
UNIVERSITATEA "POLITEHNICA"
TIMIŞOARA

BIBLIOTECA CENTRALĂ

Nr. inv.

D ulap______

i

SYSTEMIC APPROACH TO THE 
NONLINEAR BEHAVIOR OF SOME 

POWER CONVERTERS

Ph.D.Dissertation

Supervised by Prof. dr. ing. Nicolae Budişan

Writen by OCTA VIAN DRANGA

“POLITEHMCA”lINIVERSITY OF TIMIŞOARA

BUPT



In all duios there is a cosmos, in all disorcler a secret order, in all caprice a fixed  law.

C. G. Jung

BIBLIOTECA CENTRALA 
UNIVERSITATEA -POLITEHNICA" 

TIMIŞOARA

BUPT



CONTENTS

Chapter 1 Introduction -  The Actuality of the Study

l-l Chaos: A "New'' Class of Nonlinear Phenomena
1-2 Sources of Nonlinearity in Power Converters
1-3 Limitations of Convenţional Approaches
1-4 History of Investigation of Nonlinear Dynamics and Chaos in 

Power Converters

Chapter 2 Analysis of Nonlinear Dynamics and Chaotic Behavior 
of a feedback-controlled resonant DC-DC Converter

2-1 General Review
2-2 Converter Configuration 
2-3 Converter Operation

2-3-1 Basic Steady-State Relations 
2-3-2 The PWM Switch Control 

2-4 Steady-State Analysis
2-4-1 Quasiperiodic Route to Chaos 

2-4-1-1 Poincare Maps 
2-4-1-2 Bifurcation Diagrams 
2-4-1-3 Periodic Steady-State
2-4-1-4 Quasiperiodic Steady-State
2-4-1-5 The Naimark-Sacker Bifurcation
2-4-1-6 Chaos

2-4-2 Period-Doubling Route to Chaos
2-4-2-1 Subharmonic Steady-State
2-4-2-2 Period-Doubling Bifurcation

2-4-3 Intermittency Route to Chaos
2-5 Stability Analysis of the Feedback-Controlled Converter

2-5-1 Theoretical Background: Stability of a Periodic Solution
2-5-2 The Feedback-Controlled Converter: A Variable Structure, 

Piecewise Linear, Nonlinear System
2-5-3 Stability Analysis Using Poincare Map Function
2-5-4 Stability Analysis Using the Râcz Method
2-5-5 Calculation Results of the Stability Analysis

1-1

1-2
1-5
1-6

2-1

2-1
2-5
2-8
2-10
2-11
2-12
2-13
2-13
2-16
2-18
2-22
2-29
2-30
2-36
2-36
2-41
2-45
2-47
2-47
2-50

2-54
2-59
2-61

BUPT



Chapter 3 Control Strategies for the Unstable Regimes of the 
Resonant DC-DC Converter

3-1

3-1 Objectives of Control 3-2
3-2 Linear Compensation 3-3
3-3 Fuzzy Control 3-11
3-4 Control of Chaos Using the OGY Technique 3-17

3-4-1 Theoretical Background 3-18
3-4-2 Control Setup 3-22

3-5 Time-Delay Autosynchronization 3-25
3-6 Experimental Setup and Test Results 3-28

3-6-1 The Power Stage 3-28
3-6-2 The Control Device 3-29

3-6-2-1 The Digital Signal Processor 3-29
3-6-2-2 The Software Environment 3-31

3-6-3 Experimental Results 3-33

Chapter 4 Analysis of Nonlinear Dynamics and Control of a
High Frequency Time-Sharing Inverter 4-1

4-1 Shori Introduction 4-1
4-2 Basic Inverter Configuration 4-2
4-3 Inverter Operation 4-3
4-4 Extension of Basic Inverter Configuration 4-4
4-5 Steady-State Analysis of Inverter Behavior 4-5

4-5-1 Analysis in Time Domain 4-6
4-5-1-1 Approximate Analysis 4-6
4-5-1 -2 Accurate Analysis 4-11

4-5-2 Analysis in Frequency Domain 4-16
4-5-3 Analysis in State Space 4-17

4-6 Steady-State Analysis of Feedback Control Loop 4-18
4-7 Control of Inverter by Time-Delay Autosynchronization 4-19
4-8 Test Results 4-21

Chapter 5 Conclusions and Original Contributions 5-1

5-1 General Conclusions 5-1
5-2 Original Contributions 5-4
5-3 Further Research Topics 5-5

Appendices A -l

Bibliography B-1

BUPT



CHAPTER 1

INTRODUCTION -  THE ACTUALITY OF THE STUDY

A new class o f nonlinear phenomena has been cletectecl widely in engineering and natural 

systems dnring more than two decades o f intense studies (section 1-1). The main purpose 

o f this introductory chapter is to summarize the state o f the art in the application o f 

nonlinear dynamics theory in power electronics. The continuing development o f high- 

power semiconductor clevices made possible the high-ejficiency solid-state power 

conversion. Operation o f these clevices as switches implies that power converters are 

essentially nonlinear time-varying dynamical systems (section 1-2). Although herehy they 

hecome d((ficult to study, the ejfort is worthwhile because o f their many practicai 

applications and increasingly importance in the delivery and utilization o f electrical 

energy. Tradiţional analysis approaches do not always provide reliable models since 

nonlinear effects are generally ignored and this sometimes misleads to a circuit supposed 

to perform acceptably while in practice it will not (section 1-3). Techniques and ideas oj 

nonlinear dynamics offer another way o f investigating these circuits, which is more 

accurate and able to reproduce nonlinear phenomena like chaos, quasiperiodicity and 

subharmonics (section 1-4).

1-1 CHAOS: A “NEW” CLASS OF NONLINEAR PHENOMENA

Three centuries after the publication of Newton’s “Principia” (1687), the discovery of 

chaotic dynamics has doubted one of the basic doctrines of classical Science, according to 

which a deterministic system is completely predictable, i.e., given the iniţial condition and 

the mathematical model, its behavior can be predicted for all time. Simply put, a chaotic 

system is a deterministic system exhibiting random behavior.

Although only relatively recently identified as a robust phenomenon, chaos has 

certainly been encountered by scientists many times in the last century but it was dismissed 

as physical noise. The history of chaotic dynamics can be traced back to the work of Henri
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CHAPTER 1 l-l CHAOS: A “NEW” CLASS OF NONLINEAR PHENOMENA

Poincare on celestial mechanics around 1900 [1]. Hovvever, after discovering the extreme 

sensitivity to iniţial conditions in a simplified computer model of atmospheric convection 

Lorenz gave in 1963 the first suspicion that chaos might be important in a real physical 

system [2], Lorenz's paper, which appeared in an obscure journal, vvas largely overlooked 

for some years. The terni chaos vvas fi rst time used by Li and Yorke in their 1975 paper 

"Period three implies chaos” [3]. In 1976, May published an influential article describing 

hovv simple nonlinear systems can exhibit complex, chaotic behavior [4]. In the late 1970s, 

the cascade of period-doublings, which form one of the commonest routes to chaos, was 

analyzed by Feigenbaum [5]. Over the past two decades there has been a great 

advancement in the theory of nonlinear dynamics and it has been found that various and 

interesting nonlinear phenomena are very common in a large number of physical systems. 

Chaos is such a widespread phenomenon that it has now been reported almost in every 

scientific discipline: astronomy, biology, biophysics, chemistry, engineering. geology, 

mathematics, medicine, meteorology, plasmas, physics and even the social sciences.

It is no coincidence that computers have permeated society during the same two 

decades in which chaos has grown into an independent field of research. Actually, the 

available computing power has spurred much of the research in chaotic dynamics. The 

reason is that computers can calculate solutions of nonlinear systems. This is extremely 

important, since unlike linear systems, where closed-form solutions can be written, few 

nonlinear systems and no chaotic systems possess closed-form solutions. Computers allovv 

numerical "experiments” to be performed quickly and easily: parameters can be changed, 

system equations modified and solutions displayed. Therefore, simulations represents a 

powerful tool for gaining intuition about nonlinear systems and for exploring the exciting 

terrain of chaotic dynamics and they are used to this end during this thesis, too. Hovvever. 

simulations have their limitations. Computers have finite precision and inevitably generate 

errors when evaluating floating-point expressions. Furthermore, they are naturally discrete- 

time and there are unavoidable errors when they are used to simulate continuous-time 

systems. Finally, a simulation is of little or no help in proving theoretical results since even 

if the result of a simulation were completely accurate, it is just one solution of one system 

from one iniţial condition using one set of parameter values. The moral is that, although 

simulations are a useful tool, their results must be interpreted carefully, checked against 

intuition and theory, and used only for purposes for which they are suited.

1-2
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1-2 SOURCES OF NONLINEARITY IN POWER CONVERTERS

CHAPTER I_________ 1-2 SOURCES OF NONLINEARITY IN POWER CONVERTERS

The application area chosen in this thesis for the study of nonlinear phenomena, with an 

emphasis on chaotic behavior, is represented by power converters. Although they do not 

have an end of their own, power converters are always an intermediary between an energy 

producer and an energy consumer. The field is one of growing importance: it is estimated 

that during the twenty-first century, 90% of the electrical energy generated in developed 

countries will be processed by power converters before its final consumption. This ‘'green" 

technology has three main aims:

• To convert electrical energy from one form to another and to facilitate its regulation 

and control

• To achieve high conversion efficiency and therefore low waste heat

• To minimize the mass of power converters and the equipment (such as motors) that 

they drive

There are four basic types of power converter, since electrical power supplies can 

be either DC or AC: AC-DC converters (also called rectifiers), DC-AC converters (also 

called inverters), DC-DC converters and AC-AC converters. Here AC typically denotes 

nominally sinusoidal voltage waveforms, while DC denotes nominally constant voltage 

waveforms. Small deviations from nominal are tolerable. A DC-DC converter and an 

inverter are subject of the study comprised in present thesis.

Power converters technology is increasingly found in the home and workplace 

[6.7,8,9]. Familiar examples are the domestic light dimmer, switched-mode power supplies 

in personal computers, heating and lighting Controls, electronic ballasts for fluorescent 

lamps, drives for industrial motion control, induction heating, battery chargers, traction 

applications such as locomotives, solid-state relays and circuit breakers, off-line DC power 

supplies. spacecraft power systems, uninterruptible power supplies (UPSs), conditioning 

for alternative energy sources, automobile electronics, electric vehicles, etc.

In order to reduce energy costs, high efficiency is needed. but also because it 

reduces the amount of dissipated heat that must be removed from the power converter. In 

large, high-power systems, efficiencies of higher than 99% can be obtained, while small, 

low-power systems may have efficiencies closer to 80%. The goal of high efficiency 

conditionates that the power processing components of the circuit be close to lossless. Two 

basic groups that can be approximated by real components are available:

1-3
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CHAPTER I 1-2 SOURCES OF NONLINEARITY IN POWER CONVERTERS

• Switching components, like transistors and diodes. They are operated cyclically and 

serve to vary the interconnections or the topological state of the circuit during a cycle. 

Switches turn on and off in response to an applied signal, which in feedback-controlled 

systems depends on the state variables. Passive switches (diodes) have a highly 

nonlinear v - / characteristic.

• Reactive (energy storing) components, like inductors and capacitors. They are 

characterized by differential equations: v = L cli/dt for an inductor, i = C dv/dt for a 

capacitor. The capacitors and inductors perform filtering actions. regulating power 

flows by absorbing, storing and supplying energy.

Power converters use components from both groups. The switching components steer the 

energy around the circuit, while the reactive components act as intermediate energy stores 

and input/output reservoirs. Ideal switches, capacitors and inductors do not dissipate power 

and circuits containing only such elements do not dissipate power neither (provided that 

the switching operations do not result in impulsive currents or voltages, a constraint that is 

respected by power converters). In particular, an ideal switch has zero voltage across itself 

in its on (or closed, or conducting) state, zero current through itself in its off (or open, or 

blocking) state and requires zero time to make a transition between these two states. 

Therefore, its power dissipation is always zero. Of course, practicai components diverge 

from ideal behavior, resulting in some power dissipation. However, for the types of 

dynamic behavior examined in this thesis, it suffices to assume ideal components.

The presence of both types of component detailed above implies that the circuits 

are nonlinear, time-varying dynamical systems, with two implications:

• Power converters are difficult to analyze

• Power converters are likely to show a wealth of unusual behavior.

There are also several unavoidable sources of unwanted nonlinearity in practicai power

converters:

• The semiconductor switching devices have intrinsically nonlinear DC characteristics.

They also have nonlinear capacitances and most suffer from minority carrier charge

storage.

• Nonlinear inductances abound: transformers, chokes, magnetic amplifiers and saturable 

inductors used in snubbers.

• The control circuits usually involve nonlinear components: comparators, PWMs, 

multipliers, phase-locked loops, monostables and digital controllers.
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CHAPTER 1 1-3 LIMITATIONS OF CONVENŢIONAL APPROACHES

1-3 LIMITATIONS OF CONVENŢIONAL APPROACHES

Power converters are tipically modeled by taking an average over a switching cycle, an 

approach first proposed by Wester [10]. Since a linear model is required by convenţional 

control theory, the averaged circuit is generally linearized about a suitable operating point. 

State space averaging, developed by Cuk, operates on the state equations of the circuit 

[11,12], "Injected and absorbed” currents are used by an alternative method [13]. 

Vorperian suggested a method of treating the switch-diode combination in isolation from 

the converter circuit [14,15]. Regardless of the details, these methods have the same 

purpose: to replace the nonlinear, time-varying dynamical system with an averaged, 

linearized one. The justification is that when designing the control circuit, one need no 

longer be concerned with the microscopic details of the power switching. Clearly, 

something is lost in the process.

The convenţional averaging technique gives a useful representation of the system 

and allovvs simple design procedures for operation in certain regimes. Hovvever, it has 

some evident limitations. For example, the standard analysis by averaging predicts that the 

buck DC-DC converter will be stable over the vvhole operating range of input voltage and 

load resistance. But it was revealed by numerical simulations and experiments that this 

converter exhibits subharmonics and chaos over a significant range of parameter values 

[16,17,18]. No method that relies upon linearization can predict such effects, which are 

typical to nonlinear systems. In addition, the process of averaging can suppress behavior 

that a more detailed model might display.

Some cases of instability can be predicted by nonlinear averaged models, e.g., the 

Hopf bifurcation in the autonomous Cuk converter [19]. However, the nonlinear averaged 

model is also of little or no use in predicting and analyzing subharmonics and chaos such 

exhibited by the already mentioned buck converter. For the Cuk converter, vvhere nonlinear 

averaging can successfully predict the first instability, it failed to throvv any light on the 

subsequent bifurcation sequences. More detailed analyses based on the other models and 

techniques may therefore be warranted for safe and reliable operation of a power converter. 

Power electronics researchers have begun only relatively recently to use the methodology 

of nonlinear dynamics in the analysis of power converters.
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CHAPTER 1 I -4 HISTORY OF INVESTIGATION OF NONLINEAR DYNAMICS
AND CHAOS IN POWER CONVERTERS

1-4 HISTORY OF INVESTIGATION OF NONLINEAR 

DYNAMICS AND CHAOS IN POWER CONVERTERS

In 1927 Van der Pol had observed first time chaotic effects in an electronic circuit [20,21]: 

a relaxation oscillator, containing a battery, a neon bulb, a capacitor and a resistor, vvas 

driven by a sinusoidal signal and tuned to generate subharmonics, but “an irregular noise” 

vvas often heard. Van der Pol dismissed this “noise” as a “subsidiary” phenomenon and for 

over 50 years there vvas little interest in explaining such phantom oscillations. Baillieul, 

Brockett and Washburn suggested that chaos could occur in DC-DC converters 

incorporating a pulse-width modulator (PWM) control in 1980 [22], The first modern 

experimental report of electronic chaos (in a driven resonant circuit using a varactor diode 

as a nonlinear circuit) vvas published in 1981 by Linsay [23]. The driven resistance- 

inductance-diode circuit has a close relative in power converters, since when a transformer 

feeds a rectifier diode, the leakage inductance resonates with the diode’s nonlinear 

capacitance to give a chaotic transient when excited by the switches. The first autonomous 

chaotic electronic circuit was built in 1983 by Chua and Matsumoto [24], The double scroll 

oscillator (usually known simply as Chua's circuit) has been widely investigated as the 

archetypal chaotic electronic circuit [25].

Brockett and Wood presented in 1984 a conference paper describing chaos in a 

controlled buck DC-DC converter [26]. The first detailed analysis of chaos in power 

converters vvas a letter by Hamill and Jefferies in 1988 [27]. Chaos in a switching 

converter was further described by Wood at a 1989 conference [28] and several other vvays 

by which chaos can appear in power converters were identified by Deane and Hamill soon 

after [29], These ideas were further developed in [30,31], mainly concerned with 

prediction and experimental confirmation of chaos in DC-DC converters under various 

control schemes.

Trajectories obtained by the integration of the exact mathematical models were 

used by these iniţial investigations [32], but it was difficult to go beyond the empirical 

phenomena observation with this kind of system approach. After it vvas definitely proved 

that all feedback-controlled switching circuits are inherently nonlinear and exhibit various 

nonlinear phenomena, the efforts aimed to develop system modeling that permits the 

theoretical investigation of such phenomena. Hamill and Deane proposed nonlinear map- 

based modeling, taking the clue from system descriptions representative to nonlinear
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CHAPTER 1 1 -4 HISTORY OF INVESTIGATION OF NONLINEAR DYNAMICS
AND CHAOS IN POWER CONVERTERS

dynamics literature [17]. Sampled-data modeling techniques of power electronic circuits 

presented in the textbook by Kassakian, Schlecht and Verghese [9] helped in this 

elaboration. The state variables of the investigated system are observed discretely at 

specific time instants in this method and it is obvious that the choice of sampling instant is 

not unique. A first version, known as stroboscopic sampling, was used by Banerjee and 

Chakrabarty [33], Chan and Tse [34], Marrero, Font and Verghese [35] in analyzing the 

current mode control led converters. A second variant was proposed by Deane and Hamill 

in [17] and used by them in the study of the current mode controlled boost converter 

[30,31]. A third method was applied by Di Bernardo et al. in investigating the voltage- 

controlled buck converter [36,37,38,39].

Using these tools, researchers focused on the nonlinear dynamics of specific 

converters under PWM control. The voltage-controlled buck converter and the current 

mode controlled boost converter have received high research attention: the former because 

it exhibits a wealth of nonlinear phenomena and the latter because it is easy to obtain a 

closed form expression of the map, facilitating the analysis.

Numerical and experimental bifurcation diagrams of the voltage-controlled buck 

converter were presented by Deane and Hamill [17]. Fossas and Olivar investigated the 

stability of the periodic solutions, obtaining the conditions of instability [18]. Banerjee 

noted that multiple attractors coexisting with the main attractor are responsible for the 

sudden expansion of the chaotic attractor by interior crisis [40]. Di Bernardo et al. explored 

the bifurcation sequence in detail and concluded that a period-5 orbit organizes the 

enlarged attractor in five zones [38,39].

The nonlinear map-based model of the current mode controlled boost converter in 

closed form was deduced first time by Deane by sampling the state variables at every 

switch-on instant [31]. The equivalent stroboscopic map was developed by Chan and Tse

[34] and this stimulated research in two directions. Banerjee and Chakrabarty tried to 

obtain a more exact model by including parasitic elements such as the resistances of the 

inductor and the capacitor and proved that the model can still be deduced in closed form 

[41], On the other hand, it was revealed that under certain reasonable assumptions the 

discrete-time model leads to a simple one-dimensional piecewise-linear map suitable for 

analytical investigation. The map was obtained under switch-on sampling by Deane and 

Hamill [30] and under stroboscopic sampling by Banerjee, Ott, Yorke and Yuan [42]. The 

bifurcation phenomena of this converter were analyzed in detail using these tools [34],
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CHAPTER 1 1 -4 HISTORY OF INVESTIGATION OF NONLINEAR DYNAM ICS
AND CHAOS IN POWER CONVERTERS

Nonlinear dynamics of other power converters were also studied. Tse proved that 

the boost converter in discontinuous conduction mode is characterized by a one- 

dimensional smooth (continuous and everywhere differentiable) map, and this system 

exhibits the bifurcation phenomena (such as repeated period-doublings) peculiar to such 

maps [43], Bifurcation phenomena in current mode controlled Cuk converters were also 

investigated by Tse and Chan [44].

DC-DC converters received most attention in the first years of investigating 

nonlinear dynamics of power electronic systems, mainly because such phenomena were 

first discovered in this class of systems. Dobson et al. detected in 1992 and 1993 that 

thyristor circuits used to model Static Var Control show a new sort of bifurcation 

phenomenon in which switching times change discontinuously as a parameter is varied 

[45,46]. This switching time bifurcation cannot be predicted by the Jacobian matrix of the 

fixed point. It was also shown that discrete-time modeling of such systems can result in 

discontinuous-time maps having multiple attractors. The practicai importance of 

investigating ferroresonance (a tuned circuit involving a saturating inductor) 

[47,48.49,50,51] was that it is used to regulate voltages, but unintended ferroresonance in 

power systems can generate excessive voltages and currents [52]. Nonlinear phenomena 

were also studied in some other (high-power) systems. Siito, Nagy and Masada analyzed 

the current control of an induction motor drive [53]. Chaos, quasiperiodicity, subharmonics 

by period-doubling and various crises were detected by Magauer and Banerjee in a system 

controlled by the tolerance-band PWM technique [54], Many interesting bifurcation 

phenomena in power electronic induction machine drive systems were noticed and studied 

by Kuroe and Hayashi [55],

The basic idea of all these investigations was to obtain a discrete-time model of the 

system studied and to analyze the noted phenomena in terms of standard bifurcation theory 

for smooth maps developed in Mathematics and Physics. This methodology worked well in 

many cases, but in some cases very atypical bifurcation phenomena were noticed, e.g., 

direct transition from a periodic trajectory to a chaotic one [34,44,56] and nonsmooth 

period-doubling [31,34]. These phenomena could not be explained in terms of the 

bifurcation theory. Banerjee, Ott, Yorke and Yuan proved that in most of these systems the 

discret-time model leads to piecewise-smooth maps and the atypical bifurcations occurring 

in such systems are part of a new class called border-collision bifurcation [42,57]. 

Mathematicians like Nusse and Yorke demonstrated earlier that characteristic bifurcations 

can appear in piece-wise smooth maps, but no physical examples were known at that time

1-8

BUPT



CHAPT-BR 1 1 -4 HISTORY OF INVESTIGATION OF NONLINEAR DYNAMICS
AND CHAOS IN POWER CONVERTERS

[58,59]. Actually, power converters offered the first examples of physical systems 

characterized by piecewise-smooth maps and this renevved the interest in the theoretical 

analysis of these systems. Banerjee et al. recently created the conceptual framework for 

understanding and categorizing such bifurcations [60,61]. Some work done earlier by 

Feigin has been brought to the English-speaking world [62], Many empirically detected 

bifurcation phenomena have now theoretical explanations by this knowledge.

It is clear now that all three types of maps (smooth, piecewise-smooth and 

discontinuous) occur in power electronics, therefore bifurcation theory developed for these 

classes of maps is useful in understanding why the behavior of a power electronic system 

changes from one type to another as a parameter is varied.

Because of the increased demand for better flexibility in high-current, high-power 

applications, there is a recently renewed interest in systems of interconnected converters. 

Bifurcation phenomena such as period-doubling, border-collision [63], Neimark-Sacker 

bifurcation [64] were detected in systems of parai lei connected DC-DC converters.

Experiments assisted many of the theoretical analyses mentioned above. 

Experimental observations of the bifurcations in the voltage-controlled buck converter 

were given by Deane and Hamill [29,17]. The numerical study of the current mode 

controlled boost converter in discontinuous [43] and continuous [65] conduction mode by 

Tse et al. was supported by test results. Experimental investigations on the buck [32] and 

boost [33] converters have been done by Chakrabarty, Poddar and Banerjee.

Controlling chaos into periodic state is an ambition of nonlinear dynamics 

researchers ever since Ott, Grebogi and Yorke published their pioneering work in 1990 

[66]. Various strategies were developed in Physics and Mathematics and applied in 

practicai systems such as lasers. For power converters similar methods have also been 

developed. Experimental control of chaos in the buck [67] and boost [68] converters were 

reported by Poddar, Chakrabarty and Banerjee. An adaptive control technique was 

developed by Di Bernardo [69]. The time-delay stabilization of periodic trajectories in a 

current mode controlled boost converter was achieved by Batlle, Fossas and Olivar [70]. 

Hamill concluded in a 1995 review paper that power converters operating under controlled 

chaos instead of a stable periodic state, might have a better dynamic response [71] -  just as 

fighter aircraft are designed to be open-loop unstable but are then stabilized by feedback, 

making them more agile than convenţional designs. Although quantitative understanding 

of this possibility has still to emerge, stabilized chaotic power converters might react more 

quickly, e.g., in moving fast from one commanded output voltage to another.
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Questions about the usefulness of nonlinear phenomena in power electronics have 

to be posed after their reasonable understanding. One possible field of application is 

reducing electromagnetic interference (EMI) in switch-mode power supplies, which are 

notorious generators of both conducted and radiated EMI, owing to the high rates of 

change of voltage and current which are necessary for efficient operation. Several 

electromagnetic compatibility regulations are coming into operation in the aviation sector, 

where the problem is especially acute. Efforts have been made to oppose the problem by 

spreading the power converters spectrum by pseudorandom modulation of the clock 

frequency [72,73]. The review paper by Hamill suggested first that this problem could also 

be charged by deliberately using chaos [71]. Marrero, Font and Verghese noticed then that 

”a potential advantage of chaotic operation is that the switching spectrum is flattened”

[35], In 1996 Deane and Hamill experimentally proved a reduction of the spectral peaks 

for a chaotically operated converter [74], However, some theoretical issues had to be 

addressed for bringing this possibility into engineering practice. First, a theory to calculate 

the average values of state variables under chaos is required to formulate design 

procedures for converters operated in chaos. Second, a theory for predicting the structure 

of the power spectrum of the converter under chaotic operation is demanded. Third. since 

there are periodic windows in the parameter space of most chaotic systems and a slight 

unintended parameter alteration can get the system out of the chaotic regime, reliable 

chaotic converter operation must be assured. Since under certain reasonable assumptions 

current mode controlled DC-DC converters lead to piecewise-linear one-dimensional 

maps. they have been used for the first assaults on all these theoretical problems. Isabelle 

reasoned that these piecewise-linear maps can be approximated by a smaller class for 

which the computation of average values is tractable, known as Markov maps [75]. 

