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ABSTRACT

In designing with composites, it is important to take into consideration 

imperfections such as delaminations. The presence of delaminations in a composite 

structure can cause degradation in the structure performance. The focus of the present 

work is on modeling and analysis of composite and smart composite plates with 

delaminations. Adaptive composite structures are capable to actively respond to 

environment changes. Piezoelectric actuation is the most used concept in adaptive 

structures due to dynamic control capabilities over a large range of frequenqies. Essential 

to the implementation of these smart structures with defects are accurate and efficient 

modeling techniques. Identification of damage in a composite based structure is also 

important. This thesis addresses each of these important topics.

A refined higher order theory model is used to analyze the dynamic response of 

delaminated composite and smart composite plates. Actuators are used to control the 

plate shape. The theory accurately captures the transverse shear deformation through the 

thickness of the composite laminate while satisfying stress free boundary conditions on 

the free surfaces. The theory is extended to incorporate the presence of delaminations. 

Continuity conditions are imposed on delamination lateral boundary. The model is 

implemented using the finite element method utilizing an induced străin approach for 

computaţional efficiency. This allows general laminate geometries and boundary 

conditions to be analyzed. Specifically, the effect of delaminations on the dynamic 

behavior of the composite is studied.
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Dynamic results using the higher order theory are correlated with available 

experimental data. Comparisons, including delaminations, are also made with a general 

purpose finite element code. Agreement is very good. Additional results demonstrate the 

utility of the developed theory to study delaminated composites with or without 

piezoelectric actuation.

Several damage index criteria are used to characterize the damage in composite 

and smart composite plates. Published damage index criteria are analyzed and modified

in the context of the present theory. A new străin based damage index is defined.
i

Robustness of each index is verified in the presence of noise. The results demonstrate 

that the new index is the most reliable and robust in detecting delaminations.
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1. Introduction

1.1 Structural Modeling

Smart composite materials offer the potential for designing structures which are 

both light in weight and possess adaptive control capabilities for shape correction and

vibration control. In designing with composites, it is important to take into consideration
i

imperfections, such as delamination, that are often pre-existing or are generated by 

externai impact forces during the service life. The existence o f delamination can 

signifîcantly alter the dynamic response o f smart composite structures (Chattopadhyay 

and Seeley, 1997).

Several mathematical models have been reported in the literature for the analysis 

o f beams and plates with piezoelectric sensing/actuation. The classical theory-based 

approach was introduced by Crawley and Anderson (1989) to investigate such problems 

with thin beams. This was followed by the first order Mindlin type analyses 

(Chandrashekara and Agarwal, 1993) and the expensive layer-wise theories (Robbins and 

Reddy, 1993). A hybrid theory has also been reported by Mitchell and Reddy (1995).

It is well known that refined higher order theories are capable o f capturing the 

transverse shear deformation through the thickness quite accurately (Chattopadhyay and 

Gu, 1994). These theories are applicable for laminates o f thicker construction and have 

been shown to be useful in modeling smart composite laminates (Chattopadhyay and 

Seeley, 1997). Finite element based solution procedures are practicai since real
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geometry and boundary conditions can be investigated (Chandrashekara and Agarwal, 

1993, Seeley and Chattopadhyay, 1996).

A significant amount o f research has also been performed in modeling 

delamination in composites. Although three dimensional approaches (Yang and He, 

1994) are more accurate than two dimensional theories (Pavier and Clark, 1996), their 

implementation can be very expensive for practicai applications. The layer-wise

approach introduced by Barbero and Reddy (1991) is an alternative since it is capable of
i

modeling displacement discontinuities, However, the computaţional effort increases with 

the number o f  plies. A refined higher order theoiy developed by Chattopadhyay and Gu

(1994), has been shown to be both accurate and efficient in modeling delamination in 

composite plates and shells o f moderately thick construction. This theory has also been 

shown to agree well with both elasticity solutions (Chattopadhyay and Gu, 1996) and 

experimental results (Gu and Chattopadhyay, 1996).

1.2 Delamination detection

Preliminary research has also been conducted on the use o f smart materials in 

detecting pre-existing delaminations by Keilers and Chang (1995). However, the 

mathematical model used in this work is simply classical theory based approach, which 

exclude the transverse shear effects. As much as 50% deviation in structural response 

has been reported in thick constructions (Chattopadhyay and Gu, 1994, Barbero and 

Redy, 1991). Recently, Chattopadhyay and Seeley (1998) introduced the higher order

2
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theory in the analysis o f adaptive composite plates in the presence o f debonding between 

the laminate and the actuator. It was shown that the presence o f debonding significantly 

alters the dynamic response.

The presence o f delaminations in a composite structure can cause significant 

degradation in the structural performance. Many techniques have been developed to 

locate defects in such structures and this work considers only those based on vibration

methods. Cawley and Adams (1980) and Williams et all. (1997) used the changes in
i

natural frequencies o f a structure to quantify damage. Lew (1997) presented a damage 

detection technique based on transfer function parameter changes. Keilers and Chang

(1995) proposed an experimental delamination detection procedure using built in 

piezoelectrics. An approach based on mode shapes was first introduced by Pandey et al. 

in 1991. While noting that the mode shapes alone or in combination with changes in 

natural frequencies are not sufficient to detect the position and size o f defects in various 

structures, they proposed the use o f curvature mode shapes in detecting damage in a 

beam. The curvature is obtained from mode shapes using Laplace’s finite difference 

equation. It was shown that the absolute difference in the curvature mode shapes 

between the healthy and the damaged beams is a better indicator o f damage location 

compared to the absolute difference in the displacement mode shapes.

RatclifFe and Bagaria (1998) improved the above technique using a gapped 

smoothing technique. They observed that Laplace’s equation enhances irregularities such 

as measurement noise and proposed that the curvature should be locally smoothed. In 

their approach, for a composite beam with a through the width delamination, a third order 

polynomial was used to locally describe the curvature. This procedure uses the
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assumption that the damage is strictly located in a very small zone, considering the 

damage discrete rather than continuous.

The objective o f the current research is to develop a mathematical model for the 

analysis o f delaminated smart composite laminates using a refined higher order theory. 

The theory is implemented using the finite element method. The model, also carefully 

accounts for the distributed nature o f delaminations and actuators in the primary 

structure. Since actuators are modeled, the relationship between the applied electric field 

and the străin is based on an induced străin approach.

Four damage index criteria are used in an attempt to characterize delaminated 

composite and smart composite plates. Two published criteria, MAC and COMAC 

indices (Harris, 1996), are modified in the context o f the present theory. The new defined 

indices, MSAC and COMSAC are computed in the present work in terms o f străin rather 

than in terms o f modal vectors. A third damage index is developed by modifying the 

existing gapped smoothing technique index introduced by Ratcliffe and Bagaria (1998). 

In the case when investigating plates, it is easier to measure strains than bidimensional 

curvature. Therefore, the modified index is also computed using străin distribution. 

Finally, a new index is defined. The inplane modal strains o f the delaminated structure 

are compared with those o f a similar healthy structure. This new index is expected to be 

more reliable and robust in locating delaminations in composite and smart composite 

plates

4
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2. Mathematical Modeling

2.1 Fundamental Concepts in Laminate Theory

2.1.1 Constitutive Equations

For an orthotropic material in the local system of coordinates the constitutive 

equations can be written as

Qu q 12 Q u 0 0 0 /
6 ,' A ,'

\

°2 Ql2 Q 22 Q 23 0 0 0 £2 a 2

Q.3 Q 23 Q 33 0 0 0 £3
> •<A 3

°4 0 0 0 2 Q 44 0 0 £4 0

<*5 0 0 0 0 2 Q 55 0 £5 0

°6. 0 0 0 0 0 2Q 66_ V 0 J

where a; and £i (i= l,2 ,...,6 ) are the stresses and strains, respectively, (Vinson and 

Sierakowski, 1987) and A; (i=l,2,3) are the induced strains due to piezoelectric actuation. 

The constitutive equations, in the structural frame, can be expressed as follows

c ■>
A x

° y 8y -  A y
ct7 87 -  A 7z II 0

z z
>

a .w. F'. «

8„xz XZ

e  XV “  ^  XV

where the stiffness matrix
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Q =

Q n Q » Q .3 0 0 2 Q

Q .2 Q22 Q23 0 0 2 Q;

Q .3 Q23 Q33 0 0 2 Q;

0 0 0 2Q44 2  Q45 0

0 0 0 2 Q 45 2 Q 5 5 0

Q .6 Q 26 Q 36 0 0 2 Q,66

(2.1.3)

is obtained from coordinate transformation (Vinson and Sierakowski, 1987).

Assuming sz to be negligible across the thickness o f the plate, Eqs. 2.1.2 can be 

written, for the kih laminae o f the plate as follpws (Fig. 2.1).

(2.1.4)
" Q n Q „ 2 Q |6

* CT.V y = Q12 Q22 2 Q 26 < S y — ;A y >

a ^ . k _ Q ,6 Q26 2 Q 66 k e * -

2Q44 2 Q 45

2 Q 45 2 Q 55 k k

(2.1.5)

The above decomposition is very useful in the solution procedure since it decomposes the 

problem into two smaller subproblems in terms o f stresses and strains.
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Figure. 2 . 1 . Composite plate with delamination.

2.1.2 Kinematic Equations

A higher order displacement field is used to model the kinematics o f deformation. 

The inplane displacements (u and v) are assumed to have cubic variations through the 

laminate thickness and the out o f plane deformation (w) is assumed to be independent of 

thickness.

5 w 0
u(x, y ,z ,t)  = u0(x ,y ,t)  + z

v (x ,y ,z ,t)  = v0(x ,y ,t)  + z 

w (x ,y ,z ,t)  = w 0(x ,y ,t)

ox

d w

— + a (x ,y ,t)

dy
- + P(x,y,t)

+ z 2(p(x,y,t) + z 30(x ,y ,t)  

+ z 2v|/(x, y, t) + z 3rj(x, y, t) (2.1.6)

where uo, vo and w0 are the displacements of an arbitrary point (x,y,0) at the laminate 

midplane, a  and (3 are additional rotation functions while (p, 0, y  and r| are higher order
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functions. In the hypothesis o f small deformations, the strain-displacement relations are 

written as follows.

8

ev =

s ,  =

e ,, = -

du
ă x
av
3 y
d w

d z

l 
2

d v d w
—  + -----
3 z  dy  

3u 3w \
+ -

d z  d y

1
: 2 Y>Z

1
~ 2 Ykz

(2.1.7)

du d \  —  +
ydy d x 2 Yxv

The displacement fîeld deflned in Eqs. 2.1.6 does not satisfy the shear stress free 

boundary conditions. Therefore, it is necessary to impose these conditions as follows

h h
^ >̂ (x ,y 3± - , t )  = a xz(x ,y  , ± - , t )  = 0

where h is the thickness o f the plate (Fig. 2.1).

For orthotropic laminate, these conditions are equivalent to

(2.1.8)

(2.1.9)

The displacement field (Eqs. 2.1.15), then reduces to the following form

u (x ,y ,z ,t)  = u0(x ,y ,t)  + z

v (x ,y ,z ,t)  = v0(x ,y ,t)  + z 

w (x ,y ,z ,t)=  w 0(x ,y ,t)

d w
dx  

d w

~ + <*(x, y ,t)
4z

dy
-  + P (x ,y ,t)

3 h 2

4 z 3

3h

a (x ,y ,t )  

2 P (x ,y ,t) (2.1.10)
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where a  and P are shear correction functions. It is to be noted that this higher order 

displacement field uses the same number o f unknown functions (uo, v0, w0, a  and P) as 

the first order displacement field while being able to model the strain-displacement 

relations with quadratic and cubic polynomials as shown below

6,  =  8® +  Z s |  + Z 3Ej*

£2 — £j +Z£j +Z £̂2

s 4 = 8 4  + z 2 e 2

8 5 = 8 5  +  Z 2 8 5

£6 = 8  ̂+ zz \  +Z386

where the index convention (l=x, 2=y, 3=z, 4=yz, 5=xz and 6=xy) is used for simplicity 

and

du.
dx

o
=

=

dy

d u n â v c
dy  dx  

= P(x ,y ,t), 

85 = a (x ,y ,t) ,

8 , = —

e 2 = -

â 2 w n d a
d x 2 

d2 w,

+ •

■ +

0 X

a p
d y 2 d y

1 ? a 2w 0 da  a p
6 dx d y  dy  dx

£4 = C 2 P (x ,y ,t)

82 = C 2 a(x , y , t )

ef = C,

83 = C , - ^

d a
dx

ap
ay

e? =C ,
( da  ap  

—  + —  
dy  dx

\
(2.1.12)

C, = - o 1 2j  ti
(2.1.13)

From the above equations, it must also be noted that both first order and third 

order displacement fields introduce two additional unknown functions, (a  and P) 

compared to classical laminates plate theory while greatly improve the accuracy. The first 

order displacement field assumes a constant distribution o f shear străin through the 

thickness resulting in the use o f  empirical shear correction factors in numerical

BUPT



implementations. The third order displacement field models a quadratic distribution of 

shear străin over the thickness o f  the plate while satisfying the boundary conditions.

