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ABSTRACT

In designing with composites, it is important to take into consideration
imperfections such as delaminations. The presence of delaminations in a composite
structure can cause degradation in the structure performance. The focus of the present
work is on modeling and analysis of composite and smart composite plates with
delaminations. ~ Adaptive composite structures are capable to actively respond to
environment changes. Piezoelectric actuation is the most used concept in adaptive
structures due to dynamic control capabilities over a large range of frequenciies. Essential
to the implementation of these smart structures with defects are accurate and efficient
modeling techniques. Identification of damage in a composite based strﬁcture 1s also
important. This thesis addresses each of these important topics.

A refined higher order theory model is used to analyze the dynamic response of
delaminated composite and smart composite plates. Actuators are used to control the
plate shape. The theory accurately captures the transverse shear deformation through the
thickness of the composite laminate while satisfying stress free boundary conditions on
the free surfaces. The theory is extended to incorporate the presence of delaminations.
Continuity conditions are imposed on delamination lateral boundary. The model is
implemented using the finite element method utilizing an induced strain approach for
computational efficiency. This allows general laminate geometries and boundary
conditions to be analyzed. Specifically, the effect of delaminations on the dynamic

behavior of the composite is studied.

i
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Dynamic results using the higher order theory are correlated with available
experimental data. Comparisons, including delaminations, are also made with a general
purpose finite element code. Agreement is very good. Additional results demonstrate the
utility of the developed theory to study delaminated composites with or without
piezoelectric actuation.

Several damage index criteria are used to characterize the damage in composite
and smart composite plates. Published damage index criteria are analyzed and modified
in the context of the present theory. A new strain based damage index is defined.
Robustness of each index is verified in the presence of noise. Tkjle results demonstrate

that the new index is the most reliable and robust in detecting delaminations.
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1. Introduction

1.1  Structural Modeling

Smart composite materials offer the potential for designing structures which are
both light in weight and possess adaptive control capabilities for shape correction and
vibration control. In designing with composites, it is important to take into consideration
imperfections, such as delamination, that are often pre-existing or are generate;d by
external impact forces during the service life. The existence of delamination: can
significantly alter the dynamic response of smart composite structures (Chattopadhyay
and Seeley, 1997).

Several mathematical models have been reported in the literature for the analysis
of beams and plates with piezoelectric sensing/actuation. The classical theory-based
approach was introduced by Crawley and Anderson (1989) to investigate such problems
with thin beams. This was followed by the first order Mindlin type analyses
(Chandrashekara and Agarwal, 1993) and the expensive layer-wise theories (Robbins and
Reddy, 1993). A hybrid theory has also been reported by Mitchell and Reddy (1995).

It is well known that refined higher order theories are capable of capturing the
transverse shear deformation through the thickness quite accurately (Chattopadhyay and
Gu, 1994). These theories are applicable for laminates of thicker construction and have
been shown to be useful in modeling smart composite laminates (Chattopadhyay and

Seeley, 1997). Finite element based solution procedures are practical since real
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geometry and boundary conditions can be investigated (Chandrashekara and Agarwal,
1993, Seeley and Chattopadhyay, 1996).

A significant amount of research has also been performed in modeling
delamination in composites. Although three dimensional approaches (Yang and He,
1994) are more accurate than two dimensional theories (Pavier and Clark, 1996), their
implementation can be very expensive for practical applications. The layer-wise
approach introduced by Barbero and Reddy (1991) is an alternative since it is capable of
modeling displacement discontinuities.i:z However, the computational effort increases with
the number of plies. A refined higher order theory developed by Chattopadhyay and Gu
(1994), has been shown to be both accurate and efficient in modeling delamination in
composite plates and shells of moderately thick construction. This theory has also been
shown to agree well with both elasticity solutions (Chattopadhyay and Gu, 1996) and

experimental results (Gu and Chattopadhyay, 1996).

1.2 Delamination detection

Preliminary research has also been conducted on the use of smart matenals in
detecting pre-existing delaminations by Keilers and Chang (1995). However, the
mathematical model used in this work is simply classical theory based approach, which
exclude the transverse shear effects. As much as 50% deviation in structural response
has been reported in thick constructions (Chattopadhyay and Gu, 1994, Barbero and

Redy, 1991). Recently, Chattopadhyay and Seeley (1998) introduced the higher order
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theory in the analysis of adaptive composite plates in the presence of debonding between
the laminate and the actuator. It was shown that the presence of debonding significantly
alters the dynamic response.

The presence of delaminations in a composite structure can cause significant
degradation in the structural performance. Many techniques have been developed to
locate defects ;in such structures and this work considers only those based on vibration
methods. Cawley and Adams (1980) and Williams et all. (1997) used the changes in
natural frequer;cies of a structure to quantify damage. Lew (1997) presented a damage
detection technique based on transfer function parameter changes. Keilers and Chang
(1995) proposed an experimental delamination detection procedure using built in
piezoelectrics. ‘An approach based on mode shapes was first introduced by Pandey et al.
in 1991. While noting that the mode shapes alone or in combination with changes in
natural frequencies are not sufficient to detect the position and size of defects in various
structures, they proposed the use of curvature mode shapes in detecting damage in a
beam. The curvature i1s obtained from mode shapes using Laplace’s finite difference
equation. It was shown that the absolute difference in the curvature mode shapes
between the healthy and the damaged beams is a better indicator of damage location
compared to the absolute difference in the displacement mode shapes.

Ratcliffe and Bagaria (1998) improved the above technique using a gapped
smoothing technique. They observed that Laplace’s equation enhances irregularities such
as measurement noise and proposed that the curvature should be locally smoothed. In
their approach, for a composite beam with a through the width delamination, a third order

polynomial was used to locally describe the curvature. This procedure uses the
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assumption that the damage is strictly located in a very small zone, considering the
damage discrete rather than continuous.

The objective of the current research is to develop a mathematical model for the
analysis of delaminated smart composite laminates using a refined higher order theory.
The theory is implemented using the finite element method. The model, also carefully
accounts for the distributed nature of delaminations and actuators in the primary
structure. Since actuators are modeled, the relationship between the applied electric field
and the strain is based on an induced strain approach.

Four damage index criteria are used in an attempt to characterize delaminated
composite and smart composite plates. Two published criteria, MAC and COMAC
indices (Harris, 1996), are modified in the context of the present theory. The new defined
indices, MSAC and COMSAC are computed in the present work in terms of strain rather
than in terms of modal vectors. A third damage index is developed by modifying the
existing gapped smoothing technique index introduced by Ratcliffe and Bagaria (1998).
In the case when investigating plates, it is easier to measure strains than bidimensional
curvature. Therefore, the modified index is also computed using strain distribution.
Finally, a new index is defined. The inplane modal strains of the delaminated structure
are compared with those of a similar healthy structure. This new index 1s expected to be
more reliable and robust in locating delaminations in composite and smart composite

plates
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2. Mathematical Modeling

2.1 Fundamental Concepts in Laminate Theory

2.1.1 Constitutive Equations
For an orthotropic material in the local system of coordinates the constitutive

equations can be written as

c, | rQn Q, Qu 0 0 0 (e (A,
G, Q. Qn Qy 0 0 0 € A,
j03 L _ QOU Q023 Q033 20 0 0 <83 _ﬁAJ 2.1.1)
c, Qu 0 0 €, 0
o, 0 0 0 0 2Q 0 €5 0
o) O 0 0 0 0 2Q|lles) (O]

where o; and g (1=1,2,...,6) are the stresses and strains, respectively, (Vinson and
Sierakowski, 1987) and A, (i=1,2,3) are the induced strains due to piezoelectric actuation.

The constitutive equations, in the structural frame, can be expressed as follows

(o, (e —A,
N g, — A,

j: L-Q SZ;/AZ , (2.1.2)
o, €,

SR = _AX.\'

where the stiffness matrix
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F(_jll 612 613 O O 2616-
612 622 623 0 0 2 626
0-|¥ @ & 0 0 20
0 0 0 2Q, 2Q;, O
0 0 0 2Q, 2Q;, O
_6)6 626 —Q—Jé 0 0 2 666 d

is obtained from coordinate transformation (Vinson and Sierakowski, 1987).