Marrero eî al. elaborated further the idea. The second problem has been engaged for DC- 

DC converters which can be modeled by piecewise-linear one-dimensional maps. A 

method for computing the line spectrum at the switching frequency and its harmonics was 

developed by Deane, Ashwin, Hamill and Jefferies [76], The method was extended to the 

continuous part of the spectrum by Baranovski, Mogel, Schwarz and Woywode [77,78]. 

For the third problem, there have been two approaches. The control of chaos was used to 

stabilize the chaotic regime by Bueno and Marrero [79]. On the other hand, the theory of 

robust chaos (the analytical condition under which there would be no periodic window or 

coexisting attractor in a chaotic system) was developed by Banerjee, Yorke and Grebogi 

and they demonstrated that current mode controlled converters meet this condition [80].
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CHAPTER 1 1 -4 HISTORY OF INVESTIGATION OF NONLINEAR DYNAMICS
AND CHAOS IN POWER CONVERTERS

The main purpose of this Ph.D. thesis is to offer a systemic approach for applying 

the ideas of nonlinear dynamics in the control of power electronic systems. with an 

emphasis on chaotic behavior. The dissertation is organized as follows. Chapter 2 

introduces the basic methods of the advanced theory of nonlinear dynamical systems and 

illustrates their application in power electronics by a feedback-controlled resonant DC-DC 

buck converter. As chopper circuits converting a DC input to a DC output at a lower 

voltage. buck converters are ones of the simplest but most useful power converters. 

Circuits closely related to them are used in many switched-mode power supplies. An 

application of current importance is the conversion of the standard 5V DC supply used in 

computers to the 3.3V or less required by processor chips like those from the Pentium 

family. A buck converter for this purpose can achieve a practicai efficiency of 92%. while 

a linear regulator would be only 66% efficient, producing four times as much waste heat. 

Although the example is at a low power level, buck converters are also used at several 

kilowatts. The investigated buck converter belongs to a family of special resonant DC-DC 

converters and the various nonlinear phenomena and bifurcations exhibited by its behavior 

(all three classical routes to chaos have been identified) were first time detected by the 

author. who also introduced two methods for the analytical confirmation of this behavior 

by studying the stability.

Chapter 3 proposes first time four control strategies for this resonant DC-DC 

converter. in the sense of suppressing the unstable (chaotic, quasiperiodic and 

subharmonic) regimes from its behavior, hereby ensuring the stable periodic operation 

required by applications. The first two methods are inspired from the area of control 

engineering, while the last two use algorithms typical to chaotic systems. This chapter 

reports also the experimental setup.

Chapter 4 illustrates another application of nonlinear dynamics theory in power 

electronics by a special type of high frequency time-sharing inverter, designed mostly for 

induction heating applications. The nonlinear phenomena (subharmonic generation) in this 

system are also revealed first time by this study. One of the control strategies introduced in 

the previous chapter is successfully applied to remove the unstable regimes from the 

operation of the feedback-controlled inverter.

No prior knowledge of nonlinear systems is assumed. Experimental results back up 

the nonlinear phenomena discovered by computer aided simulations of the investigated 

systems. Appendixes are included to illustrate the software and experimental environment 

used throughout this study.
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CHAPTER 2 2-1 GENERAL REVIEW

CHAPTER 2

ANALYSIS OF NONLINEAR DYNAMICS AND CHAOTIC 

BEHAVIOR OF A FEEDBACK-CONTROLLED 

RESONANT DC-DC CONVERTER

A resonant buck converter, whose output voltage is controlled by constant frequency 

PWM, is operated in symmetrical continuous conduction mode. A general review o f the 

converters (section 2-1) is followed by the presentation o f the configuration (section 2-2) 

and operation (section 2-3) o f the system studied, including the basic steady-state relations 

and the description o f the PWM control feeclback loop. Phenomena in this nonlinear 

control loop are investigated by computer simulations (section 2-4). Quasiperiodic 

(subsection 2-4-1), period-doubling (subsection 2-4-2) and intermittency (subsection 2-4- 

2) route to chaos are detected first time in this converter as a result o f varying the control 

gain. The observed bifurcation behavior is theoretically confirmed by the stability analysis 

o f this variable structure, piecewise linear, nonlinear system. Two methods are introduced 

in order to perform the stability analysis: the first uses the Poincare map function, while 

the second applies the Răcz method (section 2-5).

2-1 GENERAL REVIEW

The role of the DC-DC converters is to interface two DC systems and to control the power- 

flow between them. Their principal function is similar to the transformers’ used in AC 

circuits, but the ratio of the output voltage/current and input voltage/current is continuously 

controllable by electric control signals. The voltage/current ratio can be smaller or bigger 

than unity. Often the input to these converters is an unregulated DC voltage, which is 

obtained by rectifying the line voltage, therefore, it will fluctuate due to changes in the 

line-voltage magnitude. The function of the converters is to convert the unregulated DC 

input into a controlled DC output at a desired voltage level. Their employment is very
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extensive. The DC-DC converters are vvidely used in regulated switch-mode DC power 

supplies in sensors, controllers, transducers, computers, commercial electronics etc. They 

are also frequently used in DC motor drive applications, mainly in battery supplied 

vehicles and in electric cars, airplanes, spaceships, where on-board regulated DC power 

supplies are required. Their applications in plasma, arc, electron beam technologies, 

nuclear physics, solar energy conversion are also significant [8].

The usual building blocks of these converters are the electric switches, capacitors 

and inductors:

©  c = î >  Power
©  <j = *  flow

Figure 2-1 DC-DC converters

According to the direction of output current and voltage, the converters can operate 

in one-quadrant, two-quadrant and four-quadrant. Power flow is unidirecţional at the first 

class and bidirecţional at the other two. One direcţional power flow means that the only 

possible streaming direction of the power is from the input side towards the output side. 

Bidirecţional power flow makes possible the streaming of the power in both directions 

between the input and output terminals. There is a direct path between the input and output 

terminals in direct converters, and there is no direct path among them in indirect 

converters.

Depending on the switching mode DC-DC converters can be hard-switched or soft- 

switched. Hard switching means that neither the voltage nor the current on the switch is 

zero at the iniţialization of the switching action. At soft switching converters the current 

and/or the voltage is zero in the switching moment. The power loss is significant at hard- 

switched converters even at high frequencies. The soft-switched converters (or resonant
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converters) can be operated even at higher frequencies because of their smaller switching 

losses.

The basic converter topologies are the step-down and the step-up converters. The 

step-down or buck converters can only reduce the input voltage ( v-j > v2 in Fig. 2-1). the 

step-up or boost converters can only increase the input voltage ( vj < v2 in Fig.2-1). The 

step-up/down (buck & boost) converters are combinations of the two basic topologies and 

can produce output voltage that can be higher or lower than the input voltage.

Converters have two principal shortcomings when their switches are operated in 

svvitch mode [8]:

• During the turn on and turn off time, high current and voltage appear simultaneously in 

and across the switches producing significant power losses in them, that is, high 

switching stresses. The power loss increases linearly with the switching frequency. To 

maintain a reasonable efficiency, the value of the switching frequency must be limited. 

However, it must be mentioned that by pushing the switching frequency to higher 

range the size and weight of the converters are reducible.

• The second shortcoming is the electromagnetic interference (EMI) generated by the 

large dv/df and di/dt values of the switching variables.

Resonant converters can minimize these shortcomings. In these converters an LC 

circuit is always incorporated. Its resonant frequency can be either equal to the switching 

frequency or can substantially deviate. If they are identical then the unwanted harmonics 

are removed by the circuit. The switching frequency -  in both cases -  is one of the means 

for controlling the output power and voltage. Some advantages of the resonant converters 

over the convenţional ones should be highlighted. These are the sinusoidal-like wave 

shapes, inherent filter action, reduced dv/dr, d//dr and EMI. In addition some resonant 

converters can accomplish zero current and/or zero voltage across the switches at the 

switching instant and reduce significantly the switching losses. An advantageous feature of 

the soft-switched resonant converters is the much lower switching stresses. However, it 

must be confessed that the price of it is the higher forward currents and reverse voltages 

the switches must endure. The resonant DC-DC converters are used in applications as 

induction heating, very high frequency DC-DC power supplies, sonar transmitters, ballast 

for fluorescent lamps, power supplies for laser cutting machines, ultrasonic generators, etc.

A new family of dual channel resonant switching DC-DC converters was 

introduced in 1989 on the 3rd European Conference on Power Electronics and Applications
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[81]. These converters have strong similarities with the convenţional buck, boost and 

buck&boost choppers in their configurations, but regarding the operation the differences 

are significant, The currents of the controlled switches are mostly sinusoidal. They are 

called Zero Voltage Turn-off Quasi-Resonant Converters (ZVT-QRC) because the voltage 

across the controlled switches are practically zero during their turn-off (assuming diodes 

on the output side). The switching elements can be SCRs, BJTs, IGBTs or other 

controllable switches at the input side, but the employment of diodes is also possible at the 

output side. The converters work on their resonant-frequency, determined by the inductor 

and capacitor elements. The frequency should be high, since in this manner the size and 

vveight decrease. The range of the output power is broad, because the applied elements are 

produced from low power to high power (diodes, SCR-s, GTO-s etc.). Their output 

voltages can be changed in wide range and they can be either higher or lower than the 

input ones, depending on the configuration. One of the converters can work as a current 

generator too.

The advantageous features of the converters are as follows [81]:

• The converter is capable of interchanging a controlled part of the power drawn from 

the two DC power sources having different voltages by interconnecting the two 

channels of the converter through a switched capacitance, which transfers power from 

one part of the converter to the other one; hence, the ratio control of the two output 

power flows can provide either symmetrical or asymmetrical output voltages.

• It suits for DC uninterruptible power supply (UPS): one of the two sources can be 

removed (e.g., during battery change) without disturbing the power supply in the 

output side.

• Greatly reduced switching stress and loss in switching devices by turning them on and 

off either at zero voltage or current.

• Further reduction in switching stress and loss in switching devices by generating only 

or mainly sinusoidal voltages and currents.

• High or ultra high switching frequency with high bandwidth.

• Good efficiency.

• High power density.

• Considerable size and weight reduction.

• Low noise and EMI level.
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The disadvantages [81]:

• ‘Floating’ output; no common ground terminal can be used between the input and 

output side.

• Larger forward currents and reverse voltages in and across the switching devices.

• Higher peak current on the inductors and peak voltage on capacitor(s).

• Complicated control circuitry is needed even in case of asymmetrical operation.

In this chapter, the converters are analyzed in steady-state. The switches are treated 

as being ideal, and the losses in the inductive and the capacitive elements are neglected. 

The DC input voltage to the converters is assumed to have zero internai impedance. It 

could be a battery source; however, in most cases, the input is a diode rectified AC line 

voltage with a large filter capacitance, as shown in Fig. 2-2 to provide a low internai 

impedance and a low-ripple DC voltage source. In the output stage of the converter, a 

small filter is treated as an integral part of the DC-DC converter. Looking at the 

applications of these converters, it is found that they are very often used with an electrical 

isolation transformer in the switch-mode DC power supplies and almost always without an 

isolation transformer in case of DC motor drives. Therefore, to discuss the circuits in a 

generic manner, only the nonisolated converters are considered, since the electrical 

isolation is an added modification. The output of the converter is assumed to supply a load 

that can be represented by an equivalent resistance, as is usually the case in switch-mode 

DC power supplies.

Batteiy—  —

AC
line

voltage

Uncontrolled
Diode

Rectifier
DC l j - Filter

('unregulated') [Capacitor
DC

(unregulated)
DC-DC

Converter
T T “

control

DC
(regulated)

jLoad

Figure 2-2 A DC-DC converter system

2-2 CONVERTER CONFIGURATION

The resonant converter family is built up on two basic blocks Bu, (Fig. 2-3a) and B,#- (Fig. 

2-3b). Both have controlled switches Si and S2 and one inductance L. The controlled 

switches can conduct current flowing to point P in Z?,„and flowing off point P in B„ff.
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The general configuration of the converters is shown in Fig 2-4 where two switched 

capacitances C and fiC are used beside the building blocks. A common feature of the 

different versions is that they transmit power from input to output through two channels, 

the so-called positive and negative ones, coupled by these resonating capacitors.

c a .  c b.

Figure 2-3 Basic building blocks

The capacitances across the input and output terminals for short-circuiting the high 

frequency components of the input and output currents are not shown. Table 2-1 

summarizes the set-up of the three configurations by the two building blocks and their 

connections to terminals x, y and z. The names of the configurations are the same as those 

of the corresponding choppers: buck, boost and buck&boost. Suffixes / and o refer to input 

and output while suffixes p and n refer to positive and negative, respectively.
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Figure 2-4 General configuration of the converters

Table 2-1 Set up of the converters

X y z B j b 2

Buck a b c Bt0 B0ff

Boost b c a B0ff Bto

B&B c a b Bt0 B0ff
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Using Fig. 2-3, Fig. 2-4 and Table 2-1, the three configurations are shown in

Fig. 2-5.
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Figure 2-5 Configurations of buck (a), boost (b) and buck & boost (c) converters

Four different converter versions can be derived from any of these configurations. 

therefore, altogether twelve different versions are available [81]. The first three 

configurations have a single resonant circuit with energy storage elements L and C. They 

are cal led resonant converters (RC). The RC configurations can readily be obtained by 

replacing the capacitor f3C with short circuit in the buck and in the buck & boost converters 

and with an interrupt in the boost converter. The next three configurations have double 

resonant circuits with components L, C, (3C. They are called double resonant converters 

(DRC). Both RCs and DRCs can contain either controlled switches (three configurations) 

or diodes (three configurations) in place of clamping switches Sq, and St7l.

Our investigation is restricted to the buck configuration depicted in Fig. 2-6 

(including the output filter and load). This version applies controlled switches (IGBTs, 

BJTs, MOSFETs or other switches) conducting current in the direction of arrow (e.g., to 

point P for the positive channel). The configuration corresponds to a RC converter, with a 

single resonant circuit (the capacitance (5C has been replaced by short circuit).
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+  oU==̂ > cy^o
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Figure 2-6 Resonant buck converter

2-3 CONVERTER OPERATION

The assumptions used are as follows:

• Idealized and Iossless circuit components.

• Constant and smooth input (v(/> > 0, v,„ > 0) and output (v()p > 0, v„„ > 0) voltages.

• Steady-state operation.

• Neglected commutation times.

The controlled switches within one channel are always in complementary states 

(i.e., when S,, is on, Scp is off and vice versa). By turning-on switch Sp, a sinusoidal current

puise i,p is developed from co/ = 0 to a,, (0) = 1 /  VLC ) in circuit Sp, L, vop, C and v,r (Fig. 

2-7). The currents are iip=i()p=icp in interval 0 < cô  < ap. The capacitor voltage v( swings 

from to vrp (va, < 0). By turning-on switch Scp at ap the choke current commutes from 

Sp to Srp. The energy stored in the choke at 0)t = a p is depleted in the interval <xp < cor <

ooT'v vvhere Ts = 1/ f s is the switching period. In the discontinuous current conduction mode

(DCM) of operation the stored energy is entirely depleted in interval a  < (tit < a ep, where 

a q> denotes the extinction angle of the inductor current. In DCM the current is zero 

between a ep and toTs (Fig. 2-7). In the continuous-conduction mode (CCM) of operation 

the inductor current flows continuously: iop>0 (Fig. 2-8). The inductor current i„p decreases 

in both cases in a linear fashion. After turning-on Scp the capacitor voltage v< stops 

changing. It keeps its value vcp (Fig. 2-7, 2-8). The same process takes place at the negative

I 2-8

BUPT



CHAPTER 2 2-4 STEADY-STATE ANALYSIS

side resulting in a negative current puise and condenser voltage swing after turning-on S„ at 

the beginning of the next half cycle at a>Ts/2 (Fig. 2-7, 2-8) [82].

The converter can operate both in symmetrical and in asymmetrical mode. The 

symmetrical operation illustrated in figures above requires identical components of the two 

channels and identical load resistance R. It can be considered as a particular case of the 

more general asymmetrical operation. In symmetrical case the commutation angles (ap and 

a„). the input voltages v,„), the output voltages (v’,v„ v„„) and the peak condenser 

voltages (vt/) and lvtJ )  are identical. In general vip ^  v,„; vop *  v„„; vcp *  -vt7l; ap #  a„ and acp

* a cn. There is no energy exchange between the positive and the negative channels in the 

symmetrical case. In asymmetrical operation the energy exchange between the two 

channels is accomplished by the switched capacitor.

« e n

Figure 2-7 Time functions of input and output (inductor) currents (a) and condenser 

voltage (b) in DCM

Figure 2-8 Time functions of input and output (inductor) currents (a) and condenser 

voltage (b) in CCM , .
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The input variables directly set by us are vip, v„„ ap, an, f s and R. The input voltages 

v,r. v,„ and the load resistance R are usually given, but the selection of the switching angles 

ap. a„ and the switching frequency f s depends on the control. Condition f s < f r must hold.

where f r = l/( 2n ^L C  ) is the resonant frequency. The reason is simple. The change of 

condenser voltage v, in one direction must be completed before its change gets started in 

the opposite direction (Fig. 2-7, 2-8). Switch Sp and Sn must not be turned on 

simultaneously, a p ,a„ <(mTs / 2  must hold, the two input currents may flow only in

separate intervals. The output variables determined by the set of input variables are v,v„ r„„.

\ 'cn-

2-3-1 BASIC STEADY-STATE RELATIONS
Assuming symmetrical continuous conduction mode, the current time functions in the 

chokes are [83]

ia( (£>t) = I0 coscot + I/c sin cot (2-1)

in the interval 0 < co? < a  , and

V /2
i() ( (M ) = l a cos a  + //. sin a  — ^ — (cot -  a )  (2-2)

in the interval a  < cor < ($TS, where I 0 = i0{(£>t = 0) (Fig. 2-8), Vl>p = V,m = V„ / 2 are the

ripple free instantaneous output voltages, Z = ~jL/C is the characteristic impedance,

furthermore

l Vc - ( V0 / 2 )  + (V' / 2)  (2. 3)
* Z

where V, = \\v = - v(„ (Fig. 2-8) and v, / 2 = vip = v,„.

The choke current is the same at cor = 0 and at cot = coTs

i j  cor = 0 j = i()( cot = coTs ) = IQ (2-4)

The capacitor voltage change is the result of current ic = i„ in interval 0 < cor < a

a

Z | ia d( cor) =2VC (2-5)
o

Substituting (2-1) into (2-5)
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Z [l() sin a  + / .̂ (1 -  cos a  )\=2VC 

and (2-2) into (2-4)

(2-6 )

I £ sin a ----— •
(2-7)

1 -  cos a

Let us substitute novv /„ from (2-7) into (2-6)

(2-8)

The output voltage is on the basis of (2-8) and (2-3)

coTs — a  sin a
(2-9)

1 + — *- 
? 1 -  cos a

2-3-2 THE PYVM SWITCH CONTROL
In DC-DC converters, the average DC output voltage must be controlled to equal a desired 

level, though the input voltage and the output load may fluctuate. The analytical 

relationship (2-9) deduced above reveals that for a given input voltage the output voltages 

are controlled by the on durations ap, a„ of the controlled switches. One of the methods for 

controlling the switches employs switching at a constant frequency and adjusting the on 

duration of the switch to control the output voltage. In this method, called pulse-wiclth 

modnlation (PWM) switching, the switch duty ratio, defined as the ratio of the on duration 

to the switching time period, is varied.

For controlling the output voltage

by PWM switching a feedback control loop is applied (Fig. 2-9a). The control signal 

voltage v(„„ is obtained through proporţional control - by amplifying the error signal (the 

difference between the actual output voltage v() and its desired value vref) - and is compared 

to a repetitive sawtooth waveform (Fig. 2-9b) [82].

When the amplified error signal vC(m is greater than the sawtooth waveform, the 

switch control signal (Fig. 2-9c) becomes high and the selected switch turns on. Otherwise, 

the switch is off. The controlled switches are Sp and Sn (the switches within one channel 

are in complementary states) and they are controlled alternatively, i.e., the switch control 

signal for the switch in one channel is generated in one period of the sawtooth wave and

vo vop VOtl (2- 10)
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for the switch in the other channel in the next period. Hence, the period of the sawtooth 

wave is half of the switching period: Tr = Ts / 2.

vramp

V U

V L

High

Low

V1
A/

:am
/--7“

0

M H
_ /

/

T / , 4 /

. Ts .

Switch control

v con

c.

Figure 2-9 PWM switching control loop: block diagram (a), comparator signals (b) and 

switch control signals (c)

2-4 STEADY-STATE ANALYSIS

The main objective of the following study is the investigation of the phenomena in the 

presented feedback loop, in steady-state, in order to discover the various possible behaviors 

of this nonlinear dynamic system. Since the voltage gain Ky of the proporţional controller 

in the PWM switching loop is a design parameter that can be changed at will, the 

presentation will be restricted to the effect of variation of this parameter, but the methods 

and the results remain valid in case of other parameters (parameters of PWM switching. 

load, DC input and reference voltages).

The study proposed assumes the calculation of the system variables. The 

independent energy storage elements are: two series inductances, two load capacitances and 

one series capacitance, altogether five elements, with five state variables defining the state
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space: output voltages vop and v„„, condenser voltage v(, choke currents i„p and i„„. A usual 

mode of investigation and presentation is to begin with theory and analytical study. 

follovved by simulations and/or experiments. However, it was emphasized in the previous 

chapter that. very often, simulations and experiments have been more useful when they 

preceded analysis in studying nonlinear dynamics of physical systems. This study reflects 

this practicai mode of investigation, i.e., it starts with a series of computer simulation 

studies which identify important bifurcation phenomena. This will be follovved by an 

analytical study of the system which establishes formally the possibility of bifurcation.

The values of parameters and variables used in the analysis presented in this chapter 

are specified in Appendix A. Those belonging to the converter basic configuration were 

chosen to ensure f s/ f r = 1 and symmetrical CCM in open loop operation.

The computer simulations were performed in MATLAB environment. MATLAB 

programs and Simulink models were developed for the calculation of the state variables of 

the nonlinear system. The Simulink models for the converter configuration with the PWM 

switching are dravvn in Appendix B.

2-4-1 QUASIPERIODIC ROUTE TO CHAOS
2-4-1-1 POINCARE MAPS

One of the most important steps in investigating the nonlinear phenomena in any physical 

dynamical system is deciding how to describe its dynamics. DC-DC converters are most 

naturally modeled as piecewise linear systems of ordinary differential equations. These are 

continuous-time models and can be used to obtain an analytical and numerical description 

of the dynamics of the physical systems. However, it vvas revealed in the previous chapter 

that when one's aim is to understand the nature of the nonlinear phenomena exhibited by 

these systems. there are severe limitations of these models. The use of alternative, discrete- 

time models for these continuous-time dynamical systems, can be very useful.

One of the most useful methods of discretization involves the so-called Poincare 

map, due to French scientist Henri de Poincare [1]. The use of appropriate system 

discretizations by Poincare maps will be defined in this section in order to perform the 

study of nonlinear phenomena in the converter behavior.

The systems of concern are the continuous-time dynamical systems. An mh-order 

continuous-time deterministic dynamical system is defined by a system of ordinary 

differential equations of the form:
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•v (') =  /  M '  )• O  • -v(r0 ) =  ,v0 ( 2 - 11 )

where .v = clx/dt ,  x( t )e  S\" is the state at time i and /  is called the vector

field.

Poincare map: A technique that transforms an //th-order continuous-time 

system into an (;i-l)th-order discrete-time system.

The Poincare map's usefulness lies in the reduction of the order and in the fact that the 

limit sets (the state space equivalent of the steady-state) of the Poincare map correspond to 

the limit sets of the underlying continuous-time system, as it will be shown through this 

chapter.

The standard technique of the Poincare map from the theory of dynamical systems 

is defined for autonomous sxstems.

Autonom ous continuous-time system: A differential equation x = f ( x )  where 

the vector field does not depend on time. Since the vector field does not depend 

on time, the iniţial time may always be taken as to = 0. The solution that passes 

through a'o at time 0 is denoted by 6t (xo) and is called trajectory.

The conversion of the continuous-time dynamical system to a discrete-time dynamical 

system is carried out by using the concept of Poincare section. For an //-dimensional 

continuous-time dynamical system a Poincare section is an (n-l)-dimensional hyperplane 

in the state space which is intersected transversally by the trajectories. Considering a third- 

order system with the limit cycle (the limit set of a periodic solution) shown in Fig. 2-10. 

the Poincare map is the set of points in the Poincare plane produced by the trajectory by 

Crossing the surface from one direction. The selection of Poincare plane is arbitrary. but it 

requires advance knowledge of the position of a limit cycle [84].

The standard definition of the Poincare map just presented gets a special 

interpretation for non-autonomous systems.
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Figure 2-10 Poincare map in the Poincare plane

Non-autonomous continuous-time system: A differential equation x = f ( x , t ) 

where the vector field depends on time. The solution (trajectory) that passes 

through A'o at time to is denoted by Q,(xo, to).

If there exists a T > 0 such that f(x,t) =f(x,t+T) for all x  and t, then the non-autonomous 

system is said to be time periodic with period T.

A non-autonomous mh-order time-periodic continuous system with period T may 

be transformed into an (/z+l)th-order autonomous continuous system by appending time as 

an additional state variable: a„+i = t. The resulting autonomous system is given by

x = f (  x , x n+i), x ( t 0 ) = x 0 ^

-v/ i + l = 1 - x n + l( t0  ̂= t0

and is periodic with period T, s in ce /is  time periodic with period T. The solution of (2-12) 

is

X(t)  ' XQ.tQ )
_.V„+\(t)_ t mod T

where the modulo function restricts 0 < xn+\ < T.

