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Abstract 

This thesis approaches the road traffic modeling process at the microscopic level, 

focusing on the car-following models. A review of the recent trends in this field is 

provided by the state of the art chapter. This research emphasizes the disadvantage 

of the standard car-following model consisting of neglection of the behavior of 

vehicles moving on the adjacent traffic lanes. This study proposes a refinement 

process of this standard car-following model considering the behavior of the 

vehicles moving on the adjacent road traffic lanes in the follower vehicle 

acceleration control. Traffic lanes are modeled as nodes in a Markov chain, and the 

lane choice probabilities computation employ the Bayesian reasoning concept. A 

fault detection based on parity equations is performed to detect computational 

faults introduced by the refinement process. This research also brings novelties to 

the calibration process by proposing a hybrid online calibration method that 

combines the concept of Kalman filtering with the Takagi-Sugeno fuzzy inference 

system. This calibration method proved its utility for both standard and refined 

car-following models. All these new approaches have been validated through 

simulation experiments done in Simulink, part of MATLAB R2020a (MathWorks, 

Natick, MA, USA) based on real traffic data received from Timișoara City Hall - 

General Directorate of Roads, Bridges, Parking, and Utility Networks - Traffic 

Monitoring Office, Timișoara, Romania. 
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ACC   – adaptive cruise control  
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GLOSSARY OF TERMS 
 

 

 

Calibration – The process of finding the proper values for the model parameters 

that provide a good description of the system behaviour as a result of the 

comparison between estimated values for the model parameters and the values 

retrieved from the measurements performed on the system. 

 

Car-following – The fourth level of representation of the road network load model 

consisting of the behavioral study of vehicles that "follow" the front vehicle while 

moving on a lane. The vehicle that "follows" (FV - follower vehicle) the mode of 

travel of the front vehicle (LV - leader vehicle) must adapt its acceleration and thus 

velocity to ensure a safe distance from the LV. 

 

Delay – Additional time experienced during the movement process beyond what 

would reasonably be desired for a given trip. 

 

Density – The number of vehicles occupying a given length of lane averaged over 

time, usually expressed as vehicles per kilometer or vehicles per kilometer per lane. 

 

Filtering – The process of removing the noise and perturbations from the modeling 

of a process. 

 

Fault – An unacceptable deviation from the standard behavior of at least one 

feature of a system. 

 

Flow – The number of vehicles that cross a given lane length in a previously set 

time interval, usually expressed as vehicles per second or vehicles per hour. 

 

Green-interval – The period of time in a signal cycle during which the green signal 

indication remains constant at a signalized intersection. 

 

Lane change – The action taken by a driver to change the current lane used for the 

movement process. 

 

Macroscopic – Modeling technique approached from the perspective of continuous 

traffic flow theory, which provides a description in time and space of the evolution of 

macroscopic flow variables (flow and density). 

 

Mesoscopic – Modeling technique approached from the perspective of studying the 

the behavior of the parameters corresponding to microscopic models under the 

influence of specific parameters of macroscopic models. 

 

Microscopic – Modeling technique approached from the perspective of a detailed 

overview of each individual vehicle present in the road network, including 

acceleration behavior, traffic lights management, and car-following behavior. 
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Queue – A line of vehicles to be served by a system (e.g., an intersection, an 

entry/exit node of a road network in which the rate of flow from the front of the 

queue determines the average speed within the queue. The dynamics of the internal 

queue may involve a series of start and stop actions.  

 

Offset – Adjustment value to be applied to the model parameters to improve the 

model. 

 

Refinement – A process that aims to improve the characteristics of an existing 

model by incorporating additional parameters into the modeling process. 

 

Velocity – A rate of motion expressed as a distance per unit of time. 

 

Volume – The number of vehicles passing a point on a lane, crossroad, or road 

network during a specific time interval, often taken to be one hour, expressed in a 

number of vehicles. 

BUPT



                                                        1.2 – Research Approach and Layout      15

 

 

 

1. INTRODUCTION 
 

 

1.1. Problem Definition and Research Objectives 
 

Driver behavior introduces uncertainties in road traffic modeling at the 

microscopic level. Various car-following models are single-lane oriented and cannot 

emphasize the influence of the vehicles moving on the adjacent traffic lanes. A lane 

change decision made by a vehicle from the current lane leads to a “leader change” 

in the modeling process and the FV shall adapt its acceleration control mechanism to 

respond to this stimulus. This control mechanism is mandatory for the assurance of 

collision avoidance. 

Solutions for introducing in the modeling process the behavior of the 

vehicles moving, in the same direction, on adjacent lanes are mandatory. In this 

regard, the development of new car-following models shall provide control strategies 

for the FV movement by incorporating the interactions with the vehicles from 

adjacent traffic lanes. This plays an important role not only in better understanding 

the phenomenon of traffic, but also represents an important step for the 

development of autonomous driving systems. 

The objectives of this thesis are as follows: 

• providing an analysis of the intersections configuration methods; 

• obtaining a more accurate prediction of the origin-destination traffic 

volumes, and implicitly creating a better overview of the driver behavior; 

• developing new microscopic road traffic models capable of incorporating the 

lane choice behavior with high accuracy; 

• developing new car-following models for multiple-lane roads; 

• developing models for fault detection and analysis of car-following models 

that can highlight the faults introduced by the modeling process; 

• developing new solutions for car-following model calibration that are easily 

adaptable to multiple-lane car-following models. 

 

1.2. Research Approach and Layout 
 

This thesis represents a synthesis of the author’s achievements during his 

PhD research program. Besides his already published contributions as follows:  

• 1 scientific article published in a journal indexed ISI Web of Science (WoS) 

with quartile Q1 and impact factor (IF) equal to 3.576; 

• 1 scientific article published in a journal indexed ISI WoS without quartile 

IF; 

• 11 scientific papers published in ISI WoS indexed proceedings of 

international conferences, one of these papers, [Pop19_1], being awarded 

with the Best Paper Award “Honorable Mention”; 

• 1 scientific paper published in the proceedings of international conferences 

indexed BDI. 

This thesis provides a deeper overview of the microscopic traffic modeling 

concept and describes the current research directions in this domain. All these 

information have been structured in 7 chapters on 133 pages, containing 60 figures, 
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10 tables, and having as a source of inspiration 130 bibliographic references, 

including the previously mentioned 14 papers as the author contributions. 

 Chapter 1 describes the motivation of the chosen research topic with a 

clear definition of the problem and a description of the research objectives. The 

presentation of the current drawbacks of the car-following models supports the 

understandability of the motivation of the author to find solutions to real road traffic 

issues. 

 Chapter 2 presents a complete analysis of the state of the art in road traffic 

modeling at the microscopic level. This analysis starts with an overview of the 

current developments in terms of road traffic simulators and continues with the 

recent trends in car-following control and modeling. Here, are discussed various 

car-following models proposed by scientific literature that aim to adapt this 

modeling method to the needs of some current research directions such as 

connected and autonomous vehicles (CAVs) or electric vehicles (EVs). This chapter 

also presents a critical overview of new developments in car-following calibration 

methods that are very important to obtain traffic models closer to reality. 

 Chapter 3 highlights the importance of road traffic modeling at the 

microscopic level. This chapter provides the author’s contributions related to road 

traffic modeling. Simulations are performed using AnyLogic Simulation Software to 

analyse the impact of different crossroad configuration methods (uncontrolled 

intersections, signalized intersections, and roundabouts) on the velocities of the 

vehicles and the evolution in the number of vehicles passing through an 

intersection. 

Car-following represents one of the “four levels of representation of the 

microscopic road traffic network model together with crossroads configuration, links 

and lane choice [Yin15]” [Pop18_1]. To better understand the factors of influence 

on the car-following modeling process, lane change behavior modeling has been 

described. Special attention was given to the incentive criteria definition that 

controls the acceleration behavior of the follower vehicle (FV) considering the 

behavior of the vehicle ahead, further referred as leader vehicle (LV). These 

incentive criteria play a crucial role in collision avoidance actions by proper control 

of the FV acceleration. Furthermore, this chapter presents various standard car-

following models and highlights their advantages and disadvantages. 

Chapter 4 illustrates the proposed methodology for the refinement of the 

standard discrete-time car-following model consisting of the extension of this 

single-lane oriented model to multiple-lane roads. Here, the driver behavior 

modeling (DBM) process and the Bayesian inference are described as the main 

research methodologies. This chapter defines traffic lanes as nodes in a Markov 

chain according to Pop and Proștean [Pop19_2]. Moreover, the origin-destination 

(OD) volumes estimation is discussed based on this modeling approach. 

The refinement process uses the standard (single-lane) car-following model 

in discrete-time and permanently updates the acceleration value of the FV according 

to the lane change predictions based on Bayesian reasoning. Furthermore, the 

prediction of lane change harmonizes the incentive criteria equations with respect to 

the predicted driver decision. This chapter further conducts an experiment using 

MATLAB R2020a software (MathWorks, Natick, MA, USA) and real traffic data 

provided by “Timișoara City Hall - General Directorate of Roads, Bridges, Parking 

and Utility Networks - Traffic Monitoring Office, Timișoara, Romania” [Pop20_2], 

[Pop20_3]. The discussion of the experimental results for the refined model is the 

basis for the formulation of the advantages and disadvantages of this method. 
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Chapter 5 provides a fault analysis of the proposed refined model. The fault 

analysis assumes that the refined model introduces faults through internal 

calculations and is used both as an observed model and as a model with the defect. 

The nominal model consists of three standard car-following models, one for each 

traffic lane included in the experiment. The applied methodology consists of the 

usage of parity equations, as described by Kratz et al. [Kra98] and Isermann 

[Ise06], [Ise11]. According to this methodology, “the identified residuals are the 

relative velocity residual and the dynamic running distance residual” [Pop20_3]. 

Analysis of these residuals showed that “the model is not suitable for a real-time 

switch from one lane to another to ensure lane change behavior monitoring for each 

lane” [Pop20_3] but can still provide a good description of the behavior of the LV 

and FV from the target lane if a new vehicle joins this lane and becomes the new 

LV.  

 Chapter 6 focuses on the calibration process of the car-following models 

and proposes a new approach consisting of a hybrid online calibration solution that 

combines the concept of Kalman filtering with a Takagi-Sugeno fuzzy inference 

system (FIS). This method proves its efficiency through faster identification of the 

correct offsets to be applied to the model parameters compared to a simple Kalman 

filtering. In addition to the outcome of the research of Pop et al. [Pop20_2], this 

chapter adapts this calibration method and applies it to the refined car-following 

model. 

Chapter 7 aims to present the conclusions and contributions of the author 

to the microscopic modeling of road traffic systems. Moreover, this chapter defines 

future research directions that can use these thesis contributions as fundamental. 
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2. STATE OF THE ART IN ROAD TRAFFIC 

MODELING AT THE MICROSCOPIC LEVEL 
 

 

2.1. Preliminaries 
 

Reduction of traffic congestion, finding environmentally friendly solutions for 

transportation, and assurance of traffic safety became our today priorities in the 

transportation domain. Some solutions to these things start with a proper 

understanding of the phenomenon of road traffic. Microscopic modeling represents 

the foundation of road traffic definition through its particularities of describing 

changes in vehicle parameters during their movement on a road network and the 

interactions with the other traffic participants (e.g., other vehicles, pedestrians, 

bicyclists, etc.). 

In the last few years, many researchers brought their scientific contributions 

to different fields related to ITS such as autonomous driving, electric vehicles, driver 

behavior analysis and patterns recognition, etc. They used several technologies like 

Markov chains, fuzzy-based systems, neural networks, etc. This chapter 

concentrates on actual road traffic modeling approaches at the microscopic level by 

providing a critical analysis of the related works.  

The chapter starts with a review among various microscopic road traffic 

simulators and shows how important are the following characteristics: scalability, 

workload partitioning, and partition organization. The next section provides a critical 

review of recent trends in car-following control and modeling. The concepts of CAVs 

and EVs are of great interest among researchers. Many of the standard car-following 

models that will be discussed in detail in Chapter 3 have been adapted by 

researchers to respond to the needs of CAVs and EVs. Moreover, this thesis also 

discusses other improvements in standard car-following models that do not refer to 

CAVs and EVs. 

Another section has been designed to pay special attention to the calibration 

process. This step plays a crucial role in the development of new models because it 

is responsible for providing a better approximation of the model parameters 

compared to the observed real road traffic parameters. This section will provide 

several approaches in this regard. 

The last section will underline the current gaps in the car-following control 

and modeling process and also the implications of the continuous developments in 

the field of intelligent transportation systems (ITS). 

 

2.2. Microscopic Road Traffic Simulators 
 

The researchers analysed and proved the validity of their proposed models 

using various simulations. Simulations are appropriate for this because direct testing 

on the road infrastructure is difficult, from accessing the data collected by TMCs and 

the direct impact on the vehicles moving on the road. Furthermore, this chapter 

discusses some widely known simulation tools designed for microscopic road traffic. 
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Additionally, new developments in terms of microscopic traffic simulators will be 

discussed. 

The TRansportation ANalysis and SIMulation System (TRANSIMS) contains 

the following modules for microscopic traffic simulation: population generation, 

activities generation, modal and route choice, and traffic micro-simulation [Nag01]. 

The last module ensures that the behavior of the travel plan of each individual in the 

simulation is executed on the basis of the plan set within the other modules. Being a 

simulator intended for distributed environments, TRANSIMS addresses the 

scalability topic through a non-spatial partitioning approach and uses graph cuts to 

partition the large road network (it cuts a geographical area into multiple similar 

size partitions) [Nag01], [Yu20]. Furthermore, this simulator applies the same 

partitions to the simulated vehicles. The parallelization of the simulation process 

represents the responsibility of the Message Passing Interface (MPI), TRANSIMS also 

implements mechanisms designed to minimize message passing costs and ensure 

an adaptive load balancing [Yu20]. 

The spatial-temporal databases used by TMCs require additional devices 

(e.g., GPS receivers installed in all vehicles) to ensure the acquisition of large-scale 

high-quality traffic data in urban environments. Simulators can generate this type of 

data but encounter weaknesses from the scalability and granularity viewpoints. 

Compared to macroscopic road traffic, microscopic traffic simulation is more difficult 

because it requires a detailed overview of each individual vehicle present in the road 

network, including acceleration behavior, traffic lights management, and 

car-following behavior. Fu et al. addressed these issues and proposed a simulator 

named GeoSparkSim [Fu19]. The purpose of this simulator was “to generate 

large-scale road network traffic datasets to simulate the microscopic road traffic. It 

extends the Apache Spark and converts road networks to Spark graphs and 

simulated vehicles to vehicle resilient distributed datasets (RDDs)” [Fu19]. In 

addition, it considers microscopic traffic characteristics and implements a 

simulation-aware vehicle partitioning method that provides a spatio-temporal 

overview of vehicle characteristics capable of dealing with dynamic spatial 

distribution. The biggest advantage of this simulator is its scalability, which is 

proved by a simulation involving the movement of 200 thousand vehicles on a road 

network composed of 250 thousand road junctions and 300 thousand road 

segments [Fu19]. 

Table 2.1 shows a comparison between GeoSparkSim [Fu19] and other 

microscopic traffic simulators [Yu20]. The strengths of GeoSparkSim are the 

distributed characteristic in terms of scalability, the quad-tree workload partitioning, 

and the partition organization as dynamic. 
 

Table 2.1. “Comparison among different microscopic traffic simulators” [Yu20]. 

Simulation tool Scalability 
Workload 

partitioning 

Partition 

organization 

Distribution 

model 

SUMO Single node - - - 

TRANSIMS Distributed Graph cuts Fixed MPI 

MATSim Multi-thread Uniform grids Fixed Thread sync. 

ParamGrid Distributed Uniform grids Fixed CORBA 

SMARTS Distributed Z-curve Fixed TCP sockets 

GeoSparkSim Distributed Quad-Tree Dynamic RDD 
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Probably the biggest disadvantage of traffic simulators is the use of 

predefined algorithms to control vehicle movement behavior. Here, the low coverage 

of the uncertainties introduced by the decisions of real drivers and their reaction 

time arises. “Most of the current traffic simulators have limited human-in-the-loop 

capabilities to capture the interactions between simulated vehicles (including 

simulation-controlled vehicles, human-controlled vehicles, or a mixture of these 

categories)” [Has21]. Hasan et al. proposed a framework based on virtual reality 

(VR) to extend the standard simulator features by including distributed vehicles 

controlled by human-in-the-loop. The related paper discusses the mixture of 

human-controlled vehicles with autonomous vehicles and pedestrian behavior for 

signalized intersections (including traffic signs and traffic lights) in various scenarios 

of traffic conditions. The study does not cover the existence of roundabouts and 

unsignalized crossroads where the priority-to-the-right rule applies. In these 

situations, concerns arise regarding the capability of the virtual environment to 

synchronize with the real-time vehicle trajectory profiles and avoid the reproduction 

of wrong collisions in the simulation that have no corresponding collisions in real 

traffic. The proposed VR-based framework is advantageous because of its 

compatibility with all commercial and free microscopic simulation tools that provide 

an API for developers that are used as a core service. 

 Recent works focus not only on the development of new simulation tools but 

also on the improvements of existing ones, or the development of new frameworks 

to integrate different simulation platforms. In this regard, Acosta et al. proposed a 

framework (TraCI4Matlab) for the traffic control interface (TraCI) to integrate the 

SUMO road traffic simulator with Matlab through an adaptive software reengineering 

process [Aco15]. After employing object-oriented patterns, the existing TraCI for 

Python (TraCI-Python) and Java (TraCI4J) [***_1] has been used as a source of 

requirements for TraCI4Matlab during the reengineering process. The advantage of 

this TraCI implementation is the possibility of controlling the simulation objects from 

Matlab and also the acquisition and analysis of simulation data from SUMO using 

Matlab. A drawback of this development process was the neglect of performance 

analysis. 

 

2.3. Recent Trends in Car-Following Control and 

Modeling  
 

This section presents an overview of recent works in the field of 

car-following control and modeling. Researchers improved many of the existing 

car-following models by applying current development approaches based on neural 

networks [Col21], [Lu17]; genetic algorithms [Lu17], [Wan21]; machine learning 

[Yan19]; fuzzy systems [Li18], [Li19_2] or stochastic processes [Tia21], [Wu19], 

[Xu20], [Zak15]. 

Other works try to improve the accuracy of microscopic traffic models by 

employing some features from macroscopic models.  Borsche and Meurer [Bor19] 

coupled these models to provide a better overview of the interaction between traffic 

flows and pedestrian dynamics. However, this approach has weaknesses in 

describing traffic in the case of studying vehicle movement when the density of 

pedestrians on the road is small. In reverse, Gkania and Dimitriou [Gka21] 

proposed the usage of microscopic traffic flow mechanics in combination with traffic 

information resulting from online traffic maps to overcome the drawbacks of 

estimation of macroscopic fundamental diagrams. 
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 The interests of current researchers cover the improvements of car-following 

derivatives models such as Gipps [Jia20_2], [Mog17], [Yan19]; GHR [Bor19], 

[Col21], [Mog17]; OVD [Jia20_1], [Yu21]; FVD [Cao20], [Gou20], [Jia20_2], 

[Jia20_1], [Li19_1], [Yan19]; intelligent driver model (IDM) [Ech21], [Son18]. 

Chapter 3 (Section 3.4) presents a detailed overview of these mentioned 

well-known derivatives of the car-following model. Moreover, special attention is 

given to the tailoring of the mentioned models to meet the needs of autonomous 

driving [Che21], [Ech21], [Gor20], [Has21], [Ker21], [Li19_1], [Yan19], connected 

vehicles [Che21], [Ech21], [Gor20], [Li19_1], [Jia20_1] and electric vehicles [Li18], 

[Li19_1], [Sch16], [Zha20]. Furthermore, in Sections 2.3.1-2.3.3, this thesis 

discusses in detail some of these approaches. 

 

2.3.1. Connected and Autonomous Vehicles (CAVs) 
 

Many OEMs (original equipment manufacturers) in the automotive industry 

invest in projects related to autonomous and connected vehicles that aim to provide 

a profound revolution in transportation systems [Gor20]. Not far from today’s 

reality, these vehicles gained popularity through the expected comfort provided to 

passengers, collision avoidance and congestion management features [Ech21], 

[Has21], [Ker21], [Yan19]. Also, special attention is paid to electric CAVs [Li19_1], 

a topic covered in Section 2.3.2. However, there is a lack of standardization for 

this type of system even if a deeper analysis shows various modeling solutions 

regarding parameter description, dynamics representation, including the case of 

mixed traffic where both autonomous and manually driven vehicles are present, 

calibration methods [Gor20]. 

 Chen et al. [Che21] proposed “a human-machine cooperative scheme for 

car-following control to address the out-of-the-loop problem of autonomous traffic 

systems”. This approach consists of developing a H∞  suboptimal control that 

ensures the optimization of controller parameters according to the desired 

performance index [Che21]. To improve the dynamic performance of velocity 

tracking, a fine-tuning has been applied considering the concept of 

human-simulated intelligent control (HSIC) [Che21]. In this case, the H∞  control 

problem has been described by Equation (2.1): 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

auto

auto

φ t A φ t B v t E ω t
:

z t C φ t D v t D ω t
Σ

 = ⋅ + ⋅ + ⋅


= ⋅ + ⋅ + ⋅

1 1 1

1 1 2

ɺ

                                       (2.1) 

 

where A
µ

− 
=  − 

1
0 1

0 1
, B

µ

 
=  
 

1
0

1
, E

 
=  
 

1
1

0
, ω  is the disturbance of the system to 

be suppressed and ( )autov t  represents the output of the velocity tracking controller 

computed as in Equation (2.2) [Che21]: 

 

( ) ( ) ( )auto fb ffv t k φ t k ω t= ⋅ + ⋅                                                            (2.2) 

 

where fbk W Y −= ⋅ 1 , ffk β=  are the gains of the full information feedback controller 

that provides the H∞  optimal performance to the closed-loop system to Equation 

(2.1). The gains of the full information feedback controller computation start from 
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the premises that ffD k D⋅ + =1 2 0 , and H∞  has a disturbance level γ = 1  to find a 

solution for the matrices Y , W  and the maximum deceleration β  considering the 

Theorem 1 as taken from [Che21]: 

 

“Theorem 1. For any given constant γ > 0 , if there exist asymmetric positive 

definite matrices P  and Y γ P−= ⋅ 1 , matrix W and constant β , such that 

 

( ) ( )
( )

T T

T

A Y B W A Y B W E B β C Y D W

E B β γ I

C Y D W γ I

 ⋅ + ⋅ + ⋅ + ⋅ + ⋅ ⋅ + ⋅ 
 

+ ⋅ − ⋅ < 
 ⋅ + ⋅ − ⋅ 
 

1 1 1 1 1 1 1 1

1 1

1 1

0 0

0

        (2.3) 

 

holds, the closed-loop system (2.1) is asymptotically stable with an H∞  disturbance 

attenuation level γ ” [Che21]. 

 

The obtained velocity profiles have been compared with those obtained with 

IDM and showed fast and non-overshoot velocity tracking performances, 

characterized by a good ability to maintain a fixed distance during movement over a 

road network. This contributes to the avoidance of “rear-end collision caused by 

sudden or unpredictable deceleration of the preceding vehicle” [Che21]. Among the 

disadvantages of this study is the neglection of the effects produced by unreliable 

communication, communication delays, and the incomplete evaluation of the 

“relationship between driver’s driving style and the distance tracking error” [Che21]. 

Following this direction of human-in-the-loop simulations for car-following 

models, Hasan et al. [Has21] brought a solution involving VR technology to capture 

the reactions of the user (considered as a driver for a real situation) with high 

fidelity and accuracy. This brings benefits in creating driver behavior profiles that 

can be used as input by control algorithms designed for autonomous vehicles. 

Furthermore, this VR-based framework provides support for simulation of 

pedestrian-vehicle interactions, creating in this way a more accurate overview of the 

safety assurance directions to be covered by the control algorithm development 

process. This will also help in the future for a mixed traffic flow where we will not 

only have CAVs, but also manually driven vehicles where the anticipation of driver 

decisions by the autonomous vehicle algorithm is decisive in terms of safety 

assurance [Ker21].  

Kerner and Klenov [Ker21] propose a methodology for mixed traffic 

modeling that guarantees collision avoidance and evaluates the movement of 

vehicles considering the adaptive cruise control (ACC) car-following model (for a 

better overview of the space representation of this model consisting of an LV – 

leader vehicle and ACC FV – follower vehicle, please see Figure 3.16, Section 3.4) 

from Equation (2.4), which is a Gipps-based model: 

 

( ) ( ) ( ) ( ) ( ) ( )ACCACC
FV d

a t K s t v t τ K v t∆ = ⋅ − ⋅ + ⋅ 
 

1 2                                (2.4) 

 

where: 
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• ( )ACC
a  is the acceleration of the ACC;  

• K1  and K2  are coefficients of ACC adaptation;  

• ( )s t  is the dynamic distance value between FV and LV at time t ;  

• ( )FVv t  represents the value of the velocity of the FV at the moment t ; 

• ( ) ( ) ( )LV FVv t v t v t∆ = − is the relative speed measured by the autonomous 

vehicle considering ( )LVv t  as the velocity of the LV vehicle;  

• 
( )ACC

d
τ  is the desired time headway of the autonomous vehicle to the LV 

[Ker21]. 

