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Rezumat,  
The PhD thesis deals with two issues concerning the integration of 
renewable energy sources in a microgrid: the voltage control and the 
optimization of the energy consumption. It is presented the development of 
mathematical models for a photovoltaic system, a battery and a 
thermodynamic model of a building, which are validated based on 
experimental measurements on the actual microgrid components. The 
models’ implementation is performed in specialized software like Matlab and 
PowerFactory. Algorithms for driving the heating system of the building and 
the battery in order avoid surges that occur due to the injection of power 
into the grid photovoltaic system, are being developed. Optimizing energy 
consumption is achieved by using model predictive control by defining two 
objectives: minimizing the cost of operating the building’s heating system 
when using only energy from the grid and the second, maximizing the 
consumption of locally produced energy from the photovoltaic system. The 
developed algorithms are validated by experiments and simulations in many 
operating conditions that allow comparison of the results obtained with 
other methods of control, which highlight the opportunity of using the 
proposed algorithm. 
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Notations and Abbreviations  
 

 ഥ – Performance cost indexߔ
A – Aria of the photovoltaic cells 
Aw – Windows area 
CG – Cost of grid energy 
CG2H – Cost of the grid energy consumed by the electrical heaters 
CG2HnoPV – Cost of the grid energy consumed by the electrical heaters with no 

PV panel installation 
Ci, Cm, Ch – Heat capacity of the inside of the house, heat capacity of the interior 

walls, and the heat capacity of the heaters  
CPV – Cost of produced PV energy 
CPV2H – Cost of the PV energy consumed by the electrical heaters 
DER – Distributed energy resources 
dk – Disturbance vector 
Ebatt – The battery’s capacity available during operation  
EG2H – Amount of PV energy consumed by the electrical heaters 
EH – Amount of energy consumed by the heaters 
Einput – Input energy  
Eoutput – Output energy 
EPV2G – Amount of PV energy injected into the grid 
EqofTime – Equation of time 
ET – Total capacity of the battery 
FF – Fill factor, defined as the ratio of the maximum power that can be 

delivered to the load and the product of Isc and Voc for a PV cell 
FlexHouse – Intelligent building with configurable loads from SYSLAB  
Ga – Solar irradiance incident on the PV cell 
GaNOCT – Solar irradiance incident on the PV cell under NOCT conditions 
Gcell – Solar irradiance considering the tilt angle and the orientation of the 

PV panels 
Gp – Solar irradiance over the prediction horizon 
Gpanel – Solar irradiance considering the tilt angle of the PV panels 
I0 – Dark saturation current of a photovoltaic cell 
ID – Diode current of a photovoltaic cell model 
Imax – Electric current at the maximum output power point of a PV cell 
Impp – Nominal current of a PV cell 
Iph – Photo-generated current of a photovoltaic cell 
Isc, Voc – Short circuit current and open circuit voltage of a photovoltaic cell 
Isc25 – Short circuit current under STC of a PV cell 
KB – Boltzmann constant 1.3806503 × 10-23 JK-1 
M1, M3 – One state space model and the three states space model  
MPC – Model predictive control 
MPPT – Maximum power point tracking 
n – Calendar day number  of the current day 
NOCT – Normal operating cell temperature, under which the PV cell 

parameters are measured 
nps – Number of PV panels connected in series 
ns – Number of PV cells connected in series on a PV panel 
nsp – Number of PV panels connected in parallel 
OF – Optimization function 
Pac – ac power  
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Pdc – dc power  
PEMF – Electromotive power changed at the cells stack terminal 
PGrid – Amount of power consumed from the grid 
PH – The heaters’ output power  
Ph – Electric heaters’ output power 
Pi – Last iteration heaters’ output power  
Pmax – Maximum electric output power of a PV cell 
Pmax25 – Maximum electric output power of a PV cell under STC conditions  
Pmpp – Rated output power of a PV cell 
PPV – Amount of power produced by the PV installation 
PV – Photovoltaic installation 
q – The charge of electron 1.602176565×10−19 C 

Q – Weight factor for the reference error term of the OF 
q – elementary charge 1.602×10−19 Coulombs 
Qcost – Weight factor for the grid energy price term of the optimization 

function 
RES – Renewable energy sources 
Ri – Internal resistance of a battery 
Ria, Rim, Rih – Thermal resistance of the inside of the building, the interior walls, 

and of the electric heaters 
rk – The reference at step k 
Rs – Series resistance value of the PV cell mathematical model 
Rsh – Shunt resistance value of the PV cell mathematical model 
S – Weight factor for the command variation term of the OF 
Shoriz – Solar irradiance on a horizontal surface 
SOC – State of charge of a battery 
Spanel – Solar irradiance on the PV panel surface 
STC – Standard test condition, under which the PV cell parameters are 

measured  
SYSLAB – Test facility at Denmark Technical University, Elektro Department at 

RISØ  campus, consisting of a low voltage configurable microgrid  
Ta – Ambient air temperature 
TaNOCT – Ambient air temperature under NOCT conditions 
Tap – Ambient air temperature over the prediction horizon 
Tc – Photovoltaic panel cell temperature 
Tcontrol – Temperature control state of the finite state machine  
Ti, Tm, Th – Temperatures of the inside of the house, interior walls, and of the 

heaters 
Tinside – Inside temperature of the house 
Tmax – Maximum temperature of the thermal comfort interval in the house 
Tmin – The minimum temperature of the thermal comfort interval in the 

house 
Toe – Tons of oil equivalent 
Ts – Simulation time of the finite state machine 
U – Amount of power consumed by the electric heaters  
uk – Command vector 
uk – The value of the manipulated variable at step k 
umax – Upper limit of the manipulated variable 
umin – Lower limit of the manipulated variable  
Vbus – Bus voltage value 
VEMF – Open circuit voltage under the effect of electromotive force of the 
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VRB’s cell stack 

Vmax – Voltage at the maximum output power point of a PV cell 
VmaxHigh – Maximum voltage deadband upper value 
VmaxLow – Maximum voltage deadband lower value 
VminHigh – Minimum voltage deadband upper value 
VminLow – Minimum voltage deadband lower value 
Vmpp – Nominal voltage of a PV cell 
Voc25 – Open circuit voltage under STC conditions of a PV cell 
VOver control – Over voltage control state of the finite state machine 
VRB – Vanadium redox flow battery 
VT – Thermal voltage of a photovoltaic cell 
Vunder control – Under voltage control state of the finite state machine 
Wsh – Horizontal wind speed 
x0 – Initial state of the thermodynamic system 
xk – State variable vector 
z – Predicted process output at step k, for the prediction horizon based 

on the current available data 
zk – The thermodynamic model output for step k 
zk – The value of the controlled variable at step k 
zmax – Upper limit of the controlled variable 
zmin – Lower limit of the controlled variable 
α – Temperature coefficient for change in Pmpp 
α – Weight factor for the virtual energy price 
β – Temperature coefficient for change in Isc 
β – PV panels tilt angle  
δ – Temperature coefficient for change in Impp 
δ – Declination angle  
Δuk – Manipulated variable’s variation at step k 
Δuk,max – Maximum value of the manipulated variable’s variance at step k 
Δuk,min – Minimum value of the manipulated variable’s variance at step k 
ε – Temperature coefficient for change in Umpp 
η – Maximum efficiency of a photovoltaic cell defined as the ratio 

between the maximum power and the incident light power  
ηacdc – The efficiency of the VRB’s ac-dc converter  
ηbatt – The overall efficiency of the VRB over a full cycle 
ηconv – The power convertor efficiency  
φ – PV location latitude 
ΦO0 – Performance cost index for MPC formulation without the observer 
ΦO1 – Performance cost index for MPC formulation with state observer 
χ – Temperature coefficient for change in Uoc 
ω – Mounting coefficient 
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1. Introduction 

1.1. Motivations and objectives of the thesis 
It is expected that the renewable energy resources (RES) to increase their 

penetration into the low voltage distribution grid due to the economic advantages 
that they represent for the end consumer: accessible installation costs and the 
return of the investment in a few years. They also bring the energetic independence 
for the user whose electric bill will not depend on the national power grid prices. 

So far, the consumers were stimulated to install such renewable energy 
sources, especially photovoltaic (PV), in the proximity of their houses by 
government subsidies.  

Another factor of PV penetration is that in the past few years, it is the 
architecture and construction companies that are designing and constructing 
buildings with integrated PVs on their façade [Roberts2005]. 

As the number of installed RES increased, a problem aroused: the 
consumers were becoming energy producers and in the case of PVs, a large number 
of households were turning into energy producers at the same time, during sunny 
days. As the grid was designed to transport the energy from the power plants to the 
end consumer, having the voltage profile similar to an inclined slope, the renewable 
energy sources production is altering the voltage profile along the low voltage 
feeders by injecting power at the coupling points, making possible the appearance 
of over voltages. 

As an effect of the over voltages at the coupling point between the 
household with the installed PVs on one side and the low voltage grid on the other 
side, the safety mechanisms are decoupling the PVs, as well as other appliances 
equipped with such safety measures, during high PV power production which is the 
most likely moment that these over voltages occur. 

As a preliminary remark, it is important to mention that this work does not 
try to develop new components or algorithms for controlling the power electronics 
(converters) of individual microgrid components in order to track the maximum 
power point or to synchronize with the grid. 

The present work is concerned on the integration of existing renewable 
energy resources components, developed by companies with many years of 
experience, into a microgrid, and the interaction between renewable energy 
sources, energy storage devices, and controllable loads from a power system 
perspective. To this purpose, the models are developed for running on time samples 
of one second and above, disregarding transient regimes, and the operation 
variables are average (RMS) values of power, current and voltage and not 
instantaneous values. 

The first objective of the work is to develop simulation models of existing 
microgrid components validated by electric measurements taken from a test facility. 

For this work, the algorithms were implemented for the case study of the 
SYSLAB microgrid, from Denmark Technical University (DTU), Elektro department at 
RISØ campus. The SYSLAB infrastructure is presented in Appendix A. 

The second objective is to test different methods and algorithms for dealing 
with over voltage problems that may appear in the low voltage distribution grid 
when renewable energy resources are present: as RES inject power into the grid, 
the voltage profile along the feeder is influenced and this can translate to over 
voltages at some coupling points. 
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The third objective is to optimize the power consumption by minimizing the 

energy cost needed to run the heating system of a household. 
The fourth objective is to develop an algorithm that maximizes the 

consumption of local RES produced power by shifting the loads to time intervals with 
high RES production.  

1.2. Thesis organization 
Chapter 2 presents the development stages of simulation models for 

specific distributed energy resources (DER) components. These models are validated 
through measurements on the real components at the test facility of DTU at RISØ 
campus. 

Chapter 3 presents several case studies on voltage control for a considered 
microgrid configuration based on the SYSLAB setup. The subject of control is the 
voltage at the consumer’s, or household, bus bar which during operation fluctuates 
due to PV power production. Several control techniques are developed and tested 
through simulations and experiment: load shifting by using a proposed thermostatic 
control with voltage regulation states, defined as a finite state space machine, 
control of storage device, the modelled vanadium redox battery (VRB) in 
overvoltage mode and schedule mode to store the excess produced power that may 
cause an overvoltage at the coupling point. 

In Chapter 4 is presented an advanced control algorithm for controlling the 
inside temperature in the house, based on the modelled building from SYSLAB. The 
control algorithm is a model predictive control (MPC) designed in order to achieve 
offset free operation in the presence of model errors, unknown disturbances, and 
white noise at the process level. The algorithm is tested through simulations and 
experiment; also comparative results of using different control algorithms in various 
operation scenarios are presented. 

In Chapter 5 an economic model predictive control algorithm is designed in 
order to optimize the operation cost of the heating system of the house by 
minimizing the cost of the consumed grid energy. In addition, a new virtual price is 
proposed and defined: it considers the grid energy price, the available power from 
the local PV installation and the current power needed by the heating system; this 
virtual price is further used to optimize the heating system operation to maximize 
the consumption of local produced PV power, which has implications on the voltage 
profile as discussed in chapter 4. 

Chapter 6 presents the overall conclusions and discussions as well as future 
research directions. 