(2.1.3)

Assuming g, to be negligible across the thickness of the plate, Eqgs. 2.1.2 can be

written, for the 4th laminae of the plate as follows (Fig. 2.1).

Oy ran 612 2616 g, — A,
v Q, Q. 2Qu g, —A,
0w LQlﬁ Qs  2Q4 " En Axy

{0}1 } F2 644 2 645 {8}1 }
G.\z k L2645 2655 k 8)2 k

o}
Il

k

(2.1.4)

(2.1.5)

The above decomposition is very useful in the solution procedure since it decomposes the

problem into two smaller subproblems in terms of stresses and strains.
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Figure. 2.1. Composite plate with delamination.

2.1.2 Kinematic Equations

A higher order displacement field is used to model the kinematics of deformation.
The inplane displacements (u and v) are assumed to have cubic vanations through the
laminate thickness and the out of plane deformation (w) is assumed to be independent of

thickness.

ow,

-~

u(x,y,zt)= uo(x,y,t)+z[— +a(x,y,t)}+zz(p(x, y,t)+2°0(x,y,1)

aaw" +B(x, y,t)}*Zz\U(x,y,t)+Z3r|(x,y,t) (2.1.6)
y

V(X,Y,Z,t) = vy (X,y,t)+ z[—
w(X,y,z,t) = W (X,y,t)
where uy, vo and wy are the displacements of an arbitrary point (x,y,0) at the laminate

midplane, a and B are additional rotation functions while ¢, 6, v and 1 are higher order
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functions. In the hypothesis of small deformations, the strain-displacement relations are

written as follows.

e =2u
Yoox
ov
g, =—
ow
€, =—
Jz
1{dv Ow 1
E;\zz_ —t—— =_Y\z
o 2\0z dy) 2
1{0u Ow 1
e =7l -t T |3 Yx
2{0z Oy 2
1(ou av] 1
En =+t T3
2 0y Ox) 2~

8

(2.1.7)

The displacement field defined in Eqs. 2.1.6 does not satisfy the shear stress free

boundary conditions. Therefore, it is necessary to impose these conditions as follows

o)z(x,y,i--}zl—,t)zoxz(x,y,i%,t)zo (2.1.8)
where h is the thickness of the plate (Fig. 2.1).
For orthotropic laminate, these conditions are equivalent to
h h
e, (X, y,t—,t)=¢,(X,y,£—=,1) =0 (2.1.9)
: 2 2
The displacement field (Eqs. 2.1.15), then reduces to the following form
[ ow 47’
u(x, ,Z’t = Uy(X, 7t +Z|— 0+ax7 ,t - a(Xx, :t
(X,¥,2,t) = uy(x,y,t) ax(y)}%z(y)
B 3
V(X,¥,2,8) = Vo(X,¥,1) +2 —aaﬂw(x,y,t)}— :; B(x,y.1) (2.1.10)
L y

w(xa y) Z) t) = WO(x; y)t)
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where a and B are shear correction functions. It is to be noted that this higher order

displacement field uses the same number of unknown functions (uy, vo, Wo, a and f3) as

the first order displacement field while being able to model the strain-displacement

relations with quadratic and cubic polynomials as shown below

g, =€ +zel +2°¢]

0 1 3.3
€, =€, +ZE, +Z€)

__0 2.2

_.0 2.2

0 1, 3.3
€¢ =€¢ T ZE( TZ €

(2.1.11)

where the index convention (1=x, 2=y, 3=z, 4=yz, 5=xz and 6=xy) is used for simplicity

and

0
gl =20

oX

0
€5 = aVo,

y
80=6u0+6v0
° 8y ox’
8g=B(x’y’t)7

g2 = a(x,y,t),

€

2

l—_a VVZO +§E’ 813=Cla—a
0 X ox ox
2

gl =9 “;0+%, 8;=C1%
dy” 0Oy oy

B dx0y 0y ox’ 5
83 = C2 B(x’ y’t)

8§ = CZ a(x’),>t)

4

CZ =_h—2

2
o , 0w, oo 9B, cl(a%@

ox

j (2.1.12)

(2.1.13)

From the above equations, it must also be noted that both first order and third

order displacement fields introduce two additional unknown functions, (a and f)

compared to classical laminates plate theory while greatly improve the accuracy. The first

order displacement field assumes a constant distribution of shear strain through the

thickness resulting in the use of empirical shear correction factors in numerical
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10

implementations. The third order displacement field models a quadratic distribution of

shear strain over the thickness of the plate while satisfying the boundary conditions.

2.1.3 Hamilton’s Principle

In variational form, Hamilton’s principle is expressed as follows

M= (6K -8U+8W)dt=0 (2.1.14)
where 8K is the variation of kinetic energy, dU is _ithe variation of strain energy and 8W is
infmitesimal work done by external loads in a virtual displacement compatible with

system constraints. The displacement field must be a continuously differentiable function

of position and time. The first term in Eq. 2.1.14 can be written as follows.
81, =f3jvp6ﬁTﬁdth (2.1.15)

Switching the order of integration, integrating by parts with respect to time t, and

switching back the order of integration, yields the following

oI, =_f’jvpaaTﬁdth (2.1.16)
where
u(x,y,z,t)
u(x,y,z,t) =4 v(X,y,2,t) (2.1.17)
w(X,Y,z,t)

In the above (x,y,z) is the position vector of an arbitrary point in the structure, u, vand w
are the actual displacements of the point (x,y,z) in X, y and z directions respectively.

Hamilton’s principle is rewritten in the following form
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oIl = Lz (’;p Su' udv +L88T odV —J.VSET p(X,y,z,t)dV)dt =0 (2.1.18)

where p is the applied load vector and p is the mass density function.

Kinetic Energy

The displacement field can be written in the following simplified form

u(x,y,i,t) = u8(x,y,t)+ u(')(x, y,t)z+ uf,(x,y,t)z3
V(X,Y,2,1) = Vo (X, ¥st) + Vo (X, Y, 1) 2 + V5 (X, y, 1) Z° (2.1.19)
w(x, Y9EZ9 t) = Wg(X, Yst)

where

ug(x, y7 t) = uO(x’ y’t)

. ow
u(')(x,y,t)'—-— axo

+a(x,y,t)

ug(x’ Y, t) = Cla(x’ Y, t)
Vo (X, y,t) = vy(X, Y, t) (2.1.20)

ow
vf)(x, Y, t)=——0+B(x, y,t)
oy

Vg (xs y, t) = CIB(X7 Y7 t)
wg(x,y, t) = wO(x’ yvt)

The quantity C, is defined in Egs. 2.1.13. The variation of the kinetic energy is expressed

as follows
. h .
6K=jvp6ETﬁdV=JAJ_2EpBETﬁdsz (2.1.21)
2

where the volume integral is split into two, one double integral over the area of the plate

and a simple integral in z direction.

The 1nner integral can be expressed as follows
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J1,=80"3, U (2.1.22)
where
ﬁz{ug u, u, vo o vh v, wg}T (2.1.23)
JH 03)(3 O3xl
J, =105 I Oy (2.1.24)
le3 le3 ‘IO
Jo Jv T,
J, =13, I, I, (2.1.25)
Iy Iy J
and
h ] &
J, = |3pz¥dz=—=) p(r)(h}; —h*" 2.1.26
k j_gp k+1§_"“‘ i —hE) (2.1.26)

In Eq. 2.1.26, h,, (r=1,...,m) are the z coordinates of all laminae interfaces in the plate, n
is the number of laminae and p(r), (r=1,...n;) is the mass density distribution over the
thickness of the plate, k=0,1,2,3,4,6. Using the above notations (Egs. 2.1.22-26) the

variation of kinetic energy can be expressed as follows.
- -[sU™s U
8K—L J,,,dA_jASU J, UdA (2.1.27)

Equation 2.1.27 is used in the Finite Element implementation to derive the element mass

matrix.

Strain Energy

The variation of strain energy, neglecting the strain in z direction, can be written
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dU = Iv dg;0,;dV = L (5,0, + 85,0, + 86,0, + 08,0, +6e,0,)dV (2.1.28)
For convenience, the above integral is decomposed into two parts.