Yang et al. [Yan19] started from the Gipps model expressed in Section 

3.4.1 of this thesis by Relation (3.13) and proposed a model based on 

back-propagation neural networks (BPNN). This model addresses “the weaknesses 

of the machine learning-based car-following models in controlling” [Yan19] 

autonomous vehicles by providing a collision avoidance mechanism considering the 

specific kinematics of the Gipps model. The Gipps-BPNN model demonstrates the 

ability to imitate real driver behavior and provides an appropriate weight value α  

for the forecasting model described by “the following objective function:  

 

( )

( )

real safe

N K K

t _real i it t _safe i it

t i i

K

i i

t

min  E α E α E

         α y ω y α y ω y

s.t. ω ;  ω ;  α

=

=

= ⋅ + − ⋅

        = ⋅ − ⋅ + − ⋅ − ⋅    
     

= ≥ ≤ ≤

∑ ∑ ∑

∑

2 2

1

1

1

1

1 0 0 1

           (2.5) 

 

where: 

• E  represents the total error of all N  samples; 

• realE  and safeE  represent the total error for being close to a real driver, 

respectively to a safe driving state;  

• t _realy  and t _safey  are the real and safe value of the t -th sample;  

• ity  denotes the predicted value of the i -th model; 

• iω  with { }i , , ,K= 1 2 …  denotes the optimal weight values for the K  models 

used in the combination model” [Yan19]. 

The efficiency of this combined Gipps-BCNN model has been proved by a 

comparison with a model obtained by combining Gipps kinematics with a random 

forest model. 

Another car-following model adapted to the needs of CAVs is IDM. The 

Echeto et al. [Ech21] approach improves the standard IDM (please see a detailed 

overview of the standard IDM in Section 3.4.6 of this thesis) by providing a 

longitudinal control in the traffic jam assistance function. This control method has 

been studied for various scenarios of a congested road, and the results showed 

potential improvements in traffic safety, including driver stress reduction by taking 

over driving off and acceleration [Ech21]. Equation (2.6) formulates this longitudinal 
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control for an improved desired spacing ( ) ( )( )*
d i is v t , v t∆  for the i -th vehicle 

moving in a chain on a road network [Ech21]: 

 

( ) ( )( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( )

{ }i i ii i i*
,  i , , ,nd i i ii i i

v t v t v t
s v t , v t s max ,s T v t

V a b

∆
∆ =

 
⋅ = + ⋅ + ⋅ + 

 ⋅ ⋅ 

1 2
10

0

0

2

… (2.6) 

 

where 
( )i

s
0

 is the desired spacing in the case of zero velocity of vehicle i ; 
( )i

V
0

 

represents the desired velocity at time t ;
( ) ( ) ( )i i i

a ,b ,δ,T  and 
( )i

s
1

are non-physical 

parameters of the i -th driver [Pun05], [Tre13_2]. 

 Referring to connected vehicles, many challenges arise from the influence of 

driver behavior “on the dynamic characteristics of the car-following model under a 

vehicle-to-vehicle (V2V) communication environment” [Jia20_1]. In a first step, Jiao 

et al. [Jia20_1] adapted the OVD (for more details please see Section 3.4.4, 

Equation (3.27)) by proposing a new optimal velocity function (OVF) ( )( )iV x t∆  

according to Relation (2.7): 

 

( )( ) ( )( ) ( )( ) ( )( ) ( ) { }safe
, i , ,ni max i i i iV x t v S x t S x t S x t v t∆ ∆ ∆ ∆ =−

   = ⋅ − + − ⋅   
111 …  (2.7) 

 

where: 

• maxv  represents the maximal velocity of the vehicle;  

• ( )iv t−1  is the velocity of the preceding vehicle at time t ;  

• ( )safe
ix t∆  denotes the safe space headway; 

• ( )( )iS x t∆  represents the sensitivity of the optimal velocity to the space 

headway of the i -th vehicle computed as in (2.8) [Ban95], [Jia20_1]: 

 

( )( )
( ) ( )

( )( )safe
i i

i i
x t µ x t

S x t ,  S x t ,

e
∆ ∆

∆ ∆
− ⋅

= ∈   
+

1
0 1

1

                           (2.8) 

 

where ( )µ ,∈ 0 1  is a parameter. 

 This OVF shall comply with the following boundary conditions [Jia20_1]: 

• if ( ) ( )safe
i ix t x t∆ ∆=  then ( )( ) ( )i iV x t ,v t∆ − ∈  10 , { }i , ,n= 1… ; 

• if ( ) ( )safe
i ix t x t∆ ∆= and ( )iv t− =1 0  then ( )( )iV x t∆ = 0 , { }i , ,n= 1… ; 

• if ( )ix t∆ → +∞  then ( )( )i maxV x t v∆ → , { }i , ,n= 1… ; 

and further, combining it with a FVD-based model that incorporates the drivers’ 

characteristics in the V2V communication environment, results in the reinforcement 

car-following (RCF) model characterized as follows: 
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( ) ( )( ) ( ) ( ) { }i
i i

v t
k V x t v t λ v t ,  i , , ,n

dt

∆
∆ ∆ = ⋅ − + ⋅ =  1 2 …                        (2.9) 

 

where ( )v t∆  is the relative velocity between LV and FV, k  is a sensitivity constant 

and λ  is a parameter. 

 

2.3.2. Electric Vehicles (EVs) 
 

EVs will ensure the sustainability of future transportation systems through 

the reduction of CO2 emissions and the easier use of green energy sources. 

Nevertheless, this leads to changes in vehicle control systems by considering the 

specific characteristics of EVs. Therefore, an adaptation of current car-following 

models is mandatory to ensure safety movement on a road network where EVs are 

also present. 

 The dynamics of EVs play an important role in the movement process on a 

road network, especially when CAVs are involved. In this regard, the research of Li 

et al. [Li19_1] proposes a FVD-based model that incorporates these dynamics 

assuming that this information is shared between vehicles in a V2V communication 

environment. The most important parameter of EVs that influences the other 

movement characteristics at the microscopic level is the current magnitude of the 

permanent magnet synchronous motor (PMSM) of EV because it has a strong 

connection with the torque and acceleration of CAVs [Par14]. 

 Li et al. consider that, in the case of electric CAVs, the FV perceives changes 

of current magnitude of PMSM of the LV and can provide a quick response to that 

stimulus as follows [Li19_1]: 

 

( ) ( )( ) ( ) ( ) ( ) { },  i , , ,ni i i i ia t k V x t v t λ v t ξ I t∆ ∆ =+ = ⋅ − + ⋅ + ⋅  1 21 …          (2.10) 

 

where ξ ,  ξ> ∈0 ℝ  denotes the sensitivity coefficient; ( )iI t+1  represents the 

current magnitude of PMSM of the ( )i + 1 -th EV at time t , and the significance of 

the other FVD-related notations is available in Section 3.4.5 of this thesis. This 

approach proved its efficiency through a higher collision avoidance capability 

compared to the standard FVD. 

 EVs need efficient energy management during the movement process. 

Figure 2.1. highlights the design proposal of Schwickart et al. [Sch16] for a real-

time predictive cruise control system. As stated above, a suitable approach to 

overcome the uncertainties in traffic and environment conditions is to apply a 

driving control strategy based on model-predictive control (MPC). This MPC aims to 

control the acceleration pedal that further influences the battery current using as 

input information like road curvature, altitude profile, velocity limits, and the 

running distance between FV and LV. Schwickart et al. integrated the charge 

consumption model from Equation (2.11) in their approach to obtain the optimal 

compromise between the velocity reference tracking and the energy consumption of 

the EV [Sch16]: 

 

el
cons

dC
u

ds
=                      (2.11) 
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Figure 2.1. Predictive cruise control system for EV [Sch16] (fig.1). 

 

where elC  is the charge consumption that the designed controller will try to 

minimise; s  represents the vehicle position and consu  denotes the charge 

consumption per meter of the EV as defined below: 

 

cons i kin i trac i i

cons j kin j trac i

u a e b F c  if  P  is active

u a e b F c  if j i

= ⋅ + ⋅ +
≥ ⋅ + ⋅ + ≠

                                       (2.12) 

 

where kine ≥ 0  denotes the kinetic energy of the EV; tracF  is the traction force of 

the EV; ka , kb  and kc with { }k i , j=  are the coefficients of a kP  approximating 

linear function from a set of N  functions { }fun NP P , ,P= 1 …  defined as: 

 

k k kin k trac kP a e b F c  = ⋅ + ⋅ +                                                            (2.13) 

 

 This approach proved its efficiency through a reduction in the charge 

consumption of EVs. Zhang and Zhuan [Zha20] proposed another approach to 

improve EV car-following models. Compared to the MPC previously discussed, this 

proposal considers safety and comfort as additional multiple objectives in addition to 
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energy consumption and tracking. The objective function of this MPC framework has 

the following definition [Zha20]: 

 

( ) ( ) ( ) ( )

( ) ( )

p
T

p r p r

i

m
T T

i

J y k i | k y k i Q y k i | k y k i

  u k i R u k i

=
−

=

   = + − + ⋅ ⋅ + − + +   

+ + ⋅ ⋅ +

∑

∑

1

1

0

           (2.14) 

 

where: 

• p  denotes the predicting horizon; 

• m  is the control horizon; 

• ( )ry k i+  is a function that describes the response curves of a system that 

are smoothed as in Equation (2.15) considering the objective as 

( )min y k   : 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

i
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i
Tv

r i
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i
j
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y k i y k ,  y k δ k , v k ,a k , j k
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∆ ∆

 
 
 
   + = ⋅ =   
 
 
  

(2.15) 

 

where 
i
δ

ρ , i
vρ∆ , i

aρ  and i
jρ  represent the reference trajectory coefficients 

(values between 0 and 1) for the actual vehicle spacing error δ , relative 

velocity v∆ , acceleration a  and jerk j  of the own vehicle; 
• “Q  and R  represent the weight coefficient in the objective function defined 

according to Equation (2.16) as follows: 
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( )
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∆

 
 
 

 = =   
 
 
 

                            (2.16) 

 

where, the ( )δw k , ( )vw k∆ , ( )aw k  and ( )jw k  in Q  matrix are the weights 

corresponding to the error of spacing, relative velocity, and acceleration and 

jerk of the own vehicle at moment k , ( )uw k  in the R  matrix is the weight 

corresponding to the control command of the acceleration at moment k ” 

[Zha20]. 

 This optimization problem becomes an “online constrained quadratic 

programming problem” that combines the Equation (2.14) with the collision 

avoidance constraint (2.17) considering that the running distance ( )s k∆  between 
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FV and LV shall be greater than the standard safety distance S  at time k  and the 

limitation (2.18) of velocity, ”acceleration, jerk and control variable of the own 

vehicle” [Zha20]: 

 

( )Constraint: s k S∆ ≥                                                                      (2.17) 

 

( )
( )
( )
( )

min max

min max

min max

min max

v v k v

a a k a
Constraints: 

j j k j

u u k u

 ≤ ≤


≤ ≤


≤ ≤
 ≤ ≤

                                                    (2.18) 

 

 The uncertainties of a road traffic system involving EVs have also been 

addressed through adaptive fuzzy control methods. The robustness of the 

fuzzy-based sliding mode control method proposed by Li et al. [Li18] showed 

satisfactory results in terms of accuracy. This method involves the development of a 

switch logic with hysteresis boundary “to ensure ride comfort, and the expected 

torque is calculated in real time based on the inverse dynamic model to track the 

desired acceleration planned by the upper control layer” [Li18]. 

 

2.3.3. Improvements of Standard Car-Following 

Models 
 

In addition to the models related to CAVs and EVs that have been discussed, 

there are still other approaches that improved the standard car-following models. 

The Gipps model controls the acceleration/deceleration behavior of the FV 

based on the running distance to the vehicle ahead changes having as the main 

reason collision avoidance [Daa15], [Gip81]. Jia et al. [Jia20_2] starts with a big 

disadvantage of this model consisting of the neglection of lane change behavior. 

They proposed an extended model that prevents a lane change decision for the FV 

when the running distance between the FV and the LV has a large value. This model 

considers the scenario illustrated in Figure 2.2 and assumes that “at the time t , 

vehicle n  maintains a headway nd  with the vehicle n − 1  and a headway nh  with 

the vehicle an  on the adjacent lane” [Jia20_2]. The other notations refer to vehicle 

positions ( x ) and velocities (v ), the superscript a  refers to the adjacent lane. 

 

 
Figure 2.2. Car-following scenario considering the lane change prevention effect [Jia20_2] 

(fig.2). 
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 Improvements have also been made to the FVD model [Jia01]. Cao et al. 

[Cao20] extended the FVD to a density and acceleration velocity difference (DAVD) 

model that incorporates traffic density and LV acceleration. This model showed 

satisfying results in V2V communication environments. Gounni et al. [Gou20] also 

paid special attention to the FVD model. They included the driver's anticipation 

effect and short-term driving of the previous vehicle in their proposal for an 

improved FVD. This approach demonstrated positive results in terms of safety, 

efficiency, and stability of the vehicle system by significantly influencing small 

perturbations. 

 Song et al. [Son18] integrated the IDM [Tre13_2] and MOBIL [Kes07] 

models into a microscopic traffic model-based tracking algorithm. This model 

defines motion estimators to predict ”the interactions among vehicles in longitudinal 

and lateral motions, respectively” [Son18]. In addition to the good results with 

respect to the estimation of longitudinal and lateral states, this approach has a 

major drawback represented by a high computational cost. 

The movement of the surrounding vehicles directly influences the driver’s 

decisions. Yu et al. [Yu21] proposed an improved OVD model that incorporates the 

influence of heterogeneous velocity information in the honk environment. The 

results obtained based on the application of this approach were conducted to the 

following conclusions: 

“(1) Both the honk effect and the speed difference between the main lane and the 

adjacent lane have a significant impact on the stability of the traffic flow. The 

average speed of the adjacent lane also affects the stability of the traffic flow. 

 (2) A timid driver is more beneficial to the stability of traffic flow than an aggressive 

driver. Moreover, the more skillful driver is more conductive to improving the 

stability of traffic flow under the same traffic environment. 

 (3) For timid drivers, more information about the speed of the preceding vehicle is 

more conductive to the stability of traffic flow, while for aggressive drivers, less 

information is better” [Yu21]. 

Standard car-following models have a large number of parameters that 

make the calibration process difficult [Mog17], [Pun21]. Moghadam et al. [Mog17] 

used the Epsilon-Support Vector Regression ( ε -SVR) method to determine the 

acceleration of the FV and the Grid Search method for model parameters tuning. 

This approach proved higher robustness and reliability in the case of mild 

disturbances, and also a higher consistency with the field data compared to Gipps 

and GHR models. 

 

2.4. Calibration of Microscopic Traffic Models 
 

The development of new car-following calibration methods uses 

“goodness-of-fit function (GoF) and measure of performance (MoP), or combination 

of MoPs” to ensure a better approximation of the model parameters compared to the 

real observed road traffic parameters [Pun21]. The most used MoPs are velocity, 

acceleration, and inter-vehicle spacing. Punzo et al. [Pun21] provide a complete 

overview of the car-following calibration methods, including guidelines on calibration 

settings. They consider inappropriate settings the usage of percentage-based GoFs 

“if two or more MoPs are adopted in the objective function” [Pun21] and recommend 

the use of inter-vehicle spacing in the objective function if only MoP is adopted. A 

VR-based human-in-the-loop microscopic traffic simulation can simplify the 

calibration process by allowing a more convenient acquisition of driving behavior 

parameters [Has21]. 
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Fang et al. [Fan20] proposed an online calibration method based on a 

genetic algorithm for microscopic traffic simulators (Figure 2.3). The selection 

strategy chosen by these researchers was the tournament selection algorithm, due 

to efficiency and easier implementation reasons. This approach has been tested 

under a SUMO simulation environment and the results showed values of mean 

absolute percentage errors lower than 11%, which proved that it is a satisfying 

method for online calibration. 

 

 
Figure 2.3. Online calibration framework based on genetic algorithm [Fan20] (fig.1). 

 

This calibration problem considers traffic volume as a performance measure 

according to Equation (2.19): 

 

( )
( ) ( )( )

( )

measured simulatedn
i i

Q k measured
ii

F k F Q k
min

F k= ∞

−
∑

1

                                (2.19) 
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where “ ( )measured
iF k  is the average traffic volume of edge i  from the ground truth 

at step k ; ( )( )simulated
iF Q k  represents the average traffic volume of edge i  

produced by the calibrated simulator in the previous simulation time window k ; 

( )Q k  represents the applied calibration parameter” [Fan20]. 

Zaky et al. [Zak15] propose another calibration method based on genetic 

algorithms for IDMs. Furthermore, this approach includes a method based on the 

Markov switching model to detect various car-following regimes and calibrate the 

system accordingly. To minimize the gap between the simulated model and the 

observed driving behavior, this method uses an objective function represented by 

the root mean square percentage error (RMSPE). This objective function F  

considers both the FV velocity FVv  and the running distance s  between FV and LV 

for a number of n  observations moments as follows [Zak15]: 
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v t s t

= =

= =

− −

= +
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∑ ∑

2 2

1 1

2 2

1 1

                     (2.20) 

 

where with obs  and sim  have been marked the observed and simulated values, 

respectively. This calibration based on driving behavior showed satisfactory results, 

and further works will imply the usage of different objective functions for each 

regime. A simplified similar approach has been proposed by Zhu et al. [Zhu19] 

where only two driving styles have been considered, aggressive and conservative. 

The corresponding objective function (2.21) applies RMSPE only to the inter-vehicle 

spacing s  and neglects the velocity changes compared to [Zak15]. This approach 

achieved good performance in the calibration of car-following and confirmed the 

existence of heterogeneous car-following behaviors, as also argued by Wang et al. 

[Wan21]. 
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                                                           (2.21) 

 

 Genetic algorithms have also been used by Wang et al. [Wan21]. They 

proposed using the mean square error (MSE) as an objective function according to 

Equation (2.22) only considering the running distance s  between the vehicles 

because this “reveals the overall trend of driving and has a higher detection 

accuracy” [Pun21], [Wan21]. This research identified seven classes of driving 

conditions using the Next Generation Simulation Program (NGSIM) and after 

applying the calibration process discussed the heterogeneity property using a 

Kolmogorov‐Smirnov test. 
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( ) ( )( )
n

sim obs

t

MSE s t s t
n

=

= ⋅ −∑
2

1

1
                                                      (2.22) 

 

Pourabdollah et al. [Pou17] proposed the GoF-based method from Relation 

(2.23) where three MoPs have been used: 

 

( ) ( ) ( )FVP v s
F

∈ + ∈ + ∈
=

3
                                                                (2.23) 

 

where ( )∈ ⋅  denotes the normalized MSE for power demand P , FV velocity FVv , and 

inter-vehicle spacing s  according to the definitions from (2.24), (2.25) and (2.26): 

 

( ) ( ) ( )
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obs sim
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where “ m , fA , dC , ρ , g , and cR  are the vehicle mass, frontal area, air drag 

coefficient, air density, gravitational acceleration, and rolling resistance coefficient, 

respectively” [Pou17]. 
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                                                (2.25) 

 

( ) ( ) ( )
( ) ( )( )
obs sim

obs obs

s t s t
s

s t mean s t

−
∈ =

−

2

                                                    (2.26) 

 

This calibration approach has been applied for three car-following models: IDM 

(Section 3.4.6), Krauss (Equation (3.14), Section 3.4.1), and Wiedemann 

[Wie92]. The results showed improvements for IDM and “Krauss and Wiedemann 

car-following models improve significantly, but still they have higher errors than 

IDM” [Pou17]. 

The use of Kalman filters proved their efficiency as a calibration method for 

CAV-related car-following models [Ema19]. This research direction has previously 

been addressed by Zhu and Ukkusuri [Zhu17], who developed “a modified 

expectation maximization algorithm based on the Kalman smoother [...] to solve the 

optimal estimation problem” [Zhu17]. This last study underlined that the greatest 

limitation in the case of mixed road traffic involving CAVs is “the exchange of short 

range and real time traffic information, based on which connected vehicles can alter 

routes or departure time” [Zhu17]. 
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2.5. Discussions and Conclusions 
 

This chapter presented an overview of microscopic traffic control and 

modeling starting with the evaluation of different road traffic simulators, the 

analysis of new approaches based on standard car-following models, and the 

analysis of calibration methods related to microscopic traffic models. The newest 

modeling approaches cover the needs that arise from the developments based on 

CAVs and EVs. 

Sensor networks and the Internet of Things (IoT) play an important role in 

microscopic traffic control. Currently, IoT services meet the following limitations 

with respect to their integration with ITS: 

• network infrastructure efficiency and scalability; 

• “lack of flexibility in the interaction between the vehicles and other 

applications based on the IoT” [Pop20_5]; 

• “limited power sources that cannot ensure highly intensive full 

functionalities” [Pop20_5]; 

• “limitation in self-recovery mechanisms to handle the transition from an 

error state to the normal operational mode for ITS systems” [Pop20_5].  

Future networks 2030 aim to provide solutions to these limitations through “a 

common platform that allows the deployment of a wide variety of technologies and 

architectures” [Pop20_5], [Pur18], “cost reduction by using low-cost sensors, 

deployment services and reducing energy consumption” [Che20], [Pop20_5], 

“self-recovering mechanisms from failure states” [Pop20_5], [Tse19], “appropriate 

policies and regulations systems” [Mis12], [Pop20_5] or “systems designed for the 

storage and management of large volumes of road traffic data” [Mas16], 

[Pop20_5], [Pur18], [Sal13]. 

The review of recent works showed a lack of solutions related to the fitting 

of the car-following models to multiple-lane roads. Multiple uncertainties have also 

been identified in the calibration process. This thesis aims to provide solutions for 

these drawbacks in the following chapters. Moreover, research in this field has a gap 

regarding fault diagnosis and analysis, and part of this topic is considered by the 

calibration process through correct parameter setting. Fault detection means not 

only finding a solution by permanently applying an offset to the models’ parameters, 

but finding the root cause of the defect and providing a solution for it. 
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3. ROAD TRAFFIC MODELING AT THE 

MICROSCOPIC LEVEL 
 
 
 

3.1. Introduction 
 

Road traffic modeling is a very important step in understanding the concept 
of road transportation. Modeling processes offer, in many cases, possible sources of 
improvement for today’s problems. Road traffic is one of these issues that should be 
addressed due to its impact in many urban areas through crowded intersections. 
These agglomerations harm the citizens quality of life through higher travel times, 
increased CO2 emissions, and higher exposure to traffic injuries. 
 

3.1.1.  Objectives and Layout of the Chapter 
 
 This chapter aims to present an overview of the modeling process of road 

traffic at the microscopic level and the personal contributions of the author of this 
thesis in this direction. The path to obtaining new contributions needs a general 
presentation of a theoretical basis related to the road traffic modeling process. This 
will lead to a better understanding of the results of this research. 

Analysis of the levels of representation for the microscopic road network 
loading model consists of the first step in understanding the microscopic model of 
road traffic. In this direction, a critical analysis of the intersection configuration 
modes and simulation is performed. In the design phase of a crossroad, the travel 
times and the number of vehicles crossing the road network represent key 
parameters in the decision-making process to establish the best configuration mode 
for that crossroad [Pop20_1]. A simulation was conducted for a specific crossroad 
from Timișoara using the AnyLogic Simulation Software. The results analysis shows 
the advantages of choosing the roundabout as a traffic coordination method, but 
also highlights its drawback in case of crowded traffic that leads to gridlocks after 
the capacity of the roundabout has been exceeded. 

After the analysis of the representation levels of the microscopic road 
network loading model, this chapter details the concept of lane change behavior. 
Furthermore, the author of this thesis synthesizes the possible behavior of lane 
change actions in a single figure (see Figure 3.15) to provide a better overview of 
the lane change maneuvers. The definitions for the incentive criteria responsible for 
the safety assurance of the participants in traffic during a lane change action can 
also be found there. 

The last two subchapters provide a critical overview of the car-following 
models. Some well-known models are presented such as Gipps, Pipes, Gazis-
Herman-Rothery (GHR), Optimal Velocity Difference (OVD), Full Velocity Difference 
(FVD), Intelligent Driver Model (IDM), fuzzy-based model, and other variations of 
these models. Considering the theoretical foundation of the car-following modeling 
process, this study identifies the main advantages and disadvantages of this 
modeling approach.  
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In addition to all the mentioned contributions, this chapter creates the 
necessary framework for the building process of a refined car-following model. The 
new car-following model shall be adapted to multiple lane roads by considering the 
lane change behavior of the drivers during the movement on a road network. The 
next chapter will treat this subject. 

 

3.1.2. Overview of the Road Traffic Modeling 

Process 
 
“Traffic dynamics can be defined by mathematical traffic flows obtained 

through the interaction between drivers, vehicles, and infrastructure. Thus, in these 
mathematical models, large amounts of information are taken into account: the 
behavior of drivers in terms of the degree of acceleration of the car, the 
agglomeration of the streets, the speed at which they travel, the pedestrian flow, 
the positioning of the road signs, etc. By processing these data, it is desirable to get 
the best possible time to cross the intersections, in order to reduce road jams” 
[Pop18_1]. 

Simulation models are developed considering as input the data retrieved 
from various traffic monitoring sensor networks such as inductive loops, infrared 
sensors, video camera sensors, or radars. “By running a simulation model, 
predictions of traffic evolution can be made and intersections with the highest risk of 
blockage can be seen” [Pop18_1]. The determination of the root cause of these 
blocking areas is mandatory to ensure the proposal of a sustainable solution to 
improve traffic flow.  

“It is noteworthy that the values for the model parameters are chosen so 
that the simulation will match the data obtained from the traffic. This operation is 
called model calibration, and its endpoint consists of a calibrated model that can be 
used to predict traffic flow. A schematic representation of all these considerations is 
presented in Figure 3.1” [Pop18_1]. 