Due to (2-12) a time-periodic non-autonomous system can be considered a special

case of an autonomous system and using the standard definition, a n-dimensional Poincare

section can be defined by

I  = H x, ,v„+1 ) s  9?" x 95 + : x n+l = t 0 ) (2-14)

Every T seconds, the trajectory (2-14) intersects L. The resulting Poincare map

P : X —> L(  ) is defined by
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■vJt+l -  p ( x k ) ~ $t0+ r ( x k ’{O ) 

and it can be thought of as a sampling of a single trajectory every T  seconds, i.e..

(2-15)

(2-16)

where P'" = P(P (. . . (P ( •  ))...)) is called the /;/th iterate of P and denotes P applied m times 

to the argument of the map.

This Poincare map is similar to the action of a stroboscope flashing with period T.

The Poincare map fo r  time-periodic no n-auto nomous systems is equivalent to 

sampling the trajectory at a rate equal to the forcing frequency.

The converter configuration studied is a time-period non-autonomous system with 

period equal to the switching period Ts. To produce a Poincare map, one selects, say, two 

state variables, samples them once every switching cycle, and plots them as points in the 

plane of the two state variables. Examples will be shown through the following sections, 

where the Poincare maps will be very useful in identifying the various steady-state 

behaviors.

vvhose vector field : 9 î /! —̂ " i s  parameterized by a control parameter /J. As fJ.

changes, the steady-state of the system changes, too. A small perturbation in ji typically 

produces small quantitative changes in the steady-state. E.g., changing slightly // could 

change the position of the steady-state in state space slightly, along with its shape or size 

when the limit set is not an equilibrium point (corresponding to a stationary steady-state). 

But there exists also the possibility that a small change in jj. may cause a limit set to 

undergo a qualitative change.

Bifurcation: A qualitative change in a limit set as a parameter is infinitesimally 

perturbed. Examples are the creation or disappearance of a limit set and the 

change in stability type of a limit set.

2-4-1-2 BIFURCATION DIAGRAMS

Consider an mh-order continuous-time system

•K 0= /f .iM O ’O. *( t o ) =x O (2-17)
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Bifurcation value: A parameter value at which a bifurcation occurs. A system 

is structurally unstable at a bifurcation value.

A structurali}- stable vector field F  is one for which sufficiently close vector fields F ’ have 

equivalent dynamics, that is, there exists a continuous invertible function which transforms 

F into F'. The set of bifurcation values is the set of parameter values ,1/ at which the system 

is not structural ly stable.

VVhile state space, Poincare maps, time- and frequency-domain measurements are 

useful for characterizing steady-state behaviors, nonlinear dynamics offers several other 

toois for summarizing qualitative information concerning bifurcations. One of the most 

useful ways for the presentation of the information is the so-called bifurcation cliagram.

Bifurcation diagram: A plot that indicates the steady-state behavior of a 

system over a range of parameter values.

This diagram is a plot of the position of the limit sets versus the bifurcation parameter fi. In 

this way the bifurcation diagram shows the various states and the sudden changes of the 

system in steady-state (the bifurcations) as a result of the variations of one system 

parameter [85].

If it is desired to show by a bifurcation diagram how the behavior of a time- 

periodic non-autonomous system varies with some parameter, the Poincare map, as defined 

at the end of the previous subsection, may be further simplified by selecting just a single 

state variable for observation. The Poincare map is thereby reduced to a one-dimensional 

object and the second dimension of the plane can be employed to sweep the parameter over 

its range of interest. The resulting plot represents the bifurcation diagram and allows 

qualitative changes of behavior to be appreciated at a glance [86].

Accordingly, to generate this kind of diagram for the converter, the output voltage 

v„ was sampled and stored, in steady-state, at the start of every switching cycle 

Ow = r„(ATJ). With sufficient number of sets of steady-state data the bifurcation diagram 

can be obtained by plotting vertically the sampled output voltage whereas the voltage gain 

Ky is varied horizontally as a control parameter [82].

Such a representative bifurcation diagram, which reveals a first bifurcation in the 

behavior of the system, about Ky  =4.5 , is shown in Fig. 2-11.
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54

Figure 2-11 Bifurcation diagram 

2-4-1-3 PERIODIC STEADY-STATE

Below the bifurcation value Ky  = 4 .5 , there is just one single sampled value v0k=v0(fcTs))

for a given controller gain Ky in the bifurcation diagram from Fig. 2-11, i.e., the output 

voltage v(, repeats itself in each switching period Ts. This state is called period- ] .

Period-1 behavior: A solution of a time-periodic non-autonomous system that 

repeats itself with the forcing period.

The Poincare Map Normal periodic operation - presented in Fig. 2-8 - sustains in this 

region and all state variables are periodic time waveforms with period Ts. As it was 

mentioned above, if the sampling time is chosen properly, the Poincare map behaves 

similarly to a stroboscope, i.e., sampling with the switching period Ts. a periodic steady- 

state of the converter is represented as a single point provided that the iniţial transient is 

omitted (unless otherwise stated, all Poincare maps are assumed to be for steady-state). 

This point is a fixed point for the Poincare map. Fig. 2-12 presents the Poincare map for the 

period-1 operation in the plane of output voltage v„k=v0(kTs) vs. inductor current 

io,,k=io,,(kTs) at Kv = 2.

Fixed point: x* is a fixed point of the map P if x* = P ( x *).
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Period-1 behavior: A fixed point of the Poincare map of a time-periodic non- 

autonomous system indicates a period-1 solution.

3

2.5

*  2o.o

1.5

lo  51 52 „ -5 3  54 55
V M

Figure 2-12 Poincare map for period-1 operation {Ky = 2)

Time Domain The choke current i()p and the condenser voltage vt are plotted in Fig.

2-13 and Fig. 2-14, at Ky = 2. The period-1 state is clearly visible in these figures. The 

control voltage v,,,,, hits the ramp wave once per ramp cycle (Fig. 2-15).

6 --------------- ----------------1--------------- ------------- ----------------

5 r

t [msec]

Figure 2-13 Inductor current in period-1 operation (Ky = 2)
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Figure 2-14 Condenser voltage in period-1 operation (Ky = 2)
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Figure 2-15 Control voltage in period-1 operation (ÂV = 2)

Frequency Domain The spectrum of the periodic condenser voltage waveform in Fig. 2- 

14. at AV = 2, is plotted in Fig. 2-16. The spectrum of a period-1 solution contains spikes at 

integer multiples of the forcing (switching) frequency f s = l /Ts.

State Space By plotting the solution (or trajectory) of the system in state-space

the state portrait is obtained. The steady-state will be represented in the state space by the 

limit set. which in case of periodic behavior is the limit cycle, the closed curve traced out 

by the trajectory over one period. The trajectory keeps circulating along this limit cycle
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vvhile in steady-state. A limit cycle trajectory corresponding to Ky -  2 is presented in Fig.

2-17 in the three-dimensional state space defined by the output voltage of the positive 

channel v,v„ the condenser voltage vc and the choke current iop.

Figure 2-16 Spectrum of condenser voltage in period-1 operation (Ky = 2)
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2-4-1-4 QUASIPERIODIC STEADY-STATE

The Poincare Map When the controller gain exceeds the bifurcation value Ky  =4.5

there is no direct way to identify the new class of steady-state behavior on the basis of the 

mess of points representing it in the bifurcation diagram from Fig. 2-11. This can be more 

readily achieved by means of the Poincare map. The Poincare map for Ky = 6 is presented 

in Fig. 2-18, again in the reference frame iopk vs. v„*. This Poincare map is a set of separate 

points along a closed curve so densely populated that it looks like a curve. Similar Poincare 

maps are shown in reference frame of condenser voltage vck=vc(kTs) vs. output voltage v„* 

in Fig. 2-19 and inductor current vs. condenser voltage in Fig. 2-20, respectivei)'. It 

vvill be proved that this type of Poincare maps corresponds to a qucisiperioclic solution [86].

Figure 2-18 Poincare map in quasiperiodic state (Ky = 6)

Figure 2-19 Poincare map in quasiperiodic state (Ky = 6)
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Figure 2-20 Poincare map in quasiperiodic state (Ky = 6)

A quasiperiodic solution is one which may be expressed as a countable sum of 

periodic functions x( t ) = .v( ( t ), where x , has period 7, and frequencyfi = l/r,. There is

also a finite set of basefrequencies { / ] , . . .  , f m } with two properties:

• It is linearly independent, i.e., there does not exist a non-zero set of integers

(kt......k ,J  such that k\ f ] + ... + k m f  m =0.

• It forms a finite integral base for the f„ i.e., for each i, /,• = 

some integers {ki......km}.

ni J m for

Quasiperiodic behavior: A solution of the system that can be written as the sum 

of a countable number of periodic functions each of whose frequencies is an 

integer combination of incommensurate frequencies taken from a finite base set.

The base frequencies are not defined uniquely, but m is. A quasiperiodic function with m 

base frequencies is cal led m-periodic [84],

In a continuous-time dynamical system, a two-periodic trajectory lies on a two-

torus T~ = S ! x S 1, where each circle S1 represents one of the base frequencies (Fig. 2- 

21b). Consider a trajectory traveling on the torus looping in the coi = 2n/T\ direction with 

period T\ and in the cih = 271/71 direction with period Ti (Fig. 2-2la). The equations 

describing the motion of the trajectory are:
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,V| = ( R + r sin ( O )cos CO| r

,\i = r cos (S)it (2-18)

.V3 =  ( R + r sin )sin  cOjf

where .v/, a-? and aj are the state space coordinates, t is the time, larger radius R corresponds 

to the rotation about the origin and radius r corresponds to that about the cross section (Fig.

2-2 lc). If T\ and 7% are commensurate, there exist positive integers p and q such that pT\ = 

qTi- Therefore, the trajectory will close on itself in pT\ seconds since it has to make exactly 

p loops in the first direction and exactly q loops in the second (Fig. 2-22a would not 

change if the simulations were run longer). The result of the motion in state space will be a 

limit cycle with period pT\. This type of behaviour is called frequency-locked or phcise- 

locked motion. If T\ and Ti are incommensurate, there are no such p and q and the 

trajectory never closes on itself (Fig. 2-22b would become more densely filled in if the 

simulations were run longer). Not every point of the torus will lie on the trajectory, since a 

trajectory is a curve and the two-torus a surface, but because the trajectory repeatedly 

passes arbitrarily close to every point on the torus, the two-torus is considered the limit set 

of the two-periodic behavior.
Torus

A

CO2 <*>!

a. b. c.

Figure 2-21 Two-periodic behavior corresponds to motion on a two-torus

a. b.

Figure 2-22 a. Periodic trajectory with T\ = 2 and Ti = 3;

b. Two-periodic trajectory with T\ = 1 and Ti = 4 Î  .

2-24

BUPT



CHAPTER-2 2-4 STEADY-STATE ANALYSIS

In time-periodic non-autonomous systems tvvo-periodic behavior can occur as a 

result of the "conflict" between the natural frequency of the system and the forcing 

frequency. not rationally related to the first one. Consider a two-periodic solution of a 

time-periodic non-autonomous system with frequency base where f , is the forcing

frequency. Using coordinates (0[, 0i) on the torus, §t(x) can be written as x(t) =

F(B\(t),B2(t)) where F : x S 1 — and

(2-19)
2nf\t mod 2k

o2(t)_ 2 n f j t  mod 2k

The action of the Poincare map is to sample <(),(x) every 1/^seconds:

k = 0 ,1,...
01 ( k / f f  ) 

02 ( k / f f  )

2nkf\ /  f  j  mod 271 
0

(2-20)

Because f\ and f  are incommensurate, 0i(k/ff) is not periodic and will repeatedly come 

arbitrarily close to every point in [0, 2k) as k —> °o. Therefore, in the (0 1, 02) coordinate 

system. the Poincare map is the circle defined by 02 = 0. In the original Euclidean 

coordinates. the Poincare map is a closed curve.

Quasiperiodic behavior: If the underlying flow exhibits two-periodic behavior, 

the Poincare map consists of a closed curve.

Accordingly, the Poincare maps presented in Fig. 2-18, Fig. 2-19 and Fig. 2-20 

permit to identify immediately the quasiperiodic (two-periodic) behavior of the converter 

when the controller gain just exceeds the bifurcation value K y ~ 4.5.

Time Domain In the time domain, quasiperiodic signals may look like amplitude

modulated waveforms. The time function of condenser voltage vt. and control voltage v(„„ 

are plotted in Fig. 2-23 and Fig. 2-24 at Ky = 6. The time waveform of the condenser 

voltage is clearly amplitude modulated. The “carrier” frequency is the forcing (switching) 

frequency provided by the sawtooth signal. In addition, a natural frequency of the system is 

developed and acts as a modulating frequency [82]. It can be seen from the succession of 

the peak values that the condenser voltage is not periodic. Because the two frequencies are 

incommensurate, the resulting signal is two-periodic. The control voltage va,„ changing 

with the natural frequency of the system hits the ramp wave once per ramp cycle (Fig. 2- 

24). The forcing (switching) frequency generated by the ramp wave is present in the small 

ripple of the control voltage.
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300

98.2 98.3
t [msec]

Figure 2-23 Condenser voltage in quasiperiodic state (Kv = 6)

98.4 98.5

Figure 2-24 Control voltage in quasiperiodic operation (K\ = 6)
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Frequency Domain The spectrum of the quasiperiodic condenser voltage vvaveform in 

Fig. 2-23, at Ky  = 6, is plotted in Fig. 2-25. The spectrum consists of the spectrum of the 

forcing (switching) frequency f s = l /Ts (Fig. 2-16) plus side-spikes spaced at integer 

multiples of the natural frequency. Therefore, the spectrum of a quasiperiodic signal 

consists of spikes at the various sum and difference frequencies of the base set. 

Theoretically, a quasiperiodic spectrum can be distinguished from a periodic one because 

the quasiperiodic spikes are not spaced at integer multiples of one frequency. In practice, 

because it is impossible to determine if a measured value is raţional or irrational, a 

spectrum that appears to be quasiperiodic can be in fact periodic with a very long period.

150

1 0 0

CO

**-

>
50

0 100 200 300 400 500
f [kHz]

Figure 2-25 Spectrum of condenser voltage in quasiperiodic operation (Ky  = 6)

State Space The steady-state trajectory corresponding to Ky = 6 is presented in

Fig. 2-26 in the three- dimensional state space defined by choke current iop, condenser 

voltage vy and output voltage vy. It is visible that the limit set is a torus, denoting once 

again the two-periodic behavior. Because the frequencies of the rotations in the two 

directions are incommensurate, the trajectory never closes on itself and if the simulations 

were run longer the surface of the torus would become more densely filled in [83].
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Figure 2-26 State space trajectory in quasiperiodic steady-state (Ky = 6) with longer run 

in b than in a
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2-4-1-5 THE NAIMARK-SACKER BIFURCATION

Consider a continuous-time dynamical system with a complex-conjugate pair of 

eigenvalues of an equilibrium point. From standard linear control theory, while the real 

part of the eigenvalues is negative, the system will be stable. Suppose that when a control 

parameter of the system increases through a bifurcation value, the pair of complex 

conjugate eigenvalues passes through the imaginary axis. If such a situation occurs in a 

linear system, it will become unstable. For a nonlinear system, a stable limit cycle is born 

and this scenario represents a H opf bifurcation [84].

H opf Bifurcation: A Hopf bifurcation occurs in a continuous-time system 

when a complex-conjugate pair of eigenvalues of the linearization of the vector 

field at an equilibrium point passes through the imaginary axis, thereby 

creating a limit cycle.

In the discrete-time analogue of the Hopf bifurcation, an invariant closed curve 

is created as a stable fixed point loses stability when its complex-conjugate pair of 

eigenvalues passes through the unit circle. Since discrete-time models are obtained by 

making Poincare section in the state space of continuous time systems, it is useful to 

investigate what happens in a continuous-time dynamical system when a Hopf 

bifurcation occurs in its Poincare map. Before the bifurcation, the Poincare map is a 

fixed point, hence in the continuous time system it corresponds to a stable limit cycle. 

The Poincare map becomes a closed loop due to the Hopf bifurcation and this 

corresponds to a two-periodic trajectory. Hence, a Hopf bifurcation in the Poincare map 

can be interpreted as a transition of the continuous-time system from a periodic 

behavior to a quasiperiodic one. This is called a Naimark-Sacker bifurcation [85].

Naimark-Sacker bifurcation: When a limit cycle undergoes a Naimark- 

Sacker bifurcation, motion on a two-torus results.

As proved in the previous sections, precisely this state of affairs occurs in the 

converter when the controller gain is increased above the bifurcation value K v =4.5:

below this value normal periodic operation sustains and all state variables are changing 

with the switching period; in addition another frequency develops by the Naimark- 

Sacker bifurcation and the system exhibits quasiperiodic state [87].
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2-4-1-6 CHAOS

The quasiperiodic operation pertains to a relatively large range of the controller gain, 

approximately from Ky ~ 4.5 up to Ky ~ 60. The quasiperiodic states could been easily 

identified by calculating the three Poincare maps of Fig. 2-17, Fig. 2-18 and Fig. 2-19. In 

all cases each Poincare map looked like a closed curve, denoting a quasiperiodic behavior. 

By increasing further the controller gain a totally different type of Poincare maps is 

obtained, corresponding hence to a state that is none of the previous found. It was revealed 

already the possibility that in the conflict between the forcing frequency and the natural 

frequency, neither wins and quasiperiodic state is developed. Another possibility is chaos, 

which can be defined as “none of the above" from a practicai point of view [88].

Chaos: A bounded steady-state behavior in a deterministic dynamical system, 

which is not an equilibrium point, not periodic, and not quasiperiodic.

The Poincare M ap Fig. 2-27 shows the Poincare map in chaotic behavior at K v = 70 in 

reference frame of condenser voltage vck=vc(kTx) vs. output voltage v0k=v„(kT%). The 

Poincare maps for chaotic systems are distinctive and quite beautiful. Looking at Fig. 2-27, 

it can be seen that the map lies, indeed, in a bounded region of the state space but it does 

not lie on a simple geometrical object, as in the case of periodic and quasiperiodic 

behavior. Chaotic state appears in the Poincare map as a set of highly organized points 

reflecting a multilayered structure and order, with a fractal dimension [84].

Chaos: The Poincare map of a chaotic steady-state is not a simple, geometrical 

object. Unlike the Poincare maps of the other limit sets, it exhibits a fine, 

highly organized structure underlying the chaotic behavior.

Time Domain Using Poincare maps can be the best way to distinguish

chaotic from quasiperiodic solutions. They appear much the same and there is no 

direct way to distinguish the chaotic state from the quasiperiodic one on the basis of 

the mess of points representing them in a bifurcation diagram. Frequently it is 

difficult to separate them from time history as well. A chaotic waveform of the 

output voltage v„ at Ky = 70 is presented in Fig. 2-28. It can be seen that the chaotic 

signal is, indeed, bounded and not periodic. It is difficult to tell whether it is not 

quasiperiodic, but, however, it looks more random (random behavior in a 

deterministic system may be surprising at first, but pseudorandom number generators
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Figure 2-27 Poincare map for chaotic operation (Kv = 70)
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Figure 2-28 Chaotic waveform of the output voltage (Ky = 70)
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Figure 2-29 Condenser voltage in chaotic operation (Ky  = 70)

Figure 2-30 Control voltage in chaotic operation (Ky  = 70)
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are simple examples). The time function of the condenser voltage in chaotic operation is 

plotted in Fig. 2-29. In chaotic operation the control voltage v(„„ fails to hit the ramp wave 

in its every cycle (Fig. 2-30).

Chaos: In the time domain, a chaotic trajectory looks “random”.

Sensitive dependence on iniţial conditions Two chaotic waveforms of the output

voltage, started from almost identical iniţial conditions, are presented in Fig. 2-31 at Kv = 

70. It can be clearly noticed that the small differences in iniţial conditions are persistently 

magnified by the dynamics of the system so that the trajectories diverge until they become 

uncorrelated. This represents the sensitive clepenclence on iniţial conditions, which is a very 

important criterion of chaos [84].

Sensitive dependence on iniţial conditions: Nearby trajectories diverge and 

soon become uncorrelated.

52-----

51

^ 5 0 1

•\i
I \

. i , i i i \  i ii i i ; i 1 m

48

0 0 2  0 4  0 6  0 8  1
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Figure 2-31 Sensitive dependence on iniţial conditions: two chaotic waveforms of the 

output voltage (Ky = 70). The iniţial conditions differ by 0.04%.

Predictive power There is a very important implication of this sensitive dependence 

on iniţial conditions. There is always noise in a physical system or computaţional noise in a
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simulation. In addition. iniţial conditions cannot be specified or measured with infinite 

accuracy. These errors, although small, will make chaotic systems to be unpredictive 

beyond a short time frame. In order to specify what is meant by an unpredictive 

deterministic system, consider one observer A observing a dynamical system at time tA and 

an other observer B observing the same system at time ts > tA. Observer A can also predict 

the state of the system at if he knows the iniţial condition at tA. The system is called 

predictive if observer A -  using observation and prediction -  knows more precisely the 

state of the system at îb than observer B, using only observation. These systems can be 

thought of as infonncition sinks, because information is lost with time. On the contrary, the 

system is called unpredictive if observer B knows more precisely the state of the system at 

time ts than observer A. These systems represent information sources, since information is 

gained with time. Sensitive dependence on iniţial conditions is exhibited by an 

unpredictive system and vice versa. According to the definitions above, an expanding 

system, i.e., a system whose all trajectories diverge one another, is unpredictive. Thus. 

stretching mechanism leads to an unpredictive system. In addition, because expanding 

trajectories become unbounded,/oW//i^ mechanism is required to achieve a steady-state.

Unpredictive system: Later observations convey more information about the 

state of the system than earlier ones (observations are more accurate than 

predictions). It is equivalent to sensitive dependence on iniţial conditions. Two 

mechanisms are required for continuous-time systems to be unpredictive: 

stretching and folding [84],

Shadowing Theorem There is another important implication of the sensitive

dependence on iniţial conditions, which arises in numerical computations, by taking into 

account the combined influence of round-off errors in numerical computations and the 

property of divergence of nearby trajectories for chaotic behavior. Under such conditions, 

how can numerical computations of trajectories be trusted to give us reliable results? (In 

experimental measurements the noise plays the role of round-off errors and leads to the 

same problem.) For a chaotic system even small numerical errors will be amplified in time 

and the results could depend critically on the computaţional procedures, losing their 

generality. The comforting answer to these doubts is given by the shadowing theorem, 

which states that the computed trajectory shadows some possible trajectory of the system. 

This is illustrated in Fig. 2-32, where the upper picture shows an exact trajectory started
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trom xo and described by the time series values ao ,  x \ ,  x i , a*, and a computed trajectory 

started from yo = xq + £o and characterized by the obtained time series values yo = xo + £<>, yi 

= a'i + £|, >’2 = a'2 + £2,---, V/t = Xk + £*• For a chaotic behavior |e| grows exponentially and

the two trajectory diverge until, for all practicai purposes, they become uncorrelated. 

Shadowing theorem says that there is a starting point z0 in the ball of radius £ about a0 that 

gives rise to an exact trajectory whose all time series values zo, Z\, Z2 , • ••, Zk stay in the balls 

of radius £ about y* (lower picture from Fig. 2-32). So, the exact trajectory passing through 

the Zk points shadows the computed trajectory, which in this way is a good characterization 

of the system’s behavior [85].

Figure 2-32 Shadowing theorem

Frequency Domain The spectrum of the condenser voltage waveform in Fig. 2-30, at Ky 

= 70, is plotted in Fig. 2-33. The spectrum is different from the corresponding periodic 

(Fig. 2-16) or quasiperiodic (Fig. 2-25) one. It still have spikes indicating the predominant 

frequencies but also has a broad-band, noise-like component, which is a characteristic 

exhibited by all chaotic systems.

Chaos: The spectrum may have spikes, but always has a continuous, broad, 

'‘noise-like’' nature.

The route to chaos described so far represents the quasiperiodic (torus 

brecikclown) route to chaos [86].

yo v  
>'2
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f [kHz]
Figure 2-33 Spectrum of condenser voltage in chaotic operation {Ky  = 70)

Quasiperiodic route to chaos: As a result of the alteration in a parameter the 

system changes from periodic to quasiperiodic state through a Naimark-Sacker 

bifurcation. Later, by changing further the parameter the quasiperiodic state 

turns into a chaotic one.

2-4-2 PERIOD-DOUBLING ROUTE TO CHAOS
Another type of bifurcation behavior that is present in the system studied is the periodic- 

doubling route to chaos [82], This is the most frequent route and can be readily identified 

from a bifurcation diagram. Such a representative bifurcation diagram for the converter 

configuration is shown in Fig. 2-34.

2-4-2-1 SUBHARMONIC STEADY-STATE

Starting from left in the bifurcation diagram of Fig. 2-34, the chaotic region suddenly 

changes with the increase of Ky  into a region with nine consecutive distinct v„* values.
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Hence, the output voltage v0 is periodic in this state and repeats itself after 9 switching 

cycles or 18 periods of the sawtooth wave. This state is called period-9 and corresponds to 

a frequency-locked or phase-locked motion, in which the solution could synchronize with 

some multiple of the forcing frequency. Beside quasiperiodicity and chaos, this is the third 

possibility in the conflict between the forcing frequency and the natural frequency. Using 

terminology borrowed from Fourier analysis, a period-ÂT solution with K > 1 is called a 

Kth-order subhcirmonic periodic state [84].

Subharmonic behavior: A periodic solution of a time-periodic non- 

autonomous system whose period is an integer multiple (> 1 ) of the forcing 

period.

Such periodic windows (regions of periodic behavior between regions of chaotic behavior) 

appear frequently in chaotic systems [8 6 ]. It is hard to see in Fig. 2-11, but even within the 

region where quasiperiodic behavior exists, periodic windows appear, where the steady- 

state phase-locks onto a subharmonic.

The Poincare Map The period of the state variables in the converter is 9*TS in period-9 

state. As it was defined previously, the Poincare map behaves similarly to a periodically 

flashing stroboscope. Therefore, sampling with the switching period Ts, the period-9 state
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of the converter will appear as a set of nine points in the Poincare map. This points 

represents a period-9 closed orbit for the Poincare map. Fig. 2-35 presents the Poincare 

map for the period-9 operation in the plane of output voltage v„k=v0(kTs) vs. inductor 

current iop̂ =ior(kTs) at Ky = 73.2.

