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CHAPTER 1

INTRODUCTION - THE ACTUALITY OF THE STUDY

1-1

A new class of nonlinear phenomena has been detected widely in engineering and natural

svstems during more than two decades of intense studies (section [-1). The main purpose

of this introductory chapter is to summarize the state of the art in the application of

nonlinear dvnamics theory in power electronics. The continuing development of high-
power semiconductor devices made possible the high-efficiency solid-state power
conversion. Operation of these devices as switches implies that power converters are
essentially nonlinear time-varving dynamical systems (section 1-2). Although hereby they
become difficult to study, the effort is worthwhile because of their many practical
applications and increasingly importance in the delivery and utilization of electrical
energy. Traditional analysis approaches do not always provide reliable models since

nonlinear effects are generally ignored and this sometimes misleads to a circuit supposed

to perform acceptably while in practice it will not (section 1-3). Techniques and ideas of

nonlinear dynamics offer another way of investigating these circuits, which is more
accurate and able to reproduce nonlinear phenomena like chaos, quasiperiodicity and

subharmonics (section [-4).

CHAOS: A “NEW” CLASS OF NONLINEAR PHENOMENA

Three centuries after the publication of Newton’s “Principia” (1687), the discovery of
chaotic dynamics has doubted one of the basic doctrines of classical science, according to
which a deterministic system is completely predictable, i.e., given the initial condition and
the mathematical model, its behavior can be predicted for all time. Simply put, a chaotic
system 1s a deterministic system exhibiting random behavior.

Although only relatively recently identified as a robust phenomenon, chaos has
certainly been encountered by scientists many times in the last century but it was dismissed

as physical noise. The history of chaotic dynamics can be traced back to the work of Henri

BUPT



CHAPTER | I-1 CHAOS: A “NEW" CLASS OF NONLINEAR PHENOMENA

Poincaré on celestial mechanics around 1900 [1]. However, after discovering the extreme
sensitivity to initial conditions in a simplified computer model of atmospheric convection
Lorenz gave in 1963 the first suspicion that chaos might be important in a real physical
system [2]. Lorenz’s paper, which appeared in an obscure journal, was largely overlooked
for some years. The term chaos was first time used by Li and Yorke in their 1975 paper
“Period three implies chaos” [3]. In 1976, May published an influential article describing
how simple nonlinear systems can exhibit complex, chaotic behavior [4]. In the late 1970s,
the cascade of period-doublings, which form one of the commonest routes to chaos, was
analyzed by Feigenbaum [5]. Over the past two decades there has been a great
advancement in the theory of nonlinear dynamics and it has been found that various and
interesting nonlinear phenomena are very common in a large number of physical systems.
Chaos is such a widespread phenomenon that it has now been reported almost in every
scientific discipline: astronomy, biology, biophysics, chemistry, engineering. geology.
mathematics. medicine, meteorology, plasmas, physics and even the social sciences.

It is no coincidence that computers have permeated society during the same two
decades in which chaos has grown into an independent field of research. Actually, the
available computing power has spurred much of the research in chaotic dynamics. The
reason is that computers can calculate solutions of nonlinear systems. This is extremely
important, since unlike linear systems, where closed-form solutions can be written, few
nonlinear systems and no chaotic systems possess closed-form solutions. Computers allow
numerical “experiments” to be performed quickly and easily: parameters can be changed,
system equations modified and solutions displayed. Therefore, simulations represents a
powerful tool for gaining intuition about nonlinear systems and for exploring the exciting
terrain of chaotic dynamics and they are used to this end during this thesis, too. However,
simulations have their limitations. Computers have finite precision and inevitably generate
errors when evaluating floating-point expressions. Furthermore, they are naturally discrete-
time and there are unavoidable errors when they are used to simulate continuous-time
systems. Finally, a simulation is of little or no help in proving theoretical results since even
if the result of a simulation were completely accurate, it is just one solution of one system
from one initial condition using one set of parameter values. The moral is that, although
simulations are a useful tool, their results must be interpreted carefully, checked against

intuition and theory, and used only for purposes for which they are suited.
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CHAPTER | -2 SOURCES OF NONLINEARITY IN POWER CONVERTERS

SOURCES OF NONLINEARITY IN POWER CONVERTERS

The application area chosen in this thesis for the study of nonlinear phenomena, with an

emphasis on chaotic behavior, is represented by power converters. Although they do not

have an end of their own, power converters are always an intermediary between an energy

producer and an energy consumer. The field is one of growing importance: it is estimated

that during the twenty-first century, 90% of the electrical energy generated in developed

countries will be processed by power converters before its final consumption. This “"green”

technology has three main aims:

e To convert electrical energy from one form to another and to facilitate its regulation
and control

e To achieve high conversion efficiency and therefore low waste heat

e To minimize the mass of power converters and the equipment (such as motors) that
they drive

There are four basic types of power converter, since electrical power supplies can
be either DC or AC: AC-DC converters (also called rectifiers), DC-AC converters (also
called inverters), DC-DC converters and AC-AC converters. Here AC typically denotes
nominally sinusoidal voltage waveforms, while DC denotes nominally constant voltage
waveforms. Small deviations from nominal are tolerable. A DC-DC converter and an
inverter are subject of the study comprised in present thesis.

Power converters technology is increasingly found in the home and workplace
[6.7.8.9]. Familiar examples are the domestic light dimmer, switched-mode power supplies
in personal computers, heating and lighting controls. electronic ballasts for fluorescent
lamps, drives for industrial motion control, induction heating, battery chargers, traction
applications such as locomotives, solid-state relays and circuit breakers, off-line DC power
supplies. spacecraft power systems, uninterruptible power supplies (UPSs), conditioning
for alternative energy sources, automobile electronics, electric vehicles, etc.

In order to reduce energy costs, high efficiency is needed. but also because it
reduces the amount of dissipated heat that must be removed from the power converter. In
large, high-power systems, efficiencies of higher than 99% can be obtained, while small,
low-power systems may have efficiencies closer to 80%. The goal of high efficiency
conditionates that the power processing components of the circuit be close to lossless. Two

basic groups that can be approximated by real components are available:
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CHAPTER | [-2 SOURCES OF NONLINEARITY IN POWER CONVERTERS

e Switching components. like transistors and diodes. They are operated cyclically and
serve to vary the interconnections or the topological state of the circuit during a cycle.
Switches turn on and off in response to an applied signal, which in feedback-controlled
systems depends on the state variables. Passive switches (diodes) have a highly
nonlinear v - i characteristic.

e Reactive (energy storing) components, like inductors and capacitors. They are
characterized by differential equations: v = L di/dt for an inductor, i = C dv/d: for a
capacitor. The capacitors and inductors perform filtering actions. regulating power
flows by absorbing, storing and supplying energy.

Power converters use components from both groups. The switching components steer the

energy around the circuit, while the reactive components act as intermediate energy stores

and input/output reservoirs. Ideal switches, capacitors and inductors do not dissipate power
and circuits containing only such elements do not dissipate power neither (provided that
the switching operations do not result in impulsive currents or voltages, a constraint that is
respected by power converters). In particular, an ideal switch has zero voltage across itself
in its on (or closed, or conducting) state, zero current through itself in its off (or open, or
blocking) state and requires zero time to make a transition between these two states.

Therefore, its power dissipation is always zero. Of course, practical components diverge

from ideal behavior, resulting in some power dissipation. However, for the types of

dynamic behavior examined in this thesis, it suffices to assume idea/ components.
The presence of both types of component detailed above implies that the circuits
are nonlinear, time-varying dvnamical systems, with two implications:

e Power converters are difficult to analyze

e Power converters are likely to show a wealth of unusual behavior.

There are also several unavoidable sources of unwanted nonlinearity in practical power

converters:

e The semiconductor switching devices have intrinsically nonlinear DC characteristics.
They also have nonlinear capacitances and most suffer from minority carrier charge
storage.

e Nonlinear inductances abound: transformers, chokes, magnetic amplifiers and saturable
inductors used in snubbers.

e The control circuits usually involve nonlinear components: comparators, PWMs,

multipliers, phase-locked loops, monostables and digital controllers.
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LIMITATIONS OF CONVENTIONAL APPROACHES

Power converters are tipically modeled by taking an average over a switching cycle, an
approach first proposed by Wester [10]. Since a linear model is required by conventional
control theory, the averaged circuit is generally linearized about a suitable operating point.
State space averaging, developed by Cuk, operates on the state equations of the circuit
[11.12]. “Injected and absorbed™ currents are used by an alternative method [13].
Vorperian suggested a method of treating the switch-diode combination in isolation from
the converter circuit [14,15]. Regardless of the details, these methods have the same
purpose: to replace the nonlinear, time-varying dynamical system with an averaged,
linearized one. The justification is that when designing the control circuit, one need no
longer be concerned with the microscopic details of the power switching. Clearly,
something is lost in the process.

The conventional averaging technique gives a useful representation of the system
and allows simple design procedures for operation in certain regimes. However, it has
some evident limitations. For example, the standard analysis by averaging predicts that the
buck DC-DC converter will be stable over the whole operating range of input voltage and
load resistance. But it was revealed by numerical simulations and experiments that this
converter exhibits subharmonics and chaos over a significant range of parameter values
[16,17,18]. No method that relies upon linearization can predict such effects. which are
typical to nonlinear systems. In addition, the process of averaging can suppress behavior
that a more detailed model might display.

Some cases of instability can be predicted by nonlinear averaged models, e.g., the
Hopf bifurcation in the autonomous Cuk converter [19]. However, the nonlinear averaged
model is also of little or no use in predicting and analyzing subharmonics and chaos such
exhibited by the already mentioned buck converter. For the Cuk converter, where nonlinear
averaging can successfully predict the first instability, it failed to throw any light on the
subsequent bifurcation sequences. More detailed analyses based on the other models and
techniques may therefore be warranted for safe and reliable operation of a power converter.
Power electronics researchers have begun only relatively recently to use the methodology

of nonlinear dynamics in the analysis of power converters.
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CHAPTER 1 [-4 HISTORY OF INVESTIGATION OF NONLINEAR DYNAMICS
AND CHAOS IN POWER CONVERTERS

HISTORY OF INVESTIGATION OF NONLINEAR
DYNAMICS AND CHAOS IN POWER CONVERTERS

In 1927 Van der Pol had observed first time chaotic effects in an electronic circuit [20,21]:
a relaxation oscillator, containing a battery, a neon bulb, a capacitor and a resistor, was
driven by a sinusoidal signal and tuned to generate subharmonics, but “an irregular noise”
was often heard. Van der Pol dismissed this “noise” as a “subsidiary’” phenomenon and for
over 50 years there was little interest in explaining such phantom oscillations. Baillieul,
Brockett and Washburn suggested that chaos could occur in DC-DC converters
incorporating a pulse-width modulator (PWM) control in 1980 [22]. The first modern
experimental report of electronic chaos (in a driven resonant circuit using a varactor diode
as a nonlinear circuit) was published in 1981 by Linsay [23]. The driven resistance-
inductance-diode circuit has a close relative in power converters, since when a transformer
feeds a rectifier diode, the leakage inductance resonates with the diode’s nonlinear
capacitance to give a chaotic transient when excited by the switches. The first autonomous
chaotic electronic circuit was built in 1983 by Chua and Matsumoto [24]. The double scroll
oscillator (usually known simply as Chua'’s circuit) has been widely investigated as the
archetypal chaotic electronic circuit [25].

Brockett and Wood presented in 1984 a conference paper describing chaos in a
controlled buck DC-DC converter [26]. The first detailed analysis of chaos in power
converters was a letter by Hamill and Jefferies in 1988 [27]. Chaos in a switching
converter was further described by Wood at a 1989 conference [28] and several other ways
by which chaos can appear in power converters were identified by Deane and Hamill soon
after [29]. These ideas were further developed in [30,31], mainly concerned with
prediction and experimental confirmation of chaos in DC-DC converters under various
control schemes.

Trajectories obtained by the integration of the exact mathematical models were
used by these initial investigations [32], but it was difficult to go beyond the empirical
phenomena observation with this kind of system approach. After it was definitely proved
that all feedback-controlled switching circuits are inherently nonlinear and exhibit various
nonlinear phenomena, the efforts aimed to develop system modeling that permits the
theoretical investigation of such phenomena. Hamill and Deane proposed nonlinear map-

based modeling. taking the clue from system descriptions representative to nonlinear
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CHAPTER | 1-4 HISTORY OF INVESTIGATION OF NONLINEAR DYNAMICS
AND CHAOS IN POWER CONVERTERS

dynamics literature [17]. Sampled-data modeling techniques of power electronic circuits
presented in the textbook by Kassakian, Schlecht and Verghese [9] helped in this
elaboration. The state variables of the investigated system are observed discretely at
specific time instants in this method and it is obvious that the choice of sampling instant is
not unique. A first version, known as stroboscopic sampling, was used by Banerjee and
Chakrabarty [33], Chan and Tse [34], Marrero, Font and Verghese [35] in analyzing the
current mode controlled converters. A second variant was proposed by Deane and Hamill
in [17] and used by them in the study of the current mode controlled boost converter
[30.31]. A third method was applied by Di Bernardo et al. in investigating the voltage-
controlled buck converter [36,37,38.39].