Each chapter has an introductive section that presents the preliminary 
considerations regarding the approached subject  

At the end of the thesis are added three appendixes: 
- Appendix 1 – describes the SYSLAB facility at Denmark Technical 

University at RISØ  Campus, which consists the subject of modelling, 
simulations, and experiments developed during the work towards this thesis 

- Appendix 2 – presents the mathematical explanation of the Kalman filter  
- Appendix 3 – presents the Matlab functions used in chapter 4 and 5 for 

designing the MPC controller; this code was used both in simulations and 
experiments 
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2. Distributed Energy Resources  
Models 

 
 
As stated in the introduction, the purpose of this work is the study of 

algorithms for the integration of renewable energy sources (RES) in the low voltage 
microgrid with minimal disturbances on the power system.  

The mathematical models of different components are developed from this 
power system perspective and implemented in specialized software in order to be 
used in simulations and experiments. These algorithms are presented in future 
chapters and are concerning voltage control along the feeder (presented in chapter 
3) and load management and optimizing the use of locally produced energy (the 
subject of chapter 4 and chapter 5). 

This chapter presents the development, implementation, and validation 
through experiments of mathematical models for  

- Photovoltaic plant, 
- Vanadium redox battery, and 
- Thermal model of a building. 
The models are implemented first in Matlab [Magrab2010], a software which 

contains numerous specialized toolboxes used in this thesis: Simulink – used to 
develop line diagram models and simulations, graphical user interface designer 
toolbox – used to add interfaces to the models, an optimization toolbox – used in 
chapter 4 and 5 for model predictive control implementation, and the state flow 
toolbox – in which the finite state machine controlling the inside temperature from 
chapter 3 was implemented. Another important feature of Matlab and also a critical 
reason for using this software is its ability to use java written functions in order to 
implement real-time control, using the developed models and communicating with 
the real microgrid components.  

The second software used for the model implementation is PowerFactory 
from DigSILENT [PowerFactory]. This software is specialized in power system 
simulations, power flow and voltage control being accurate simulated by very 
precise reproduction of the real power system configuration due to the numerous 
configuration parameters needed to run the simulation. However, the software does 
not have control oriented toolboxes and real-time simulation lacks the versatility of 
Matlab and was not used in running real-time experiments and simulations testing 
complex control algorithms. Simulations in PowerFactory were used to study the 
voltage profile along the feeder of a considered microgrid when using controllers 
described in chapter 3. 

 

2.1. Photovoltaic model 
 
2.1.1. Introduction 
 
This subchapter presents the development and implementation, in dedicated 

software like Matlab and PowerFactory, of equivalent photovoltaic (PV) panel 
mathematical models, design to be used in power flow and voltage control 
simulations deferring an existing microgrid. The models have the solar irradiance 
and temperature on the PV panel surface as inputs and the power generated by the 
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PV as output and will be used in simulations that run on time samples of a few 
seconds. 

The models were validated through experiments by comparison with the 
electrical measurements taken from the real PV installation seen in figure 2.1. 

An ambient data correction module is proposed, developed and validated in 
order to estimate the solar irradiance and temperature on the PV surface given the 
measurements from the local weather station. 

 
2.1.2. General overview 
 
The design problem is to develop a mathematical model that calculates the 

electrical output power of a PV setup given two input values: the solar irradiance on 
the PV cell and the PV cell temperature. These developed PV models are used to 
study problems regarding low voltage distribution grids like power flow problems, 
predictions of PV availability, and the study and control of the voltage profile along 
the feeder in a microgrid with PV penetration.  

The models disregard the transient regimes and consider the maximum 
power point tracking (MPPT) algorithm included in the model, in the sense that the 
model considers that this maximum is always, instantaneous, achieved and the PV 
always extracts the maximum amount of power from the available weather 
conditions. This assumption can be justified by the fact that in the case of a PV 
panel, the MPPT is very fast, the tracking algorithm having a strictly electrical 
character, with no inertial masses, unlike the MPPT used for wind turbine control, 
where large rotating masses are involved. 

In the literature numerous mathematical models are presented that describe 
PV panels, by developing relation between the current, voltage and the photovoltaic 
cell’s temperature and surface solar irradiance. 

The first approach is the electrical circuit equivalent model, where the PV 
cell is modelled as an electrical circuit, the parameters of which are to be estimated. 
The simplest model is the one diode equivalent circuit, as presented in [Lopes2003] 
[Koch2012c] [Mihet2012a][Mihet2012b] represented by a current source and a 
diode. A more complex model is achieved by considering a series and a parallel 
resistance, as shown in [Park2004], [Campbell2007] and [Petreus2009]. 

For a more accurate model, the two diode equivalent circuit model was 
developed and studied [Chan1987][Jungsangsri2010]. This model is more accurate 
for low output power as explained in [Sera2009]. 

The second approach on modelling the PV panels was the development of 
empirical models, described in [Petcut2012] and [Petreus2009] and consists in 
experimental determination of parameters for estimating exponential and 
logarithmic mathematical relations for describing the current-voltage characteristic 
of the panels. 

The third approach is represented by the interpolative models, consisting of 
empirical determination of a set of characteristics through measurement and 
experiments. The testing standard ASTM-E 1036-96 implies measuring 36 sets of 
current-voltage characteristics for 6 different cell temperature and solar irradiance 
values. Work has been made for developing methods of characterization of PV 
panels based on a reduced number of experimental current-voltage characteristics 
measurements. The work of [Marion2004] and [Tsuno2009] can be mentioned in 
this context. 
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2.1.3. Problem statement 
 
The mathematical models developed in this chapter are useful in simulating 

different configurations of the distribution grid using many distributed energy 
resources (DER), loads and energy storage devices. Further on, the models are used 
in developing controllers for maintaining voltage quality on the low voltage 
distribution level due to the renewable energy sources (RES) penetration and for 
controlling the power flow in order to optimize energy consumption and cost. 

In order to be used in such simulations, the models had to be developed in 
Matlab and PowerFactory. As stated in the first chapter, these software are 
specialized in controller development and in power system simulations and studies. 

The developed models were tested on the SYSLAB infrastructure using the 
particularities of the site, nominal data from the PV panels, inclination angle of the 
panels, orientation, and ambient data measured from a local weather station. These 
ambient data consist of solar irradiance, ambient temperature and wind speed 
values that were fed into the model as inputs and the simulation results were 
compared to the electrical measurements taken from the PV inverter for validation. 

The PV array setup from the SYSLAB facility which was used to validate the 
models consists of three solar panel strings: two strings of 18 Schuko 165-SP panels 
each (PV1 and PV2) and one string of 12 SOLEL SE100x panels (PV3) as seen in 
figure 2.1. 

A Sunny Tripower 10000TL inverter from SMA Solar Technology is used to 
control the operation of PV panels; this inverter enables the connection of two 
different types of solar panels on each of its two inputs. Each input has its own 
maximum power point tracking (MPPT) algorithm. The inverter also presents a data 
logger for the electrical measurements that were later used for comparison. 

For adapting the ambient data read from the weather station to the values 
on the PV panels, an additional module was developed that takes into account the 
declination angle and the orientation of the PV panels, as well as the cooling effect 
of the wind on the PV cells. 

 

 
Fig. 2.1. PV panel configuration at SYSLAB. 

 
The design problem and SYSLAB setup described above are presented in Fig. 

2.2.  
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where ்ܸ ൌ ௄ಳ· ೎்·஺
௤

   is known as thermal voltage and Tc is the absolute cell 

temperature.  
 (d) Maximum efficiency is the ratio between the maximum power and the incident 

light power:  
 

ߟ ൌ ௠ܲ௔௫

௜ܲ௡
ൌ

௠௔௫ܫ ௠ܸ௔௫

௔ܩܣ
 (2.2) 

 
 

(e) Fill factor is the ratio of the maximum power that can be delivered to the load 
and the product of Isc and Voc:  

 

ܨܨ ൌ ௠ܲ௔௫

௢ܸ௖ܫ௦௖
ൌ ௠ܸ௔௫ܫ௠௔௫

௢ܸ௖ܫ௦௖
 (2.3) 

 
The fill factor is a measure of the real current-voltage characteristic. It is 

considered that for values higher than 0.7, the cell has a good quality. The increase 
in temperature of the PV cell has the effect of lowering the fill factor, and decreasing 
the energy conversion efficiency [Hansen2000]. 

 

 
Fig. 2.3. Current-voltage characteristic of a solar cell. 

 
Each PV manufacturing company is compelled to give a datasheet with 

measured values on Standard Test Conditions (STC) and Normal Operating Cell 
Temperature (NOCT): 

STC is considered as having the following characteristics: 
- solar irradiance (Ga) = 1000W/m2,  
- cell temperature(Tc) = 25°C, and 
- wind speed = 1m/s  

NOCT is defined by the following values: 
- solar irradiance(GaNOCT) = 800W/m2,  
- ambient air temperature(TaNOCT) = 20°C, and 
- wind speed = 1m/s 

The list of available parameters provided by the manufacturer is presented 
in Table 2.1: 
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Table 2.1. PV Parameters provided by the manufacturer. 
Parameter 

name 
Measurement 

unit 
Description 

for STC  
Pmpp W Rated output power 
Vmpp V Nominal voltage 
Impp A Nominal current 
Voc25 V Open circuit voltage 
Isc25 A Short circuit current 
α (Pmpp) %/°C Temperature coefficient for change of Pmpp 
β (Isc) %/°C Temperature coefficient for change of Isc 
χ (Voc) %/°C Temperature coefficient for change of Uoc 
δ (Impp) %/°C Temperature coefficient for change of Impp 
ε (Vmpp) %/°C Temperature coefficient for change of Umpp 
for NOCT  
NOCT °C Cell temperature on the above mentioned 

conditions 
 
The influence of solar irradiance at the PV panel level and cell temperature 

on the I-V characteristic of the PV panel is presented in Fig. 2.4: 
 
The irradiance dependence is affecting only the short-circuit current of the 

PV: 

ௌ஼ܫ ൌ ௌ஼ଶହܫ
௔ܩ

1000 (2.4) 

 
The temperature dependence of ISC and VOC are: 
 

ௌ஼ܫ ൌ ௌ஼ଶହሺ1ܫ ൅ β ∆ܶሻ (2.5) 
 

ைܸ஼ ൌ ைܸ஼ଶହሺ1 ൅ χ∆ܶሻ (2.6) 
 

∆ܶ ൌ ܶ஼ሺԨሻ െ 25° (2.7) 
 

 
Fig. 2.4. Influence of the cell solar irradiance and cell temperature. 
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2.1.5. Single diode circuit model 
 
The first model used in this work is the so called equivalent single diode 

circuit model. From this equivalent circuit, presented in Fig. 2.5, a four parameters 
model can be considered – having Iph, I0, Rs and A as electrical parameters, or the 
five parameters, having Rsh in addition. 

The parameters have the following meaning: 
Iph – photo-generated current (A) 
I0 – dark saturation current (A) 
A – diode ideality factor 
Rs – panel series resistance (Ω) 
Rsh – panel parallel (shunt) resistance (Ω) 
 

 
Fig. 2.5. Single diode equivalent circuit. 

 
The double diode model is considered by many authors to be more accurate 

than the single diode model; the latter one is blamed for being imprecise particularly 
at low irradiance levels. However, it has been found out that when used for 
modelling the behaviour of many interconnected modules, the single diode model is 
preferred by many of the authors in the literature. [Sera2000]  

The general current-voltage (i-v) characteristic of a PV panel based on the 
single diode model is represented by a transcendent function: 

 

݅ ൌ ௣௛ܫ െ ଴ܫ ቆ݁
௩ା௜ோೞ
௡௦௏೟ െ 1ቇ െ

ݒ ൅ ܴ݅௦

ܴ௦௛
 (2.8) 

Equation (2.8) can be written for the three key points of the i-v 
characteristic: the short-circuit point, the maximum power point, and the open-
circuit point, in order to develop additional relations using the data from the PV 
panels’ data sheet. 