Closed orbit: The sequence { X\ % } is a period-ÂT closed orbit of the map 

P if x k+x = P( x k ) for k=  1, K - 1 , and = P (x k ).

Subharmonic behavior: A period-A!" subharmonic of a time-periodic non- 

autonomous system appears as a period-Tf closed orbit of the Poincare map.

51- 

50.5- 

„  50 [

49-

48.5 0 2 . rA,4 6
'opk W

Figure 2-35 Poincare map for period-9 operation {Ky = 73.2)

8

Time Domain The time functions of condenser voltage vc and control voltage v(„„

are plotted in Fig. 2-36 and Fig. 2-37 at Ky = 73.2. The period-9 subharmonic state is 

clearly visible in all figures. During the period-9 operation vam fails to hit the ramp wave in 

its every cycle (Fig. 2-37).

Frequency Domain The spectrum of the period-9 condenser voltage waveform in Fig. 2- 

36, at K v = 73.2, is plotted in Fig. 2-38. The spectrum of a Âlh-order subharmonic signal 

contains spikes spaced at integer multiples o f / ţ = l /KTs.
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- 6^ 5  19.55 19.6 19.65 19.7 19.75 19.8
t [msec]

Figure 2-36 Condenser voltage in period-9 operation (Ky = 73.2)

t [msec]
Figure 2 - 3 7  Control voltage in period-9 operation (Ky = 73.2)
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Figure 2-38 Spectrum of condenser voltage in period-9 operation (Kv = 73.2)

State Space The limit cycle corresponding to the period-9 steady-state is

presented in Fig. 2 - 3 5  at Kv = 7 3 . 2  in the plane of output voltage v„ vs. inductor current 

The points belonging to the Poincare map (Fig. 2-35) are also marked.

51

2-40

BUPT



CHAPTER -2 2-4 STEADY-STATE ANALYSIS

2-4-2-2 PERIOD-DOUBLING BIFURCATION

A little above Kv = 73.5 a bifurcation can be noticed in the diagram depicted in Fig. 2-31: 

the 9lh-order subharmonic periodic steady-state changes into an 18th-order one. This is 

called period-doubling (flip) bifurcation [85].

Period-doubling bifurcation: A period-ÂT solution changes into a period-2/C 

solution.

The first period doubling is follovved by a cascade of other period doublings generating the 

subharmonics with order 9*2" where n = 1,2, ... . Increasing further the controller gain Kv 

a little above 74, the smear of points in the bifurcation diagram (Fig. 2-31) indicates that 

the period-doubling bifurcations accumulate at a bifurcation value at which chaotic state 

develops again. The chaotic behavior can be readily identified again by means of the 

Poincare map. Such a representative map is presented in Fig. 2-36 at Kv = 74.2, in the 

plane of output voltage v()k=vJkTs) vs. choke current iopk=iop(kTs).

Chaos Revisited: State Space The chaotic steady-state trajectory corresponding to 

Ky = 74.2 is presented in Fig. 2-37 in the plane defined by choke current iop and output
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voltage v„. As it vvas already revealed by the Poincare map, the limit set of the chaotic 

behavior is a complicated geometrical structure, which is called strânge attractor.

Strânge attractor: The geometrical object in state space to which chaotic 

trajectories are attracted.

During its wandering over the strânge attractor in Fig. 2-37, the unclosed trajectory 

repeatedly and randomly comes on an infinite number of limit cycles very similar to that of 

the subharmonic behavior plotted in Fig. 2-35 (if the simulations vvere run longer the 

attractor vvould become more densely filled in, but not uniformly, as was the case of the 

quasiperiodic limit set). This is a very important and useful feature common to chaotic 

systems [8 6 ],

Strânge attractor: A chaotic attractor typically has embedded within it an 

infinite number of unstable periodic trajectories.

51

48.5 
0 10 12

Figure 2-37 Chaotic state space trajectory (Ky = 74.2)

It is vvorth to mention another very important feature common to chaotic systems, 

resulting also from state space behavior. An important consequence of the uniqueness of
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the solution 0 , (x0) of an autonomous continuous-time system x = f ( x )  is that a trajectory

of the dynamical system cannot go through the same point twice in two different 

directions. In particular, no two trajectories may cross each other and this is called the 

noncrossing property. Taking into account the noncrossing property and the assumption of 

a bounded region of state space in which the trajectories live, the Poincare-Bendixson 

theorem states that there are only two possibilities for the trajectory of a two-dimensional 

autonomous continuous-time dissipative system: it approaches after the transient process 

either an equilibrium point or a limit cycle (in contrast with the strânge attractor, these and 

the quasiperiodic limit sets are called classical atîraciors and they are associated with 

some geometrical forms). Only a two-dimensional space is separated by a curve into a 

region „inside” and a region „outside”, hence a trajectory starting inside the limit cycle can 

never get out and vice-versa. Furthermore, the Poincare-Bendixson theorem leads to an 

important result: chaotic behavior cannot occur in a one- or two-dimensional autonomous 

continuous-time system [8 8 ]. It is obvious that chaos cannot arise in linear systems either.

Chaos: Nonlinearity and at least three state variables are needed in 

autonomous continuous-time systems for chaos.

Due to (2-12) a time-periodic non-autonomous continuous-time system can be converted 

into an autonomous continuous-time system by appending time as an additional state 

variable, therefore, at least two state variables are needed in non-autonomous continuous- 

time systems for chaos. In discrete time, even first-order maps can exhibit chaotic 

behavior.

The route to chaos identified in this section represents the period-doubling route to 

chaos. A period-doubling route to chaos displays a quite surprising behavior because it is 

governed by a universal scaling law which holds in the vicinity of the bifurcation point to 

chaos. Defining the ratio 8 of successive interval lengths 8*, in each of which holds a 

period-2*+l state (Fig. 2-38), a universal constant called the Feigenbaum number 8 is 

obtained in the limit as k —»<*> [85],

Feigenbaum number: 8 = Hm - ^ -  = 4.66920161... (Fig. 2-38)
A—»oo 8/; +1
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Figure 2-38 Scenario of period doubling

Feigenbaum’s number is a universal constant in the theory of chaos like other fundamental 

numbers, e.g., k , e , and the golden mean ratio (4 5  -  \ ) / 2  . For the converter the period- 

doubling scenario can be seen better in Fig. 2-39, which shows in magnified form the 

window encircled by dotted line in Fig. 2-31. Denoting the first bifurcation point by Xo, the 

next one by .̂i etc., the values of the first several bifurcation points are in Table 2-2. Table 

2-1 contains also Si and 82. The 8 values are not far from the Feigenbaum constant.
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TABLE 2-2 Bifurcation Points in Fig. 2-39

k hi Sk

0 73.501

1 73.841 4.0476

2 73.925 4.2000

3 73.945

Period-doubling route to chaos: A cascade of period-doubling bifurcations 

that accumulate at a parameter value for which the system becomes chaotic. 

The rate of convergence of the bifurcation values is a universal constant 

independent of the system.

2-4-3 INTERMITTENCY ROUTE TO CHAOS
The last type of bifurcation behavior that is present in the studied converter 

configuration is the intermittency route to chaos. In the diagram presented in Fig.2- 

32 it corresponds to the bifurcation from period-9 subharmonic state to the chaotic 

state by decreasing the controller gain Ky.  Intermittency is best characterized in the 

time domain: after the bifurcation, a time waveform is characterized by long intervals 

of regular motion (called laminar phases) and short bursts of irregular motion. Such 

a representative fragment from the time waveform of the output voltage v„ is 

depicted in Fig. 2-40, at K v = 72.97. The period of the oscillations during the laminar 

phases is equal to that of the system just before the bifurcation, in period-9 operation. 

Decreasing the controller gain further the laminar phases become shorter and the 

bursts become more frequent, until the regular intervals disappear completely. The 

fully developed chaotic state is illustrated again by the Poincare map in Fig. 2-41, in 

the plane of choke current iopk vs. condenser voltage v,,*, at Ky  = 72.8.

Intermittency route to chaos: After a bifurcation, a trajectory alternates 

between periodic motion and bursts of chaotic behavior. Changing the 

system parameter further the duration of chaotic states become more and 

more longer, until chaos is fully developed at some distance from the 

bifurcation point [85],

2-45

BUPT



CHAPTER £ 2-4 STEADY-STATE ANALYSIS

t [msec]
Figure 2-40 Time waveform of the output voltage during intermittency route to 

chaos (Ky = 72.8)

Figure 2-41 Poincare map for chaotic operation (Ky  = 72.8)
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The studied converter configuration was able to exhibit all three classical routes to 

chaos. These scenarios can be useful because it is often difficult to conclude from 

experimental data alone whether irregular behavior is due to measurement noise or to 

underlying chaotic dynamics. If, upon adjusting a control parameter, one of the three 

prototype routes to chaos is observed, this indicates that the dynamics might be chaotic.

2-5 STABILITY ANALYSIS OF THE FEEDBACK- 

CONTROLLED CONVERTER

Computer simulation studies presented in the previous sections revealed important 

bifurcation phenomena when adjusting the gain of the proporţional control in the PWM 

switching loop. Hence, the following study is concerned with system stability in 

conjunction with the design of the feedback control loop, i.e., it tries to establish formally 

the possibility of bifurcation as a result of varying Kv-

2-5-1 THEORETICAL BACKGROUND: STABILITY OF A 

PERIODIC SOLUTION
As presented in subsection 2-4-1-2, in normal operation the converter exhibits period-1 

behavior. Periodic time functions describe the waveforms of the state variables, with 

period Ts (Fig. 2-8, Fig. 2-9). It was also emphasized that one of the most useful method 

for investigating continuous-time nonlinear systems involves the discretization technique 

represented by the Poincare map. It was shown that for a non-autonomous system the 

Poincare map is defined by the sampling of the trajectory at a rate being equal to the 

switching frequency. Consequently, assuming that the period of the periodic state is the 

same as that of the switching frequency, the period- 1 state corresponds to a fixed point .v 

in the Poincare map denoted by P in the state space. Therefore, the stability of the period-1 

state is the same as the stability of the fixed point in the Poincare map. In the succeeding 

discussion of stability, „fixed point” can be replaced everywhere by „period- 1 solution”.

Therefore the stability is determined by the local behavior of the Poincare map near 

the fixed point If all sufficiently small alterations around x  tends toward 0 with time, 

then .v" and the limit cycle are asymptotically stable, the trajectories are attracted onto the
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limit cycle. v' and the limit cycle are unstable if any sufficiently small alteration increases 

with time and the trajectories move away the iniţial limit cycle [89].

Stable: A limit set is stable if all nearby trajectories stay nearby.

Asymptotically stable: A limit set is asymptotically stable if all nearby 

trajectories are attracted, i.e., they approach the limit set as t —> °° .

Unstable: A limit set is unstable if all nearby trajectories are repelled (except 

of course those lying on the limit set).

The Poincare map function relates the consecutive points in the Poincare map, their 

coordinates in state space separated by one switching period Ts from each other in time:

•V„+1 = P<*„) (2-21)
 ̂ *

and at the fixed point .v = P( x ).

In particular, the local behavior of the Poincare map in the neighborhood of the 

fixed point .v is governed by its linearization near that fixed point:

AvJ(+| = Jp ( x ) Axn (2-22)

where

dP( x )
J p( .V ) :

dx
(2-23)

is the Jacobian matrix of the Poincare map function P(x„), evaluated at the fixed point x . 

Substituting Jp(x‘) by its eigenvalues A, and right uir and left u,i eigenvectors, the linear 

map becomes:

Ax //+!
1 ~ 1

Axr (2-24)

The eigenvalues A, are called characteristic multipliers or Floqueî multipliers of the 

periodic solution.

Characteristic multipliers: The characteristic multipliers of a periodic solution 

are the eigenvalues of the linearization of the Poincare map at the 

corresponding fixed point. They give the amount of expansion and contraction 

near the periodic solution during one period.
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From linear system theory, the position of the characteristic multipliers in the 

complex plane determines the stability of the fixed point (Fig. 2-42). The fixed point and 

the limit cycle are asymptotically stable if and only if all eigenvalues of the linearization 

(2-24) have modulus less than unity, i.e., they lie inside the unit circle; if any characteristic 

multiplier has modulus greater than unity, i.e., it lies outside the unit circle, the limit cycle 

is unstable. The characteristic multipliers are real in a node and complex-conjugate pairs in 

a focus. The trajectories approach an asymptotically stable limit cycle in an aperiodic way 

if the fixed point is a stable (or attractor) node and in a spiral way for a stable (or repellor) 

focus. They diverge aperiodically from an unstable limit cycle if the fixed point is an 

unstable (or repellor) node and spiral away in case of an unstable (or repellor) focus. If the 

fixed point is a sadclle point, the trajectories approach the limit cycle in one direction and 

diverge in another one (in higher dimensional case saddle point can contains also focus, 

i.e., complex eigenvalues). Generic fixed points just presented remain structurally stable as 

long as none of their characteristic multipliers lies on the unit circle. Such fixed points 

those have no characteristic multipliers on the unit circle are called hyperbolic [84],

Limit Cycle

Figure 2-42 The position in the complex plane of the characteristic multipliers for the 

two-dimensional case
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Hyperbolic periodic solution: None of the characteristic multipliers of a 

hyperbolic periodic solution has magnitude 1. Hyperbolic periodic solutions 

are generic and structurally stable.

Stability o f  a periodic solution: A hyperbolic periodic solution is

asymptotically stable if and only if all its characteristic multipliers lie inside the 

unit circle. It is unstable if any of the characteristic multipliers lies outside the 

unit circle.

2-5-2 THE FEEDBACK CONTROLLED CONVERTER: A 

VARIABLE STRUCTURE, PIECEWISE LINEAR, 
NONLINEAR SYSTEM

The studied resonant converter is a variable structure, piecewise linear, nonlinear 

dynamical system [89]. The structure of the active circuit varies during the periodic steady- 

state operation (Fig. 2-8). The structures change periodically during the operation. One 

period corresponds to the switching cycle Ts and it is divided into two snbperiods 

(semiperiocls in time) by the repeated succession of two structures presented in Fig. 2-43. 

The correspondence between the circuits in Fig. 2-43 and the active parts of the converter 

configuration (Fig. 2-6) during one switching period is shown in Table 2-3. The time 

sequence of structure changes is outlined in Fig. 2-44. The durations of the same structure 

in the two subperiods are equal in periodic state due to the symmetrical operation 

investigated (Appendix A): a p = oc„ = a .

C
C ,± R ,

Sc2 c,4= R
L

Scl

S c:I

: c.= = R,:

c 2=
= R Î

STRUCTUREI: co te[0 ,ap]

cote [coTs / 2, ooTs / 2 + a  n]

L

STRUCTURE 2: cote [a  ,„(oTs / 2]

cote [coTs/2  + a n, coTs]

Figure 2-43 Converter structures during a subperiod

2-50

BUPT



CHAPTER-2 2-5 STABILITY ANALYSIS OF THE FEEDBACK CONTROLLED
CONVERTER

Table 2-3 The connection betvveen the converter and the structures in Fig. 2-43 during

one switching period

ONE SWITCHING PERIOD
SUBPERIOD I SUBPElRIOD II

STRUCTURE1 STRUCTURE 2 STRUCTURE1 STRUCTURE 2
5 Sn - Sn -

S,i - Scp - Sen
s t 2 Sa , Sen Scp Scp

c, c P Cn C„ C n
C 2 c„ c„ Cp Cp
Ri *P Rn Rn
Rz Rn Rn Rp R p

Circuit —  

Duration-

ONE SWITCHING PERIOD

SUBPERIOD I

Ts

-►k-
SUBPERIOD II

r
Ts/ 2  = Tr j Ts/ 2  = Tr

l
STRUCTUREI ' STRUCTURE2 ! STRU CTURE1 [ S T R U C T U R E 2

d,

Time- -► 'o = t„ = tk

T
./

di T d,

(2 ~ l0 ~ lk-r\
T
.//

d, T

Figure 2-44 The time sequence of structure changes

Since each structure has linear dynamics, the resonant converter is a piecewise 

linear system. On the other hand, the whole system, the feedback controlled converter is 

nonlinear due to the dependence of commutation angles ar, an on the state variable v„. The 

linear state equations of the structures in subperiod I, using Table 2-3, are as follows [91]: 

Structure 1 : 

clv.op

cit

clvOH

1 1 .

n r  Vop +~ ^ ~ lOp 
P P P

1 1 .

cit

clv,.

n s- O H  ' 'OH
‘' n n  n

1

cit C Ul) 
diwi' _  _

L

(2-25)

dt
di

op _  1 1 1
— VOp j VC r vip

on
dt L Von
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Equations (2-25) can be rewritten in the dimensionless form: 

clx\
dx

d.\'2
dx

= -<7.Y| + bx4 

= —ax 2 + bx5

dx3
— ^  = 7LY4
dx  

dx
dx  

dx

-  = - n ( x l + * 3 - l )

dx
— = -nxo

where

v
- V ,  =  — -— ^— , X ' )  —  x - ţ  —  —  , j c 4  =

V’;' /  2 -  V f / 2  3 v , / 2

Tr . k Tc kC
a  =  - ‘- . b  =  — — = ------

T T C1 O 1 O ^ O

Z L__ op_ v _  Z ' ion T - J _
V; /  2 3 Vj /  2 Tr

,T0 = R C 0 ,Tc = R C , Z = j L / C

and v j / 2  = vip = vin,C0 = C„ = C n ,R = R p =R,v Tr =Ts / 2  = n j L C  (Appendix A).‘ ip rin’ ^o p n <“  MXp

The state model of stmcture 1 is hereby:

x = A\ ■ x + B \; x =

" * 1~ — a 0 0 b 0" '0

x 2 0 - a 0 0 b 0
X = x 3 0 0 0 71 0 ; B \ = 0

x 4 — 71 0 - 7 1 0 0 K

- x 5_ 0 - n 0 0 0_ o

Stmcture 2:

State equations:

^ vop 1 1

‘h on _  1 . 1 •
. d ^  V°n n  l°ncit RnCn Cn 

dvr 
— ^  = 0 
dt

di op 1

~ d t ~ ~ ~ T V°p

dlon _ __ J_
; — i ondt L

(2-26)

(2-27)

(2-28)

(2-29)
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The state model of structure 2 in dimensionless form:

-v = A-> • .y; x =

’ V — a 0 0 b 0'

-v2 0 — a 0 0 b

-v3

II 0 0 0 0 0

•v4 - n 0 0 0 0

_-v5 _ 0 - K 0 0 0

(2-30)

Subperiod II consists of the same structure series as subperiod I containing 

structure 1 and structure 2 , with the same parameters, due to the symmetrical 

configuration. By utilizing the periodicity of the structure series, the values of the five state

variables at the end of subperiod I, x(t{  ), can be transformed back to structure 1 used in 

subperiod I by a periodicity or transformation matrix T ' \  that is:

xh(tH ) — l  1 ■ x ( t 2 ) (2-31)

where suffix b refers to the back transformation. Now the same structures, structure 1 and

2 and the same state variables are used even in subperiod II as in subperiod I. The 

transformation matrix is:

0 1 0  0 0
1 0  0 0 0
0 0 - 1 0 0

0 0 0 0 1

0 0 0 1 0

(2-32)

x/}(t[[ ) is considered as the iniţial condition of the state variables in structure 1 for

subperiod II. The result of the back transformation is (v, / 2 = 1):

Yon( ) v on( t 0 ) v c (  t 0 ) iop (  {0 ) 'oui  t 0 ).■r- (2-33)

.//

-  Y o i J 1 { )  v o p ( l 2 )  ~ v c ( t 2 ) Z  Z  io p ( t 2 ) J

Suffix b has been omitted in eq. (2-33). At the beginning of subperiod II, vop( îq ) starts

from von( t [ ) and increases a little bit as a result of the current puise iop starting from

ion( t î  )■ The capacitor voltage vc swings over from —vc( ^  ) to the positive values as a 

result of the positive current iop flowing in C. There is no need to write new equations in
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subperiod II. the same equations can be used as in subperiod I. The same back

transformation has to be used at the end of each succeeding subperiod [89].

The procedure can be applied both in periodic steady-state and in transient state. In

periodic steady-state due to the periodicity (Fig. 2-8):

x( tî  ) = T • x( tQ ) (2-34)

As it was mentioned above, the system within each subperiod is piecewise linear 

and the PWM-controlled feedback converter becomes a nonlinear system due to the 

dependence of the structure change instants (the turn-on time of the switches) on the state 

variable, the output voltage.

2-5-3 STABILITY ANALYSIS USING POINCARE MAP 

FUNCTION
It has been shown that the stability of the feedback control loop including the converter in 

periodic operation is determined by the eigenvalues of the Jacobian matrix of the Poincare 

map function at the corresponding fixed point [eq. (2-22)]. Since we have proved in the 

previous subsection that the dynamics of the entire switching period is fully characterized 

by that of one subperiod, with transformation (2-31) applied at its end, we are interested in 

a discrete-time map that relates the state variables over one subperiod. This discrete-time 

map function/'can be expressed in the following form:

xk + \ = f < xk ^ l>  (2_35) 

where at the beginning of each Ts switching period k takes the value of the number of 

periods k = n and the dimensionless interval is 8 , = c/, / T r of structure 1 (Fig. 2-44). S|

determines unanimously the dimensionless interval h j —cli/T ,-  of structure 2. One 

subperiod lasts one period of the sawtooth waveform T, = T J 2  (Fig. 5), therefore:

5 2 = 1 - 5 ,  (2-36)

By applying in cascade the solutions of differential equations (2-28) and (2-30), 

map function/ can be written as follows:

xk+ 1 = J ( xk>& 1 ) = O i f l - S j  8 ,)■ xk + [<£[(§1 ) - l \  A| 1 • 5, j  (2-37)

where

0 , ( 8 ,  ) = e A[^  ; <E>2r 1 - 5 ,  ) = eAo- ( l~ ^ ) (2-38)
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are the transition matrixes of the two structures, respectively, as well as one particular

solution of (2-28) is

(2-39)

obtained from (2-28) by substituting x = 0. By using (2-28) and calculating

xp = - A p 1 • l?| = -  • B i , the result is: A| = 0 , a 2 = 0 , a 3 = —̂ — = 1, .v4 = 0 and
|A,| v, / 2

.V5 = 0 . This result as one possible particular solution can easily be deduced by physical

consideration without any calculation as well. I is the identity matrix.

Our next aim is to express the feedback relation that connects the duration 8 i and 

the state vector a*. The PWM control terminates the structure 1 of one subperiod at 8 i 

when the difference between the control voltage vam and the sawtooth waveform vrwnl, 

becomes zero (Fig. 2-9). In dimensionless form:

e (xk ,§\ ) =
V , /  2

= Ky -[V*ef ~ x \( ^  ) ~ X 2( b x )] ~V*L - ( V y  -V*L j - 8 , =

= K y v ref - k T -x( 8 [ )-V*L - ( V y - v l  ; - 8 , = (2-40)

= Kv -v'ref - k T . { s . r s ,  ) xk + [ 0 ^ 5 ,  -B ,} -v£  -(V 'u ~ v[  j-S, =

= 0

where v L  = - ^ £ - ,v £  = - ^ L - y *  = [k v K v 0 0 o], Relations (2-10),
Vj / 2  V; /  2 v, / 2

(2-27) and the solution of (2-28) were used in (2-40).

On the basis of eq. (2-37) after back transformation:

*k + U ,= T - '  xt  + l =7"> ■ fU i .S t f x t  >] (2-41)

At the end of subperiod II after back transformation:

xk + 2 ,b= xn+\ = T ~] ’xk +2 = T ~l - f [ xk+l.b£\( xk + \,b )] (2_42)

The Poincare map function F  belonging to /,  i.e., to one subperiod, from (2-41) and (2-42) 

is

xk + \ . b=f ( xk )  (2‘43)

In period-1 steady-state xn = xk = **+1,6 = *k+2,b = x  where a is the fixed point. From 

the previous three equations:
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(2-44)

The Jacobian matrix J f  of map function F  defined in (2-43) and (2-44) takes the 

following form:

T •J f ( x  ) —
df(  x ,8 , )

dx

d f  d f

dx 98 j
(d 5

dx

Se
dx 98 35, , 1 /

( 3 e f

(2-45)

The derivatives of/ can be calculated from (2-37), (2-38): 

^- = <£,(1-8, >-4>,CS,;

| ~  =  3<1>2ggi 8 ' ; -{ l> ir8 l j - J:t +[«t»ir8 i j - / ] - A , - 1- f l l }+

, f l _ 5 ) a{i»i(8i j--n+[<i>i ( 8 | j - / ] - A ~ 1-g |}

38, 38,

+ o

- ~ & 2 ( 1 - §l ) A 2 ' X ( § i  J-l-<î>2n —8j ) — _[ 1  ̂ -

do.

(2-46)

(2-47)

^ 2 ^  ^ 1 ^'( *2,start *\,end )

where .v, L,nci and i 2 stan are velocities of state vector x  at the end of structure 1 [eq. 

(2-28)], and at the beginning of structure 2 [eq. (2-30)], respectively.

The derivatives of e are obtained from (2-40) using also the solution of (2-28): 

de_ = _ k T 3{e,( 8 , )-*k + [ 3 V 51 W l - A f 1 ■Bl \ ( y * _ y * ^

de
dxk

■k‘

= - k l -  

\T

38, 38,
T dx( 8, )

38,

= - k ‘ <D,(8, )

(2-48)

(2-49)

Substituting all the derivatives expressed in (2-46) -  (2-49) into (2-45), the Jacobian matrix 

of map function F is:
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J p (  x ) — T 1 C>2 ( 1  —5| j| * —

- T _1 ^ 2 ^  ^1 )' (x \,end * 2 , s ta r t )

k T -Xt „ j + V n - V *

= T ~ l 0 2r 1 -5 ,  )■

x l , e n d ^ v U ~ VL

x \,end ~ x 2, start1 - ■k‘ o ,r  5 , )

(2-50)

= 7 - 1 o 2 n - 8 1

The equations from (2-35) up to (2-44) are the same for the next subperiod starting 

by state variable xk+\j, and ending by Xk+2 .b = *;i+i- Therefore, the stability of the converter is 

unambiguously determined by the Jacobian matrix J f(x *) expressed in (2-50) [83],

For small deviations around the fixed point jc*
5jc

^ xk + \,b = J F(  x  ) ' A x k = J f ( x  ) ‘ ^ x n (2-51)

and

A \n+\ — AXk+2,b ~ J f ( x ) ' ^ x k + \,b~ '^F  ( x

Using the Jacobian matrix Jp related for a full period [eq. (2-22)]

^ v/i+l - J p ( x ) ’Axn = J p n+l(x* )-&xq

From the last two relations:

Av//+]
_ j  2( /i+l)( X ) ■ Av,0

(2-52)

(2-53)

(2-54)

The absolute values of the eigenvalues of Jf or Jp must be smaller than 1 for stable 

operation. Since the eigenvalues of Jp are the square roots of those of Jp, their positions, as 

compared to the unit circle, lead to the same conclusion. Therefore, the eigenvalues of Jf 

are used for the stability study and a MATLAB program was developed in order to 

compute them.