✓

10

2.1.3 Hamilton’s Principie

In variational form, Hamilton’s principie is expressed as follows

8n = /;-;(5K -8U  + 8W )dt = 0 (2.1.14)

where SK is the variation o f kinetic energy, 8U is the variation o f străin energy and 8W is 

infmitesimal work done by externai Ioads in a  virtual displacement compatible with 

system constraints. The displacement field must be a continuously differentiable function 

o f position and time. The fîrst term in Eq. 2.1.14 can be written as follows.

§ n K = J ‘2Jvp 8 u T u d V d t (2.1.15)

Switching the order o f integration, integrating by parts with respect to time t, and 

switching back the order o f integration, yields the following

a n K = - J (t2Jvp S u T udV dt (2.1.16)

where

u (x ,y ,z ,t)  =
u(x ,y ,z, t) 
v (x ,y ,z ,t)  
w (x ,y ,z ,t)

(2.1.17)

In the above (x,y,z) is the position vector o f an arbitrary point in the structure, u, v and w 

are the actual displacements o f the point (x,y,z) in x, y and z directions respectively. 

Hamilton’s principie is rewritten in the following form
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where p is the applied load vector and p is the mass density function.

Kinetic Energy

The displacement field can be written in the following simplified form

u ( x , y , z , t )  = Uo(x,y,t) + u â ( x , y , t ) z  + U o ( x , y , t ) z 3 

v ( x , y , z ; , t )  = V o ( x , y , t )  + v J , ( x , y , t ) z  + v J ( x , y , t ) z 3 

w ( x , y , M ) =  w j ( x , y , t )

(2.1.19)

where

Uo(x, y,t) = u0(x, y, t)

d x

U o ( x , y , t )  = C,a(x,y,  t )  

V°(x , y,t) = v 0(x, y,t) (2.1.20)

v'o (x, y , t )  = — ^  + P(x, y, t)
d y  rv 7 

V o ( x , y , t )  = C,P(x,y,t)

Wo(x,y,t) = w 0(x,y,t)

The quantity Ci is defined in Eqs. 2.1.13. The variation o f the kinetic energy is expressed 

as follows

where the volume integral is split into two, one double integral over the area o f the plate 

and a simple integral in z direction.

The inner integral can be expressed as follows

8K = Jv p S u T udV = |J^p5uT udzdA (2.1.21)
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J„=SU TJp U (2.1.22)

where

(2.1.23)

(2.1.24)

(2.1.25)

and

(2.1.26)

In Eq. 2.1.26, hr, (r= l,...,n j) are the z coordinates o f all laminae interfaces in the plate, ni 

is the number o f laminae and p(r), (r= l,...n i) is the mass density distribution over the 

thickness o f the plate, k=0,l,2,3,4,6. Using the above notations (Eqs. 2.1.22-26) the 

variation o f  kinetic energy can be expressed as follows.

Equation 2.1.27 is used in the Finite Element implementation to derive the element mass 

matrix.

Străin Energy

The variation o f străin energy, neglecting the străin in z direction, can be written

as

(2.1.27)
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8 U = J  5 e - o i3 dV = Jy (8e ,a , + 8e 2a 2 + 8e 6a 6 + 8e4a 4 +S 85CT5)dV (2.1.28)

For convenience, the above integral is decomposed into two parts.

5 U b = J  (58,0 , + 8e 2cr2 + 8e6a 6)dV (2.1.29)

S U . ^ S e ^ + S s ^ d V  (2.1.30)

The stress-strain relations, as expressed in Eqs.2.1.4-5, are considered in the case

where induced străin is produced due to inverse piezoelectric effect. In this case, the
i

induced inplane shear străin vanishes. The following form is obtained for the integral in 

Eq. 2.1.29.

8 U b = ^ ( 8 8 ^ ,8 ,  4Ss,Q,2e2 +S8 jQ1686 

+ 882Q128i + 882Q22 8 2 + S82Q2686
+ Se6Q 16e, + Se6Q 26e2 + 8 e6Q 16e6)dV (2.1.31)

-  Jv (8 s ,Q nA, + Se1Q 12A 2 + 8 s 2Q,2A,

+ 8 e2Q 22A 28 e6Q 16 A, + 8e6Q 26A6) dV

The first integral in Eqs.2.1.31 can be decomposed into two parts, one in xy plane and the 

other in z direction, resulting in the following expression

S U ' = f  IbdA (2.1.32)J A

13

wnere

2

+ 8S2Qj2̂ 1 "*"S82Q22 2̂ “̂“^^2Q26^6 (2.1.33)

+ S£6Ql6Sl “̂ ^^6Q26^2 ^ 6Ql6̂ 6 ) ̂

The above integral can be expressed in the following vector-matrix form
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— ^ E b ®Qb £ b (2.1.34)

14

where

e b = V,0 e[ ef

I Qfc = *Ql2

_! q» V

"IS i? 15

l * . = i ? n  n
iS n  i \

:}T

Qio
Ic
I,

(2.1.35)

(2.1.36)

(2.1.37)

and

I'i = J \Q ,,  = r ^ r l ;Q i ( r ) ( h ? ; i '  - K " )2 K + 1 r=i
(2.1.38)

In Eqs. 2.1.37-38 Q;j(r) ( ij=  1,2,6, i<j, k=0,l,2,3,4,6, r= l,...,n i) is the discrete stiffness

distribution across the thickness o f the laminate.

The second integral in Eq.2.1.31 yields the piezoelectric force due to piezoelectric 

actuation and can be expressed as follows

5 U j = JA I„dA  (2.1.39)

where

n
Ip = (8 8 j Q j, Aj + 8 e,Q 12A2 + S e2Q12A,

2

+ 8S2Q 22A 2 ■*" ^ 6Ql6^6

(2.1.40)
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Since Ax=Ai and Ay=A2 are nonzero only in the piezoelectric layers, the integral 

in z direction must be computed only in those layers. In the following derivations the

induced străin is computed as follows

A . = A, =

a v = a 2 =

d3iE3,

d31( -E 3),

^32^3»

d « ( - E 3X

Z  G

Z  G

Z G

Z  G

h h
2 ’ 2 + tp 

h _  h'
_2 tp’ 2 .

h h
2 ’ 2 +tp 

h _  h'
2 t p ’ 2

(2.1.41)

Considering surface bonded actuators in bimorph configuration, the integral in

Eq. 2.1.40 can be performed and expressed in the following form.

Ip = 5 e î I d H3<t) (2.1.42)

where eb is expressed in Eq. 2.1.35, E3(t) is the applied electric field in z direction and I<j

is expressed by equations as follows

where

I  = 4 ' I 1 I1 I2 I2 I2 I6 I6 I6 f  l d \ Ad0 1 d, ^3 Ad0 Ad, 1 d3 d0 Ad, *d3 )

Iâ0 = CI?" -  1

i i ,= ( i i n f- i r p)(QPi:d 31+ Q P22d32)

(2.1.43)

id3 = a r - i r x Q Pl2d 3l + Q P23d 32)

Id = ( i;n f- Io up)(QPld 31+ Q p d 32)

12 = di"' - i r ) (Q pi2d 31+ Q Prd 32) (2.1.44)
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l l = ( l f - i r ) ( Q p ndM +QpHd 32)

Ia = ( i r ' - I o UPX Q p,d31+ Q p d 32)Plo 'P:o

= ( i " - i « - X Q p„ d J,+ Q Pl.d J2)

and

i t = ( i r , - i r x Q „ . d , l + Q P;.d32)

i r  = | J ' ’ d z = . ,

I i " ' = } j ' ' z d z  = i
h V  h 2

------- h t -------
2 PJ 4

l “ = f 7 V d z  = I
2

f h V h4 
- - + t „  -

v 16
(2.1.45)

c = £ i dz = t ,

r s u p
A1 = £ t zdz = 2-> p £

h 2 ( h  \  
. r ' - J

h 4 ( h  
- - t .

16 1 2

Usually, piezoelectric materials are considered isotropic, therefore, the constants 

Qpie, and QP26 are zero and QP11=QP22- For isotropic materials all the material properties 

are invariant with respect to material reference frame such that d3i=d32 and AX=AV. The 

above considerations are used in the numerical implementation o f the piezoelectric force

vector.
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Finally, the variation o f the străin energy due to transverse shear effect can be 

computed from Eq. 2.1.30 using Eqs. 2.1.5, as follows.

5 U s = | v(5e4Q 44e 4 + 8 e4Q 45e 5 + 5 e 5Q 45e4 + 5 e 5Q 55e 5 )dV (2.1.46)

Decomposing the integral in Eq. 2.1.46 into two parts, one in the xy plane and the other 

in z direction,

8 U , = | A I s d A  ( 2 . 1 .4 7 )

where :

h
Is = J 2h (5 S4Q 4484 + 5 8 4Q458 5 + 6 s 5Q 4584 + 5 8 5Q 5585) (2.1.48)

2 ’

In a vector-matrix form,

Is = 5 8 sTIQi8s (2.1.49)

where

e, = 5eJ 8s? 8 e j}  (2.1.50)

! q.

*«. =

I q45 I q55

IS 15
L1! n i

and

i ;  = J 3„ Qs ^"<12 = (Ofh^,1 -  h ^ ' ) (2.1.53)
2 K + 1 T=\

(2.1.51)

(2.1.52)

^ 3 3 .
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In Eqs. 2.1.52-53 it is assumed that k=0,2,4 and ij=4,5, i<j. The transverse shear 

străin energy (Us) and the classical term energy (Ub) are used in the numerical 

implementation in computing the structural stiffness.

Externai Work Done

The work done by externai forces in a virtual displacement compatible with 

system constraints is represented by the last term in Eq. 2.1.18. This general form 

accounts for volume externai forces. For common structures however, the forces are 

surface distributed therefore, the integral over the volume V is replaced by a surface 

integral over the area A. The computation o f work done is made for the latest case. The 

work done in a virtual displacement 5u can be written as follows

18

T
is the distributed load vector and 8u= { 8u(x,y,z,t) 8v(x,y,z,t) 8w(x,y,z,t)} is the virtual

displacement corresponding to the displacement field in equation 2.1.17. Further, from 

relations 2.1.19-20 the displacement field ( u )  is related to the vector of intermediate 

unknowns ( U ) as follows

where Lw is an operator matrix formed with the z coordinate o f the application points o f 

distributed externai force.

(2.1.54)

where

p(x,y, z,t) = {px(x,y,  z,t) p y(x ,y ,z , t )  pz(x,y,z,t)}T (2.1.55)

u = Lw U (2.1.56)
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Lw -
1 z. Zp O O

0 0 O 1 zp
0 0 0 0 0

(2.1.57)

In the above equation zp, the z coordinate o f the application point, is measured from the 

midplane o f the plate. Now, the work done is computed as follows.

5W = f SUTLTw p(x,y,z,t)dA  (2.1.58)
J A

The work done is used in the next chapter in computing the element force vector due to 

externai loads. 1

2.2 Continuity Conditions

For a plate with delaminations, the structure is decomposed into three distinct 

regions as in Fig. 2.2. There are denoted Dj for the undelaminated part, D2, the region 

above delamination and D3 for the region below delamination. The higher order 

displacement field is independently applied to each region (Seeley, 1997).