Using the short circuit point and the open circuit point, expressions for the 
Iph and I0 can be determined: 

௣௛ܫ ൌ ଴݁ܫ
௏೚೎

௡௦௏೟ ൅ ௢ܸ௖

ܴ௦௛
 (2.9) 

 

଴ܫ ൌ ൬ܫ௦௖ െ ௢ܸ௖ െ ௦௖ܴ௦ܫ

ܴ௦௛
൰ ݁ି ௏೚೎

௡௦௏೟ (2.10) 

 
The i-v characteristic for a solar panel string, depending on the irradiance Ga 

and temperature Tc, for a four parameters model, considering Rsh to be infinite and 

neglecting the term ݁ି ೇ೚೎
೙ೞೇ೟, has the following expressions: 
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݅ ൌ ݊௦௣ܫ௦௖ ቆ1 െ ݁
௩ି௡೛ೞ௏ೀ಴ାோೞ௜

௡೛ೞ௡ೞ௏೅ ቇ (2.12) 

Where: 
ns – no. of cells in series in one panel 
nps – no. of panels in series 
nsp – no. of strings in parallel 
 

்ܸ ൌ
஻ܭ · ௖ܶ · ܣ

ݍ
 (2.13) 

 
KB – the Boltzmann’s constant 
q – the charge of the electron 
Tc – cell temperature 
 
As stated in section 2.2, this model always considers the output power as 

being the maximum power point on the characteristic, given a certain operation 
condition. For obtaining the maximum power of the panel, the condition (2.14) is 
used:  

݀ܲ
ܸ݀ ൌ 0 (2.14) 

Which translate into:  
 
݀ܲ
ܸ݀ ൌ ݊௦௣ܫௌ஼ ቈ1 െ ݁

௩ି௡೛ೞ௏ೀ಴ାோೞ௜
௡೛ೞ௡ೞ௏೅ െ

ݒ
݊௣௦݊௦்ܸ ݁

௩ି௡೛ೞ௏ೀ಴ାோೞ௜
௡೛ೞ௡ೞ௏೅ ቉ ൌ 0 (2.15) 

 
The Matlab implementation of the mathematical model from equation 2.15 

used to obtain the static characteristics of the PV panels is depicted in fig. 2.6. The 
model has as inputs: the solar irradiance, the cell temperature and it sweeps the 
voltage range of the PV panel in order to calculate the corresponding current and 
power. Function blocks were used to implement the Isc and Voc values, from 
equation 2.4, 2.5, and 2.6, and also for calculating the output current i, equation 
2.12.  

The mathematical equation 2.15 presents an algebraic loop: to calculate the 
variables in this loop, the variable values themselves are needed. The “algebraic 
constraint” block from Matlab/Simulink has been used during implementation in 
order to solve this equation. 
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Fig. 2.6. Matlab block diagram used to model the static characteristic of the PV panels. 

 
The parameters from the technical data sheet of the two types of panels 

used at SYSLAB facility are gathered in Table 2.2 
The i-v and p-v characteristic, the temperature dependence and irradiance 

dependence of the short-circuit current, the open circuit voltage and the maximum 
power of the model and of the PV panels are compared in fig. 2.7. These 
characteristics are computed for specific cell temperature and solar irradiance, 
under STC. 

 
Table 2.2 PV panel parameters from data sheet 

Parameter 
name 
[unit] 

Schuco S 165-SP 
Photovoltaic module 

SOLEL SE100x 
Photovoltaic module 

for STC – solar irradiance (Ga)=1000W/m2, cell temperature(Tc)=25°C, wind speed 
1m/s 

Pmpp [W] 165 100 
Vmpp [V] 24.20 16.90 
Impp [A] 6.83 6.13 
Voc [V] 30.40 21.10 
Isc [A] 7.36 6.60 

α (Pmpp) [%/°C] -0.478  
β (Isc) [%/°C] +0.057  
χ (Voc) [%/°C] -0.346  
δ (Impp) [%/°C] -0.004  
ε (Vmpp) [%/°C] -0.474  
Number of cells 50 70 

for NOCT – solar irradiance(GaNOCT)=800W/m2, ambient air 
temperature(TaNOCT)=20°C, wind speed 1m/s 

NOCT  [°C] 46.2  
 
The simulation results using the developed PV model are compared with the 

characteristics presented in the data sheet from the Schuko panels. 
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Fig. 2.7. Compared results between datasheet characteristics and simulation results. 

2.1.5.1. Simulation model 
 
As stated in paragraph 2.2, the goal of this research was the development of 

a simulation model that reproduces the electrical values of a three string PV plant, 
given ambient measurements from the local weather station. 

Although for the following use of this model as a power source only the 
computed output power of the model is necessary, in this development stage, by 
computing the model’s values of DC current and voltage, additional calibration could 
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be made, by comparing these obtained values to the measured real values taken 
from the solar inverter for each of the three PV strings.  

The PV panels’ model is based on the equation 2.15. Solving this equation 
determines the maximum power point, which the inverter should track precisely. 
Because in the PV systems there are no mechanical parts involved, and thus, the 
time constants are very small, being all electrical in nature (compared to Wind 
turbine systems), it is accurate to say the MPP value obtained from equation 2.15 is 
rapidly tracked by the inverter in real operation. 

The schematic of the PV panel model is presented in Fig. 2.8. 

 
Fig. 2.8. One PV panel string block diagram. 

 
Like in the previous model, used to plot the operation characteristics of the 

PV, shown in Fig. 2.6, the “Algebraic Constraints” block was used in this case for 
computing the voltage value “v” of the panel array from equation 2.15. 

An additional assumption was made in this case: because the equation also 
requires the current value, which is computed from the voltage value, in order to 
break the algebraic loop, the current value is taken from the last simulation step. 
This assumption relies on the fact that the electric measurements have a time 
period of 1 second and the environment measurements have a resolution of 10 
seconds; thus the system changes states each 10 seconds, and only for the first 
second in this 10 seconds interval the model takes the current value from the 
previous state. Since the model does not have dynamics (integrators or derivatives) 
and the simulation is running with a discrete time solver, this assumption is 
considered accurate.  

 
2.1.6. Power model  
 
As the purpose of the developed model is to calculate only the output power 

of the PV panels, a simpler model can be used, the so called power model. In order 
that sufficient parameters are provided by the manufacturers, as the case for new 
PV panels, this model can be accurately used. 

The needed parameters are: ISC25, VOC25, Pmax25, α, β, and χ, which were 
explained in Section 2.1.4. 

Like in the case of the model presented in Section 2.1.5, the power model 
has two inputs: 

Tcell - the cell temperature and  
Gcell - the solar irradiance on the PV panels’ surface. 
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The short circuit current for the present weather conditions is affected by 

the two model inputs as presented in the following relations: 
 By the temperature ∆T = 25 – Tcell  
 

ௌ஼ܫ ൌ ௌ஼ଶହሺ1ܫ ൅ β ∆ܶሻ (2.16) 
 

  By the solar irradiance 
 

ௌ஼ܫ ൌ ௌ஼ଶହܫ
௖௘௟௟ܩ

1000
 (2.17) 

 
where 
Isc25 is the short circuit current at STC. 
 
The open circuit voltage is affected by temperature variations as: 
 

ைܸ஼ ൌ ைܸ஼ଶହሺ1 ൅ χ∆ܶሻ (2.18) 
 
The PV fill factor, taken from the PV data sheet, as described in section 2.4: 
 

ܨܨ ൌ ௠ܲ௔௫ଶହ

ௌ஼ଶହܫ ைܸ஼ଶହ
 (2.19) 

 
Equations (2.16) to (2.19) are used to calculate, with a first order equation, 

the maximum power given the present weather conditions: 
 

ெܲ஺௑ ൌ ௌ஼ܫܨܨ ைܸ஼ሺ1൅ן ∆ܶሻ (2.20) 
 
As for the ISC and VOC, the output power is affected by temperature 

variations.  
This model can be easily implemented in PowerFactory and further used in 

power system studies and simulations. 
The developed PV panel’s model in PowerFactory calculates only the dc 

output power, since the inverter used to connect it to the grid is an existing 
PowerFactory block. 

As stated in Section 2.1.2, PowerFactory is a software dedicated to power 
system simulation, power flow and power quality analysis. In order to be used, each 
component has to be connected in a valid form to the specific simulation. Since the 
purpose is to run simulations as close as possible to the physical available microgrid, 
in the case of PV panels, the developed model will reproduce the DC output power 
and will connect to an existing model for the inverter.  

From this perspective, where only the output power is of interest, the PV 
panels of the same type were considered to be part of the same string, e.g. string 1 
and string 2 considered in Matlab as separate strings, in the PowerFactory model are 
considered together, as presented in Fig. 2.9. 
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Fig. 2.9. Block diagram of PV panels in PowerFactory. 

 
The PV mathematical model implemented in PowerFactory uses the 

equations 2.16 to 2.20. For simulating the output power for each PV string, the 
equations are grouped in a block diagram as shown in Fig. 2.10. This block is used 
for each of the two different types of PV panels grouped in a string (PV_string1_2 
and PV_string3 from fig. 2.9) considering the parameters taken from Table 2.2. 

In fig. 2.11 are shown comparative results between the measured output 
power (green) from the PV inverter and the model output (red) for PV1+PV2 and 
PV3, the setup being presented in fig. 2.1. The model was fed the ambient 
measurements from the weather station estimated for the PV panels surface with 
the correction module described in Section 2.1.7. 

 
Fig. 2.10. Block diagram of PV string model in PowerFactory. 
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Fig. 2.11. Compared results between measured and simulation results. 

 
2.1.7. Correction module  
 
The ambient values, of temperature and solar irradiance, measured from the 

weather station can be very different from the values on the PV panels: 
- the cell temperature is affected by the ambient temperature, but 

also by the solar irradiance – which has a heating effect and by 
the wind – which has a cooling effect on the panels 

- the solar irradiance on the cell surface has a different value on 
the 60 degrees tilted PV panels as for the solar irradiance at the 
weather station which is measured on a horizontal plane 

At SYSLAB research facility there are several PV plants mounted at different 
tilt angles and orientations, and there is no temperature or solar irradiance 
measurement devices on the actual panels but only the ambient data measured 
from the local weather station. This configuration makes it imperative to develop a 
module that corrects the data read from the station and estimates the values on the 
PV panels. 

2.1.7.1. The cell temperature:  
 
The cell temperature can be very different from the ambient temperature 

and it depends on the solar irradiation (Ga), ambient temperature (Ta) and also on 
the wind speed (Ws). Factors like solar irradiation act on increasing Tcell and factors 
like the Ws have a cooling effect (which can be seen in Fig. 2.12).  

The simplest relation for the steady state operating cell temperature (Tc) 
and the ambient temperature (Ta), considering the influence of the solar irradiance 
(Ga) is: 

௖ܶ ൌ ௔ܶ ൅  ௔ (2.21)ܩ݇
 
In this linear expression, which does not consider the wind, the constant k, 

known as the Ross coefficient [skoplaki08], expresses the temperature dependence 
on the solar flux: 
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݇ ൌ ௖ܶ െ ௔ܶ

௔ܩ
 (2.22) 

 
The values for k are usually in the range of 0.02-0.04. The value for this 

coefficient can be obtained from the data sheet, considering the NOCT values: 
 

݇ ൌ
ܶܥܱܰ െ ௔ܶேை஼்

௔ேை஼்ܩ
 (2.23) 

 
Usually, in low speed wind areas, the effect of the wind on the PV cells is 

negligible, the free convection and the radiation term having very small values 
[Goswami2000] [Eicker2003]. 

If the PV panels are mounted in regions with high wind potential, the wind 
speed must be considered because it has a large influence.[Skoplaki2008]. The 
forced (wind) convection is large for high wind speeds and the cell temperature 
function takes the following form: 

 

௖ܶ ൌ ௔ܶ ൅ ߱ ቌ
0.32

8.91 ൅ 2 ௦ܹ௛
0.67

ቍ  ௔ (2.24)ܩ

where:  
ω is the mounting coefficient, which depends on the mounting conditions of 

the PV panels; some values are given in Table 2.3. 
Wsh is the wind speed measured on horizontal  
 
The wind that produces the cooling effect through forced convection is the 

wind parallel to the panel surface; that is why the transformation Wsparallel = 
Wsh/0.67 is used. 