To calculate the eigenvalues of Jf the value 8 i must be determined. An iterative 

algorithm was used to this end [83]. The iniţial value 8 i,„, was obtained from the steady- 

state relations derived in subsection 2 -3 - 1 , where the filter capacitor at the output was 

assumed to be very large, as it is normally the case in applications requiring a nearly ripple 

free instantaneous output voltage V„. The corresponding steady-state duty ratio 8 |.„, was 

determined by the PWM control (Fig. 2-9b):

~ _  a  _ K v( v ref - V o  ) ~ V L
° 1 ,(/! n V u - V L

(2-55)
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The average output voltage V„ can be expressed from (2-9) by taking into consideration

that fs / f  = 1 :

V;

n - a/2 (2-56)
1 +

tg( a / 2 )

Substituting V„ from (2-56) into (2-55), 8 , = d \ / T r = a / n  was calculated from the

transcendental equation.

The accurate value 8 | deviates from S|,„, due to the ripple in v„. It has been shown

that in periodic steady-state xk = 7 ' - 1  • / ( -*£,8 , ac )> where §i,«c is the accurate value

giving the accurate meeting point of vam and vnimp within period Tr (Fig. 2-9b), i.e., 

satisfying eq. (2-40). The iteration for the calculation of 8 |,at- starts by substituting Si,„, in 

eq. (2-37) and calculating xk, i.e., the first approximation of the time functions v„ or vam 

from relation:

Xk = [r -o 2ri-8, ) Y ] 02(1-8,; [o,rs,;-/] a," 1 • £, a - s i )

Knowing vy,„„ the meeting point of vam and vramp provides the new value for S| in 

the next iteration step. By setting a limit e for the deviation in Si in two consecutive

Si,/ — S,
iteration steps in such a way that

/ is the number of iteration steps. 

The calculation of matrix

h i
< £ , 8 i,m can be approximated at will, where

M\ * =I.V I - x \,end x 2 , start j^T 

k T 'X\,end + V U ~ VL

(2-58)

requires the veiocity of state vector at the end of structure 1 ( i ,  enc[ ) and that at the start of 

structure 2 ( x j , s t a r t )’ which are defined by the state models of the two structures, by eq.

(2-28) and (2-30), respectively. The state vector x(8 i) is needed for the calculation both for 

*l,end = ' x( )+ 5, and x2 s(art = A2 • x ( 8 , ). It can be determined from the solution of

eq.(2-28) [see eq.(2 -3 7 )]:

-v(8 , j = 0 , ( 8 ,  )-xk + [ 0 , ( 8 ,  ) - / ] •  A f 1 (2-59)

Knowing all terms in matrix Jf, its eigenvalues can be calculated e.g. by 

MATLAB. The developed MATLAB program is listed in Appendix C.
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2-5-4 STABILITY ANALYSIS USING THE RÂCZ
METHOD

map function F. The basic idea of this method is illustrated in Fig. 2-45. Recall again that 

in steady state the system exhibits a periodic behavior, its trajectory in state space reaches a 

limit cycle, whose stability can be determined by modifying slightly the trajectory in the 

vicinity of this limit cycle. Initially, before the change in the trajectory, the system reaches 

the switching hypersurface of the limit cycle at time tm in P(tm) and the trajectory suddenly 

changes due to this switching (solid line in Fig. 2-45). As an effect of the alteration Ax the 

trajectory is modified (dashed line in Fig. 2-45). The new trajectory reaches at time tm the 

point P i and the alteration of the state vector at this time is Axm,enJ t m). The switching 

hypersurface is reached by this modified trajectory at tm+Atm in fS- The “distance” 

between P\ and Pi is x  where x m,e„d is the velocity vector at the end of the

structure /?/. The alteration of the state vector on the hypersurface is Av„,,e,u/ / m+Ar„J. After 

the switching, the velocity vector at the start of the structure w+1 is .v„l+iiJfim. Since each 

structure is a linear one, the point Pi(tm+Atm) of the trajectory can be projected “back in 

time” to tm by extending the trajectory at the start of the structure m+J toward “negative 

time” along the velocity vector x m+\,suirl. Point Pi(tm) at distance - i „ ,+i..ţ,„,7A/„, from Pi is 

obtained in this way and the virtual alteration of the state vector becomes A.v,„+i.Sian(^n)- 

This mathematical abstraction is useful since by applying it, the trajectory will start in 

structure ///+1 at the same instant tm as in the case of the original trajectory [89].

The Răcz method is applied in this second approach to determine the Jacobian matrix J f  of

■^m+lt/tart^m \ ^rn+lt

Figure 2-45 The Râcz method
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Applying Fig. 2-45 for the feedback-controlled converter in periodic steady-state, a

first switching instant tw within a subperiod corresponds to the transition from structure 1

into structure 2 (Fig. 2-44) at the dimensionless moment 8 |. The aim is to determine a

relation between the real and virtual alterations of the dimensionless state vector at time 8 i:

Av/f,„/(8 |) and Axi.sumf&i)- From triangles PP\Pi and PP2P3 the following relationship is

obtained (m = 1 ):

■̂x2,start ( ^ - \ , e n d (  * \ ,end ~  * 2 , start  (2-60)

The switching condition between structure 1 and structure 2 is represented by eq. (2-40). 

For the iniţial trajectory in point P(81):

K v vref - k T x ( 8 , ) - v l  - ( V y - V l  ; - 8 | = 0  (2-61)

and for the modified trajectory, in /^ (S i+ASi):

Kv  ‘ v,-cf ~ k T [*( 5| ) + Avj e n d ( 81 + A8 j ) ] - V l ~ (V y  - V L )■( 81 + A8 ) )=  ^ -6 2 )  

=  0

Subtracting (2-62) from (2-61):

k T ■ Avi encj ( 8 ( + A8 j )+ (Vy —V i )■ A8 j = 0 (2-63)

From triangle PPiPy.

&-x\.end(5\ +A 8 , ) = Ax,<end ( § \  ) + *l,end (2-64)

Substituting (2-64) into (2-63):

k T ■[ A\ | enc((&\ )+X\,end - t â \ ] + ( V y  -  VL ^• A8 ( = 0  (2-65)

By expressing A8 | from (2-65) and substituting it into (2-60) results the relationship we are 

looking for:

A-X2,smrt( Si )~
j  *\ ,end *2,  start jrT 

k T  * 1 ,end + V U ~ VL

= M ■ &xlend( )

Since for small variations during linear structure 1:

^ x\.end( §1 ) = e Ai?>i 'toistart = ^ >l ^ i  )• ^ I s ta r t  (2-67)

eq. (2 -6 6 ) becomes:

) = ) Axu ,ar, (2-6 8 )

Equation (2-68) makes the connection between the (virtual) alterations of the state vector 

at the start of the first and the second structure.
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The next structure switching, at the end of structure 2, into subperiod II, is a forced 

one. It is independent of the state variables and is imposed by the end of one period of the 

sawtooth waveform (Fig. 2-44, Fig. 2-9). Therefore this switching instant and the 

beginning of the next structure it is invariant to the modification of the iniţial periodic 

trajectory, i.e., there is no need to apply the mathematical abstraction from Fig. 2-45.

For small variations during linear structure 2 (using also (2-36)):

Av2.e„d = e A^ ' ~ b' 1 A.v2.SM„ r 5 ,  j = <t2 n - S ,  ) (2-69)

Applying (2-68) and (2-69) in cascade for the entire subperiod:

^ v2.end = ®2( 1 “  $1 )■ M ' 5, ) ■ Av, sum (2-70)

Equation (2-70) represents the linearization of the discrete-time map function /def ined  in 

(2-35) (.vi_shm = xk ; X2.end = **+i)- The linearization of the Poincare map function F 

belonging to / i s  obtained after back transformation [eq. (2-41)]:

â-Vi-H.,, = 7 " ‘ •A.rt + 1  = T~' O j n - S ,  ) M - 0 , f  S, ;• Art  (2-71)

The Jacobian matrix of of map function F, evaluated at the fixed point jc\ is therefore:

J F(x* ) = T ~ ] 0 2r 1 -5 ,  J M -O jfS j  J|v* (2-72)

This coincides with the expression obtained through the first method in eq. (2-50) and will 

lead to the same results after following the iterative algorithm for determining 8 | described 

already in the first method.

2-5-5 CALCULATION RESULTS OF THE STABILITY 

ANALYSIS

The loci of the eigenvalues are presented in Fig. 2-46 for three values of the control 

gain: for Kv = 2 with +-mark, corresponding to the periodic behavior analyzed in 

subsection 2-4-1-3, for Kv = 4.5 with o-mark and for Kv = 6 with x-mark, corresponding to 

the quasiperiodic operation analyzed in subsection 2-4-1-4. It can be clearly seen that a 

complex-conjugate pair of eigenvalues passes through the unit circle as the control gain is 

increased. This phenomenon is numerically detailed in Table 2-5. It confirms the Naimark- 

Sacker bifurcation discovered by computer simulations in section 2-4-1. According to the 

stability condition, as long as the eigenvalues lie inside the unit circle, the periodic steady- 

state solution is asymptotically stable. When a complex-conjugate pair of eigenvalues gets 

outside the unit circle, the periodic solution loses stability and, as we proved through
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section 2-4. spawns a quasiperiodic solution, which turns into a chaotic one by increasing 

further the control gain. The locus of the eigenvalues in chaotic operation is plotted in Fig.

2-47, at Kv = 70 [90],

Figure 2-46 Loci of eigenvalues as the controller gain varies. Arrows indicate increasing 

controller gain.

Table 2-5 Complex-conjugate eigenvalues during the Naimark-Sacker bifurcation

Ky Pair o f Characteristic Multipliers Modulus Stability of Periodic Solution

2 0.915 ± 0 .163i 0.930 Asymptotically stable (period-1)

3 0.937 ±0.197i 0.958 Asymptotically stable (period-1)

4 0.959 ±0.228i 0.986 Asymptotically stable (period-1)

4.5 0.970 ± 0.243Î 1 . 0 0 0 Structurally unstable: 

Naimark-Sacker bifurcation

5 0.980 ±0.258i 1.014 Unstable (2-periodic)

6 1.001 ±0.2861 1.042 Unstable (2-periodic)
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Figure 2-47 Locus of eigenvalues in chaotic operation (Kv = 70)

The stability analysis presented in this section confirmed the bifurcation value of 

the gain Kv and the asymptotically stable region below this value. All the methods 

introduced in this chapter can be also applied to study the effects of other system 

parameters beside this gain, in order to have a practicai overall picture of the converter 

behavior, to help the designing engineer and to search for stable periodic regions and 

settings.
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CHAPTER 3

CONTROL STRATEGIES FOR THE UNSTABLE 

REGIMES OF THE RESONANT DC-DC

CONVERTER

In the previous chapter unstable regimes (chaotic, quasiperiodic, subharmonic) were 

depicted by computer simulation and confirmed by stability analysis in the operation o f  a 

resonant DC-DC converter, whose output voltage is feedback-controlled by PWM  

switching. Since the control should be designed fo r  the required stable operation, the 

object o f  the study (section 3-1) is representecl by the suppression o f  these unstable 

dynamics, hereby extending the required stable period-1 operation and avoiding any 

bifurcation within the operating range. Four distinct control strategies are introduced first 

time fo r  this converter. The first two achieve the control objectives by the insertion of 

feedback controllers into the configuration. The first control method deals with the use of 

series linear compensation in the generation o f  the control voltage and applies the stability 

analysis to tone its parameters (section 3-2). The second one employs a fuzzy controller 

with dynamics, which is tuned using the pseudo-fuzzy features o f the correspondent 

convenţional control (section 3-3). The last two control strategies try to stabilize one of the 

many unstable periodic trajectories embedded in a chaotic attractor. The third control 

technique applies the Ott-Grebogi-Yorke algorithm to perform a discrete-time control by 

time- and state-dependent small perturbations o f an accessible system parameter (section

3-4). The fourth control method is based on time-delay autosynchronization and uses a 

control signal formed with the difference between the current state o f the system and the 

state o f the system delayecl by one period o f  the unstable periodic trajectory one wants to 

stabilize (section 3-5). The results obtained by computer simulation are conf irmed by tests 

performed on an experimental setup comprising the power stage and its control 

implemented on a DSP board (section 3-6).
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3-1 OBJECTIVES OF CONTROL

Power electronic system Controls should be designed for the required stable operation [8 ]. 

In particular, for DC-DC converters, the use of a feedback control must guarantee stable 

period- 1 operation at the switching frequency and any subharmonic, quasiperiodic or 

chaotic operation is considered undesirable and should be avoided. For the resonant DC- 

DC converter introduced in the previous chapter (Fig. 2-6), the switch control is achieved 

by a feedback PWM process, as in most commercial DC-DC converters (Fig. 2-9). 

Bifurcations and chaos have been detected in the range of variation of the parameters and 

they have been analyzed through the previous chapter in the case of changing the control 

gain used to obtain the control voltage from the error signal. The stable period-1 operation 

was found to be restricted to gains less than a certain bifurcation value.

The main control improvement objective will be therefore the suppression of the 

unstable dynamics (being it chaotic, quasiperiodic or subharmonic), hereby extending the 

stable period-1 operation and avoiding any bifurcation within the operating range. Any 

method that allows the converter to operate for a larger range of the parameters has 

potential advantages. Since for consistency, the problem will be tackled for the case of the 

control gain, extending the stable operation toward the region of higher gains may result in 

smaller steady-state error (as denoted by Fig. 2-11) and faster dynamical response of the 

system [92,93].

The objective fixed above is a steady-state design problem from the convenţional 

point of view, since it does not take into consideration the dynamical response of the 

system [91]. However, power electronics applications demand high performance, i.e., the 

fastest possible response and small transient disturbances. Therefore, in conjunction with 

the avoidance of bifurcation, the convenţional control that refers to shaping the dynamical 

response is also considered when appropriate [94].

It was already revealed that the nonlinear character of the converter configuration 

(determined mainly by its variable structure) complicates its analysis, particularly from a 

stability and control point of view. Switching makes the state derivatives discontinuous 

and basic tools such as linearization do not apply directly. Nonlinear systems of this type 

actually still have serious limitations for mathematics and control theory. When chaos is 

added to the picture, it becomes even more difficult to deal with the actual time-domain 

and frequency-domain behavior of the system. It was shown that Poincare maps can be
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used to get a vievv of how the system evolves over time, but the action at any particular 

moment remains essentially unpredictable. Consequently, design tools are not readily 

available. Four distinct control strategies will be introduced in this chapter:

• Linear compensation

• Fuzzy control

• Control of chaos using the OGY  technique

• Time-delay autosynchronization

3-2 LINEAR COMPENSATION

The PWM switching for controlling the output voltage of the investigated resonant DC-DC 

converter was achieved by comparing a repetitive sawtooth waveform with a control signal 

obtained through a feedback loop. So far the part of the control applied to obtain the 

control signal vy„„ was a proporţional one, since it has been typically achieved by an 

amplifier with a constant gain Ky (Fig. 2-9a). The control signal was simply related to the 

error signal by this proporţional constant.

In this section is studied the possibility to meet the control objectives set in the 

introductory section by using other basic linear controller operations in addition to the 

simple multiplication by a constant [95]. The analysis will be exemplified for a controller 

with transfer function Ht(s), whose physical implementation is a simple task [91]:

H c( s ) = K v (3 - 1 )
T2s + \

The main design objective is to determine values of the time constants T\ ,Tz  so that 

the stable steady-state period-1 operation is extended and conserved over the range of 

variation of the gain Ky. Therefore, the steady-state stability of the resulting control 

system, depicted in Fig. 3-1, is investigated in the following.

vrainp

Figure 3-1 Block diagram of control system with linear compensation

3-3

BUPT



CHAPTER" 3 3-2 LINEAR COMPENSATION

This will be done in the same way as was in section 2-5 for the proporţional 

control. The stability criterion that has to be applied was deduced in subsection 2-5-1. The 

series of two linear structures during a switching semiperiod was depicted in subsection 2 - 

5-2. The main difference from the proporţional control case is due to the additional state 

variable introduced by the controller. If this state variable is the output of the controller 

(i.e., the control signal voltage vam), the corresponding state equation can be obtained from 

the control law (3-1) by expressing the error signal at the controller input as the difference 

between the actual output voltage vt, (2-10) and its desired value vref. Taking into 

consideration the zero time derivative of a constant reference signal and substituting the 

time derivatives of the positive and negative channel output voltages with their state 

equations deduced in (2-44) or (2-48), the additional state equation results as follows:

coi 1 _  K y
r

T\
\

1 • v  + K v
(  T  \  

1 - 1
dt T2 K R P C P

1

/

° p  ^
{RnC„ )

K VTX . K VTX . 1 Ky
r- ' lop rŢ. lon ‘ v con ~  v ref

^ p 1 2 ^ n l 2 1 2 1 2

Using the dimensionless variables and parameters defined in (2-46) and (2-40), the 

additional state equation can be written in dimensionless form:

clxts / *— — = Ky ■ (a ■ m - n ) (  Ai + x 2 ) — Ky b m - (  + * 5  ) — n ■ x^ + Ky n- vref (3-3) 
dx

where .v< = V -° — is the additional dimensionless state variable and 
3 v , / 2

m =  i i ( I = Î L  (3-4)

t 2 t 2

are the dimensionless design parameters.

Consequently, the state models of the system during a subperiod are obtained by appending 

(3-3) to the converter structures models (2-28) and (2-30), respectively:
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Structure I:

x  = A] • x + Bl ■ u; x  = [jcj x 2 *3 x 4 x 5 x 6 Ţ ; u = [l v*ef f

A, =

fi. =

- a 0 0 b 0 0

0 - a 0 0 b 0

0 0 0 K 0 0

— K 0 -71 0 0 0

0 — 71 0 0 0 0

Ky (cun — n ) K y (am — n) 0 -  Kybm -  Kybm — n

£Ooo

0 0 1T

0 0 0 0 0 K v n

(3-5)

Structure 2:

+ B~) • u / *7 = h  x 2 x3 x4 x5 x e \  u T = 1 V

— a 0 0 b 0 0 '
0 - a 0 0 b 0

0 0 0 0 0 0

— Ti 0 0 0 0 0 ’

0 -71 0 0 0 0

' (am —n) Ky (am -  n) 0 - Kybm — Kybm — 11

0 0 0 O o

0 0 0 0 K v n

;ref

(3-6)

As proved in subsection 2-5-2, the dynamics of the entire switching period can be fully 

characterized by the dynamics of one subperiod, modeled above, by applying back 

transformation (2-31) at its end. By utilizing the periodicity of the additional state variable 

in steady-state, the completed transformation matrix (2-32) becomes:

T = 7 -1  =

0 1 0 0 0 0
1 0 0 0 0 0
0 0 -1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

(3-7)
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With this kind of system description, any of the two methods introduced in section 

2-5 can be applied for determining the stability of the control system. Only the differences 

will be detailed here. Using for example the analysis based on the Poincare map function, 

described in subsection 2-5-3, the difference (beside the new system models (3-5), (3-6) 

and transformation matrix (3-7), of course) appears when determining the feedback 

relation corresponding to (2-40) that connects the duration 8 | and the state vector**:

e( xk ■$! ) = = k T -x(Sl ) - v Z - ( v Z - v Z ) . b ] =
(3-8)

= k T 8, ) -xk +[®,r8, ) - i \ a î ' b } - vI  - < V y - v l  J 8, =0

where k T = [0 0 0 0 0 l].

Consequently, the derivatives of e{xk, 8 ,) involved in the Jacobian matrix of the Poincare 

map function F  expressed in (2-45) are changed as follows:

de _ Ţ 9 | o , f 8 1 ) ^ + [ 0 , f 8 1

98, 98
- ( V u - V L ) =

= kT. V * - V*l )=kT . k - ( V u - v l )
(3-9)

38,

de

^xk
(3-10)

Similarly to (2-50), the Jacobian matrix of the Poincare map function F, evaluated at the 

fixed point x \  results in:

JF(x ) = T-x <b2(\-h{)- / - x \,end x 2, start

k T - * l e n d - ( V u - V l )
■k‘ o , r 8 , j

(3-11)

The rest of the stability investigation, i.e., the iterative determination of 8 |, is the same as it 

was in subsection 2-5-3, taking into account, of course, the modified system models (3-5), 

(3-6) and transformation matrix (3-7). A MATLAB program for the stability analysis of 

the control system can be developed in accordance with above.

The stability investigation procedure just presented permits to solve the design 

problem of controller (3-1). Having a controller gain Ky for which the proporţional control 

investigated in the previous chapter led to an unstable (quasiperiodic, subharmonic or 

chaotic) converter operation - i.e., some of the eigenvalues resulted from the stability study 

in subsection 2-5-3 lie outside the unit circle - the dimensionless parameters m, n of the
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linear compensation (3-1) can be tuned using the method just described, in such a way that 

all the eigenvalues are “moved” inside the unit circle, replacing hereby the unstable 

behavior with the desired asymptotically stable period- 1 converter operation.

Ţ  ţ  /  i o  Ţ  Ţ
Such a solution is represented by m = —  = ------------------------------= 10,// = —  = ---- —  = 2.3,

T2 T /1 00  T2 T / 100

where 7 = 2 1 5  (isec represents the additional natural period of the system developed in 

quasiperiodic steady-state (Fig. 2-23, Fig. 2-24) [92], The other parameter values remain 

those specified in Appendix A. The effect of the resulting linear compensation (3-1) on the 

system stability can be seen from Fig. 3-2 at Ky = 6 , since the initially quasiperiodic 

behavior, with eigenvalues plotted in Fig. 2-46 with x-mark, is replaced by the 

asymptotically stable period-1 operation, with all eigenvalues inside the unit circle. The 

same effect can be observed from Fig. 3-3 at Kv = 70 on the initially chaotic behavior, with 

eigenvalues plotted in Fig. 2-47.

Results of computer simulations, showing the dynamical response of the converter 

control system, are presented in the following. The controller gain is Ky = 70, which for a 

purely proporţional control leads to a chaotic behavior, as shown in subsection 2-4-1-6. 

The reference voltage vrej is changed stepwise from 40V to 50V and back in Fig. 3-4. The 

rise time is 0.3 msec and the fall time is 0.16 msec. The start-up transient process can be 

seen in Fig. 3-5. The overshoot was reduced, even avoided, by introducing two limiters in 

the loop. Limiter 1 confines the extreme value of the control voltage vy,,,, in both directions, 

to Vu and VL, respectively (Fig. 3-6). The other limiter (not shown in Fig. 3-6) turns on the 

controlled switches whenever |vc | would pass the value 2 v, prior vam would reach vramj).

Simulations to test the robustness of this control configuration under changes in the 

parameters of the system were also performed [96,97]. Fig. 3-7 shows the result of a 

simulation where the load R is changed stepwise successively from 8Q to 10Q and 15Q, 

then back to 10Q and 8Q, each phase lasting 200 switching periods. It can be seen that the 

sudden changes in the load only introduce a short fluctuation in the output voltage. The 

same conclusion is obtained when changing stepwise the input voltage v(/, = v,„ 

successively from 100V to 110V and to 120V, then back to 220V to 2 0 0 V, each phase 

lasting again 200 switching periods (Fig. 3-8). These results show that the domain of 

control does not vary too much under this kind of changes.
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CHAPTER' 3 3-2 LINEAR COMPENSATION

Figure 3-2 Locus of eigenvalues for the control system with linear compensation 

(Kv =6)

Figure 3-3 Locus of eigenvalues for the control system with linear compensation 

{Kv = 70)
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t [msec]

Figure 3-4 Control system response when the reference voltage is changed stepwise up 

and down

Figure 3-5 Start-up transient process

vramp

Figure 3-6 Block diagram of control loop with linear compensation and limiter
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• .........   • ■ F .........i -  — -

49.5r
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Figure 3-7 Control system response when the load is changed stepvvise up and down

51 -----------------.-----------------.-----------------:----------------- ------------------

i

I

4 6 8 10 12
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Figure 3-8 Control system response when the input voltages of the converter are 

changed stepwise up and down

The stability study above investigated the effects of derivative control on the 

initially unstable (chaotic) regimes of the feedback-controlled converter. In the same way 

can be analyzed other basic controller operations, e.g., the integral control, which reduces 

the steady-state error to zero, provided that the final system is stable, of course.

50.5-

49.5-

49-

50.5r

S s iO i> I
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3-3 FUZZY CONTROL

In some situations, e.g., in controlling plants with funcţional nonlinearities that are difficult 

to model, the fuzzy control can be a viable alternative to the classical control, since fuzzy 

controllers have some advantages which can be attractive to the practitioner engineer [99]:

• The fuzzy control can be strongly based on the experience of a trained “expert” human 

operator, therefore the fuzzy controller vs. a convenţional one can model more 

accurately this experience.

• The design of the fuzzy control system does not require a complex mathematical 

apparatus (at least in the first phase).

• The process implementation can be relatively simple.

Despite some disadvantages:

• The fuzzy solution does not guarantee superior performance with respect to a 

convenţional control solution

• The stability and robustness ensured by the rule base are not analytically guaranteed 

't the advantages mentioned above offer a pragmatic attraction to the field of fuzzy control.