U j(x ,y ,z,t) = uoi(x ,y ,t)  + ( z - c , )

v, (x, y ,z ,  t) = voi (x,  y, t) + (z -  c-,) 

w i ( x ,y , z , t )  = w oj( x ,y , t )

d w Oi

d x

dxv

+ a i(x ,y ,t)

dy
—+ P i(x ,y ,t)

4 ( z - c ,)3
• 3 h 2 - a 8( x , y , t )

4 ( z - c i )3

3h;
P i(x ,y ,t) (2 .2 . 1)

where c, are the z coordinates o f the midplanes o f each region, h, are the local 

thicknesses and the index i= l,2,3 represents the three regions.

Additional conditions are necessary to assure the continuity o f the displacement 

field and its derivatives, on the delamination interface S. In a general form the continuity 

conditions at S are expressed as follows.
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u, (x, y, z, t) = Uj (x, y, z, t) 
v, (x, y,z, t) = Vj(x, y, z, t) 
w ,(x ,y ,z ,  t) = Wj(x, y, z,t) 

d ru, _ drUi
d x nd y m d x nd y m

a rv, a rVj
d x nd y m d x nd y m

d rw, £

i

d x " d y m a x na y m

Figure 2.2. Delaminated composite plate with actuators.

In the above equation i=2,3 represent the delaminated regions, and r denotes the 

required order o f continuity, r=m+n, m ,n=0,l,...,r. Since the theory developed is
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implemented using the Finite Element Method (FEM), the continuity o f displacement is 

imposed at the midplane o f each delaminated region corresponding to nodal location in 

FEM. This case requires C° continuity o f  u and v with respect to inplane coordinates x 

and y, C 1 continuity o f u and v with respect to z and C2 continuity o f w with respect to x 

and y, Equations 2.2.2 can be written as follows.

U, = u oi = U 01 + ( c ,  - c , )  

Vj = V 0l = V’oi + ( C j  - c , )

01
dx

dw

+ oc, -

01
d y

a .

3hi

3h2

(cj - c , ) 3a ,

(ci -  ci ) Pi

« î =

Pi =

K
a .

(2.2.3)

wo, =woi 
^w0, ^w01

dx dx

dw 0i 5 w 01
dy dy  

a 2w 0j _ a 2w 01
dx '

d w 0i d w oi
d y 2 d y 2 

d 2 w 0l 3 2w 0,

dx dy  d x dy

Equations (2.2.2-3) can be tailored requiring the necessary degree o f continuity of

unknown functions for a specific FEM implementation. This is discussed in chapter 3.
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3. Numerica] Implementation

The finite element implementation o f the equations o f motion describing a smart 

composite plate in the presence o f delaminations, is described in the following sections. 

This approach allows the modeling o f arbitrary geometry and boundary conditions. The 

unknown functions are the displacements u, v and w and the shear correction functions a  

and p. Isoparametric interpolation is used for the inplane displacements u and v and the 

functions a  and (3, while cubic interpolation is used for the out o f plane displacement, w 

(Reddy, 1993).

3.1 Stiffness Properties

The elemental stiffness is composed o f two terms, one due to inplane strains (si, 

82 and 86) and the other due to transverse shear effects (84 and 8 5). The contribution o f the 

shear strains is particularly important for thick plates. Some details o f these computations 

are presented next.

3.1.1 Stiffness Due to Inplane Effects

Equations 2.1.12 can be expressed in the local system of coordinates in a matrix- 

vector form as follows.

£ b = L b=«= (3-1.1)

where eA is the străin vector expressed as follows
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- f c
0 ^
1 C 2 £ 2

„ 3 _0
2 £ 6

L b is a matrix differential operator.

I (3.1.2)

and

=

1 d
a d ţ

0 0 0 0

0 1 d
a d ţ

0 0 i a2
a 2 d£2

0 c , H' a d£
0 0 0

0 0 i a
bdr]

0 0

0 0 0 i a
b drj

b d r]

i a2
b2 drI2

0 0 0 0

1 â 
b drj

0 i a
a d ţ

0 0

0 1 d 0 i a 2 a2
b drj cidţ ab dţdr]

0 C , ^b drj
0 c , i A

a d ţ
0

V) a ( t  *0 v0fe H) a ( i  fi) W0(£, |i)}

(3.1.3)

(3.1.4)

In the above equations coordinates £,=(£,, r|) correspond to a point in the reference 

element and u; is the vector o f unknown functions (Reddy, 1993).

The unknown displacement functions are now expressed in terms o f the nodal 

variables. Using the appropriate interpolation functions the following relationship is 

obtained.

® 4 = Î > iWi (3.1.5)
i=l
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wr = | u 0i v oi p w 0i
^ W0i

dx
a w 0i

dy

H, 0 0 0 0 0 0 0

0 H, 0 0 0 0 0 0

Ni = 0 0 H, 0 0 0 0 0

0 0 0 H. 0 0 0 0
0 0 0 0 N „ a N2l b N 3l abN

' Oi (3.1.6)

4i

(3.1.7)

where i= l,...,4  refers to the nodes o f  each element, N=[Ni, fy, N3, N4] is a 5x32 shape

j T T T T r*
funcjtion matrix and w e = we2 W3 w 4 ] is the 32x1 element nodal unknowns 

vector. In Eq. 3.1.7 Hj (i= l,...,4 ) are bilinear interpolation functions while N,j ( i j= l,. . .4 )  

an’ Hermite cubic functions. The resulting finite element comprises 32 unknowns 

variables. The străin is related to the nodal displacements using Eqs. 3.1.1 and 3.1.5 as 

follows.

eb = B bw e (3.1.8)

where

Bb = L bEN = [B„, Bb2 BkJ Bb4j (3.1.9)

and
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In Eqs. 3.2.3 and 3.2.10, Ci is a constant defined in Eqs. 2.1.13 and a shorthand 

convention for derivatives is used: etc.

The element stiffness matrix due to inplane strains is computed next. From Eqs.

2.1.32, 2.1.34-38 and relations 3.1.7-10, the variation o f inplane străin energy can be 

expressed as

5 U b = J*! J ( S w e B b I q b B b w e abd^dr) = 5 w e k bw e (3.1.11)

where the stiffness matrix, keb, is obtained through the following numerical integration.

k'b = J ' j ' i B : i QbBhabd5<ir|S a b X Î ; w „ w „ B Î t t „ 1l , ) I 0 lBbf t „ ^ )  (3.1.12)
r= l  s= l

In the above equation iQb is expressed in relations 2.1.36-38, n is the number of Gauss 

points, Wtr and wts are weights (Reddy, 1993) and a and b are the dimensions o f the plate 

element.
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3.1.2 Stiffness Due to Transverse Effects

The variation o f străin energy due to shear deformation was derived in Eqs. 

2.1.47-53. Further, from Eqs. 2.1.12-13 the shear strains can be expressed in terms o f the 

unknown functions as follows.

= Ls u5 (3.1.13)

where is given by Eq. 3.1.4 and es and Lsc are defined by the following relations

- t e e4 es e5 (3.1.14)

and

0 0 0 1 0
o o o c 2 o
0 1 0  0 0
o c 2 o o o

(3.1.15)

In Eq. 3.1.15, C2 is a constant defined in Eqs. 2.1.13. Using the relation between the 

unknown functions and the nodal variables (Eq. 3.1.5) the transverse strains can be 

further related to the nodal unknowns as follows.

8s =BsWS (3.1.16)

where we is the 32x1 nodal unknowns vector and Bs is defined as

b , = l , n =[b „ b >: b ,j b J (3.1.17)

where
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O O O Hi 0 0 0 0
0 0 0 C2Hj 0 0 0 0

(3.1.18)
O H ;  0 0 0 0 0 0
O C2Ht O O 0 0 0 0

From Eqs. 2.1.47, 2.1.49-2.1.53 and 3.1.16 the variation o f potential energy due to shear 

effects can be written as

where the stiffness matrix kse is computed through numerical integration as follows.

The matrix Iqs is defined in Eqs. 2.1.51-53.

Finally the element stiffness matrix ( k e )is the summation o f the two matrices

The derivation o f the inerţia element matrix is presented, next.

3.2 Inerţia Properties

In section 2.1.3, the variation o f the kinetic energy was defined in Eqs. 2.1.21-26 

in terms seven intermediate unknowns (Eqs. 2.1.20). Now, it is necessary to reiate the 

intermediate unknowns in terms o f the nodal unknowns. From equations 2.1.20 and the 

derivatives transformation one obtains an operator equation as follows.

5US = 1 ^  §we Bj IQs Bsw e abd^dr) =5we k*w (3.1.19)

(3.1.21)

(3.2.1)
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where

L m: =

1 0 0 0 0 
1 d

0 1 0 0
~ a d ţ

0 C, 0 0 0

0 0 1 0 0 
1 d0 0 0 1
b 0T)

0 0 0 C, 0
0 0 0 0 1

(3.2.2)

is the inerţia differential operator which acts on the unknown functions vector (Eq. 3.1.4). 

From Eqs 3.2.1 and 3.1.5 the intermediate unknown vector is expressed in terms of 

element nodal variables as follows

Ut =Bmw' (3.2.3)

where

B«=[B«, Bm2 Bmî Bm4]

"Hi 0 0 0 0 0 0 0

0 H, 0 0 - - N 1U
a - n 2u - - n 3Ua

- b N 4,«
0 C,H, 0 0 0 0 0 0

Bm,= 0 0 H, 0 0 0 0 0

0 0 0 H. - > ■ - ^ N* , -  N3i,n — 3  N 4i,Tl

0 0 0 c , h 2 0 0 0 0
0 0 0 0 N„ a N 2, b N 3i abN 4l

(3.2.4)

(3.2.5)

The inerţia matrix is obtained from the variation o f kinetic energy for an element, 

as shown in Eqs. 2.1.21-26 and Eqs. 3.2.3-5 as follows

5Ke = - J  J  f 5 w 'TB^ J p B m w eabd^dr) = - 5 w eTm e w e (3.2.6)

where me is computed again using Gauss-Legendre quadrature.
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me = ab£ X  Bm Jp Bm d^drl = ab2 S W«rWtsBI^r>rls) Jp (3-2.7)
r=l s=l

3.3 Load Vectors

The loads on a smart structure comprise the forces due to piezoelectric actuation 

and externai forces. In the following sections the derivation o f the force vectors and their 

FEM implementation are discussed.;

3.3.1 Piezoelectric Force Vector

The force vector due to piezoelectric actuation can be computed from the 

variation o f  străin energy, more precisely the second term in Eq. 2.1.31. As shown in 

section 2.1.3, for a composite plate with surface bonded piezoelectric actuators, in 

bimorph confîguration the variation o f străin energy is given in Eqs. 2.1.39-45.  

Considering equations 2.1.39 and 2.1.41-42 in conjunction with Eq. 3.1.8 this can be 

written as follows

8 U b = £  j ' , 5w eB b E3(t)abdţdTi = 8Wef pe E3(t) (3.3.1)

where the piezoelectric force vector, f ',d u e  to unit electric field is obtained by a 

numerical quadrature

fp = J i J i Bb Idabd^ drl = abX S w 'rw .sBb(^r>^)Id (3.3.2)
T = 1 3=1
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where Bb is defined in Eqs. 3.2.4-5 and I<j is given by relations 2.1.43-45. It must be 

noted that in the presence o f delamination, in a zone covered by piezoelectric actuators, 

equations 2.1.44 must be modified to account for unimorph configuration in the damaged 

zone. The details are presented in section 3.5.

3.3.2 Externai Force Vector

Equation 2.1.58, in chapter 2, shows the work done by a distributed force in a 

virtual Uispîacement compaîiblc with systcm constraints. The intermediate unknowns 

vector IL is related with the nodal displacement vector through Eqs. 3.2.3 such that the

work done for an element can be written as follows

5W = { , Swe T Ltw p(^,ri,t)abd^dr| = 8w eTf e (3.3.3)

where 5weis the virtual displacement in terms o f  nodal variables and f e is the element 

force vector derived from externai loads. Using Gauss-Legendre numerical quadrature,

fC = l 1l 1BmLTw P (^ ^ t)  = a b ^ ^ w trw tsB i,(^r,ris,t)L Tw p(^r,ris) (3.3.4)
T=1 3=1

Care should be made in the assembling process to asses the appropriate load applied to 

various elements o f the smart composite plate.