 
Table 2.3. Values of the mounting coefficient. 

PV array mounting type ω 
Free standing 1.0 
Flat roof 1.2 
Sloped roof 1.8 (1.0-2.7) 
Facade integrated 2.4 (2.2-2.6) 

 
For a better understanding on the influence of solar irradiance and wind 

speed on the cell temperature, a graphical representation of these values is depicted 
in fig. 2.12. For all the model simulations, the effect of both solar irradiance and 
wind speed are considered. 
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(a) cell temperature under different conditions 

 
(b) Wind speed  

 
(c) Solar irradiance on the PV panel 

Fig. 2.12. Ambient factors influence on the cell temperature of measurements taken on 
2011.09.16. 

 
The first plot from fig. 2.12 represents the PV cell temperature under three 

different considerations: 
- when the cell temperature is considered to be equal to the ambient air 
temperature, 
- the heating influence of the solar irradiance, represented in fig.2.12c, as defined in 
equation 2.21, and 
- the combined effect of the solar irradiance and the cooling effect of the wind 
speed, represented in fig.2.12b. 
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2.1.7.2. The cell solar irradiance 

 
If the measurements taken from the weather station are considered to be 

the same as on the PV panels, and used as inputs to the developed PV model, the 
simulated output power has a different profile as the actual output power measured 
at the PV installation, see Fig. 2.17. 

In the case when the measurements are not on the actual panels and most 
often are taken from a weather station, like in the case of SYSLAB installations, the 
solar irradiance is measured on the horizontal plane, in order to be more general 
and could be used for different applications and purposes. 

The solar irradiance on each surface has three components: 
- direct irradiance – the amount of solar irradiance that travels in 

strait line from the sun 
- diffuse irradiance – the amount of solar irradiance reflected by 

the air and dust particles in the atmosphere 
- reflected irradiance – the amount of solar irradiance reflected 

from the ground, vegetation and buildings at the earth’s level  
The values of these three components vary on the location of the PV panels, 

the tilt angle, and the orientation and for an accurate model they should be 
considered specifically for each mounting location. 

 
First of all, a relation was needed in order to translate the measured 

horizontal solar irradiance available from the local weather station onto the tilted PV 
panel surface. For this, some new parameters had to be introduced into the model: 

 
The declination angle is the angular position of the sun at solar noon with 

respect to the plane of the equator. Its value is given by: 
 

ߜ ൌ 23.45 sin ൬360
284 ൅ ݊
365.25 ൰ (2.25) 

 
where 23.45 represents the Tropic of Cancer latitude. 
For this equation, the days are numbered from the spring equinox (day 81) 

and using the fact that sin is a periodic function, 365-81=284 
The relation between solar irradiance on a tilted panel and the solar 

irradiance on a horizontal plane, facing south is: 
 

ܵ௣௔௡௘௟ ൌ
ܵ௛௢௥௜௭ sinሺߙ ൅ ሻߚ

sin ߙ  (2.26) 

where: 
α – 90-φ+δ 
β – panel tilt angle 
φ – location latitude. 
 
From this equation it is clear that the ratio between the solar irradiance on 

the PV panel and the one on the horizontal changes during the year, as the earth 
orbits the sun, and the declination angle changes with every day. 

The Matlab/Simulink block that models this correction is shown in Fig. 2.13. 
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Fig. 2.13. Correction of solar irradiance values from horizontal to a tilted plane. 
 
There is an influence on the output power and on the output power evolution 

during the day regarding the orientation of the PV panels. If they are mounted on 
the E-W axis, facing directly south, the maximum output power will be at precisely 
solar noon, when the direct solar beam radiation is at its peak, and the solar 
azimuth angle is zero. As the PV panels from SYSLAB are deviated from the E-W 
axis, the output power presents a time characteristic shifted from the time 
representation of the solar irradiance measured on a horizontal or facing south PV 
panel, as seen in figure 2.18.  

The two curves present different sunrises, different sunsets and different 
solar noon. Those points, however, have the same lag in time. For example, if the 
panel deviation from the E-W axis is of 15° to west, on the deviated panel the 
sunrise, noon, and sunset will be one hour late that on the one facing south. 
[Goswami1999] [Seme2011]. This phenomenon is clear when the data from the 
electrical measurements are compared with the results from the model, considering 
the PV panels on the E-W axis as shown in Fig. 2.18. 

The events that appear in this figure, like shadows that translate in drop of 
current (and power) are synchronized both in the measurement and in the 
simulation. However the response in amplitude has a different wave form, the one 
from the simulation has a delay in time of around 50 minutes.  

This is due to the deviation of the PV panels from SYSLAB with around 14 
degrees to the west, as shown in Fig. 2.14, in the capture taken from National 
Oceanic&Atmospheric Administration, U.S. Department of Commerce [NOAA] 
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Fig. 2.14. PV panel installation site at SYSLAB facility. 

 
In order to translate the horizontally measured solar irradiance on the actual 

PV panel, some values and notions have to be reviewed: 
 
Solar hour angle – the geometrical angle between the sun’s sky position 

projected on the ground in each moment of the day and the projection at solar 
noon; each hour, the sun travels 15° on the sky. It has a negative value before 
solar noon, zero at solar noon and positive after. 

 
SolarHourAngle=15°(SolarNoon-T) (2.27) 

 
Equation of time is an astronomical term accounting for changes in the time 

of solar noon for a given location over the course of a year. Earth's elliptical orbit 
and Kepler's law of equal areas in equal times are the factors behind this 
phenomenon. This difference between the astronomical solar noon and twelve 
o’clock during the calendaristic year are represented, in minutes, in fig. 2.15. 

 
Fig. 2.15. Equation of time. 
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The maximum deviation of 15 minutes in the equation of time has an 

equivalent of 4° deviation of the panels from the EW axis, which has an observable 
effect on the PV output profile. 

The equation of time is approximated with a polynomial shown in equation 
2.29 that uses the current day (Mday) for defining as input: 

 
MM = 2*pi*n/365.25 (2.28) 

 
EqofTime = (-7.657*sin(MM)+9.862*sin(2*MM+3.599))*60 (2.29) 
 
The astronomical solar noon, after the correction is: 
 

SolarNoon = 12 + EqofTime  (2.30) 
 
The solar radiation on the surface on the PV panels (Gcell), disregarding 

reflected irradiance, has the time dependent function: 
 

௖௘௟௟ܩ ൌ ௣௔௡௘௟ܩ
cosሺ݈ܵ݁݃݊ܣݎݑ݋ܪݎ݈ܽ݋ െ ሻ݊݋݅ݐܽݐ݊݁݅ݎܱ

sin ݈݁݃݊ܣݎݑ݋ܪݎ݈ܽ݋ܵ  (2.31) 

 
where 
Gcell – solar irradiance considering tilt the angle of the panels 
Orientation – orientation of the panels, in degrees, from north (south 

represents by 180 degrees) 
This orientation correction module was implemented in Matlab/Simulink as 

having the diagram shown in fig. 2.16. 

 
Fig. 2.16. Solar irradiance orientation correction. 

 

2.1.7.3. Comparative results between the measured output power and the 
model’s output power  
 
1. The case when no correction module is considered, and the inputs 
for the PV module are the weather measurements from the local station  

 
Disregarding the differences of weather conditions between the PV panels 

surface and the weather station and considering the measured solar irradiance and 
ambient temperature at the station as the model input, large differences appear in 
the output power. These differences were explained in detail in Section 2.1.7. 
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Fig. 2.17 presents the difference in output DC power between the PV 

inverter’s electrical measurements and model’s output power, for PV1 from the 
three PV panel strings from the configuration presented in Fig. 2.1. 

 
Fig. 2.17. Output power comparison, PV model without correction module, Gcell = Gmeas, Tcell = 

Tameas. 
 

2. The case when the correction module with tilt effect is considered as 
the inputs for the PV module  

 
By considering the tilt angle on the PV panels, and the effect of solar 

irradiance and wind speed, as discussed in Section 2.1.7, the difference between 
measured DC output power and model output is shown in Fig. 2.18, and is 
considerable smaller than the one in Fig. 2.17. 

 

 
Fig. 2.18. Output power comparison, PV model with additional PV panel tilt angle correction. 

 
3. The case when the correction module with tilt and orientation effect 
is considered as the inputs for the PV module  

 
The overall output profile from the Fig. 2.18 is very similar for the two 

plotted values, with a small time shift, the measured power being delayed with 
around 50 minutes. This delay however, is not caused by any time uncorrelated 
measurements from the weather station and inverter, which run on different 
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network nodes, as the disturbances caused by clouds and shadows, are time 
correlated for the two powers, measured and simulated. This difference is caused by 
the orientation of the PV panels, as explained in Section 2.1.7. 

By including the mathematical relations presented in Section 2.1.7 into the 
correction module, the model presents very good results; the two outputs present a 
small difference, as shown in Fig. 2.19. 

The difference at around 18:00 hours is due to the vegetation that casts a 
shadow on the PV panels, as it can be seen from Fig. 2.1, where the PV plant that 
was used for modelling is presented, with the three PV strings highlighted.    

 
Fig. 2.19. Output power comparison, PV model with additional PV panel orientation angle 

correction. 
 

2.1.8. PV model interface application 
 
The graphical user interface application considers the PV plant described in 

chapter PV model and highlighted in Fig. 2.1: three PV strings, where PV1 and PV2 
are composed by the same type. 

The goal of this graphical tool is to facilitate the usage of the PV model, to 
clearly present the accuracy and shortcomings of the developed model by 
comparing the simulation values with the measured data taken from the PV 
inverter: current, voltage and power, for the entire plant and also on each of the 
three PV strings. 

In the first window of the application it can be selected a day from the 
dropdown list. By making this selection, the ambient measurements for that day are 
plotted on the three graphs on the window: solar irradiance, ambient temperature, 
and wind speed, as shown in Fig. 2.20.  

On this window there are three command options: 
- Read data – this loads the weather data from the selected day 

into the memory 
- Start simulation – resets the previous results and starts the 

simulation with the loaded weather data 
- Show model – opens the Matlab/Simulink model that is used in 

the simulation and modifications can be made on it 
On all the application’s windows there is a text in the upper right corner that 

gives information about the state of simulation: 
- No simulation data – no weather data are loaded into the 

memory, and no simulation results are available 
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- Running simulation – the application runs the model with the 

selected data 
- Simulation loaded date – the simulation results for the selected 

date are available 
 

 
Fig. 2.20. Front window of the PV model interface application. 

 
After running the simulation, the message in the upper right corner indicates 

that results are available and also enables the other windows for displaying these 
results: 

 
Power output window 
 
In this window, the selection of each of the three PV strings is possible. As 

shown in Fig. 2.21, for each PV string, a series of four graphs are represented. The 
measured data taken from the PV inverter are plotted against the simulation results 
of the PV model having the selected day’s weather data. These four graphs 
represent: 

- The string’s DC current 
- The string’s DC voltage 
- The PV string’s DC power 
- The total DC power over the three PV strings 

In Fig. 2.21 the “Power output” window is shown for the day of 16 October 
2011, for PV panel 1, made from Schuko panels, and PV panel 3, made from SOLEL 
100x panels.  
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(a) Schuko PV panels outputs 

 

 
(b) SOLEL PV panels outputs 

Fig. 2.21. Results window of the PV model interface application. 
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Some other important characteristics for ensuring a good model are the 

current-irradiance, current-voltage, and power-voltage characteristics. In figure 
2.22, these simulation values are compared with the measured values. 

 
Operating Characteristics window 
 
In this window three important characteristics are plotted for each of the 

three PV strings: 
- I-G characteristic 
- I-V characteristic 
- P-v Characteristic 

The measured data from the inverter are plotted in blue color and in green 
are plotted the results from the simulation. 