Although the resonant buck converter, as the controlled plant, can be easily 

modeled as a piecevvise linear system, the nonlinear features of the resulting variable 

structure system actually still imply serious limitations for convenţional control theory (it 

becomes even more difficult to deal with the actual time-domain and frequency-domain 

behavior of the system when chaos is added to the picture). For that reason, a fuzzy logic 

based control strategy can be an alternative way to meet the control objectives set in the 

introductory section for the studied converter configuration and it will be presented in this 

section.

The fuzzy control is based on fuzzy controllers (or fuzzy logic controllers) 

characterized by a generally speaking nonlinear input-output static map that can be 

modified according to the needs. Since the fuzzy controllers are controllers without 

dynamics, the performance of the resulting fuzzy control systems (automatic control 

systems with fuzzy controllers) can be enlarged by extending the fuzzy controller with 

dynamic modules, obtaining the so-called fuzzy controllers with dynamics. Both the input 

and output signals of the fuzzy controller can be subject to dynamic (analog or digital) 

Processing, i.e., the dynamic processing takes place outside the strictly speaking fuzzy
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controller which remains nonlinear and without dynamics. The fuzzy controller must have 

at least one input corresponding to the control error [ 10 0].

By taking into consideration the very good control features of the linear PI 

controller;

• Zero steady-state control error required by most applications,

• Improvement of control system dynamics (alleviation of settling time and overshoot) 

by canceling the large time constants of the controlled plant,

• Positive practicai experience gained in implementing the linear PI controller,

a PI based fuzzy controller is used and presented in detail in order to control the initially 

unstable (chaotic) regimes of the converter configuration. The usefulness of the fuzzy 

controllers with dynamics with quasi-PI behavior is that they can be systematically 

developed by starting from the well-known features of a basic linear PI controller. As 

mentioned before, the dynamic (integrating) effect can be introduced on the output of the 

fuzzy controller (resulting the standard version of the PI fuzzy controller with output 

integration) or on the input of the fuzzy controller (resulting the standard version of the PI 

fuzzy controller with input integration). Only the first version is subject to the present 

study and the block diagram of the resulting fuzzy control system is presented in Fig. 3-9. 

This control version is characterized by the fact that the dynamics is introduced by the 

numerical differentiation of the amplified control error e under the form of its increment 

Ae, and by the numerical integration of the increment of control signal Avy„„ [101].

vramp

Figure 3-9 Block diagram of fuzzy control system

The design of the fuzzy controller FC starts by expressing the PI quasi-continuous 

digital control algorithm in its incremental version:

A vcon= K P Ae + K,  e = K P ■( Ae + q e )  (3-12)

The parameters K/>, K / and q are functions of those ones belonging to the convenţional 

continuous-time PI controller:
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HPI ( s ) — k ■( 1 +
Ti-s

(3-13)

by the following relationships:

T k T
K P = k ( K /  =

2 • T; T:
K,  2 T

q = — -  = -----------
K P 2 ■ Tj - T

(3-14)

where T is the sampling time.

Using eq. (3-12) and the representation of the increment of the control voltage Avaw 

in the state plane from Fig. 3-10, the pseudo-fuzzy features of the PI quasi-continuous

digital control algorithm in its incremental version are obtained:

• There is a “zero control signal increment line” Avcon = 0, with equation:

Ae + q e  = 0 (3-15)

• With regard to this line: Avt„„ > 0 in the upper half-plane and Avam < 0 in the lower 

one.

• The distance from any point of the state plane to the “zero control signal increment 

line” corresponds to the absolute value of the increment of the control voltage |Ava>„ | .

Figure 3-10 State plane representation corresponding to eq. (3-12)

As a matter of principie, the operation of the fuzzy controller involves the following 

sequence of operations [104]:

• Fuzzification: The crisp input information (the control error and its increment) is 

“converted” into a fuzzy representation. For the fuzzy controller studied the 

fuzzification is solved as shown in Fig. 3-11:
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- for the input variables e, Ae: five linguistic terms are chosen as antecedent sets (BN 

- Big Negative, SN - Small Negative, Z - Zero, SP - Small Positive, BP - Big 

Positive) with triangular shaped membership functions arranged in regular Ruspini 

partition (the sum of the membership functions gives 1 in any place).

- for the output variable Avy„„: five linguistic terms are chosen as consequent sets, 

with regularly distributed singleton type membership functions.

Figure 3-11 Membership functions of the fuzzy controller

• Fuzzy inferetice: The “fuzzified” information is processed on the basis of a set of rules 

(the rule base) of the form

IF (antecedent) THEN (consequent) 

that have to be well stated in order to control the given plant. The rule base of the 

fuzzy controller investigated is built by taking into consideration the previously 

described pseudo-fuzzy features of the PI quasi-continuous digital control algorithm. 

The complete rule base can be synthetically presented by means of the decision table 

in Table 3-1. It can be noticed that

IF e is zero AND Ae is zero THEN Avc(,„ is zero 

which is in accordance with the fact that the output of the fuzzy controller is the 

increment of the control signal: in steady-state the control signal is constant, theretore 

its increment is zero.
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Table 3-1 Decision table of the fuzzy controller

Av e
con BN SN Z SP BP
BN BN BN BN SN Z
SN BN BN SN Z SP

Ae Z BN SN Z SP BP
SP SN Z SP BP BP
BP Z SP BP BP BP

The principles of evaluation of the rule base are called inference engine and the result 

is the fuzzy set of the increment of control signal (the fuzzy control signal). The fuzzy 

controller presented uses the MAX-MIN inference [102].

• Defuzzification: The fuzzy control signal is converted into a crisp signal value, with 

well-specified physical n atu re, directly usable at the actuator level. For the fuzzy 

controller studied the center of gravity method was used in order to obtain the effective 

value of the increment of the control voltage Avy,,,, [103].

The specific parameters of the fuzzy controller are a, b and c and the following 

steps have been proceeded for the establishment of their concrete values [99]:

• The following relationship is valid along the “zero control signal increment line":

a = - ^  = b-  (3-16)
e a

• The following condition is fulfilled along the “constant control signal increment line” 

Av((,/( — c.

c = Avcon -  Kp (Ae + q e ) = K p - b  (3-17)

• The previous equation results in:

c = Kp  ■ q ■ a = Kj  - a (3-18)

• One of the parameters, namely c, was chosen, and the other two parameters, a and b, 

resulted from (3-17) and (3-18).

By applying this method, the parameters of the basic PI controller (3-13), k and r„  are 

taken into consideration in tuning the parameters of the fuzzy controller, a, b, and c (for 

tuning the PI controller, it can be used, e.g., the method introduced in the previous section, 

based on the stability investigation).
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In order to perform the analysis of the just presented fuzzy control system by 

computer simulation, the fuzzy controller was included in the Simulink model of the 

converter configuration as a MATLAB function, listed in Appendix D. The 

implementation of the fuzzy controller through an own program was preferred to the use of 

the MATLAB’s fuzzy toolbox. Simulations using the toolbox might overtax the computing 

resources available in terms of memory and CPU time, since it processes the whole 

information, not only the useful one. The developed program is specific for the required 

type of application, therefore the simulation time is significantly decreased [105].

Results of computer simulations, showing the dynamical response of the fuzzy 

control system, are presented in the following. The controller gain is Kv = 70, which for a 

purely linear proporţional control leads to a chaotic behavior, as depicted in subsection 2 -

4-1-6. The other parameter values remain those specified in Appendix A. The reference 

voltage vref is changed stepwise from 40V to 50V and back in Fig. 3-12. The rise time is 

0.5 msec and the fall time is 0.3 msec. The start-up transient process can be seen in Fig. 3- 

13. Comparing these results with those of the convenţional linear control applied in the 

previous section (Fig. 3-4, Fig. 3-5), it can be seen that while the steady-state error is 

improved, the rise time of the response is a little slower (this is not surprising, since the PI 

based control is essentially a low-pass filter which attenuates high-frequency signals). The 

same conclusions are valid when simulations are performed to test the robustness of the 

fuzzy control configuration under changes in the parameters of the system (load, input 

voltages).
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Figure 3-12 Fuzzy control system response when the reference voltage is changed 

stepwise up and down
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Figure 3-13 Start-up transient process

3-4 CONTROL OF CHAOS USING THE OGY TECHNIQUE

The previous two sections detected a first class of control strategies, inspired from the are a 

of control engineering, which make use of feedback controllers to solve the problem of 

controlling unstable operation including chaos, in the sense of suppressing chaotic regimes 

in the investigated resonant DC-DC converter. They have been shown to be very useful to 

achieve the control goal while guaranteeing satisfactory robustness to parameter 

perturbations. A quite different approach to the control of a chaotic dynamical system was 

proposed by Ott, Grebogi and Yorke (OGY) [6 6 ]. They demonstrated that given a chaotic 

attractor, one can obtain a desired attracting time-periodic trajectory by niaking only small 

time- and state- dependent perturbations in an accessible system parameter. The key 

observation is that a chaotic attractor typically has embedded within it an infinite number 

of unstable periodic trajectories, as it was illustrated in Fig. 2-37 for the studied converter.

Basic idea: A trajectory on a chaotic attractor comes arbitrarily close an 

infinite number of different unstable periodic trajectories. With a small control 

signal, one should be able to stabilize any of these periodic solutions [8 8 ],

Since only small parameter changes can be performed, new trajectories with very different 

properties from the existing ones cannot be created. Thus, the approach is to determine first 

some of the low-period unstable periodic trajectories embedded in the chaotic attractor and 

to choose one which can improve the system performance. Final ly, the control attempts to 

program the small parameter adjustments so as to stabilize this unstable periodic trajectory.
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This makes OGY's approach quite different from other previously published 

methods on controlling chaos. They demonstrated their method numerically by controlling 

the Henon map. Far from being a numerical curiosity that requires experimentally 

unattainable precision. the OGY method can be widely implemented in a variety of 

systems. In this section is designed the control of chaotic behavior in the examined 

resonant DC-DC converter, based on the method of OGY.

3-4-1 THEORETICAL BACKGROUND
The OGY method assumes only the following four points [85]:

• The dynamics of the system can be represented as arising from an «-dimensional 

nonlinear discrete-time function of the form

xk + l = P ( x k .p)  (3-19)

where p is some accessible system parameter. In the (typically) case of continuous-time 

systems this map is constructed via some form of sampling, e.g.. by introducing the 

Poincare map.

• There is a maximum small perturbation Ap' in the parameter p by which it is 

acceptable to vary p from the nominal value p .

• For the value of p* there is a chaotic attractor of the underlying system which contains 

a specific periodic trajectory around which one wishes to stabilize the dynamics.

• The position of this periodic trajectory is a function of p, but the local dynamics about 

it do not vary much with the allowed small changes in p.

Note that while the dynamics is assumed to arise from a map, one needs no model for the 

global dynamics. These assumptions would seem to allow for the control of any chaotic 

system for which a faithful Poincare section can be constructed, e.g.. from experimental 

data. For simplicity the presentation is restricted to a two-dimensional map P.

A fixed point X f ( p )  of the map (3-19) of the system is defined by:

x F( p )  = P{xF( p ) , p )  (3-20)

therefore it moves with the parameter p by:

clxF( p )  _ d P
clp 3a

dxF( p )  | 

*F<P>. P ^  ^

(3-21)
xF( php

Let x*(p ) denote the unstable fixed point of the map P existing for the parameter value p 

and corresponding to that periodic trajectory on the attractor which one wants to stabilize. 

From (3-21) results:
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dP_
dp

II dp dxp
* * dp X ,p r *

p
dx ★ * 

x ,p dp *
P

(3-22)

or

b = ( l - A ) g  

where g =

(3-23)

dx f
dp

A -  —  
’ dx

b =
x , p

dP_
dp x ,p

In the close neighborhood of the desired fixed point x*(p*) we can assume with good 

accuracy that the dynamics of map P is linear and can be expressed by the first-order 

approximation of (3-19):

■Axi. + dP
dp

Apk = A-Axk + b-Apk (3-24)
-V ,pX ,p

Substituting (3-23) in (3-24):

Axk + \ = A • Axk +(l  -  A)- g • Apk (3-25)
*

Matrix A may be determined using a measured chaotic time series xk with p = p and 

analyzing its behavior close to the fixed point x \  Furthermore, the stable and unstable 

eigenvalues Xs, and corresponding eigenvectors es. e„ of this matrix can be found and 

they determine the stable and unstable manifolds in the neighborhood of the fixed point.

To control the chaos, the parameter p is adjusted at each iteration (so instead of p 

we have pk) in such a way that the iterates of the map P are confined to a small 

neighborhood of the desired fixed point x*(p'). When an iterate falls near the desired 

trajectory, parameter p is changed from its nominal value p* by Apk, thereby changing the 

location of the trajectory and its stable manifold, such that the next iterate will be forced 

back toward the stable manifold of the original trajectory for p = p*. Fig. 3-14 illustrates 

the method for the case of a saddle fixed point located at x*{p*) [8 8 ].

x V ) X*(p*)(p +Apk)

k
a. b. c.

Figure 3-14 Schematic of the OGY control algorithm:
* +

a. The klh iterate xk falls near the desired fixed point x (p ).

b. Turn on the perturbation of p to move the fixed point.
r * *c. The next iterate is forced onto the stable manifold of x (p ). 

Turn off the perturbation.
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Assume that a* falls near the desired fixed point **(/?*) so that (3-25) applies. The 

choice ot Apk is attempted in such a way that Aa^+i lies along the stable manifold of fixed

point. Let Ap k = c T -Axk and (3-25) becomes:

&xk +1 = A ' ^ xk + { l ~ A )  g cT • Axk = [a  + (/ -  A)-g ■ cT ]• Ax/. (3-26)

c must be picked so that Axk+\ falls on the stable eigenvector es of matrix A, which can be 

rewritten as:

A = K eu f l  + K e J Î  (3-27)

T Twhere f ,  and f s are the contravariant basis vectors, defined by f tt eu = f s es = 1 and

fu es =  f i eu - Note that Aa*+i lies along es if f ^ Ax ^ +i  = 0 .  Thus, dotting (3-26) with

T/„  and expressing A with (3-27) the following equation is obtained:

f i - l K eu f J  + ^ s es f l  +( I ~ K eu f I  + ^ s es f l  ) - g - c T ]-&xk = 0 ,\fA xk (3-28) 

Using the definition of the contravariant basis vectors, (3-28) results in:

K  f J  + 0 - * • „ ) • / , r  g c T =0  (3-29)

which leads to the following equation for cT:

c =
( K - ' Y / I - g

Therefore the OGY control law is:

fu  (3‘3°)

T
APk -  " (3-31)

) f l ' g

where Ap k — p k -  p ,Axk = xk —x* and g =
dp 
y P

The control (3-31) is only activated if the resulting change in the parameter Apk is less than 

the maximal aliowed disturbance A//; otherwise Apk is set to zero. Note that the parameter

value pk = p +Ap k should be updated only when the trajectory crosses the surface of

section that generates map P (e.g., the Poincare section). However, the trajectory may not 

be brought to the fixed point because of nonlinearities not included in (3-31). In this case 

the trajectory will move away and continue to move chaotically as if there was no control. 

Eventually (due to ergodicity of the uncontrolled attractor) the trajectory will fall near 

enough to the desired fixed point that attraction to it is obtained.
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a  = ¥ .
âv

T. For a linear control in general Apk =C -Ax^,  thus

The above procedure specifying the control Apk is a special case of the general 

technique knovvn as “pole placement” in the theory of control systems. For an n- 

dimensional map P(x, p),linearization around fixed point x*{p*) and nominal parameter

value p yields A.t  ̂+ i = A- Axk +B- Apk , where Axk = x k - x  , Apk = p k - p  \

B = ^ -  
dp•v -P ‘ x , p

A.v̂ . + i = (a + 5  • )• Aa-£ and CT is chosen so that the matrix A' =A + B C T is stable (i.e.,

has eigenvalues of magnitude less than 1). If A and B satisfy the controllability condition. 

then the pole placement technique allows one to determine a control vector CT that yields 

any set of eigenvalues that could be chosen for the matrix A ’. Equation (3-31) corresponds 

to the choice wherein the unstable eigenvalue of A is made zero, while the stable 

eigenvalue is unaltered by the control.

The OGY method employs a discrete-time feedback control system: it requires a 

permanent analysis of the state of the system and the changes of the parameter are discrete 

in time since the method deals with a (generally Poincare) map. The main advantages of 

the OGY technique are [85]:

• Extremely general, extending to any system whose dynamics can be characterized by a

nonlinear map and relying only on the universal feature of infinitely many unstable

periodic trajectories embedded within chaotic attractors.

• Solid theoretical foundation.

• No model of system dynamics required.

• Control can be achieved even with imprecise measurements of the eigenvalues and 

eigenvectors.

• The computations required at each iterate are minimal.

• Any accessible system parameter can be used as a control parameter.

• Just one parameter to vary and variations are small.

• At least in theory, different periodic trajectories embedded in a chaotic attractor can be

stabilized for the same system in the same parameter range.

Some disadvantages are the following [85]:

• Local control scheme.

Model derived from measurements; high resolution and large data set required.

• Chaotic transient before settling into the desired periodic state.
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Noise may destabilize the controlled periodic trajectory resulting in occasional chaotic 

bursts.

3-4-2 CONTROL SETUP
In order to control the chaotic operation of the investigated converter configuration, the 

data used by the OGY algorithm were time-series of the inductor current from the positive 

channel /,v, (0  (Fig. 2-6). Accordingly to the construction of the Poincare map (see Chapter 

2 ), the current is sampled and stored, in steady-state, at the start of every switching cycle. 

By considering the sampled state variable as arising from iterates of a map, i„i>.k=h>i>(kTs), 

the control theory introduced above can be applied directly. Since the bifurcation behavior 

of the converter, as detected through the study presented in Chapter 2, arose as an effect of 

alteration of voltage gain Kv, this parameter is selected to be varied to achieve control, i.e., 

p = Kv- The parameter region is chosen such that the converter operates in the chaotic state 

identified in subsection 2-4-1 -6 for Kv = p* = 70 (Appendix A).

In Fig. 3 -15a is plotted the obtained first return map. The approximate location i„r,F 

of a fixed point of the map, corresponding to an unstable periodic trajectory of the system, 

is found by noting that any fixed point must lie along the i(,,>.k+\ -  i»i>.k line >n the plot of the 

first return map. Next are identified all pairs of iterates both of which fell within an

imposed close neighborhood of the desired fixed point iop corresponding to that periodic

trajectory which one wants to stabilize. The result is shown in Fig. 3 -15b.

To these pairs of iterates is fitted the approximate local linear map A (e.g., using the 

least squares method), where:

xk- ~ x * = A {xk - * * ) **+l =
^op,k+2

, xk =
lop,k + \ :̂ lop

.*, X —
lop,k + \ lop,k lop

(3-32)

Knowing A. the stable and unstable eigenvalues Xs, Xtl and eigenvectors es, eH can be

• Textracted. Actually only Xu and the unstable contravariant basis vector f u given by

T Tf H e„ = 1 and f lt es = 0 are needed.

Next, p = Kv is slightly changed and another set of data is collected. Founding again 

the location of the fixed point allows the calculation of
* 9f(

dx Ax
g = - dp AKy

(3-33)
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Figure 3-15 The first return map for the uncontrolled system (a) and the magnified 

neighborhood of the desired fixed point (b).

To control the chaotic behavior of the converter, p = p  with a maximum allowed 

perturbation Ap* = 0 .1 ' p* is set. The control law defined by (3-31) is applied in steady- 

state as long as the resulting perturbation
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^  =K f I  r.( . / )  (3.34)
{K-'Yfl-g

is vvithin Ap of p*\ othervvise it is set to zero. Since noise and errors in determining x", Xu, 

f u and g, as well as any inaccuracies due to the linear approximation, prevent from

getting the next iterate exactly on the stable manifold, a new Ap* is calculated for each 

iterate. Note that k of (3-34) can be computed at the start of the run, therefore the 

calculations at each iterate are very simple (for experimental application, the change in Kv 

can be effectively instantaneous in relation to the sampling period Ts).

For the parameter setup mentioned at the beginning of this subsection, the values

obtained vvere iop = 5.305 A, Xu = -1.193, f j  = [-0 .837  0] and g = 0.001. Fig. 3-16

shows the response of the converter control system. The first 500 iterations are of the 

response of the converter without the control based on the OGY technique, which is 

initiated after iteration 500 and stabilizes the trajectory nearly instantaneous (less than 50 

iterations, i.e., 0.5 msec).

Although the details vary, the analysis and the results apply to any other accessible 

control parameter of the converter.

5 2 ----------------- 1----------------- 1----------------- 1-----------------1----------------- 1 i! i

4 9 1------------------------------------------------------------------------------------ 1-- l--------1-------- 1-------- 1--------  -------- 1
100 200 300 400 500 600 700

Iteration Number

Figure 3-16 Converter response with control based on OGY method initiated after 500 

switching cycles
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3-5 TIME-DELAY AUTOSYNCHRONIZATION

Control of unstable regimes (in the sense of suppressing them) in the given nonlinear 

dynamical system was achieved in the previous sections either by the insertion of 

controllers into the configuration or by time- and state-dependent small perturbations of an 

accessible system parameter. A particular, discrete-time case of the later was just applied 

above and it pointed out that the many unstable periodic trajectories embedded in a chaotic 

attractor can be used to produce regular behavior to the advantage of control of nonlinear 

systems in which chaotic oscillations are present but undesirable. A different, continuous- 

time method from this class of strategies of control such that the feedback perturbation 

vanishes on the target trajectory, was proposed by Pyragas [106]. The method is based on 

the construction of a special form continuous-time perturbation which does not change the 

form of the desired unstable periodic trajectory, but under certain conditions can stabilize 

it. The variant discussed here, called time-delay autosynchronizcition, is based on a self- 

controlling delayed feedback by involving a control signal formed with the difference 

between the current state of the system and the state of the system delayed by one period of 

the unstable periodic trajectory one wants to stabilize [70].

In this section is addressed the problem of stabilizing the unstable periodic 

trajectories of the investigated resonant converter by means of time-delay 

autosynchronization. Recall that the PWM control of this converter is achieved by 

comparing a sawtooth waveform with the control signal v<„„ obtained by amplifying the 

error signal, i.e., the difference between the actual output voltage of the converter v„ and its 

desired value v,w (Fig. 2-9). The proposed time-delay autosynchronization control (Fig. 3- 

17) forms the control voltage vy„„ by adding to the amplified error signal a term 

proporţional to the difference between the present output voltage v„(t) of the converter and 

its past value v„(t - Ts):

VTDAS( t ) = r\ ivo ( t ) ~ vo (l ~ ^s  Al (3-35)

where r\ is a dimensionless feedback gain. The switching period Ts corresponds to the 

period of the desired periodic trajectory for a stable period-1 operation. Notice that v ţ d a s  ( 0  

= 0 when the system evolves on a period-1 solution and thus the time-delay 

autosynchronization control effort vanishes on the target trajectory.

The main property of the time-delay autosynchronization control is that it 

transforms the natural unstable behavior of the converter without time-delay
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autosynchronization (being chaotic, quasiperiodic or subharmonic) into a stable period- 1

dynamics provided that the parameter rj belongs to a given trajectory-dependent range.

Despite some disadvantages [85]:

• One must store a sample of the system’s state for a time length equal to the period of 

the target trajectory (the possibility of variable delay, the market availability and the 

low cost recommend the implementation of the delay by means of a digital memory)

• The mathematical computations to find out that range of parameter which stabilizes the 

trajectory can be quite imposing (a method was proposed in [70])

once this parameter range is known, the time-delay autosynchronization control has the

following major advantages [85]:

• The only information needed about the target trajectory is its period

• The time-delay autosynchronization signal is generated by a minimal information 

Processing

• No model of system dynamics required

Figure 3-17 Block diagram of control system with time-delay autosynchronization

Results of several computer simulations of the dynamical response of the time- 

delay controlled converter are reported in the following for voltage gain Ky = 70, which 

corresponds to a natural chaotic behavior of the converter configuration, as revealed in 

subsection 2-4-1-6 (the other parameter values remain those specified in Appendix A). The 

simulations were performed with T) = -50. In Fig. 3-18 the time-delay autosynchronization 

was switched on after 500 switching periods have elapsed. Notice that the collapse ot the 

chaotic state to the stabilized period-1 trajectory is nearly instantaneous (less than 30 

switching periods, i.e., 0.3 msec).

Simulations to test the robustness of the time-delay autosynchronization under 

perturbations of the parameters of the system were also performed. Fig. 3-19 shows the
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response of the converter when the load R is changed stepwise successively from 8Q to 

10£2 and 15£2, then back to 10Q and 8f2, each phase lasting 100 switching periods. It can 

be seen that the sudden changes in the load only introduce a short fluctuation in the output 

voltage. The same conclusion is obtained when changing stepwise the input voltage v(/) = 

v,„ successively from 100V to 1 IOV and to 120V, then back to 220V to 200V, each phase 

lasting again 100 switching periods (Fig. 3-20). These results show that a proper value of r| 

does not vary too much under this kind of changes and it can be used without regard to the 

exact value of the load, which may be advantageous from an implementation point of view.

52 I-------------------------------------------------------------------------:---------- 1---------- !----------  ---------- 1---------- 1---------- ;
II

49---------------------------- 1-------------- ------------- J-------------- ---------------1 2 3 4 5 6 7
t [msec]

Figure 3-18 Converter response with time-delay autosynchronization initiated after 500 

switching cycles

51 i-----
|
ii
i

50.5Ş- - -

49.5 j-

t [msec]

Figure 3-19 Control system response when the load is changed stepwise up and down
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Figure 3-20 Control system response when the input voltages of the converter are 

changed stepwise up and down

3-6 EXPERIMENTAL SETUP AND TEST RESULTS

In order to verify the theoretical analysis and simulation results presented so far, the 

controlled converter configuration was constructed at the Laboratory of Group of Electrical 

Engineering, Department of Automation and Applied Informatics, Budapest University of 

Technology and Economics, Hungary.

3-6-1 THE POWER STAGE
A configurable experimental circuit that allows the study of the twelve resonant converters 

introduced in section 2-2 was built at the laboratory mentioned above. The circuit does not 

contain the control loop, which can be externally attached. The resonant frequency of 

45kHz was chosen to avoid high-frequency problems and to permit the implementation of 

the control loop by using dSPACE 1102 DSP board available in the laboratory equipment.