 

 
Figure 3.1. Traffic modeling process [Tre13_1] (pp.2, fig.1.1). 

 
Figure 3.2 shows “a clearer relationship between simulated and real-time 

traffic systems. To validate a simulated traffic system, it must reproduce the real 
system in a realistic manner. The simulated system receives as input the values 
from the real system. Besides, there are also entries that cannot be directly 
observed, requiring the use of estimated values” [Pop18_1]. The dynamics of 
origin-destination matrices are part of the category of inputs to be estimated.
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Figure 3.2. “Relationship between simulated and real systems and locations of calibration and 

validation processes” [Pop18_1], [Daa15] (pp.3, fig.1.1). 

 
“It can be noticed that in the proposed architecture, in the calibration, the 

simulation output values are compared with the data corresponding to the real 
system. Following this comparison, an adjustment of the simulated system 
parameters will be made so that the differences between the two outputs are 
minimal or reach a minimum specified by the requirements” [Pop18_1]. 
    

3.2. Levels of Representation of the Microscopic 

Road Network Model 
 

“Microscopic traffic models [Fer18] pay more attention to the details of the 
traffic flow and are vital for traffic analysis, especially in the presence of ITS. Initial 
model calibration is necessary to identify the parameter values. It requires the 
activities of all participants in traffic in order to have feedback of the traffic with 
parameters such as vehicle position, accelerations/decelerations, and vehicle speed” 
[Pop20_2].  

In addition to microscopic models, there are two types of models in traffic 
modeling theory, macroscopic and mesoscopic models. “Macroscopic models are 
approached from the perspective of continuous traffic flow theory. The objective of 
these models is to provide a description in time and space of the evolution of 
macroscopic flow variables. To achieve this description, the concepts of flow and 
density are used. Flow means the number of vehicles that cross a part of the road 
network ( x ) in a previously set time ( t∆ )” [Pop17]. “Mesoscopic models can be 

seen as a combination of microscopic and macroscopic models. In most cases, in 
these models, the behavior of the parameters corresponding to microscopic models 
is studied under the influence of specific parameters of macroscopic models. The 
classic example of this approach is to model the behavior of a vehicle with respect 
to others in traffic, taking into account aspects related to its dynamics” [Pop17]. 

The microscopic representation of traffic “is characterized by the emphasis 
on studying the individual behavior of each vehicle on the road network or on the 
length of queues in a discrete-time system. Microscopic models contain four levels 
of representation for the road network load model” [Pop18_1], [Yin15]:  

• crossroads configuration;  
• links;  
• lane choice;  
• vehicle-following. 
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“The interaction between the vehicles involved in the movement process 
needs special attention and is very important in analysing the movement process” 
[Bar10], [Pop20_2]. Usually, this interaction is visible through lane change 
maneuvers. “A lane change can be defined as the decision taken by a driver to 
change his/her current lane. This action can be observed as a process that usually 
occurs in two main cases. The first case is when the LV has low velocity and the FV 
changes lane only for a while, before returning to its previous lane. In this case, the 
only reason for the change is the driver’s desire to move at a higher speed without 
changing his/her planned destination. The second case arises from issues like 
leaving the road network using an exit lane or possible future restrictions of lane 
changes that can influence the planned destination” [Pop20_3]. The following 
subsections will describe these concepts in detail. 

Obtaining a sustainable smart mobility system is not enough to develop new 
traffic control algorithms, but also to identify relevant metrics and indicators of 
smart mobility that can indirectly improve urban traffic. As shown by Pop and 
Proștean [Pop19_3], having a standardized set of metrics and indicators will make 
it possible to make a more objective assessment of a smart city, strictly in terms of 
smart mobility, without taking into account its geographical area or other indicators 
specific only to the evaluated city. In this direction, Pop et al. [Pop18_4] proposed 
a common legal framework of policies and rules on the implementation of the 
concept of smart mobility applicable anywhere in the world. It should be mentioned 
that this legal framework contains several stages between various levels of 
management, national, regional, and local, defining the relations and the way of 
communication between the institutions corresponding to the mentioned levels 
[Pop18_4]. According to Pop and Proștean [Pop18_2], Romania implemented 
several approaches that improved the smart city score for some Romanian cities 
and implicitly the traffic flow. Table 3.1 shows a comparison between the actions 
taken by local administrations from Romania to improve the quality of the urban 
mobility system. 
 

Table 3.1. Actions taken by Romanian smart cities [Pop18_2]. 

Actions Cluj-Napoca Craiova Sibiu Timișoara 
Charging stations for 
electric vehicles 

�  - �  �  

Bike-sharing programs �  - - �  
Additional local 
transportation systems 

�  - - �  

Mobile applications for 
mobility 

�  �  �  �  

Intelligent traffic lights 
systems 

�  �  - �  

Intelligent parking 
systems 

�  �  - �  

 

3.2.1. Crossroads Configuration 
 
The configuration of crossroads (or intersections) is the first level of 

representation of the network loading model [Yin15]. Modeling at this level involves 
many challenges, such as collision avoidance assurance and maintenance of a 
simple model that will bring positive effects from the computational effort 
perspective [Bun14_1]. In addition, the chosen configuration mode can partially 
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solve traffic congestion problems that became more common in medium-sized and 
big cities around the world. Depending on the characteristics of the existing road 
infrastructure and its adaptability to different configuration modes can be used as 
input for various studies on the reduction of travel time values. “Another parameter 
that describes the efficiency of a chosen intersection coordination method consists 
of the number of vehicles that can cross a road network containing multiple 
intersections, in a specific time interval”  [Pop20_1].  

The configuration modes that can apply to a crossroad are the following: 
• uncontrolled intersections; 
• signalized intersections; 
• roundabouts; 

and further details will be provided. Furthermore, a critical analysis of the 
implementation of these configuration modes for intersection will be done based on 
a crossroad from Timișoara (Romania) as presented in [Pop20_1]. This study 
presents the decision-making process for establishing the best crossroad 
configuration mode for the Circumvalațiunii intersection. The modeling process uses 
the AnyLogic Simulation Software, which has a dedicated Road Traffic Library that 
simplifies the road network design. For a better understanding of the simulation 
model that will be further illustrated, it is necessary to describe the main blocks 
included in the AnyLogic Road Traffic Library (Table 3.2). 
 

Table 3.2. Simulation blocks included in the Road Traffic Library (AnyLogic Simulation 
Software) [Gri16], [Pop20_1], [***_2]. 

Symbol Name Significance 

 CarSource 

“Creates the cars and attaches the coordinates 
according to a specified location. Car arrivals can be 
defined using the arrival rate, interarrival rate, etc.” 
[Pop20_1]. 

 CarMoveTo 

“Is used for managing car movements. The 
destination can be a stop line, a road, a parking place 
etc. If movement to a specified destination is not 
possible, the car can be routed to a destination 
specified using port onWayNotFound” [Pop20_1]. 

 CarDispose “Eliminates a car from the road network” [Pop20_1]. 

 TrafficLight 

“Controls vehicle movement using stop lines or lane 
connectors by associating the timing for each color 
signal. This block ensures the simulation of traffic light 
behavior” [Pop20_1]. 

 
 For the chosen case study, the following nodes were identified as main 
connection points, according to Figure 3.3: Iulius Town, Cetății Boulevard, Jiul 
Passage and Gheorghe Dima Street. These nodes consist of street names or 
important landmarks of the city located in the neighborhood of the target crossroad. 
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Figure 3.3. Circumvalațiunii crossroad from Timișoara (Romania) – OpenStreet Maps View 

 
Figure 3.4 shows the simulation model from AnyLogic that considers Iulius 

Town as the source node for the experiments developed in the following paragraphs. 
The model will look similar when considering another node as the origin. 
“Destination nodes are chosen using the selectOutput5 block, based on the 
probabilities obtained from real traffic data” [Pop20_1]. “The probabilities used in 
the current simulation, for all cases, are presented” [Pop20_1] in the paragraph 
that analyses the simulation results. 

 

 
Figure 3.4. Traffic model for vehicles starting from Iulius Town [Pop20_1]. 

 
Uncontrolled Crossroads Configuration 

The main characteristic of uncontrolled intersections is the “lack of traffic 
signals or signs for traffic flow control. The vehicles flow through these crossroads is 
done by applying the priority-to-the-right rule. In this case, if a driver wants to turn 
left and a vehicle comes from the right side on the perpendicular road with direction 
straight, the driver shall apply the priority-to-the-right rule. If the vehicle on the 
perpendicular road turns left or right, the driver of the target vehicle can turn left in 
the meantime” [Pop20_1]. 

“This type of configuration method can lead to gridlock if the road network 
becomes overloaded. In this situation, traffic congestion appears because many cars 
try to give priority-to-the-right to other cars entering the intersection from distinct 
directions” [Pop20_1]. For these reasons, this configuration mode increases the 
level of congestion in crowded cities. 
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Bungartz et al. present in [Bun14_1] the four-phase model (Figure 3.5) for 
a crossroad that ensures collision avoidance through a set of rules that apply based 
on each driver’s own turning preferences. This brings advantages especially during 
the simulation phase of a road network where each turning option of a driver from a 
specific road can be analysed separately or in conjunction with the vehicles 
movement patterns of the other roads entering the intersection. Moreover, this 
model does not involve the other traffic participants and successfully eliminates the 
gridlocks. Besides the mentioned benefits, it brings as a disadvantage the fact that 
it “is not so close to reality as the priority-to-the-right rule” [Bun14_1]. 
 

 
Figure 3.5. The four-phase model for a crossroad [Bun14_1] (pp.190, fig.8.10). 

 
The four-phase model is also suitable for a traffic light system that has a 

separate phase for left-turning traffic. Also, it applies to controlling the “right-of-way 
for uncritical, not too frequently used crossroads like those from residential areas” 
[Bun14_1]. 

Figure 3.6 presents the simulation for the case where the intersection of the 
chosen case study “has no crossing method defined. In this case, the vehicles will 
apply the priority-to-the-right rule. The policy of giving priority to the right is 
embedded in the simulation tool and does not need to be configured separately” 
[Pop20_1]. The simulation tool ensures that collisions are avoided for vehicles 
crossing the simulated road network. 

 

 
Figure 3.6. Simulation of the uncontrolled crossroad configuration for the Circumvalațiunii 

intersection [Pop20_1]. 
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Signalized Crossroads Configuration 

“The problem of gridlock, as previously mentioned, can be solved by 
installing traffic lights that use three colors to control traffic flow” [Pop20_1]. The 
appearance of the first three-colored traffic light system in 1914 (Ohio) represents 
the historical starting point of the ITS [Ash16], [Pop17]. 

The “setting of green intervals, which allows vehicles to enter the 
intersection, plays a crucial role in reducing traffic congestion. The timing of these 
intervals and phases is usually chosen using previous traffic data and estimating the 
possible future load for each crossroad [Bun14_1]. The entry of the vehicle into the 
intersection can be configured in two modes: based on stop lines or based on lane 
connectors” [Pop20_1]. For a better understanding of these traffic lights 
configuration modes, it is necessary to present the four-way intersection model of 
the crossroad used as a case study (Figure 3.7). 

 

 
Figure 3.7. The four-way model for the Circumvalațiunii intersection [Pop20_1]. 

 
Figure 3.8 shows the AnyLogic simulation model for the Circumvalațiunii 

intersection in the case of placing traffic lights as a signalized traffic coordination 
method. 

 

 
Figure 3.8. Traffic lights configuration for Circumvalațiunii intersection [Pop20_1]. 
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The traffic lights configuration based on stop lines gives “a green traffic 

signal for one of the stop lines is , i=1,4  during a traffic signal cycle that ensures 

the crossing of the intersection from each origin node. To reduce the time spent at 
the intersection, the green signal can be given at the same time for vehicles coming 

from opposite directions (e.g. vehicles from 1O  and 3O ), while considering that 

those vehicles changing their direction of movement shall give priority to vehicles 
moving straight. All vehicles from the lanes affected by the red traffic light shall wait 
for the green light, independent of the direction chosen after leaving the intersection 
(see Figure 3.9). For the simulated case study, it was considered that by having 
green time for two traffic lights at the same time, the vehicles that are moving to 
the left, in both cases, shall give priority to the right to vehicles crossing the 
perpendicular road that are moving ahead” [Pop20_1]. 

 

 
Figure 3.9. Traffic lights – configuration based on stop lines for the Circumvalațiunii 

intersection [Pop20_1]. 

 
“The second method of traffic lights configuration is based on lane 

connectors in a manner that ensures avoidance of traffic jams. This case highlights 
the possible directions that can be reached, taking into account the current lane of 
the target vehicle. The advantage of this crossroad configuration mode is the 
additional green time that can be given to vehicles that are turning right. In this 
case, the restriction of giving priority to vehicles arises from the perpendicular road 
that has a green signal to go straight” [Pop20_1]. Figure 3.10 illustrates the 
mapping of this traffic lights configuration mode to the chosen case study. 

 

 
Figure 3.10. Traffic lights – configuration based on lane connectors for the Circumvalațiunii 

intersection [Pop20_1]. 
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In addition to traffic lights configuration based on infrastructure 
characteristics (stop lanes or lane connectors), the development of new algorithms 
ensures improvements in the allocation of traffic lights phases that lead to a 
reduction of traffic congestion in intersections. In this regard, Pop [Pop19_4] 
proposed a planning algorithm based on the concept of rate-monotonic scheduling. 
“The traffic signal controller was developed in the MATLAB R2012a version using 
Simulink with the Simevents library as in Figure 3.11” [Pop19_4], considering as a 
starting point the approach proposed by Aljaafreh and Al Oudat [Alj14]. 
 

 
Figure 3.11. Simulation model of the signal processing unit for traffic lights [Pop19_4]. 

 

Crossroads Configuration using Roundabouts 

“Roundabouts, also known as traffic circles, proved their efficiency as a 
traffic coordination method in many cases” [Pop20_1] through their self-organizing 
capacity. Roundabouts “are one-way circular lanes that have entry points for 
vehicles coming from several directions. The movement of vehicles entering a 
roundabout is conditioned by the priority of those vehicles already present at the 
roundabout” [Pop20_1]. A new vehicle enters the roundabout only after checking 
on the left side of the entry point if one of the fields can be reached with the 
maximum allowable velocity [Bun14_1]. Wrong approximations of the vehicles 
speed from the left of the entry point can lead to gridlocks by forcing those vehicles 
to reduce their speed or, in the worst-case scenario, to traffic collisions. Moreover, 
small roundabouts are prone to gridlocks based on previous assumptions [Bun14_1] 
and due to this, the design phase of a roundabout shall apply a complex analysis of 
roundabout capacity. This analysis monitors the existing road structure and uses 
standard formulas that, unfortunately, do not consider the influence of pedestrians 
or bicycles [Ber00].  

“In the case of a four-way intersection, where there are four incoming and 
outcoming roads, the intersection can be modeled itself with four fields” [Bun14_1], 
[Pop20_1]. Each field has its specific behavior for the vehicles. According to 
[Ber00], the modeling process of a roundabout with multiple lanes is complex due to 
the need to cover the driver lane change behavior inside the roundabout lanes.  

The AnyLogic simulation model of the roundabout was designed as a 
one-way road with two traffic lanes, “and the four existing entrances were modeled 
as intersections that give priority to the vehicles that are already in the roundabout” 
[Pop20_1]. The simulation software controls the movement inside the roundabout 
to avoid collisions. The studied intersection with roundabout looks as in Figure 3.12. 
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Figure 3.12. Roundabout configuration for the Circumvalațiunii intersection [Pop20_1]. 

 
 Roundabouts need special attention in terms of safety for CAVs. In this case, 
the need arises for “a central controller that manages conflicts within a roundabout 
named Roundabout Manager (RM) or Intelligent Traffic Management System (ITMS). 
This controller prioritizes the incoming vehicles based on different strategies and 
adjusts their trajectories, considering the type of roundabout. All strategies, 
algorithms, paradigms, results, environment, scenarios, scenes related to this kind 
of controller are simulated on a computer from the TMC” [Pop21]. Some 
perturbative factors like large volumes of traffic data, weather conditions, and 
vehicular communication protocols influence the functionality of RM systems 
[Pop21]. 
 
Simulation Results and Discussion for the Chosen Case Study 

 The probabilities computation was performed based on real road traffic data 
“received from Timișoara City Hall-General Directorate of Roads, Bridges, Parking 
and Utility Networks—Traffic Monitoring Office, Timișoara, Romania (Romanian 
official institution name: Primăria Municipiului Timișoara—Direcţia Generală Drumuri, 
Poduri, Parcaje și Rețele Utilitare–Birou Monitorizare Trafic, Timișoara, Romania) 
based on the approved request RE2019-002611/18.12.2019” [Pop20_2], 
[Pop20_3]. The data collection process used inductive loops placed on the road 
infrastructure. Table 3.3 shows the calculated route choice probabilities for the case 
study discussed that were used as inputs for the simulation of all presented 
crossroad configuration methods. 
 

Table 3.3. Route choice probabilities for the chosen case study [Pop20_1]. 

Origin nodes 

Destination nodes 

Iulius 
Town 

Cetății 
Boulevard 

Jiul 
Passage 

Gheorghe 
Dima Street 

Iulius Town 0.050 0.150 0.650 0.150 

Cetății Boulevard 0.550 0.050 0.200 0.200 

Jiul Passage 0.700 0.050 0.050 0.200 
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Origin nodes 

Destination nodes 

Iulius 
Town 

Cetății 
Boulevard 

Jiul 
Passage 

Gheorghe 
Dima Street 

Gheorghe Dima Street 0.600 0.050 0.250 0.100 

 
“The simulation was run for 15 minutes and the results are shown in Table 

3.4. Parameters of interest include the number of vehicles and their necessary time 
to cross the road network. We can see that all intersection configuration methods 
have a positive impact on reducing traffic congestion compared to the case of an 
uncontrolled intersection. These results highlight that the roundabout configuration 
is the best for this case. Only for 15 minutes of traffic simulation can be observed an 
increase of 16 in the number of vehicles that are crossing the intersection. This 
configuration mode can lead to a long-term improvement in traffic flow through the 
intersection” [Pop20_1]. 
 

Table 3.4. “Travel time and number of vehicles based on different crossroad configuration 
methods” [Pop20_1]. 

Crossroad configuration 

method 

Travel time Number of 

vehicles Min (s) Max (s) Mean (s) 

Uncontrolled intersection 14.074 793.007 251.933 174 

Traffic lights – stop lines 14.060 445.112 93.050 453 

Traffic lights – lane connectors 19.240 339.611 89.113 460 

Roundabout 14.017 298.157 82.078 476 

 

3.2.2. Links 
 

Links are the second level of a network representation of the microscopic 
road traffic model. To better understand this concept, it is necessary to start with an 
example of a road network containing five crossroads (see Figure 3.13), as depicted 
in [Yin15]. This figure also includes the crossroads configuration modes. Within each 
intersection, there are eight mobility possibilities. Notations S1, S2, etc. represent 
the traffic requests for each lane inside of a link during the simulation process. “The 
random traffic input data satisfy the Bernoulli 0-1 distribution in a discrete-time 
procedure” [Yin15]. Within the presented road network are three types of links, 
called entrance links, inside links, and exit links [Pop17], [Yin15]. 
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Figure 3.13. Road network containing five intersections [Yin15] (fig.1). 

 
The entrance and exit links allow vehicles to enter and exit the road 

network. In the case of a road traffic simulation using AnyLogic Simulation 
Software, the CarSource blocks are positioned at the entrance links and the 
CarDispose blocks are connected to the exit links. The inside links allow the vehicle 
to move within the road network, directed using the CarMoveTo simulation block, 
from an entrance link to an exit link. According to Figure 3.13, each inside link 
contains two lanes. The driver uses one of these two lanes to go forward or to turn 
right and the other lane to make only a left turn. The next section will provide more 
details about the representation of traffic lanes. 

 

3.2.3. Lane Choice 
 
Lane choice is the third level of representation of the road network model. 

Within an internal link (see Figure 3.14), two traffic lanes are associated with one 
direction of travel. From the beginning of a link, until its end, equal discretized parts 
of the road can be considered. Each of these cells corresponds to a vehicle waiting 
in the queue. The cell size includes the lengths of the vehicles and the safety 
distance between vehicles. These sections of road will be numbered from 1 to L, 
where L is the maximum number of vehicles that can be at that time on that 
internal link. The entrance area of the vehicles moving from node A to node B was 
numbered with 0 [Pop17], [Yin15]. 
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Figure 3.14. Inside link - lanes configuration [Yin15] (fig.2). 

 
Both nodes A and B contain three directions of movement. The values 

d=-1P  , d=0P   and d=1P   associated with node A define the probabilities for the 

left-turn, straightforward and right-turn decisions of a target vehicle. In node B the 
following probabilities computation apply [Pop17], [Yin15]: 

 
1

d=-1 mer

2 1
d=0 mer div

2 2
d=1 mer div

P  = P

P  = P P

P  = P P

⋅

⋅

                                         (3.1) 

 

where 1 2
mer mer merP  = [P ,P ]  represent the merged probabilities consisting of two 

random distributions for the lane destined to left-turn and for the lane intended to 
straight movement (or the right-turn) after leaving node A. The previous equation 

uses 1 2
div div div

P  = [P ,P ]  to define divergent probabilities which are random 

distributions associated with straightforward movement and for making a right-turn 
before reaching node B. 

The lane choice representation needs a dynamic update during the 
movement process inside a link. Lane change behavior is a complex activity that 
involves both traffic conditions and drivers’ behaviors. All these aspects will be 
treated in more detail in Section 3.3. 

 

3.2.4. Car-Following Level 
 

The last level intends to highlight the representation of vehicles in the road 
network, from which its name as car-(vehicle-)following level arises. Each vehicle in 
the road network can be characterized by the following parameters: vehicle speed 
(also mentioned as velocity), vehicle position within the traffic network, and 
direction of movement [Pop17]. In a “discrete-time procedure, all vehicles present 
in the network move in parallel according to the current positions and velocities” 
[Yin15]. This action involves the movement of individual vehicles in the discrete 
places of the lane (see the cells in Figure 3.14). The degree of acceleration or 
deceleration of vehicles may also be taken into account, as well as the safety 
distance between vehicles. 

This subchapter gave only a short presentation about the specific 
characteristics of the car-following representation level. Section 3.4 will offer a 
detailed overview of the car-following modeling process where some well-known 
models will be discussed. 
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3.3. Lane Change Behavior Modeling 
 

“Lane change can be defined as the concept that describes the decision 
taken by a driver to change its current lane for movement. This action can be 
observed as a process that usually occurs in two main cases. The first case is when 
the LV has low velocity and the FV will change the lane only just for a while, with a 
return to its previous lane. In this case, the only reason is the driver desire to move 
at a higher speed, without changing its planned destination. The second case arises 
as a result of a reason like leaving the road network using an exit lane or possible 
ahead restrictions of lane changes that can influence the planned destination” 
[Pop19_1]. 

“Based on situations explained previously, in car-following modeling they 
have the leader change concept as correspondent. In all circumstances of the lane 
change, the LV will be changed, even if we talk about switching roles between the 
current LV and the FV, or the introduction of a new LV from the new joined traffic 
lane” [Pop19_1].  

“For a better understanding of the behavior of lane changes, in Figure 3.15 
are represented all possible situations that can appear during this action for a road 
that has three lanes for a direction of movement. Moreover, the relation with the 
terms specific for car-following models is illustrated” [Pop19_1].  

Figure 3.15 shows a “possible lane change action during a road network 
crossing. We assume that we have one LV associated with each lane, and the 

positions of the lanes are as follows: : i-1L - right lane, iL - middle lane, i+1L  - left 

lane. The purpose is to study the behavior of the FV from lane iL . This car has two 

options to change its lane. If the choice is lane i+1L , the 
iL

FV  becomes the follower 

of the 
iL

FV
+1

 (Figure 3.15a). At this point, the driver can then choose to return to 

his/her previous lane or to leave the road network if lane i+1L  is a left exit lane. In 

the other case, by moving to lane i-1L , the 
iL

FV  becomes the follower of the 
iL

FV
−1

 

(Figure 3.15b)” [Pop19_1], [Pop20_3]. 
“Similar to the previous situation, the driver can further choose to return to 

his/her previous lane or leave the road network if lane i-1L  is a right exit. We can 

see that in all presented situations, the new role of a vehicle is highlighted with an 
asterisk, notation further used also in the case of parameters to identify the 
parameter value after a role change. In addition to the classic lane change based on 
a possible decision made by the driver to modify his/her initial itinerary, a lane 
change action taken only based on the low velocity of the LV is also possible” 
[Pop20_3]. 
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Figure 3.15. “Lane change behavior: (a) movement of 

iL
FV from lane iL  to lane i+1L  at time 

t+τ ; (b) movement of 
iL

FV from lane iL  to lane i-1L  at time t+τ ” [Pop20_3] (fig.2). 
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 “As shown before, the vehicle that initiates the lane change maneuver 
influences the behavior of the two vehicles from the current and the target lanes 
[Kes07]. To see that a lane change can lead to improvements in the individual local 
traffic situation of a driver, the incentive criterion was defined” [Pop20_3]. 