As it can be seen from Fig. 2.20, the measured data is more dispersed than 
the model’s output. This difference comes from the fact that during operation, the 
inverter has to run a MPPT to follow the maximum power output. That means that, 
for short intervals, the operation regime differs from the optimal one, represented 
by the model’s output. The model, as discussed in Section 2.1.2, always computes 
the maximum output power given certain weather data, without electrically tracking 
the maximum power point. However, these dispersed operation points are rare and 
the system remains in this operation states for very short periods of time, the 
electrical time constants being very small, and the MPPT very fast, hence, as it can 
be seen from Fig. 2.20, the model’s output is very close to the measured electrical 
values. 

 

 
Fig. 2.22. PV panels characteristics during operation. 
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2.2. Vanadium-redox battery model 
 
2.2.1. Introduction 
 
The energy storage devices are essential in low power distribution grids with 

RES penetration for acting as an energy buffers between the flexible demand on one 
hand and flexible production on the other hand. 

This subchapter presents the development and validation of a model 
designed for simulations of different operation regimes of a low voltage microgrid 
regarding a vanadium-redox flow battery (VRB). The model’s parameters are 
determined through experiments. 

A graphical interface application is developed in order to facilitate the use of 
the model in simulations, by running different sets of measured data, and to show 
the effect on the battery of changing the electrical parameters of the inverter. 

 
2.2.2. General overview  
 
Energy storage systems are expected to become indispensable for the future 

electrical grid, considering the large penetration of renewable sources 
[Yang2011][Koch2011]. 

With the renewable sources penetration into the grid, the energy generation 
is becoming more fluctuating [EnStor2003] [Solomon2012][Koch2010], in addition 
to the load consumption which is variable by nature. This difference between the 
energy generation and demand produces perturbation in the grid as over and under 
voltages, and frequency fluctuations as well. 

Energy storage devices are being used exactly in the purpose of balancing 
the energy production and consumption, acting as an energy buffer. Even if load 
shifting algorithms are extensively developed, as described in [Vandoorn2011] 
[Ueda07], there are availability constraints regarding the connection of the loads 
when energy is available, due to consumers’ comfort limitations; the energy storage 
devices are necessary due to the fast response and instant availability. As will be 
explained in section 2.3, each household load has a comfort penalty cost, which 
constraints the time shifting usage of the load. 

A summary of available and used energy storage batteries are presented in 
Table 2.4 [Yang2011]. 

 
Table 2.4. Technology Comparison of potential batteries for Utility applications. 

type 

Open 
circuit 
voltage 

(V) 

Specific 
energy 
(Wk/kg) 

Operating 
temperature 

(°C) 

Discharge 
time 

Self 
discharge 

% per 
month 
@20°C 

Cycle life 
(deep 
cycles) 

Round trip 
DC energy 
efficiency 

LAB 2.1 25-40 -40: 60 Up to 8 h 4-50 1000 50-77 
NCB 1.35 30-45 -10:45 Up to 4 h 5-20 2000 55-70 
VRB 1.4 10-20 10:40 4-12 h 3-9 5000 65-80 
LCB 2.1 25-40 -40:60 Up to 4 h  3000  
Na-S 2.1 150-240 300:350 4-8 h Negligible 4000 75-90 
C-LC 3-4 155 -25:40 Up to 4 h 2 1000 94-99 
LT- 
LFP 

1.7 50-70 -25:40 Up to 4 h 2 4000 94-99 

 
where 
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LAB: lead-acid batteries; NCB: nickel-cadmium batteries; VRB: all-vanadium 

redox flow batteries; LCB: lead-carbon ultrabatteries; Na-S: sodium-sulphur 
batteries; C-LC: Li-ion batteries of C anode and LiCoO2 cathode; LT-LFP: Li-ion 
batteries of Li4Ti5O12 anode and LiFePO4 cathode. 

 
There are two directions of energy storage development and deployment 

[Chowdhury]. The first one is using large storage plants like the example of the 10-
MW/40-MWh flooded lead-acid system that was built in 1988 in Chino, CA, which is 
used at the Chino substation of Southern California Edison Company, or the nickel 
cadmium system which was commissioned in 2003 in Fairbanks, Alaska, to provide 
27 MW ac power for a short period of time (up to 15 min) until back generation 
comes online [Daughty2010].  

The second approach is to include the storage systems into the distribution 
grids, where the RES penetration is accomplished at the consumer level [Sels2001], 
with photovoltaic panels mounted on the rooftop or small windturbine being 
installed in the yard [Barote2010]. A configuration of generators and loads is 
developing into an entity called microgrid. A survey of experimental microgrid 
configurations is presented in [Lidula 2010]. 

The battery technology used and described in this work is the vanadium 
redox flow battery (VRB). 

The word ‘redox’ is a combination of two words: reduction and oxidation. A 
redox battery refers to an electrochemical system that generates oxidation and 
reduction between two active materials, forming a redox system, on the surface of 
inactive electrodes (the electrodes themselves do not change). A redox flow (RF) 
battery has the electrolyte including these active materials in external containers, 
such as tanks, and charges and discharges electricity by supplying the electrolyte to 
the flow type cell by pumps or other means [Shigematsu2010]. 

During research and experiments different electrolytes were used, and 
different technologies evolved. A short history of redox flow battery is presented in 
Table 2.5[Shigematsu2010]: 

 
Table 2.5. History of RF Battery Development [Shigematsu2010]. 

year Event 
1949 Kangro (German patent): Cr/Cr  
1974 Battelle Cr/Cr, Fe/Cr, V, Mo, Mn  
1974 NASA released the principle of the RF battery – U.S. basic patent (’75) 

Fe/Cr system 1 kW (’78), Final Report (’84) 
ETL started the research and development of RF Battery 

1980 NEDO (Moonlight Project) established the project “Advanced Battery 
Electric Power Storage System.” 
• RF (ETL./Mitsui Engineering and Shipbuilding [MES]), NaS (Yuasa 
Battery), Zn/Br (Meidensha), and Zn/Cl2 (Furukawa Electric) 
• ETL, Fe/Cr system, 1 kW (’82); MES, 60 kW (’84 to’87) NEDO (Sunshine 
Project) 
• RF battery for solar power generation (MES and Ebara) 

1985 University of New South Wales (UNSW; Australia) released the V system 
RF battery and applied a basic patent (’86). 

1989 ETL. and Kashima Kita Electric Power developed V system RF battery for 
the use of vanadium from the soot 
• V system, 1 kW (Ebara, ’90); 10 kW (MES, ’91); 200 kW (Kashima Kita, 
’97) KEPCO and Sumitomo Electric 
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• Fe/Cr system, 60 kW (’89); V system (450 kW, ’96) 

1998 ETL. and Kashima Kita 
• 10 kW Redox Super Capacitor on-vehicle test 

2001 Sumitomo Electric put V system RF battery into practical use (for load 
leveling, instantaneous voltage sag compensation and emergency use). 
NEDO verified the RF battery for stabilizing the wind power output 
fluctuation. Sumitomo Electric: 170 kW (’00), 6 MW (’05) 

2011 The development of RF batteries is proceeding worldwide, including in the 
U.S., Europe and China 

 
Nowadays, more than 20 VRB demonstration systems were installed for a 

range of energy storage applications around the world. The subsequent 
demonstration programs include [Skyllas2010]: 

- 200kW/800kWh installed by Mitsubishi Chemicals (1996) at Kashima-Kita 
Electric Power, Japan for load-levelling [Shibata2010] 

- 200kW/1.6MWh installed by SEI (2000) at Kansai Electric, Japan for peak 
shaving 

- 250kW/500kWh installed by VRB Power (2001) at Stellenbosch University 
for ESKOM Power Corporation, South Africa for peak shaving and UPS back-up 
power 

- 42 kW/90kWh installed by SEI in 2001 at CESI, Milan, Italy for R&D into 
distributed power systems 

- a 250 kW/2 MWh VRB installed for Pacific Corp by VRB Power in 2004 in 
Moab, Utah, USA for voltage support, rural feeder augmentation [Hennessy2006] 

- a 4 MW/6 MWh VRB installed by SEI in 2005 for J Power at Subaru Wind 
Farm, Tomahae, Hokkaido, Japan for wind energy storage and wind power 
stabilization [McDowell2006] 

The major advantages of the vanadium redox battery, as shown in Table 2 
and presented in [Bindner2011], are: 

- operating at ambient temperatures 
- reversible fuel cell – reduction and oxidation of single unique element, 

vanadium 
- electrolyte never wears out 
- low self discharge 
- battery can charge as fast as it discharges 
- battery power scalable by adding/removing cell stacks 
- battery energy scalable by increasing/decreasing the electrolyte tanks 
- large number of deep cycles 
The major disadvantage is the low specific energy, which implies larger 

volumes of electrolyte in order to cover the energy demand of the site.  
 
2.2.3. Problem statement 
 
The design problem represents the development of a mathematical model 

that describes the operation of a VRB and the validation with the VRB from the 
SYSLAB facility. The model is implemented in Matlab and PowerFactory and is used 
for low voltage distribution grids simulation on power flow and voltage control 
issues. 

The vanadium battery system installed at SYSLAB is connected to the grid 
via a four quadrant power converter and can deliver 15kW on the ac side and the 
nominal storage capacity is 180kWh. The battery can operate in two modes: P-Q 
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mode (where the active and reactive power of the battery is set by the user) and U-
f-mode where the power is set according to the grid voltage and frequency and the 
pre-defined droop-curves. The overview of SYSLAB vanadium-redox battery is 
presented in fig. 2.23. 

 

 
 

Fig. 2.23. Vanadium battery installation seen from above: electrolyte tanks in the back, 3 cell 
stacks at the front. 

 
The VRB shown in Fig. 2.23 has the following system components: 

- Cell stacks 3x42 cells in total 
- Electrolyte tanks: 2x6500 liter 
- Balance of plant: pipes, pumps 
- AC/DC power converter  
- Control and communication unit 

The VRB power flow during operation is depicted in Fig. 2.24. According to 
the charge/discharge operation mode, the energy flows from the grid through the 
AC/DC converter, the cell stack and then changes the form of energy from electrical 
to chemical, at the electrolyte level; the reduction and oxidation phenomenon 
appear inside the electrolyte, which is the energy storage medium. The energy flows 
in the opposite direction during discharge mode. 

The auxiliary parts of the battery are supplied with energy from another 
electric source, not to affect the energy flow and the energy conversion chain 
efficiency. Each component represented in Fig. 2.24 has its own energy losses, 
which are influenced by the amount of power circulated through the battery’s 
output, the operation mode charge/discharge and the battery’s temperature. All 
these losses are responsible for the battery efficiency.  
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Fig. 2.24. Schematic diagram of the battery system.  

2.2.3.1. AC­DC converter efficiency 
 
The power converter efficiency has been estimated from the measured 

power on both the AC and the DC side. There is a slight difference between the AC 
to DC efficiency and the DC to AC efficiency: At maximum power in discharge mode 
is approximately 93% where in charge mode is approximately 91%. In both 
operation modes the characteristic of the efficiency has a relative large range where 
it is flat. The absolute efficiency is not very high for a modern power converter. The 
efficiency curve is presented in section 2.2.5 that describes the simulation model. 

2.2.3.2. Cell stacks efficiency  
 
The power delivered to the stack is P=VDCI, while the power delivered to the 

electrolytes is P = VEMFI. This means that the stack efficiency is VEMF/ VDC in charge 
mode (when I<0) and VDC/VEMF in discharge mode (when I>0). These electrical 
values are later explained in section 2.2.4. 

In [Bindner2011] experiments for determining the battery efficiency which 
help in the development of the mathematical model are presented. During the 
testing of the battery it has been has put through a number of different charge and 
discharge cycles. 

Fig. 2.25 presents the efficiency of the cell stacks as function of DC power at 
different state of charge (SOC) levels, when the battery is running in stable 
conditions. The figure illustrates how the relative deviation from the EMF grows with 
the power, leading to a decrease in the cell stack efficiency. There should also be a 
slight efficiency dependence on temperature, but this is expected to be insignificant 
in the temperature range that the battery is operated in and it has been disregarded 
in this study. There is also a dependency of efficiency on SOC since the open circuit 
voltage is higher when the SOC is higher and thus the current is smaller for the 
same power resulting in a decrease in the losses and a higher efficiency. 
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Fig. 2.25. Efficiency of the cell stacks as function of DC power. 