Using these tools, researchers focused on the nonlinear dynamics of specific
converters under PWM control. The voltage-controlled buck converter and the current
mode controlled boost converter have received high research attention: the former because
it exhibits a wealth of nonlinear phenomena and the latter because it is easy to obtain a
closed form expression of the map, facilitating the analysis.

Numerical and experimental bifurcation diagrams of the voltage-controlled buck
converter were presented by Deane and Hamill [17]. Fossas and Olivar investigated the
stability of the periodic solutions, obtaining the conditions of instability [18]. Banerjee
noted that multiple attractors coexisting with the main attractor are responsible for the
sudden expansion of the chaotic attractor by interior crisis [40]. Di Bernardo et al. explored
the bifurcation sequence in detail and concluded that a period-5 orbit organizes the
enlarged attractor in five zones [38,39].

The nonlinear map-based model of the current mode controlled boost converter in
closed form was deduced first time by Deane by sampling the state variables at every
switch-on instant [31]. The equivalent stroboscopic map was developed by Chan and Tse
[34] and this stimulated research in two directions. Banerjee and Chakrabarty tried to
obtain a more exact model by including parasitic elements such as the resistances of the
inductor and the capacitor and proved that the model can still be deduced in closed form
[41]. On the other hand, it was revealed that under certain reasonable assumptions the
discrete-time model leads to a simple one-dimensional piecewise-linear map suitable for
analytical investigation. The map was obtained under switch-on sampling by Deane and
Hamill [30] and under stroboscopic sampling by Banerjee, Ott, Yorke and Yuan [42]. The

bifurcation phenomena of this converter were analyzed in detail using these tools [34].

1-7
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CHAPTER | -4 HISTORY OF INVESTIGATION OF NONLINEAR DYNAMICS
AND CHAOS IN POWER CONVERTERS

Nonlinear dynamics of other power converters were also studied. Tse proved that
the boost converter in discontinuous conduction mode is characterized by a one-
dimensional smooth (continuous and everywhere differentiable) map, and this system
exhibits the bifurcation phenomena (such as repeated period-doublings) peculiar to such
maps [43]. Bifurcation phenomena in current mode controlled Cuk converters were also
investigated by Tse and Chan [44].

DC-DC converters received most attention in the first years of investigating
nonlinear dynamics of power electronic systems, mainly because such phenomena were
first discovered in this class of systems. Dobson et al. detected in 1992 and 1993 that
thyristor circuits used to model Static Var Control show a new sort of bifurcation
phenomenon in which switching times change discontinuously as a parameter is varied
(45,46]. This switching time bifurcation cannot be predicted by the Jacobian matrix of the
fixed point. It was also shown that discrete-time modeling of such systems can result in
discontinuous-time maps having multiple attractors. The practical importance of
investigating  ferroresonance (a tuned circuit involving a saturating inductor)
[47,48.49,50,51] was that it is used to regulate voltages, but unintended ferroresonance in
power systems can generate excessive voltages and currents [52]. Nonlinear phenomena
were also studied in some other (high-power) systems. Siitd, Nagy and Masada analyzed
the current control of an induction motor drive [53)]. Chaos, quasiperiodicity, subharmonics
by period-doubling and various crises were detected by Magauer and Banerjee in a system
controlled by the tolerance-band PWM technique [54]. Many interesting bifurcation
phenomena in power electronic induction machine drive systems were noticed and studied
by Kuroe and Hayashi [55].

The basic idea of all these investigations was to obtain a discrete-time model of the
system studied and to analyze the noted phenomena in terms of standard bifurcation theory
for smooth maps developed in Mathematics and Physics. This methodology worked well in
many cases, but in some cases very atypical bifurcation phenomena were noticed, e.g.,
direct transition from a periodic trajectory to a chaotic one [34,44,56] and nonsmooth
period-doubling [31,34]. These phenomena could not be explained in terms of the
bifurcation theory. Banerjee, Ott, Yorke and Yuan proved that in most of these systems the
discret-time model leads to piecewise-smooth maps and the atypical bifurcations occurring
in such systems are part of a new class called border-collision bifurcation [42,57].
Mathematicians like Nusse and Yorke demonstrated earlier that characteristic biturcations

can appear in piece-wise smooth maps, but no physical examples were known at that time
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AND CHAOS IN POWER CONVERTERS

[58.59]. Actually, power converters offered the first examples of physical systems

characterized by piecewise-smooth maps and this renewed the interest in the theoretical

analysis of these systems. Banerjee et al. recently created the conceptual framework for

understanding and categorizing such bifurcations [60,61]. Some work done earlier by
Feigin has been brought to the English-speaking world [62]. Many empirically detected
bifurcation phenomena have now theoretical explanations by this knowledge.

It 1s clear now that all three types of maps (smooth, piecewise-smooth and
discontinuous) occur in power electronics, therefore bifurcation theory developed for these
classes of maps is useful in understanding why the behavior of a power electronic system
changes from one type to another as a parameter is varied.

Because of the increased demand for better flexibility in high-current, high-power
applications, there is a recently renewed interest in systems of interconnected converters.
Bifurcation phenomena such as period-doubling, border-collision [63], Neimark-Sacker
bifurcation [64] were detected in systems of parallel connected DC-DC converters.

Experiments assisted many of the theoretical analyses mentioned above.
Experimental observations of the bifurcations in the voltage-controlled buck converter
were given by Deane and Hamill [29,17]. The numerical study of the current mode
controlled boost converter in discontinuous [43] and continuous [65] conduction mode by
Tse et al. was supported by test results. Experimental investigations on the buck [32] and
boost [33] converters have been done by Chakrabarty, Poddar and Banerjee.

Controlling chaos into periodic state is an ambition of nonlinear dynamics
researchers ever since Ott, Grebogi and Yorke published their pioneering work in 1990
[66]. Various strategies were developed in Physics and Mathematics and applied in
practical systems such as lasers. For power converters similar methods have also been
developed. Experimental control of chaos in the buck [67] and boost [68] converters were
reported by Poddar, Chakrabarty and Banerjee. An adaptive control technique was
developed by Di Bernardo [69]. The time-delay stabilization of periodic trajectories in a
current mode controlled boost converter was achieved by Batlle, Fossas and Olivar [70].
Hamill concluded in a 1995 review paper that power converters operating under controlled
chaos instead of a stable periodic state, might have a better dynamic response [71] — just as
fighter aircraft are designed to be open-loop unstable but are then stabilized by feedback,
making them more agile than conventional designs. Although quantitative understanding
of this possibility has still to emerge, stabilized chaotic power converters might react more

quickly, e.g., in moving fast from one commanded output voltage to another.
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Questions about the usefulness of nonlinear phenomena in power electronics have
to be posed after their reasonable understanding. One possible field of application is
reducing electromagnetic interference (EMI) in switch-mode power supplies, which are
notorious generators of both conducted and radiated EMI, owing to the high rates of
change of voltage and current which are necessary for efficient operation. Several
electromagnetic compatibility regulations are coming into operation in the aviation sector.
where the problem is especially acute. Efforts have been made to oppose the problem by
spreading the power converters spectrum by pseudorandom modulation of the clock
frequency [72,73]. The review paper by Hamill suggested first that this problem could also
be charged by deliberately using chaos [71]. Marrero, Font and Verghese noticed then that
“a potential advantage of chaotic operation is that the switching spectrum is flattened”
[35]. In 1996 Deane and Hamill experimentally proved a reduction of the spectral peaks
for a chaotically operated converter [74]. However, some theoretical issues had to be
addressed for bringing this possibility into engineering practice. First. a theory to calculate
the average values of state variables under chaos is required to formulate design
procedures for converters operated in chaos. Second, a theory for predicting the structure
of the power spectrum of the converter under chaotic operation is demanded. Third. since
there are periodic windows in the parameter space of most chaotic systems and a slight
unintended parameter alteration can get the system out of the chaotic regime. reliable
chaotic converter operation must be assured. Since under certain reasonable assumptions
current mode controlled DC-DC converters lead to piecewise-linear one-dimensional
maps. they have been used for the first assaults on all these theoretical problems. Isabelle
reasoned that these piecewise-linear maps can be approximated by a smaller class for
which the computation of average values is tractable, known as Markov maps [75].
Marrero ei al. elaborated further the idea. The second problem has been engaged for DC-
DC converters which can be modeled by piecewise-linear one-dimensional maps. A
method for computing the line spectrum at the switching frequency and its harmonics was
developed by Deane, Ashwin, Hamill and Jefteries [76]. The method was extended to the
continuous part of the spectrum by Baranovski, Mogel, Schwarz and Woywode [77,78].
For the third problem, there have been two approaches. The control of chaos was used to
stabilize the chaotic regime by Bueno and Marrero [79]. On the other hand, the theory of
robust chaos (the analytical condition under which there would be no periodic window or
coexisting attractor in a chaotic system) was developed by Banerjee, Yorke and Grebogi

and they demonstrated that current mode controlled converters meet this condition [80].
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The main purpose of this Ph.D. thesis is to offer a systemic approach for applying
the ideas of nonlinear dynamics in the control of power electronic systems. with an
emphasis on chaotic behavior. The dissertation is organized as follows. Chapter 2
introduces the basic methods of the advanced theory of nonlinear dynamical systems and
illustrates their application in power electronics by a feedback-controlled resonant DC-DC
buck converter. As chopper circuits converting a DC input to a DC output at a lower
voltage. buck converters are ones of the simplest but most useful power converters.
Circuits closely related to them are used in many switched-mode power supplies. An
application of current importance is the conversion of the standard 5V DC supply used in
computers to the 3.3V or less required by processor chips like those from the Pentium
family. A buck converter for this purpose can achieve a practical efficiency of 92%. while
a linear regulator would be only 66% efficient, producing four times as much waste heat.
Although the example is at a low power level, buck converters are also used at several
kilowatts. The investigated buck converter belongs to a family of special resonant DC-DC
converters and the various nonlinear phenomena and bifurcations exhibited by its behavior
(all three classical routes to chaos have been identified) were first time detected by the
author. who also introduced two methods for the analytical confirmation of this behavior
by studying the stability.

Chapter 3 proposes first time four control strategies for this resonant DC-DC
converter. in the sense of suppressing the unstable (chaotic, quasiperiodic and
subharmonic) regimes from its behavior, hereby ensuring the stable periodic operation
required by applications. The first two methods are inspired from the area of control
engineering. while the last two use algorithms typical to chaotic systems. This chapter
reports also the experimental setup.

Chapter 4 illustrates another application of nonlinear dynamics theory in power
electronics by a special type of high frequency time-sharing inverter, designed mostly for
induction heating applications. The nonlinear phenomena (subharmonic generation) in this
system are also revealed first time by this study. One of the control strategies introduced in
the previous chapter is successfully applied to remove the unstable regimes from the
operation of the feedback-controlled inverter.

No prior knowledge of nonlinear systems is assumed. Experimental results back up
the nonlinear phenomena discovered by computer aided simulations of the investigated
systems. Appendixes are included to illustrate the software and experimental environment

used throughout this study.

BUPT



[\

CHAPTER 2 2-1 GENERAL REVIEW

CHAPTER 2

ANALYSIS OF NONLINEAR DYNAMICS AND CHAOTIC

BEHAVIOR OF A FEEDBACK-CONTROLLED
RESONANT DC-DC CONVERTER

A resonant buck converter, whose output voltage is controlled by constant frequency
PWM, is operated in symmetrical continuous conduction mode. A general review of the
converters (section 2-1) is followed by the presentation of the configuration (section 2-2)
and operation (section 2-3) of the system studied, including the basic steacdy-state relations
and the description of the PWM control feedback loop. Phenomena in this nonlinear
control loop are investigated by computer simulations (section 2-4). Quasiperiodic
(subsection 2-4-1), period-doubling (subsection 2-4-2) and intermittency (subsection 2-4-
2) route to chaos are detected first time in this converter as a result of varying the control
gain. The observed bifurcation behavior is theoretically confirmed by the stability analysis
of this variable structure, piecewise linear, nonlinear system. Two methods are introduced
in order to perform the stability analysis: the first uses the Poincaré map function, while

the second applies the Rdacz method (section 2-5).

GENERAL REVIEW

The role of the DC-DC converters is to interface two DC systems and to control the power-
flow between them. Their principal function is similar to the transformers’ used in AC
circuits, but the ratio of the output voltage/current and input voltage/current is continuously
controllable by electric control signals. The voltage/current ratio can be smaller or bigger
than unity. Often the input to these converters is an unregulated DC voltage, which is
obtained by rectifying the line voltage, therefore, it will fluctuate due to changes in the
line-voltage magnitude. The function of the converters is to convert the unregulated DC

input into a controlled DC output at a desired voltage level. Their employment is very

)
'
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CHAPTER 2 2-1 GENERAL REVIEW

extensive. The DC-DC converters are widely used in regulated switch-mode DC power
supplies in sensors, controllers, transducers, computers, commercial electronics etc. They
are also frequently used in DC motor drive applications, mainly in battery supplied
vehicles and in electric cars, airplanes, spaceships, where on-board regulated DC power
supplies are required. Their applications in plasma, arc, electron beam technologies,
nuclear physics, solar energy conversion are also significant [8].