“Considering the following notations for the accelerations of the vehicles 

involved in the 
iL

FV  lane change action: 

 

( ) ( )

( ) ( )
( ) ( )

* LiLi

L Li i

L Li i

driver FVFV

newfollower FV FV

driver FV FV

a a t τ a t

a a t τ a t

a a t τ a t

+ +


= + −


 = + −

 = + −



1 1

2 2

                     (3.2) 

 

where 
Li

FV
a 2  represents the acceleration of the 

iL
FV successor and assuming that we 

have symmetric lane change rules, the incentive criterion is represented by Relation 

(3.3) [Kes07]: 

 

( )driver newfollower oldfollower tha p a a a∆+ ⋅ + >                (3.3) 

 
where p  is the politeness factor that denotes the total advantage of the two 

immediately affected neighboring vehicles, and tha∆  is the switching threshold” 

[Pop19_1], [Pop20_3]. 
“According to the driving rules established by law, some lane changes are 

forbidden. Here, we can reformulate the incentive criterion based on asymmetric 
passing rules defined according to the majority of European countries’ traffic 
legislation [Kes07]” [Pop20_3]. 

“For asymmetric passing rules, two forms of incentive criterion can be defined: 

• lane change from left to right [Kes07]: 

 

( ) ( )* LiLi

eur
FV oldfollower th bias

FV
a t τ a t p a a a∆ ∆+ − + ⋅ > −                       (3.4) 

 

• lane change from right to left [Kes07]: 

 

( ) ( )*
LL ii

eur
newfollower th biasFVFV

a t τ a t p a a a∆ ∆+ − + ⋅ > +                     (3.5) 
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where { }i i

eur *
L Lk

a ,k FV ,FV=  are the accelerations adapted by the driver to the 

majority of European countries’ traffic legislation and biasa∆  is a constant that 

represents the keep-right directive of the lane change rule” [Pop20_3]. 
“Another important criterion specific to this action is the safety criterion: the 

deceleration of the successor vehicle from the target lane (
iL

FV
+1

 or 
iL

FV
−1

) shall 

not exceed a given safe acceleration limit, as defined by Equation (3.6) [Kes07]” 
[Pop20_3]. 

 

( ) { }
Lj

FV safea t τ a , j i , i+ ≥ − = − +1 1                              (3.6) 

 

“Lane change behavior can be measured by calculating the lane changing rate 

using the relation below [Kes07]: 

 

( ) n
r ρ

x t∆ ∆
=

⋅
                                                (3.7) 

 
where n  is the number of lane changes during a t∆  interval of time on a section of 

road with a length of x∆  kilometers” [Pop20_3]. 
 

3.4. Car-Following Model and its Derivatives  
 

Car-following is the most well-known microscopic modeling procedure of road 

traffic and has various variations depending on the influence of a certain parameter 

of the model. This type of modeling consists of the behavioral study of vehicles that 

"follow" the front vehicle while moving on a lane [Bar10], [Ger75]. In this way, the 

vehicle that "follows" (FV - follower vehicle) the mode of travel of the front vehicle 

(LV - leader vehicle) must adapt its acceleration and thus speed to ensure a safe 

distance from the LV. 

A car-following model can be represented as a stimulus-response equation 

according to the Relation (3.8). The response of FV to the actions of LV translates 

into the tendency to accelerate/decelerate with a time delay τ  from the moment of 

receiving the stimulus (LV action) [Ger75]. The stimulus function is represented by 

a combination of several factors: acceleration, speed, the relative speed of FV 

compared to LV, the threshold value for speed, the dynamic distance between 

vehicles, vehicle performance, etc. [Rot01]. Sensitivity consists of a proportionality 

factor with a role in equating the stimulus function with the response or control 

function [Rot01]. 
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( ) ( )Re sponse t τ Sensitivity Stimulus t+ = ×                        (3.8) 

 

Starting from the previous relationship, variations of the model may occur 

based on the “answers to the following questions: 

• What is the nature of the response given by FV? 

• What are the stimuli to which FV responds and how can its sensitivity be 

measured?” [Bar10], [Ger75]. 

 To provide the response to the stimulus function, it is necessary for the FV 

driver to complete the following steps, as described in [Rot01]: 

• perception - the FV driver collects information from his field of vision 

regarding LV behavior (degree of acceleration, speed, evolution of running distance 

from LV); 

• decision making - the interpretation of the perception on the driving behavior 

of the LV and its correlation with landmarks of previous travel experiences lead to 

the development of a FV control strategy from which the driver's driving skills 

evolve; 

• control - represents the implementation of the decision taken by the driver 

through the coordinated and dexterous execution of the necessary maneuvers and 

their constant evaluation until the final goal is achieved. 

“The main parameters of interest considered in this concept are vehicle 

position, velocity, acceleration/deceleration and direction of movement. In addition 

to the aforementioned parameters, other parameters that influence the movement 

behavior of a vehicle, some of which depend on the vehicle characteristics, are 

presented in Figure 3.16a” [Pop19_1], [Pop20_3]: 

• FVL  - length of FV; 

• LVL  - length of LV; 

• S  - standard safety distance between FV and LV calculated according to 

Relation (3.9) [Kho10], [Pop20_2], [Pop20_3]: 

 

FVx
S L

.

 
= ⋅ + 

 
1

16 10
                                          (3.9) 

 

where L  is the average length of a vehicle and is approximately L .= 4 50m in the 

case of passenger vehicles (cars); 

• “ im  - mass of the vehicle i  where { }i FV ,LV= ; 

• g m / s210≃  - acceleration of gravity used to represent the weight of a 

vehicle according to mechanics theory (product between mass and 

acceleration of gravity); 

• ia  - acceleration/deceleration value of the vehicle i  where { }i FV ,LV= ; 
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• iF  - inertial force of the vehicle i  where { }i FV ,LV=  that can be computed 

according to Relation (3.10), after applying Newton’s second law of 

motion t τ− ” [Pop19_1], [Pop20_3]: 

 

i i iF m a= ⋅
��� ���

                                                   (3.10) 

 

 

Figure 3.16. “Car-following concept: (a) vehicle characteristics; (b) parameters of interest and 
vehicles behavior (the listed parameters will be used further in the car-following model 

definition)” [Pop20_3] (fig.1). 

 

“To better understand the influence of the car-following model parameters, 

Figure 3.16b illustrates the interaction of a LV and FV at time t τ−  and t . The 

parameters of interest for the vehicle’s movement behavior are: 

• FVx  - running distance of FV during a τ  interval of time; 

• LVx  - running distance of LV during a τ  interval of time; 

• ( )s t  - dynamic distance value between FV and LV at time t ; 

• ( )s t τ−  - dynamic distance value between FV and LV at time t τ− ” 

[Pop19_1], [Pop20_3]. 

 

3.4.1. Gipps 
 

The Gipps model is the most known car-following model. It is part of the 
class of traffic models based on maintaining the safety distance between vehicles 
and avoiding their collisions. The main purpose of the model is to control the 
acceleration/deceleration behavior of the driver by ensuring the compliance of the 
restriction with a safe distance to the vehicle in front [Daa15]. 
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The original form of the Gipps model, as proposed in [Gip81] and taking into 
account the rewritings in [Daa15], [Pun05] to simplify the understanding of the 
concept, is presented by Relation (3.11): 

 

( ) ( ) ( ){ }FV a,FV b,FVv t τ min v t τ ,v t τ+ = + +                 (3.11) 

 

where ( )a,FVv t τ+  represents the value of the velocity of the FV at the moment 

t τ+ , if there is no LV in front of it. This velocity is defined using (3.12) based on a 

free-flow acceleration profile that facilitates the attainment of maximum speed by 
the vehicle: 
 

( ) ( ) ( ) ( )FV FVmax
a,FV FV FV

FV FV

v t v t
v t τ v t . a τ .

V V

 
+ = + ⋅ ⋅ ⋅ − ⋅ +  

 
2 5 1 0 025      (3.12) 

 
noting that the following notations have been used: 

• max
FVa  – the maximum acceleration rate desired by the FV; 

• FVV – the value of the velocity at which the FV wants to move; 

• τ  – reaction time of the FV. 

The second case, represented by the calculation of ( )b,FVv t τ+ , 

corresponds to the situation in which this velocity is chosen by the driver to respect 
the specific safety distance to rest at any braking of the LV at the maximum 
deceleration rate:  
 

( ) ( ) ( )( ) ( ) ( )LV
b,FV FV FV FV LV FV FV

LV

v t
v t τ b τ b τ b x t x t S v t τ

b̂

 
 + = ⋅ + ⋅ − ⋅ ⋅ − − − ⋅ −
 
 

2
2 2 2 (3.13) 

 

where FVb  represents the maximum deceleration rate of FV, and LVb̂  is the 

maximum value estimated by FV of the deceleration that LV intends to achieve. 
The Gipps model has various variations, among which it is necessary to 

mention the “Krauss model which is a stochastic version of the original model” 

[Kra97], [Tre13_2]. This model directly calculates the desired velocity value dv  

[Kra97], [Pou17], [Son14]:  
 

( ) ( ) ( ){ }d max FV max safev t min v ,v t a t ,v t∆⋅= +            (3.14) 

 

considering the safety velocity safev  defined as: 

 

( ) ( ) ( ) ( )
( ) ( )

FV k
safe LV

LV FV
k

max

s t - v t τ
v t v t

v t v t
τ

b

⋅
= +

+
+

⋅2

                     (3.15) 
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and the fact that a random disturbance η > 0  can affect the current speed of the FV 

( FVv ) while driving: 

 

( ) ( ){ }FV dv t t max ,v t - η∆+ = 0                                   (3.16) 

 
 The significance of the notations used in Equations (3.14), (3.15) and (3.16) 
are: 

• “ maxb  - maximum deceleration that a driver is willing to use in non-

emergency situations; 

• kτ  - reaction time of the driver (about 1 s); 

• maxv  - maximum vehicle speed; 

• maxa  - maximum acceleration a driver is willing to use; 

• t∆  - step duration of the simulation” [Pou17], [Son14]. 

According to [Pou17], maxa , maxb  and kτ  are optimization variables, 

which must be calibrated for each trip. 
 

3.4.2. Pipes 
 

This model introduces the dynamic of a chain of traffic (see Figure 3.17) as 
it results from the assumption “that the drivers of the various vehicles on the line at 
all times obey a postulated traffic regulation” [Pip53], [Rot01]. This regulation 
suggests how the FV shall handle the maintenance of a safe distance to LV based on 
velocity control: “A good rule for following another vehicle at a safe distance is to 
allow yourself the length of a car (about fifteen feet) for every ten miles per hour 
you are traveling” [Pip53]. “According to Pipes car-following model, the minimum 
safe distance headway increases linearly with speed. A disadvantage of this model is 
that at low speeds, the minimum headways proposed by the theory are considerably 
less than the corresponding field measurements” [Mat14]. 

 

 
Figure 3.17. A line of traffic with n  vehicles. 

 
The following dynamical equations describe the interaction between the 

vehicles moving in a row on a traffic lane considering their separation based on the 
postulated “legal distance” [Pip53] mandatory: 

 

( ) { }iiS T v L ,  i , , ,ni ix x ++ + ⋅ + = −+= 1 1 2 11 …                       (3.17) 

 
where T .  s= 1 02  is the constant time prescribed by the postulated “traffic law” and 

is also used in the definition of velocities: 
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{ },  i , , ,ni i iT v v v = −+ +⋅ + = 1 2 11 1  …ɺ                                (3.18) 

 
 By applying a p  multiplied Laplace transform of the velocity, Pipes 

introduces the following relation [Pip53]: 
 

( ) ( ) { },  i , , ,ni iLv t V p = −= 1 2 1…                                     (3.19) 

 
to transform the differential Equation (3.18) into the following algebraic relation: 
 

( ) ( ) { },  i , , ,ni i iT p V V T p v = −+ +⋅ + = + ⋅ ⋅ 1 2 11 11 0 …          (3.20) 

 

which considers ( )iv 0  as the initial velocities at time t = 0 . 

 

3.4.3. Gazis-Herman-Rothery 
 

Classified as a stimulus-response model, this model originates from General 
Motors (GM) research from 1958. This GM model [Cha58] “specifies the stimulus as 
the relative speeds of vehicles, that is, each vehicle tended to move at the same 
speed of its front vehicle” [Li12]. The Relation (3.21) considers Figure 3.16 
notations and describes this mentioned approach: 
 

( ) ( ) { },  i , , ,ni ia t τ k v t∆ =+ = ⋅ 1 2 …                                (3.21) 

 

where ( )ia t τ+  represents the acceleration of the i-th vehicle at time t τ+ , with 

τ ∈ ℝ  as the driver reaction time, k ,k∈ > 0ℝ  - the sensitivity coefficient describing 

the responsive intensity of the driver to the unit stimulus and the ( )iv t∆  is the 

difference between the velocities of the leading i-th vehicle and the following i+1-th 
vehicle as presented below: 
 

( ) ( ) ( ) { },  i , , ,ni i iv t v t v t∆ =+= − 1 21 …                           (3.22) 

 
 A series of changes of the original GM model led to obtaining the GHR model 
in 1959. The GHR model starts from the drawback of the GM model that “could not 
describe the road traffic process in higher density since the behavior of the driver 
had nothing to do with running distances in (3.21)” [Gaz59], [Li12]. The new 
proposed model from (3.23) also facilitates the adaptation of (3.21) to a 
macroscopic description of the road traffic: 
 

( ) ( )
( ) { }i

,  i , , ,ni
i

v t
a t τ k

x t

∆
∆

=+ = ⋅ 1 2 …                               (3.23) 

 

where ( )ix t∆  is the dynamic distance value between the leading i-th vehicle and the 

following i+1-th vehicle at time t : 
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( ) ( ) ( ) { },  i , , ,ni i ix t x t x t∆ =+= − 1 21 …                           (3.24) 

 
Further developments conducted by Edie [Edi61] succeeded in a new model 

that considers that the velocity of the vehicle itself has the capacity to influence the 
driver behavior. The modified GHR model can be generalized as follows to relate the 
“acceleration to the velocity of the LV, relative velocity and spacing between FV and 
LV, and driver reaction time” [Edi61], [Li12], [Pan05]: 
 

( ) ( ) ( )
( )

{ }im ,  i , , ,ni i l
i

v t
a t τ k v t

x t

∆

∆
=+ = ⋅ ⋅ 1 2 …                    (3.25) 

 

where m,l +∈ ℝ  are constants during the calibration process of the model for a 

particular road network. According to [Gaz61], the most favorable values 

determined for these parameters respect the following constraints m ,∈   0 2  and 

l ,∈   1 2 . 

 This model opens the path to new developments regarding the optimization 
of the calibration parameters m  and l . It must be mentioned that the main 
outcome of this model is to establish a mathematical relationship between various 
stimuli and the acceleration and offers a good starting point for determining the 
factors that influence the behavior of the FV [Oss05]. 
 

3.4.4. Optimal Velocity Difference 
 

The OVD model is another stimulus-response approach that takes into 
account the driver behavior. Proposed by Bando et al. [Ban95], OVM consists of a 
dynamic model oriented to traffic congestion that considers the running distances 
between vehicles moving in a row and the velocity difference between the vehicles 
[Mat14]. These parameters represent the inputs for the calculation of the optimal 
velocity that each vehicle should achieve. In this case, the dynamical equation of 
the traffic system from (3.26) “assumes that the driver seeks a safe velocity based 
on the distance to LV” [Li12]: 
 

( ) ( )( ) ( ) { },  i , , ,ni i ia t k V x t v t∆ = = ⋅ −  1 2 …                   (3.26) 

 
where k ,k∈ > 0ℝ  - is the sensitivity coefficient (assumed to be independent of i ) 

describing the responsive intensity of driver to unit stimulus and ( )( )iV x t∆  

represents the optimal velocity function defined as in (3.27): 
 

( )( ) ( ) ( )( ) ( )( ) { },  i , , ,ni max iV x t v tanh x t s t tanh s t∆ ∆ = = ⋅ ⋅ − +  1 2
1

2
…     (3.27) 

 

where maxv  represents the maximal velocity of the vehicle, ( )s t  - the dynamic 

safety distance between the vehicles and ( )tanh ⋅  is the hyperbolic tangent function.  

BUPT



 Road Traffic Modeling at the Microscopic Level – 3 58

 The optimal velocity function from (3.27) “is a monotonically increasing 

function with ( )ix t∆  and it has an upper bound, while it has a turning point defined 

as” [Li12]: 
 

( ) ( ) ( )( ) { }'' ,  i , , ,nix t s t : V s t∆ == = 1 20 …                      (3.28) 

 
 Further studies showed that the OVD model could not describe the 
“nonlinear characteristics of traffic flow (e.g., traffic jam information, stop and go 
waves, non-equilibrium traffic flow etc.)” [Ban98], [Li12]. For this reason, Bando et 
al. introduced a time delay τ ∈ ℝ  in the initial OVD model as follows [Ban98]: 
 

( ) ( )( ) ( ) { },  i , , ,ni i ia t τ k V x t v t∆ = + = ⋅ −  1 2 …              (3.29) 

 
 In addition to this improvement related to inclusion of nonlinear 
characteristics, this model produces excessive accelerations and decelerations 
[Hel98]. Helbing and Tilch [Hel98] tried to solve this problem by applying a 
calibration based on the follow-the-leader concept [Li12]. These researchers argued 
the necessity of considering the relative velocity of successive vehicles, so they 
developed the Generalized Force (GF) model [Hel98], [Li12]: 
 

( ) ( )( ) ( ) ( ) ( )( ) { },  i , , ,ni i i i ia t k V x t v t λ x t H x t∆ ∆ ∆ = = ⋅ − + ⋅ ⋅ −  1 2 …         (3.30) 

 
where λ ,λ∈ > 0ℝ  is the sensitivity coefficient describing the relative velocity 

response intensity [Cao20] and ( )H ⋅  represents the Heaviside function defined as: 

 

    
( )
( )

H x ,  x

H x ,  x

 = ∀ ≤


= ∀ >

0 0

1 0
                                             (3.31) 

 

3.4.5. Full Velocity Difference 
 

This concept emerges as a future development of the OVD and GF models. 
The main benefit of the FVD model is to cover the effect of the positive velocity 
difference ignored by the GF model, which misleads the calculation of the vehicle 
moving delay [Cao20]. Taking into account both positive and negative velocity 
differences, the FVD model has the following definition as proposed by Jiang et al. 
[Li12], [Jia01]: 
 

( ) ( )( ) ( ) ( ) { },  i , , ,ni i i ia t k V x t v t λ v t∆ ∆ = = ⋅ − + ⋅  1 2 …    (3.32) 

 
 Another advantage of using this model is that it could describe the phase 
transition of traffic flow and provide good predictions regarding the evolution of 
traffic congestion levels. Furthermore, numerical simulations proved that the FVD 
model can describe vehicle start delays and disturbance propagations [Cao20]. 
 A major drawback of the FVD model consists of the unrealistic modeling 
procedure due to the fact that it models the velocity differences symmetrically 
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[Li12]. Furthermore, other numerical simulations showed that this approach has too 
high deceleration. A solution involving the ITS for the obtaining of real-time traffic 
data comes from the Ge et al. proposal from [Ge08]. The researchers proposed the 

Two Velocity Difference (TVD) model which considers both ( )iv t∆  and ( )iv t∆ +1  

velocity differences as follows: 
 

( ) ( )( ) ( ) ( ) ( )( ) { },  i , , ,ni i i i ia t k V x t v t λ G v t , v t∆ ∆ ∆ =+ = ⋅ − + ⋅  1 21 …        (3.33) 

 

where ( )G ⋅  is a generic, monotonically increasing function defined as: 

 

( ) ( )( ) ( ) ( ) ( ) { },  i , , ,ni i i iG v t , v t p v t p v t∆ ∆ ∆ ∆ =+ += ⋅ + − ⋅ 1 21 11 …              (3.34) 

 
where p ,p∈ > 0ℝ  represents the weighting value. 

 The simulation results based on the application of TVD and its comparison 
with FVD showed the disappearance of unrealistic high decelerations corresponding 
to the FVD approach. 
 

3.4.6. Intelligent Driver Model 
 

“IDM is a continuous response model that does not consider a reaction time 
and assumes that the acceleration of FV is a continuous function of the FV velocity, 
the running distance between FV and LV and the relative velocity of FV to the LV 
velocity” [Pun05]. According to Treiber and Kesting, IDM “is probably the simplest 
complete and accident-free model producing realistic acceleration profiles and a 
plausible behavior in essentially all single-lane traffic situations” [Tre13_2]. 

 Equation (3.35) defines the IDM acceleration ia  of the i -th vehicle as 

following [Pun05], [Tre13_2]: 
 

( ) ( ) ( )
( )

( ) ( )( )
( ) { }

δ

i d i ii
,  i , , ,ni i

s v t , v tv t
a t a

s t
V

∆
=

         = ⋅ − −           

2

1 2

0

1 …            (3.35) 

 
which mediates the tendency to accelerate in order to reach the desired velocity 

( )i
V
0

, and the deceleration tendency when the running distance between FV and LV 

is less than the desired spacing ( ) ( )( )d i is v t , v t∆  defined as: 

 

   ( ) ( )( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( )

{ }i i ii i i
,  i , , ,nd i i ii i i

v t v t v t
s v t , v t s s T v t

V a b

∆
∆ =

⋅
= + ⋅ + ⋅ +

⋅ ⋅
1 210

0 2

…       (3.36) 

 
where: 

• 
( )i

s
0

 - represents the desired spacing in the case of zero velocity of vehicle 

i ; 
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• 
( )i

V
0

 - is the desired velocity at time t ; 

• ( ) ( ) ( )i i i
a ,b ,δ,T  and 

( )i
s1 are nonphysical parameters of the i -th driver. 

According to [Tre13_2], the dynamical term 
( ) ( )

( ) ( )
i i

i i

v t v t

a b

∆⋅

⋅ ⋅2

 is responsible for 

the implementation of the intelligent breaking strategy. 
In the case of the extension of the IDM to two-lane roads, the nonphysical 

parameter δ  will be equal to 4 and the Relation (3.35) becomes [Kes05]:  

 

( ) ( ) ( )
( )

( ) ( )( )
( ) { }i d i ii

,  i , , ,ni i

s v t , v tv t
a t a

s t
V

∆
=

         = ⋅ − −           

4 2

1 2

0

1 …               (3.37) 

 

3.4.7. Fuzzy-Based Model 
 

As the driver behavior is an important source of uncertainties in the 
modeling process of the interaction between the vehicles moving on a lane, the 
fuzzy approach can be employed as a solution. In fuzzy modeling, driver behavior 
“is abstracted as a fuzzy controller, whose inputs are the status information of the 
preceding vehicles and the output consists of the decision taken as a result of a 
series of thinking” [Li12]. 

Kikuchi and Chakroborty were the first researchers who tried to fuzzify the 
GHR model [Kik92], [Li12]. The proposed model “divides the selected inputs into 
some fuzzy sets and applies further logical operators to produce fuzzy output sets or 
rule-based car-following behavior” [Pan05]. The structure of the Fuzzy Inference 
System (FIS) is defined as follows [Kik92]: 
 

( ) ( )
( ) ( )

( ) ( )

i

i i i

i i i

v t , r

 AND v t RS  AND r=ALVi

i

 AND v t RS  AND r=ALVi

Input :          s t ,

Rule i:          IF  s t =DS

                    THEN y AFV

               

Rule n:         IF  s t =DS

               

∆

∆

∆

=

=

=
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ { }, i , , ,n

i
'

     THEN y AFV

Conclusion :  y AFV

=

=

=

1 2 …     (3.38) 

 
where: 

• “ r  - the rate of change of velocity of LV (in specific number);  

• iDS  - the perceived distance (in fuzzy number); 

• iRS  - the perceived relative speed (in fuzzy number); 

• iALV  - the perceived rate of change of LV speed (in fuzzy number); 

• iAFV  - the perceived rate of change of FV speed (in fuzzy number); 

• 'AFV  - the predicted reaction of FV in acceleration/deceleration rate (in 
fuzzy number)” [Kik92]. 
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Table 3.5 presents the categories of premise variables as they were used in the 

car-following approach from [Kik92]. 
 

Table 3.5. Fuzzy sets of premise variables [Kik92]. 

Fuzzy 

sets 

Distance 

between LV and 

FV (DS) 

Relative speed 

(RS) 

Actions of LV (ALV) 

Acceleration Deceleration 

(1) very small FV slower strong strong 

(2) small 
FV slightly 

slower 
somewhat 

strong 
somewhat 

strong 

(3) adequate near zero normal normal 

(4) 
more than 
adequate 

FV slightly 
faster 

mild mild 

(5) large FV quite faster very mild very mild 

(6) very large FV faster none none 

 

3.5. Advantages and Disadvantages of the 

Car-Following Modeling Approach 
 

The biggest disadvantage of car-following models is their orientation 
towards the examination of road traffic on a single lane. In this way, problems arise 
in the case of the integration of a new vehicle as a result of the driver's decision to 
change its current traffic lane. In this case, there is a need for an adaptive model 
that is able to manage LV / FV role changes in cases such as: 

• entry of a new vehicle on the modeled traffic lane; 
• leaving the lane by one of the vehicles; 
• the departure by the FV of the current lane with return as a reason for the 

initial movement of the LV at low speed, in which case we are talking about 
the change of roles of the two vehicles (the FV becomes the new LV). 
Another problem specific to this type of modeling is the integration of heavy 

vehicles. A study in this regard is presented in [Che16] and aims to demonstrate the 
low capability of car-following in terms of removing disturbances in traffic 
parameters in the case of mixed travel, having both cars and heavy vehicles. A 
delayed response of the heavy vehicle driver was observed in the case of 
deceleration, in response to the LV deceleration represented by a vehicle, but also 
to the timely takeover of the previous velocity level during and after the execution 
of an acceleration operation. If a car follows a heavy vehicle, a higher deceleration 
trend was observed than LV continued with gradual acceleration, following the 
perception of a deceleration action of the heavy vehicle. 
 