2.2.3.3. Other storage losses 
 
As a part of the normal operation of the battery, water will diffuse through 

the cell membranes when the ionic composition in the two electrolytes differs (due 
to the osmotic pressure).  

This results in a difference in the level of the electrolyte in the two tanks. In 
order to avoid a too large difference in the level, an equalization process is carried 
out every 24 hours: a valve between the two tanks is simply opened for about half 
an hour allowing electrolyte to flow from the tank with the highest electrolyte level 
to one with the lowest level.  

The energy loss during equalization depends on the current SOC and on the 
difference in electrolyte level. The loss has been measured to be 1.5% SOC 
(2.7kWh) on average during the measurement period. This corresponds to a 
constant energy use of about 110 Watts. The losses during equalization are the only 
observed energy losses in the electrolyte. 

2.2.3.4. Auxiliary power consumption 
 
For a vanadium battery, the auxiliary power consumption is significant since 

the electrolyte has to be circulated for the battery to be operational. The power of 
the auxiliaries (control system, pumps, etc.) can be derived from the measured AC 
power of the battery and the total power flow over the bus (when only the battery is 
connected).  

When the battery is off, the power consumption (for the control PC and the 
displays) is 235W. When the battery is on and the pumps are running the power 
consumption is between 1.1 and 1.6kW depending on the AC power. This is 
illustrated on Fig. 2.26.  

At low power (|PAC|<4kW) a high flow speed of the electrolyte is not 
required and the pumps speed is reduced, which can be seen in the auxiliary power 
consumption. At high power (|PAC|>4kW), the pumps are running at higher speed 
and the auxiliary power is about 1.5kW.  

The fraction of the auxiliary losses will probably decrease with the size of the 
battery, e.g. by introducing intermediate stages in the battery’s operation that are 
running only necessary pumps [Bindner2011]. 
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Fig. 2.26 Auxiliary power as function of AC power. 

 
2.2.4. Mathematical model of the VRB 
 
The model for the VRB was implemented in Matlab/Simulink and is based on 

the power equilibrium between the input and the stored power considering the 
efficiencies of different components and the power losses. These efficiencies were 
computed through experiments by measuring different electric values at different 
locations. 

Fig. 2.27 shows the equivalent electrical diagram of the VRB.  
 

 
Fig. 2.27. Electrical circuit diagram of the VRB 

 
The developed model has the following variables and parameters: 
Input variable (for charge mode): - PAC – AC power at the AC-DC converter  
Output variable (for discharge mode): - PAC – AC power at the AC-DC 

converter 
State variable: SOC – state of charge of the battery 
Design parameters:  Ri – internal resistance 
    Ebatt – battery capacity 
    ηconv – AC-DC converter efficiency  
    SOC0 – initial state of charge 
 
The amount of energy to be stored in the battery is obtained by integrating 

the power that enters the electrolyte. This power is the product I*VEMF.  
From the electric circuit in Fig. 2.27: 
 

ܫ ൌ ாܸெி െ ஽ܸ஼

ܴ௜
 (2.32) 

 
Or 
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ܫ ൌ
ாܸெி െ ஽ܲ஼

ܫ
ܴ௜

 (2.33) 

 
From which a second order equation in variable I can be written: 
 

ଶܴ௜ܫ െ ܫ ாܸெி ൅ ஽ܲ஼ ൌ 0 (2.34) 
 
Having the solution: 
 

ଵ,ଶܫ ൌ ாܸெி േ ඥ ாܸெி
ଶ െ 4ܴ௜ ஽ܲ஼

2ܴ௜
 (2.35) 

 
The valid solution, representing the DC current, as a function of the known 

parameters and measured values is presented in equation (2.36): 
 

ܫ ൌ
ாܸெி,ௌை஼ ൅ ට ாܸெி,ௌை஼

ଶ െ 4ܴ௜ ஺ܲ஼ߟ௖௢௡௩

2ܴ௜
 

(2.36) 

 
The VEMF(SOC) characteristic was obtained through experiments, by 

measuring the open circuit voltage at the cell stack end. This measures the voltage 
across the cells connected in series. 

Fig. 2.28 shows the open circuit voltage (VEMF) as function of the SOC.  

  
 Fig. 2.28. Open circuit voltage (VEMF) as function of the SOC. 

 
The reference power that is given by the system to the battery’s converter 

in order to operate in charge/discharge mode, is the value of Pac_ref. Due to the 
efficiencies of different components, the actual charge/discharge power that supplies 
the electrolyte has a different value: in charge mode PAC>PDC>PEMF and in discharge 
mode PAC<PDC<PEMF. 

 
The actual energy stored in the battery has the following equation: 
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஻௔௧௧ܧ ൌ ஻௔௧௧଴ܧ ൅ න ாܲெி݀ݐ
௧భ

௧బ

 (2.37) 

 
Where: 
Ebatt0 - initial energy stored in the battery 
PEMF - charge/discharge power at the electrolyte side 
t0,t1 – initial and final time representing the charging interval 
 
The state of charge (SOC) is defined as the amount of energy stored in the 

battery (in percent)  
 

ܥܱܵ ൌ
஻௔௧௧ܧ

்ܧ
 (2.38) 

 
where ்ܧ – the total energy capacity of the battery. 
 
2.2.5. Model development  
 
In Fig. 2.29 the VRB block diagram in Matlab/Simulink is presented. The 

blocks are detailed and explained in the followings. 
 

 
Fig. 2.29 VRB block diagram 

 
Basically, the model reproduces the power flow in the battery, considering 

the efficiency and losses of each component presented in Section 2.2.3. 
Each component has a different behaviour, regarding the mode of operation 

of the battery: charge/discharge. The model implemented these dynamic behaviours 
in a modular manner, like shown in Fig. 2.29. The operation mode is considered by 
each particularly component, rather than having two large blocks, one for charge 
mode and the other for discharge mode. 

2.2.5.1. AC­DC converter efficiency 
 
In Fig. 2.30, the efficiency of the AC-DC converter is shown for both charge 

and discharge operation modes. From the experimental measurement data obtained 
during full cycle operation of the VRB, in charge mode the efficiency is 91% where 
in discharge mode is 93%. 
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Fig. 2.30 Efficiency of the AC-DC converter 

 
The block diagram for the AC-DC converter implemented in Matlab/Simulink 

is presented in fig. 2.31. The efficiency of the converter is implemented using a 
look-up table containing the measured values.  

 
Fig. 2.31 Simulation model for the AC-DC converter 

 
As stated in section 2.2.4, in charge mode PAC>PDC and the converter 

efficiency is EffACDC=PDC/PAC; meanwhile, in discharge mode PDC>PAC and the 
efficiency EffACDC= PAC/PDC. 

2.2.5.2. VRB capacity 
 
The total capacity of the battery can be obtained by multiplying the amount 

of electrolyte with its energy density. However, the VRB comes with an installed 
supervisory controller that allows the VRB to function inside more narrow limits; 
that means the available SOC reported by the controller has different values than 
the actual SOC of the battery. In other words, the inverter’s zero reference SOC 
represents several percents of the total SOC, and the full state of charge reported 
by the controller is several percents lower than the full charge of the battery. These 
safety measurements were taken because the battery represents a new technology 
and future hands–on experience needs to be gained. 

From the operation point of view, the corresponding lower and upper 
capacity limit were unknown and so was the available capacity of the battery. 

The battery total available capacity had to be calculated through 
experiments and measurements, realized on a time span of 48 hours, as shown in 
Fig. 2.32. In fig.2.23b, the inverter AC power profile is plotted, having negative 
values for charging and positive values for discharging. In fig.2.23a, the battery’s 
state of charge is plotted. 
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Fig. 2.32. Experimental determination of VRB capacity. 

 
By considering a full charge–discharge cycle and measuring the amount of 

energy that went in and out of the battery, the available total capacity was 
calculated. The converters efficiency was considered as stated in section 2.2.5.1.  

In a full charge cycle, the amount of stored energy is equal to the input 
energy after considering losses, or efficiencies, of the electrical components on the 
conversion line, as shown in fig. 2.24. That is the efficiency of the AC-DC converter 
 due to the internal resistance ,(௕௔௧௧ߟ) and the efficiency of the battery itself (௖௢௡௩ߟ)
losses. 

In charge mode, the amount of input energy is: 
 

௜௡௣௨௧ܧ ൌ න ௔ܲ௖ି௖௛௔௥௚௘݀ݐ
௧భ

௧బ

 (2.39) 

And the amount of energy to be stored is: 
 

௜௡௣௨௧ܧ · ௖௢௡௩ߟ · ௕௔௧௧ߟ ൌ  ௕௔௧௧ (2.40)ܧ
 
For the experiment shown in fig. 2.23, for a full charge from 0 to 100%, the 

input energy was: 
 

௜௡௣௨௧ܧ ൌ 248.66 ܹ݄݇ (2.41) 
 
In discharge mode, the amount of output energy is given by: 
 

௢௨௧௣௨௧ܧ ൌ න ௔ܲ௖ିௗ௜௦௖௛௔௥௚௘

௧భ

௧బ

 (2.42) ݐ݀

 
Between the stored energy and output energy, considering the electrical 

components’ efficiencies, the following relation is obtained: 
 

௢௨௧௣௨௧ܧ ൌ ௕௔௧௧ܧ · ௖௢௡௩ߟ ·  ௕௔௧௧ (2.43)ߟ
 
In the case of the experiment, the output power was: 
 

௢௨௧௣௨௧ܧ ൌ 150.23 ܹ݄݇ (2.44) 
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By considering equations (2.40) and (2.43), a system of two equations with 

two unknowns is obtained. By solving the system in respect with the battery’s 
capacity, the solution is:  

 
௕௔௧௧ܧ ൌ ඥܧ௜௡௣௨௧ ·  ௢௨௧௣௨௧ (2.45)ܧ

 
For the total capacity of the VRB, using measurements from the experiment, 

the following result is obtained: 
 

௕௔௧௧ܧ ൌ 193 ܹ݄݇ (2.46) 

2.2.5.3. VRB internal resistance 
 
Another important parameter in the modelling process is the VRB internal 

resistance. The internal resistance is the cause of energy losses and lowering the 
efficiency. 

From the equivalent electric circuit from Fig. 2.27 a relation for the internal 
resistance can be derived: 

 

ܴ௜ ൌ ாܸெி െ ஽ܸ஼

஽஼ܫ
 (2.47) 

Considering the available measured values the relation can be transformed 
into:  

ܴ௜ ൌ
݂ሺܱܵܥሻ െ ஽ܸ஼

஽ܲ஼
஽ܸ஼

 (2.48) 

In Fig. 2.33 are presented measurements needed to represent the internal 
resistance of the battery during the full charge-discharge experiment. 

Equation 2.48 is used to calculate the internal resistance value based on the 
experimental measurements. It can be seen in fig. 2.33a that this value modifies 
with the change of SOC, ac power and also on the battery temperature. The 
developed model does not consider the effect of these factors, the average value 
being used further. 

 

2.2.5.4. Other losses 
 

Other losses refer at operation losses like PC and display supply, and also at 
the energy loss during equalization, as mentioned in Section 2.2.3.3. They are 
modelled as a constant 0.5kW loss.  
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Fig. 2.33. Experimental determination of VRB internal resistance. 

 

2.2.5.5. Pump losses 
The power pump (auxiliary power) consumption is modelled with a look up 

table, considering the experimental data shown in Fig. 2.26. However, it does not 
influence the power flow from AC side to the battery because it consumes power 
from a different source, as shown in table 2.6. 

 
Table 2.6. Auxiliary power consumption during VRB operation regimes 

Ch. P (kW) -15 -13 -10 -7 -5 -4 -3 -2 
Pump P (kW) 1.60 1.55 1.50 1.50 1.40 1.30 1.20 1.20 

 
Ch. P (kW) -1 0 1 2 3 4 5 6 

Pump P (kW) 1.18 0 1.15 1.20 1.20 1.30 1.45 1.45 
 

Ch. P (kW) 7 8 9 10 12 14 
Pump P (kW) 1.43 1.40 1.40 1.40 1.41 1.41 

 
Where: 
Ch. P – is the charge/discharge power of the VRB 
Pump p – is the power consumed by the pumps to circulate the battery’s 

electrolyte 
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2.2.5.6. Electrolyte block 
 

In Figure 2.34 is presented the energy storage block that uses equation 2.37 
in order to compute the stored energy and the SOC of the battery. 