The usual building blocks of these converters are the electric switches, capacitors

and inductors:

@ = > Power
©) < x flow

T e o, [
I e T I

control T signals

Figure 2-1  DC-DC converters

According to the direction of output current and voltage, the converters can operate
in one-quadrant, two-quadrant and four-quadrant. Power flow is unidirectional at the first
class and bidirectional at the other two. One directional power flow means that the only
possible streaming direction of the power is from the input side towards the output side.
Bidirectional power flow makes possible the streaming of the power in both directions
between the input and output terminals. There is a direct path between the input and output
terminals in direct converters, and there is no direct path among them in indirect
converters.

Depending on the switching mode DC-DC converters can be hard-switched or soft-
switched. Hard switching means that neither the voltage nor the current on the switch is
zero at the initialization of the switching action. At soft switching converters the current
and/or the voltage is zero in the switching moment. The power loss is significant at hard-

switched converters even at high frequencies. The soft-switched converters (or resonant
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converters) can be operated even at higher frequencies because of their smaller switching
losses.
The basic converter topologies are the step-down and the step-up converters. The

step-down or buck converters can only reduce the input voltage (v, 2 v, in Fig. 2-1). the
step-up or boost converters can only increase the input voltage (v, <v, in Fig.2-1). The

step-up/down (buck & boost) converters are combinations of the two basic topologies and

can produce output voltage that can be higher or lower than the input voltage.

Converters have two principal shortcomings when their switches are operated in
switch mode [8]:

e During the turn on and turn off time, high current and voltage appear simultaneously in
and across the switches producing significant power losses in them, that is, high
switching stresses. The power loss increases linearly with the switching frequency. To
maintain a reasonable efficiency, the value of the switching frequency must be limited.
However, it must be mentioned that by pushing the switching frequency to higher
range the size and weight of the converters are reducible.

e The second shortcoming is the electromagnetic interference (EMI) generated by the
large dv/dr and di/dt values of the switching variables.

Resonant converters can minimize these shortcomings. In these converters an LC
circuit is always incorporated. Its resonant frequency can be either equal to the switching
frequency or can substantially deviate. If they are identical then the unwanted harmonics
are removed by the circuit. The switching frequency — in both cases — is one of the means
for controlling the output power and voltage. Some advantages of the resonant converters
over the conventional ones should be highlighted. These are the sinusoidal-like wave
shapes. inherent filter action, reduced dv/d:, di/dt and EMI. In addition some resonant
converters can accomplish zero current and/or zero voltage across the switches at the
switching instant and reduce significantly the switching losses. An advantageous feature of
the soft-switched resonant converters is the much lower switching stresses. However, it
must be confessed that the price of it is the higher forward currents and reverse voltages
the switches must endure. The resonant DC-DC converters are used in applications as
induction heating, very high frequency DC-DC power supplies, sonar transmitters, ballast
for fluorescent lamps, power supplies for laser cutting machines, ultrasonic generators, etc.

A new family of dual channel resonant switching DC-DC converters was

introduced in 1989 on the 3 European Conference on Power Electronics and Applications
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[81]. These converters have strong similarities with the conventional buck, boost and
buck&boost choppers in their configurations, but regarding the operation the differences
are significant, The currents of the controlled switches are mostly sinusoidal. They are
called Zero Voltage Turn-off Quasi-Resonant Converters (ZVT-QRC) because the voltage
across the controlled switches are practically zero during their turn-off (assuming diodes
on the output side). The switching elements can be SCRs, BJTs, IGBTs or other
controllable switches at the input side, but the employment of diodes is also possible at the
output side. The converters work on their resonant-frequency, determined by the inductor
and capacitor elements. The frequency should be high, since in this manner the size and
weight decrease. The range of the output power is broad, because the applied elements are
produced from low power to high power (diodes, SCR-s, GTO-s etc.). Their output
voltages can be changed in wide range and they can be either higher or lower than the
input ones, depending on the configuration. One of the converters can work as a current

generator too.

The advantageous features of the converters are as follows [81]:

e The converter is capable of interchanging a controlled part of the power drawn from
the two DC power sources having different voltages by interconnecting the two
channels of the converter through a switched capacitance, which transfers power from
one part of the converter to the other one; hence, the ratio control of the two output
power flows can provide either symmetrical or asymmetrical output voltages.

e It suits for DC uninterruptible power supply (UPS): one of the two sources can be
removed (e.g., during battery change) without disturbing the power supply in the
output side.

e Greatly reduced switching stress and loss in switching devices by turning them on and
off either at zero voltage or current.

e Further reduction in switching stress and loss in switching devices by generating only
or mainly sinusoidal voltages and currents.

¢ High or ultra high switching frequency with high bandwidth.

e Good efficiency.

e High power density.

e Considerable size and weight reduction.

e Low noise and EMI level.
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The disadvantages [81]:

e ‘Floating’ output; no common ground terminal can be used between the input and
output side.

e Larger forward currents and reverse voltages in and across the switching devices.

e Higher peak current on the inductors and peak voltage on capacitor(s).

e Complicated control circuitry is needed even in case of asymmetrical operation.

In this chapter, the converters are analyzed in steady-state. The switches are treated
as being ideal, and the losses in the inductive and the capacitive elements are neglected.
The DC input voltage to the converters is assumed to have zero internal impedance. It
could be a battery source; however, in most cases, the input is a diode rectified AC line
voltage with a large filter capacitance, as shown in Fig. 2-2 to provide a low internal
impedance and a low-ripple DC voltage source. In the output stage of the converter, a
small filter is treated as an integral part of the DC-DC converter. Looking at the
applications of these converters, it is found that they are very often used with an electrical
isolation transformer in the switch-mode DC power supplies and almost always without an
isolation transformer in case of DC motor drives. Therefore, to discuss the circuits in a
generic manner, only the nonisolated converters are considered, since the electrical
isolation is an added modification. The output of the converter is assumed to supply a load
that can be represented by an equivalent resistance, as is usually the case in switch-mode

DC power supplies.

Battery — —
I
AC [Uncontrolled]  pc !4 Filter DC DC-DC DC ;
——1 Diode C : ——m
lﬁle Rectifier |(unregulated) apacitor|(unregulated) Con\{el“tex (regulated)
voltage

Veontrol .

Figure 2-2 A DC-DC converter system

CONVERTER CONFIGURATION

The resonant converter family is built up on two basic blocks B,, (Fig. 2-3a) and B, (Fig.
2-3b). Both have controlled switches S; and S, and one inductance L. The controlled

switches can conduct current flowing to point P in B, and flowing off point P in B

)
'
()}
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CHAPTER 2 2-2 CONVERTER CONFIGURATION

The general configuration of the converters is shown in Fig 2-4 where two switched
capacitances C and BC are used beside the building blocks. A common feature of the
different versions is that they transmit power from input to output through two channels,

the so-called positive and negative ones, coupled by these resonating capacitors.

Bm Boﬁ
ai S P L b ai S P L 'b
o——"0 J’ e o : J NI
e 5 N Ls |
C a C b

Figure 2-3  Basic building blocks

The capacitances across the input and output terminals for short-circuiting the high
frequency components of the input and output currents are not shown. Table 2-1
summarizes the set-up of the three configurations by the two building blocks and their
connections to terminals x, v and z. The names of the configurations are the same as those
of the corresponding choppers: buck, boost and buckd&boost. Suffixes i and o refer to input

and output while suffixes p and n refer to positive and negative, respectively.

1 1
X 'p op._ ¥y
F==_1 B >+
vip op
C v4 BC
0-° i l—— 0
Vin Von
_ B b———-—o0 —
<= 2 <=
X Y
lin lon

Figure 2-4  General configuration of the converters

Table 2-1 Set up of the converters

Buck | a|b | c| Bw|Bost

Boost|{ b | c | a |Bos| Bio

B&B | c|a|b| By |Bor

629 §09
269 #
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Using Fig. 2-3, Fig. 2-4 and Table 2-1, the three configurations are shown in

Fig. 2-5
1 1 1
ip Sp L 1, 1p L SCplo
- o oo l wa_o: + + o A o 5 +
S , }
\ . V . ,
1p C <:l(': cp{ BC VOP 1p C I TSP BC \OP
0 o——ik— [0 0 ——= ——0’
- S v } —r
Vin Ve Y LCO Von Vin Ve T Sn Veo Von
— O 4/(% VY — — o VY O/C o —
- L :
]Ill n l(Jll 1ln Scn lon
a b.
ip S S Lop
p p<—
+ c';,>o/c © —
\% . L v
ip C 4;" é BC op
O o—i 0O’
\r'in VC é L VCO Von
— o —o_o —o o—— +
=5 Sen =
I n 1
on

Figure 2-5 Configurations of buck (a), boost (b) and buck & boost (c) converters

Four different converter versions can be derived from any of these configurations.
therefore, altogether twelve different versions are available [81]. The first three
configurations have a single resonant circuit with energy storage elements L and C. They
are called resonant converters (RC). The RC configurations can readily be obtained by
replacing the capacitor SC with short circuit in the buck and in the buck & boost converters
and with an interrupt in the boost converter. The next three configurations have double
resonant circuits with components L, C, BC. They are called double resonant converters
(DRC). Both RCs and DRCs can contain either controlled switches (three configurations)
or diodes (three configurations) in place of clamping switches S, and S,..

Our investigation is restricted to the buck configuration depicted in Fig. 2-6
(including the output filter and load). This version applies controlled switches (IGBTs,
BJTs, MOSFETs or other switches) conducting current in the direction of arrow (e.g., to
point P for the positive channel). The configuration corresponds to a RC converter, with a

single resonant circuit (the capacitance SC has been replaced by short circuit).
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| |
L - L
1 R
in * Sen ]/ C,FR.3 Von
s -

Figure 2-6  Resonant buck converter
CONVERTER OPERATION

The assumptions used are as follows:
e [dealized and lossless circuit components.
e Constant and smooth input (vj, > 0, v, > 0) and output (v,, > 0, v,,, > 0) voltages.
e Steady-state operation.
e Neglected commutation times.
The controlled switches within one channel are always in complementary states

(i.e., when S, is on, S, is off and vice versa). By turning-on switch S, a sinusoidal current

pulse /,, is developed from wr =0 to o, (® =1/ LC ) in circuit S, L, vy, C and v, (Fig.
2-7). The currents are i,=i,,=i. in interval 0 < wr < o,. The capacitor voltage v. swings
from v, to v, (v, < 0). By turning-on switch S, at o, the choke current commutes from

S, to S,,. The energy stored in the choke at wt =a, is depleted in the interval oy, < @r <

p

wT, where T, =1/ f,is the switching period. In the discontinuous current conduction mode

(DCM) of operation the stored energy is entirely depleted in interval o < wr < O, Where
o, denotes the extinction angle of the inductor current. In DCM the current is zero
between o, and wT, (Fig. 2-7). In the continuous-conduction mode (CCM) of operation
the inductor current flows continuously: i,,>0 (Fig. 2-8). The inductor current i,, decreases
in both cases in a linear fashion. After turning-on S, the capacitor voltage v. stops

changing. It keeps its value v, (Fig. 2-7, 2-8). The same process takes place at the negative
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side resulting in a negative current pulse and condenser voltage swing after turning-on S, at
the beginning of the next half cycle at w7, /2 (Fig. 2-7, 2-8) [82].

The converter can operate both in symmetrical and in asymmetrical mode. The
symmetrical operation illustrated in figures above requires identical components of the two
channels and identical load resistance R. It can be considered as a particular case of the
more general asymmetrical operation. In symmetrical case the commutation angles (¢, and
a,). the input voltages (vip, vi,), the output voltages (v,,, v.,) and the peak condenser
voltages (v, and lv,,l) are identical. In general vj, # Viy; Vop # Von; Vep # -Vens O # 0 and &,
# 0,,. There is no energy exchange between the positive and the negative channels in the
symmetrical case. In asymmetrical operation the energy exchange between the two
channels is accomplished by the switched capacitor.
|

N
I

Ven

Figure 2-7  Time functions of input and output (inductor) currents (a) and condenser
voltage (b) in DCM

A

a.
ot
J
Vep
b.
P ot
vcn ;

Figure 2-8  Time functions of input and output (inductor) currents (a) and condenser

voltage (b) in CCM RO

'
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'
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The input variables directly set by us are vy, Viu. 0, &%, f; and R. The input voltages
v Vi and the load resistance R are usually given, but the selection of the switching angles

o,. o, and the switching frequency f; depends on the control. Condition f; < f, must hold.

where f, =1/ 2n+/LC ) is the resonant frequency. The reason is simple. The change of
condenser voltage v, in one direction must be completed before its change gets started in
the opposite direction (Fig. 2-7, 2-8). Switch §, and S, must not be turned on

simultaneously. o .o, <®T; /2 must hold, the two input currents may flow only in

P
separate intervals. The output variables determined by the set of input variables are v, vo,.