U, = [ (88,0, +36,0, +85,0,)dV (2.1.29)
83U, = | (8e,0, +3850,)dV (2.1.30)

The stress-strain relations, as expressed in Eqs.2.l.;4-5, are considered in the case
where induced strain is produced due to inverse piezoeléctric effect. In this case, the
induced inplane shear strain vanishes. The following forrrzl 1s obtained for the integral in
Eq. 2.1.29.

dU, = L(SE,Q,E, +5¢,Q,,8, +8€,Q 48,

+8¢,Q,,8, +88,Q,,8, +88,Q,4E,
+88,Q,€, +88,QE, +08,Q & )dV (2.1.31)
- [, 35,Q,A, +35,Q,,A, +35,Q,A,
+8€,Q,A,88,Q A, +88,Q,A¢) dV
The first integral in Eqgs.2.1.31 can be decomposed into two parts, one in Xy plane and the

other in z direction, resulting in the following expression
3U, = [ 1,dA (2.1.32)
wiiere

h
Ib = I_ZE(SEIQHSI +6£1Q1282 +88le6€6
2

+8€,Q,,8, +8¢,Qy8, +8¢,Qu¢, (2.1.33)
+88,Q,6€, +68,Q,E, +8€,Q,.€,)dz

The above integral can be expressed in the following vector-matrix form
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I, =8g, Iy &, (2.1.34)
where
§,=f € € € € € € e e (2.1.35)
B
IQn Ile Qs
Io, =1, To, o, (2.1.36)
IQ]O IQ}O‘ IQaﬁ
oI
I, =1 1§ I} (2.1.37)
oI
and
. E__ : 1 o
I =f2h Qij z dZﬁmZQ,-j(f)(hf:f —hfﬂ) (2.1.38)
—5 r=|

In Egs. 2.1.37-38 Qj (r) (1= 1,2,6, i<}, k=0,1,2,3,4,6, r=1,...,n) is the discrete stiffness

distribution across the thickness of the laminate.
The second integral in Eq.2.1.31 yields the piezoelectric force due to piezoelectric

actuation and can be expressed as follows
sU? =jA I, dA (2.1.39)

where

h

I, =I_Eg(881611/\1 +3¢,QA; +8€,Q,A, (2.1.40)

+8€,Q,,A, +8e,Q A, +88,Q,A)dz
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Since A=A, and A=A, are nonzero only in the piezoelectric layers, the integral
in z direction must be computed only in those layers. In the following derivations the

induced strain is computed as follows

d,,E,, ze —h,—h+t

27 2
A=A = h h
d31( E3)’ Zel:_z—_tpai

(2.1.41)

d,,E,, ze ——E,—E+t

27 2 °

A=A = h . h
d,,(-E,), ——t ,—=

52(=E3) 25[2 p 2}

Considering surface bonded actuators in bimorph configuration, the integral in

Eq. 2.1.40 can be performed and expressed in the following form.
I, =88, I,E;(t) (2.1.42)
where €, is expressed in Eq. 2.1.35, Es(t) is the applied electric field in z direction and I,

is expressed by equations as follows

L={ 0o oo Ly (2.1.43)
where

L, = (15" —13")Q,,dy +Q,. ds,)

I, = (" -[")Q,,d5 +Q,,ds,)

I, = (I3 ~3*)Q,,d;, +Q,,ds,)

I, = (5" ~1§")Q,,dy +Q, dy)

Ii. = (I;nr -I* )(qudSl + Qp,_,dsz) (2.1.44)
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I, = (I3 -1")Q,, dy +Q,,ds,)
15 = (15" - I3%)(Q, dy +Q,_ds,)
I3 =" -1*)Q,, d; +Q,, dy,)
I3, = (I3 =I3*)Q,, d; +Q,_dy;)

and

h
1 = [ dz =1
0 T Jh ~tp
2

_h h Y RY
2 {(—5+tpj —1—6—} (2.1.45)

h

sup _ |2 —

1; —J‘g_‘pdz_
h 2 2
5 1{h h

sup= 2 S -

[ jg-thdZ 2[4 (2 tp)}

4 4

T e L (Y

57t 16 2 °

Usually, piezoelectric materials are considered isotropic, therefore, the constants
Qp1s, and Qpy¢ are zero and Qp11=Qp22. For isotropic materials all the material properties
are invariant with respect to material reference frame such that d3;=d;, and A=A,. The
above considerations are used in the numerical implementation of the piezoelectric force

vector.

BUPT



17

Finally, the variation of the strain energy due to transverse shear effect can be

computed from Eq. 2.1.30 using Egs. 2.1.5, as follows.

8U, = [ (62,Que, +58,Qu5, +88,Q e, +58,Qu,)dV

(2.1.46)

Decomposing the integral in Eq. 2.1.46 into two parts, one in the xy plane and the other

in z direction,
5U, = I,dA
A

where

h

2

In a vector-matrix form,

where

L~ Qus Qss

o ..
oo
Q, IIJ Ilj

L"2 4

and

i h — ' 1 moo_
I} = jfg Qtdz=1oy Q,;0(h

k+l
r+l

I, = ,”_511(584(24434 +88,Q,585 +0€,Q 58, +685Q5585)

hk+l)

(2.1.47)

(2.1.48)

(2.1.49)

(2.1.50)

(2.1.51)

(2.1.52)

(2.1.53)

e -
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In Eqs. 2.1.52-53 it is assumed that k=0,2,4 and 1,j=4,5, i<j. The transverse shear
strain energy (U;) and the classical term energy (Up) are used in the numerical

implementation in computing the structural stiffness.

External Work Done

The work done by external forces in a virtual displacement compatible with
system constraints is represented by the last term in Eq. 2.1.18. This general form
accounts for volume external forces. For common structures however, the forces are
surface distributed therefore, the integral over the volume V is replaced by a surface
integral over the area A. The computation of work done is made for the latest case. The

work done 1n a virtual displacement du can be written as follows

sW=[ 58" p(xy,z,t)dA (2.1.54)
where

Py, 20 =P ¥z P (Y20 p,(xy,50f (2.1.55)
is the distributed load vector and du={Su(x,y,zt) dv(x.y,zt) dSw(x,y.zt)}" is the virtual
displacement corresponding to the displacement field in equation 2.1.17. Further, from
relations 2.1.19-20 the displacement field (u ) is related to the vector ot intermediate
unknowns ( U) as follows

u=Ly U (2.1.56)
where L 1s an operator matrix formed with the z coordinate of the application points of

distributed external force.
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1z, z,, 00 0 0
Ly={0 0 0 1 2z, z, 0 (2.1.57)
00 00 0 01

In the above equation z,, the z coordinate of the application point, is measured from the

midplane of the plate. Now, the work done 1s computed as follows.
8W=L SUTLYL p(x,y,z t)dA (2.1.58)

The work done is used in the next chapter in computing the element force vector due to

external loads.

2.2 Continuity Conditions

For a plate with delaminations, the structure is decomposed into three distinct
regions as in Fig. 2.2. There are denoted D, for the undelaminated part, D,, the region
above delamination and D; for the region below delamination. The higher order

displacement field is independently applied to each region (Seeley, 1997).

[ ow, 4(z-c,)
ui(x,y,z,t)zuOi(x,y,t)+(z—ci) ——°‘+ai(x,y,t) -——(X,Y,t)

L ox 3hi

r 3
vi(x,y,z,t)zvOi(x,y,t)+(z—ci) —aaL;+Bi(x,y,t)}—4—(Z3—;2Ci—)Bi(x,y,t) (2.2.1)

Wi(X,¥,2,t) = W (X,Y,t)
where ¢; are the z coordinates of the midplanes of each region, h; are the local
thicknesses and the index i=1,2,3 represents the three regions.
Additional conditions are necessary to assure the continuity of the displacement
field and its derivatives, on the delamination interface S. In a general form the continuity

conditions at S are expressed as follows.
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u,(x,y,z,t)=u;(x,y,zt)
vi(x,y,Z,t)=Vv,(X,y,Z1)
wl (x7 Y’ Z, t) =wi(x9 y’ za t)

0'u, d'u,

3x"3y™  0x"dy" (2.2.2)
d'v, d'v,

ox"oy"™ =6x"6‘ym
o'w, _ O'w,

ox"oy™ _6x“6y'"

. piezoelectric composite

/ : material / material delamination

Figure 2.2. Delaminated composite plate with actuators.