 
Fig. 2.34. VRB Energy storage model. 

 
2.2.6. Simulation results 
 
In order to validate the model, measurements were taken from the real 

battery, fed into the model and comparing the output values of the real battery and 
the values obtained with the model.  

The following experiment was considered: 
Starting from a SOC=93.5% the battery was discharged with a constant 

PAC=15kW, until SOC=18%. Then a charge sequence from SOC=14% until 
SOC=87% at PAC=10kW was considered. This discharge-charge sequence is shown 
in Fig. 2.35. 

 
Fig. 2.35. Measured values from the real VRB. 

 
After running the simulation with PAC read from the VRB as input, the result 

– SOC – was plotted against the measured SOC, as seen in Fig. 2.36. 
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Fig. 2.36. Compared values of SOC: blue – measured; green – simulated. 

 
2.2.7. PowerFactory model 
 
The block diagram of the PowerFactory VRB model is depicted in figure 2.37. 

It represents the entire VRB, with all the internal components operation and 
efficiency, modelled after the mathematical equations presented in Section 2.2.4: 

- AC-DC converter 
- Cell stack 
- Operational losses 
- Energy storage 

 
Fig. 2.37. Block diagram of VRB 

 
As for the Matlab model validation, the same input AC power sequence was 

used for the PowerFactory model as depicted in Fig. 2.35. The compared SOC for 
the model and for the measurements are plotted in Fig. 2.38. 

0 5 10 15 20 25 30 35
10

20

30

40

50

60

70

80

90

100

110

t (hours)

S
O

C
 (%

)

SOC

BUPT



2.2. Vanadium redox battery model                                                                   57 

 
Fig. 2.38. Results comparison between measured and model. 

 
 

2.2.8. VRB model interface application 
 
A graphical user interface application was developed to serve the developed 

VRB model. The tool’s interface can be seen in Fig. 2.39. 
The purpose of this tool was firstly, to validate the model and secondly, to 

show the effect of VRB parameter changes in the model. 
On the application interface there are two editable tables that alow changing 

model parameters : the first one is for defining the power consumption of the 
pumps according to the ac input power, and the second one is defining the ac-dc 
power converter’s efficiency. The initial values of these two tables are available to 
be reloaded by selecting the reload buttons. The values of both tables are 
graphically represented in two plots, as shown in figure. 

The converter’s efficiency has an important role in the power conversion line 
of the battery and this application can emphasis the effect on the overall VRB 
efficiency by changing the VRB’s inverter with one that has a different efficiency 
characteristic; this is realized by editing the power converter’s efficiency table. 
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Fig. 2.39. Vanadium redox battery Graphical user interface. 

 
The tool is presented with a dropdown list from which an input file 

containing an experiment data can be loaded. The input file presents the AC power 
profile measured from the AC-DC converter and the SOC measured by the VRB’s 
internal controller. 

The first plot, located in the right of the interface, is showing the measured 
ac and dc power at the converter. The second plot presents the measured and 
simulated dc voltage. 

The third plot presents the measured and simulated state of charge of the 
VRB when using the same power flow as input. 

 

2.3. Building with thermal storage model 
 
2.3.1. Introduction 
 
This subchapter presents the thermal model of a building, as a distributed 

energy resource (DER) developed for being part of low voltage distribution grid in 
load management and voltage stability study cases, by using the inside temperature 
in the comfort zone as (thermal) energy storage. 

 
2.3.2. General Overview  
 
The building sector is the second largest energy consumer in the European 

union, with an estimated 26.5% of the total global consumption according to  
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Fig. 2.40. Energy consumption, EU-27, 2009 (% of total, based on tonnes of oil equivalent). 

 
[eurostat09] in 2009, more than the industry energy consumption, as seen in figure 
2.40.  

The environment changes, the rising CO2 emissions, the continuing growth 
of energy demand, put increasing pressure on lowering the energy consumption and 
emphasis its use more efficient. The large share in energy consumption of 
households makes them a good candidate for research and implementation of 
solutions that enable the use the energy more efficient. 

The energy consumption in a household can be grouped in loads that serve 
the building heating, ventilation, and air conditioning (HVAC) systems, the lightning 
system, the house and kitchen appliances and cooking, and nowadays even electric 
vehicles. [ENER]. 

Fig. 2.41 shows the energy consumption at European level for different 
countries, according to four categories of energy consumers. The data are 
represented in tons of oil equivalent (Toe) per household. 

According on the energy availability or price, different techniques have been 
developed direct and indirect control of loads and load shifting [Fuller2011] 
[Lu2011] [Wang 2011].  

For each load in the house, disregarding the system that is using it, a 
certain comfort penalty cost can be attached. That means, from the consumers’ 
perspective, each load has a different time reaction, a different delay between the 
time the consumer requests that load and the time the load is activated; the 
comfort penalty cost increases proportional with the delay between the consumers’ 
request and the loads’ replay and with a comfort penalty coefficient specific to each 
load. For example, if the consumer needs to turn on the light in a room, 
disregarding the energy price, the light will turn on – has a high comfort penalty 
cost; however, the washing machine can start its program when the energy price is 
lower, which can happen hours after the consumer has pushed the start button – 
the washing machine has a small comfort penalty coefficient. 
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Fig. 2.41. Energy consumption by end uses per dwelling in Europe 

 
The loads with small comfort penalty coefficient can be used according to 

the ‘load shifting’ technique, the operation of the loads being moved to the time 
interval when the operation cost if smaller. An observation has to be made here, 
that the operation cost considers both the energy cost necessary for the loads but 
also the comfort penalty cost. In other words, if it is important for the consumer to 
use a certain load, at a certain time, it will increase the comfort penalty cost outside 
the selected time interval so the operation cost of the selected time will be the 
minimized.  

A system which presents operation flexibility is the households’ heating 
system. The most common control for the interior temperature is the thermostatic 
control which considers the lower and upper temperature limit, set by the consumer. 
When the upper limit is reached, the heaters are turned off, and when the lower 
limit is reached, the heaters are turned on. Between this two limits that make the 
comfort zone, the house can be used as a energy storage device, storing thermal 
energy. This has large implications on the distribution grid with RES penetration, 
where energy is also produced at the consumer level and energy storage devices 
are needed to deal with power flow and voltage problems, which make the subject 
of this thesis. 

For studying the power flow and the voltage profile on a low voltage 
distribution network and design controllers for optimizing consumption according to 
variable energy production, such a thermal model of a household is necessary.  

Such a model was developed for a former office building transformed into a 
test facility, called FlexHouse, from SYSLAB platform at DTU Elektro RISØ campus. 
The mathematical modelling and parameter identification was the results of 
extensive work presented in [Bacher2010] and [Thavlov2008] and was implemented 
in Matlab and PowerFactory for the work presented in this thesis in Chapters 3 and 
4. 
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2.3.3. Problem statement 
 
FlexHouse is a former office building transformed into a test facility for 

testing different algorithms that study energy efficient operation, load management, 
and consumption profiles. 

The size of FlexHouse is approximately 125 m2 divided between eight rooms 
and a toilet. The rooms have been numbered 0 to 7. A layout can be seen in figure 
2.42.  

 
Fig. 2.42. The schema of studied building 

 
Room 1 to 7 have been arranged as small offices, each with a desk, office 

chair and a computer. The main room, room 0, has been furnished with tables and 
chairs to accommodate meetings. The southern wall in the main room is dominated 
by large window facade. Electrical space heaters are mounted in rooms 1 to 7, 
whereas rooms 0 and 7 have two heaters each. 

The temperature dynamics of a given space can be modelled using a 
resistance-capacitance (RC) circuit analogy, and formulated as a linear state space 
model.  

 
2.3.4. FlexHouse thermal model 
 
The FlexHouse model approximates the interior of the building to be one 

room with a uniform inside temperature. The state variable is the inside 
temperature (Ti), the input is the power to the heaters (PH) and the disturbances 
are the solar irradiance (G) and the ambient temperature (Ta). A schematic of the 
FlexHouse model is represented in Fig. 2.43a and the RC-diagram of a linear model 
is represented in Fig. 2.43b. 
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Fig. 2.43. Equivalent electric circuit model 

 
The simplified thermal mass 1 state-space model, the M1 model, is 

represented by the following differential equation: 
 

௜ܥ
݀ ௜ܶ

ݐ݀
ൌ

1
ܴ௜௔

ሺ ௔ܶ െ ௜ܶሻ ൅ ܩ௪ܣ ൅ P௛ (2.49) 

 
where  
Ci - is the heat capacity of the house. This includes the indoor air and the 

interior objects  
Ria - is the thermal resistance from the indoor to the ambient environment  
Aw - is the effective window area of the house with heating influence. For the 

model, only 50% of the windows on the southern side are considered to play a role 
in the thermal dynamics of the house interior  

 
For testing algorithms that deal with non-perfect models of the system a 

three state-space model was used for the building’s thermal dynamics; this three 
states-model is presented in the work of Bacher and Tavlov (Bacher, 2010) as well 
as the parameters identification presented in Table 2.7 for both M1and M3. 

This extended three states model, the M3 model, is represented by the 
following equations, representing the equivalent RC electric circuit represented in 
Figure 2.44: 
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ۖۖ
۔

ۖۖ
௜ܥۓ
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݀ ௛ܶ
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ܴ௜௛

ሺ ௜ܶ െ ௛ܶሻ ൅ ௛ܲ

  (2.50) 

 
Where the state space variables are 
Ti – inside temperature 
Tm – a second inside temperature which defines a internal medium 
Th – temperature in the electrical heaters 
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Fig. 2.44. Extended three states thermal model. 
 

Table 2.7. Extended three states thermal model parameters 
Parameter Ci Cm Ch Ria Rim Rih Aw 

Units kWh/°C kWh/°C kWh/°C °C/kW °C/kW °C/kW m2 
M1 3.42   4.87   5.53 
M3 2.66 3.08 0.00384 4.82 3.45 33.3 5.53 

 
For the three influence factors on the model: ambient temperature, solar 

irradiance, and heaters output power, step input simulations are conducted and 
results are presented in figure 2.45.  
 

 
(a) Ambient temperature influence 

 

 
(b) Solar irradiance influence 
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(c) Heaters output power influence 

 
Fig. 2.45. Step response of the FlexHouse Matlab model. 

 
The three factors that influence the inside temperature represented as step 

changing input signals in figure 2.45 are:  
a) The ambient temperature 
The step is considered one degree change in the ambient temperature which 

acts on heating the house walls and windows, and in 70 hours the system reaches a 
steady state temperature, equal to the ambient  

b) The solar irradiance 
The step considered for the solar irradiance is 100 W/m2 change, having in 

mind that at the studied location the maximum amount of radiation is around 1100 
W/m2. It is seen from figure 2.45 that this change in solar irradiance gives an 
increase of 2.8 degrees Celsius inside the FlexHouse. This radiation acts in two 
ways: 1) heats the exterior walls of the house and more important, having a larger 
effect, 2) through the glass windows it heats the interior walls and furniture. This 
second effect is modelled in equation 2.49 with parameter Aw. 

c) The heaters output power 
The Flexhouse is equipped with 10 heaters, each considered to have 1kW of 

output power and the same effect on the interior temperature. In the real life the 
situation is slightly different, the heaters have from 0.8 to 1.4 kW output power, 
and by using a one room model of the house, additional errors appear, as discussed 
in Chapter 4, during experimental results. 

For now, it can be seen that one heater increases the temperature with 
about 5 degrees Celsius the inside temperature, having the largest influence 
between the three factors. 

The heaters output power is, in the same time, the only controlled input to 
the model, the ambient temperature and solar irradiance being the disturbances 
that the controller has to consider in order to maintain the inside temperature in 
comfort operation limits. 