30
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3.4 Implementation of Continuity Conditions

The presence o f delaminations alters both the static and dynamic behavior o f a 

smart composite plate reducing the stiffness and increasing the străin in the damaged 

zone. Because the laminate is divided into several domains, accounting for the presence 

o f delaminations, the continuity o f the displacement field at the delamination lateral 

boundary is enforced. It is important that the numerical (discrete) implementation of 

these boundary conditions is accurate.

3.4.1 Nodal Transformation

The continuity conditions of the displacement field at the delamination interface 

was discussed in section 2.2. These continuity conditions are consistent with the higher 

order theory and are based on the kinematic equations 2.2.1. They can be tailored for any 

specific FEM implementation. In Eqs. 2.2.3, a specific condition requiring continuity at 

the midplanes o f each sublaminate for different unknown functions was presented. In this 

section a new method o f imposing continuity conditions, numerically consistent with 

FEM implementation, is presented. The necessary continuity is assured at the nodes o f 

each element on delamination lateral boundary S, Fig. 3.1. As will be shown, this 

approach significantly reduces the size o f the stiffness and inerţia matrices compared to 

penalty approach (Seeley and Chattopadhyay, 1998) or Lagrange multipliers method.
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Figure 3.1. Smart composite plate geometry.

As expressed in Eqs. 2.2.3, C° continuity is necessary for the unknown functions 

uo, vo, a  and (3, C 1 continuity is necessary for wo and in addition the continuity o f the 

mixed derivative c^wo/dx dy is also required. These continuity conditions, imposed at the 

nodes on S o f elements in both top and bottom sublaminates (Fig. 3.1), can be expressed 

as

w n, = T , w nl (3.4.1)

where w ()| and w Hi(i=2,3), the nodal unknowns o f the undelaminated region and the 

delaminated region respectively, are as follows.
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W„ | = K  V0! P  Woi WOU W01,y W01,xvf (3-4 -2)

W„ , = K  <*! VOi P i  w 0, "V* ™Ol.y W O K x y f  (3-4 -3)

The transformation matrix, which relates the unknowns in the undelaminated 

region to those in the delaminated sublaminates is expressed as follows.

33

Ti =

4(cj — Cţ )3
1 c i “ c l ------- ~ 2 -----  0 0 0 - ( c j - c j )

3h[
2

0 1— ' 1 ' l) 0 0 0 0 0 0
h l2

4(c: - c , )3
0 0 1 C - - C , ---------- -— --------  0 0 - ( c -  - c , )  0

3hf

o o o  î - 4^ 1 . . Ĉ  0 0 0 0

t i
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 O O O 0 0 1 0
O O O O 0 0 0 1

(3.4.4)

Typically, the above transformation is applied to two or three nodes on the interface S of 

the elements on the top or bottom sublaminates. It eliminates the need for nodes o f type 

n2 or n3 s in Figure 3.1 modifying the element matrices.
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Top sublaminate element

n3

Undelaminated zone element

3
n3

Bottom sublaminate element

Figure 3.2. Transformation o f nodes on S.

3.4.2 Element Transformation

For elements on the two sublaminates, with nodes on the delamination lateral 

interface S as shown in Fig. 3.2, the transformation in Eqs. 3.4.1-4 is applied for each 

node belonging to S. This transformation is then used to express the kinetic and potential 

energies o f those elements with respect to the nodes in the undelaminated zone. The 

invariance o f the energy leads to modifications o f the corresponding element matrices,
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thereby eliminating unnecessary nodes. Thus, the size o f the assembled inerţia and 

stiffness matrices is drastically reduced.

For the case shown in Fig. 3.2 the nodal unknowns of the delaminated zone 

elements (top and bottom sublaminates, denoted by D2 and D3 in Fig. 3.1), are expressed 

in terms o f nodal unknowns o f undelaminated zone (denoted by Di in Fig. 3.1) as 

follows.

w -. = T, w , , w 1 = T, w ,iii Ii II'. - îl;

In a matrix-vector form, the above relations can be written as

(3.4.5)

’ old

fw ,] w ,"1 n:
w , W ,n,< ► = Y,- n‘" >w , W ,"3 n3
w , w !, n3 .

= Yli Wne* (3.4.6)

where i=2,3 corresponds to elements in zones D 2  and D 3 ,  respectively. The element 

transformation matrix Yi; is given by a 32x32 matrix in the following blockwise form

Y„ =

T, O O O
O I O O  
O O I O  
O O O T,

(3.4.7)

where I is the 8x8 unity matrix and O is the 8x8 nuli matrix.

The kinetic and potential energies can be written in two forms, first using the 

element node unknowns vector (denoted by ‘old’) and second the transformed vectors 

(denoted by ‘new’). From this equivalence, results the element matrices with respect to 

the new system o f coordinates.
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1 e T e e 1 e T
= 2 W o.d,i m old, W old, = - W „ ewj

1 c T l  e e 1 e T

=  2 W ° ld 'i k oldi W oldi = 2W new,

me wenew i newj

wcnewj ** newj

(3.4.8)

From Eqs 3.4.8 and 3.4.6, the modified element matrices are computed as follows.

■«Ui =VlTm^diVu 

•C»,=v,Ik;ld,Y„
(3.4.9)

In the reverse case when going from the damaged zone to the healthy zone, Eqs. 

3.4.9 are acţordingly changed resulting into the following form

m nev. i _  ^ i i m oldi ^ i l

n̂eŵ  = Zjf k 0,dj Zj,
(3.4.10)

where the new transformation matrices, Zn, affect different nodes o f elements in the zone 

o f delamination.

Z,  =

I o o o
O T, o o
o O T, o
o O O I

(3.4.11)

f e = V Tf enew i 1  li *o ld i

Finally, the element force vectors are transformed as follows

(3.4.12)

when going from the healthy to the damaged zones. When going from the damaged to the 

healthy zone, these take the following form.

= Z , ' f „ i d ,  ( 3 .4 . 1 3 )
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3.4.3 Element Properties in Delamination Zone

The inerţia and stiffness matrices and the externai load vector for the sublaminates 

in the delaminated zone are computed using the procedure described in sections 3.1-3. It 

considers the appropriate stacking sequence o f layers in the sublaminates. It must be 

noted, that the integrals in z direction are performed only over the layers belonging to 

each sublaminate. The total thickness is appropriately used. Then, using the procedure 

presented in sections 3.4.1-3 the continuity conditions are imposed to change the element 

piuporlics for lîic global Huile element mesh on!)’ for elements with nodes on S.

One important difference occurs in computing the force vector due to 

piezoelectric actuation. If the elements in the delaminated zone have piezoelectric active 

layers separated by a delamination, the assumption o f bimorph configuration is violated. 

In this case, each element in both top and bottom sublaminates must be modeled using 

unimorph behavior. The piezoelectric force vector still can be computed using Eqs. 

2.1.39-45 with the difference that either I‘nl for the top sublaminate elements or Ifup for 

the bottom sublaminate elements must be set to zero in Eqs. 2.1.44. The remaining 

computations remain unchanged as expressed in Eq. 3.3.2. In the calculation o f the inerţia 

and stiffness matrices and the externai load vector, the total thickness of the sublaminates 

in the damaged zone is used. For elements with nodes on the delamination lateral 

boundary S, the piezoelectric force vector is modified using equations 3.4.12 or 3.4.13.

In the case o f elements with three nodes on S, the transformation matrices Yn and 

Zii must be modified by replacing submatrices I on the main block-diagonal for each

37
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node on S, with either T 2 or T 3 .  The element nodes not belonging to S are not affected. 

This means that a 8x8 identity matrix I appears in those positions.

3.5 Assembly Procedure

An assembly procedure is developed to appropriately designate the inerţia,

stiffness and load properties to each node o f the global mesh while accounting for thei
contributions from adjacent elements sharing that node. Various types o f elements can 

have contribution to a single node. These include contribution from healthy laminate 

elements, healthy elements with piezoelectric actuators in bimorph configuration, 

elements in the top and bottom sublaminates and delaminated elements with piezoelectric 

actuators in unimorph configuration.

The corresponding nodal unknowns o f elements in the delaminated zone which 

belong to the delamination lateral boundary are transformed, as shown in section 3.4, to 

the nodal unknowns o f the healthy structure in the global mesh. The transformation is 

applied to the smaller element matrices or vectors and the resulting matrix or vector is 

added in the assembly process. Thus, the size o f the global inerţia and stiffens matrices is 

significantly reduced. For multiple delaminations, as much as 70-80% saving in both 

storage requirements and CPU time is obtained.

The assembled system o f ordinary differential equations, describing the dynamics 

o f a smart composite plate with actuators and possible delaminations is written in the 

following form.
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M q + K q = F + Fp (3.5.1)

where M is the global inerţia matrix, K is the global stiffness matrix, F is the externai 

load vector and Fp is the piezoelectric force vector.
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4. Damage Detection Techniques

4.1 Introduction

A delamination technique based on mode shapes was introduced by Pandey et al. 

in 1991. They proposed the use o f curvature mode shapes in detecting damage in a beam. 

The curvature is obtained from mode shapes using Laplace’s finite difference equation

VV , — 2 W  ■ +  W , !
Cj = W: =  —------  ^  : (4.1.1)

h2

where w is the modal displacement, li is the stepsize o f the finite differcnce mesh and 

index i denotes the location where curvature is computed. The authors reported that the 

absolute difference in the curvature mode shapes, between the healthy and the damaged 

beam, is a better indicator o f damage location compared to the absolute difference in the 

displacement mode shapes.

Ratcliffe and Bagaria (1998) modified the above procedure using a gapped 

technique and proposed that the curvature should be locally smoothed. In their approach, 

for a composite beam with a through the width delamination a third order polynomial was 

used to describe the curvature. The gapped cubic calculated for the /th element of the 

curvature C„ at position x, along the beam, was defined as

P(x,) = a0 + a ,x ; + a 2x 2 + a 3xf (4.1.2)

The coefficients ao, ai, a2 and a3 are determined using curvature elements Q-2, Cj-i, Q+i 

and Ci+2. The curvature Cj o f the /th element is not included (gapped) in the calculation of
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the third order polynomial. A damage index Sj is calculated for the /th position on the 

beam as follows:

In Eq. 4.1.3, the right-hand side is squared to reduce the effect o f numerical errors 

or measurement noise. Separate gapped cubic polynomials and damage index values are 

determined for each grid point in turn. The above procedures uses the assumption that the 

damage is strictly Iocated in a very small zone, considering the damage to be discrete 

rather than continuous. However, results are not presented for cases where the defect îs 

spread over a larger zone such as is the case with delaminations. Even the meshsize used 

in this work is not refined enough in the delamination zone.

Other methods have also been proposed to characterize defects in structures. The 

modal vector consistency method uses a set o f measures based on mode shapes (Harris, 

1996). In this procedure a modal assurance criterion (MAC), is defined as a scalar 

constant which is a measure o f consistency between a given modal vector and a reference 

modal vector, is defined as follows.

The comparison is made between reference modal vector r and the compared modal 

vector c for the £th eigenvector. Superscript H stands for the hermitian conjugate o f  a 

vector. The modal assurance criterion takes on values from 0, representing no consistent 

correspondence, to 1 representing a consistent correspondence. Based on this approach,

5, = fp (x ,) -C ,]2 (4.1.3)

2

MAC (4.1.4)
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if  the modal vectors truly exhibit a consistent relationship, the modal assurance criterion 

should approach unity.

Another modal assurance criterion is the coordinate modal assurance criterion 

(COMAC) (Harris, 1996). This measure is used to identify the degrees o f freedom with 

the largest influence in a low value o f  MAC. A set o f pairs o f corresponding modal 

vectors is used to defîne COMAC as follows

42

COMAC: =■
: —k Vi '

r=I r=I

where vj/f is the modal coefficient associated with the /th degree of freedom and kth 

modal vector from one set o f modal vectors and (p,k is the modal coefficient associated 

with the /th degree o f freedom and £th modal vector from the second set o f modal 

vectors. The summation is extended over N modes o f interest. Only those modes that 

match between the two sets are included in the computation.