3.6. Summary and Conclusions 
 

This chapter discussed the concept of road traffic modeling at the 
microscopic level. The first step was to familiarize with the levels of representation 
of the road traffic modeling process such as crossroads configuration, links, lane 
choice, and car-following level. A critical analysis was provided on the configuration 
modes of th crossroads sustained by the simulation results for an intersection from 
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Timișoara (Romania), taken as a case study. One more time, the efficiency of the 
roundabout configuration was proven but also its disadvantage was highlighted in 
case of crowded traffic. In these situations, the usage of roundabouts leads to 
gridlocks when the capacity of the roundabout has been exceeded. 

Due to its high influence on the real-time interaction of vehicles during the 
movement process, the lane choice concept was expanded in a separate subchapter. 
The incentive criteria that are the basis of the safe coordination of lane change 
maneuvers were defined in this thesis. 

Based on the same considerations regarding the impact on the interaction 
between vehicles during movement, a special subchapter was assigned to a critical 
analysis of the most well-known car-following models. Furthermore, many 
derivatives of these classical car-following models were presented. This critical 
analysis aimed to identify the advantages and the disadvantages of the traditional 
car-following, which is single-lane oriented. 

This chapter serves as a foundation for building a refined car-following 
model that easily addresses the multiple-lane roads that are widely found 
nowadays. The next chapter will present in detail this new approach that 
incorporates the lane change behavior of the vehicles moving on the adjacent road 
traffic lanes in the description of the driving strategy of the FV and LV from a target 
lane. 
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4. REFINEMENT OF THE CAR-FOLLOWING MODEL 
 
 

4.1. Preliminaries 
 

The purpose of this chapter is to provide a solution to refine the 
car-following model. Based on transportation theory, the car-following model is 
single-lane oriented. Here, an approach to extend the standard model to 
multiple-lane roads by considering the lane change behavior of the vehicles moving 
on the adjacent traffic lanes. 

The chapter starts with an analysis of the driver behavior modeling (DBM) 
concept and its main implementation approaches. The most used DBM 
implementation techniques are the “Gaussian mixture model (GMM) and the 
piecewise auto-regressive exogenous (PWARX) model” [Ang11] which are presented 
in detail in this thesis. Both approaches are studied concerning the concept of 
car-following and underline the influence of the observed LV parameters on the 
changes in FV driver behavior during the movement process. Further, the thesis 
presents how traffic modeling can be modeled using Markov chains. The application 
of this modeling approach proves its benefits, especially in the simplification process 
of the origin-destination (OD) volumes estimation. The accuracy of these 
estimations brings improvements in traffic lights management through real-time 
control of green-interval settings. 

This thesis further concentrates on the application of “a DBM at the 
maneuvering level based on tactical route execution, more explicitly based on lane 
change behavior” [Pop20_4]. The proposed procedure for the refinement of the 
car-following model consists of the application of the “decisions taken to fulfill small 
and coordinated portions of a trip [Ham12]” [Pop20_4]. Here, arises one of the 
main contributions of this thesis consisting of the modeling of the road traffic lanes 
as Markov nodes, and the transitions between several nodes of the modeled road 
network represent the lane change maneuvers. The probabilities associated with 
each node of the Markov chain consist of the probability of changing the movement 
by joining a specific traffic lane. The probabilities computation uses the traffic data 
from time t-1 and updates these values in real-time by permanently retrieving the 
traffic parameters from the inductive loops placed on the road network.  

Because of the uncertainties introduced by drivers behavior, the lane change 
action is modeled further as a Bayesian specific problem. The use of the Bayesian 
probabilistic concept at this level of traffic modeling represents another important 
contribution to this thesis. This Bayesian-based computation considers the 
movement parameters for the FV from the current traffic lane and also some specific 
probabilities related to the target lane. These target lane related probabilities arise 
from the driver decision to leave the road network through an exit that is accessible 
only from an adjacent lane. Another case that leads to a lane change decision of the 
FV relates to the LV velocity changes (acceleration/deceleration behavior), and the 
FV changes its current traffic lane just for passing the LV with a return to its initial 
lane after the maneuvering execution. 

The proposal of the multiple-lane car-following model considers the traffic 
lanes as Markov nodes of a road network modeled as a Markov chain, and the lane 
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change predictions are included as part of the car-following model. The modeling 
approach starts from the state space representation of the single-lane oriented 
car-following model, referred in this thesis also as the standard car-following model. 
After the presentation of the refinement proposal of the standard car-following 
model, a simulation has been done in Simulink, part of MATLAB R2020a 
(MathWorks, Natick, MA, USA) to prove that it is implementable. The results show 
good results in the estimation of the target vehicle movement behavior. Also, the 
proposed approach brings some drawbacks that can be addressed in future works. 
The main disadvantage consists of the neglection of the FV vehicle from the new 
joined traffic lane of the FV from the current lane. This situation, recognized as 
”leader change”, allows the FV from a lane i  to become LV for the vehicle moving 
behind on the lane j . 

The last section of this chapter highlights the contributions made by the 
employed approach in the refinement process of the car-following model. This part 
also provides an overview of the benefits and drawbacks of the proposed 
multiple-lane car-following model and defines possible future directions of 
improvements. In addition, a subchapter contains the conclusions of this work. 
 

4.2. Driver Behavior Modeling 
 
“DBM has high complexity due to many parameters of influence such as 

planned destination, level of overload of the road network, changes in the initial 
driver decision, the influence of the other participants in traffic, etc. Table 4.1 shows 
the specific DBM for each driver’s decision level. Each DBM has specific decisions 
and time horizons [Ham12]” [Pop20_4]. 
 

Table 4.1. “DBM classification based on time horizons [Ham12]” [Pop20_4]. 

DBM Decision Time horizon 

Pre-trip departure time, destination >  1 h 

Strategic en-route route choice and switching 30/60 s – 1 h 

Tactical route execution lane change, overtaking 5s – 30/60 s 

Operational driving acceleration, gap acceptance instantaneous – 5 s 

Vehicle control 
human-machine interaction 

needs 
mechanical/electric 
specifications related 

 
“Probably the most known model in DBM is the hierarchical control model. 

Proposed by Michon, this model illustrated in Figure 4.1 consists of three levels of 
modeling with specific internal and external outputs [Mic85]. The control level is the 
lowest level of this model and is responsible for sudden braking and turning 
decisions to ensure traffic safety or comply with traffic regulations. The next level, 
named maneuvering or tactical level, consists of decisions to achieve short-term 
goals, such as lane changes, turns, and stops, also considering the criteria derived 
from the strategical level [Abu16]. This level enables us to address the necessity of 
early prediction of the driver intention before the execution of a tactical maneuver. 
The strategical level, the highest level in this model, contains the long-term driver 
goals from travel planning, route, and modal choice to cost and risk assessment 
[Abu16], [Mic85]” [Pop20_4]. 
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Figure 4.1. Hierarchical driver model [Bek03], [Mic85], [Pop20_4]. 

 
According to Figure 4.2, DBM is part of the car-following modeling process. 

The output of the driver model represents the decision control of the intensity that 
the driver applies to the acceleration or brake pedals [Ang11]. The main decisions 
taken in this case are at the maneuvering level and are the result of direct 
dependency on the LV behavior. Considering the maintenance of the safety 
distance, the FV decides the intensity of pressing the acceleration or brake pedal to 
adapt for short-term the running distance to the car in front. The pressing of the 
chosen pedal further influences the acceleration/deceleration rate of the FV, and the 
driver of the FV will check again the movement status of the LV. Based on this new 
evaluation, the driver model will forward a new decision, in terms of a chosen pedal 
and the intensity applied on that pedal, to the vehicle dynamics system. These steps 
apply cyclically during the movement process, and they are replicated for each FV in 
the case of several cars moving in a chain. 

 
Figure 4.2. DBM as part of the car-following modeling process [Ang11]. 
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 Boer et al. improved Michon’s hierarchical driver model by including in the 
modeling process also the dynamic aspects previously described [Boe98], [Kug00]. 
As shown in Figure 4.3, this model focuses on the attention management concept 
and covers the switches between intra- or interprocess levels, providing a detailed 
overview of the selected maneuvers in the case of manual driving, and the 
transitions between the operating modes in the case of driver-assisted systems 
[Kug00]. The attention manager is responsible for the process of understanding the 
driver’s intentions related to lane change actions and acceleration/deceleration 
behavior. 
 

 
Figure 4.3. Integrated driver model [Boe98], [Kug00]. 

 
 The application of the integrated driver behavior model facilitates the 
process of extracting road traffic data and evaluating driver actions (Figure 4.4). 
Traffic data extraction during a lane change action is carried out in the period 
between command presentation and the first peak of the steering wheel angle, and 
for lane keeping, data should be extracted during a five-second interval from the 
original data measured with the driving simulator [Kug00]. 
 

 
Figure 4.4. Data extraction method: a) lane change; b) lane keeping [Kug00]. 
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Stochastic processes are usually applied in the DBM. Further, a short 
overview of two DBM techniques that analyses the relationship between the 
observed and predicted parameters is presented. These modeling techniques are the 
GMM [Nis07] and the PWARX model [Ang11]. According to the research results of 
Angkititrakul et al., the GMM-based technique shows good performance in 
short-term predictions, while the PWARX model is more appropriate for long-term 
predictions due to its characteristic of capturing a more generalized overview of the 
driver behavior [Ang11]. The capture process of dynamical characteristics is 
performed differently by these techniques. The GMM-based approach incorporates 

“dynamical characteristics in terms of ∆  and ∆2  components of the feature vector 
and the PWARX-based model transforms the neighboring information around the 
data point of interest into a suitable feature space” [Ang11]. In both cases, an 
unsupervised clustering applies to address the uncertainty of parameter relationship 
within each state. The PWARX model uses a discrete switch “among the driving 
modes to identify an appropriate formulation (i.e., linear prediction) at each time 
instant with mode classification to describe the relationship between the input and 
output parameters” [Ang11]. On the other hand, “GMM employs soft prediction 
made by all mixture components with higher weights applied to the more likely 
mixture components and then expresses the input-output parameter relationship by 
non-linear maximum a posteriori prediction of the joint distribution among 
parameters” [Ang11]. 
 

4.2.1. GMM-based Model 
 
The scope of this model is the generation of driver behavior patterns for 

individual drivers involved in a modeled movement process based on the concept of 
car-following. In strong relation to Figure 4.2, the patterns that bring interest relate 
to the application of the gas/brake pedal that influences the observed velocity and 
running distance of the LV. 

Angkititrakul et al. [Ang11] started from the Nishiwaki et al. [Nis07] 
approach and adapted the model by including a Bayesian-based mechanism to 
estimate the FV driver behavior in terms of pedal control actions in response to the 
observed LV behavior. This modeling proposal follows the following three steps: 

• feature extraction and model representation; 
• pedal pattern prediction; 
• Bayes adaptation. 

 
Feature Extraction and Model Representation 

The process of modeling the gas pedal pattern needs “an observed feature 

vector at time t , tx . This vector contains vehicle velocity, following distance, and 

gas pedal pattern ( tG  ) with their first- ( ∆ ) and second-order ( ∆2 ) derivatives as 

described by the following equation” [Ang11]: 
 

T
f f f

t t t t t t t t t tx v , v , v ,F , F , F ,G , G , G∆ ∆ ∆ ∆ ∆ ∆ =   
2 2 2              (4.1) 

 

having the ( )∆ i  operator computed as: 
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Q
t τt

t t Q

t

τ x
x x

τ

∆
−=

=

⋅
= −

∑
∑

1

1

                                               (4.2) 

 
where Q  is a window length (e.g., .  s0 8 ). Equation (4.3) defines a set of 

augmented feature vectors ty  as follows: 

 
T

T
t t ty x G +

 =   1                                                           (4.3) 

 
Consequently, the joint density between the “values of the observed feature 

vector tx  and the next pedal operation tG +1  can be modeled by a GMM Φ  as: 

 

( ) ( ) ( )
K K

y yy
k k k k

k k

p y | α φ y α y,u ,Φ Ν
= =

= ⋅ = ⋅ ∑∑ ∑
1 1

                        (4.4) 

 

where kα  represents the prior probability of the k -th mixture component which 

reflects the significance of such localized joint density, K  is the total number of 

Gaussian components, and ( )φ i is the unimodal Gaussian distribution with a mean 

vector 

x
ky

k G
k

u
u

u

 
 =
 
  

 and a covariance matrix 

xx xG
k kyy

k Gx GG
k k

 ∑ ∑
 ∑ =
 
∑ ∑  

” [Ang11]. 

“That is, the mean vector y
k

u  is a concatenation of a mean vector of the 

present observed driving signals x
k

u  and a mean of the subsequent pedal pressure 

G
k

u  (the subscripts t and t + 1  were omitted for the notation simplicity. Similarly, 

the covariance matrix yy
k

∑ contains the auto-covariance ( xx
k

∑ and GG
k

∑ ) and 

cross-covariance ( xG
k

∑  and Gx
k

∑ ) matrixes of these two parameter sets” [Ang11]. 

 
Pedal Prediction 

The calculation algorithm for the predicted gas pedal pattern tĜ +1  uses 

weighted predictions resulting from all mixture components of the GMM [Dar06], 
according to Relation (4.5): 

 

  ( ) ( ) ( )
K

k
t k t tt

k

ˆ ˆG h x G x+ +
=

= ⋅∑1 1
1

                                   (4.5) 
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where 
( ) ( )k

ttĜ x+1  represents the Maximum-A-Posteriori (MAP) prediction of the 

observed parameters tx  given the k -th mixture component [Raj04] as shown 

below: 
 

  
( ) ( ) ( ){ } ( ) ( )k G Gx xx x

t t t k tt k k k k
Ĝ x arg  max p G | x ,φ u x u

−
++ = = + ∑ ∑ −

1

11       (4.6) 

 

“The posterior probability of the observed parameter tx  belonging to the 

k -th mixture component uses as notation ( )k th x  and its computation is done as 

defined by Equation (4.7): 
 

( ) ( )
( )

x
k t k

k t K x
i t ii

α p x | φ
h x ,k ;K

α p x | φ
=

= ∈   

∑ 1

1                         (4.7) 

 

where ( )x
t ip x | φ  represents the marginal probability of the observed parameter tx  

generated by the i -th Gaussian component” [Ang11]. 
The same approach applies in the brake pedal prediction process. In this 

case, the formulas adaptation consists of replacing the gas pedal signal ( tG ) with 

the brake pedal signal ( tB ). 

 
Bayesian Adaptation 

Used in the literature also as MAP adaptation, Bayesian adaptation performs 
a re-estimation of “the model parameters individually by shifting the original 
statistic towards the new adaptation data” [Ang11]. The obtainment of an adapted 

GMM starting from a data set { }ny ,n , ,N= 1 … , and an initialized GMM (i.e., driver 

model), the computation of the mean vector is done as in Equation (4.8) 
 

y yk
kk k

k k

η r
û E u

η r η r
= +

+ +
                                   (4.8) 

 

where, r  is a constant relevant factor (e.g., 16), kη  can be computed according to 

(4.9), and kE  calculation is done as in (4.10). 

 

( )
N

k k n

n

η h y

=

= ∑
1

                                               (4.9) 

 

( )
N

k k n n
k n

E h y y
η

=

= ⋅∑
1

1
                                             (4.10) 
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The adapted GMM-based model allows the mixture components with high 
data counts from a specific characteristic/correlation to rely more on the statistic 
estimation of the final parameters. 

 

4.2.2. PWARX-based Model 
 
This modeling approach is used as a mathematical model for identifying 

hybrid systems, in the current situation concentrating on the relationship between 
observed sensory information and driver. The “driver behavior is appropriately 
switched between the simple control laws” [Ang11]; therefore, it can be modeled as 
a hybrid dynamical system (HDS).  

Implementations of piecewise linear models describe several modes of driver 
behavior in car-following [Aki07], [Oku10]. The approaching index (KdB) represents 
the observed input feature of the driver behavior model. It is a “time derivative of 
rearward area of LV [Wat07], following distance and its first derivative, and vehicle 
velocity. The output driver behavior consists of a combined pedal operation signal 
(i.e., gas pressure subtracted by brake pressure)” [Ang11].  

In the parameter identification process of the PWARX model, the clustering 
and categorization of input and output parameters into different driving modes is 
applied. “These distinct driving modes are defined by a clustering procedure in a 
transformed feature space, where several seconds of driving data around the 
feature of interest are considered during transformation. Subsequently, back to the 
original feature space, the PWARX parameters (i.e., ARX coefficients) can be 
obtained by applying the least square estimation within each defined cluster or 
driving mode. The classifiers, obtained by using the defined mode class and feature 
vectors, identify the switching between driving modes” [Ang11].  

For computation efficiency reasons, Angkititrakul et al. [Ang11] chose the 
tree-based classifier [Bre84] and defined the prediction equation as follows: 

 

t t , t , t , t , t , t

t , t , t , t , t , t

t , t , t , t , t , t

t , t , t , t , t ,

Ĝ a x b x c x d x e x ,    if x A

      a x b x c x d x e x ,    if x B

      a x b x c x d x e x ,    if x C

      a x b x c x d x e x ,    

+ = + + + + ∈

= + + + + ∈

= + + + + ∈

= + + + +

1 1 1 1 2 1 3 1 4 1 5

2 1 2 2 2 3 2 4 2 5

3 1 3 2 3 3 3 4 3 5

4 1 4 2 4 3 4 4 4 5 tif x D∈

           (4.11)  

 

where t ,ix  represents the “input observed driving signals described above; tG  is 

the observed pedal operation; ia , ib , ic , id  and ie , { }i , ,N= 1 …  are the ARX 

coefficients of each subspace (i.e., driving modes A , B , C , and D )” [Ang11]. 

A better schematic overview of the PWARX modeling approach has been 
provided by [Nwa21]. Figure 4.5 shows a DBM where “the mode segmentation is 
carried out automatically and the optimal number of modes is decided based on 
consistent variable selection. This car-following oriented model captures both the 
decision-making and motion-control facets of the driving behavior. The authors 
validated their proposed PWARX model through a comparison with 
ROS-CARLA-based car-following simulation and Gipp’s driver model” [Nwa21]. 
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Figure 4.5. DBM framework based on the PWARX modeling technique [Nwa21]. 

 

4.3. Markovian Modeling of Road Traffic Lanes 
 

“Markov stochastic processes are used to describe the transition between 
several states of a system. These types of processes are frequently used for 
systems with random temporal development [Bun14_2]” [Pop19_2]. 

 

4.3.1. Absorbing Markov Process for Traffic 

Modeling 
 
“For traffic modeling, we assume that network nodes are defined as states, 

according to the theory of MPA (absorbing Markov process). The transitions between 
two nodes from the studied road network have as a correspondent the event 
concept described by MPA. Further, the MPA representation for a road network with 
n nodes will be presented, using the following notations: g - generation, or origin, 
nodes and d - destination nodes, considering the approaches from [Aka96] and 
[Tak05]. Using (4.1) we calculate the remaining t nodes, which define the nodes 
used for the transitions, named traversal nodes” [Pop19_2]. 
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t n g d= − −                                                               (4.1) 

  
“The transition probability matrix that allows us to get an overview of 

vehicle movement in the road network is defined in (4.2)” [Pop19_2]. 
 

I O
P

R Q

 
=  
 

                                                              (4.2) 

 
“The significance of the components of the probability matrix will be further 

explained: 

• I  is a ( )d d×  unit matrix; 

• O  is a ( )( )n d d− × null matrix; 

• R  represents a ( )( )g t g+ ×  matrix that contains the probability of attraction 

to a traversal node from a generation node or another traversal node;    

• Q  is a ( ) ( )( )g t g t+ × +  matrix defining the transition probability between 

two nodes, excluding destination nodes” [Pop19_2]. 
“Assuming that there are no direct transitions between the generation and 

the destination nodes, the assignment of the R  matrix can be done by defining a 

R2  matrix with dimension ( )g t+ , as in (4.3)” [Pop19_2].  

 

R
R

 
=  
 2

0
                                                              (4.3) 

 
“Equation (4.4) shows that the difference between the generation nodes and 

the traversal nodes, the Q  matrix will be rewritten using a Q1  matrix of dimension 

( )t g×  and Q2  matrix of dimension ( )t t× ” [Pop19_2]. 

 

Q
Q

Q

 
=  
 

1

2

0

0
                                                              (4.4) 

 
“The probability that after n  transitions a vehicle that started to move from 

the initial i -th node will stay at node j  is given by the ( )i , j  element of matrix nQ . 

The probabilities that a vehicle starting from the generation node passes through 
the other nodes are given by (4.5)” [Pop19_2]. 

 

I Q I Q
I Q Q I Q

I Q

−
−

−

 ⋅ −   + + + = − =    
−    

1
1 211 2

1
20

…                         (4.5) 

 
“Using the above equations, the destination volumes u  and traffic volumes 

on the road x  can be calculated using the following relations: 
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u v I Q R
−= ⋅ − ⋅  
1

                                                          (4.6) 

 

x v Q I Q
−= ⋅ ⋅ −  
1

1 2                                                           (4.7) 

 
where:  

• ( )gv v ,v , ,v , , ,= 1 2 0 0… …  is a ( )g t+  vector containing the generation 

nodes; 

• I Q R
−− ⋅  
1  defines the probability that a vehicle departing from each of 

( )g t+  nodes, attracts to g  attraction nodes; 

•  Q I Q
−⋅ −  
1

1 2  contains the node-choice probabilities for each generation 

node” [Pop19_2]. 
 

4.3.2. Bayesian Inference 
 
“Route choice can be considered a process in which probabilities provide a 

level of uncertainty. The main reason for this uncertainty comes from the driver 
decisions regarding his personal reasons, the lengths of the queues on different 
lanes, traffic injuries, etc. The necessity of knowing the probability that a route will 
be chosen conditioned by the last destination chosen node makes this a Bayesian 
specific problem. The current decision will be influenced by prior behavior in route 
choosing but will have the scope to find the optimal OD matrix that provides a cost 
and travel time reducing method” [Pop19_2].  

 “The classical approach from the theory of probabilities delivers the 
probability that an event is taking place, established at the confidence level 
achieved after running the experiment several times. Therefore, the probabilities 
associated with various events are based on previous knowledge” [Pop19_2].  

“The Bayesian approach brings as a novelty the re-computation of 
probabilities obtained from previous knowledge taking into account the newest 
information. In this way, the probability of an event occurring can be estimated 
using the probabilities of some prior events that can influence the behavior of 
current event” [Pop19_2].  

“A Bayesian inference-based system can be considered specific to artificial 
intelligence. The starting point of this procedure is the knowledge base, which 
contains the probabilities obtained by previous repetitions of the experiment. The 
system will be aware of all changes that occur during the experiment and will try to 
estimate its next own state” [Pop19_2].  

“In Bayesian theory, the probabilities associated with the next state 
achieved on the prior available information are named posterior probabilities” 
[Pop19_2].  

“Equation (4.8) is the representation of the Bayes rule. The probability of an 
event x  is computed conditioned on the observed event y . Using data from 

previous experiments, a prior probability distribution is obtained for ( )p x . The 

influence of the observed event or state y  is represented through the conditional 

probability ( )p y | x , also known as the likelihood function. The form ( )p x | y  is 
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called the posterior probability and allows us to evaluate the level of uncertainty in 
x  after the event y  was observed [Bar12], [Bis06]” [Pop19_2].  

 

( ) ( ) ( )
( )

p y | x p x
p x | y

p y

⋅
=                                                (4.8) 

 
The probability of the event y  conditioned on the knowing event x  can be 

expressed using (4.9) [Bar12]. 
 

( ) ( )
( )

p y,x
p y | x

p x
=                                                           (4.9) 

 

“Assuming that x  and y  are independent events, then ( )p y,x  can be 

defined as (4.10) [Aka96]” [Pop19_2]. 
 

( ) ( ) ( )p y ,x p y p x= ⋅                                                         (4.10) 

 
The expression in words of the Bayes theorem is defined by (4.11) [Bis06]: 
 

likelihood priorposterior ∝ ×                                              (4.11) 

 

4.3.3. OD Volumes Estimation Using Bayes 

Inference 
 
“In many traffic management systems, it is usually required to have a 

prediction of travel demand. This requirement, together with the need to have a 
simulation of traffic flow in a road network, proves the aim of estimating OD 
volumes” [Pop19_2]. 

“We should note that OD estimation plays an important role in the 
calibration of traffic models. OD volumes are estimated using data from previous 
crossings of the network and will be compared with real-traffic data when these are 
available from traffic sensors. Finally, these will play an essential role in setting the 
timing of traffic signals” [Pop19_2]. 

“Given the road network represented by using the Markov chains in Figure 
4.6, we want to calculate the probability of arriving at a node k , crossing other 
nodes and having i  as the starting point node. We can see that it is also 
represented a node starting from i  that will not influence our route choice between 
i  to k . The reason why it was added is to ensure that the probabilities of 
transitions to j  or l  will not be equal to .0 50 . Considering that the conditional 

probability to make a transition between nodes is computed as a forward conditional 
probability, our proposal is to take into account also the probability of joining a 
traversal node to predict a precise probability of arriving at node k . We assume 
that every node corresponds to a lane from the road and the lane change behavior 
will be studied” [Pop19_2]. 
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Figure 4.6. “Forward conditional probability for a Markov traffic road model” [Pop19_2]. 

 
“The new proposal to calculate the probability of joining the k -th node is to 

use the Bayes theorem instead of classical Markov specific formulas. In the next 
step, the probabilities from (4.2) will be updated according to the new values 
obtained” [Pop19_2]. 