Concerning the electric switches of the circuit, MOSFETs (IRF740) and diodes 

(BYT79) were applied. The series connection of one MOSFET and one diode corresponds 

to the direcţional switches in Fig 2-3. To provide smooth output voltage an electrolyte and 

a low ESR tantalum type capacitors are connected in parallel. The resonating capacitor is 

of the same tantalum type. Contrary to the ideal inductance assumed in the theoretical 

model and analysis, the inductors have an inherent series resistance of Loc = 0.1 £2. The
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circuit was designed for a power range up to 100W.

Due to the different source potentials of the MOSFETs, the electrical isolation was 

accomplished by transformer in case of power supplies of the driver circuits and by opto- 

coupler in case of switching signals.

As presented in section 2-3, the inputs of the converter as controlled plant are 

represented by the control pulses of the switches, acting as actuating signals (Fig. 2-9a). 

The switches Sp and Scp (S„ and Scn) (Fig. 2-6) within one channel are in complementary 

states, that is, when Sp is on Scp is off and vice-versa. Only the puise train for the controlled 

switches Sp and S„ (Fig. 2-9c) is acquired from the control device and the pulses are 

selected alternatively by means of a steering flip-flop. The pulses for Scp and S(H are 

generated by a driver circuit, which in order to avoid the commutation problem (i.e., both 

switches are turned off), also provides a small overlap among the switching signals.

The controlled output of the converter is represented by its output voltage. A 

disadvantageous feature of the buck configuration investigated is the floating output 

ground potential, preventing the direct acquisition of the output voltage by the DSP board 

implementing the control. The problem was overcome by using an additional circuit on the 

output of the converter, which delivers a voltage proporţional with the difference between 

the potential of the output terminals. The proporţional factor ensures the acquired voltage 

to remain in the input voltage range of the DSP’s ADC (see subsection 3-4-2-1).

The values of the components of the experimental converter are specified in 

Appendix E.

3-6-2 THE CONTROL DEVICE
3-6-2-1 THE DIGITAL SIGNAL PROCESSOR

The control of the above depicted power stage was achieved by using the DSI102 

Floating-Point Controller Board. It is a Digital Signal Processor (DSP) board included in 

the hardware line of dSPACE, a company that specializes in real-time hardware and 

software products. The DS1102 is a stand-alone board system specifically designed for 

development of high-speed multivariable digital controllers and real-time simulations in 

various fields and also well suited for general digital signal processing and related tasks. It 

is based on the TMS320C31 third generation floating-point DSP, a high performance 

member of Texas Instruments’ TMS320 family of VLSI digital signal processors. It builds 

the main processing unit, providing fast instruction cycle time for numeric intensive 

algorithms and performing parallel multiply and ALU operations on integers or floating-
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point numbers in a single cycle. The TMS320C31 supports a large address space with 

various addressing modes allowing the use of high-level languages for application 

development. Some key features of the TMS320C31 are [107]:

• 60 MHz clock rate and 33.33 ns single cycle instruction execution time

• Two 1K x 32-bit dual access on-chip data RAM blocks

• 64 x 32-bit instruction cache

• 32-bit instruction and data words, 24-bit addresses

• 40/32-bit floating-point / integer multiplier and ALU

• Eight 40-bit accumulators

• Two independent address arithmetic units

• 2- and 3-operand instructions

• On-chip bidirecţional 15Mbaud serial link

• DMA controller for concurrent DMA and CPU operation

• Four externai interrupt lines

• Two 32-bit on-chip timers/event counters

The DSP has been supplemented by a set of on-board peripherals frequently used in 

digital control systems. Analog to digital and digital to analog converters, a DSP-

microcontroller based digital-I/O subsystem and incremental sensor interfaces make the

DS1102 an ideal single board solution for a broad range of digital control tasks. The 

available blocks are [107]:

• 4-Channel ADC

• 16-Bit Digital Input

• 16-Bit Digital Output

• 4-Channel DAC

• 4/6-Channel PWM

• 2-Channel Encoder Position Measurement

• 2-Channel Encoder Delta Position Measurement

• 1 -Channel Encoder Counter Reset

• 1 -Channel Encoder Index Search

• Hardware Interrupt

This subsection details in the following only those DS1102 features which were

used for the control interface with the resonant converter. The controlled signal, the output
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voltage of the converter, is acquired through an ADC channel. The DS1102 contains two 

types of ADCs [107]:

• Two 16-bit 250kHz sampling A/D converters with integrated sample/holds. Each of the 

ADCs contains a 16-bit successive approximation (SAR) type AD converter and a 

sample/hold circuit. The converter achieves a conversion time of 4us.

• Two 12-bit 800kHz sampling successive approximation A/D converters with integrated 

sample/hold circuits and digitally controlled offset calibration units. Each converter 

achieves a conversion time of 1.25(is.

The input range of all ADCs is ±10V. Since dSPACE functions reading data from input 

devices automatically scale their output data to floating-point values within the range of 

-1 - +1, the scaling between the analog input voltage and the output of the ADC is 10:1.

As recalled in the previous subsection, the control device provides the puise train 

for the PWM controlled switches Sn and S„ (Fig. 2-9). To this end is used the high- 

precision PWM operating mode of D S1102, where six output lines are available for PWM 

generation with variable duty cycle and constant frequency [107]. The possible frequency 

range is 0.01 Hz - 1MHz. The PWM resolution is 40nsec for PWM frequencies above 

approximately 385Hz, and 160 nsec otherwise. The input value to control the duty cycle 

must be scaled to range 0 - 1 ,  representing a duty cycle of 0 - 100%. This value is 

calculated by the digital control as a result of the comparation between the control signal 

computed by the control algorithm and the sawtooth waveform (Fig. 2-9b).

3-6-2-2 THE SOFTWARE ENVIRONMENT

The D S1102 controller board is inserted directly into a host PC. At present, all dSPACE 

boards conform to the half length or full length ISA slot size. The ISA slot enables the host 

PC to download the executable to the target processor board at a higher bandwidth than is 

possible over the ISA backplane. The ISA bus is also used for downloading new 

parameters and for passing collected data back to the host computer.

This PC setup is used in combination with code generated by the Real-Time 

Workshop. The Real-Time Workshop, for use with MATLAB and Simulink, produces 

code directly from Simulink models and automatically builds the program that can be run 

in real-time on the target processor [108]. Executing code generated from the Real-Time 

Workshop on a particular target in real-time requires target-specific code, which includes 

I/O device drivers and an interrupt service routine. Other components, such as a 

communication link with Simulink, are required if the ability to download parameters on-
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the-tlv to the target hardware is needed. The key software component that provides this 

support is the dSPACE Real-Time Interface to Simulink (RTI), with special versions 

available for various dSPACE processor boards, including the DS1102 used [109]. The 

RTI connects MATLAB, Simulink and Real-Time Workshop development software with 

dSPACE hardware to form an integrated, ready-to-use development environment for real- 

time applications, by providing an automatic and seamless implementation of Simulink 

models on dSPACE real-time systems for controller prototyping.

The development and test session for the real-time control of the converter based on 

D S1 102 and RTI comprised the following steps:

• Use of MATLAB, Simulink and the dSPACE I/O board library added to Simulink to 

design the real-time application and to specify the I/O hardware setup. Simulink block 

diagrams of the control algorithms implemented on DS1102 are elementals of the 

diagrams of the controlled converter used through the study performed by computer 

simulations. They have been completed with I/O device drivers as appropriate for the 

model and for D S1102. Simulink includes a set of preconfigured blocks for I/O device 

drivers associated with particular dSPACE hardware [110,11 1 ],

• Use of Real-Time Workshop to generate C code for the real-time application and to 

start the RTI. The RTI runs through all the necessary steps to prepare the application 

for the real-time test, and as a last step downloads the converter control onto DS1102 

via the ISA bus.

• Start of dSPACE TRACE tool for recording the time histories of variables in the real- 

time application. This data can be transferred into the MATLAB workspace for further 

analysis and visualization.

• Start of dSPACE COCKPIT tool for experiment control, real-time parameter tuning 

and signal monitoring. The dSPACE COCKPIT program provides a virtual instrument 

panel on the host PC, with a graphical interface for the interactive modification of the 

parameters while the generated code executes on a dSPACE board, including the 

DS1 102 used. It is possible to modify or display all variables represented as single- 

precision floating point or integer variables in the processor board's memory. 

COCKPIT has two operation modes, edit mode and animation mode. The layout of an 

instrument panel is created in edit mode. Various instruments can be chosen to build a 

screen layout that meets the user’s requirements. Output is performed with instruments 

like numeric displays, gauges or moving bars. Variables can be modified with sliders, 

various buttons or numeric input from the keyboard. By starting the animation mode,
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the interaction with the underlying real-time processor board is initiated. While 

animation mode is active, the variables of the currently running converter control are 

read and displayed on the screen and the parameters of the control can be modified by 

user action on input Controls [112].

During the development process of the real-time test it is necessary to run through these 

different steps several times. As the RTI manages the transition from the Simulink model 

to the real-time test fully automatically, the user needs not concern himself with the details 

of the implementation and the system is ready for a new test within seconds.

3-6-3 EXPERIMENTAL RESULTS
The values of the parameters and variables of the experimental setup are listed in 

Appendix E. Fig. 3-21 shows the corresponding global bifurcation diagram obtained by 

computer simulation for a vvide variation range of the gain Ky relating the control voltage 

to the error signal (Fig. 2-9a). This complex bifurcation behavior detected by simulations 

was described in Chapter 2. The experiments verified the behavior revealed by simulations. 

The oscilloscope traces of the condenser voltage vc and choke current i„p are show'n in Fig.

3 -2 2  in chaotic operation (at Ky  = 40), in Fig. 3-23 in quasiperiodic operation (at Ky = 10) 

and in Fig. 3-24 in subharmonic operation (at Ky = 7.3). Quantitatively the simulation and 

test results are in good agreement. The main source of deviations is the assumption of ideal 

components used both in the derivation of the relations and in the simulations. Parasitic 

elements (the equivalent series resistance of the inductor, the forward voltages of the 

semiconductors) are always present in the practicai circuit and they affect its behavior, but 

they do not affect the bifurcation structure. They were only found to shift the bifurcation 

points and are not essential to the phenomena reported. For example, the Naimark-Sacker 

bifurcation occurs in the practicai circuit for an upper value of the gain, about Ky = 7, than 

in the simulation model (Ky = 3.6 in Fig. 3-21).

Test results also supported the simulations when the control algorithms introduced 

in this chapter were implemented on DS1102 in order to suppress the unstable regimes 

illustrated above. The oscilloscope traces of the condenser voltage vt and choke current iop 

in such a stabilized period-1 behavior are shown in Fig. 3-25. There is at least on point that 

makes these digital implementations non-optimal. Since for simplicity the comparation 

between the control signal generated by the digital control algorithm and the sawtooth 

waveform (Fig. 2-9) is implemented also on D S1102 and the result is used by the PWM 

outputs as the duty ratio of the switches control pulses, only one sample of the system state

3-33

BUPT



CHAPTER-3 3-6 EXPERIMENTAL SETUP AND TEST RESULTS

per ramp period is used. Hovvever, the control performs very vvell. Even more accurate 

results can be expected by using an externai comparator circuit and increasing the number 

of state samples per ramp period in the control algorithm.

5'_!____ I______ I______ I______ 1---------- 1---------- 1---------- :---------- i
10  20 30 40 50 60 70 80

Figure 3-21 Bifurcation diagram: I = Periodic range

II = Quasiperiodic and subharmonic range

III = Chaotic and subharmonic range
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Figure 3-22 Oscilloscope traces of the condenser voltage (a) and choke current (b) in 

chaotic operation (Ky = 40)

BUPT



CHAPTER-3 3-6 EXPERIMENTAL SETUP AND TEST RESULTS

Figure 3-23 Oscilloscope traces of the condenser voltage (a) and choke current (b) in 

quasiperiodic operation (Ky= 10)

Figure 3-24 Oscilloscope traces of the condenser voltage (a) and choke current (b) in 

subharmonic (period-2) operation (Ky = 7.3)

Figure 3-25 Oscilloscope traces of the condenser voltage (a) and choke current (b) in 

stabilized period-1 operation
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Figure 3-26 Experimental setup of the controlled converter

Figure 3-27 Experimental dual-channel resonant DC-DC converter circuit
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CHAPTER 4

ANALYSIS OF NONLINEAR DYNAMICS AND 

CONTROL OF A HIGH FREQUENCY 

TIME-SHARING INVERTER

A short introduction o f a special type o f high frequency time-sharing thyristor inverter 

(section 3-1) is followed by the presentation o f the basic configuration o f the inverter 

(section 3-2) and by the description o f the mode o f operation o f this configuration (section

3-3). The basic configuration is extended in orcler to obtain the complete inverter structure 

that still benefits from  the time-sharing principie (section 3-4). The steady-state analysis of 

the inverter with open loop control includes the analysis in time-domain (comprising an 

approximate mathematical study and an analysis by simulation on an exact model), 

followed by the analysis in frequency-domain and state-space, performed by computer 

simulations (section 3-5), first time fo r  this inverter. A feedback loop control structure is 

introduced and its steady-state behavior is investigated (section 3-6). The control by time- 

delay autosynchronization is proposed in order to remove the detected subharmonic 

regimes and to ensure the stable period-1 operation (section 3-7). Some experimenta! 

results are presented (section 3-8).

4-1 SHORT INTRODUCTION

This chapter is concerned with a special type of high frequency thyristor inverter, 

characterized by time-sharing operation and used mostly in induction heating applications 

[1 13]. The aim of the study is to present the solution used in designing the configuration, to 

highlight the interesting features of the nonlinear dynamics of the inverter and to introduce 

the appropriate control.

The upper frequency of most high frequency, convenţional inverter circuits is 

limited by the dynamic parameters as the turn-off time of the controlled switches e.g.
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thyristors. The turn-off time barrier can be broken by special inverter configuration 

applying the principie of time-sharing. The practicai inverter circuit discussed here uses 

this principie to enable the circuit turn-off time to be extended over two half-cycles of the 

output voltage [114].

It will be shown how methods specific to nonlinear dynamics can be used to 

provide an overall practicai picture of the strânge behavior of the inverter, despite its 

complexity and difficult modeling. This study of the effects of system parameters on the 

inverter behavior helps the designing engineer to search for stable periodic regions and 

settings (the numerical results of severe peak stress of power devices, such as controlled 

switches and series capacitors are also included). A feedback control solution will be also 

developed in order to avoid the unstable regimes of the inverter behavior, extending hereby 

the stable operation required in applications.

4-2 BASIC INVERTER CONFIGURATION

The purpose of this section is to introduce the basic configuration of this special type, high 

frequency time-sharing, thyristor inverter,. Fig. 4-1 shows the inverter configuration in its 

simplest form [115]:
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Figure 4-1 The basic configuration of the inverter
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The inverter consists of two so-called subinverters, encircled by dotted lines. /+ and I. are 

the so-called positive and negative subinverter, respectively. Each subinverter has one 

thyristor, one choke Ls and one condenser CV2. The parallel oscillatory circuit Lp-Cp-Rp 

represents the load. The supply is provided by a center-tapped DC voltage source.

In order to explain the fundamental features of the mode of action of the inverter. 

the following assumptions are introduced:

• The DC supply voltage is constant and smooth.

• The thyristors used are supposed to be ideal.

• The resonant frequency of the series and the parallel oscillatory circuits are equal

with each other, i.e., Ls C.t = Lp Cp.

The basic operation of the inverter can be understood by the time functions of Fig. 4-2:

Figure 4-2 Time functions in basic operation

In Fig. 4 -2 a the sinusoidal output voltage vy, the inverter output current pulses /„ 

and the condenser voltage vy can be seen. Thyristors 71 and TI are alternatively fired at the

4-3 INVERTER OPERATION

->t

b).
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instants located at every sixth zero crossings on the positive and on the negative slope of 

the output voltage, respectively. Atter firing a thyristor, an output current puise i„ is 

flowing into the load which changes the polarity of the series condenser voltage \\, for 

instant from -Vcm to Vcm. By knowing the time functions of v(, v„ and r„ thyristor voltage 

V71 is known as well and is drawn in Fig. 4-2b. When a thyristor is reverse-biased, its 

voltage is (Fig. 4-1):

vT = v, + (vc + v„)

The sign " -  “ and “ + ” refers to the thyrirstor voltage in the positive and in the negative 

subinverter, respectively. As long as inequality Vnn > v, + Vom or vtT,m < 0 holds true as in 

the case of Fig. 4-2, the thyristor turn-off time is a little bit longer than two half cycles of 

the output voltage. It is more than four times longer than the theoretical maximum of the 

turn-off time in the convenţional high frequency inverters [116].

4-4 EXTENSION OF BASIC INVERTER CONFIGURATION

The presented basic configuration provides energy to the load only in every third half 

cycle, therefore the output voltage is damped exponentially between two successive current 

pulses. By applying two more positive and two more negative subinverters, that is 

altogether three positive and three negative subinverters, a time-sharing inverter 

configuration can easily be built up which provides output current pulses in every half 

cycle of the output voltage [115].

Fig. 4-3 presents the configuration having three positive and three negative 

subinverters. Here the respective input and output terminals of the subinverters are 

paralleled. The numbering of the subinverters corresponds to the firing order. Each 

subinverter pair works in the same way as it vvas previously described, except that toi 

instance the time functions of the variables belonging to subinverter pair h + and /6. are 

delayed by one period with respect to those of subinverter pair / 1+ and I4- The same holds 

for subinverter pair / 5+ and h . with respect to subinverter pair /^+ and /6.. The frequency of 

the variables within a subinverter is one-third of the output frequency. The smaller 

frequency provides longer turn-off time.

The power circuit of the inverter is shown in Fig. 4-4. In general, by increasing the 

number of subinverters pairs, the turn-off time can be extended at will.
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Figure 4-3 Time -  sharing inverter configuration with 6 subinverters

Figure 4-4 The power circuit of the time - sharing inverter

4-5 STEADY-STATE ANALYSIS OF INVERTER BEHAVIOR

The main objective of the study performed in this section is the calculation of the inverter 

variables in steady state. This is carried out in two steps. The approximate analysis applies 

simple mathematics. It discovers an operation region that cannot be described any longer 

by maintaining the approximations. To understand phenomenon in this strânge region a 

more accurate model and simulation tool are needed in the second step [117].
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Per unit system is used. The units are as follows: 

Voltage: Vom, peak value of output voltage v0.

Current: C sc% Vom. where CO5 = \/^JL SCS . 

Time: I/&)/>. where cop = 1 / ^ L p C p  .

4-5-1 ANALYSIS IN TIME DOMAIN
4-5-1-1 A PPRO XIM A TE ANALYSIS

The load was substituted by a sinusoidal voltage source of constant amplitude and 

frequency equal to the natural frequency of the parallel resonant circuit [115]. This 

approximation is justified because the inverter output current i„ is only a fraction of the 

current in the compensating capacitor or in the load coil. These approximately sinusoidal 

circulating reactive currents determine practically alone the output voltage v„. Due to this 

assumption the energy storage elements of the load are omitted. The subinverters are 

uncoupled on the load side by voltage source v„ and on the source side by v„ respectivei). 

They can be analyzed independently. Each subinverter contains only two energy storage 

elements (two time constants): the choke Ls and the condenser C.v.

Knowing voltages v, and v,„ the time functions of the subinverter currents can be 

calculated, provided that the iniţial condition of the series condenser voltage vyi and the 

thyristor firing angle a  in the reference frame of the output voltage v„ is given. On the 

basis of approximation introduced the relations can be developed as follows [117]:

The voltage balance equation for example for subinverter 1 in per unit is:

— + Aclt = v i ~ v 0 , (4-1)
q  dt J 01 ' 0

where £2 = cos/ov•

Using the Laplace transformation, eq. (4-1) can be rewritten as follows:

/ „ l = L L h -  sV‘’ ^ sV‘ ~ VŢ  (4-2)
Q . [ \ + ( s / Q . ) 2 ]

where V0=L[v0], Vx=L[v{\ and -V cm=vc(0) is the iniţial condition for the series capacitor Cs. 

i.e., its voltage at t = 0. Assuming

vo =Vomsin( t + a ) 4̂ ' 3)

l \ v ]=V =V s s i,m  + ^  (4-4)o J vo vom 1 v
1 + S~
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i - h ] = n = -  (4-5)
S

and substituting eq. (4-4) and (4-5) into (4-2) and calculating its inverse Laplace transform, 

the result is for Q *  1

i'oi =~ vomD\ c o + a )+ vomD 1 ^cosacos&  -Q sinctsinQ i] - ( v- + VCfJJ )sinQi (4-6. 1 )

and for Q. = 1

/„I = -  0.5Vom [5//! a  sin t + t sin(t + a ) ] -  ( v(- + Vcm )sin t (4-6.2)

where

A = —r —  (4-7)
n 2 - 1

The current /„1 decays to zero at extinction angle 0^:

ia i ( a e ) = 0 (4-8)

The voltage change across capacitor Cs produced by the total i(,\ current puise is

ae
2Vrm = £ i J i 0 lrf( (4-9)

o

The ave rage value of the input power

a e

pi = ~ \ viio\dt (4' 1())K J 
0

From the last two equations for lossless inverter the average value of the output power 

? v-Vp - p = - l i l c m  ( 4 . M )
° K Q.

By giving a , v, and P„ and knowing Q, the value Vcm and o.e can be calculated from (4-1 1 ) 

and (4-6) observing (4-8). The equations were solved iteratively by computer programs in 

order to provide the steady-state values of the variables.

a e versus a  with parameter P(> are plotted in Fig. 4-5 and Fig. 4-6 for Q. = 0)5 /0)/̂  = 

1 and Q. = 1 .5 , respectively. a e is the current conduction angle in a subinverter, a  is the 

firing angle of a thyristor (Fig. 4-7 and Fig. 4-8) and P„ is the average output power [eq. 

(4-11 )]. Remember that per unit system is used. Beside the curves Vcm= v, and Vcm= V(m + 

v, = 1 + v„ two other so-called limit curves plotted in Fig. 4-5, Fig. 4-6, Fig. 4-9 and Fig. 4- 

10 too, have to be mentioned. They are denoted by a e2 and a.ei. Along curves a e2 and 0^3 

the current puise i()\ has two (Fig. 4-7) and three (Fig. 4-8) extreme values, one maximum 

and one minimum (Fig. 4-7) and two maximum and one minimum (Fig. 4-8), respectively.

4-7

BUPT



CHAPTER*4 4-5 STEADY-STATE ANALYSIS OF INVERTER BEHAVIOR

Assuming small output power P„, e.g. P„ = 0.02 and increasing a  from negative
o

value up to a  = 35 , the curve P„ = 0.02 reaches the limit curve a,.? (Fig. 4-5). The current 

puise /„| extincts at a e = oqţ with zero derivative, di0\/dt = 0, in a similar way as in Fig. 4-7. 

Increasing a  further by c/a, a second current puise develops in time cor > a ez like in Fig. 4-
o o

8 and the extinction angle jumps from a  = 80 up to a  = 280 . Decreasing now a  along
o

curve P„ = 0.02, the curve reaches the limit curve a e3 around a  = 0 where the current 

puise touches the time axis with zero derivative at 03/ = Oee in a similar way as in Fig. 4-8. 

The current puise has two maximum and one minimum value. Decreasing a  further by da
o

the second current puise is lost and a e jumps back around a e = 65 (Fig. 4-5). Keeping P„

= const., a hysteresis loop develops in the function a f(a). The width of this hysteresis loop 

along axis a  is getting smaller as the value P„ is increased (Fig. 4-5, Fig. 4-10). It can be 

shown that the width of the hysteresis loop becomes zero at a  = 1.22. P„ = 0.275 (Fig. 4- 

10). Increasing further the value P„ above P„ = 0.275, the curves P„ = const. reach the limit 

curve a ei in the smaller a e region at smaller a  value than they meet the limit curve 0Q.3 in 

the higher a e region (Fig. 4-9 and Fig. 4-10). As an example the current puise i(,\ belonging 

to point 21 at limit curve 0^2 (Fig. 4-9) is shown in Fig. 4-7 and the other current puise i„\ 

belonging to point 22 at limit curve a eŢ, (Fig. 4-9) is shown in Fig. 4-8. The output power 

P„ = 0.7 in both cases.

One of the most interesting results is that by using the approximate model described 

no steady-state solution can be found for the current puise and other variables e.g. between 

points 21 and 22 in Fig. 4-9. The laboratory tests verified this theoretical conclusion. 

Similar phenomena can be observed at other Q frequency ratios (Fig. 4-6).

The most serious problem in the design of time-sharing inverter is the severe peak 

stress of power devices. Although the detailed design considerations are out of the scope of 

this study, three of the most significant numerical results are presented. The positive peak 

voltage stress of the controlled switches Vym+, the peak voltage of the series capacitors Va„ 

and the input voltage v, are shown in Fig. 4-11, Fig. 4-12 and Fig. 4-13 in various operation 

conditions, respectively. It can be concluded that the firing angle a  has to be around zero 

or in the negative region near zero. The peak value of the controlled switched voltage Vţ,„+ 

and that of the capacitor voltage Vcm can be kept at resonable level by selecting the suitable 

value of the rated output power P„. Furthermore, the input voltage v, is maintained around 

its maximum value in order to reduce the input current [116].
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Figure 4-5 Current conduction angle a e vs. firing angle a  for Q = 1

0=1.5 X:m l +vi

Po=0.373 
0=61 .0 4°  

’ ei «g=209

60" 30v O 30 60 90

Figure 4-6 Current conduction angle a e vs. firing angle a  for Q = 1.5

Figure 4-7 Time functions at point 21 Figure 4-8 Time functions at point 22

in Fig. 4-9 in Fig. 4-9
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0° 2° 4° 6°  8° 10° 12°

Figure 4-9 Enlarged a e(a) characteristics Figure 4-10 Enlarged a ei and limit curves

Figure 4-11 Positive peak voltage stress of the controlled switches Vţ„i+ vs. firing angle a

Figure 4-12 Peak voltage of the series capacitors Vcm vs. firing angle a
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Figure 4-13 Input voltage v, vs. firing angle a

4-5-1-2 ACCURATE ANALYSIS

To elucidate the phenomena in the region of firing angle a 2 (Oie 2 )< c t< a Ţ ,(a e  ̂ )

discovered by the approximate analysis in the previous section a more accurate model in 

which the load is substituted by Cp -  Lp -  Rp connected in parallel must be used for the 

inverter. The subinverters operate no longer independently of each other. The independent 

energy storage elements are: six Ls series inductances, three Cs series capacitances, one Lp 

inductance and one Cp capacitance, altogether eleven elements, with eleven state variables 

(eleven time constants) [116].