In the above equation i=2,3 represent the delaminated regions, and r denotes the

required order of continuity, =m+n, m,n=0,1,...,r. Since the theory developed is
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implemented using the Finite Element Method (FEM), the continuity of displacement is
imposed at the midplane of each delaminated region corresponding to nodal location in
FEM. This case requires C° continuity of u and v with respect to inplane coordinates x
and y, C' continuity of u and v with respect to z and C* continuity of w with respect to x

and y, Equations 2.2.2 can be written as follows.

ow 4
u; =ug =ug +(c _Cl)(_ a:l +0‘|J‘§;17(°i -¢)'q,
1

ow 4
Vi = Vg = Vg +(C ‘Cl)[‘ 6y01 +a[J_3_h—2(Ci _CI)JBI
1

A )]
hy )

l

B; =|:1—l;i2(°i ‘01)2] B,

1

Woi =Wy
oW, a 0wy,
ox  ox
0wy, 0wy,
R
’wy  0'wy,
ox? - ox?
Fwy 0wy
oy’ oy
62w0i _62w(,l
Oxdy  Oxdy

Equations (2.2.2-3) can be tailored requiring the necessary degree of continuity of

unknown functions for a specific FEM implementation. This is discussed in chapter 3.

BUPT



3. Numerical Implementation

The finite element implementation of the equations of motion describing a smart
composite plate in the presence of delaminations, is described in the following sections.
This approach allows the modeling of arbitrary geometry and boundary conditions. The
unknown functions are the displacements u, v and w and the shear correction functions a
and B. Isoparametric interpolation is used for the inplane displacements u'and v and the
functions o and f3, while cubic interpolation is used for the out of plane displacement, w

(Reddy, 1993).

3.1 Stiffness Properties

The elemental stiffness 1s composed of two terms, one due to inplane strains (g,
€; and €¢) and the other due to transverse shear effects (¢4 and €5). The contribution of the

shear strains 1s particularly important for thick plates. Some details of these computations

are presented next.

3.1.1 Stiffness Due to Inplane Effects
Equations 2.1.12 can be expressed in the local system of coordinates in a matrix-

vector form as follows.

§, =L,.1. (3.1.1)

where g, is the strain vector expressed as follows
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€, = {8,0 e & € & & & & & } (3.1.2)
L, is a matnix differential operator.
19 0 0 0 0
a ¢
2
0 19 0 0 —iz 9 5
a o0& a® o0&
0 C, 190 0 0 0
a dé
o o ~2 0
bon
2
boslo o o 12 17
: b on b on
0 0 0o 19 0
b on
to 1 12 0
b on aoé
2
o 190 o 1o 20
on aoé ab o0& on
10 10
0 Ci-— 0 I 0 (3.1.3)
i on a ot
and
E={uoG W) al ) veE ) aln) weE w) (3.1.4)
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In the above equations coordinates £=(&, n) correspond to a point in the reference
element and u: is the vector of unknown functions (Reddy, 1993).
The unknown displacement functions are now expressed in terms of the nodal

variables. Using the appropriate interpolation functions the following relationship is

obtained.

@=2NM? (3.1.5)
i=l
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5 T
wi ={u0i a; Vo B wy Oy  OWy 0 wm} (3.1.6)
ox 0y 0x0y
[H, 0 0 0 © 0 0 0
0 H 0 0 0 0 0 0
N,={0 0 H, 0 0 0 0 0 (3.1.7)
0 0 0 H, 0 0 0 0
(0 0 0 0 N, aN, bNy abN|

wheffe i=1,... 4 refers to the nodes of each element, N=[N;, N, N3, N4] is a 5x32 shape

" . T T T T .
funétion matrix and w° = {vf w5, Wi wj }r 1s the 32x1 element nodal unknowns

vector. In Eq. 3.1.7 H; (i=1,... ,4) are bilinear interpolation functions while Nj; (i,j=1,...4)
are Hermite cubic functions. The resulting finite element comprises 32 unknowns

variables. The strain is related to the nodal displacements using Eqs. 3.1.1 and 3.1.5 as

follows.

g, =B,w* (3.1.8)
where

B,=L,N=|B,, B,, B,, B, (3.1.9)
and
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—H;. 0 0 0 0 0 0 0

a 2
1 1

0 _Hl: 0 0 - 2Nli=5 —_NZIE _%N:ﬁ:: ET\J‘“::
a a ® a ' a "o a e

0 C-H: 0 0 0 0 0 0

0 0 lH 0 0 0 0 0

b LM
1 1 a 1 a

Bb, = 0 0 0 gHi.n - bz NII m —b—2N2i.rm EN3i.nn _N-li.qq

0 0 0 C lHi,1 0 0 0 0

b .
lHin 0 lH,= 0 0 0 0 0
b a
1 1 2 2

0 EHi,n 0 ;Hi,g “ENn.gn _ENZi.in ;Mgi.gn -2 N4i.gq

0 C, lH-‘“ 0 C lHig 0 0 0 0

L b = a ”
3.1.10)

In Egs. 3.2.3 and 3.2.10, C, is a constant defined in Eqs. 2.1.13 and a shorthand
convention for derivatives is used: f:=01/0&, etc.

The element stiffness matrix due to inplane strains is computed next. From Eqgs.
2.1.32, 2.1.34-38 and relations 3.1.7-10, the variation of inplane strain energy can be

expressed as
e Ll epnT e ey €e__¢€
dU =.[-1.[-1 3w’ B, Iy, B, w®abdidn=3w" kjw 3.1.11)

where the stiffness matrix, k%, is obtained through the following numerical integration.

1 1 n n
k(l:) = j.—l J‘_lBE lQb Bb abdéd‘\ = abzz wlrw(sB-ll)- (E.»r’nr)lQb Bb(éranr) (31 12)

=] s=1

In the above equation I, is expressed in relations 2.1.36-38, n is the number of Gauss
points, wy and w;s are weights (Reddy, 1993) and a and b are the dimensions of the plate

element.
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3.1.2 Stiffness Due to Transverse Effects

The variation of strain energy due to shear deformation was derived in Egs.
2.1.47-53. Further, from Egs. 2.1.12-13 the shear strains can be expressed in terms of the
unknown functions as follows.

£ =L, (3.1.13)

S S: T 3
3 >

where u: is given by Eq. 3.1.4 and g, and L are defined by the following relations

e.=f) e € €2f (3.1.14)
and
0 0 0 1 0
0 0 0 0
L,.-= < (3.1.15)
=10 1 0 O O
0C, 0 0 0

In Eq. 3.1.15, C; 1s a constant defined in Eqs. 2.1.13. Using the relation between the
unknown functions and the nodal variables (Eq. 3.1.5) the transverse strains can be

further related to the nodal unknowns as follows.

g, =B, w° (3.1.16)
where w° is the 32x1 nodal unknowns vector and B is defined as

B.,=L . N=[B, B, B, B_]| (3.1.17)

where
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0 0 0 H, 0000
0 0 0 C,H, 00 0 0

B, = 2 (3.1.18)
0 H 0O 0 0000
0 CbH 0 0 00 00

From Eqgs. 2.1.47, 2.1.49-2.1.53 and 3.1.16 the variation of potential energy due to shear

effects can be written as
1 pl T
5U5=“'l 5w Bl 1o B, w abdtdn=8w* kiw (3.1.19)

where the stiffness matrix k° is computed through numerical integration as follows.

e _ Il T . Sh ¥ T ~
ke _LL B/ I, B, abdtdnzaby > w, w, Bl (. n)IgB.(,.n,) (3.1.20)

=1 5=
The matrix I is defined in Egs. 2.1.51-53.
Finally the element stiffness matrix (k“)is the summation of the two matrices
k®=k; +k¢ (3.1.21)

The derivation of the inertia element matrix is presented, next.

3.2 Inertia Properties

In section 2.1.3, the variation of the kinetic energy was defined in Egs. 2.1.21-26
in terms seven intermediate unknowns (Egs. 2.1.20). Now, it is necessary to relate the
intermediate unknowns in terms of the nodal unknowns. From equations 2.1.20 and the
derivatives transformation one obtains an operator equation as follows.