“To reach the node k , the vehicle shall pass through one traversal node, j  
or l . Based on the choice of one of these traversal nodes, we propose to calculate 
the maximum probability of reaching the node k  using (4.12)” [Pop19_2].  

 

( )

( )
( ) ( ) ( )

( )

( ) ( ) ( )
( )

j k l k i j i l

i j i l

i j i l

max p ,p ,p p ;

p j | k p k
P k p k | j ,p p ;

p j

p l | k p k
p k | l ,p p .

p l

− − − −

− −

− −


 =
 ⋅= = >

 ⋅ = <



                      (4.12) 

 
“We can observe that the numerator of each fraction represents the 

probability of transition between i  to j  or l . In this case, we will make the 

notations according to (4.13), assuming that we use lowercase in these notations of 
probabilities because we refer to values from previous crossings of the road 
network” [Pop19_2]. 

 

( ) ( )
( ) ( )

j k

l k

p p j | k p k

p p l | k p k

−

−

= ⋅

= ⋅
                                                        (4.13) 

 

“The probabilities ( )p j  and ( )p l  are the same as the probabilities 

associated with the links that have connection to node j  and l , because these 

values are taken from previous knowledge. In this case, the relations from (4.14) 
will be used” [Pop19_2].  
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( )
( )

i j

i l

p j p

p l p

−

−

=

=
                                                                    (4.14) 

 
“Equation (4.15) is the rewritten form of (4.12) using the assumptions of 

(4.13) and (4.14). It is important to note that the uppercase notation for link 
probabilities shows the newest value associated with that link. The value obtained 
will be used to predict the route choice and will replace the old value in the matrix 
from (4.2)” [Pop19_2]. 

 

( )

( )j k l k i j i l

j k
j k i j i l

i j

l k
l k i j i l

i l

max p ,p ,p p ;

p
P k P ,p p ;

p

p
P ,p p .

p

− − − −

−
− − −

−

−
− − −

−


 =


= = >


 = <


                                  (4.15) 

 

“An observation is needed for the case where the computation of ( )P k  gives 

a result greater than 1. In this case, the probability will be changed according to 

(4.16), where ( ){ }P k  is the fractional part of ( )P k ” [Pop19_2]. 

 

( ) ( ){ }P k P k= −1                                                         (4.16) 

 

“As we can observe, this ( )P k probability is the maximum probability that 

will be attached to a link entering node k . For our case, the probability for the 

remaining link, ( )RLP k , will be calculated using (4.17), a relation based on 

probabilities theory” [Pop19_2]. 
 

( ) ( )( ) ( )
( )

RL
RL

P k p k
P k

p k

− ⋅
=

−

1

1
                                             (4.17) 

 
“A generalized expression of (4.16), for the case of q nodes, with q ,∈ ℕ  

that are having a connection to node k is defined in (4.18)” [Pop19_2]. 
 

( ) ( )( ) ( )
( )

RL
qRL

q

P k p k
P k

p k

−
−

− ⋅
=

−
1

1

1

1
                                             (4.18) 

 
The use of genetic algorithms for the prediction of OD volumes has proved 

its efficiency. Starting from a study of the current situation regarding traffic 
prediction and a detailed study of generalities related to genetic algorithms, Pop et 
al. [Pop18_3] proposed a new approach of traffic modeling by using a specific 
chromosome structure for the modeling of OD routes. Each origin node has a 
chromosome that will be divided into four subchromosomes, corresponding to each 
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possible destination that can be reached from a four-way crossroad. “Different 
routes to the same destination were modeled as parents of the same chromosome” 
[Pop18_3]. Pop et al. [Pop18_3] also proposed a new fitness function used for a 
further evaluation based on roulette wheel selection. In addition, new algorithms 
have been proposed for crossover and mutation operators, specific to genetic 
algorithms. 

OD volumes estimation can achieve good results by applying the minimax 
gaming strategy to model the driver behavior and anticipate his decisions 
[Pop20_4]. All destinations that are reachable from a specific origin node have 
been represented as a final layer in the minimax game tree. The intermediate layers 
contain various nodes according to possible lane changes in vehicle movement from 
the origin node to the destination node [Pop20_4]. 
 

4.4. Bayesian Reasoning for Lane Change Actions 

Estimation 
 
“A lane change action can be considered a process in which estimations can 

be performed while assuming a high level of uncertainty. This arises because of 
driver decisions that are difficult to predict or plan. The driver acts based on 
real-time traffic conditions to maximize his/her chances of obtaining a lower travel 
cost and reaching a planned destination on time. In addition, the driver lane change 
action is also influenced by other drivers through the politeness factor, as presented 
before (see Equations (3.3), (3.4), and (3.5) from Section 3.3)” [Pop19_1], 
[Pop20_3]. 

“After admitting the existence of a level of uncertainty, we can say that this 
lane change action is a Bayesian specific problem. Here, the main conditions for a 
successful lane change are: having a driver decision to initiate the action and the 
contribution of neighboring drivers to help this action happen. Other factors that 
have important roles are the routing alternatives associated with a lane at a vehicle 
entry point on the road network and the previously established destination” 
[Pop19_1], [Pop20_3]. 

“The proposed approach is to calculate the probabilistic estimator of a lane 
change action as an intersection of five Bayes probabilities, according to (4.19) and 

Figure 4.7. We can observe that the lane L1  offers the possibility to go straight or 

leave the road network using a right exit, while the lane nL  facilitates the driver’s 

decision to leave the road network using a left exit. ( )iFVP e  denotes the probability 

of the FV which joined the traffic link using the entrance lane 
iL

e , and ( )iFVP d  the 

probability that FV will leave the link using the exit (destination) lane 
iL

d . 

Probability ( )iFVP v  shows the level of influence of the LV’s velocity on the FV’s lane 

change decision from lane iL . The significance of the other probabilities is related to 

the target lane probabilities associated with respect to FV and LV” [Pop19_1], 
[Pop20_3]. 

 

( ) ( ) ( ) ( ) ( ) ( ) { }
i i i j jj FV i FV i FV i FV i FV iP̂ L P e | L P d | L P v | L P d | L P v | L , j i= ⋅ ⋅ ⋅ ⋅ = ± 1 (4.19)
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Figure 4.7. “General traffic link configuration” [Pop20_3]. 

 
“Based on previous assumptions, p  was defined as the total advantage of 

the two immediately affected neighboring vehicles. In this case, the politeness 

factor 
i jLp
→

 can be defined as a product of the last two conditional probabilities 

from Equation (4.19)” [Pop19_1], [Pop20_3]: 
 

( ) ( ) { }
i j j jL FV i FV ip P d | L P v | L , j i
→

= ⋅ = ± 1                       (4.20) 

 
In this manner, Equation (4.19) becomes: 
 

( ) ( ) ( ) ( ) { }
i i i i jj FV i FV i FV i LP̂ L P e | L P d | L P v | L p , j i

→
= ⋅ ⋅ ⋅ = ± 1               (4.21) 

 
“By expanding Equation (4.21) according to the Bayes rule, we obtain” 

[Pop19_1], [Pop20_3]: 
 

( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )
( ) { }i i i i i i

i j

i FV FV i FV FV i FV FV
j L

i i i

P L |e P e P L |d P d P L |v P v
P̂ L p , j i

P L P L P L →
= ⋅ ⋅ ⋅ = ±1 (4.22) 

 
“After estimating the probability of a lane change action based on the 

probabilities of previous road network crossings, it is necessary to introduce new 
notations, similar to the approach presented in [Pop19_2]. Lowercase notation will 
be used to represent the probabilities computed based on previous traffic data” 
[Pop19_1], [Pop20_3]: 
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( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

i i i

i i i

i i i

FV i FV FV

FV i FV FV

FV i FV FV

i i i i

p e P L | e P e

p d P L | d P d

p v P L |v P v

p L P L P L P L

 =



=

 =

 =

                                             (4.23) 

 
“By replacing these notations in Equation (4.22), we can obtain the final 

form of the estimated probability of a lane change action from lane i  to j ” 

[Pop19_1], [Pop20_3]: 
 

( ) ( ) ( ) ( )
( ) { }i i i

i j

FV FV FV
j L

i

p e p d p v
P̂ L p , j i

p L →

⋅ ⋅
= ⋅ = ± 1                  (4.24) 

 
“The proposed approach also consists of modifications to the lane change 

rules that were previously defined by (3.3), (3.4), and (3.5) (Section 3.3) [Kes07]. 
Furthermore, the new relations that define these rules are as follows” [Pop19_1], 
[Pop20_3]: 

• “incentive criterion for symmetric lane change rules” [Pop19_1], 
[Pop20_3]: 
 

( ) ( ) { }driver j newfollower oldfollower th
ˆa P L a a a , j i∆+ ⋅ + > = ± 1                (4.25) 

 
• “incentive criterion for asymmetric lane change rules - lane change from left 

to right” [Pop19_1], [Pop20_3]: 

 

( ) ( ) ( ) { }* LiLi

eur
FV j oldfollower th bias

FV
ˆa t τ a t P L a a a , j i∆ ∆+ − + ⋅ > − = ± 1      (4.26) 

 
• “incentive criterion for asymmetric lane change rules - lane change from 

right to left” [Pop19_1], [Pop20_3]: 

 

( ) ( ) ( ) { }*
LL ii

eur
j newfollower th biasFVFV

ˆa t τ a t P L a a a , j i∆ ∆+ − + ⋅ > + = ± 1     (4.27) 

 

4.5. Refinement Process of the Car-Following Model 
 
Figure 4.8 illustrates the steps followed during the refinement process of the 

single-lane car-following model. This refinement aims to extend the car-following 
modeling approach to multiple-lane roads. For this reason, this thesis applies the 
Bayes theorem in the computation of lane choice probabilities. The main sources of 
influence of driver decision are: 

• the entrance lane of the target vehicle ( FVe ); 

• the destination lane of the target vehicle ( FVd ); 
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• the influence of LV behavior on the velocity changes of the FV ( FVv ), 

represented as a coefficient in the interval ;  0 1 . 

 

 

Figure 4.8. Refinement process of the single-lane car-following model. 

 
The modeling of the lane change behavior uses the Markov chains to 

represent each lane as a node, and the transition between the modeled road 
network considers the probability calculated according to the previously defined 
factors of influence. Further, the calculated values for the lane change probabilities 
facilitate the update of the incentive criteria equations and the driver decision 
coefficient. The extension of the standard car-following to multiple-lane traffic 
environments consists of a permanently update of acceleration values considering 
the incentive criteria and driver decision. 

 

4.5.1. State Space Representation of the 

Car-Following Concept 
 

Based on previous assumptions in Section 3.4 and “on Multiple Input 
Multiple Output (MIMO) systems theory, a state-space representation of the 
car-following concept is needed” [Pop19_1], [Pop20_3].  

“A good way to expand the research possibilities for car-following models 
and create a framework for new optimal control approaches for these models is to 
follow the next three steps: 

• create a linear continuous system model without time-delay; 
• add the time-delay factor to the model; 
• create a discrete model to control the behavior of FV and LV” [Pop19_1], 

[Pop20_3]. 
 
“According to the listed steps, the obtaining of car-following models, as 

proposed in [Kho10], [Pan08], is further presented. Using x1  and x3  as notations 

for car velocities, x2  and x4  for running distances of the cars, u1  and u2  for the 

car accelerations, the linear continuous car-following model can be described by 
system equations from Relation (4.28)” [Pop19_1], [Pop20_2], [Pop20_3]. 
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x x

x x u

ux x

x x

x

x
y S

x

x

      
              = ⋅ + ⋅                
         


 
 
  = − ⋅ +    
 
   

1 1

2 2 1

23 3

4 4

1

2

3

4

0 0 0 0 1 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 1 0 0 0

0 1 0 1

ɺ

ɺ

ɺ

ɺ

                                           (4.28) 

 
“The standard safety distance S  computation is done according to Relation 

(4.29) considering the vehicle average length L ” [Pop20_2], [Pop20_3]: 
 

x
S L

.

 
= ⋅ + 

 

31
16 10

                                                               (4.29) 

 
“To transform the previous equations into the classic form for MIMO 

state-space representation from Relation (4.30), it is necessary to define 

x x x= −1 3 1 , x x x s= − =2 4 2  ( s  – is the dynamic distance between two cars) and 

y x= 2  [Kho10], [Pan08]: 

 

( ) ( ) ( )
( ) ( )

x t A x t B u t

y t C x t S

 = ⋅ + ⋅


= ⋅ +

ɺ

                                                                  (4.30) 

 

where the vectors and matrices are: 
x

x
x

 
=  
  

1

2
, 

u
u

u

 
=  
  

1

2
, A

 
=  
 

0 0

1 0
, B

− 
=  
 

1 1

0 0
, 

C
 

=  
 

0 0

0 1
. In addition, we have A B    controllable and A C    observable; 

additionally the system eigenvalues are 0” [Pop19_1], [Pop20_2], [Pop20_3]. 

“To introduce the time-delay τ , we assume that ( )u u t=1 1  and 

( )u u t τ= −2 2 . Introducing these notations in Relation (4.30) yields the linear 

continuous time-delay car-following model as follows [Kho10], [Pan08]” 
[Pop19_1], [Pop20_3]: 

 

( ) ( ) ( )
( )

( ) ( )

u t
x t A x t B

u t τ

y t C x t S

  
 = ⋅ + ⋅   −   


= ⋅ +

1

2

ɺ

                                                         (4.31) 

 
“Considering that τ λ T= ⋅ , where T  is the sampling period, Relation (4.32) 

is defined as [Kho10], [Pan08]” [Pop19_1], [Pop20_3]: 
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( ) ( ) ( ) ( )u t u k T u k ,  k T t k T= ⋅ = ⋅ ≤ < + ⋅1                                         (4.32) 

 
“If we rewrite Equation (4.31) according to Equation (4.32), we obtain the 

following relation [Kho10], [Pan08]” [Pop19_1], [Pop20_3]: 
 

( ) ( ) ( ) ( ) ( )
( )

( ) ( )

tA t t A t η u η
x t e x t e B dη

u η τ

y t C x t S

⋅ − ⋅ −  
 = ⋅ + ⋅ ⋅   −   


= ⋅ +

∫0 1
0

0 2

ɺ

                        (4.33) 

 

“If we consider t k T= ⋅0 , ( )t k T= + ⋅1  in the state equation and t k T= ⋅  in 

the output equation, we obtain the discrete car-following model, as in Relation 
(4.34) [Kho10], [Pan08]” [Pop19_1], [Pop20_3]. 

 

T
A T A η u k

x k e x k e B dη
u k λ

y k C x k S

⋅ ⋅     + = ⋅ + ⋅ ⋅          −     


= ⋅ +       

∫
1

0 2

1
                             (4.34) 

 

4.5.2. Proposed Car-Following Model  
 
Figure 4.9 shows the refined car-following model that includes the extension 

of the single-lane oriented “car-following model to multiple lane roads. This model 
built based on the modeling theory presented in Section 4.5.1 implements the 
proposal to estimate the probability of a lane change” [Pop19_1], [Pop20_3] from 
Section 4.4.  

“Considering the likelihood of initiating a lane change maneuver by driver c  

to initiate a lane change maneuver, the probabilities computed based on previous 
data, using (4.24), will offer the lane with the highest probability to be chosen by 

the driver from lane iL . The driver decision c  to perform a lane change maneuver 

is computed according to (4.35) and its meaning can be summarized as the 

probability of not choosing the lane iL ” [Pop19_1], [Pop20_3]: 

 

( )ic P L= −1                                                  (4.35) 

 

“Acceleration and other parameters, such as velocity and running distance for 

the target vehicle, are updated according to the specific rules of lane change 

actions. If there is no driver decision for a lane change maneuver, the model 

behaves as a standard car-following model without incorporating the lane change 

rules into the vehicle behavior description” [Pop19_1], [Pop20_3]. 
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Figure 4.9. Refined car-following model [Pop19_1], [Pop20_3]. 

 

“For simplicity, a procedure for lane change behavior estimations has been 

built considering incentive criteria for the symmetric lane change rule. The 

simulation results are available in Section 4.5.4” [Pop20_3]. 

 

4.5.3. Experimental Setup 
 

This section aims to describe the experimental setup used to analyse the 

behavior of the proposed refined car-following model. This section contains a 

description of the real traffic data and details of the simulation process. 

 

Road Traffic Data 

“To show the practical application of the refined car-following model, this 
thesis presents a case study for a three-lane road from Timisoara, Romania. Figure 
4.10 illustrates a real map of the studied section of road and its lane configuration” 
[Pop20_3]. The data used for experimental analysis have been collected using 
inductive loop sensors and have been received based on a written request of 
Politehnica University of Timișoara in the name of the author of this thesis 
(Mădălin-Dorin Pop), from “Timișoara City Hall - General Directorate of Roads, 
Bridges, Parking and Utility Networks - Traffic Monitoring Office, Timișoara, 
Romania” [Pop20_3]. 
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Figure 4.10. “Case study – three lanes piece of road from Calea Sagului, Timisoara, Romania 

(Source of the map: OpenStreet Maps)” [Pop20_3]. 

 
“The simulation used the data from Table 4.2 as inputs. The table defines 

the velocities for the studied lanes and the probabilities of lane choice behavior. The 
number of vehicles considered in the probability and velocity computation consisted 
of raw data retrieved from inductive loops placed on the road network. The 
simulation applied a derivative for the velocities to obtain the acceleration values as 
a first step, and further application led to the implementation of the proposal 
described in this thesis based on the approach from [Pop19_1]” [Pop20_3]. 
 

Table 4.2. “Road traffic data1” [Pop20_3]. 

Velocities (m/s) Lane choice probabilities 

iL
LV

−1
 

iL
FV

−1
 

iL
LV  

iL
FV  

iL
LV

+1
 

iL
FV

+1
 ( )iP̂ L −1  ( )iP̂ L  ( )iP̂ L +1  

6.90 2.14 14.28 12.69 10.94 10.29 0.04 0.48 0.48 

4.66 2.05 16.78 13.44 10.51 11.80 0.06 0.56 0.38 

3.83 1.64 16.30 13.49 10.58 10.83 0.04 0.49 0.47 

1.04 1.06 15.43 9.24 11.17 7.74 0.07 0.30 0.63 

1.81 1.74 12.85 14.54 5.89 9.29 0.05 0.44 0.51 

2.78 3.50 11.00 9.49 8.39 6.91 0.12 0.41 0.46 

4.94 3.97 11.14 11.05 8.66 9.01 0.10 0.47 0.43 

2.45 3.43 11.97 12.04 9.57 9.43 0.08 0.54 0.38 

3.99 2.91 12.43 11.07 8.72 9.47 0.06 0.57 0.37 

4.89 5.83 10.99 11.92 9.38 8.04 0.05 0.58 0.37 
“1Data source: Timișoara City Hall - General Directorate of Roads, Bridges, Parking and Utility 
Networks - Traffic Monitoring Office, Timișoara, Romania” [Pop20_3]. 
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Simulation Model 

“To perform the experiments for the multiple-lane car-following model, a 
simulation was done in Simulink, part of MATLAB R2020a (MathWorks, Natick, MA, 
USA)” [Pop20_3]. For a better overview of the contributions brought by the refined 
car-following model, this thesis presents the case of a three-lane road where the 
implementation of the refined car-following subsystem has the inputs and outputs 
represented as in Figure 4.11. A detailed description of all variables used in this 
simulation is available in Table A1 from Appendix A of this thesis. 

 

 

Figure 4.11. “Refined car-following subsystem overview - implementation using Simulink 
(MATLAB R2020a)” [Pop20_3]. 

 
“The transformation of velocity into acceleration is covered by the input 

handler subsystem, shown in Figure 4.12. Here, a discrete-time derivative block was 
applied to the raw velocity data to transform them into acceleration data, ensuring 
the functionality of the blocks presented previously” [Pop20_3]. 

 

 

Figure 4.12. “Input handler subsystem overview - implementation using Simulink (MATLAB 
R2020a)” [Pop20_3]. 
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“Figure 4.13 depicts the implementation of the model for monitoring 

possible lane change maneuvers from lane iL  to iL −1  or iL +1 . The main outputs of 

this block are the LV and FV velocities and running distances. It is necessary to 
mention again that the standard safety distance S  calculation was done according 

to Equation (4.29) [Kho10] and assuming that the vehicle average length L  for 
passenger vehicles was L .  m= 4 50 ” [Pop20_3]. 

 

 

Figure 4.13. “Refined car-following model - implementation using Simulink (MATLAB R2020a)” 
[Pop20_3]. 

 

4.5.4. Results 
 
“Figure 4.14 shows the acceleration profiles and the internal update of the 

acceleration values for LV and FV after c is greater or lower than the threshold. The 
threshold value was set at 0.50 and showed a greater than 50% chance of changing 
lanes. In this case, the simulated values for LV and FV were set to the calculated 
values, taking Equation (4.26) into account. For a better understanding of these 
switches of simulated acceleration values incorporating lane change actions, the 

case of a lane change action from iL  to iL −1  at time 0.2 s can be considered. The 

LV from the lane iL  performs this action and starts to follow the movement behavior 

described by vehicles moving into the lane iL −1 . The FV from the lane iL  will also 

change its movement behavior due to the new LV after the initial LV changes lane. 

Another similar case, but with a lane change from iL  to iL +1 , is observable at time 

6.3 s” [Pop20_3]. 
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Figure 4.14. “LV and FV from lane iL –accelerations values update” [Pop20_3]. 

 
“Changing acceleration values also implies a change of velocity. Figure 4.15 

shows an overview of the velocity values for all lanes, and incorporates a velocity 
change after a lane change maneuver. Here, the outputs of both the standard 
car-following model and the proposed approach can be seen” [Pop20_3]. 

 

 
Figure 4.15. “LV and FV–velocities profiles” [Pop20_3]. 

 
“The running distances profiles shown in Figure 4.16 create an overview of 

the simulated distances by covering the lane change action and offering the 
evolution of the values after the action has taken place. The vehicles continue their 
movement based on different trajectories after a lane change action. Here, the 
disadvantage of the proposed approach can be seen, i.e., the incorporation of lane 
change behavior in the current lane does not highlight the impact on adjacent traffic 
lanes” [Pop20_3]. 
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Figure 4.16. “LV and FV–running distances profiles” [Pop20_3]. 

 

4.6. Conclusions 
 
This chapter presented a new approach to car-following modeling adapted to 

multiple-lane roads. The modeling process considered the modeling of traffic lanes 
as nodes of a Markov chain and the lane choice probabilities computation applies the 
Bayesian inference concept. The probabilities calculation considered the following 
factors of influence: the entrance lane of the target, the destination lane of the 
target vehicle, and the influence of the LV behavior on the velocity changes of the 
FV. 

A simulation has been conducted for a three-lane road to analyse the results 
of the proposed method in comparison with the separate application of the standard 
car-following model for each of these traffic lanes. The results have shown good 
performance of the proposed approach but highlighted as a disadvantage the fact 
“that the current model cannot provide a view of the initial lane road traffic 
evolution in parallel” [Pop20_3]. 

The next chapters have to provide a fault analysis of the proposed refined 
car-following model and a new approach for the microscopic traffic model calibration 
that can also be adapted for the refined proposal. 
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5.  FAULT DETECTION OF DISCRETE-TIME 

MICROSCOPIC TRAFFIC MODELS 
 

 

5.1. Introduction 
 

 This chapter performs fault detection for the refined car-following model. 

The method chosen for fault detection consists of applying the method of parity 

equations. The purpose of this analysis is to identify the faults introduced by the 

computational approach. Therefore, the analysis starts from the assumption that the 

observed model already contains faults resulting from the extension of the standard 

car-following model by considering the influence introduced by vehicles moving on 

adjacent traffic lanes on the target vehicle from the current lane. 

 Before applying fault detection based on parity equations, this chapter 

presents the theoretical background of the fault detection process. After describing 

the models involved in this process, this thesis discusses step by step the 

methodological aspects of the computation of the residuals corresponding to the 

parity equations approach. 

The next section adapts the presented methodology to the fault detection of 

refined car-following needs. Following this methodology, the identified residuals “are 

the relative velocity residual and the dynamic running distance residual” 

[Pop20_3]. The residuals calculation uses the discrete-time traffic model and 

considers the permanently updated acceleration values with respect to the incentive 

criteria defined in Section 4.4. 

This chapter continues with the implementation of the fault detection 

process in Simulink (MATLAB R2020a). The corresponding subchapter provides a 

description of the models involved and the experimental results of the fault analysis 

consisting of the evolution of the residuals concerning the driver decision. 

The last subchapter highlights the conclusions of this fault detection of the 

refined car-following model by mentioning both advantages and disadvantages of 

the proposed model. 

 

5.2. Fault Detection using Parity Equations 
 

A fault that occurs in a system describes an unacceptable deviation from the 

standard behavior of at least one characteristic and consists of a state within the 

system that leads to an abnormal behavior of that system [Ise11]. “A system 

reaches the fault state after exceeding the threshold of the tolerance zone 

established for a fault value” [Pop20_3].  

“To identify a fault in a monitored system, many fault detection methods can 

be used” [Pop20_3]. When we refer to systems where fault detection implies 

multiple signals, a good method is the application of the process-model-based parity 

equations method [Ise11]. Figure 5.1 illustrates “a general scheme for process-

model-based fault detection” [Ise11], customized for the car-following model. The 

output of the main interest consists of residuals. Their analysis leads to the 

identification of the fault source, time, location, etc. “The generation of residuals 
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requires three models: nominal, current (observed), and the faulty system [Pou94]. 