The accurate analysis was performed by simulation in MATLAB environment, 

using Simulink models for the calculation of the state variables of the nonlinear system. 

The developed Simulink models are drawn in Appendix F. The numerical values of the 

parameters and variables used in the study presented in this chapter are listed in Appendix 

G.

There is a great amount of information obtained by simulation describing the 

complex behavior. One of the most useful ways for the presentation of the results is the 

bifurcation diagram, defined in subsection 2-4-1-2. The bifurcation diagram shows the 

various states and the sudden changes or bifurcations of the system in steady state as a 

result of the variations of one system parameter.

To generate this kind of diagram, the peak values of the output voltage Vom were 

sampled, stored and plotted as a function of the control parameter T(„ where T„ is the 

period between two consecutive firing pulses in the positive or in the negative subinverters
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(Fig. 4-2, Fig. 4-14). The system has been restarted from zero iniţial condition for each 

point of the bifurcation diagram in Fig. 4-15.

T,O

T() = period of firing pulses 

= sampling period of v„

Figure 4-14 Construction of bifurcation diagram

300 __________________265 270 275 280 285
Figure 4-15 Bifurcation diagram (Rp = 0.8Q; zero iniţial condition)

290

Having just one single value Vom for a given T,„ the output voltage v„ repeats itself 

in each period T(). This is the period-1 state. The frequency of vc and v/-i of subinverter 

variables is one third of the frequency of the output voltage v„ (Fig. 4-2). Similarly, state 

“period-5” is developed for example at firing period T„ = 277|isec. Now there are tive 

consecutive distinct Vom values. v„ is still periodic, it repeats itself after 5T„ elapses (Fig. 4- 

16). The period of the variables -  e.g. current i()\ -  in the subinverters is 3T=, = 1570 in 

period-5 (Fig. 4-16). The same frequency division occurs in subharmonic states among the 

frequencies of the output variables and those of the subinverter variables as in normal 

operation.
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t [s e c ]

Figure 4-16 Time functions for v0(t) and i„i(t) at T„ = 277 |is in period-5 state

One of the subinverter current /„i with short and long conduction angle a e is shown 

also in Fig. 4-16. The current has either one or three extreme values (see Fig. 4-7 and Fig.

4-8 too).

The peak value Vom is changing between 400-470V at T(, = 277|.is. Taking the 

average value 435 V, the output power P„ = 0.58p.u.

Regions period-9, period-16 etc. can also be distinguished in the bifurcation 

diagram. Consequently the inverter generates subharmonic 5th, 9th, 16lh etc. as the firing 

period Ta is varied.

All states have been calculated from the previous neighboring state for the 

bifurcation diagrams in Fig. 4-17, Fig. 4-18 and Fig. 4-19 instead of starting the system 

from zero iniţial condition. The calculation proceeded in both directions, as it can be seen 

in the figures, where the calculation proceeded from left to right in Fig. 4-17 and from right 

to left in Fig. 4-18. The superposition of Fig. 4-17 and 4-18 is shown in Fig. 4-19.

Increasing Rp the subharmonic range shrinks (Fig. 4-20) and finally it disappears 

(Fig. 4-21). The system has been restarted from zero iniţial condition in the simulations in 

Fig. 4-20 and Fig. 4-21.

In Fig. 4-22 all states have been calculated from the previous neighboring state, for 

Rt> = 2.4 n  and the bifurcation diagram with curve a was obtained. The calculation 

proceeded from left to right in the lower curve a and from right to left in the upper curve a. 

The subharmonic range disappeared but a hysteresis loop was developed similarly to Fig.

4-13

BUPT



CHAPTER 4 4-5 STEADY-STATE ANALYSIS OF INVERTER BEHAVIOR

4-10 where the hysteresis loop can be observed at P„ < 0.276. Again using Vom = 435 V, the 

output power for the lower part of the diagram is P„ = 0.19 p.u.

Reducing Rp at 0.4 Q, curve b in Fig. 4-22 was obtained. Calculating with V,„„ = 

350V, the output power P„ = 1.34 p.u. Smooth curve and regular, periodic operation was 

found similarly to the result produced by using the approximate model. Both the 

subharmonic range and the hysteresis loop disappear. Zero iniţial conditions were used in 

the calculation of each point of curve b.

Vom
[V]

î

270 275 280 290

Figure 4-17 Bifurcation diagram (Rr = 0.8Q; increasing T„ with previous neighboring 

state as iniţial condition)

Figure 4-18 Bifurcation diagram (Rt, = 0.8H; decreasing T„ with previous neighboring 

state as iniţial condition)
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Figure 4-19

Figure 4-20

Figure 4-21

V  500
y om
[V ]  480

Î 460 

440 

420 

400 

380 

360 

340 

32£

T0[|is]

270 275 280 285 290

Bifurcation diagram (Rp = 0.8H; T(, varied in both directions, with previous 

neighboring state as iniţial condition)

[ V ] 8 0 0

700
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Bifurcation diagram (Rp = 1.2f2; zero iniţial condition) 
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Bifurcation diagram (Rp = 2AQ.\ zero iniţial condition)
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Figure 4-22 Bifurcation diagram (previous neighboring state as iniţial condition;

Rp = 2.4Q for curve a; Rp = 0.4H for curve b)

4-5-2 ANALYSIS IN FREQUENCY DOMAIN

The output voltage of the inverter is a periodic signal in each state in Fig. 4-15. Fourier 

spectra in period-5 at T„ = 277|is and in period-9 at T() = 282|is are shown in Fig. 4-23 and 

in Fig. 4-24, respectively.

As a first approximation the output voltage in period-5 and in period-9 is an 

amplitude modulated signal in which the carrier frequencies are and fy and the 

modulating frequencies are />  an d /4, respectively, where f i  =  /o  /  2 and f+ =  /o  /  4. Tţ, and T9 

are the periods in the fifth and in the ninth subharmonic state, respectively.

Figure 4-23

Figure 4-24

4-16

Fourier spectrum for output voltage in state period-5
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Fourier spectrum for output voltage in state period-9
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4-5-3 ANALYSIS IN STATE SPACE

By plotting the first time derivative of the output voltage as a function of v„ the limit cycle 

is obtained in the state-plane. The trajectory is depicted for period-1, at T„ = 300|isec, 

starting at dv„ / df = 0 and v(, = 0, in Fig. 4-25. It can clearly be seen how the state 

trajectory reaches the periodic orbit depicted in Fig. 4-26. Another limit cycles are shown 

in Fig. 4-27 and Fig. 4-28 for period-5 and period-9, respectively.

Figure 4-25 State-space trajectory with transient for period-1 behavior

Figure 4-26 Limit cycle for period-1 behavior
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Figure 4-27 Limit cycle for period-5 behavior

Figure 4-28 Limit cycle for period-9 behavior

4-6 STEADY-STATE ANALYSIS OF FEEDBACK CONTROL 

LOOP

A self-control structure is obtained by applying a feedback control loop. Novv the 

approximately sinusoidal output voltage v„ is compared with a DC control voltage and the 

thyristors are alternatively fired at the Crossing points of the two curves (Fig. 4-29) [115].
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Figure 4-29 Feedback control loop for the inverter

The study is concerned with the effect of the variation of the DC control voltage 

level on the behavior of the feedback-controlled inverter. The analysis was performed by 

simulation in MATLAB environment, using the same accurate Simulink model of the 

inverter and the same parameters specified in Appendices F and G, respectively.

Again the bifurcation diagram is used for the presentation of the results. The peak 

values of the output voltage Vom were sampled (Fig. 4-14), stored and plotted as a function 

of the control parameter Vdc> where Voc is the DC voltage which comparison with the 

inverter output voltage V„ determines the thyristors firing instants. The operation of the 

controlled system was started from the open loop inverter steady-state for each point of the 

bifurcation diagram in Fig. 4-30.

The results are basically similar to those obtained for open loop control. As in the 

previous study, the feedback-controlled inverter generates subharmonic as the DC voltage 

level is varied. The peak value Vom is changing between 320-480V. Taking approximately 

V„m = 400V. the subharmonic range -15V < Vdc < 54V corresponds to a firing angle range 

2.25° < a  < 8.1 °. Comparing this firing angle range to the range 0° < a  < 12° obtained on the 

basis of approximate analysis and plotted in Fig. 4-5, the deviation between the results 

originating from the approximate and accurate analysis is marginal. For the bifurcation 

diagram in Fig. 4-31 all states have been calculated from the previous neighboring state 

instead of starting the system from the open loop inverter steady-state and similar results 

were obtained.

CONTROL OF INVERTER BY TIME-DELAY 

AUTOSYNCHRONIZATION

It was already highlighted through the previous chapter that power electronic system 

Controls should be designed for the required stable operation. In particular, for the high 

frequency time-sharing inverter introduced in this chapter, the use of a feedback control
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Figure 4-30 Bifurcation diagram of feedback control loop behavior 

(iniţial condition = steady-state of open loop inverter)

Figure 4-31 Bifurcation diagram of feedback control loop behavior

(DC varied in both directions, with previous neighboring state as iniţial 

condition)

4-20

BUPT



CHAPTER ‘4 4-8 TEST RESULTS

must guarantee stable period-1 operation and the subharmonic operation detected in the 

previous section is considered undesirable and should be avoided. Four distinct general 

control strategies were introduced in the previous chapter to this end. One of them, namely 

the time-delay autosynchronization, is used to remove the subharmonic regimes from the 

operation of the previously introduced feedback control loop (Fig. 4-29). The control by 

time-delay autosynchronization was defined and applied in section 3-5. Accordingly, the 

scheme of the proposed time-delay autosynchronization is drawn in Fig. 4-32. The control 

voltage whose crossings with the output voltage v„ of the inverter determines the firing of 

the thyristors, is obtained now by adding to the DC voltage a term proporţional to the 

difference between the present output voltage v„(t) and its past value v0(t-T0):

VTDAS( 1 ) = Tl ’[vo ( 1 ) ~ vo ( t ~T 0  i] (4-12)

where rţ is a dimensionless feedback gain and the resonant period of the oscillatory circuits 

T„ corresponds to the period of the desired stable period-1 operation.

Figure 4-32 Block diagram of the feedback control loop with time-delay 

autosynchronization

Fig. 4-33 shows the result of a computer simulation for a DC voltage of 35 V, 

which corresponds to a period-5 behavior of the control loop without time-delay 

autosynchronization (Fig. 4-30) and for the time-delay autosynchronization turned on atter 

100 cycles of the output voltage (about 29msec), with gain T| = -100. It can be clearly seen 

the collapse of the subharmonic state to the stabilized period-1 operation.

4-8 TEST RESULTS

The oscilloscope traces of the output voltage v„, the series condenser voltages v( ), v«.-3, 

and the thyristor voltages v ţ \ ,  -vn are shown in Fig. 4-34 and Fig. 4-35. The shapes of the 

time functions in Fig. 4-2 are in good agreement with the measurements and they verify the
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relevant theoretical considerations. Due to the time sharing operation the turn-off time 

measured is a little bit longer than two half periods. The output frequency is 3.57kHz.

600

400 -

-200

-400

“609r<r26 27 28 29 30
t [msec]

31 32 33

Figure 4-33 Inverter response with time-delay autosynchronization initiated after 100 

cycles of the output voltage

Figure 4-34 Oscilloscope traces of the output voltage v0 (Vom=200Vp.-p.) and 

the series condensers voltages vci, vC5 (VCI„=280Vp.-p.).

Time scale: 200(^s/div, voltage scale: 200V/div.

Figure 4-35 Oscilloscope traces of the series condenser voltage vC| (Vcm=280Vp.-p.) 

and the thyristor voltages vTl, -vT2 (Turn-off time=440|is).

Time scale: 200|is/div, voltage scale: 200V/div.
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CHAPTER 5

CONCLUSIONS AND ORIGINAL CONTRIBUTIONS

-4 summary and conclusions o f the study reported in this Ph.D. dissertation are presented 

(section 5 - 1 ), followed by the enumeradon o f the original contributions (section 5 -2 ) and 

further research topics (section 5-3).

5-1 GENERAL CONCLUSIONS

The main purpose of the present Ph.D. thesis was to offer a systemic approach for applying 

the investigation methods peculiar to the theory of nonlinear dynamics and chaos in the 

design and analysis of control systems for power electronics. The first introductory chapter 

justified the actuality of the research. Chaos begins where classical science ends since until 

recently chaos and order have been viewed as mutually exclusive. Because much of the 

study of dynamical systems is propelled by the necessity of predicting future states of 

systems, this predictable world of order was challenged by the unexpected discovery that 

simple deterministic systems can turn chaotic. Although certainly encountered by scientists 

many times in the last century and dismissed as physical noise, chaos was “discovered" as 

dynamics starting from very close iniţial conditions but diverging fast and leading to 

entirely different future states. This sensitive dependence on iniţial conditions in chaotic 

systems renders predictions impossible beyond a short-time frame since iniţial conditions 

cannot be measured or specified with infinite accuracy. Although admitted as being still 

young, “deterministic chaos” is now a very active field of research with many exciting 

results in almost every scientific discipline, mostly triggered by the studies of nonlinear 

systems using high-speed computers. In power electronics chaos has even been 

“rediscovered” after more than 50 years. All power electronic Controls are nonlinear in the 

most general sense. Since control is implemented with switches and the switch action can 

occur at arbitrary times, the Controls must take state, reference and input information and 

translate it into timing. Even though the underlying action is truly nonlinear, it is
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convenţional in many situations to use a linear framework for power electronics but it was 

shown that there are fundamental drawbacks to the use of averaging processes in 

predicting and investigating nonlinear effects such chaos, quasiperiodicity and 

subharmonics. A shift from linear systems thinking toward the unfamiliar realm of 

nonlinear dynamics is needed and was tried by power electronics engineers over the past 

twenty years.

The second chapter illustrates the application of the above-mentioned aspects by a 

feedback controlled resonant DC-DC converter. The investigated converter represents the 

buck member of a family of dual channel resonant DC-DC converters, with twelve distinct 

configurations. The common basic configuration contains two channels which transmit the 

power from input to output and are coupled by a resonating capacitor. The converters are 

recommended to be applied in the middle and higher power ranges. The study is restricted 

to the buck configuration in symmetrical operation, when the respective variables in the 

two channels vary symmetrically (without any energy exchange between channels). The 

converter has five energy storage components and its output voltage is controlled by a 

feedback loop. The controlled switches are turned on and off by a PWiM pattern using a 

ramp function of constant frequency. The nonlinearity of the control system is due to the 

dependence of the turn-on time of the controlled switches on a system state variable. The 

feedback-controlled converter exhibits rather strânge behavior, detected by simulations. 

Tools and concepts of the theory of nonlinear dynamics such as Poincare maps and 

bifurcation diagrams are introduced and used to identify the interesting bifurcation 

phenomena developing in the course of changing the control gain. As a result of the 

switching train the controlled converter can be in periodic, quasiperiodic, subharmonic and 

chaotic state. The chaotic operation can be reached by quasiperiodicity, period-doubling 

and intermittency scenarios. Simulation results of this behavior with an emphasis on the 

main features of chaotic dynamics are presented in form of time functions. state-space 

trajectories, power spectra, Poincare maps and bifurcation diagrams. Two methods are 

proposed for the confirmation of the bifurcation behavior by stability analysis. In the ti rst 

method the characteristic multipliers of the Jacobian matrix of the Poincare map function 

evaluated at the fixed point of the limit cycle located in the Poincare hyperplane were 

determined. The stability is lost when one or more characteristic multipliers leave the 

interior of the unit circle. The second method for stability analysis employs the Râcz 

method and leads to the same results: the stability of the limit cycle describing the

5-2

BUPT



CHAPTER'5 5-1 GENERAL CONCLUSIONS

operation of the converter is lost by increasing the control gain and a quasiperiodic state 

develops by Naimark-Sacker bifurcation.

In the third chapter several control strategies are proposed and analyzed in order to 

avoid the unstable regimes of the behavior of the converter (with an emphasis on chaotic 

dynamics) and to ensure the stable periodic state required by applications over the entire 

operating range. Four control methods are proposed to this end, as follows: linear 

compensation, fuzzy control, control of chaos using the OGY technique and time-delay 

autosynchronization. The first two strategies are inspired from the area of control 

engineering and achieve the control objectives by the insertion of feedback controllers into 

the configuration. The first method uses a series linear compensation whose parameters are 

tuned by using the stability analysis. The linear controller can be extended with nonlinear 

dynamics for improving the transient response. The second method employs a fuzzy 

controller extended with dynamic modules. The pseudo-fuzzy features of the 

correspondent convenţional control are used to tune the parameters of the fuzzy inference 

system. The last two control strategies try to benefit from the feature that a chaotic attractor 

consists from an infinite number of unstable periodic trajectories. The Ott-Yorke-Grebogi 

algorithm is used by the third method to achieve a discrete-time control by time- and state- 

dependent small perturbations of an accessible system parameter. The algorithm exploits 

the fact that. during its wandering within the strânge attractor, the system will eventually 

come near the target periodic trajectory on a given Poincare section. When this happens. 

and only then, a small perturbation is applied to the parameter so as to make the next 

Poincare intersection land on the stable manifold of the target saddle fixed point. The 

fourth control method applies the time-delay autosynchronization and involves a control 

signal formed with the difference between the current state of the system and the state of 

the system delayed by one period of the target periodic trajectory. The experimental setup 

including the power stage and the converter control implemented on a DSP board is 

presented and the test results confirmed those obtained by computer simulation.

The fourth chapter applies the already presented methods in investigating a special 

type of high frequency time-sharing inverter, used mostly in induction heating 

applications. The circuit uses the principie of time-sharing to enable the circuit turn-off 

time to be extended over two half-cycles of the output voltage. An approximate and atter 

an accurate model with two and with eleven energy storage components were developed 

for the description of the strânge behavior of the inverter, respectively. The approximate 

analysis applied simple mathematics and discovered an unstable operation region. The
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accurate analysis of this region shown that the inverter generates a number of subharmonic 

states in the output variables within certain output power and output frequency range. First, 

reducing the output power, the subharmonic states disappear but a hysteresis loop develops 

with smaller and higher output voltages within the same output frequency range. Second. 

increasing the output power results smooth, periodic states in the entire frequency range 

and neither subharmonics nor hysteresis loop can be detected. Qualitatively both the 

approximate and the accurate model lead to the same results. The subharmonic frequencies 

of the subinverter variables are the third of those of the output variables in subharmonic 

states, i.e., the same frequency division occurs as in regular operation. Frequency spectra 

and limit cycle trajectories are also presented. The same subharmonic generation was 

found in the behavior of the inverter furnished by a feedback control loop. The control by 

time-delay autosynchronization is proposed and investigated in order to avoid the 

subharmonic generation and to conserve the stable period-1 operation demanded by 

applications. Laboratory test results support the theory.

5-2 ORIGINAL CONTRIBUTIONS

• Use of methods and ideas peculiar to the theory of nonlinear dynamics and chaos in 

analyzing two power electronic systems: a resonant DC-DC converter and a high 

frequency time-sharing inverter.

• Detection of chaotic, quasiperiodic and subharmonic states in the dynamics of the 

feedback-controlled converter.

• Detection of three routes to chaos in the bifurcation behavior ol the feedback- 

controlled converter: quasiperiodicity, period-doubling and intermittency.

• Two distinct stability analysis methods (using the Poincare map function and the Râcz 

method) to analytically confirm the bifurcation behavior.

• Four distinct control strategies for the suppression of the unstable operation, with an 

emphasis on the chaotic behavior: linear compensation, fuzzy control, control based on 

OGY technique, time-delay autosynchronization.

• Implementation of the various converter control strategies on a DSP board; test results 

verifying the theoretical conclusions.

• Two steady-state analysis approaches for the high frequency time-sharing inverter.

• Detection of subharmonic generation in the open loop controlled inverter.
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CHAPTER5 5-3 FURTHER RESEARCH TOPICS

• Detection of subharmonic generation in the feedback-controlled inverter.

• Control by time-delay autosynchronization for suppression of the unstable 

(subharmonic) operation of the inverter.

5-3 FURTHER RESEARCH TOPICS

• Extension of the study of nonlinear phenomena to the other members of the resonant 

DC-DC converter family.

• Extension of the stability analysis to the other bifurcations in the behavior of the buck 

converter.

• Development of new control strategies for stabilizing the chaotic dynamics of the 

converter.

• Further research regarding the implementation of converter control on the DSP board.

• Development of new control strategies for the high frequency time-sharing inverter.

►
r
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APPENDICES

APPENDIX A 

Parameter and Variable Values Used in Computer 

Simulations of the Resonant DC-DC Converter

CIRCU IT COM PONENTS VALUES

Switched Capacitor C 25 nF

Inductance L 100 (.iH

Filter Capacitor Cr = C„ 100 fiF

Load Resistance Rn = R„ 8 Q

Input DC Voltages v(/, = -v,„ 100 V

Reference Output Voltage vref 50 V

Upper and Lovver Voltage Limits of the Savvtooth Waveform

Vu = -VL

50 V
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APPENDIX B

Simulink Model of the Resonant DC-DC Converter
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APPENDIX C 

MATLAB Program for the Stability Analysis 

of the Resonant DC-DC Converter

global vref VU VL vi kv R Co C L Ts Al Bl xk K 
U=[0 1 0 0 0

1 0 0 0 0
0 0 - 1 0 0  
0 0 0 0 1
0 0 0 1 0];

Tr=pi*sqrt(L*C);To=R*Co;Tc=R*C;Tl=L/R;a=Tr/To;b=Tr/Tc;c=Tr/Tl;
Al=[-a 0 0 a 0

0 - a  0 0 a
0 0 0 b 0

-c 0 -c 0 0
0 -c 0 0 0];

Bl=[0 0 0 c 0] ' ;
A2=[-a 0 0 a 0

0 -a 0 0 a
0 0 0 0 0

-c 0 0 0 0
0 -c 0 0 0] ;

K=[kv*vi kv*vi 0 0 0];
alfa=2*fzero('felalfa',[le-6 pi/2]);
n=0 ;
newdr=alfa/pi; 
olddr=0;
while abs(newdr-olddr)>le-2, 

n=n+l;
olddr=newdr;
Phil=expm(Al*olddr);
Phi2=expm(A2*(1-olddr));
xk=inv(U-Phi2*Phil)*Phi2*(Phil-eye(5))*inv(Al)*B1; 
newdr=fzero('kitoltes',[0 1 ] );

end
xl = Phil*xk+(Phil-eye(5))* inv(Al)*B1; 
vl=Al*xl+Bl; 
v2=A2 *xl;
M=eye(5)-(vl-v2)*K/(K*vl+VU-VL);
Z=U* Phi2 *M*Phil; 
se=eig(Z );
plot(cos(0:pi/1000:2*pi),sin(0:pi/1000:2*pi),real(se),imag(se) , kx ) 
se 1
abs(se')
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APPENDIX D 

MATLAB Function for the Fuzzy Logic Controller

f u n c t i o n  [ y ] = f l c ( x , a l , b l , c l )  

e r = [ m a x ( m i n ( 1 , ( - a l - x ( l ) ) / a l ) , 0 )

m a x ( m i n ( ( x ( l ) + 2 * a l ) / a l , - x ( l ) / a l )  , 0)  

m a x ( m i n ( ( x ( 1 ) + a l ) / a l , ( a l - x ( l ) ) / a l ) , 0 )  

m a x ( m i n ( x ( l ) / a l ,  (2 * a l - x ( 1 ) ) / a l ) , 0 )  

m a x ( m i n ( ( x ( l ) - a l ) / a l , l )  , 0 )  ] ' ; 

d e r = [ m a x ( m i n ( 1 , ( - b l - x ( 2 ) ) / b l ) , 0 )

m a x ( m i n ( ( x ( 2 ) + 2 * b l ) / b l , - x ( 2 ) / b l )  , 0)  

m a x ( m i n ( ( x ( 2 ) + b l ) / b l , ( b l - x ( 2 ) ) / b l ) , 0 )  

m a x ( m i n ( x ( 2 ) / b l , (2 * b l - x ( 2 ) ) / b l ) , 0 )  

m a x ( m i n ( ( x ( 2 ) - b l ) / b l , 1 )  , 0 ) ]  ' ; 

c o m = [ - 2 * c l  - c l  0 c l  2 * c l ] ; 

s u m l = 0 ; 

s u m 2 = 0 ;

f o r  j = f i n d ( d e r ) ,  

f o r  k = f i n d ( e r ) ,

s u m l  = s u m l + m i n ( [ e r ( k )  d e r ( j ) ] ) * c o m ( m i n ( m a x ( j  + k - 3 , 1 )  , 5 )  ) ; 

s u m 2 = s u m 2 + m i n ( [ e r ( k )  d e r ( j ) ] ) ;

e n d  

e n d

y = s u m l / s u m 2 ;
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APPENDIX E 

Parameter and Variable Values of the Experimental Converter Setup

C IRC U IT COM PONENTS VALUES

Svvitched Capacitor C 100 nF

Inductance L 125 |iH

Filter Capacitor Cv = C„ 100 fiF

Load Resistance Rn = R„ 7 Q.

Input DC Voltages v,p = -v,„ 8 V

Reference Output Voltage vref 6 V

Upper and Lower Voltage Limits of the Sawtooth Waveform

VC = -VL

6 V
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APPENDIX F

Simulink Model of the High Frequency Time-Sharing Inverter

Ir. 1
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APPENDIX G 

Parameter and Variable Values of the 

High Frequency Time-Sharing Inverter

CIRCU IT COM PONENTS VALUES

Series Inductance Ls 41.52 nH

Series Capacitor C.ţ 48 |xF

Load Resistance Rp 800 mQ

Load Inductance Lp 9.49 |iH

Load Capacitor Cp 210 (iF

Input DC Voltage v, 250 V
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