Vepe Ven-

2-3-1 BASIC STEADY-STATE RELATIONS

Assuming symmetrical continuous conduction mode, the current time functions in the
chokes are [83]

i(ot)=1,coswt+1; sinwt (2-1)
in the interval 0<wr <o . and

V,72
i(wt)=1,cosa+1 sina——o—Z—((ot—OL) (2-2)

in the interval o < wr < 0T, where I, =i,(wt =0) (Fig. 2-8), Vip = Viu = V., / 2 are the

ripple free instantaneous output voltages, Z =+/L/C is the characteristic impedance.

furthermore

/ Ve (Vo /2)4(vi /2) (2-3)
¢ z

where V. = v, = - v, (Fig. 2-8) and v; / 2 = v;, = vjy.
The choke current is the same at wr =0 and at of = ®T;
ifwr=0)=i(wr=0T)=1, (2-4)

The capacitor voltage change is the result of current i. = i, in interval 0 < w7 <
a
. _ 2-
Z{i, dior)=2v, (2-5)

0
Substituting (2-1) into (2-5)
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Z[1, sina+ I (1-coso)]=2V, (2-6)

and (2-2) into (2-4)

T —
Iy sino— V—;’ Lm0
1, = 2 Z (2-7)
l—cosa
Let us substitute now /, from (2-7) into (2-6)
V. V ]
-1 +—£+—0((0Ts—a)ﬂoi—=0 (2-8)
Z 4Z l1-cosa
The output voltage is on the basis of (2-8) and (2-3)
".
Vo= ! 2-9
¢ ol, -0 sina ()
1+ :
2 l-cosa
2-3-2 THE PWM SWITCH CONTROL

In DC-DC converters, the average DC output voltage must be controlled to equal a desired
level, though the input voltage and the output load may fluctuate. The analytical
relationship (2-9) deduced above reveals that for a given input voltage the output voltages
are controlled by the on durations o, o, of the controlled switches. One of the methods for
controlling the switches employs switching at a constant frequency and adjusting the on
duration of the switch to control the output voltage. In this method, called pulse-width
modulation (PWM) switching, the switch duty ratio, defined as the ratio of the on duration
to the switching time period, is varied.
For controlling the output voltage

Vo — v , 2-
Vo =Vop TVon (2-10)

by PWM switching a feedback control loop is applied (Fig. 2-9a). The control signal
voltage v, is obtained through proportional control - by amplifying the error signal (the
difference between the actual output voltage v, and its desired value v,) - and is compared
to a repetitive sawtooth waveform (Fig. 2-9b) [82].

When the amplified error signal v, is greater than the sawtooth waveform, the
switch control signal (Fig. 2-9¢) becomes high and the selected switch turns on. Otherwise,
the switch is off. The controlled switches are S, and S, (the switches within one channel
are in complementary states) and they are controlled alternatively, i.e., the switch control

signal for the switch in one channel is generated in one period of the sawtooth wave and
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for the switch in the other channel in the next period. Hence, the period of the sawtooth

wave is half of the switching period: 7, =T,/ 2.

Vramp
Voof \l - \Y
V Swit 0
Iet% KV con. Comparator Wi Ch: Converterrr=
+ ~7 control
d,
v Vramp
U /./ , // f/ , \:CIC ot
: Ve
LI / /TI il b,
T
Switch control
High -
Low t c.

Figure 2-9  PWM switching control loop: block diagram (a), comparator signals (b) and

switch control signals (c)

2-4 STEADY-STATE ANALYSIS

The main objective of the following study is the investigation of the phenomena in the
presented feedback loop, in steady-state, in order to discover the various possible behaviors
of this nonlinear dynamic system. Since the voltage gain Ky of the proportional controller
in the PWM switching loop is a design parameter that can be changed at will, the
presentation will be restricted to the effect of variation of this parameter, but the methods
and the results remain valid in case of other parameters (parameters of PWM switching.
load, DC input and reference voltages).

The study proposed assumes the calculation of the system variables. The
independent energy storage elements are: two series inductances, two load capacitances and

one series capacitance, altogether five elements, with five state variables defining the state
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space: output voltages v, and v,,, condenser voltage v., choke currents i,, and i,,. A'.’usual
mode of investigation and presentation is to begin with theory and analytical study.
followed by simulations and/or experiments. However, it was emphasized in the previous
chapter that. very often, simulations and experiments have been more useful when they
preceded analysis in studying nonlinear dynamics of physical systems. This study reflects
this practical mode of investigation, i.e., it starts with a series of computer simulation
studies which identify important bifurcation phenomena. This will be followed by an
analytical study of the system which establishes formally the possibility of bifurcation.

The values of parameters and variables used in the analysis presented in this chapter
are specified in Appendix A. Those belonging to the converter basic configuration were
chosen to ensure f,/f. =1 and symmetrical CCM in open loop operation.

The computer simulations were performed in MATLAB environment. MATLAB
programs and Simulink models were developed for the calculation of the state variables of
the nonlinear system. The Simulink models for the converter configuration with the PWM

switching are drawn in Appendix B.

2-4-1 QUASIPERIODIC ROUTE TO CHAOS

2-4-1-1 POINCARE MAPS

One of the most important steps in investigating the nonlinear phenomena in any physical
dynamical system is deciding how to describe its dynamics. DC-DC converters are most
naturally modeled as piecewise linear systems of ordinary differential equations. These are
continuous-time models and can be used to obtain an analytical and numerical description
of the dynamics of the physical systems. However, it was revealed in the previous chapter
that when one’s aim is to understand the nature of the nonlinear phenomena exhibited by
these systems. there are severe limitations of these models. The use of alternative, discrete-
time models for these continuous-time dynamical systems, can be very useful.

One of the most useful methods of discretization involves the so-called Poincaré
map, due to French scientist Henri de Poincaré [1]. The use of appropriate system
discretizations by Poincaré maps will be defined in this section in order to perform the
study of nonlinear phenomena in the converter behavior.

The systems of concern are the continuous-time dynamical systems. An nth-order
continuous-time deterministic dynamical system is defined by a system of ordinary

ditferential equations of the form:

8]
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w(r)=f(x(e)r), x(g)=xg (2-11)

where xv=dx/dt, x(t)e R"is the state at time ¢ and f :R" — R"is called the vector

field.

Poincaré map: A technique that transforms an nth-order continuous-time

system into an (s1-1)th-order discrete-time system.

The Poincaré map’s usefulness lies in the reduction of the order and in the fact that the
limit sets (the state space equivalent of the steady-state) of the Poincaré map correspond to

the limit sets of the underlying continuous-time system, as it will be shown through this

chapter.

The standard technique of the Poincaré map from the theory of dynamical systems

is defined tor autonomous systems.

Autonomous continuous-time system: A differential equation x = f(x) where
the vector field does not depend on time. Since the vector field does not depend
on time, the initial time may always be taken as fy = 0. The solution that passes

through x( at time O is denoted by 6, (x¢) and is called trajectory.

The conversion of the continuous-time dynamical system to a discrete-time dynamical
system is carried out by using the concept of Poincaré section. For an n-dimensional
continuous-time dynamical system a Poincaré section is an (n-1)-dimensional hyperplane
in the state space which is intersected transversally by the trajectories. Considering a third-
order system with the limit cycle (the limit set of a periodic solution) shown in Fig. 2-10.
the Poincaré map is the set of points in the Poincaré plane produced by the trajectory by
crossing the surface from one direction. The selection of Poincaré plane is arbitrary. but it

requires advance knowledge of the position of a limit cycle [84].

The standard definition of the Poincaré map just presented gets a special

interpretation for non-autonomous systems.

S
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Limit
Cycle

Poincaré

< Plane

Figure 2-10 Poincaré map in the Poincaré plane

Non-autonomous continuous-time system: A differential equation x= f(x,r)

where the vector field depends on time. The solution (trajectory) that passes

through x, at time ¢, is denoted by 6, (xo, o).

If there exists a T > 0 such that f{x,t) = f{x,t+T) for all x and ¢, then the non-autonomous
system 1s said to be time periodic with period T.

A non-autonomous nth-order time-periodic continuous system with period T may
be transformed into an (n+1)th-order autonomous continuous system by appending time as
an additional state variable: x,,; = t. The resulting autonomous system is given by

xX=flx, x4 ) x(ty )= X (2-12)

X =1, xn+l(t0 )=t

and is periodic with period T, since f is time periodic with period 7. The solution of (2-12)

() _ d,(xg.tg) (2-13)
X, () tmodT

where the modulo function restricts 0 < x,.; < 7.

1S

Due to (2-12) a time-periodic non-autonomous system can be considered a special
case of an autonomous system and using the standard definition, a n-dimensional Poincaré

section can be defined by
L={(x, x4 )ER"XR, - x,41 =10/ (2-14)
Every T seconds, the trajectory (2-14) intersects X. The resulting Poincaré map

P:T5Z(R" - R") is defined by
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Vgl = POxg ) =0 47 (Xp 010 ) (2-15)
and it can be thought of as a sampling of a single trajectory every T seconds, i.e.,
P"(x, )= 04 4m7( Xk 10 ) m=0,1,... (2-16)

where P" = P(P (...(P ())...)) is called the mth iterate of P and denotes P applied m times

to the argument of the map.

This Poincaré map is similar to the action of a stroboscope flashing with period 7.

The Poincaré map for time-periodic non-autonomous systems is equivalent to

sampling the trajectory at a rate equal to the forcing frequency.

The converter configuration studied is a time-period non-autonomous system with
period equal to the switching period T;. To produce a Poincaré map, one selects, say, two
state variables, samples them once every switching cycle, and plots them as points in the
plane of the two state variables. Examples will be shown through the following sections.

where the Poincaré maps will be very useful in identifying the various steady-state

behaviors.
2-4-1-2 BIFURCATION DIAGRAMS
Consider an nth-order continuous-time system
W)= fu(x(e) ), x(tg)=xp (2-17)

whose vector field f, - R" —R"is parameterized by a control parameter j1. As U

changes, the steady-state of the system changes, too. A small perturbation in u typically
produces small quantitative changes in the steady-state. E.g., changing slightly x could
change the position of the steady-state in state space slightly, along with its shape or size
when the limit set is not an equilibrium point (corresponding to a stationary steady-state).
But there exists also the possibility that a small change in 4 may cause a limit set to

undergo a qualitative change.

Bifurcation: A qualitative change in a limit set as a parameter is infinitesimally
perturbed. Examples are the creation or disappearance of a limit set and the

change in stability type of a limit set.
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Bifurcation value: A parameter value at which a bifurcation occurs. A system

1s structurally unstable at a bifurcation value.

A structurally stable vector field F is one for which sufficiently close vector fields F' have
equivalent dynamics. that is, there exists a continuous invertible function which transforms
F into F'. The set of bifurcation values is the set of parameter values t at which the system
is not structurally stable.

While state space, Poincaré maps, time- and frequency-domain measurements are
useful for characterizing steady-state behaviors, nonlinear dynamics offers several other
tools for summarizing qualitative information concerning bifurcations. One of the most

useful ways for the presentation of the information is the so-called bifurcation diagram.

Bifurcation diagram: A plot that indicates the steady-state behavior of a

system over a range of parameter values.

This diagram is a plot of the position of the limit sets versus the bifurcation parameter 4. In
this way the bifurcation diagram shows the various states and the sudden changes of the
system in steady-state (the bifurcations) as a result of the variations of one system
parameter [85].

It it is desired to show by a bifurcation diagram how the behavior of a time-
periodic non-autonomous system varies with some parameter, the Poincaré map. as defined
at the end of the previous subsection, may be further simplified by selecting just a single
state variable for observation. The Poincaré map is thereby reduced to a one-dimensional
object and the second dimension of the plane can be employed to sweep the parameter over
its range of interest. The resulting plot represents the bifurcation diagram and allows
qualitative changes of behavior to be appreciated at a glance [86].

Accordingly, to generate this kind of diagram for the converter, the output voltage
v, was sampled and stored, in steady-state, at the start of every switching cycle
(v=1vo(KT,)). With sufficient number of sets of steady-state data the bifurcation diagram
can be obtained by plotting vertically the sampled output voltage whereas the voltage gain
K\ is varied horizontally as a control parameter [82].

Such a representative bifurcation diagram, which reveals a first bifurcation in the

behavior of the system, about Ky =4.5, is shown in Fig. 2-11.
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Figure 2-11 Bifurcation diagram

2-4-1-3 PERIODIC STEADY-STATE

Below the bifurcation value Ky =4.5, there is just one single sampled value v=v,(kT))

for a given controller gain Ky in the bifurcation diagram from Fig. 2-11, i.e., the output

voltage v, repeats itself in each switching period 7. This state is called period-1.