The observed model is continuously compared with the nominal model and a faulty 

model. This faulty model is the result of a fault analysis of the implementation of the 

nominal model” [Pop20_3]. 

 

 

Figure 5.1. “General scheme for process-model-based fault detection” [Ise11] (fig.2.15). 

 

The state-space model, considered without noise and additional faults, that 

will be used for residuals generation with parity equations in discrete-time is shown 

in Figure 5.2. 

 

 
Figure 5.2. State-space model for the residual generation with parity equations in discrete-

time [Ise06] (fig.10.5). 

 

Translating in the equation the previous block diagram, the state-space 

model used to compute the residuals is defined as [Ise06], [Kra98]: 

 

x k A x k B u k

y k C x k

 + = ⋅ + ⋅           


= ⋅       

1
                                                            (5.1) 

 

The output at the next k + 1  sampled time can be expressed as [Ise06]: 
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y k C x k C A x k C B u k+ = ⋅ + = ⋅ ⋅ + ⋅ ⋅              1 1                                   (5.2) 

 

The output will also be calculated for the sampled time k + 2  [Ise06]: 

 

y k C x k C A x k C B u k

          C A x k C A B u k C B u k

+ = ⋅ + = ⋅ ⋅ + + ⋅ ⋅ +              

= ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ +          
2

2 2 1 1

1
                         (5.3) 

 

in order to lead to a general relation that can define the computation for a q -th 

( )q m≤  sampled output [Ise06]: 

 
q qy k q C x k C A x k C A B u k C B u k q−+ = ⋅ + = ⋅ ⋅ + ⋅ ⋅ ⋅ + + ⋅ ⋅ + −                  

12 1…  (5.4) 

 

Considering a time window of length q + 1 , the relation can be rewritten as 

[Ise06]: 

 

Y k q M x k Q U k q+ = ⋅ + ⋅ +                                                                  (5.5) 

 

By shifting the previous equation by q  backwards, we obtain [Ise06], 

[Kra98]: 

 

Y k M x k q Q U k= ⋅ − + ⋅                                                                       (5.6) 

 

where the vectors Y k    and U k    have the following significance [Ise06], [Kra98]: 

 

y k q u k q

y k q u k q
Y k ,  U k

y k u k

   − −      
   

− + − +         = =         
   
            

1 1

⋮ ⋮
                                        (5.7) 

 

and the matrices M  and Q  are calculated as [Ise06], [Kra98]: 

 

q qq

C

C A C B

C A B C BM , QC A

C A B C A B C BC A
− −

   
   ⋅ ⋅   
   ⋅ ⋅ ⋅= =⋅   
   
   

⋅ ⋅ ⋅ ⋅ ⋅ ⋅   

2

1 2

0 0 0 0

0 0 0

0 0

0

⋯

⋯

⋯

⋮ ⋮ ⋱ ⋮ ⋮⋮

⋯

                      (5.8) 

 

“As the state vector x k q−    is unknown, the Relation (5.6) is multiplied by 

a vector Tw  [Ise06]” [Pop20_3]: 
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T T Tw Y k w M x k q w Q U k⋅ = ⋅ ⋅ − + ⋅ ⋅                                                    (5.9) 

 

By selecting the vector Tw  of dimension ( )( )q r× + ⋅1 1 , where r  represents 

the number of outputs, such that 

 
Tw M⋅ = 0                                                                                      (5.10) 

 

the computational form for a residual vector is obtained [Ise06]: 

 
T Tr k w Y k w Q U k= ⋅ − ⋅ ⋅                                                                   (5.11) 

 

The residual that represents the parity signal is the following described as 

[Ise06], [Kra98]: 

 

r k W Y k Q U k = ⋅ − ⋅                                                                         (5.12) 

 

where the matrix W  is chosen considering that the residual r k    is independent of 

the state of the system x k q−   , thus [Ise06], [Kra98]: 

 

W M⋅ = 0                                                                                        (5.13) 

 

 “The system works correctly only if the residual is equal to zero, a non-zero 

residual may demonstrate a functional fault in the studied system [Ise06], [Kra98]” 

[Pop20_3]. 

 

5.3. Fault Detection of the Refined Car-Following 

Model 
 

The residual calculation uses the discrete car-following model described by 

Equation (4.34) from Section 4.5.1. Considering (5.4), the q -th ( )q m≤  sampled 

output of the car-following model is [Pop20_3]: 

 

( ) Tq A Tq A T A η

T
A η

x k u k
y k q C e C e e B dη

x k u k λ

u k q
            C e B dη

u k q λ

− ⋅ ⋅⋅ ⋅ ⋅

⋅

         + = ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + +       −            

 + −  + ⋅ ⋅ ⋅  
+ − −    

∫

∫

11 1

02 2

1

0 2

1

1

…

   (5.14) 

 

After applying a q  backward shifting starting from the assumption of an 

existing time window of length q + 1 , the relation can be rewritten as [Pop20_3]: 

 

x k q
Y k M Q U k

x k q

 −  = ⋅ + ⋅       −    

1

2

                                                      (5.15)

BUPT



                            5.3 – Fault Detection of the Refined Car-Following Model      93

where the definition of the vectors from Equation (5.7) is adapted as follows 

[Pop20_3]: 

 

x k q u k q

x k q u k q λ

x k q u k q

Y k ,  U kx k q u k q λ

x k u k

x k u k λ

   − −      
   

− − −         
   − + − +         
   = =   − + − − +            
   
   

         
   −            

1 1

2 2

1 1

2 2

1 1

2 2

1 1

1 1

⋮ ⋮

                              (5.16) 

 

and the redefinition of M  and Q  is described by Equations (5.17) and (5.18) 

[Pop20_3]: 

 

A T

A T

q A T

C

C e

M C e

C e

⋅

⋅ ⋅

⋅ ⋅

 
 

⋅ 
 = ⋅ 
 
 
 ⋅ 

2

⋮

                                                                              (5.17) 

 

 

 

( ) ( )

T
A η

T T
AT A η A η

T T Tq AT q ATA η A η A η

C e B dη

Q C e e B dη C e B dη

C e e B dη C e e B dη C e B dη

⋅

⋅ ⋅ ⋅

− ⋅ ⋅ − ⋅ ⋅⋅ ⋅ ⋅

 
 
 ⋅ ⋅ 
 
 = ⋅ ⋅ ⋅ ⋅ ⋅ 
 
 
 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

∫

∫ ∫

∫ ∫ ∫

0

0 0

1 2

0 0 0

0 0 0 0

0 0 0

0 0

0

⋯

⋯

⋯

⋮ ⋮ ⋱ ⋮ ⋮

⋯

(5.18) 

 

 

 

“As the state vector 
x k q

x k q

 −  
 

−    

1

2

 is unknown, the Equation (5.15) is multiplied 

by a vector Tw  [Ise06]” [Pop20_3]: 

 

T T Tx k q
w Y k w M w Q U k

x k q

 −  ⋅ = ⋅ ⋅ + ⋅ ⋅       −    

1

2

                                   (5.19) 
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 The calculation of the residual r k    results from the replacement in 

Equation (5.12) of the new matrices defined by Relations (5.16) and (5.17), and 

(5.18) and taking into account that “u1  and u2  are permanently updated 

considering the incentive criteria defined by Equations (4.25)–(4.27) – Section 4.4 

as the consequences of a possible lane change action according to Equation (4.35) – 

Section 4.5.2” [Pop20_3]. 

 

5.4. Experimental Setup and Results Analysis 
 

“This section presents the results of the proposed multiple-lane car-following 

model in comparison with a separate, standard car-following model for each lane, as 

well as the fault detection results. Additionally, this section provides the 

implementation details and the input data used for the experiment. The purpose is 

to show that the proposed multiple-lane model is able to detect a lane change 

maneuver and can change the model parameters accordingly. For this reason, each 

figure also shows the driver’s decision regarding a possible lane. The second part of 

this section presents the evolution of the residual values, which was based on an 

analysis of the impact of possible faults on the system inputs” [Pop20_3]. 

 

5.4.1. Simulation Model 
 

“To perform fault detection based on parity equations for the multiple-lane 

car-following model, a simulation was done in Simulink, part of MATLAB R2020a 

(MathWorks, Natick, MA, USA). Usually, the fault detection considers three types of 

models: nominal, observed, and the model with a defect. This thesis assumed that 

the observed model had already incorporated faults as a result of the proposed 

computational approach. In this case, the implementation consisted of two main 

types of subsystems, as shown in Figure 5.3: three separate blocks for the standard 

implementation of a car-following model, consisting of the nominal model (orange); 

and the proposed model for multiple-lane car-following, consisting of the observed 

model (blue)” [Pop20_3]. The inputs of these blocks are the acceleration values 

obtained as outputs of the input handler subsystem described in Section 4.5.3.  

 

 
Figure 5.3. “Main subsystems overview—implementation using Simulink (MATLAB R2020a)” 

[Pop20_3]. 
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“The subsystem shown in Figure 5.4 covers the residual computation. The 

outputs are the relative_velocity_residual and dynamic_distance_residual, and 

consist of the differences between the values of x1  and x2  obtained from the 

adaptation of Equation (5.12) by using the nominal model and the observed model 

with faults introduced by the computation approach” [Pop20_3]. 

 

 
Figure 5.4. “Residuals computation subsystem overview—implementation using Simulink 

(MATLAB R2020a)” [Pop20_3]. 

 

“To simplify the obtained results, Table A1 (from Appendix A) describes the 

mapping between the models defined in this thesis and the signals used as 

simulations. Some of the internal states were passed as outputs from the 

subsystems for the creation of graphics. The table sets the parameter type based on 

the state-space representation concept” [Pop20_3]. 

 

5.4.2. Experimental Results – Fault Analysis 
 

“The fault analysis created an overview of the evolution of two residuals, 

i.e., relative velocity and dynamic distance, based on the movement in lane iL . 

Figure 5.5 shows the influence of the lane change actions on the velocity and 

distance computation using the multiple-lane car-following model. The proposed 

model introduces faults when the driver decision c  has a low degree of uncertainty 

(i.e., c  is near the .0 50  threshold with .±0 10 ). In other cases, when the driver 

decision is not affected by this low level of uncertainty, the relative velocity residual 

tends to zero. The dynamic distance residual has a continuously increasing trend 

based on the same pattern, and its value remains relatively constant in the absence 

of a low level of uncertainty” [Pop20_3]. 
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Figure 5.5. “Fault detection – residuals overview” [Pop20_3]. 

 

5.5. Conclusions  
 

This chapter provided fault detection for the refined car-following model. The 

fault detection process considered the refined car-following model both as the 

observed model and as the model with defect to better highlight the possible defects 

introduced by the calculations that consider the influence of vehicles from adjacent 

traffic lanes. According to the chosen method represented by the parity equations, 

two residuals have been identified: the relative velocity residual and the dynamic 

running distance residual. 

The fault detection process based on parity equations has been fully 

described and implemented in Simulink. The experimental results used real traffic 

data from the TMC responsible for Timișoara City. Analysis of the results of the 

evolution of the residuals showed that the uncertainty of the driver decision is the 

main source of fault in the refined car-following model.  

The fault analysis showed that “the main drawback of the proposed 

approach is that it currently only shows the behavior of the LV and FV from a 

specific lane in relation with other lanes after the insertion of a new vehicle into the 

current lane. For this reason, the model is not suitable for a real-time switch from 

one lane to another to ensure lane change behavior monitoring for each lane. Future 

work will focus on introducing an adaptive switch between road lanes to show the 

real-time updated traffic conditions for all lanes in parallel” [Pop20_3]. 
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6.  CALIBRATION OF MICROSCOPIC TRAFFIC 

MODELS 
 

 

 

6.1. Preliminaries 
 

This chapter aims to bring improvements to the microscopic traffic modeling 

process through a new approach to online calibration of traffic parameters. It starts 

with a theoretical overview of the calibration concept that applies to microscopic 

traffic models. 

Further, this chapter will describe the concepts of Kalman filtering and 

Takagi-Sugeno FIS. The proposed hybrid approach for online calibration of 

car-following models consists of a combination of these two concepts. The proposed 

calibration method proves its efficiency through a faster identification of the correct 

offsets to be applied to the model parameters compared to a simple Kalman 

filtering.  

In addition to the outcome of the research of Pop et al. [Pop20_2], this 

chapter adapts this calibration method and applies it to the refined car-following 

model. The most challenging aspect is the adaptation of the initially proposed 

version for the continuous-time system to a discrete-time environment. This need 

arises from the discrete-time version proposed for the refined car-following model. 

 

6.1.1. Calibration of Traffic Models – Theoretical 

Background 
 

“Figure 6.1 illustrates a description of road traffic systems at the microscopic 
level. The following three main components ensure the existence of a model closer 
to reality: microscopic traffic data, modeled microscopic traffic system, and model 
validation. The first component is responsible for collecting traffic data from the real 
world. The second component simulates the real system behavior and uses the 
estimated values for road traffic parameters as inputs to calculate the simulation 
output data. A comparison between the simulated data and the real microscopic 
traffic data consists of a validation step. The output of this component is a decision 
based on the similarity between the real and simulated model and consists of the 
calibration component input. The calibration step shall establish the offset values to 
be applied to the model inputs to reduce the difference compared to the real data. 
Calibration is performed until these offset values become equal to zero” [Pop20_2]. 

“The calibration process finds many issues in the case of microscopic traffic 
modeling. One of the common problems is the measurement of traffic 
characteristics like velocity, travel times, and the distance between vehicles because 
of the influence introduced by each vehicle behavior or travel conditions [Bar10]. 
The calibration data shall consider this uncertainty in driver decisions and need to 
adapt to it” [Pop20_2]. 
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Figure 6.1. “Microscopic traffic system” [Pop20_2]. 

 

6.2. Hybrid Approach for Car-Following Models 

Calibration 
 

6.2.1. Kalman Filter for Online Calibration 
 

“Online calibration is specific for systems that are using real-time data in 
order to adapt the model, by changing the system parameters to be close to the 
real system. This category of calibration includes the Kalman filter method [Ema19], 

[Kal61], [Pun05_2]” [Pop20_2]. 

“Kalman filters are popular in the calibration of state-space models 
characterizing a system in discrete-time, but also applies to continuous-time 
systems [Pen99], as in the current case. For microscopic road traffic, this method 
proved its efficiency even if the traffic conditions are nonstationary or stationary. 
This approach permits a real-time continuous update of studied parameters by 
updating them through the specific offsets. Further, the application of this method 
will be presented for car-following model calibration as stated by [Pun05_2]” 

[Pop20_2]. 

“The state equations for the calibration system of the car-following model 

according to Kalman filtering concept are shown in (6.1), where ( ) { }iγ t ,  i , ,s= 1 3  

are the parameters that need calibration” [Pop20_2].  

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )s

x t x t γ t

x t x t γ t

s t s t x t x t T γ t

 = +
 = +


 = + − ⋅ +  

1 1 1

3 3 3

1 3

ɺ

ɺ

ɺ

               (6.1) 

 

“Considering that ( ) { }iζ t ,  i , ,s= 1 3  are the measurement errors for the real 

traffic parameters, the output equations of the calibration system are computed by 
using the Relation (6.2)” [Pop20_2]. 

BUPT



                       6.2 – Hybrid Approach for Car-Following Models Calibration   99

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

obs

obs

obs
s

x t x t ζ t

x t x t ζ t

s t s t ζ t

 = +

 = +

 = +


1 1 1

3 33

ɺ

ɺ

ɺ

                          (6.2) 

 

“Based on previous assumptions, the Kalman filter state-space 
representation can be obtained as follows: 
 

( ) ( ) ( ) ( )
( ) ( ) ( )

k k k

k

x t A x t B u t D γ t

y t C x t ζ t

 = ⋅ + ⋅ + ⋅


= ⋅ +

ɺ

                            (6.3) 

 

where the matrices specific for the continuous-time Kalman filter have the following 

values: kA

T T

 
 =  
 − 

1 0 0

0 1 0

1

, kB =   0 , kC

 
 =  
  

1 0 0

0 1 0

0 0 1

, and kD

 
 =  
  

1 0 0

0 1 0

0 0 1

” 

[Pop20_2]. 

“The continuous-time Kalman filter estimates the values according to (6.4): 
 

( ) ( ) ( ) ( )pr k k prˆ ˆ ˆx t x t K y t C x t = + ⋅ − ⋅                              (6.4) 

 

where ( )prx̂ t  is a prediction obtained based on the previous knowledge using the 

following relation: 
 

( ) ( ) ( )
t tpr k pr k prˆ ˆ ˆx t A x t B x t

− −
= ⋅ + ⋅

1 1

ɺ                             (6.5) 

 

where 
tkA

−1
 and 

tkB
−1

 represent the values of kA  and kB  at time t − 1 ” 

[Pop20_2]. 

“The gain matrix kK  incorporates the compromise to adjust the estimated 

parameters by using real measured data but, at the same time, to avoid the 
propagation of measurement errors” [Pop20_2]: 
 

k k

T T
k pr k pr kk k

K P C C P C R
−

 = ⋅ ⋅ ⋅ ⋅ +  

1
                            (6.6) 

 

“The matrix 
kprP is the covariance matrix that contains the estimation error 

and will be updated at each step by applying the following relation: 

 

k k

T T
pr k F k kk k

P A P A D Q D
+

= ⋅ ⋅ + ⋅ ⋅
1

                            (6.7) 

where 
kprP

+1
 represents the value of 

kprP  at time t + 1  and 
kF

P is defined as” 

[Pop20_2]: 

 

BUPT



  Calibration of Microscopic Traffic Models – 6 100 

k kF k k prP I K C P= − ⋅ ⋅                                          (6.8) 

 

“The Kalman filter covariance matrix of errors kR  is: 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

x t ,x t x t ,s t

k x t ,x t x t ,s t

s t ,x t s t ,x t s t ,s t

σ σ

R σ σ

σ σ σ

 
 
 =  
 
  

1 1 1

3 3 3

1 3

0

0                  (6.9) 

 

with the propagation of variances and covariances expressed as: 
 

n ij
n

x s x
i ji , j

x s
σ σ

x x

∂ ∂= ⋅ ⋅
∂ ∂∑                                       (6.10) 

 

for the functions of interests defined as: ( )n ix x ,x , , x ,= 1 2 ⋯ ⋯  and 

( )js x ,x , , x ,= 1 2 ⋯ ⋯  with the explanation that 
nx sσ  is the covariance of nx  and s , 

and the term 
ijxσ  represents the covariance of ix  and jx ” [Pop20_2]. 

 

6.2.2. Fuzzy-Based Calibration 
 

“FIS usually solves problems related to the nonlinearity of systems or in the 
cases of systems that have time delays, but is also suitable to continuous-time 
systems [Lam18]” [Pop20_2]. 

“Microscopic traffic modeling is a complex problem because of the 
uncertainty in drivers’ decisions for lane changes or for the acceleration/deceleration 
behavior. The driver behavior influences all corresponding dynamic traffic 
parameters, introducing, in some cases, a swap in role between LV and FV. These 
reasons make the microscopic traffic modeling problem suitable for implementation 
with FIS, especially for the calibration process where all mentioned uncertainties 
need filtering in order to establish the best offset values. The application of these 
values ensures the dynamical adaptation of the modeled system to the received real 
traffic conditions” [Pop20_2]. 

“In the following, the particularities of the FIS are shown, especially on the 
use of Takagi–Sugeno. A new calibration method will be issued based on this 
theoretical background in combination with the Kalman filtering concept previously 
presented. Compared to the simple use of Kalman filters, this hybrid approach tries 
to cover the learning of patterns in an offset setting” [Pop20_2]. 

 

Takagi-Sugeno FIS 

“Probably the most known model to implement a FIS is to use the 
Takagi-Sugeno approach [Bou15], [Had11], [Pet19], [Tak85]. Similar to other fuzzy 
methods, this model description uses the fuzzy specific IF-THEN rules. These 
input-output associations of the nonlinear modeled system characterize the 
dynamics of each fuzzy rule by creating a linear system model” [Pop20_2]. 
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“A general Takagi-Sugeno FIS for continuous-time models can be described 
by the following fuzzy rules [Abd15], [Bou15]: 
 

( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

i p ip

i i i i

i i

IF  z t  is F  AND  IF  z t  is F  

x t A A x t B B u t
        THEN 

y t C C x t

∆ ∆

∆

 = + ⋅ + + ⋅


= + ⋅

1 1 …

ɺ            (6.11) 

 

where the notations have the following meaning: 

• ( ) { }jz t ,  j , , , p= 1 2 ⋯  are the premise variables; 

• ( ) { }ijF t ,  i , , ,r ,= 1 2 ⋯  and { }j , , , p= 1 2 ⋯ represent the fuzzy sets; 

• r  is the number of defined fuzzy rules; 

• ( ) nx t ∈ ℝ  is the state vector; 

• ( ) mu t ∈ ℝ  is the input vector; 

• n n
iA ×∈ ℝ  is the state matrix; 

• n m
iB ×∈ ℝ  is the input matrix; 

• q n
iC ×∈ ℝ  is the output matrix where q  is the number of outputs 

parameters; 

• i iA ,  B ,∆ ∆  and iC∆  are the matrices that incorporate the uncertainties” 

[Pop20_2]. 

“The previous assumptions lead to the inferred model expression: 
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           (6.12) 

 

where ( )( )ih z t  is the normalized grade of membership for each rule and is 

compliant with (6.13)” [Pop20_2]. 
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“These equations represent the fundamentals for the implementation of an 
optimized calibration method for the special case of car-following models” 
[Pop20_2]. 
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6.2.3. Proposed Online Hybrid Calibration Method 
 

“Figure 6.2 shows the proposal for the calibration system internal structure. 
Moreover, its relations with the other external subsystems are also represented. As 
part of the modeled microscopic traffic system, the calibration model has the feature 
of providing the necessary data to adapt the internal model parameters based on 
the evaluation received as input from the system responsible for the model 
validation. Together with the validation result, two sets of parameters consisting of 
simulation values and microscopic traffic real data will be sent to the calibration 
subsystem” [Pop20_2]. 

 

 
Figure 6.2. The proposed approach for microscopic traffic model calibration [Pop20_2]. 

 

“The first internal subsystem of a calibration system is intended for 
identifying the differences between real and simulation data. These will be 
forwarded to the Kalman filter. The filtered values will be forwarded to the final 
decision step regarding the offset values consisting of a Takagi-Sugeno FIS. This 
last subsystem embeds the fuzzy specific components. The fuzzification ensures that 
the identified differences between the real and simulation parameters are converted 
to a fuzzy variable. Further, after the fuzzy rules have been defined, the output 
fuzzy variables will consider them in establishing the connections with the input 
fuzzy variables through an inference step. Defuzzification will convert the fuzzy 
variables to the corresponding types of analyzed parameters. These values 
consisting of offsets that shall be applied to the simulation parameters will also be 
saved by a subsystem that will build a knowledge base for the parameters offset” 
[Pop20_2]. 

“After the model parameters have been updated with the offsets provided 
by the calibration subsystem, the process will be resumed until the offsets tend to 
zero. As the values of the simulation are closer to the real ones, the chances of the 
model to be validated increase. When the offsets are equal to zero, the model is 
considered as validated” [Pop20_2]. 

“The inter-vehicle spacing offset for the next run of the simulation can be 
considered the same as the new estimated simulation error. From this point of view, 
the calibration module will be responsible for estimating the values that can reduce 
the difference between simulation values and the values retrieved from real traffic 
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measurements. The new estimation error shall be computed as it is presented below 
and will be further applied directly by the subsystem that estimates the model 
parameters based on retrieved real traffic data, depending on corresponding 
conditioned parameters: 
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

s s s s

s s s s

s t s t ζ t γ t ,  γ t ζ t
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           (6.14) 

 

where ( )s t∆ 0  is considered an initial offset that can be defined based on FV and LV 

behavior for velocity evolution, as can be seen in (6.15). This correction step shall 
be applied to ensure that it maintains the standard safety distance s  between LV 

and FV” [Pop20_2]: 
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“The model calibration will be done for the linguistic variables defined in 
Table.6.1. The inputs and outputs are defined in a manner that simplifies the fuzzy 
rules writing process. More than that, the output is defined for each possible 
situation that can describe the car-following model behavior from the LV and 
velocity evolution perspectives. Additional information that is taken into account is 
related to the measurement and simulation errors of dynamic safety distance 
between LV and FV (the inter-vehicle spacing). The output consisting of the 
necessary offsets that shall be applied to the simulation values for LV and FV 
vehicles will be defined by equations that use the Kalman filter-specific data. These 
offsets s∆  will be computed according to (6.14)” [Pop20_2]. 

 
Table 6.1. “Linguistic variables for Takagi-Sugeno Fuzzy Inference System (FIS) based on 

Kalman filtered values” [Pop20_2]. 