U.=L_.u. (3.2.1)

S mZ2 ™3
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1 0 0 0 0 |

0O 1 0 0 —l—‘?—
a o0¢

0 C, 0 0 0

L,.={0 0 1 0

0 0 0 1 ——l—i
b Oy

00 0C, O

LO 0O 0 O i
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(3.2.2)

is the inertia differential operator which acts on the unknown functions vector (Eq. 3.1.4).

From Eqs 3.2.1 and 3.1.5 the intermediate unknown vecior 1s expressed in terms of

element nodal variables as follows

U.=B_w*
where
Bm =[Bml Bm2 Bm3 Bm4]
[H, 0 0 0 0 0 0
0 Hi 0 0 _lNli.E _NZi.E _EN3LE
a ; ; a ;
0 CH, O 0 0 0 0
B, =10 0 H, 0 0 0 0
1 a
0 0 0 Hi ‘gNn, _ENZi.n - N3i‘n
0 0 0 C/H, 0 0 0
| 0 0 0 0 Ny, aN, bNj;;

0

- bN4i.§
0
0

—-aN

0

4i.n

(3.2.3)

(3.2.4)

(3.2.5)

The inertia matrix is obtained from the variation of kinetic energy for an element,

as shown in Egs. 2.1.21-26 and Eqs. 3.2.3-5 as follows
I
ske=-[ [ ow*'BLJ, B, Weabdzdn=—5w m"W*

where m° is computed again using Gauss-Legendre quadrature.

(3.2.6)
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1 1 n n
m® = abLL B.J,B, didnz=ab) Y w, w, Bl (E.n,)3,B,(E.n,) (3.2.7)

r=] s=1

3.3 Load Vectors

The loads on a smart structure comprise the forces due to piezoelectric actuation
and external forces. In the following sections the derivation of the force vectors and their

FEM implementation are discusscd.g

3.3.1 Piezoelectric Force Vector

The force vector due to piezoelectric actuation can be computed from the
variation of strain energy, more precisely the second term in Eq. 2.1.31. As shown in
section 2.1.3, for a composite plate with surface bonded piezoelectric actuators, in
bimorph configuration the variation of strain energy is given in Eqgs. 2.1.39-45.
Considering equations 2.1.39 and 2.1.41-42 in conjunction with Eq. 3.1.8 this can be

written as follows
, e T e
dUj, :LL dw B, I, E;(t)abdg dn=3w"f; E;(t) (3.3.1)

where the piezoelectric force vector, f;,due to unit electric field is obtained by a

numerical quadrature

f; - J‘-llj.—ll BE ldabdé dT] = abii W'rwlsB—lE (énns) ld (332)

r=} s=|
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where By, is defined in Egs. 3.2.4-5 and L is given by relations 2.1.4345. It must be
noted that in the presence of delamination, in a zone covered by piezoelectric actuators,
equations 2.1.44 must be modified to account for unimorph configuration in the damaged

zone. The details are presented in section 3.5.

3.3.2 External Force Vector
Equation 2.1.58, in chapter 2, shows the work done by a distributed force in a
viriujal dispiacement compaiible with system constraints. The intermediate unknowns

vector U, is related with the nodal displacement vector through Eqgs. 3.2.3 such that the

work done for an element can be written as follows
SW =j'lfl swe BT L, p(&,n, tyabdedn = sw*' f° (3.3.3)

where dw°is the virtual displacement in terms of nodal variables and f ° is the element

force vector derived from external loads. Using Gauss-Legendre numerical quadrature,

I pl n n
fc =§—l .[l B:]LT‘V p(é’n’t)=abzz erW!sB’rl;](E.lr’ns7t)LT;N p(ér’ns) (334)

r=] s=|
Care should be made in the assembling process to asses the appropriate load applied to

various elements of the smart composite plate.
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3.4 Implementation of Continuity Conditions

The presence of delaminations alters both the static and dynamic behavior of a
smart composite plate reducing the stiffness and increasing the strain in the damaged
zone. Because the laminate is divided into several domains, accounting for the presence
of delaminations, the continuity of the displacement field at the delamination lateral
boundary is enforced. It is important that the numerical (discrete) implementation of

these boundary conditions is accurate.

3.4.1 Nodal Transformation

The continuity conditions of the displacement field at the delamination interface
was discussed in section 2.2. These continuity conditions are consistent with the higher
order theory and are based on the kinematic equations 2.2.1. They can be tailored for any
specific FEM implementation. In Eqs. 2.2.3, a specific condition requiring continuity at
the midplanes of each sublaminate for different unknown functions was presented. In this
section a new method of imposing continuity conditions, numerically consistent with
FEM implementation, is presented. The necessary continuity is assured at the nodes of
each element on delamination lateral boundary S, Fig. 3.1. As will be shown, this
approach significantly reduces the size of the stiffness and inertia matrices compared to

penalty approach (Seeley and Chattopadhyay, 1998) or Lagrange multipliers method.
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Piezoelectric Composite
material material

delamination

Figure 3.1. Smart composite plate geometry.

As expressed in Eqgs. 2.2.3, C° continuity is necessary for the unknown functions
uo, vo, o and B, C' continuity is necessary for wo and in addition the continuity of the
mixed derivative 8 wo/0x 0dy is also required. These continuity conditions, imposed at the
nodes on S of elements in both top and bottom sublaminates (Fig. 3.1), can be expressed
as

w . .=Tw

ni 1 nl

(3.4.1)
where w, and w, (i=2,3), the nodal unknowns of the undelaminated region and the

delaminated region respectively, are as follows.
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w,n:{‘ox a Vo B Wo Wo. Wo, Wo“y}r (342)
r

wniz{uOi a, Vo, B Wo Wo, Wy, wOi.xy} (3.4.3)

The transformation matrix, which relates the unknowns in the undelaminated

region to those in the delaminated sublaminates is expressed as follows.

[ 4(c; —¢))°
I c,-¢j———— 0 0 0 —(c.—-cy) 0 0
1 2 1 1
s 3hj
2
4(c. —cy)
0 S Bl 0 0 0 0 0 0
02
i
3
4(c. —¢cy)
0 0 1o —c-—1—1" 0 0 ~(c; —¢;) 0
T, = 3h?
2
4(c: —cq)
0 0 o 1-— 17 9 0 0 0
2
1
0 0 0 0 1 0 0 0
0 0 0 0 0 I 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1]
(3.4.4)

Typically, the above transformation is applied to two or three nodes on the interface S of
the elements on the top or bottom sublaminates. It eliminates the need for nodes of type

n; or n3 s in Figure 3.1 modifying the element matrices.
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Top sublaminate element

/mz
/ |

n; y

Undelaminated zone element

3
ny ns

n Bottom sublaminate element

n; n;

Figure 3.2. Transformation of nodes on S.

3.4.2 Element Transformation

For elements on the two sublaminates, with nodes on the delamination lateral
interface S as shown in Fig. 3.2, the transformation in Eqs. 3.4.1-4 is applied for each
node belonging to S. This transformation is then used to express the kinetic and potential
energies of those elements with respect to the nodes in the undelaminated zone. The

invariance of the energy leads to modifications of the corresponding element matrices,
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thereby eliminating unnecessary nodes. Thus, the size of the assembled inertia and
stiffness matrices is drastically reduced.

For the case shown in Fig. 3.2 the nodal unknowns of the delaminated zone
elements (top and bottom sublaminates, denoted by D, and D; in Fig. 3.1), are expressed

in terms of nodal unknowns of undelaminated zone (denoted by D, in Fig. 3.1) as

follows.
w . =T,w w.=T,w,
n n,’ n n ~
: ; ) ’ ; (3.4.5)
W i =1‘}“'nl ’ wn? =T3w”,_ :
In a matrix-vector form, the above relations can be written as
W W
n n
e _ wﬂl_ =Y w“lz =Y ¢ 346
wold_ w - %L W, - hwne\\. ( v )
n3 n3
W W
E]

n

where 1=2,3 corresponds to elements in zones D, and D;, respectively. The element

transformation matrix Y; is given by a 32x32 matrix in the following blockwise form

T, 0 0 O
O1 0O

Y, = (3.4.7)
001 O
0O 00T

where I 1s the 8x8 unity matrix and O is the 8x8 null matrix.