4.2 Străin Based Delamination Detection Techniques

Delamination detection in a smart composite structure is in some respects 

different from any other damage detection technique. First of all, the delamination cannot 

be treated as a punctual or discrete damage. A refined modeling procedure must be 

employed to account for the presence o f delamination as a continuous defect, even in the 

case when the delaminated zone is small. Also, from an experimental point o f view a
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comprehensive set o f  measurements must be performed to better characterize the changes 

in both static and dynamic parameters with and without delaminations. This should be 

followed by an accurate mathematical treatment o f the experimental data.

Second, the presence o f actuators induces discontinuities in both geometry and 

material properties o f  the structure. Large jumps in mechanical parameters such as străin, 

appear in the actuator zones. These jumps are misleading, especially in the case when a 

delamination is present and contribute to extra jumps.

Third,  a compositc structure is highly anisotropic. Thcreforc, minor changes 

appear in the natural frequencies and displacement mode shapes for reiaţively large 

delaminations. Researchers have observed less than 2-3% changes in the fundamental 

frequency with delamination area up to 20% of the composite structure (Shen and 

Graddy, 1991). This is a result o f the strong coupling between different types of 

displacements and forces in the composite structure when the delamination breaks the 

continuity and the possible symmetry in the thickness direction.

Fourth, the previous research in delamination modeling and detection techniques 

for composites or smart composite structures used classical laminate theory or first order 

laminate theory. As shown by Chattopadhyay et al. (1998) and Dragomir-Daescu et al. 

(1998) the higher order theory is able to accurately model even thick composite 

structures. The contribution o f the transverse effects is very important in the computation 

o f natural frequencies for thick composites. Both the classical theory and first order 

theory largely overpredict the natural frequencies especially for higher natural 

frequencies. They also overestimate the higher eigenfrequencies when delaminations are 

present in the composite.
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Finally, the presence o f multiple delaminations was never accurately described. It 

is known that multiple small delaminations could produce similar changes in modes and 

natural frequencies as a single larger delamination.

In order to have multiple characterization o f delamination, the previous criteria 

(MAC and COMAC) are modified to account for modal strains instead o f modal 

displacements. It was observed by Chattopadhyay et al. (1998) that the străin is a more 

appropriate measure o f delamination than classical mode shapes. Also, the gapped 

oiiîoothing technique o f  Ratcliffc and Bagaria (1998) is cxtcnded to a two dimensiona! 

method suited for smart composite plates. The method is also modified to account for 

strains instead o f curvatures. This is due to the following reasons. First, it is difficult to 

measure the curvature mode shapes for plates and second the Laplace's equation used to 

find the curvature from the mode shape amplifies both small numerical errors and 

experimental noise. The străin is also easily measured in experimental work using a 

variety o f methods starting from străin gauge techniques, piezoelectric sensor 

measurements and more sophisticated M oire’s techniques and laser scanning.

The new modal străin assurance criterion (MSAC) is defined as a scalar measure 

of consistency between the modal străin o f the healthy structure and the modal străin o f 

the damaged structure. It also takes on values between 0-1. A good correlation o f modal 

strains representing consistency is suggested by a value approaching unity.
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m max ^max / \  /  \

m=l 1=1 
m I m l‘“ max max / \  ~ 111 max *max /  \ ~

zsfesî.
MSAC,t = ■ ,------ —  (4.2.1)

i=l 1=1 m = l 1=1
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The summation in Eq. 4 .2 .1 is extended over the (nimax x ImaX) elements in the plate for 

both the healthy and the damaged structures (denoted by subscript ‘del’). In Eq. 4.2.1, k 

is the mode o f interest and index r= l,2,6 accounts for the appropriate inplane străin. 

Subscript indices m and 1 denote the element position in the plate (Fig. 4 .1). This index is 

expected to give better indication o f mode consistency because the absolute differences 

between modal strains o f the healthy structure and the damaged structure are larger than 

the corresponding differences between modal displacements.
i

An cxtcnsicn o f  the moda! străin assurancc criîcrion is the caonîinatc moda! străin  

assurance criterion (COMSAC). The COMSAC attempts to identify the element, if any, 

that contributes to a low value of MSAC. The COMSAC is calculated over a set of modal 

străin pairs, undelaminated versus delaminated. The two modal strains correspond to the 

same modal vector, but the set o f modal străin pairs represents all modes of interest in a 

given frequency range (number o f modes, N). For the sets o f modal strains that are 

compared, there is a value o f COMSAC computed for each element modal străin. 

COMSAC is defined as follows
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COMSAC ml = k=l (4.2.2)

k=l k=l

where, e*, is the străin corresponding to the £th mode o f vibration in the mlth element o f 

the undelaminated structure while (e*,)del is the similar străin in the delaminated 

structure. In the above equation is assumed that there is a match for every modal străin in
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the two sets. Only those strains that match between the two sets are included in the 

computation.

A third damage index is developed by modifying the existing gapped smoothing 

technique (Ratcliffe and Bagaria, 1998) shown in Eqs. 4.1.2-3. First, extension is made to 

a two dimensional search procedure over the area o f a plate and second, the polynomial 

coefficients are determined using the inplane strains rather than curvature. As shown

before when using strains, the Laplace’s difference equation is bypassed thereby
i

J im ina t ing  an important sourcc o f  crrors. Also, the strains contain by far much more 

information than classical curvature because they are computed using the entire 

displacement field functions. By contrast, the curvature computation is based only on the 

out o f plane displacements.

Strains are also a more accurate measure from an experimental point o f view. It is 

easier to measure inplane strains from the free response or the forced response o f a 

structure than to measure curvature from the frequency response functions. As shown in 

the work by Ratcliffe and Bagaria (1998), the experimental modal curvature is so noisy 

that even the curvature o f the first mode is difficult to identify. In their work, the relative 

error in experimental curvature is reported to be on the order o f 50-70% which can 

definitely obscure the effect o f delamination. By comparison, the modal strains can be 

easily measured within an accuracy o f 5-10%.

The procedure developed here locally fits a bicubic polynomial to one o f the 

inplane strains. As shown in Fig. 4.1, the index m in x direction and / in the y direction 

are not included in the computation o f the bicubic.
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Figure 4.1. Mesh for bidimensional gapped smoothing procedure

The gapped polynomial, calculated for the (m,l) component o f the inplane străin is 

the product o f two cubics, one for direction x and the other for y direction. This is defined 

as follows.

p ( x , y )  = c0 + c , x  + c 2 y  +  c , x 2 + c 4 x y  +  c 3 y 2 +  c 6 x 3 + c 7 x 2 y + c 8 x y 2

3 3 2 2  1 3 2  2 1  * * ' ’ ‘+  c 9 y  + c 10x  y  +  c , , x  y  + c l2x y  + c 13x y  + c u x  y  + c 15x  y-

The coefficients co, c i,...,c i5 are calculated using the strains £„ .2.1-2» em+2.i+2

of the 16 neighbors o f mhh element (Fig. (4.1)). It must be noted that fîve elements with 

either a subscript m or / are not included in the calculation o f the polynomial coefficients. 

This results in a system of 16 equations with 16 unknowns.
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p ( x , , y J) = s'jk, i = m -  2, m -1,  m +1, m + 2, j = l - 2 , l - l , l  + l,l + 2 (4.2.4)

The damage index dmi for the mhh element is calculated from the polynomial and 

the corresponding străin, as follows.

dm.i=|p(x m > y i ) - e î i f  (4.2.5)

This is computed for each element, except the elements on two outermost rows on each 

side o f the plate that do not have a complete set o f neighbors. Note that the procedure

described above do not require un undamaged reference. The method operates solely on
i

the computed or measured strains o f the damaged structure. Eliminating the need for an 

undamaged reference implies that the străin distribution for the undamaged structure is 

smooth and continuous. This also implies that the structure has no stiffness 

discontinuities. For structures with discontinuities for example, smart composite plates 

with surface bonded or embedded actuators and sensors, the method can be improved by 

comparing the damage index determined for the delaminated structure with that obtained 

from an undelaminated one.

A fourth measure o f delamination is also proposed. This procedure eliminates the 

need for smooth and continuous străin distribution and is therefore applicable to the 

detection o f delaminations in a smart composite plate. However, an undamaged reference 

is necessary. The inplane modal strains o f the delaminated structure are compared with 

those o f a similar healthy structure. The difference in modal strains is squared to diminish 

the small numerical errors or experimental noise. The new damage index is defines as 

follows
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5 * ,= k l, - k k, L f  (4.2.6)

where subscript ml refers to the element under investigation, subscript r is the number o f 

vibration mode for which the modal străin is computed and k=l,2,6 refers to the 

appropriate strains. The damage index uses strains ei and 8: for bending mode shapes and 

86 for torsionai mode shapes. Usually the modal străin corresponding to the first mode of 

vibration or a few lower modes is sufficient to properly identify the damaged zone.

As shown by Chattopadhyay et al. (1998) the delamination detection methods 

based on modal străin are more reliable than those based on classical mode shapes. A 

comparison o f all o f the methods described, for practicai cases o f composite and smart 

composite plates with delaminations is presented in the next chapter. The higher order 

theory and the continuity conditions presented in chapters 2 and 3 are used in the 

modeling o f delamination. The finite element procedure discussed in chapter 3 is used to 

discretize composite plates with actuators and delaminations.
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5. Numerical Results

The finite element implementation o f the developed theoiy must be correlated 

with other approaches to ensure its validity and accuracy. In this chapter, validations of 

the higher order theory applied to composite and adaptive structures in the presence of 

delaminations are presented. Comparisons are made with published experimental data 

and results Obtained using the commercial finite element code NASTRAN. Next, results 

obtained using the present theory are presented to study the influence of delaminations 

and piezoelectric actuation on composite. The results from the higher order theory are 

also compared with those obtained using the classical laminate theory and the first order 

shear deformation theory for a wide range o f plate thickness. Finally, the damage in the 

structure is characterized using the damage indices discussed in chapter 4.

5.1 Validation

5.1.1 Undelaminated Cantilever Composite Plate

In this section the results obtained using the developed higher order based 

technique, implemented using the finite element method, is compared with those obtained 

using NASTRAN (Chattopadhyay et al, 1998-1999). Numerical results are presented for 

a Graphite/Epoxy [0790°]:s composite strip plate with material properties Ei=134.4 GPa, 

E2=10.3 GPa, Gi2=Gi3=5GPa and vi2=vi2=r0.33. The plate dimensions are such that 

length a=0.127 m, width b=0.0127 m and total thickness h=0.001016 m (Fig. 5.1). A
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15x4 finite element mesh is used to generate the inerţia and stiffness matrices with the 

degree o f accuracy required for the modes considered.
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Figure. 5.1. Composite plate geometry

The results are presented in Table 5.1 where the flrst 10 natural frequencies 

obtained using the current approach are compared with NASTRAN results. Both CHEXA 

3D elements and CQUAD 2D elements are used in NASTRAN modeling. The results 

from the current approach are very close to NASTRAN 3D results, the largest difference 

in natural frequencies being less than 3%. As expected all the natural frequencies 

obtained from the current approach are slightly greater than NASTRAN 3D results. This 

is due to the fact that the present theory is still a 2D plate theory leading to slightly stiffer 

numerical model compared to NASTRAN 3D model which uses a full three dimensional 

elasticity approach. The results based CQUAD elements, however are based on a fîrst 

order theory and produces worse results than the proposed higher order theory. For 

example, the third and eighth natural frequencies are 5% and 6% smaller than the 

corresponding 3D solutions. However, the trend is not consistent and some natural

* y
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frequencies are greater than NASTRAN 3D solutions (the first and fourth) while other 

frequencies are smaller. For example, overall, the total error between the NASTRAN 3D 

and 2D approaches is two times larger than the total error between NASTRAN 3D and 

the present model. This proves the accuracy o f the higher order theoiy over a large 

frequency domain, 0-4600Hz.