Period-1 behavior: A solution of a time-periodic non-autonomous system that

repeats itself with the forcing period.

The Poincaré Map Normal periodic operation - presented in Fig. 2-8 - sustains in this
region and all state variables are periodic time waveforms with period T,. As it was
mentioned above, if the sampling time is chosen properly, the Poincaré map behaves
similarly to a stroboscope, i.e., sampling with the switching period 7.. a periodic steady-
state of the converter is represented as a single point provided that the initial transient is
omitted (unless otherwise stated, all Poincaré maps are assumed to be for steady-state).
This point is a fixed point for the Poincaré map. Fig. 2-12 presents the Poincaré map for the
period-1 operation in the plane of output voltage v.=v,(kT,) vs. inductor current

i(;/)k:i‘:/:(kT\') at KV = 2

Fixed point: x" is a fixed point of the map Pif x"= P (x").
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Period-1 behavior: A fixed point of the Poincaré map of a time-periodic non-

autonomous system indicates a period-1 solution.

3 I ]
2 51
<
x 2Ff 7
8
15 ]
Lo 51 57 54 55

53
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Figure 2-12  Poincaré map for period-1 operation (Ky = 2)

Time Domain The choke current i,, and the condenser voltage v. are plotted in Fig.
2-13 and Fig. 2-14, at Ky = 2. The period-1 state is clearly visible in these figures. The

control voltage v, hits the ramp wave once per ramp cycle (Fig. 2-15).

0 : : ; ; .
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Figure 2-13  Inductor current in period-1 operation (Ky = 2)
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Figure 2-14 Condenser voltage in period-1 operation (Ky = 2)
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Figure 2-15 Control voltage in period-1 operation (Ky = 2)

Frequency Domain The spectrum of the periodic condenser voltage waveform in Fig. 2-
14, at Ky =2, is plotted in Fig. 2-16. The spectrum of a period-1 solution contains spikes at
integer multiples of the forcing (switching) frequency f, = 1/T;.

State Space By plotting the solution (or trajectory) of the system in state—space
the state portrait is obtained. The steady-state will be represented in the state space by the
limit set. which in case of periodic behavior is the limit cycle, the closed curve traced out

by the trajectory over one period. The trajectory keeps circulating along this limit cycle
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while in steady-state. A limit cycle trajectory corresponding to Ky = 2 is presented in Fig.

2-17 in the three-dimensional state space defined by the output voltage of the positive

channel v,,. the condenser voltage v. and the choke current i,,.
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Figure 2-16  Spectrum of condenser voltage in period-1 operation (Ky = 2)
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Figure 2-17 Limit cycle in period-1 operation (Ky = 2)
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2-4-1-4 QUASIPERIODIC STEADY-STATE

The Poincaré Map When the controller gain exceeds the bifurcation value Ky =4.5

there is no direct way to identify the new class of steady-state behavior on the basis of the
mess of points representing it in the bifurcation diagram from Fig. 2-11. This can be more
readily achieved by means of the Poincaré map. The Poincaré map for Ky = 6 is presented
in Fig. 2-18, again in the reference frame i, vs. vy« . This Poincaré map is a set of separate
points along a closed curve so densely populated that it looks like a curve. Similar Poincaré
maps are shown in reference frame of condenser voltage v=v.(kT;) vs. output voltage v,
in Fig. 2-19 and inductor current i, vs. condenser voltage v in Fig. 2-20, respectively. It

will be proved that this type of Poincaré maps corresponds to a quasiperiodic solution [86].
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Figure 2-18 Poincaré map in quasiperiodic state (Ky = 6)
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Figure 2-20 Poincaré map in quasiperiodic state (Ky = 6)

A quasiperiodic solution is one which may be expressed as a countable sum of

periodic functions x(t)= Zx,»(t), where x; has period T; and frequency f; = 1/T;. There is

!

A A

also a finite set of base frequencies { f,..., f, } with two properties:

e ltis linearly independent, i.e., there does not exist a non-zero set of integers

A A

(ki ... kuf suchthat ky f\+...+k, f, =0.

A A

ki fi+..+ky [, for

e It forms a finite integral base for the f, i.e., for each i, f; =

some integers {ky, ..., kn/.

Quasiperiodic behavior: A solution of the system that can be written as the sum
of a countable number of periodic functions each of whose frequencies is an

integer combination of incommensurate frequencies taken from a finite base set.

The base frequencies are not defined uniquely, but m is. A quasiperiodic function with m
base frequencies is called m-periodic [84].

In a continuous-time dynamical system, a two-periodic trajectory lies on a two-
torus T2 =S xS', where each circle ' represents one of the base frequencies (Fig. 2-
21b). Consider a trajectory traveling on the torus looping in the @, = 21/T) direction with
period T, and in the (1)3 = 2n/T, direction with period T, (Fig. 2-21a). The equations

describing the motion of the trajectory are:
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X =(R+rsinwst )cos ¢
X2 =rcoswyt (2-18)

X3 =(R+rsinwyt)sinwgt
where x,, x> and x; are the state space coordinates, ¢ is the time, larger radius R corresponds
to the rotation about the origin and radius r corresponds to that about the cross section (Fig.
2-21c). If T and T> are commensurate, there exist positive integers p and ¢ such that pT| =
qT>. Therefore, the trajectory will close on itself in p7) seconds since it has to make exactly
p loops in the first direction and exactly ¢ loops in the second (Fig. 2-22a would not
change if the simulations were run longer). The result of the motion in state space will be a
limit cycle with period pT,. This type of behaviour is called frequency-locked or phase-
locked motion. If T, and T, are incommensurate, there are no such p and ¢ and the
trajectory never closes on itself (Fig. 2-22b would become more densely filled in if the
simulations were run longer). Not every point of the torus will lie on the trajectory, since a
trajectory is a curve and the two-torus a surface, but because the trajectory repeatedly
passes arbitrarily close to every point on the torus, the two-torus is considered the limit set

of the two-periodic behavior.

Torus

A

(V) )
a. b.

A

Figure 2-21 Two-periodic behavior corresponds to motion on a two-torus
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Figure 2-22  a. Periodic trajectory with Ty =2 and T, = 3;
b. Two-periodic trajectory with 7, = 1 and T> =2.
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In time-periodic non-autonomous systems two-periodic behavior can occur as a
result of the “conflict” between the natural frequency of the system and the forcing
frequency. not rationally related to the first one. Consider a two-periodic solution ¢,(x) of a
time-periodic non-autonomous system with frequency base {f|, f;}, where f; is the forcing

frequency. Using coordinates (6;, 0>) on the torus, ¢(x) can be written as x(t) =

F(8,(1).0:(1)) where F :S'xS! -5 R" and

0 2nf t mod 21
[ l(t)j’:[ tf |t moa J (2-19)

0,(1) 2nf ptmod 21

The action of the Poincaré map is to sample ¢,(x) every 1/f; seconds:

O\(k/fr) 2nkf, / f 121

(8T )| | 2mkA S fymed 2m) oy (2-20)
O5(k/ ff) 0

Because f; and f; are incommensurate, 0,(k/f;) is not periodic and will repeatedly come

arbitrarily close to every point in [0, 2m) as k — oo. Therefore, in the (8,, 8,) coordinate

system. the Poincaré map is the circle defined by 8, = 0. In the original Euclidean

coordinates. the Poincaré map is a closed curve.

Quasiperiodic behavior: If the underlying flow exhibits two-periodic behavior,

the Poincaré map consists of a closed curve.

Accordingly, the Poincaré maps presented in Fig. 2-18, Fig. 2-19 and Fig. 2-20
permit to identify immediately the quasiperiodic (two-periodic) behavior of the converter

when the controller gain just exceeds the bifurcation value Ky =4.5.

Time Domain In the time domain, quasiperiodic signals may look like amplitude
modulated waveforms. The time function of condenser voltage v, and control voltage v .,
are plotted in Fig. 2-23 and Fig. 2-24 at Ky = 6. The time waveform of the condenser
voltage is clearly amplitude modulated. The “carrier” frequency is the forcing (switching)
frequency provided by the sawtooth signal. In addition, a natural frequency of the system is
developed and acts as a modulating frequency [82]. It can be seen from the succession of
the peak values that the condenser voltage is not periodic. Because the two frequencies are
incommensurate, the resulting signal is two-periodic. The control voltage v.,, changing
with the natural frequency of the system hits the ramp wave once per ramp cycle (Fig. 2-
24). The forcing (switching) frequency generated by the ramp wave is present in the small

ripple of the control voltage.
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Figure 2-23  Condenser voltage in quasiperiodic state (Ky = 6)
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Figure 2-24  Control voltage in quasiperiodic operation (K = 6)
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Frequency Domain The spectrum of the quasiperiodic condenser voltage waveform in
Fig. 2-23, at Ky = 6, is plotted in Fig. 2-25. The spectrum consists of the spectrum of the
forcing (switching) frequency f;, = 1/T; (Fig. 2-16) plus side-spikes spaced at integer
multiples of the natural frequency. Therefore, the spectrum of a quasiperiodic signal
consists of spikes at the various sum and difference frequencies of the base set.
Theoretically, a quasiperiodic spectrum can be distinguished from a periodic one because
the quasiperiodic spikes are not spaced at integer multiples of one frequency. In practice,

because it is impossible to determine if a measured value is rational or irrational, a

spectrum that appears to be quasiperiodic can be in fact periodic with a very long period.
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Figure 2-25  Spectrum of condenser voltage in quasiperiodic operation (Ky = 6)

State Space The steady-state trajectory corresponding to Ky = 6 is presented in
Fig. 2-26 in the three- dimensional state space defined by choke current i,,. condenser
voltage v, and output voltage v,. It is visible that the limit set is a torus, denoting once
again the two-periodic behavior. Because the frequencies of the rotations in the two
directions are incommensurate, the trajectory never closes on itself and if the simulations

were run longer the surface of the torus would become more densely filled in [83].
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Figure 2-26  State space trajectory in quasiperiodic steady-state (Ky = 6) with longer run

in b than in a
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2-4-1-5 THE NAIMARK-SACKER BIFURCATION

Consider a continuous-time dynamical system with a complex-conjugate pair of
eigenvalues of an equilibrium point. From standard linear control theory, while the real
part of the eigenvalues is negative, the system will be stable. Suppose that when a control
parameter of the system increases through a bifurcation value, the pair of complex
conjugate eigenvalues passes through the imaginary axis. If such a situation occurs in a
linear system, it will become unstable. For a nonlinear system, a stable limit cycle is born

and this scenario represents a Hopf bifurcation [84].

Hopf Bifurcation: A Hopf bifurcation occurs in a continuous-time system
when a complex-conjugate pair of eigenvalues of the linearization of the vector
field at an equilibrium point passes through the imaginary axis, thereby

creating a limit cycle.

In the discrete-time analogue of the Hopf bifurcation, an invariant closed curve
is created as a stable fixed point loses stability when its complex-conjugate pair of
eigenvalues passes through the unit circle. Since discrete-time models are obtained by
making Poincaré section in the state space of continuous time systems, it is useful to
investigate what happens in a continuous-time dynamical system when a Hopf
bifurcation occurs in its Poincaré map. Before the bifurcation, the Poincaré map is a
fixed point, hence in the continuous time system it corresponds to a stable limit cycle.
The Poincaré map becomes a closed loop due to the Hopf bifurcation and this
corresponds to a two-periodic trajectory. Hence, a Hopf bifurcation in the Poincaré map
can be interpreted as a transition of the continuous-time system from a periodic

behavior to a quasiperiodic one. This is called a Naimark-Sacker bifurcation [85].

Naimark-Sacker bifurcation: When a limit cycle undergoes a Naimark-

Sacker bifurcation, motion on a two-torus results.

As proved in the previous sections, precisely this state of affairs occurs in the
converter when the controller gain is increased above the bifurcation value Ky =4.5:
below this value normal periodic operation sustains and all state variables are changing

with the switching period; in addition another frequency develops by the Naimark-

Sacker bifurcation and the system exhibits quasiperiodic state [87].
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2-4-1-6 CHAOS

The quasiperiodic operation pertains to a relatively large range of the controller gain,
approximately from Ky = 4.5 up to Ky = 60. The quasiperiodic states could been easily
identified by calculating the three Poincaré maps of Fig. 2-17, Fig. 2-18 and Fig. 2-19. In
all cases each Poincaré map looked like a closed curve, denoting a quasiperiodic behavior.
By increasing further the controller gain a totally different type of Poincaré maps is
obtained, corresponding hence to a state that is none of the previous found. It was revealed
already the possibility that in the conflict between the forcing frequency and the natural
frequency. neither wins and quasiperiodic state is developed. Another possibility is chaos,

which can be defined as “none of the above™ from a practical point of view [88].

Chaos: A bounded steady-state behavior in a deterministic dynamical system,

which is not an equilibrium point, not periodic, and not quasiperiodic.

