the ancestor. The only usages that are counted are: access of a
protected data member, call of protected method and redefinition of
a virtual method.

2. Average Inheritance Usage Ratio (A I U R)

• Definition: We define AIUR for a derived class as the average value
of the IUR metric computed between that class and all its ancestor
classes.

• Implementation Details: For a class C, let the set of its ancestor be
{Aiji = l.NOA}, where NOA is the number of ancestor classes for
class C. Then, AIUR is:

^ ^ ^ ^ - — m Ă —

An alternative would be to consider only the direct inheritance rela-
tion.

^In JAVA protected members can be accessed not only from the subclasses, but also from
any other class belonging to the same package. Thus, because there is no "inheritance-specific"
access-specifier, counting the protected members might theoretically introduce some errors to
the detection strategy. Yet, we believe that in practice the protected access-specifier is used
mostly to provide an exclusive access on those members for the subclasses.

BUPT

D.6. REFUSED DEQUEST 155

3. D e p t h of Inher i tance Tree (DIT)[CK94]

• Definition: The length of the inheritance chain from the root of in-
heritance tree to the measured class is the DIT metric for the class.

• Implementation Details: In case involving multiple inheritance, the
DIT will be the maximum length from measured class to the root of
the tree.

BUPT