It is important to note that the computaţional effort associated with NASTRAN 

3D modeling is much larger compared to the higher order theory. This is because a 3D 

mesh is necessarv to model elements in each laver o f the composite. The complexitV 

increases with increase the number o f plies since larger global matrices are obtained 

when the number o f plies is large. By contrast, using the present theoiy, the calculation of 

the plate element properties is independent o f the number o f plies. The associated 

modeling time and CPU time for generating element matrices for a larger number of 

plies, using the present approach, is a small fraction of the total CPU time required in the 

calculations o f the dynamic properties o f the plate such as natural frequencies and mode 

shapes.
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Table 5.1 Natural frequencies for a cantilever plate (Hz)

Mode no. Present theory NASTRAN 3D NASTRAN 2D

1 82.116 81.878 81.94

2 513.34 511.45 509.38

'S 610.33 597.31 567.33

4 877.54 860.85 863.47

5 1431.8 1428.1 1412.9

6 1888.8 1839.1 1746.64

7 2790.9 2790.8 2735.71

8 3329.4 3234.1 3050.1

9 4581.1 4580.1 4457.3

10 4717.3 4600.0 4535.1

5.1.2 Cantilever Composite Plates with Delaminations

In this section the influence o f delaminations on first natural frequency o f 

composite delaminated plates is studied. The results from the current theory are 

compared with published experimental results and NASTRAN 3D approach. The test 

articles are cantilever plates with geometry and material properties similar to one used in 

the previous section. Each plate has a through-the-width delamination o f varying length 

(P). The delamination is placed at different laminae interfaces, at a distance zj measured
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from the laminate midplane as shown in Fig. 5.2. The center o f delamination coincides, in 

all cases, with the center o f the plate.

The finite element implementation accounts for different thicknesses and stacking 

sequences o f regions with and without delamination. A 5x4 mesh is used to model each 

zone o f the plate, both undelaminated ends and the two top and bottom sublaminates. The 

mesh density used can accuratelv model the important modes o f vibration including a few 

bending modes, torsion modes and lateral bending modes. Also, some local sublaminates 

modes, appearing in cascs with larger delamination are modeled appropriately. i
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Figure. 5.2. Composite plate with delamination
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Figure 5.3. Comparison o f  first natural frequency variation with delamination length.

The results from both the current higher order theory and NASTRAN 3D are 

compared with experimental results obtained by Shen and Grady (1991). As seen in Fig.

5.3 there is a very good agreement between the current approach and NASTRAN model 

over the entire range o f delamination length, (P=0-100 mm). This proves that the higher 

order theory and the continuity conditions at the delamination lateral boundary as 

implemented in chapter 3 are very effective in modeling composites with delaminations. 

Both NASTRAN and higher order theory results slightly deviate from the experimental 

results, particularly in the case without delamination (P=0) or for small delamination 

lengths. The largest deviation is smaller than 3% which can be attribute to both 

experimental errors on one hand and modeling and numerical errors on the other hand.
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Overall, the accuracy obtained using the higher order theory, with and without 

delaminations, allovvs the introduction o f further complexity such as actuation. In section

5.3 smart composite plates with and without delaminations will be investigated. It must 

be noted the NASTRAN 3D computation expenses with modeling in the presence of 

delamination, is quite large compared to the higher order theory.

5.2 Thick Composite Plates
i

In this section the current implementation o f the higher order theory is compared 

with results using other existing approaches. Numerical results from the present theory 

are presented along with results from the classical laminate theory and the first order 

theory to asses the importance o f accurately modeling the transverse shear effects. Two 

parametric studies are presented. In the first study, the variation of natural frequencies 

with plate thickness is studied using aii the three theories. The ratio a h  is varied between 

125 representing a very thin laminate to 10 representing a very thick laminate. In the 

second study, for a thick composite plate, a midplane delamination of variable length p is 

introduced. The variation o f natural frequencies with p is presented using all three 

theories.

5.2.1 Variation of Natural Frequencies with a/h

Plates as shown in Fig. 5.1 are considered as test articles. The inplane dimensions 

and material properties are the same as in section 5.1.1, while the thickness h is a variable
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parameter. A 15x4 mesh is used to generate the natural frequencies in all three theories. 

The variation o f  the first two natural frequencies, corresponding to the first two bending 

modes, are shown in Fig. 5.4 a and b. The third natural frequency, corresponding to the 

first twisting mode, is presented in Fig. 5.4 c.

As expected, the agreement between all theories is good for thin plates. However, 

significant differences between the classical theory and the other theories occur for 

thicker plates with smaller a/h ratio. This is due to the fact that classical theory does not 

consiuci utinsvcibc siicui ciicCo cuiniGi. uccuitiîc!^ cîosciîbc* the ehîir.micr

o f thicker composites. The first order theory, introduces transverse shear deformation 

through a constant distribution o f the străin through the thickness. Therefore, the 

transverse shear effects are not modeled accurately. The higher order theoiy, which uses 

the same number unknowns as the first order theory, allows for a quadratic variation in 

transverse shear deformation and consequently produces a more realistic lower stiffness 

model.

As seen in Figure 5.4 a, the first natural frequency is highly overestimated by the 

classical theory, especially for thick plates while the first order and the higher order 

theories are in good agreement. Larger differences between the theories are observed in 

Figs 5.4 b and c, for the second bending natural frequency and the first torsionai natural 

frequency, respectively. Even the first order theory overpredicts these frequencies. The 

natural frequencies from the higher order theory are smaller, as expected, because the 

transverse shear deformation is better approximated in this theory.
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The results obtained indicate that it is necessary to include an accurate description 

o f the transverse shear stresses which is important in composites due to the large ratio 

between the direcţional material properties, Young’s moduli and shear moduli. The 

transverse shear effects increase with plate thickness, resulting in larger deviations 

between theories as a/h reduces. Therefore, the present theory is applicable to plate of 

moderately large thickness.
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a. First bending natural frequency. b. Second bending natural frequency.

Figure 5.4. Variation o f first three natural frequencies with a/h.
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Figure 5.4. cont.

5.2.2 Delaminated Thick Composite Plates

In this section the effect o f midplane through-the-width delaminations on thick 

composite plates is investigated. It is assumed that a single delamination o f variable 

length P is located symmetrically with respect to plate length. The normalized 

delamination length varies between 0%, (undelaminated plates), and 90% of the total 

length o f the plate (Figure 5.2). The inplane dimensions and material properties are the 

same as in section 5.1.1.

A 5x4 mesh is used to model the undelaminated zones and the two sublaminates, 

above and below the delamination interface. The continuity conditions, introduced 

chapter 3 are employed at the delamination lateral boundary. The same three theories are 

employed in the evaluation of the first two natural bending frequencies and the first 

torsion frequency for laminates with various delamination lengths. It must be noted that
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for these thick plates, the importance o f shear deformation is particularly important in the 

thicker undelaminated zones.

Figures 5.5 a-c present the variations o f plate natural frequencies with changes in 

the delamination length (3. The first order theory slightly overestimates the values o f the 

first natural frequency, while the classical theory shows significant deviation (Fig. 5.5 a). 

The differences are more evident in higher natural frequencies (Figs 5.5 b-c). The higher 

order theory once again yields the smallest value because o f a more accurate
i

I C p i C S C i i i t U i O i l  U i i l i C  l i a i l b V i / i ' b v '  b l i d u l  u c f o i  i n a u C n .  Ii IS t l l Q l  t l i C

effect becomes larger as the delamination length reduces. This can be explained as 

follows. For short delamination length, the global dynamics o f the plate is determined 

mainly by the total laminate thickness. Therefore, transverse shear effects are dominant in 

these cases. For relatively longer lengths, the dynamics o f each thinner sublaminate 

become prevalent thereby reducing the transverse effect.
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Figure 5.5. Variation o f natural frequencies with delamination length.
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5.3 Străin Characterization of Delaminated Smart Composites

The modeling technique developed in chapters 2 and 3 is employed to analyze the 

effect o f delaminations on a composite plate with piezoelectric actuators. The analysis 

uses the refined displacement field which carefully accounts for both the presence of 

distributed actuators and delaminations. Independent displacement fields are used in each

zone where a change in thickness due to delamination or surfaces bonded actuators
i

modilies the geometry anu/or ine materiai pioperiies. ih e  eii'ea oi dcianiinuiion is 

investigated under both static and dynamic conditions. Piezoelectric forces computed in 

chapters 2-3 are used to produce static deflection of smart composite plates. The analysis 

is implemented using the finite element method. Numerical results presented indicate 

significant changes in mechanical parameters due to a small delamination.

5.3.1 Static Results

The test article is a graphite/epoxy cantilever smart composite plate with three 

pairs o f surface bonded actuators. The composite substrate has eight plies with stacking 

sequence [0790o/457-45o].s and material properties , Ei=134.4 GPa, E2=10.3 GPa, 

V i 2 = 0 . 3 3 ,  G i2= Gi3=5 GPa, G23=2 GPa, p=1477 Kg/m3. Delaminations are introduced 

between the fourth and the fifth plate layers (Figs. 5.6 and 5.7). The length of the plate is 

a=0.127 m, the width is b=0.0508 m and the total thickness h=0.001016 m. Two 

additional PZT layers accounts for actuators in bimorph confîguration. The material 

properties o f piezoelectric material are E=63 GPa, v=0.33, G=24.2 GPa, p=7600 K g/m \
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di2=254xl0'12 m/V. The piezoelectric actuator pairs have dimensions o f Lp=0.0254 m, 

hp^O.000254 m and bp=0.0127 m, located as shown in Fig.5.7.

Numerical results are presented for a smart composite plate with one end clamped 

and others free. The delamination is located at a distance o f 0.0381 m from the clamped 

end and has a length (3=0.00127 m. It must be noted that in this example the delamination 

lies in a region which is not covered with PZT actuators. A global 25x4 mesh is used to 

model the smart composite plate while local 5x4 meshes are used for the two top and 

bottom sublaminates.

The effect o f static actuation on normal străin distributions for plates without and 

with delamination is presented next. The normal strains are influenced by the presence of 

delamination only in the delamination region (Figures. 5.8 a and b). The presence o f the 

normal străin 82 (in the width direction) in this zone is due to the camber o f the plate 

under static actuation while the longitudinal străin 81 is due to Poisson’s effect. As seen

piezo actuator h2 delamination

Figure 5.6. Laminate cross section and stresses on S.
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from these figures, there is a large jum p in the strains between the regions with and 

without actuators. This is due to the concentrated nature of the induced străin and the 

change in thickness between the plate regions with and without surface bonded actuators.

composite plate delamination piezoelectric actuator

................... ...... i i i i i i i i m r

Figure 5.7. Delaminated plate with piezoelectric actuators

Because the delamination lies outside the region covered by the actuators the 

actuation generalized forces are not affected by the presence of delamination. Also, the 

delamination region is free of any externai force.
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Figure 5.8. Străin distribution (without and with delamination).

5.3.2 Dynamic Results

The same delaminated smart composite plate model, as in previous section, is 

used to determine the influence o f delaminations in dynamic properties. The changes in 

mode shapes and dynamic modal străin are computed in an attempt to identify the 

important differences between healthy and damaged structures. Therefore, a 50x4 mesh is 

used in the finite element implementation. This mesh density allows for a very good 

characterization o f bending and torsion mode shapes and the associated derived variables 

such as strains and stresses. The străin results are presented for points belonging to the 

plate longitudinal axis o f symmetry.

Fi gureş 5.9 a and b present compari sons between the first two mode shapes for 

the undelaminated and the delaminated plate, respecţively. For a small delamination, as 

in Fig. 5.7, the difference between the mode shapes is insignificant. In addition, this
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difference extends over a very large zone. Also, the maximum difference does not occur 

at the middle o f the delamination region. This makes it difficult to use the mode shapes 

for locating delaminations.

6 6

Undelaminated Delaminated
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a. Out o f plane displacement-first mode b. Out o f plane displacement-second mode 

Figure 5.9. First two bending mode shapes (without and with delamination).

Figures 5.10 and 5.11 present the normal strains 8i and 82 corresponding to the 

first two bending modes for the undelaminated and the delaminated plate, respectively. 

As seen from these figures very significant changes are observed in strains for cases 

without delamination and with delamination. The changes are concentrated in the region 

o f delamination. Therefore, if  a sensor is placed on the top o f this region, the measured 

străin from this sensor will provide a strong indication o f the presence o f delamination. 

However if  in the absence o f a sensor in that particular location, the influence of 

delamination on strains will be very hard to detect.
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Figure 5.10. Modal străin distribution, first mode o f vibration.
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Figure 5.11. Modal străin distribution, second mode o f vibration.
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5.4 Damage Detection Results

Composite and smart composite plates with single or multiple delaminations are 

analyzed in this section. Various sizes and locations o f delaminations are considered. 