The Poincaré Map Fig. 2-27 shows the Poincaré map in chaotic behavior at Ky = 70 in

reference frame of condenser voltage vi=v(kT;) vs. output voltage v.=v.(kT,). The:

Poincaré maps for chaotic systems are distinctive and quite beautiful. Looking at Fig. 2-27,
it can be seen that the map lies, indeed, in a bounded region of the state space but it does
not lie on a simple geometrical object, as in the case of periodic and quasiperiodic
behavior. Chaotic state appears in the Poincaré map as a set of highly organized points

reflecting a multilayered structure and order, with a fractal dimension [84].

Chaos: The Poincaré map of a chaotic steady-state is not a simple, geometrical
object. Unlike the Poincaré maps of the other limit sets, it exhibits a fine,

highly organized structure underlying the chaotic behavior.

Time Domain Using Poincaré maps can be the best way to distinguish
chaotic from quasiperiodic solutions. They appear much the same and there is no
direct way to distinguish the chaotic state from the quasiperiodic one on the basis of
the mess of points representing them in a bifurcation diagram. Frequently it is
difficult to separate them from time history as well. A chaotic waveform of the
output voltage v, at Ky = 70 is presented in Fig. 2-28. It can be seen that the chaotic
signal is, indeed, bounded and not periodic. It is difficult to tell whether it is not
quasiperiodic, but, however, it looks more random (random behavior in a

deterministic system may be surprising at first, but pseudorandom number generators
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Figure 2-27  Poincaré map for chaotic operation (Ky = 70)
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Figure 2-28 Chaotic waveform of the output voltage (Ky = 70)
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Figure 2-29 Condenser voltage in chaotic operation (Ky = 70)
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Figure 2-30 Control voltage in chaotic operation (Ky = 70)
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are simple examples). The time function of the condenser voltage in chaotic operation is

—T

plotted in Fig. 2-29. In chaotic operation the control voltage v,,, fails to hit the ramp wave

in its every cycle (Fig. 2-30).

Chaos: In the time domain, a chaotic trajectory looks “random”.

Sensitive dependence on initial conditions Two chaotic waveforms of the output
voltage, started from almost identical initial conditions, are presented in Fig. 2-31 at Ky =
70. It can be clearly noticed that the small differences in initial conditions are persistently
magnified by the dynamics of the system so that the trajectories diverge until they become

uncorrelated. This represents the sensitive dependence on initial conditions, which is a very

important criterion of chaos [84].

Sensitive dependence on initial conditions: Nearby trajectories diverge and

soon become uncorrelated.
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Figure 2-31 Sensitive dependence on initial conditions: two chaotic waveforms of the

output voltage (Ky = 70). The initial conditions differ by 0.04%.

Predictive power  There is a very important implication of this sensitive dependence

on initial conditions. There is always noise in a physical system or computational noise in a
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simulation. In addition. initial conditions cannot be specified or measured with infinite
accuracy. These errors, although small, will make chaotic systems to be unpredictive
beyond a short time frame. In order to specify what is meant by an unpredictive
deterministic system, consider one observer A observing a dynamical system at time 4 and
an other observer B observing the same system at time tg > t,. Observer A can also predict
the state of the system at ¢z if he knows the initial condition at t4. The system is called
predictive if observer A — using observation and prediction — knows more precisely the
state of the system at g than observer B, using only observation. These systems can be
thought of as information sinks, because information is lost with time. On the contrary, the
system is called unpredictive if observer B knows more precisely the state of the system at
time tg than observer A. These systems represent information sources, since information is
gained with time. Sensitive dependence on initial conditions is exhibited by an
unpredictive system and vice versa. According to the definitions above, an expanding
system. i.e., a system whose all trajectories diverge one another, is unpredictive. Thus,
stretching mechanism leads to an unpredictive system. In addition, because expanding

trajectories become unbounded, folding mechanism is required to achieve a steady-state.

Unpredictive system: Later observations convey more information about the
state of the system than earlier ones (observations are more accurate than
predictions). It is equivalent to sensitive dependence on initial conditions. Two
mechanisms are required for continuous-time systems to be unpredictive:

stretching and folding [84].

Shadowing Theorem There is another important implication of the sensitive
dependence on initial conditions, which arises in numerical computations, by taking into
account the combined influence of round-off errors in numerical computations and the
property of divergence of nearby trajectories for chaotic behavior. Under such conditions.
how can numerical computations of trajectories be trusted to give us reliable results? (In
experimental measurements the noise plays the role of round-off errors and leads to the
same problem.) For a chaotic system even small numerical errors will be amplified in time
and the results could depend critically on the computational procedures, losing their
generality. The comforting answer to these doubts is given by the shadowing theorem,
which states that the computed trajectory shadows some possible trajectory of the system.

This is illustrated in Fig. 2-32, where the upper picture shows an exact trajectory started

2-34

BUPT



CHAPTER 2 2-4 STEADY-STATE ANALYSIS

from x, and described by the time series values xo, x|, X, ..., X1, and a computed trajectory

started from yo = xo + € and characterized by the obtained time series values vy = xy + €0, v,
=X + €, ya=x2+ €,..., Wt = X + &. For a chaotic behavior |e| grows exponentially and

the two trajectory diverge until, for all practical purposes, they become uncorrelated.
Shadowing theorem says that there is a starting point z, in the ball of radius € about x, that
gives rise to an exact trajectory whose all time series values zo, 71, 22, ..., Zx stay in the balls
of radius € about yx (lower picture from Fig. 2-32). So, the exact trajectory passing through
the z; points shadows the computed trajectory, which in this way is a good characterization

of the system’s behavior [85].

Figure 2-32 Shadowing theorem

Frequency Domain The spectrum of the condenser voltage waveform in Fig. 2-30, at Ky
= 70, is plotted in Fig. 2-33. The spectrum is different from the corresponding periodic
(Fig. 2-16) or quasiperiodic (Fig. 2-25) one. It still have spikes indicating the predominant
frequencies but also has a broad-band, noise-like component, which is a characteristic

exhibited by all chaotic systems.

Chaos: The spectrum may have spikes, but always has a continuous, broad,

“*noise-like” nature.

The route to chaos described so far represents the quasiperiodic (torus

breakdown) route to chaos [86].
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Figure 2-33  Spectrum of condenser voltage in chaotic operation (Ky = 70)

Quasiperiodic route to chaos: As a result of the alteration in a parameter the
system changes from periodic to quasiperiodic state through a Naimark-Sacker
bifurcation. Later, by changing further the parameter the quasiperiodic state

turns into a chaotic one.

2-4-2 PERIOD-DOUBLING ROUTE TO CHAOS

Another type of bifurcation behavior that is present in the system studied is the periodic-
doubling route to chaos [82]. This is the most frequent route and can be readily identified
from a bifurcation diagram. Such a representative bifurcation diagram for the converter

configuration is shown in Fig. 2-34.

2-4-2-1 SUBHARMONIC STEADY-STATE
Starting from left in the bifurcation diagram of Fig. 2-34, the chaotic region suddenly

changes with the increase of Ky into a region with nine consecutive distinct v values.
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Figure 2-34  Bifurcation diagram of the period-doubling route to chaos

Hence, the output voltage v, is periodic in this state and repeats itself after 9 switching
cycles or 18 periods of the sawtooth wave. This state is called period-9 and corresponds to
a frequency-locked or phase-locked motion, in which the solution could synchronize with
some multiple of the forcing frequency. Beside quasiperiodicity and chaos, this is the third
possibility in the conflict between the forcing frequency and the natural frequency. Using
terminology borrowed from Fourier analysis, a period-K solution with K > 1 is called a

Kth-order subharmonic periodic state [84].

Subharmonic behavior: A periodic solution of a time-periodic non-
autonomous system whose period is an integer multiple (>1) of the forcing

period.

Such periodic windows (regions of periodic behavior between regions of chaotic behavior)
appear frequently in chaotic systems [86]. It is hard to see in Fig. 2-11, but even within the
region where quasiperiodic behavior exists, periodic windows appear, where the steady-
state phase-locks onto a subharmonic.

The Poincaré Map The period of the state variables in the converter is 9*T, in period-9
state. As it was defined previously, the Poincaré map behaves similarly to a periodically

flashing stroboscope. Therefore, sampling with the switching period T, the period-9 state
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of the converter will appear as a set of nine points in the Poincaré map. This points
represents a period-9 closed orbit for the Poincaré map. Fig. 2-35 presents the Poincaré
map for the period-9 operation in the plane of output voltage v.«=v,(kT;) vs. inductor

current i,=l,p(kT) at Ky =73.2.

Closed orbit: The sequence {)c;k x;( J is a period-K closed orbit of the map

Pif x;o  =P(x; ) fork=1,....,K-1,and x{ =P(x ).

Subharmonic behavior: A period-K subharmonic of a time-periodic non-

autonomous system appears as a period-K closed orbit of the Poincaré map.
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Figure 2-35  Poincaré map for period-9 operation (Ky =73.2)

Time Domain The time functions of condenser voltage v, and control voltage v,
are plotted in Fig. 2-36 and Fig. 2-37 at Ky = 73.2. The period-9 subharmonic state is
clearly visible in all figures. During the period-9 operation v, fails to hit the ramp wave in
its every cycle (Fig. 2-37).

Frequency Domain The spectrum of the period-9 condenser voltage waveform in Fig. 2-
36, at Ky = 73.2, is plotted in Fig. 2-38. The spectrum of a Kth-order subharmonic signal

contains spikes spaced at integer multibles of f; = 1/KT,.
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Figure 2-36 Condenser voltage in period-9 operation (Ky = 73.2)
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Figure 2-37 Control voltage in period-9 operation (Ky = 73.2)
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Figure 2-38  Spectrum of condenser voltage in period-9 operation (Ky = 73.2)

State Space The limit cycle corresponding to the period-9 steady-state is

presented in Fig. 2-35 at Ky = 73.2 in the plane of output voltage v,, vs. inductor current i,,.

The points belonging to the Poincaré map (Fig. 2-35) are also marked.
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Figure 2-35 Limit cycle in period-9 operation (Ky = 73.2)
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2-4-2-2 PERIOD-DOUBLING BIFURCATION
A little above Ky = 73.5 a bifurcation can be noticed in the diagram depicted in Fig. 2-31:
the 9™-order subharmonic periodic steady-state changes into an 18™-order one. This is

called period-doubling (flip) bifurcation [85].

Period-doubling bifurcation: A period-K solution changes into a period-2K

solution.

The first period doubling is followed by a cascade of other period doublings generating the
subharmonics with order 9*2" where n = 1, 2, ... . Increasing further the controller gain Kv
a little above 74, the smear of points in the bifurcation diagram (Fig. 2-31) indicates that
the period-doubling bifurcations accumulate at a bifurcation value at which chaotic state
develops again. The chaotic behavior can be readily identified again by means of the
Poincaré map. Such a representative map is presented in Fig. 2-36 at Ky = 74.2, in the

plane of output voltage v, =v,(kT) vs. choke current io=i,(kT).

o - | |

50.5

O Y AT e S

VLN i

% 2 4 5 8
ok [A]

Figure 2-36  Poincaré map for chaotic operation (Ky = 74.2)

Chaos Revisited: State Space The chaotic steady-state trajectory corresponding to

K\ = 74.2 is presented in Fig. 2-37 in the plane defined by choke current i,, and output
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voltage v,,. As it was already revealed by the Poincaré map, the limit set of the chaotic

behavior is a complicated geometrical structure, which is called strange attractor.

Strange attractor: The geometrical object in state space to which chaotic

trajectories are attracted.

During its wandering over the strange attractor in Fig. 2-37, the unclosed trajectory
repeatedly and randomly comes on an infinite number of limit cycles very similar to that of
the subharmonic behavior plotted in Fig. 2-35 (if the simulations were run longer the
attractor would become more densely filled in, but not uniformly, as was the case of the
quasiperiodic limit set). This is a very important and useful feature common to chaotic

systems [86].

Strange attractor: A chaotic attractor typically has embedded within it an

infinite number of unstable periodic trajectories.

Figure 2-37  Chaotic state space trajectory (Ky = 74.2)

It is worth to mention another very important feature common to chaotic systems,

resulting also from state space behavior. An important consequence of the uniqueness of

o
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the solution 6, (xo) of an autonomous continuous-time system x = f(x) is that a trajectory

of the dynamical system cannot go through the same point twice in two different
directions. In particular, no two trajectories may cross each other and this is called the
noncrossing property. Taking into account the noncrossing property and the assumption of
a bounded region of state space in which the trajectories live, the Poincaré-Bendixson
theorem states that there are only two possibilities for the trajectory of a two-dimensional
autonomous continuous-time dissipative system: it approaches after the transient process
either an equilibrium point or a limit cycle (in contrast with the strange attractor, these and
the quasiperiodic limit sets are called classical attractors and they are associated with
some geometrical forms). Only a two-dimensional space is separated by a curve into a
region ,inside” and a region ,,outside”, hence a trajectory starting inside the limit cycle can
never get out and vice-versa. Furthermore, the Poincaré-Bendixson theorem leads to an
important result: chaotic behavior cannot occur in a one- or two-dimensional autonomous

continuous-time system [88]. It is obvious that chaos cannot arise in linear systems either.