The kinetic and potential energies can be written in two forms, first using the
element node unknowns vector (denoted by ‘old’) and second the transformed vectors
(denoted by ‘new’). From this equivalence, results the element matrices with respect to

the new system of coordinates.
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1 T 1 T
e _ e ¢ e _ ¢ € ¢
Ki _Ew(‘ldi Moid; Wold; —Ewﬂcwi M pewi Wnewi

e 1 e Tye e 1 e T, e e
Uf=—w,. K&, wi, =—w k w
i 2 oldj oldi "W old; 2

(3.4.8)

new new new |

From Eqs 3.4.8 and 3.4.6, the modified element matrices are computed as follows.

e _wT e
m =Y, mgy; Yy,

Kl = YJ kﬁldi Y,

new i

(3.4.9)

In the reverse case when going from the damaged zone to the healthy zone, Egs.

3.4.9 are accordingly changed resulting into the following form

e _T___¢
m =Z,m,, Z;,

k; = Zﬁ kildi Z,

newj

(3.4.10)

where the new transformation matrices, Z;;, affect different nodes of elements in the zone

of delamination.
I O 0 O
OT 0O
Z,= ! (3.4.11)
O OT O
O 0 O 1
Finally, the element force vectors are transformed as follows
f:e\\'i = YIT f:ldi (34 12)

when going from the healthy to the damaged zones. When going from the damaged to the

healthy zone, these take the following form.

o =Z f5. (3.4.13)

new
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3.4.3 Element Properties in Delamination Zone

The inertia and stiffness matrices and the external load vector for the sublaminates
in the delaminated zone are computed using the procedure described in sections 3.1-3. It
considers the appropriate stacking sequence of layers in the sublaminates. It must be
noted, that the integrals in z direction are performed only over the layers belonging to
each sublarpinate. The total thickness is appropriately used. Then, using the procedure
presented in sections 3.4.1-3 the continuity conditions are imposed to change the element
propertics fw the giobal finite clement mesh only for elements with nodes on S

One important difference occurs in computing the force vector due to
piezoelectrié actuation. If the elements in the delaminated zone have piezoelectric active
layers separated by a delamination, the assumption of bimorph configuration is violated.
In this case, each element in both top and bottom sublaminates must be modeled using

unimorph behavior. The piezoelectric force vector still can be computed using Egs.
2.1.39-45 with the difference that either I for the top sublaminate elements or I’* for

the bottom sublaminate elements must be set to zero in Egs. 2.1.44. The remaining
computations remain unchanged as expressed in Eq. 3.3.2. In the calculation of the inertia
and stiffness matrices and the external load vector, the total thickness of the sublaminates
in the damaged zone is used. For elements with nodes on the delamination lateral
boundary S, the piezoelectric force vector is modified using equations 3.4.12 or 3.4.13.

In the case of elements with three nodes on S, the transformation matrices Y,; and

Z;; must be modified by replacing submatrices I on the main block-diagonal for each
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node on S, with either T, or T;. The element nodes not belonging to S are not affected.

This means that a 8x8 identity matrix I appears in those positions.

3.5 Assembly Procedure

An assembly procedure is developed to appropriately designate the inertia,
stiffness and load properties to each node of the global mesh while accounting for the
contributions from adjacent eleiments sharing that node. Vanous types of elements can
have contribution to a single node. These include contribution from healthy laminate
elements, healthy elements with piezoelectric actuators in bimorph configuration,
elements in the top and bottom éublaminates and delaminated elements with piezoelectric
actuators in unimorph configuration.

The corresponding nodal unknowns of elements in the delaminated zone which
belong to the delamination lateral boundary are transformed, as shown in section 3.4, to
the nodal unknowns of the healthy structure in the global mesh. The transformation 1s
applied to the smaller element matrices or vectors and the resulting matrix or vector is
added in the assembly process. Thus, the size of the global inertia and stiffens matrices 1s
significantly reduced. For multiple delaminations, as much as 70-80% saving in both
storage requirements and CPU time is obtained.

The assembled system of ordinary differential equations, describing the dynamics
of a smart composite plate with actuators and possible delaminations is written in the

following form.
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MG+Kq=F+F, (3.5.1)

where M is the global inertia matrix, K is the global stiffness matrix, F is the external

load vector and F;, is the piezoelectric force vector.
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4. Damage Detection Techniques

4.1 Introduction

A delamination technique based on mode shapes was introduced by Pandey et al.
in 1991. They proposed the use of curvature mode shapes in detecting damage in a beam.
The curvature is obtained from mode shapes using Laplace’s finite difference equation

Wy - W, W, f
Ci=w,=—u hvzl“‘-—l | (4.1.1)

where w is the modal displacement, h 1s the stepsize of the finite differcncc mesh and
index 1 denotes the location where curvature is computed. The authors reported that the
absolute difference in the curvature mode shapes, between the healthy and the damaged
beam, is a better indicator of damage location compared to the absolute difference in the
displacement mode shapes.

Ratcliffe and Bagaria (1998) modified the above procedure using a gapped
technique and proposed that the curvature should be locally smoothed. In their approach,
for a composite beam with a through the width delamination a third order polynomial was
used to describe the curvature. The gapped cubic calculated for the ith element of the
curvature C;, at position x; along the beam, was defined as

p(xi)=a0+alxi+a2xf+a3xi3 (4.1.2)
The coefficients a, a;, a; and a3 are determined using curvature elements C., Cj.y, Ci+

and C;:+>. The curvature C; of the ith element is not included (gapped) in the calculation of

BUPT



41

the third order polynomial. A damage index J; is calculated for the ith position on the
beam as follows:

5, =[p(xi)—ci]2 (4.1.3)

In Eq. 4.1.3, the nght-hand side is squared to reduce the effect of numerical errors
or measurement noise. Separate gapped cubic polynomials and damage index values are
determined for each grid point in turn. The above procedures uses the assumption that the
damage is strictly located in a very small zone, considering the damage to be discrete
rather than continuous. However, results are not presented for cases where the detect 1s
spread over a larger zone such as is the case with delaminations. Even the meshsize used
in this work is not refined enough in the delamination zone.

Other methods have also been proposed to characterize defects in structures. The
modal vector consistency method uses a set of measures based on mode shapes (Harris,
1996). In this procedure a modal assurance criterion (MAC), 1s defined as a scalar
constant which is a measure of consistency between a given modal vector and a reference

modal vector, is defined as follows.

H ]2
oyt
. H . . H .
(\ut \ut)(\u? w?)

The comparison is made between reference modal vector r and the compared modal

MAC,, = (4.1.4)

vector ¢ for the kth eigenvector. Superscript H stands for the hermitian conjugate of a
vector. The modal assurance criterion takes on values from 0, representing no consistent

correspondence, to 1 representing a consistent correspondence. Based on this approach,
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if the modal vectors truly exhibit a consistent relationship, the modal assurance criterion
should approach unity.

Another modal assurance criterion is the coordinate modal assurance criterion
(COMAC) (Harris, 1996). This measure is used to identify the degrees of freedom with
the largest influence in a low value of MAC. A set of pairs of corresponding modal

vectors 1s used to define COMAC as follows

P

<

N

D wle

k=1

COMAC, = —— (4.1.5)

N N
Z\VWF Z‘Plk 6ik
r=1 r=|

where ! is the modal coefficient associated with the ith degree of freedom and kth

modal vector from one set of modal vectors and ¢! is the modal coefficient associated

with the 7ith degree of freedom and 4th modal vector from the second set of modal
vectors. The summation is extended over N modes of interest. Only those modes that

match between the two sets are included in the computation.

4.2  Strain Based Delamination Detection Techniques

Delamination detection in a smart composite structure IS in some respects
different from any other damage detection technique. First of all, the delamination cannot
be treated as a punctual or discrete damage. A refined modeling procedure must be
employed to account for the presence of delamination as a continuous defect, even in the

case when the delaminated zone is small. Also, from an experimental point of view a
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comprehensive set of measurements must be performed to better characterize the changes
in both static and dynamic parameters with and without delaminations. This should be
followed by an accurate mathematical treatment of the experimental data.