Numerical investigation is conducted to search for significant differences in modal strains

corresponding to various mode shapes of composite structures. Therefore, a
i

postprocessing o f data, resulting from the finite elemenî anaiysis, is required. The 

postprocessor was written and designed to compute the derived variables such as strains 

from the primary variables obtained from the finite element processor. It is also able to 

extract and plot the out o f plane displacement mode shapes and all the associated inplane 

strains.

Both composite and smart composite plates are analyzed. The smart composite 

plates, even in the absence o f delamination, behave differently from their composite 

counterparts. The influence o f thickness and material property changes, on active 

actuated zones, complicates the anaiysis particularly if delaminations and actuators are 

present in the same zone o f the plate. Care must be taken to differentiate between the 

străin variation due to piezo actuators and delamination influence.

Finally, for each case presented in this section, multiple characterizations of 

damage are used in an attempt to identify the position and extension of delaminated zone. 

For this purpose the damage indices introduced in the previous chapter are employed. A 

processor for damage indices was implemented. Since in experiments, data are 

contaminated with noise, the results from the finite element postprocessor are perturbed
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with random noise. The damage indices are recomputed for data with noise and their 

robustness is measured with respect to noise ratio.

5.4.1 Composite Plates

In this section the higher order theory is used to compute mode shapes, modal 

strains and damage indices of delaminated composite laminate. The geometry o f the test 

structure is shown in Fig. 5.12. This laminate consists o f eight plies, each with thickness 

1.27 mm and stacking şequencc [079070790°]s. First, a single delamination is introduced 

between the fourth and the fifîth plies. The length o f delamination is one third of the 

length o f the plate as shown in Fig. 5.13 a. Then, two delaminations, assumed to be 

symmetrically placed with respect to the ends o f the plate, are considered (Fig. 5.13 b). 

The material properties o f the laminate are as follows: Ei=60 GPa, E2=25 GPa, Gi2= 

G i3= 12 GPa, G23=4.8 GPa, p=1500 Kg/m3. The inplane dimensions are a=0.2 m and 

b=0.053 m corresponding to a length to thickness ratio o f 20.

Single Delamination: For this case (Fig. 5.13 a), the mode shapes and modal 

strains are obtained using a 15x4 global mesh while each sublaminate is modeled using a 

5x4 mesh. This meshsize was determined from a trade-off study conducted between 

accuracy and CPU time requirements. Also for the gapped smoothing technique index, 

this mesh is at the lower limit in the y direction. With four elements per width the above 

index is computed using gapping in x direction only and smoothing in both x and y 

directions. The other indices are computed as discussed in chapter 4.
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The sequence o f computations is as follows. First, the healthy structure is 

discretized using the global mesh. A finite element processing is performed and the nodal 

variables, Uo, a , v0, (3, w0, woA, w0,y, w0 x> are calculated at each o f the 550 nodes o f the 

global mesh. At this stage, the postprocessor extracts the out of plane displacement mode 

shapes. Then the postprocessor converts the displacement variables into strains and plots 

the modal strains associated with the various mode o f vibrations.
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Figure 5.12. Healthy composite plate.

When delamination is analyzed, the process is somewhat different. First, two sets of 

elements and nodes are assigned to the top and bottom delaminated sublaminates. A 

connectivity table takes care o f the position o f each element, node and material properties
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in the mesh. Even the finite element processor is different. The elements with nodes on 

delamination lateral boundary, S (Fig. 5.13 a) are transformed and those node variables 

are related to the nodes in the healthy laminate zone as shown in chapters 2 and 3. This 

process occurs during the finite element assembly stage. It was pointed out in chapter 3 

that this approach allows for significant savings in both memory requirements and CPU 

Processing time. The obtained time saving is on the order 40-80% depending on 

delamination geometry. In Fig. 5.13, indices 1 and m corresponds to the global mesh and 

are used to generate the mesh and the element connectivit) table. The natural frcqucncics 

and mode shapes are calculated next. The delaminated element displacements are than 

converted back to the local system o f node displacements for those nodes being on S. The 

postprocessor then computes the modal strains and the results are obtained. The damage 

index processor is then invoked and the indices are plotted. As discussed before, in this 

last stage a random perturbation o f finite element results is allowed to account for noise. 

The robustness o f each damage index can then be checked.

For the case shown in Fig 5.13 a, the first three mode shapes are computed. In 

Figs. 5.14 (a-c) the modes o f the undamaged plate are shown while in Figs. 5.15 (a-c) the 

modes o f the delaminated plates are presented. Insignificant changes between the two 

cases are observed which do not allow for damage identification. Moreover if a 5% 

random noise is used to perturb the data the small changes are hidden by the perturbation. 

This further proves that the mode shape approach does not allow a correct detection of 

delamination position and size.
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a. Single delamination
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First tvvist.

Figure 5.14. First three modes o f vibration, undamaged structure.
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a. First bending b. Second bending

c. First twist

Fig. 5.15 First three modes o f vibration for a single delamination.
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Next, the modal strains are computed from the eigenvectors o f both the healthy and the 

damaged structures. The best computation accuracy is obtained when computing the 

strains at the centroid o f each element or at the Gauss points o f one order less quadrature 

method. In this work the centroids are used. The distributions of the străin Ei 

corresponding to the first bending mode, without and with delaminations are presented in 

Figs. 5.16 a and b, respectively. Very noticeable changes are observed between the two 

cases. The străin in the damaged plate is significantly different over the entire 

delamination zone compared to the undamaged reference. This deviation forms the basis 

for the damage detection techniques presented in chapter 4.
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a. Without delamination. b. With delamination

Figure 5.16. Modal străin £i_ first bending mode.
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Figures 5.17 a and b present the modal străin 62 for the first bending mode. The 

changes in străin, although noticeable, are not as significant as in £1. This is due to the 

fact that for this beam like type bending mode, important changes occur in the 

longitudinal străin. Naturally, the changes in inplane străin, s6, are even less important 

since no inplane deformation is produced by the first bending mode in the healthy plate. 

However, due to the cross coupling between the displacements in the presence of 

delamination, some inplane shear deformation is generated. The inplane shear străin 

distributions for this mode are not shown here.
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a. Without delamination. b. With delamination.

Figure 5.17. Modal străin zi. first bending mode.

However, this information can be used as an indicator o f delamination if  the twist 

modes are analyzed. The modal străin distributions, for the first twist mode, o f both
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undelaminated and delaminated plates are presented in Figs. 5.18 a and b respectively. 

Important changes are observed indicating the inplane shear (£6) is an appropriate 

measure o f delamination when considering twist deformation. More important, the 

inplane shear deformation for the delaminated plate significantly deviates from its 

healthy reference only in the delaminated zone (elements with m=5,6,...,9 and 1=1,2,3,4 

in Fig. 5.13 a). This deviation is due to a smaller twist stiffness when delamination is 

introduced in the structure. The two sublaminates in the delaminated zone do not have the 

same capacity to resist twist as the undelaminated reference. A structure with reduced 

stiffness to twist, exhibits a different shear deformation distribution. The coupling 

between the various displacement degrees o f freedom affects the overall behavior of 

inplane shear modal străin over the plate surface.

•2 . 3

a. Without delamination. b. With delamination.

Figure 5.18. Modal străin £6, first twist mode.
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Depending on plate geometiy, material properties, boundary conditions and 

delamination position and size one or more modal strains must be considered. For 

practicai cases, the bending, tvvist, camber and inplane modes interlace and some modal 

strains can be more useful than the others. However, only a few lower modes can be 

accurately measured in experimental work therefore attention is restricted to those modes.

The higher modes are also affected by larger errors even in the finite element
i

implementation.

The damage indices introduced in chapter 4 are now used in an attempt to identify 

delaminations. In the case o f a plate with a single delamination shown in Fig. 5.13 a, all 

four indices are calculated. Both MSAC and COMSAC, (Fig. 5.19), fail to identify the 

presence o f delamination. For example, considering the longitudinal străin Si, MSAC 

gives a value o f 0.992 which can suggest a very good correlation between the healthy and 

the damaged cases. This is explained as follows. The modal strains are computed for the 

same structure, therefore the străin distributions are in good agreement over a large area 

of the plate. From a damage detection point of view this index is not reliable. The 

COMSAC is computed taking into account different modal strains for different modes of 

vibration. For example, when considering the longitudinal strains for the first three mode 

pairs o f healthy and damaged structures COMSAC exhibits the behavior shown in Fig. 

5.19. The shape o f COMSAC index surface exhibits irrelevant and inconsistent 

variations. Moreover, some o f the largest jumps occur out of the delaminated zone. 

Neither MSAC or COMSAC are therefore appropriate as damage detection criteria. 

However, it must be noted when considering the classical mode shapes, the differences
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between the delaminated and undelaminated cases are even smaller. Also, it must be 

noted that the two classical indices, MAC and COMAC produce even less significant 

results (Pandey et al., 1991).

The other two damage indices introduced in chapter 4 are now used to 

characterize delaminations. First, the index derived from the gapped smoothing technique 

is computed and plotted over the area o f the plate. The străin distribution shown in Fig. 

5.16 is used here. As seen in Fig. 5.20 (a) this index shows the presence o f the damage in 

the plate. However, for elements with m = 6, 7, 8, the value of the index is very small. 

Besides, elements with m = 3, 4 or m=10, 11, 12 are incorectly shown as delaminated. It 

must be noted that this index uses information from the damaged structure only. Using a 

healthy plate reference, the damage prediction can be improved as shown in Fig. 5.20 (b). 

Even so, elements with m=4 or m=10 are incorrectly shown as belonging to the

10

Figure 5.19. COMSAC index representation.
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delamination zone. Therefore, this index artificially increases the size o f the delaminated 

zone. This is due to the fact that the smoothing technique that uses neighboring elements 

in computing the damage index. Thus, the contribution o f delaminated elements is 

artificially distributed to some neighboring undelaminated elements.
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a. Gapped index, without reference. b. Gapped index with healthy reference.

Figure 5.20. Gapped smoothing technique index.

The new damage index defîned in Eq. 4.2.6 is computed next. This damage index 

calculated using longitudinal modal strains (Fig. 5.16), is presented in Fig. 5.21. It is 

observed that it precisely indicates the delamination position and size (elements with 

m=5,6,..,9 and 1=1,2,3,4). None o f the healthy zone neighbors are included in the 

damaged zone prediction. This damage index can also be used in experimental work 

when the appropriate modal străin distribution is measured.
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0.008

0.006

0004

0.002

Figure 5.21. Damage index defined in Eq. 4.2.6.

Next, the robustness o f the last two indices is assessed. It is known that both numerical 

results and experimental data are affected by errors. To simulate errors and to check the 

reliability o f the damage indices in the presence o f noise, numerical data obtained from 

the finite element postprocessor are perturbed with random noise. This study takes into 

consideration absolute random perturbation in the range 0-5 percent from the maximum 

value o f străin. The worst case scenario is shown in Fig. 5.22. A 5% random noise almost 

diffuses the influence o f delamination in the longitudinal modal străin for the first mode 

o f vibration. In this case, the MSAC and COMSAC indices again give erroneous 

indications. For example the value o f MSAC is 0.993 which can lead to the incorrect 

conclusion that no difference exists between the damaged and undamaged structures.

The other two indices are now tested in the presence of noise. First the gapped 

smoothing technique is used for the delaminated case. Figure 5.23 (a) shows the values o f
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this index without using an undelaminated reference. While showing that damage is 

present, this index again overestimates the extent o f delamination. Elements next to the 

delaminated area are affected once again by those in the delaminated area. When an 

undelaminated reference is used, as in Fig. 5.23 (b), the accuracy is improved However, 

an error o f 7% in delamination position detection occurs implying a shift o f one element 

along x direction. The index in Fig. 5.23 (b) is however reliable and robust to data noise.
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a. Without delamination. b. With delamination.

Figure 5.22. Modal străin s i  first bending mode (5% noise).

The most effective and robust index is again that computed using Eq. (4.2.6). As 

shown in Fig. 5.24, the position and size o f delamination is exactly determined. This 

index can be implemented easily in experimental work. Different methods of exciting the 

first mode o f vibration, without much interference from other modes, can be utilized.
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Data filtering can be applied if necessary. The strains can be measured, simply, using 

străin gauge techniques or piezoelectric sensors.
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a. Gapped index, without reference. b. Gapped index with healthy reference.