Chaos: Nonlinearity and at least three state variables are needed in

autonomous continuous-time systems for chaos.

Due to (2-12) a time-periodic non-autonomous continuous-time system can be converted
into an autonomous continuous-time system by appending time as an additional state
variable, therefore, at least two state variables are needed in non-autonomous continuous-
time systems for chaos. In discrete time, even first-order maps can exhibit chaotic

behavior.

The route to chaos identified in this section represents the period-doubling route to
chaos. A period-doubling route to chaos displays a quite surprising behavior because it is
governed by a universal scaling law which holds in the vicinity of the bifurcation point to
chaos. Defining the ratio & of successive interval lengths &, in each of which holds a
period-2k+l state (Fig. 2-38), a universal constant called the Feigenbaum number d is

obtained in the limit as k — o [85].

Feigenbaum number: &= |im i =4.66920161... (Fig.2-38)
k—>00 Ok +]
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Figure 2-38 Scenario of period doubling

Feigenbaum’s number is a universal constant in the theory of chaos like other fundamental
numbers, e.g., 7, ¢, and the golden mean ratio (\/—5—— 1)/2. For the converter the period-
doubling scenario can be seen better in Fig. 2-39, which shows in magnified form the
window encircled by dotted line in Fig. 2-31. Denoting the first bifurcation point by Ao, the
next one by A, etc., the values of the first several bifurcation points are in Table 2-2. Table

2-1 contains also &, and ,. The & values are not far from the Feigenbaum constant.

498 T T T T

49.7

o

9637 736 738 74 742
KV

Figure 2-39 Enlarged part of the bifurcation diagram in Fig. 2-31
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TABLE 2-2  Bifurcation Points in Fig. 2-39

k A Sk

0 73.501

1 73.841 4.0476
2 73.925 4.2000
3 73.945

Period-doubling route to chaos: A cascade of period-doubling bifurcations
that accumulate at a parameter value for which the system becomes chaotic.
The rate of convergence of the bifurcation values is a universal constant

independent of the system.

2-4-3 INTERMITTENCY ROUTE TO CHAOS

The last type of bifurcation behavior that is present in the studied converter
configuration is the intermittency route to chaos. In the diagram presented in Fig.2-
32 it corresponds to the bifurcation from period-9 subharmonic state to the chaotic
state by decreasing the controller gain Ky. Intermittency is best characterized in the
time domain: after the bifurcation, a time waveform is characterized by long intervals
of regular motion (called laminar phases) and short bursts of irregular motion. Such
a representative fragment from the time waveform of the output voltage v, is
depicted in Fig. 2-40, at Ky = 72.97. The period of the oscillations during the laminar
phases is equal to that of the system just before the bifurcation, in period-9 operation.
Decreasing the controller gain further the laminar phases become shorter and the
bursts become more frequent, until the regular intervals disappear completely. The
fully developed chaotic state is illustrated again by the Poincaré map in Fig. 2-41, in

the plane of choke current i, vs. condenser voltage vy, at Ky =72.8.

Intermittency route to chaos: After a bifurcation, a trajectory alternates
between periodic motion and bursts of chaotic behavior. Changing the
system parameter further the duration of chaotic states become more and
more longer, until chaos is fully developed at some distance from the

bifurcation point [85].
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Figure 2-40 Time waveform of the output voltage during intermittency route to

chaos (Ky =72.8)
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Figure 2-41 Poincaré map for chaotic operation (Ky = 72.8)
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CHAPTER 2 2-5 STABILITY ANALYSIS OF THE FEEDBACK CONTROLLED
CONVERTER

The studied converter configuration was able to exhibit all three classical routes to
chaos. These scenarios can be useful because it is often difficult to conclude from
experimental data alone whether irregular behavior is due to measurement noise or to
underlying chaotic dynamics. If, upon adjusting a control parameter, one of the three

prototype routes to chaos is observed, this indicates that the dynamics might be chaotic.

STABILITY ANALYSIS OF THE FEEDBA CK-
CONTROLLED CONVERTER

Computer simulation studies presented in the previous sections revealed important
bifurcation phenomena when adjusting the gain of the proportional control in the PWM
switching loop. Hence, the following study is concerned with system stability in
conjunction with the design of the feedback control loop, i.e., it tries to establish formally

the possibility of bifurcation as a result of varying Ky.

2-5-1 THEORETICAL BACKGROUND: STABILITY OF A
PERIODIC SOLUTION

As presented in subsection 2-4-1-2, in normal operation the converter exhibits period-1
behavior. Periodic time functions describe the waveforms of the state variables, with
period T, (Fig. 2-8, Fig. 2-9). It was also emphasized that one of the most useful method
for investigating continuous-time nonlinear systems involves the discretization technique
represented by the Poincaré map. It was shown that for a non-autonomous system the
Poincaré map is defined by the sampling of the trajectory at a rate being equal to the
switching frequency. Consequently, assuming that the period of the periodic state is the
same as that of the switching frequency, the period-1 state corresponds to a fixed point x°
in the Poincaré map denoted by P in the state space. Therefore, the stability of the period-1
state is the same as the stability of the fixed point in the Poincaré map. In the succeeding
discussion of stability, ,,fixed point” can be replaced everywhere by ,,period-1 solution™.
Therefore the stability is determined by the local behavior of the Poincaré map near
the fixed point x". If all sufficiently small alterations around x~ tends toward O with time,

then x” and the limit cycle are asymptotically stable, the trajectories are attracted onto the
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limit cycle. v~ and the limit cycle are unstable if any sufficiently small alteration increases

with time and the trajectories move away the initial limit cycle [89].

Stable: A limit set is stable if all nearby trajectories stay nearby.

Asymptotically stable: A limit set is asymptotically stable if all nearby

trajectories are attracted, i.e., they approach the limit set as t — oo

Unstable: A limit set is unstable if all nearby trajectories are repelled (except

of course those lying on the limit set).

The Poincaré map function relates the consecutive points in the Poincaré map, their

coordinates in state space separated by one switching period 7, from each other in time:
X+ =Plx,) (2-21)
and at the fixed point X = P( X ).

In particular, the local behavior of the Poincaré map in the neighborhood of the

fixed point x " is governed by its linearization near that fixed point:

A"/1+l = ‘/P( X* )Al’” (2-22)
where
Jp(y )= (2-23)
dx *

X
is the Jacobian matrix of the Poincaré map function P(x,), evaluated at the fixed point X .
Substituting Jp(x*) by its eigenvalues A; and right w;, and left u,; eigenvectors, the linear

map becomes:

T
Avpp = 2)"1'“1'1'”1[ Ax, (2-24)

The eigenvalues A; are called characteristic multipliers or Flogquet multipliers of the

periodic solution.

Characteristic multipliers: The characteristic multipliers of a periodic solution
are the eigenvalues of the linearization of the Poincaré map at the
corresponding fixed point. They give the amount of expansion and contraction

near the periodic solution during one period.
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From linear system theory, the position of the characteristic multipliers in the
complex plane determines the stability of the fixed point (Fig. 2-42). The fixed point and
the limit cycle are asymptotically stable if and only if all eigenvalues of the linearization
(2-24) have modulus less than unity, i.e., they lie inside the unit circle; if any characteristic
multiplier has modulus greater than unity, i.e., it lies outside the unit circle, the limit cycle
is unstable. The characteristic multipliers are real in a node and complex-conjugate pairs in
a focus. The trajectories approach an asymptotically stable limit cycle in an aperiodic way
if the fixed point is a stable (or attractor) node and in a spiral way for a stable (or repellor)
focus. They diverge aperiodically from an unstable limit cycle if the fixed point is an
unstable (or repellor) node and spiral away in case of an unstable (or repellor) focus. If the
fixed point is a saddle point, the trajectories approach the limit cycle in one direction and
diverge in another one (in higher dimensional case saddle point can contains also focus,
i.e., complex eigenvalues). Generic fixed points just presented remain structurally stable as
long as none of their characteristic multipliers lies on the unit circle. Such fixed points

those have no characteristic multipliers on the unit circle are called hyperbolic [84].

Limit Cycle
I
1N
Asymptotically
R Stable K/ R
x
Nod Focus
I I
- \ (1Y
i Unstable
NVARRNYE
X
Node Focus
I I
Saddle - (\
\J K
Saddle Saddle

Figure 2-42 The position in the complex plane of the characteristic multipliers for the

two-dimensional case
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Hyperbolic periodic solution: None of the characteristic multipliers of a
hyperbolic periodic solution has magnitude 1. Hyperbolic periodic solutions

are generic and structurally stable.

Stability of a periodic solution: A hyperbolic periodic solution is
asymptotically stable if and only if all its characteristic multipliers lie inside the
unit circle. It is unstable if any of the characteristic multipliers lies outside the

unit circle.

2-5-2 THE FEEDBACK CONTROLLED CONVERTER: A

VARIABLE STRUCTURE, PIECEWISE LINEAR,
NONLINEAR SYSTEM

The studied resonant converter is a variable structure, piecewise linear, nonlinear

dvnamical system [89]. The structure of the active circuit varies during the periodic steady-

state operation (Fig. 2-8). The structures change periodically during the operation. One

period corresponds to the switching cycle 7, and it is divided into two subperiods

(semiperiods in time) by the repeated succession of two structures presented in Fig. 2-43.

The correspondence between the circuits in Fig. 2-43 and the active parts of the converter

configuration (Fig. 2-6) during one switching period is shown in Table 2-3. The time

sequence of structure changes is outlined in Fig. 2-44. The durations of the same structure

in the two subperiods are equal in periodic state due to the symmetrical operation

investigated (Appendix A): o, =0, =0.

S L
C CiT R S°'§ Ci Ré
Se2 C,FR2 Se2 C,T7 R
T T

STRUCTURLT: wte[0,00p]

wte [wTs/2, wTs/2 + o y]

Figure 2-43  Converter structures during a subperiod

[§S]

STRUCTURE 2: ote (o p.wT/2]

ote [0T,/2 + oy, @T]

>
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Table 2-3

one switching period

The connection between the converter and the structures in Fig. 2-43 during

ONE SWITCHING PERIOD
SUBPERIOD I SUBPERIOD 11
STRUCTURE 1 | STRUCTURE 2 | STRUCTURE 1 | STRUCTURE 2
S S,, - Sn -
S(‘l - S('/) - SL’II
S( 2 Sul S('n Sq) SL'/)
C C, C, C, Cu
C’ Cn Cn Cp C/)
R, R, R, R, R,
RZ Ru Rn Rp Rp
5 ONE SWITCHING PERIOD R
N T g
L SUBPERIOD 1 J‘ SUBPERIOD II i
h T,/2=T, T T./2=T, i
Circuit —p i STRUCTURE 1 : STRUCTURE?2 i STRUCTURE 1 : STRUCTURE?2 E
Duration— T d, d; T d, d, 7
Timc_}’(lJ =1, =1 III t‘é :IOI =1+ f|” tZH =Tyt

Figure 2-44  The time sequence of structure changes

Since each structure has linear dynamics, the resonant converter is a piecewise

linear system. On the other hand, the whole system, the feedback controlled converter is

nonlinear due to the dependence of commutation angles «,, ¢, on the state variable v,. The

linear state equations of the structures in subperiod I, using Table 2-3, are as follows [91]:

Structure 1:

‘[V()p _ l - 1 i
- ‘op T~ lop
dr R,C, C,
dv,, 1 I
=- Vv, F——I
([[ R"C” on C” on
dv. 1 ;
d Cc
digp 1 ) L
dt L L L"¥
dion _ ] v
dr L "
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CONVERTER
Equations (2-25) can be rewritten in the dimensionless form:
d =—ax| +bx,
dt
dx»
—==—ax, +bxs
dt -
d
Ak (2-26)
dt
Pa (g +x3-1)
dt
d=
—rD— = —TX»
dt -
where
X = Vop Xy = Von X3 = Ve X4 = Z.iOP X5 = Z'ion’ _L
Vi/2 vi/2 V,‘/2 V[/2 v,-/2 T,. (2-27)
a=tr p-Me _C 1 _pe. T =RC.Z=AL/C
TO T() 4]

and v; /2=v;, =v;,,C,=C, =C,,R=R, =R, T, =T /2=nJLC (Appendix A).