Second, the presence of actuators induces discontinuities in both geometry and
material properties of the structure. Large jumps in mechanical parameters such as strain,
appear in the actuator zones. These jumps are misleading, especially in the case when a
delamination is present and contribute to extra jumps.

Third, a com{positc structure is highly anisotropic. Therefore, minor changes
appear in the natural frequencies and displacement mode shapes for relatively large
delaminations. Reseafchers have observed less than 2-3% changes in the fundamental
frequency with delamination area up to 20% of the composite structure (Shen and
Graddy, 1991). This is a result of the strong coupling between different types of
displacements and forces in the composite structure when the delamination breaks the
continuity and the possible symmetry in the thickness direction.

Fourth, the previous research in delamination modeling and detection techniques
for composites or smart composite structures used classical laminate theory or first order
laminate theory. As shown by Chattopadhyay et al. (1998) and Dragomir-Daescu et al.
(1998) the higher order theory is able to accurately model even thick composite
structures. The contribution of the transverse effects is very important in the computation
of natural frequencies for thick composites. Both the classical theory and first order
theory largely overpredict the natural frequencies especially for higher natural
frequencies. They also overestimate the higher eigenfrequencies when delaminations are

present in the composite.
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Finally, the presence of multiple delaminations was never accurately described. It
is known that multiple small delaminations could produce similar changes in modes and
natural frequencies as a single larger delamination.

In order to have multiple characterization of delamination, the previous criteria
(MAC and COMAC) are modified to account for modal strains instead of modal
displacements. It was observed by Chattopadhyay et al. (1998) that the strain is a more
appropriate measure of delamination than classical mode shapes. Also, the gapped
simoothing technique of Rateliffe and Baéaria (1998) is extended to 2 two dimensional
method suited for smart composite plates. The method 1s also modified to account for
strains instead of curvatures. This is due to the following reasons. First, it 1s difficult to
measure the curvature mode shapes for plates and second the Laplace’s equation used to
find the curvature from the mode shape amplifies both small numerical errors and
experimental noise. The strain is also easily measured in experimental work using a
variety of methods starting from strain gauge techniques, piezoelectric sensor
measurements and more sophisticated Moiré’s techniques and laser scanning.

The new modal strain assurance criterion (MSAC) is defined as a scalar measure
of consistency between the modal strain of the healthy structure and the modal strain of
the damaged structure. It also takes on values between 0-1. A good correlation of modal
strains representing consistency is suggested by a value approaching unity.

[ZZ( et ) ]

m=1 I=]

MSAC , = (4.2.1)

m_, |} m

S fed

m=l I=] m=l =1
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The summation in Eq. 4.2.1 1s extended over the (Mmax X lmaxy €lements in the plate for
both the healthy and the damaged structures (denoted by subscript ‘del’). In Eq. 4.2.1, k
is the mode of interest and index r=1,2,6 accounts for the appropriate inplane strain.
Subscript indices m and | denote the element position in the plate (Fig. 4.1). This index is
expected to give better indication of mode consistency because the absolute differences
between modal strains of the healthy structure and the damaggd structure are larger than
the corresponding differences between modal displacements. |

An extension of the modal strain assurancc critcrion 1s tlzlc coordinate modal strain
assurance criterion (COMSAC). The COMSAC attempts to identify the element, if any,
that contributes to a low value of MSAC. The COMSAC is calculated over a set of modal
strain pairs, undelaminated versus delaminated. The two modal strains correspond to the
same modal vector, but the set of modal strain pairs represents all modes of interest in a
given frequency range (number of modes, N). For the sets of modal strains that are
compared, there i1s a value of COMSAC computed for each element modal strain.

COMSAC 1s defined as follows

N 2

Z ( )del

k=

Sarsial.

COMSAC,, = (42.2)

where, €™ is the strain corresponding to the kth mode of vibration in the m/th element of

rk
ml

the undelaminated structure while (e ), is the similar strain in the delaminated

structure. In the above equation is assumed that there is a match for every modal strain in
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the two sets. Only those strains that match between the two sets are included in the
computation.

A third damage index is developed by modifying the existing gapped smoothing
technique (Ratcliffe and Bagaria, 1998) shown in Eqgs. 4.1.2-3. First, extension is made to
a two dimensional search procedure over the area of a plate and second, the polynomial
coefficients are determined using the inplane strains rather than curvature. As shown
before when using strains, the Laplace’s difference equation is bypassed thereby
climinating an important sourcc of cz':'oi;'s. Also, the strains contain by far much more
information than classical curvature because they are computed using the entire
displacement field functions. By contrast, the curvature computation is based only on the
out of plane displacements.

Strains are also a more accurate measure from an experimental point of view. It 1s
easier to measure inplane strains from the free response or the forced response of a
structure than to measure curvature from the frequency response functions. As shown in
the work by Ratcliffe and Bagaria (1998), the experimental modal curvature is so noisy
that even the curvature of the first mode is difficult to identify. In their work, the relative
error in experimental curvature is reported to be on the order of 50-70% which can
definitely obscure the effect of delamination. By comparison, the modal strains can be
easily measured within an accuracy of 5-10%.

The procedure developed here locally fits a bicubic polynomial to one of the
inplane strains. As shown in Fig. 4.1, the index m in x direction and / in the y direction

are not included in the computation of the bicubic.
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Figure 4.1. Mesh for bidimensional gapped smoothing procedure

The gapped polynomial, calculated for the (m,/) component of the inplane strain 1s
the product of two cubics, one for direction x and the other for y direction. This is defined
as follows.

P(X,¥)=Co +C X +Coy+c X +C, Xy +C5y° +co X +c,x°y+cgxy’

3 3 2.2 3 3,2 2.3 3,3 (4.2.3)
+C9y +C|OX y+C”X Yy +C12Xy +C13X Y +CHX y +C15X Yy
The coefficients ¢y, ci,...,C1s are calculated using the strains €™, ,, €%, ..., 5,1,

of the 16 neighbors of m/th element (Fig. (4.1)). It must be noted that five elements with
either a subscript m or / are not included in the calculation of the polynomial coefficients.

This results in a system of 16 equations with 16 unknowns.
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p(xi,yj)=si'jk, i=m-2,m-1m+1,m+2, j=1=-21-1L1+11+2 4.24)

The damage index dy, for the m/th element is calculated from the polynomial and

the corresponding strain, as follows.

dpy =[pCeny) -t ] (4.2.5)
This is computed for each element, except the elements on two outermost rows on each
side of the plate that do not have a complete set of neighbors. Note that the procedure
described above do not require un undamaged reference. The method operates solely on
the computed or measured strains of the damaged structure. Eliminating the neea for an
undamaged reference implies that the strain distribution for the undamaged structure is
smooth and continuous. This also implies that the structure has no stiffness
discontinuities. For structures with discontinuities for example, smart composite plates
with surface bonded or embedded actuators and sensors, the method can be improved by
comparing the damage index determined for the delaminated structure with that obtained
from an undelaminated one.

A fourth measure of delamination is also proposed. This procedure eliminates the
need for smooth and continuous strain distribution and is therefore applicable to the
detection of delaminations in a smart composite plate. However, an undamaged reference
is necessary. The inplane modal strains of the delaminated structure are compared with
those of a similar healthy structure. The difference in modal strains is squared to diminish
the small numerical errors or experimental noise. The new damage index is defines as

follows
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O = [s::l "(’5:1 )delr (4.2.6)
where subscript m/ refers to the element under investigation, subscript r is the number of
vibration mode for which the modal strain is computed and k=1,2,6 refers to the
appropriate strains. The damage index uses strains €; and € for bending mode shapes and
g6 for torsional mode shapes. Usually the modal strain corresponding to the first mode of
vibration or a few lower modes is sufficient to properly identify the damaged zone.