Figure 5.23. Gapped smoothing technique index (5% noise).
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Figure 5.24. Damage index defined in Eq. 4.2.6 (5% noise).

Multiple Delaminations

The case shown in Fig. 5.13 (b) is considered now. Two delaminations are 

assumed to be symmetrically placed with respect to the fixed edge and the free edge. In 

this case the mode shapes and modal strains are obtained using a 15x4 giobal mesh while 

each sublaminate is modeled using a 3x4 mesh. The finite element model consists o f 105 

plate elements with a total o f 800 degrees o f freedom. The implementation o f the 

continuity conditions presented in chapters 2 and 3 allows for important savings in 

computation time. When compared to penalty approach or Lagrange multipliers method, 

the memory requirements and CPU time are almost half.

The most important changes between the healthy and the damaged structure 

appear once again in the longitudinal străin distribution as seen in Figs. 5.25 a and b. As 

expected, the delamination placed near the fixed edge (Fig. 5.13 b), produces a stronger
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change in străin than the one placed near the free end. This behavior is because of 

imposing Dirichlet boundary conditions at the fixed end. The longitudinal străin 

corresponding to the first mode o f vibration is maximum at the fixed end and any 

delamination influence is larger here (Fig. 5.25 b).
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a. Without delaminations. b. With delaminations.

Fig 5. 25 Modal străin 8i, first bending mode.

Figures 5.26 a and b shovvs the inplane shear străin for the third mode of vibration 

which is a twist mode. Again, as for the longitudinal străin for the first mode of vibration, 

the changes due to delaminations are important only in the delaminated zones, that is for 

elements with m=3,4,5 and m =9,10,ll in the healthy mesh. The change in străin 

distribution shovvs that damage is present in the structure.
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a. Without delaminations. b. With delaminations.

Figure 5.26 Modal străin sf„ first twist mode.

As for a single delamination, the damage indices are used to characterize the 

influence o f delaminations. Figures 5.27 a and b present the gapped smoothing technique 

index, without and with an undamaged reference, respectively. Both these indices show 

that damage is present in the structure. However, they fail to correctly identify the 

position and extent o f delaminations. Therefore, they should be limited to a single 

delamination case and only for qualitative analysis.
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a. Gapped index, without reference. b. Gapped index, with healthy reference.

Figure 5.27. Gapped smoothing technique index.

Next, the damage index based on Eq. 4.2.6 is computed. The result is shown in 

Fig. 5.28. The delaminated zone near the clamped end o f the plate is precisely located. 

Elements with m=3,4,5 in the global mesh have a very high damage index compared to 

their neighbors. Also, for the delamination placed near the free end, elements with 

m=9,10 are correctly identifîed as belonging to the damaged zone. However, for m=l 1 

the damage index is slightly larger than for m=12, in the healthy part o f the plate. This is 

due to the fact that the delamination is very close to the free end and the longitudinal 

deformation is very small even without delaminations. Overall, this damage index is very 

accurate in delamination detection. It shows both delaminated zone locations. The extent
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o f delaminations placed in the zones with very small strains can be either overpredicted 

or underpredicted.
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Finally, the robustness o f this damage index with respect to data errors is 

investigated. Random noise is assumed to perturb the distribution o f longitudinal străin 

shown in Fig. 5.25. The damage index is computed for noise ratio up to 10% from the 

maximum values o f strains. For the largest noise ratio the damage index (based on Eq. 

4.2.6) is plotted in Fig. 5.29. As can be seen here, the delaminations are still correctlv 

identified. The position and extent o f the delaminated zone near the clamped end is also 

identified exactly. Because o f its robustness in the presence of noise, this damage index 

can be successfully used in damage detection for multiple delamination case.
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0.2 

0.1 

0

Figure 5.29. Damage index defined in Eq. 4.2.6 (10% noise).

5.4.2 Smart Composite Plates

In this section the higher order theory is employed to analyze delaminated 

composites with piezoelectric actuators. The problem becomes more complex because 

the zones where actuators are placed have different material properties. For surface 

bonded actuators, the thickness o f active zones is also different compared to the 

composite substructure zones. Active forces induced by an applied electric field are also 

produced. These forces are used to control either the shape or the dynamic characteristics 

o f the composite plate. In addition, further complexity is introduced when considering 

delaminations. Therefore, all combinations off zones without or with actuators and 

without or with delaminations must be considered. Different tvpes o f finite elements are 

used to implement the higher order theory for each zone. Also, active piezoelectric force 

vectors for elements with actuation are computed.
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Table 5.2. Material properties for smart composite plates.
Ei (GPa) E; (GPa) v 12 G 12,G l3(GPa)

90

Carbon-Epoxy 138 8.96 0.30 7.10
AS/H3501

PZT 63 63 0.33 24.2

G23 (GPa) p (Kg/m3) cM xlO '12 m/V)

Carbon-Epoxy 2.9 1477 254
AS/H3501

PZT 24.2 7.6

The test structure, shown in Fig. 5.30, is an adaptive composite plate with 

dimensions a=240 mm, b=135 mm and total thickness o f composite zone h=3 mm. Four 

pairs o f piezoelectric layers with length Lp=75 mm, width lp=45 mm and thickness hp=0.5 

mm are assumed to be bonded to the plate surface. The material properties for both the 

composite substructure and the piezoelectric layers are shown in Table 5.1. The stacking 

sequence for this composite plate is [90°,0o,45o,-45o,0°,90o]s. In the delaminated case a 

single through the width delamination o f length P=45 mm is assumed to be placed 

between layers 7 and 8 o f the composite plate. The numbering o f layers starts with the 

bottom layer.
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Actuator pairs 3 and 4 (Fig. 5.30) are modeled using the bimorph configuration. 

Due to the presence o f delamination, only portions o f actuator pairs 1 and 2 work in 

bimorph configuration. The actuator zones placed in the delaminated zone are 

individually modeled using the unimorph configuration for each sublaminate. The 

composite substructure in the delaminated zone is modeled as shown in the previous
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section. Extra care is necessary when imposing the continuity conditions on S because the 

jumps in plate thickness in the delaminated zone requires different transformation 

matrices.

In the assembly process, the procedure accounts for six different types o f plate 

elements. Two o f them model the healthy composite zone and the healthy zone with 

piezo actuators. The other four correspond to the top and bottom sublaminates in the 

composite zones and in the active composite zones. When the postprocessor is cal led, the 

strains are computed from the local displacement o f each element. The transformation 

matrices are used again to obtain the displacements in the local system of coordinates.

Figure 5.31 shows the first 10 mode shapes lor the smart composite plate. As can 

be seen the bending, twist and camber modes interlace each other. The frequency range 

for these modes extends to 4500 Hz. As expected the mode shapes alone do not provide 

enough Information for damage detection. Also, the frequency deviations between an 

undamaged reference and the delaminated smart composite plate do not exceed a few 

percent making it even the existence o f damage in the smart composite plate difficult to 

predict. For composite plates, the change in natural frequencies with delamination length 

is also much more smaller compared to isotropic plates. For reiaţively small 

delaminations, these changes are within data errors. Therefore, that frequency changes 

and mode shapes cannot provide a reliable basis for delamination location in smart 

composite structures.
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a. First bending. b. First twist.

c. Second bending. d. Second twist.

Fig. 5.31. First 10 modes o f vibration o f a smart composite plate

BUPT



94

g. Third twist. h. Second camber.

Fig. 5.31 cont.
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i. Fourth bending. j. Third camber.

Fig. 5.31. cont.

Next, the străin distribution is computed. Figures 5.32 and 5.33 shows the 

distributions o f 8i and s2 corresponding to the fundamental mode o f vibration. As 

expected, these distributions exhibit more complex behavior than for composite plates 

without actuators. The presence o f actuators lead to jumps in strains over the active 

zones. Neighboring elements, with and without piezoelectric actuators, undergo very 

different deformations due to jumps in material properties and thickness. In addition, the 

presence o f delaminations leads to additional complexities. The global behavior of străin 

distribution for damaged smart composite plate is complicated and depends on plate 

geometry, material properties, boundary conditions and delamination location.
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a. Without delamination. b. With delamination.

Fig. 5.32. Distribution o f străin si, first mode o f vibration.

a. Without delamination. b. With delamination.

Fig. 5.33. Distribution o f străin 8:, first mode of vibration.
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However, unlike the mode shapes, the străin is again an appropriate measure of 

delamination presence. In figures 5.32 b and 5.33 b the strains shows extra jumps in the 

delaminated area when compared to the healthy cases shown in Fig. 5.32 a and 5.33 a 

respectively. Similar results were obtained when comparing other inplane străin 

distributions resulting from the finite element analysis. As mentioned before, the fist 

mode o f vibration is most accurately determined in both numerical and experimental 

apprpaches. The corresponding străin is now used to compute the damage indices.

0.05

0

Fig. 5.34. Gapped index. Fig. 5.35. Index defined in Eq. 4.2.6.

The index based on the gapped smoothing technique is only useful in showing the 

existence o f some damage in the smart composite. As shown in Fig. 5.34, it fails to 

identify the delamination position and size. Even with an undamaged reference, due to
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additional jumps in străin distribution, the accuracy is still unacceptable. By contrast, 

the new index (Eq. 4.2.6) is an excellent measure o f delamination. As shown in Fig. 5.35 

the position and size o f delamination are both accurately predicted. This position 

corresponds to elements with numbers 3, 4 and 5 along x axis. Elements with numbers 0,

1, 2 and 6, 7,...,15 in the longitudinal direction belong to either the pure composite (no 

actuators) or active undamaged zones, while elements with numbers 3, 4 and 5 lie in the 

top and bottom delaminated sublaminates.
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Fig. 5.36. Index defined in Eq. 4.2.6. (10% noise).

Finally, the robustness of the new damage index is verified. Noise is assumed to 

perturb the străin distribution. The damage index is now recalculated over the plate 

surface (Fig. 5.36). With 10% random noise affecting the data, the new damage index is 

still very accurate. The delaminated zone is completely identified. AII the elements used
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to model the damaged zone have very big values o f the damage index when compared 

to the undamaged neighbors. In conclusion, the new index defined in Eq. 4.2.6 is a useful 

tool in delamination identification for complex structures such as smart composite plates. 

The efficiency and robustness o f this index makes it a good choice in damage detection.

It must be noted that the sensitivity o f the indices discussed above with 

delamination length has to be made. This study should show’ the size o f smallest 

detectable delamination.

5.5 Concluding Remarks

A general frame work has been developed for the anaiysis of composite and smart 

composite plates in the presence o f delaminations. A refined higher order theory has 

been used. It captures the shear deformation through the thickness o f the composite 

plates while satisfying the stress free boundary conditions on the free surfaces, including 

the delamination interfaces. The higher order theory is implemented using the finite 

element method. New continuity conditions for the delaminated zones have been 

developed. Active piezoelectric forces have been computed using an induced străin 

approach. The results o f the present theory are compared with published experimental 

results and numerical results obtained using NASTRAN. Comparisons of dynamic 

results obtained using the present theory with those obtained using the first order shear 

deformation theory and the classical laminate theory are made for thick plates in the 

presence o f delaminations. The modal strains are used to compare plates with and w ithout 

delaminations and with and without piezoelectric actuators. Străin based damage indices
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delaminations and with and without piezoelectric actuators. Străin based damage

indices are developed to identify the position and size o f delaminations. A new damage

index is developed in this work The follow’ing observations are made.

1) The developed theory correlates well with published experimental results and 

NASTRAN 3D solutions.

2) Implementation o f the continuity conditions is consistent with the analytical 

model and reduces storage requirements and CPU time.

3) The natural frequencies are overestimated by both the classical and the first order 

theories compared to the present higher order theory' in both undelaminated and 

delaminated plates. The deviations increase with plate thickness, due to increased 

transverse shear effects.

4) . In a delaminated smart composite plate, under static piezoelectric actuation, the 

inplane străin is only locally influenced by the presence o f delamination.

5) The classical mode shapes are not very' sensitive to the presence of small 

delaminations.

6) The inplane modal strains have jumps in the region of delaminations.

7) The inplane modal strains also have jumps due to the presence o f actuators. This 

induces additional complexity in delamination detection.

8) The new proposed damage index is more reliable and robust in locating 

delaminations in composite and smart composite structures.
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