Parameter 

Role 
Variable Name Variable Definition 

Input 1 
LV velocity relative to FV velocity 

( REL_SPEED ) 

LOW ( ) ( )x t x t<1 3  

EQUAL ( ) ( )x t x t=1 3  

HIGH ( ) ( )x t x t>1 3  

Input 2 

Simulated inter-vehicle spacing 

estimation error relative to 

measurement error ( REL _ERR ) 

LOW ( ) ( )s sγ t ζ t<  

EQUAL ( ) ( )s sγ t ζ t=  

HIGH ( ) ( )s sγ t ζ t>  

Output 
Inter-vehicle spacing offset s∆  

(OFFSET ) 

REDUCE 
Equation 

(6.14) 
MAINTAIN 

INCREASE 

 

“Considering the introduced linguistic variables and the possible offset 
values defined by (6.14), the fuzzy rules are according to (6.16)” [Pop20_2]. 
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IF  REL_SPEED LOW    AND REL _ERR LOW    THEN OFFSET INCREASE

IF  REL_SPEED LOW    AND REL _ERR EQUAL THEN OFFSET MAINTAIN

IF  REL_SPEED LOW    AND REL _ERR HIGH   THEN OFFSET REDUCE 

IF  REL_SPEED EQUAL AND RE

= = =
= = =
= = =
= L _ERR LOW    THEN OFFSET INCREASE

IF  REL_SPEED EQUAL AND REL _ERR EQUAL THEN OFFSET MAINTAIN

IF  REL_SPEED EQUAL AND REL _ERR HIGH   THEN OFFSET REDUCE

IF  REL_SPEED HIGH   AND REL _ERR LOW    THEN OFFSET INC

= =
= = =
= = =
= = = REASE

IF  REL_SPEED HIGH   AND REL _ERR EQUAL THEN OFFSET MAINTAIN

IF  REL_SPEED HIGH   AND REL _ERR HIGH   THEN OFFSET REDUCE 

= = =
= = =

(6.16) 

 

“The fuzzy matrix kF  that considers the fuzzy rules and (6.15) is shown 

below” [Pop20_2]. 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
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s s s s s
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F ζ t γ t γ t ζ t γ t
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= − − 
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           (6.17) 

 

6.2.4. Simulation Model 
 

“Figure 6.3 shows the Simulink (MATLAB R2020a) implementation model. 
The implementation is a simplified car-following model that studies the impact of 
velocities in the FV strategy to adapt its running distance based on the FV moving 
behavior. In this case, the acceleration was not taken into account” [Pop20_2]. 

 

 
Figure 6.3. “Simulation model – implementation using Simulink (MATLAB R2020a)” 

[Pop20_2]. 

 

“The computation of the standard safety distance S  is done continuously 

considering equation (4.29). This value is needed to ensure collision avoidance in 
the case of the increase in FV velocity. For this computation, an average vehicle 
length L .  m= 4 50  was used. The output of the modeled system also considers S  in 

the dynamic safety distance profile” [Pop20_2]. 

“The inputs of the model and also the internal states can be affected by 
noise in the case of model implementation. To simulate this behavior a Band-Limited 
White Noise Simulink block was added to the simulation for the velocities and 
inter-vehicle spacing to see their impact on the running distances for the LV and FV, 
and the dynamic safety distance y . The applied noise consists of normally 
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distributed random numbers with the following characteristics that are the default 
values for the mentioned Simulink block: 

• noise power: 0.10; 
• sample time: 0.10; 
• seed: 23341” [Pop20_2]. 

“An adaptive system based on Kalman filtering and Takagi-Sugeno FIS will 
ensure the removal of the introduced noises by the simulated model. The Fuzzy 
Controler Simulink block uses the Kalman filtered values as input for the relative 
speed between the FV and LV and also the simulated inter-vehicle spacing 
estimation error relative to measurement error. The implementation details of the 
Takagi-Sugeno FIS are available in the second part of the current section” 

[Pop20_2]. 

“Scope Simulink blocks were added in some points of interest for the 
following reasons: 

• to monitor the input values; 
• to obtain the running distances profile for the real behavior of the LV and 

FV; 
• to capture the influences in the simulated running distances introduced by 

the simulated system; 
• to correlate the calculated offset values for inter-vehicle spacing with the 

calibration process evolution; 
• to create an overview of the calibration process impact on the system 

output” [Pop20_2].  

 

Simulation Input Data 

“To prove the proposed model validity, the simulation uses as input data, the data 
provided by Timișoara City Hall - General Directorate of Roads, Bridges, Parking and 
Utility Networks - Traffic Monitoring Office, Timișoara, Romania. Figure 6.4 shows, 
marked in red, the chosen piece of road between two crossroads: Liviu Rebreanu - 
Calea Șagului and Liviu Rebreanu – Gheorghe Ranetti. These crossroads have a high 
daily traffic flow and consists of a good input for analyzing the impact of the 
proposed approach. The data was collected by using inductive loops sensors that 
were placed on the studied road network to monitor the vehicle numbers and the 
velocities” [Pop20_2]. 

 

 
Figure 6.4. “Real mapping of the studied piece of road (Source: OpenStreet Maps view)” 

[Pop20_2]. 
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Takagi-Sugeno Model Implementation Details 

“The implementation Takagi-Sugeno FIS using the Kalman filtered values as 
inputs, according to the assumptions previously mentioned, uses Fuzzy Logic 
Toolbox from MATLAB R2020a. Figure 6.5 shows the implemented calibration step 
as it looks in the chosen simulation tool” [Pop20_2]. 

 

 
Figure 6.5. “Takagi-Sugeno FIS calibration model implementation using Kalman-filtered values 

as input” [Pop20_2]. 

 

“The established fuzzy rules presented in (6.16) were implemented for the 
car-following model calibration using the rule editor for Takagi-Sugeno FIS provided 
by the simulation tool, as it can be seen in Figure 6.6” [Pop20_2]. 

 

 
Figure 6.6. “Fuzzy rules implementation using rule editor” [Pop20_2]. 

 

“A manner to analyze the simulation results specific to MATLAB R2020a is 
the usage of rule viewer. Each input of the calibration system and the output are 
shown in Figure 6.7. The output values of the car-following calibration system will 
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be modified interactively based on chosen inputs. Membership functions were 
defined based on historical traffic data evolution” [Pop20_2]. 

 

 
Figure 6.7. “Rule viewer for Takagi-Sugeno FIS car-following calibration system” [Pop20_2]. 

 

“Another option to analyze the results of fuzzy rules evaluation is through 
the surface viewer. Figure 6.8 illustrates the system performance for the 
relationship between the linguistic variables used as inputs or as output for the 
modeled microscopic traffic calibration system” [Pop20_2]. 

 
Figure 6.8. “Surface viewer for Takagi-Sugeno FIS car-following calibration system” 

[Pop20_2]. 

 

6.2.5. Simulation Results 
 

“Figure 6.9 shows the input data for the proposed traffic calibration method. 
Can be observed the evolution in time of the LV and FV velocities for the chosen 
piece of road between two crossroads” [Pop20_2]. 
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Figure 6.9. “Input data - velocities for LV ( x1 ) and FV ( x3 )” [Pop20_2]. 

 

“Based on the input values the ideal evolution was computed for the LV and 
FV running distances. Figure 6.10 shows this result after the application of the 
car-following approach for the real traffic data” [Pop20_2]. 

 

 
Figure 6.10. “Running distances for LV ( x2 ) and FV ( x4 ) – ideal evolution” [Pop20_2]. 

 

“The result of the proposed hybrid approach for calibration of the 
car-following model in continuous-time is available in Figure 6.11. The modeled 
running distance of the FV that is affected by noise succeeds at reproducing the real 
behavior of the FV” [Pop20_2]. 
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Figure 6.11. “Running distances for LV ( x2 ) and FV ( x4 ) - calibration result for FV ( x4 )” 

[Pop20_2]. 

 

“A better way to see the utility of the proposed approach is to analyze the 
calculated offset values. Figure 6.12 illustrates the evolution of the calculated offset 
values for the inter-vehicle spacing applied to the FV. Before the system joins the 
calibrated state, both positive and negative offset values are applied. After 
approximately t  s= 18 , the system succeeded at learning different patterns of 

velocities and simulated inter-vehicle spacing error patterns and could reproduce the 
real behavior. After that time, the system was calibrated and could continuously 
reproduce the real behavior” [Pop20_2]. 

 

 
Figure 6.12. “Inter-vehicle spacing offset applied to FV ( x4 )” [Pop20_2]. 
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“The calibration result can also be observed by analyzing the dynamic safety 
distance that includes the standard safety distance. Figure 6.13 depicts the overview 
of the calibration result for the system output. The safety level is ensured by the 
direct application of safety length on the output, and safety is guaranteed by the 
car-following model even in cases of vehicles with different lengths” [Pop20_2]. 

 

 
Figure 6.13. “Dynamic safety distance – calibration overview” [Pop20_2]. 

 

Discussion 

“To show the motivation of using the hybrid proposal of Kalman filtering 
with Takagi-Sugeno FIS instead of a solution based on Kalman filtering-only, a 
simulation is needed for this comparison. Figure 6.15 depicts the implementation 
using Simulink (MATLAB R2020a) for the mentioned reason. The simulation aims to 
analyze the behavior of FV for both cases of calibration methods. In addition to the 
simulation blocks from Figure 6.3, an extension introduces the computation of the 
FV running distance based on the Kalman filtering-only approach. In this case, the 
model uses only the filtered values to control the FV movement strategy. A big 
disadvantage, in this case, is the neglect of the FV relative velocity that can result in 
wrong offset values that will negatively influence the movement strategy. The 
calibration system shall ensure the capability for time-varying offset values 
application” [Pop20_2]. 

“The simulation results for this comparison (Figure 6.14) illustrate that both 
approaches succeeded in filtering the noises and provided similar-to-real-case 
trajectory evolution. The Kalman filtering-only approach cannot reproduce the real 
behavior through its neglect of inter-vehicle interaction from a relative velocity 
perspective. The hybrid approach takes advantage of this interaction between FV 
and LV and succeeds at identifying the time-varying appropriate offset value that 
reproduces the real behavior. This advantage can be visually observed from 
trajectory evolution where, after t  s= 18 , the system is calibrated using the hybrid 

approach. At the same time, the Kalman filter-only approach introduces a uniform 
increase in computation error that leads to a scaled running distance compared to 
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real traffic conditions. From a computational complexity perspective, both 
approaches fit to real-time processing. The Takagi-Sugeno FIS does not introduce 
computational delays that can lead to a major increase in the real-time data 
processing timings” [Pop20_2]. 

 

 
Figure 6.14. “Running distance for FV ( x4 ) - comparison of calibration result for the Kalman 

filtering-only approach and the hybrid Kalman filtering and Takagi-Sugeno FIS approach” 

[Pop20_2]. 

 

 
Figure 6.15. “Simulation model to compare the Kalman filtering-only approach with the hybrid 
Kalman filtering and Takagi-Sugeno FIS approach – implementation using Simulink (MATLAB 

R2020a)” [Pop20_2]. 

 

 Besides the application of this proposed calibration method for standard 

car-following models, this thesis also verifies its performance in the case of the 

refined car-following model. 
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6.3. Calibration of the Refined Car-Following Model 
 

6.3.1. Simulation Model 
 

The application of the hybrid calibration method for the refined car-following 

model requires the extraction of the implementation of the computational logic to a 

standalone subsystem because in [Pop20_2] the simulation model also included 

the computational logic for the standard car-following model. Figure 6.16 illustrates 

a parallel view of the subsystems designed for the refined car-following model and 

the subsystem that contains the computational logic for calibration. The inputs for 

the calibration subsystem are the outputs of the refined model related to the target 

lane i . Designed initially for continuous-time, the adaptation to the discrete-time 

version of the refined car-following model proposed by this thesis involved the 

usage of an ode45 solver for continuous states. 

 

 
Figure 6.16. Refined car-following model and calibration model subsystems - implementation 

using Simulink (MATLAB R2021a). 

 

Figure 6.17 illustrates a detailed overview of the calibration model after the 

extraction of the computational logic from the initial implementation for the 

standard car-following model (Figure 6.3). This facilitates the reusability of the 

proposed calibration method. 

 

 
Figure 6.17. Calibration model – a detailed overview of the model implementation in Simulink 

(MATLAB R2021a). 
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6.3.2. Simulation Results 
 

After running the simulation for the refined car-following model and using as 

input the data specified in Table 4.2 (Section 4.5.3), the offset that applies to the 

inter-vehicles spacing is changing according to Figure 6.18. Noise has been injected 

into the model according to the explanations given at the beginning of Section 

6.2.4. The calibration method succeeds in “learning” different patterns of changes in 

the running distance value and after approximately t  s= 5  the calibration process is 

completed and the refined car-following model is fully calibrated. 

 

 
Figure 6.18. Inter-vehicle spacing offset applied to FV (FV_i_distance_sim).  

  

Figure 6.19 shows a better overview of the efficiency of the proposed 

calibration model. This presents the running distance profiles for LV and FV and the 

calibrated running distance for the FV in the case of a noise presence. 

 

 
Figure 6.19. Calibration result for FV (FV_i_distance_sim).
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6.4. Summary and Conclusions 
 

This chapter proposed a new online calibration method for car-following 

models. This method combined Kalman filtering and Takagi-Sugeno FIS to eliminate 

the noises introduced by the modeling process. 

“The proposed method was validated by the simulation results obtained 
from the Simulink (MATLAB R2020a) implementation of the continuous-time 
car-following model together with the system responsible for the calibration process. 
The input data of this study consisted of real road traffic data from Timișoara, 
Romania. Takagi-Sugeno FIS proved again its utility in adaptive systems through 
the optimization of parameters offsets establishing process” [Pop20_2]. 

Additionally, the proposed calibration method has been adapted for the refined 

car-following model needs and has also demonstrated satisfying results proved by a 

simulation done in Simulink (MATLAB R2021a). Moreover, the offsets determined 

through the calibration process can also reduce the impact of computational faults 

resulting from the fault analysis performed in the previous chapter. 

“A comparison between the Kalman filtering only approach and the hybrid 
Kalman filtering with Takagi-Sugeno FIS was conducted in Simulink (MATLAB 
R2020a). The comparison results show that the hybrid approach could provide a 
closer model to the real model. The big advantage of the hybrid approach was that 
it can provide the time-varying offset based on real-time road traffic parameters. 
Moreover, this proposal implies the specific interaction between FV and LV in the 
offset computation according to the microscopic traffic modeling theory” 

[Pop20_2]. 

“Further works can extend this approach at the mesoscopic traffic modeling 
level where the conditions for velocities evaluation can be assigned to vehicle 
groups instead of individual vehicles. A big challenge in that direction will be the 
safety distance assurance inside a group of vehicles because mesoscopic modeling 
does not offer enough granularity compared to microscopic traffic models” 
[Pop20_2]. 
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7. CONCLUSIONS, CONTRIBUTIONS AND 

FUTURE RESEARCH 
 

 

7.1. Study Conclusions 
 

This thesis addresses a current direction of research consisting of intelligent 

control and modeling of road traffic systems. The developments of new systemic 

approaches used the microscopic level of road traffic representation and addressed 

the uncertainties introduced by driver behavior in the modeling process. Moreover, 

this thesis reproduces the scientific contributions of the author that were achieved 

during the PhD research program and were published in journals or proceedings 

volumes of international conferences. At the end of each chapter, the author 

emphasizes the conclusions, advantages, and disadvantages of the proposed 

approaches. 

The development of “a new car-following model for multiple-lane roads was 

the main objective of this research” [Pop19_1]. The proposed approach introduced 

the vehicle's behavior from the adjacent traffic lanes as a relevant parameter to 

better control the acceleration of the FV from the target traffic lane. An analysis of 

crossroads configuration methods followed by new approaches for the prediction of 

origin-destination traffic volumes and the traffic lanes modeling as a Markov process 

were the intermediate steps of the refinement of the standard car-following model. 

The refinement process predicts the lane change actions by employing the Bayesian 

reasoning concept and has as an outcome the update of the incentive criteria that 

control the FV acceleration. 

This study also performs “a fault detection and analysis based on parity 

equations of the refined car-following model to determine the faults introduced by 

the modeling process” [Pop20_3]. The residuals evaluation showed that the refined 

model provides an accurate description of the behavior of the LV and FV from the 

target lane if a new vehicle from an adjacent lane joins the target lane. However, 

the fault analysis also illustrates the main disadvantage of the proposed 

multiple-lane car-following model consisting of the fact that “the model is not 

suitable for a real-time switch from one lane to another to ensure lane change 

behavior monitoring for each lane” [Pop20_3]. 

Moreover, this thesis develops a new solution for car-following models 

calibration. The proposed approach combines the usage of Kalman filtering with 

Takagi-Sugeno FIS and demonstrated improved results in compared to the simple 

usage of Kalman filtering. This method also proved good results for the application 

of the calibration process for the refined car-following model. 

Besides the systemic contributions on the microscopic traffic modeling, this 

thesis presented an overview of the influence of crossroads configuration methods, 

inter-vehicle communications protocols, existing policies and regulations for smart 

city projects, and local administrations decisions regarding the implementation of 

smart solutions for mobility inside urban areas. 

Furthermore, this study briefly presents the author’s contributions and 

defines the possible directions of improvements and developments, having as input 

the original approaches discussed in this thesis. 
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7.2. Contributions 
 

According to the objectives mentioned, the outcome of this thesis consists of 

the following original contributions by the author, divided into four main categories: 

• a critical analysis of the concepts used in road traffic modeling at the 

microscopic level and the evaluation of possible factors of influence: 

- a critical analysis and synthesis of microscopic road traffic 

simulators; 

- a comparative overview of the car-following model and its 

derivatives; 

- a critical analysis and synthesis of the recent developments of 

car-following models designed to respond to CAVs and EVs needs; 

- a critical analysis and synthesis of the car-following calibration 

methods; 

- identification of the influence of road infrastructure, traffic policies 

and regulations, and smart mobility solutions in traffic congestion 

reduction; 

- identification of possible improvements in the modeling of road 

traffic at the microscopic level; 

- identification of possible improvements in the modeling car-following 

calibration methods; 

• a systemic approach and modeling of road traffic at the microscopic level of 

representation: 

- modeling and implementation in AnyLogic Simulation Software of 

different crossroads configuration methods; 

- a comparative analysis of the traffic volumes and velocity profiles 

corresponding to all crossroad configuration methods; 

- a safety analysis of the single-lane roundabout management 

systems; 

- modeling and implementation of green-intervals schedulers using 

AnyLogic Simulation Software and Simulink (MATLAB R2020a); 

- development of new approaches of traffic lanes modeling as nodes 

in a Markov chain that corresponds to a road network; 

- development of new algorithms based on Bayesian reasoning, 

genetic algorithms and minimax gaming-specific strategy for driver 

behavior prediction and, implicitly OD volumes estimation; 

- development of new models for lane change to incorporate the 

uncertainty of driver behavior; 

- development and implementation of a refined car-following model 

that overcomes the disadvantage of single-lane orientation of the 

standard car-following models by considering the behavioral 

changes according to the lane change actions to adjacent traffic 

lanes; 

- conducting an experimental study on the proposed refined 

car-following model based on real road traffic dataset for a 

three-lane piece of road from Timisoara (Romania); 

- a comparative critical analysis of the results of the proposed refined 

car-following model with the separate application of the standard 

car-following model for each lane of a three-lane piece of road; 
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• a systemic fault detection and analysis of the faults introduced by the 

modeling process of the refined car-following model: 

- “defining a fault detection methodology based on parity equations 

for multiple-lane car-following models” [Pop20_3]; 

- identification of relative velocity and dynamic running distance as 

the residuals of the refined car-following model; 

- development and implementation of the fault detection mechanisms 

in Simulink (MATLAB R2020a); 

- conducting an experimental fault detection study of the proposed 

refined car-following model using real road traffic dataset for a 

three-lane piece of road from Timisoara (Romania); 

- providing measurements and evaluation of the obtained residuals 

values; 

- a critical analysis of the advantages and disadvantages of the 

proposed refined car-following model as an outcome of the 

evaluation of the residuals; 

• a systemic approach and modeling of the calibration process of car-following 

models: 

- development and implementation of a new calibration model for 

car-following models as a hybrid solution that combines Kalman 

filtering with Takagi-Sugeno FIS; 

- identification of the possible changes in the proposed calibration 

model to adapt it to the needs of the proposed refined car-following 

model; 

- conducting an experimental study on the proposed calibration model 

based on a real road traffic dataset from Timisoara (Romania) for 

both standard and refined car-following models; 

- a comparative critical analysis of the proposed calibration model in 

terms of accuracy and performance. 

 

7.3. Recommendations for Future Research 
 

Further research can propose solutions that provide real-time control for all 

vehicles moving on multiple traffic lanes, allowing the permanent update of the FVs 

accelerations for all traffic lanes of a road network, not only for a traffic lane as 

proposed in this thesis. This extension will show a full overview of the acceleration 

control possibilities and better model the behavioral interactions between vehicles 

moving on different traffic lanes. 

New systemic approaches for microscopic road traffic control can apply 

genetic algorithms, fuzzy-based algorithms and neural networks concepts to provide 

safe solutions for traffic congestion reduction. The mentioned concepts can also be 

used to improve the calibration methods for microscopic traffic models.  

Moreover, a deep study is necessary to identify the behavioral patterns that 

describe the relationship between crossroads configuration methods and driver 

behavior. 
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Table A1. “Mapping between model parameters and simulation defined signals” [Pop20_3]. 

 

“Parameter 

Type1 

Model 

Parameter 

Simulation 

Defined Signal 
Significance 

Inputs 

u1  for iL −1  LV_i_minus_1_ac
c 

acceleration of LV from 

lane iL −1  

u1  for iL  LV_i_acc 
acceleration of LV from 

lane iL  

u1  for iL +1  LV_i_plus_1_acc 
acceleration of LV from 

lane iL +1  

u2  for iL −1  FV_i_minus_1_ac
c 

acceleration of FV from 

lane iL −1  

u2  for iL  FV_i_acc 
acceleration of FV from 

lane iL  

u2  for iL +1  FV_i_plus_1_acc 
acceleration of FV from 

lane iL +1  

c  c  driver decision to initiate a 
lane change maneuver 

( )iP̂ L −1  P_L_i_minus_1 

probability of lane change 

from iL  to iL −1  according 

to (4.24) 

( )iP̂ L +1  P_L_i_plus_1 

probability of lane change 

from iL  to iL +1  according 

to (4.24) 

Internal 
calculated 
values for 

multiple-lane 
car-following 

model 

u1  for jL , 

{ }j i , i= − +1 1  
LV_i_acc_calc 

calculated acceleration of 
new LV after lane change 

maneuver to jL , 

{ }j i , i= − +1 1  

u2  for jL , 

{ }j i , i= − +1 1  
FV_i_acc_calc 

calculated acceleration of 
new FV after lane change 

maneuver to jL , 

{ }j i , i= − +1 1  

considering equation 
(4.25) 

S  S  
standard safety distance 
calculated according to 

(4.29) 
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Table A1. Cont. 

 

Parameter Type 1 Model 

Parameter 

Simulation 

Defined Signal 
Significance 

Internal system 
states for standard 
car-following model 

x1  for iL −1  LV_i_minus_1_vel
ocity 

velocity of LV from 

lane iL −1  

x1  for iL  LV_i_velocity 
velocity of LV from 

lane iL  

x1  for iL +1  LV_i_plus_1_veloc
ity 

velocity of LV from 

lane iL +1  

x3  for iL −1  FV_i_minus_1_vel
ocity 

velocity of FV from 

lane iL −1  

x3  for iL  FV_i_velocity 
velocity of FV from 

lane iL  

x3  for iL +1  FV_i_plus_1_veloc
ity 

velocity of FV from 

lane iL +1  

x2  for iL −1  LV_i_minus_1_dis
tance 

running distance of 

LV from lane iL −1  

x2  for iL  LV_i_distance 
running distance of 

LV from lane iL  

x2  for iL +1  LV_i_plus_1_dista
nce 

running distance of 

LV from lane iL +1  

x4 for iL −1  FV_i_minus_1_dis
tance 

running distance of 

FV from lane iL −1  

x4  for iL  FV_i_distance 
running distance of 

FV from lane iL  

x4  for iL +1  FV_i_plus_1_dista
nce 

running distance of 

FV from lane iL +1  

Outputs for standard 
car-following model 

y  for iL −1  y_i_minus_1 

dynamic distance 
between LV and FV 

from iL −1  considering 

S  

y  for iL  y_i 

dynamic distance 
between LV and FV 

from iL  considering 

S  

y  for iL +1  y_i_plus_1 

dynamic distance 
between LV and FV 

from iL +1  considering 

S  
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Table A1. Cont. 

 

Parameter Type 1 Model 

Parameter 

Simulation 

Defined Signal 
Significance 

Internal system 
states for 

multiple-lane 
car-following model 

simulated 

u1  for iL  LV_i_acc_sim 

simulated 
acceleration of LV 

(considers a possible 
lane change 
maneuver) 

simulated 

u2  for iL  FV_i_acc_sim 

simulated 
acceleration of FV 

(considers a possible 
lane change 
maneuver) 

simulated 

x1  for iL  LV_i_velocity_sim 

simulated velocity of 
LV (considers a 

possible lane change 
maneuver) 

simulated 

x3  for iL  FV_i_velocity_sim 

simulated velocity of 
FV (considers a 

possible lane change 
maneuver) 

simulated 

x2  for iL  LV_i_distance_sim 

simulated running 
distance of LV 

(considers a possible 
lane change 
maneuver) 

simulated 

x4  for iL  FV_i_distance_sim 

simulated running 
distance of FV 

(considers a possible 
lane change 
maneuver) 

Output for 
multiple-lane 

car-following model 

simulated y  

for iL  
y_i_sim 

simulated dynamic 
distance between LV 

and FV from iL  

considering S  

Output from 
residuals 

computation 
subsystem 

r for x1  from 

iL  

relative_velocity_r
esidual 

residual of relative 
velocity between LV 

and FV from iL  

r for x2  

from iL  

dynamic_distance
_residual 

residual of dynamic 
distance between LV 

and FV from iL  

without considering 
S  

1 Some of the internal states or internal calculated values can be used as 

outputs in the Simulink (MATLAB R2020a) blocks implementation” [Pop20_3]. 
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