The state model of structure 1 is hereby:

— - — -

x| -a 0 0 b O 0
) 0O -a 0 0 b 0
X:AI'X-FBI; X={X3 | A1= 0 0 0 nt 0} Bl-— 0 (2-28)
X4 -t 0 -n 0 O T
| Xs | | 0 -t 0 0 O] 0]
Structure 2:
State equations:
Nop _ L
- op op
dt R,C, p
CIVOH 1 .
=— Vo +—1
dt Rncn on Cn on
dv, 0 (2-29)
dt
diop ___1-‘)
dt L
([i()ll ]
o ST
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CONVERTER
The state model of structure 2 in dimensionless form:
[ x; ] [~a 0 0 b 0]
Yy 0O —-a 0 0 b
X=A,-x; x=|x3|, A=0 0 0 0O (2-30)
Yy -t 0 0 0 O
| X5 | 0 - 0 0 O

Subperiod II consists of the same structure series as subperiod I containing
structure 1 and structure 2, with the same parameters, due to the symmetrical
configuration. By utilizing the periodicity of the structure series, the values of the five state
variables at the end of subperiod I, x( té ), can be transformed back to structure | used in
subperiod I by a periodicity or transformation matrix 7™, that is:

)= X)) (2-31)
where suffix b refers to the back transformation. Now the same structures, structure 1 and

2 and the same state variables are used even in subperiod II as in subperiod I. The

transformation matrix is:

01 0 0 O]
1 0 0 0O
T=T"'={0 0 =1 0 © (2-32)
00 0 0 1
00 0 1 0]

x,,(t(l)[) is considered as the initial condition of the state variables in structure | for

subperiod II. The result of the back transformation is (v;/ 2 = 1):
pr(tél) l'on(t(gl) Vc(té[) Z'iop(tél) Z'ion(tél)r~:: (2-33)
_ / I I . N }T
= [v””(t—_) ) Vop(1a ) =ve(ty ) Z-ipy(t3 ) Z-igy(t3)

Suffix b has been omitted in eq. (2-33). At the beginning of subperiod II, vop(fél ) starts

from vo,,(té ) and increases a little bit as a result of the current pulse i,, starting from

io,,(té ). The capacitor voltage v. swings over from —vc(té ) to the positive values as a

result of the positive current i,, flowing in C. There is no need to write new equations in
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subperiod II. the same equations can be used as in subperiod I. The same back
transformation has to be used at the end of each succeeding subperiod [89].

The procedure can be applied both in periodic steady-state and in transient state. In
periodic steady-state due to the periodicity (Fig. 2-8):

x5 )=T x(1}) (2-34)

As it was mentioned above, the system within each subperiod is piecewise linear
and the PWM-controlled feedback converter becomes a nonlinear system due to the

dependence of the structure change instants (the turn-on time of the switches) on the state

variable, the output voltage.

2-5-3 STABILITY ANALYSIS USING POINCARE MAP
FUNCTION

It has been shown that the stability of the feedback control loop including the converter in
periodic operation is determined by the eigenvalues of the Jacobian matrix of the Poincaré
map function at the corresponding fixed point [eq. (2-22)]. Since we have proved in the
previous subsection that the dynamics of the entire switching period is fully characterized
by that of one subperiod, with transformation (2-31) applied at its end, we are interested in
a discrete-time map that relates the state variables over one subperiod. This discrete-time

map function f can be expressed in the following form:

X1 =f(x.8)) (2-35)
where at the beginning of each T, switching period k takes the value of the number of
periods k = n and the dimensionless interval is 8, =d| /T, of structure 1 (Fig. 2-44). 8,
determines unanimously the dimensionless interval 8, =d, /T, of structure 2. One
subperiod lasts one period of the sawtooth waveform T, = T,/2 (Fig. 5), therefore:

3, =1-9 (2-36)

By applying in cascade the solutions of differential equations (2-28) and (2-30),

map function f can be written as follows:
X1 = S xp,8) )= Dp(1-9 )'{‘D1(51 )-xy +[@(8)- 1] A 'Bl} (2-37)
where

@8 )=eMP; Dy(1-8) )= (170 (2-38)
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are the transition matrixes of the two structures, respectively, as well as one particular

solution of (2-28) is
X =-A7".B (2-39)

obtained from (2-28) by substituting x=0. By wusing (2-28) and calculating

- [jA .
~",;=—A1]'B|=—a|ii|l-Bl, the result is: x; =0,x7 =0, x3 = Ve =1,x4 =0 and
1

Vi/2

x5 =0. This result as one possible particular solution can easily be deduced by physical

consideration without any calculation as well. I is the identity matrix.

Our next aim is to express the feedback relation that connects the duration 8, and
the state vector x;. The PWM control terminates the structure 1 of one subperiod at 9,
when the difference between the control voltage v.,, and the sawtooth waveform v,

becomes zero (Fig. 2-9). In dimensionless form:

Veon( 6] )= Vramp( 6] ) _

%01 )= vi/2
]
=Ky [ Vyeg =18 )=xo( 8, )] =V ~(Vy =V )-8 =
=Ky vy —kT (8, )=V[ =(Vy =V[ )-8, = (2-40)
=Kv'V;f*kr'{‘bl(Bl)'xk+[‘D1(5|)—1]'141_1'31}—‘/2—(‘/5‘VZ)'5|=
=0
* an % VL * VU T .
where v, = Vi = Vi = k' =K K 0 0 O0]. Relations (2-10),
el TN TNV T Ky Ky ]

(2-27) and the solution of (2-28) were used in (2-40).
On the basis of eq. (2-37) after back transformation:

Srrp =T e =Tl 8 )] (2-41)
At the end of subperiod II after back transformation:

-1 -1

Xk+2h =Xl =T Xy =T 'f[xk+1,b-61(xk+l,b )] (2-42)
The Poincaré map function F belonging to f, i.e., to one subperiod, from (2-41) and (2-42)
1S

X1 =F(xg) (2-43)
In period-1 steady-state x,, =xy =Xg41p = Xk+2.b =x" where x is the fixed point. From

the previous three equations:
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=TT AT S ) = F(xT) (2-44)

The Jacobian matrix Jr of map function F defined in (2-43) and (2-44) takes the

following form:

o df(x8)) of of (dd Y
TJ = = S—4 | — —_
Flx) de | |:8x+861(dx .
1 * (2-45)
| ¥ (3 (e
8x 88] 881 aX
The derivatives of f can be calculated from (2-37), (2-38):
S @y(1-8, ) @,(5,) (2-46)
X
of I0D,H(1-9,) _
a£l= 2881 ' -{cbl(sl)-xk+[cb1(61)—1]-Al‘-Bl}+
f Dy (1-5 ).a%bl(ﬁmk+[¢1(81)—1]-Ar'-Bl}:
2 35, (2-47)
81(81):

=—(D2(l——61 )A2 -x(81 )+(D2(1—61 )

29,
= (DZ( 1 —61 ): (_ xZ,srart +x1,end)

where X, ,,, and ¥, ., are the velocities of state vector x at the end of structure | [eq.

(2-28)]. and at the beginning of structure 2 [eq. (2-30)], respectively.

The derivatives of e are obtained from (2-40) using also the solution of (2-28):

de kT_a%Dl(al)'xk +[(D1(51)—1]'Afl'31}

s V5 ;)=
33, 33, (2.48)
ox( % % . % %
=—kT .—%é;_)—(VU _VL )=_kT "X1,end —(VU _VL )
1

3 T
(_ej =—kT.®,(5,) (2-49)

a.\'k

Substituting all the derivatives expressed in (2-46) — (2-49) into (2-45), the Jacobian matrix

of map function F is:
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JF(.\‘* )=T—l '@2(1—81 )(Dl(8| )|x* -
(x ' ) kT @8
_T—l ‘(DZ(]_SI ): Xl,end —X2,start ) ) l( 1) _
kT 'xl,end +V(j —VZ o
] (2-50)

_ X —-X
=T 1'¢2(1—51 )-| 1 - . l,end 2,s*rarr _ -kT '(DI(SI) _
k 'xl,end +VU _VL o

=T Dy (1-8,)-M-D(5))

X*

The equations from (2-35) up to (2-44) are the same for the next subperiod starting
by state variable .., and ending by xx425 = x,+1. Therefore, the stability of the converter is
unambiguously determined by the Jacobian matrix JF(x*) expressed in (2-50) [83].

For small deviations around the fixed point x

Avgsrp =J (X )-Axy =Jp(x )-Ax, (2-51)
and

Ayt =Dy =Jp(X )-Axgy =T p2(X ) Ax, (2-52)
Using the Jacobian matrix Jp related for a full period [eq. (2-22)]

A, =Jp(x )-Ax, =Jp" (X" ) Axg (2-53)
From the last two relations:

Avye =J 27 ) Ay (2-54)
The absolute values of the eigenvalues of Jr or Jp must be smaller than | for stable
operation. Since the eigenvalues of Jr are the square roots of those of Jp, their positions, as
compared to the unit circle, lead to the same conclusion. Therefore, the eigenvalues of Jr
are used for the stability study and a MATLAB program was developed in order to
compute them.

To calculate the eigenvalues of Jr the value 8, must be determined. An iterative
algorithm was used to this end [83]. The initial value §,;, was obtained from the steady-
state relations derived in subsection 2-3-1, where the filter capacitor at the output was
assumed to be very large, as it is normally the case in applications requiring a nearly ripple
free instantaneous output voltage V,. The corresponding steady-state duty ratio &, was
determined by the PWM control (Fig. 2-9b):

5 _O(_Kv(vref_vo )=V
Lin ==
in vV, -V,

(2-55)
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The average output voltage V,, can be expressed from (2-9) by taking into consideration
that f. /f, = 1:

Ve
V,=—-t—or 2-56
¢ Rma/2 (2-50)
rg(o/2)
Substituting V,, from (2-56) into (2-55), 6,;, =d; /T, =a/n was calculated from the

transcendental equation.

The accurate value 9, deviates from 9§, ;, due to the ripple in v,. It has been shown
that in periodic steady-state x; =T_1-f(xk,8|'ac), where &, is the accurate value

giving the accurate meeting point of v, and v, within period T, (Fig. 2-9b), i.e.,
satisfying eq. (2-40). The iteration for the calculation of 8, . starts by substituting &, , in
eq. (2-37) and calculating x;, i.e., the first approximation of the time functions v, or v..,
from relation:
wp =[T-0a(1-8))-@(8) )] @, (1-8; )-[@(8, )-1] A7 B, (2-57)
Knowing v, the meeting point of v, and v, provides the new value for 4, in

the next iteration step. By setting a limit € for the deviation in &, in two consecutive

61 [ —Sl,i—l

iteration steps in such a way that — <€, 0] 4 can be approximated at will, where

Li
i 1s the number of iteration steps.

The calculation of matrix

Ml L= 7= XLend _XZ,start &7 (2-58)

T . * *
k "Xl,end +VU _VL o

requires the veiocity of state vector at the end of structure 1 (X; ., ;) and that at the start of
structure 2 (X3 ¢ )» Which are defined by the state models of the two structures, by eq.

(2-28) and (2-30), respectively. The state vector x(d;) is needed for the calculation both for

Xend = Ay X(8) )+ By and Xy 0, = Ay -x( 8y ). It can be determined from the solution of
€q.(2-28) [see eq.(2-37)]:
X8 )=d(8) x, +[@(8;)-1] AT!- B (2-59)

Knowing all terms in matrix Jr, its eigenvalues can be calculated e.g. by

MATLAB. The developed MATLAB program is listed in Appendix C.
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2-5-4 STABILITY ANALYSIS USING THE RACZ
METHOD

The Riacz method is applied in this second approach to determine the Jacobian matrix Jr of
map function F. The basic idea of this method is illustrated in Fig. 2-45. Recall again that
in steady state the system exhibits a periodic behavior, its trajectory in state space reaches a
limit cycle. whose stability can be determined by modifying slightly the trajectory in the
vicinity of this limit cycle. Initially, before the change in the trajectory, the system reaches
the switching hypersurface of the limit cycle at time ¢,, in P(t,,) and the trajectory suddenly
changes due to this switching (solid line in Fig. 2-45). As an effect of the alteration Av the
trajectory is modified (dashed line in Fig. 2-45). The new trajectory reaches at time t,, the
point P, and the alteration of the state vector at this time is Ax,, cua(tn). The switching
hypersurface is reached by this modified trajectory at f,+At, in P,. The “distance”
between P, and Py iS X yendAln, Where x,...q¢ 1S the velocity vector at the end of the
structure n1. The alteration of the state vector on the hypersurface is Ax,, ona(tn+At,). After
the switching, the velocity vector at the start of the structure m+1 is X 41 war Since each
structure is a linear one, the point P(1,+At,) of the trajectory can be projected “back in
time” to t, by extending the trajectory at the start of the structure m+/ toward “negative
time” along the velocity vector X ,..|gq+ Point Pi(t,) at distance - X .1 sy from Pa is
obtained in this way and the virtual alteration of the state vector becomes Ax, .1 swr(tm)-
This mathematical abstraction is useful since by applying it, the trajectory will start in

structure /m+1 at the same instant ¢, as in the case of the original trajectory [89].

switching
hypersur face | '

P} tm)

T (f mH-Af m) T
xm+1 mrtAtm “, xm +1, mnAt m

Figure 2-45 The Ricz method
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Applying Fig. 2-45 for the feedback-controlled converter in periodic steady-state, a
first switching instant ¢,, within a subperiod corresponds to the transition from structure |
into structure 2 (Fig. 2-44) at the dimensionless moment &;. The aim is to determine a
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