As shown by Chattopadhyay et al. (1998) the delamination detection methods
based on modal strain are more reliable than those based on classical mode shapes. A
comparison of all of the methods described, for practical cases of composite and smart
composite plates with delaminations is presented in the next chapter. The higher order
theory and the continuity conditions pre;ented in chapters 2 and 3 are used in the
modeling of delamination. The finite element procedure discussed in chapter 3 is used to

discretize composite plates with actuators and delaminations.
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5. Numerical Results

The finite element implementation of the developed theory must be correlated
with other approaches to ensure its validity and accuracy. In this chapter, validations of
the higher order theory applied to composite and adaptive structures in the presence of
delaminations are presented. Comparisons are made with published experimental data
and results obtained using the commercial finite element code NASTRAN. Next, results
obtained using the present theory are presented to study the influence of delaminations
and piezoel;ectn'c actuation on composite. The results from the higher order theory are
also compared with those obtained using the classical laminate theory and the first order
shear deformation theory for a wide range of plate thickness. Finally, the damage in the

structure is characterized using the damage indices discussed in chapter 4.

5.1 Validation

5.1.1 Undelaminated Cantilever Composite Plate

In this section the results obtained using the developed higher order based
technique, implemented using the finite element method, is compared with those obtained
using NASTRAN (Chattopadhyay et al, 1998-1999). Numerical results are presented for
a Graphite/Epoxy [0°/90°]>s composite strip plate with material properties E,=134.4 GPa,
E,=10.3 GPa, G,,=G,3=5GPa and v,,=v,,=0.33. The plate dimensions are such that

length a=0.127 m, width b=0.0127 m and total thickness h=0.001016 m (Fig. 5.1). A
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15x4 finite element mesh is used to generate the inertia and stiffness matrices with the

degree of accuracy required for the modes considered.

fixed edge +

h
N U

Figure. 5.1. Composite plate geometry

The results are presented in Table 5.1 where the first 10 natural frequencies
obtained using the current approach are compared with NASTRAN results. Both CHEXA
3D elements and CQUAD 2D elements are used in NASTRAN modeling. The results
from the current approach are very close to NASTRAN 3D results, the largest difference
in natural frequencies being less than 3%. As expected all the natural frequencies
obtained from the current approach are slightly greater than NASTRAN 3D results. This
is due to the fact that the present theory is still a 2D plate theory leading to slightly stiffer
numerical model compared to NASTRAN 3D model which uses a full three dimensional
elasticity approach. The results based CQUAD elements, however are based on a first
order theory and produces worse results than the proposed higher order theory. For
example, the third and eighth natural frequencies are 5% and 6% smaller than the

corresponding 3D solutions. However, the trend is not consistent and some natural
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frequencies are greater than NASTRAN 3D solutions (the first and fourth) while other
frequencies are smaller. For example, overall, the total error between the NASTRAN 3D
and 2D approaches is two times larger than the total error between NASTRAN 3D and
the present model. This proves the accuracy of the higher order theory over a large
frequency domain, 0-4600Hz.

It is important to note that the computational effort associated with NASTRAN
3D modeling is much larger compared to the higher order theory. This is because a 3D?
mech is necessarv to model elements in each laver of the composite. The complexit\f
increases with increase the number of plies since larger global matrices are obtained;
when the number of plies is large. By contrast, using the present theory, the calculation o[i
the plate element properties 1s independent of the number of plies. The associated
modeling time and CPU time for generating element matrices for a larger number of
plies, using the present approach, is a small fraction of the total CPU time required in the
calculations of the dynamic properties of the plate such as natural frequencies and mode

shapes.
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Table 5.1 Natural frequencies for a cantilever plate (Hz)

Mode no.  Presenttheory NASTRAN3D NASTRAN 2D

1 82.116 81.878 81.94

2 513.34 511.45 509.38
3 610.33 597.31 567.33
4 877.54 860.85 863.47
5 1431.8 1428.1 1412.9
6 1888.8 1839.1 1 740.64
7 2790.9 2790.8 2735.71
8 33294 3234.1 3050.1
9 4581.1 4580.1 4457.3
10 4717.3 4600.0 4535.1

5.1.2 Cantilever Composite Plates with Delaminations

In this section the influence of delaminations on first natural frequency of
composite delaminated plates is studied. The results from the current theory are
compared with published experimental results and NASTRAN 3D approach. The test
articles are cantilever plates with geometry and material properties similar to one used in
the previous section. Each plate has a through-the-width delamination of varying length

(B). The delamination is placed at different laminae interfaces, at a distance z; measured
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from the laminate midplane as shown in Fig. 5.2. The center of delamination coincides, in
all cases, with the center of the plate.

The finite element implementation accounts for different thicknesses and stacking
sequences of regions with and without delamination. A 5x4 mesh is used to model each
zone of the plate, both undelaminated ends and the two top and bottom sublaminates. The
mesh density used can accurately model the important modes of vibration including a few
bending modes, torsion modes and lateral bending modes. Also, some local sublaminates

miedes, appearing n cases with larger delamination are modeled appropriately.

4 Z fixed end composite delamination

/ / e g
T T

7

Figure. 5.2. Composite plate with delamination
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Figure 5.3. Comparison of first natural frequency variation with delamination length.

The results from both the current higher order theory and NASTRAN 3D are
compared with experimental results obtained by Shen and Grady (1991). As seen in Fig.
5.3 there 1s a very good agreement between the current approach and NASTRAN model
over the entire range of delamination length, (=0-100 mm). This proves that the higher
order theory and the continuity conditions at the delamination lateral boundary as
implemented 1n chapter 3 are very effective in modeling composites with delaminations.
Both NASTRAN and higher order theory results slightly deviate from the experimental
results, particularly in the case without delamination (f=0) or for small delamination
lengths. The largest deviation is smaller than 3% which can be attribute to both

experimental errors on one hand and modeling and numerical errors on the other hand.
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Overall, the accuracy obtained using the higher order theory, with and without
delaminations, allows the introduction of further complexity such as actuation. In section
5.3 smart composite plates with and without delaminations will be investigated. It must
be noted the NASTRAN 3D computation expenses with modeling in the presence of

delamination, is quite large compared to the higher order theory.
5.2  Thick Composite Plates

In this section the current implementation of the higher order theory is compared
with results using other existing approaches. Numerical results from the present theory
are presenfed along with results from the classical laminate theory and the first order
theory to asses the importance of accurately modeling the transverse shear effects. Two
parametric studies are presented. In the first study, the variation of natural frequencies
with plate thickness is studied using all the three theories. The ratio a‘h is varied between
125 representing a very thin laminate to 10 representing a very thick laminate. In the

second study, for a thick composite plate, a midplane delamination of variable length 3 is

introduced. The variation of natural frequencies with 8 is presented using all three

theories.

5.2.1 Variation of Natural Frequencies with a/h
Plates as shown in Fig. 5.1 are considered as test articles. The inplane dimensions

and material properties are the same as in section 5.1.1, while the thickness h is a variable
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parameter. A 15x4 mesh is used to generate the natural frequencies in all three theores.
The variation of the first two natural frequencies, corresponding to the first two bending
modes, are shown in Fig. 5.4 a and b. The third natural frequency, corresponding to the
first twisting mode, is presented in Fig. 5.4 c.

As expected, the agreement between all theories is good for thin plates. However,
significant differences between the classical theory and the other theories occur for
thicker plates with smaller a/h ratio. This is due to the fact that classical theory does njot
CousIACt uansverse siicat ciieets and theicviv caiiot accurately deseribe the d:,‘!‘.?.f’!’.f??f‘
of thicker composites. The first order theory, introduces transverse shear deformation
through a constant distribution of the strain through the thickness. Therefore, the
transverse shear effects are not modeled accurately. The higher order theory, which uses
the same number unknowns as the first order theory, allows for a quadratic variation in
transverse shear deformation and consequently produces a more realistic lower stiffness
model.

As seen 1n Figure 5.4 a, the first natural frequency is highly overestimated by the
classical theory, especially for thick plates while the first order and the higher order
theories are in good agreement. Larger differences between the theories are observed in
Figs 5.4 b and c, for the second bending natural frequency and the first torsional natural
frequency, respectively. Even the first order theory overpredicts these frequencies. The
natural frequencies from the higher order theory are smaller, as expected, because the

transverse shear deformation is better approximated in this theory.
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The results obtained indicate that it is necessary to include an accurate description
of the transverse shear stresses which is important in composites due to the large ratio
between the directional material properties, Young’s moduli and shear moduli. The
transverse shear effects increase with plate thickness, resulting in larger deviations
between theories as a’h reduces. Therefore, the present theory is applicable to plate of
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