 

2.4. Conclusions  
The first part of this chapter presented the development of mathematical 

models for specific photovoltaic panels installed at SYSLAB facility and their 
implementation in specialized software for later investigated microgrid simulation 
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study cases. Two types of models were implemented: the one diode equivalent 
circuit and a power model, which were than validated through comparison with real 
measurements during experiments. 

Using the one diode equivalent circuit of the studied PV panels, the static 
characteristics under standard temperature conditions (STC) present the same 
evolution of the electrical performance, temperature dependence, and irradiance 
dependence as presented in the technical data sheet of the panels. From the 
comparison between the model’s outputs and the measured values on the PV panels 
during one day operation it is concluded that this one diode model is achieving good 
results; as stated in the literature, the single diode model is sufficient for studies of 
power system simulations, the use of other extended models, like the two diodes 
model, is adding little value with large computation cost. 

The simulations and comparisons presented in this chapter conclude that for 
simulating the PV output power, the power model is very accurate. This model can 
be used if the manufacturer provides the necessary coefficients describing the 
linearized dependences between the current and the voltage on one hand and the 
weather conditions of solar irradiance, outside temperature, and wind speed on the 
other hand. This model also has the major advantage of being extremely easy to 
implement on any software since it consists only in simple arithmetic operations.  

The weather correction module proposed and developed in this chapter was 
needed to estimate the weather conditions on the PV panels surface (PV solar 
irradiance, PV temperature) based on the weather data collected from the local 
weather station: horizontal solar irradiance, outside ambient temperature, and 
horizontal wind speed. The data from the local weather station were measured on a 
horizontal plane and at a height of 12 meters.  

As the facility had many PV panels mounted at different locations, different 
tilt angles and orientations, and no measurement devices installed on their surface, 
the proposed correction module was very efficient in estimating the necessary 
weather data. 

Both solar irradiance on the PV surface and the PV cells temperature 
influence the PV panels’ current and voltage and hence the output power. 

The correction module emphasizes the effect of the PV tilt angle and 
orientation on the dc current and voltage. It also highlights the less obvious effect of 
solar irradiance and wind speed on the PV temperature, which is influencing the dc 
voltage: the solar irradiance increases the panels’ temperature meanwhile the wind 
speed has a cooling effect. In places where the wind speed average is below 2 m/s 
its effect on the cells temperature is neglected; however, in places like Denmark, 
where strong winds are present, the wind’s cooling effect has to be accounted. 

The introduction of the correction module increases the number of variables 
needed to run the simulations as the module uses the calendar number of the 
current day, the latitude and longitude of the PV’s geographic location, and the local 
time for calculating the angle difference that the sun makes with the horizontal 
plane where the solar irradiance is measured and the PV panel’s surface orientation.  

The correction module is a software solution of estimating the weather 
conditions on different PV panels when only one measurement device exists.  

The hardware solution is to connect a solar irradiance and temperature 
sensor on PV panels having the same orientation as the studied panels; these 
panels can be the PV strings used to produce energy or just PV cells having the 
same orientation conditions as the installed PVs. 

The second part of the chapter presents the development of a mathematical 
model for a vanadium redox battery based on experimental measurements. 
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This type of battery represents a new technology that has not yet reached 

the mature state but has some important characteristics that makes it a good 
candidate for operating as an energy storage device on the grid to regulate the 
energy flow. 

The major advantages are  
- the operating temperature, between 10 and 40 degrees Celsius – 

that is easy maintained and has no dangerous potential  
- deep cycle life of over 5000 – that makes it a robust and reliable 

energy storage device 
- the modularity of the design: 

o to increase the power one can add extra cells and  
o to increase the energy capacity one adds a larger electrolyte 

tank 
- one can fully charge the battery by simply changing the electrolyte 

in the battery’s tanks with a charged electrolyte, similar to a clinical blood 
transfusion 

The major shortcoming of this battery is the low specific energy, of just 10-
20 Wh/kg, which makes the battery extremely large for usage. The modelled 
battery had 1300 litters of electrolyte and a usable capacity of 180 kWh. 

By developing graphical user interface applications, the two developed 
models can be tested and validated through comparisons with measured data 
considering specific operation scenarios. 

The two implemented thermal models for the building will be used in power 
flow simulations and experiments and in designing and validating different control 
algorithms presented in future chapters. 
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3. Voltage Control 
 
The energy produced by various power plants is transported over great 

distances at high voltages through transition power lines to the point of 
consumption like settlements or a light to medium industry consumers. Here the 
bulk power is transferred to distribution substations which by using transformers 
lower the voltage to values of 400 V line to line. A typical distribution grid will serve 
one to as many of ten feeder circuits [Grigsby2007]. 

As part of the power system, the low voltage distribution grid has the 
objective to provide energy to the end consumer. 

The loading over the distribution feeder is unbalanced due to large number 
of different and unequal single-phase loads that must be served. 

The connecting points of the components will be referred to as nodes. 
A properly designed and operated power system should meet the following 

fundamental requirements [Kundur94]: 
- The system should be able to meet the continually changing load 

demand for active and reactive power 
- The system should supply energy at minimum cost and with minimum 

ecological impact 
- The ‘quality’ of power supply must meet certain minimum standards 

with regard to the following factors: 
o Constancy of frequency 
o Constancy of voltage and 
o Level of reliability 

The power system is a highly nonlinear system as it consists of many 
components both on the production part and the consumption which operate in 
different regimes and have different response characteristics. 

An important characteristic of the power system is the line impedance. At 
distribution level this can be estimated by using different techniques which take into 
account the grid configuration and cables properties, along side other assumptions. 
Depending on the accuracy required, one can use simpler models which call for a 
wide variety of assumptions or the Carson equations for a more reliable result 
[Kundur94]. 

This impedance also is responsible for the grid ‘stiffness’, as the power flow 
affects the voltage profile. 

Another important aspect of designing the distribution grid are the cable 
used for the grid deployment: overhead or underground they have to be properly 
prepared and coated in order to cope with the necessary power flow and also with 
the natural environment, that is humidity, temperature, magnetic fields 
interference, and others. 

The flows of active and reactive power in a transmission network are fairly 
independent of each other. Active power control is closely related to frequency 
control, and reactive power control is related to voltage control. As constancy of 
frequency and voltage are fundamental requirements for power system 
performance. 

The frequency should be kept nearly constant during grid operation. The 
constancy of frequency ensures constant speed of the synchronous motors used 
both in industry and in household appliances. Also the transformers were designed 
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for a nominal frequency and a change of it could mean high magnetization currents. 
In some applications the frequency is used for timing purposes as electric clocks are 
used. As a consequence, it is necessary to regulate not only the frequency itself, but 
also its integral [Kundur94]. 

The frequency is affected by the overall active power production-
consumption balance at the grid level; it has the same value over the entire grid, 
which is limited by transformers representing large geographical areas, and its 
change in value manifests instantaneous. 

By comparison the voltage profile is highly flexible as voltage drops occur on 
every feeder and consumer. Along the power system substations have to be used to 
control the voltage profile in order to respect the quality requirements and voltage 
limit constraints [Koch2011].  

The problem of maintaining voltages within the required limits is 
complicated by the fact that the power system supplies power to a vast number of 
loads and is supplied from many generation units. As loads vary, the reactive power 
requirements of the transmission system vary. Since reactive power cannot be 
transmitted over long distances, voltage control has to be assured by using special 
devices dispersed throughout the system [Kundur94]. 

In the distribution grids the R/X ratio of the feeder is high compared to the 
one in the transmission lines. This implies that in distribution grids the active power 
affects the voltage more that the reactive power, as typical for the transmissions 
line. 

This is the case of the facility that was the subject of this study, presented 
briefly in Appendix A. In this case, the R/X ratio is around 2. 

Figure 3.1 presents the consumer’s configuration along a feeder in a low 
voltage distribution grid. A transformer is used to connect the high voltage grid to 
the consumers via a feeder. The consumers are connected to this feeder at certain 
distance between one another as the feeder can reach several hundred meters in 
length. The configuration and connection points can be seen in fig. 3.1a). As the 
power is consumed by the users, the voltage drops from the first user, the closest to 
the transformer, to the last one. The distribution grid is designed that all the 
consumers to have the voltage at the connection point between acceptable limits 
(plotted in fig. 3.1b). 

Because all the connection points have to have the voltage between the 
desired values at all times, tap changers are used in the transformer substation to 
change the voltage at the transformer output [Jiavi2008]. These changes in the high 
voltage end of the feeder are made because in different moments of the day, the 
voltage profile drops with different slopes along the feeder: in the morning and 
afternoon when the consumption is at its peak for all the houses the slope is more 
abrupt and the initial voltage has to be larger in order that the last consumer to 
remain in desired voltage limits.  

However, this distribution grid configuration was design for the users to 
consume energy; nowadays more and more consumers are installing renewable 
energy sources and the voltage profile is changing from a down slope to any 
possible form. As the energy is produced at a household level, the power is injected 
into the grid by raising the voltage at the coupling point. If many neighbour 
households are equipped with renewable power generation units, the voltage profile 
can became a raising slope and the voltage upper limit can be breached, especially 
at the end of the feeder, for the last consumers. For the consumer, this over voltage 
translates in the fact that the inverters and appliances equipped with safety modules  
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Fig. 3.1. Voltage profile in a low voltage distribution grid. 

 
will disconnect and others they will just break down or burn their circuitry 
[IEA2009]. 

The main issue, as stated in [Vandoorn2011] and [Prodanovic2006] is that 
the electrical distribution grid was not designed with bi-directional power flow in 
mind, i.e. that not only would power flow to the lower voltage levels where most 
consumer are connected, but that it could also flow “up” to the higher voltage levels 
away from the consumers.  

The increased amount of PV plants in the distribution grid introduces some 
complications, such as the fluctuating nature of PV production which has limited 
predictability. There are fast fluctuations, due to cloud transients, which cause 
problems with voltage regulation. There are also slower fluctuations due to the 
movement of the sun and changes in cloud cover, so if the PV plant generation is 
not coordinated with the local consumption it might be necessary to invest in more 
grid capacity as presented in [Ueda2007]. 

The distribution grid does not only see an increase in renewable energy 
production, there is also a foreseeable increase in new types of loads, such as heat 
pumps and electric vehicles, both loads that can to some degree act as flexible loads 
as shown in [Madureira2009] [Koch2011]. 

If loads that are flexible can be intelligently managed, it could be possible to 
help the distribution grids to cope with both increased renewable production and 
increased loads. Furthermore, this intelligent control could also reduce the need for 
expensive grid extensions if loads and production are coordinated locally. 
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The setup consists on three buses connected through two long feeders. At 

one bus the local grid is connected to the distribution grid. In the second bus, in the 
middle, a storage device is simulated. The storage device is the vanadium redox 
battery (VRB) described in chapter 2, section 2.2. At the last bus both a load and 
the PV plant modelled in section 2.1 are placed. 
 

 
Fig. 3.3. Low voltage grid configuration. 

 
This study reproduces an experiment where the VRB controller is set to 

maintain a constant output power from the local system to the grid during 
operation.  

The grid is assumed to be stiff and without variations, so the voltage at 
bus1, the connection point between the local grid and the distribution grid is 
constant. 

Further, two cases are considered for busbar 3: 
a) a constant load of 1kW and a PV modelled as in section 2.1 
b) a PV installation modelled as described in section 2.1 and a variable load that is 
used to maintain constant voltage at bus3. 

For the two cases, the voltage profiles of the three busses of the local 
system are shown in figure 3.4. 

At the first bus bar (BB1), the voltage will measure the voltage of the grid; 
in this case, as the grid is considered stiff, the voltage will remain constant.  

At the second bus bar (BB2), where the VRB is connected, the injected 
power to the grid will remain at a constant value, as the VRB controller is set to do, 
and consequently, the voltage difference between BB1 and BB2 will be kept 
constant, and so, the voltage will remain constant at BB2. 

This is valid for both cases, as the battery is used to absorb any excess 
power from the local grid and inject a constant power to the distribution grid. The 
difference between the two cases comes from the voltage evolution of the third bus 
bar (BB3): in the first case the voltage fluctuates according to the PV output power 
variation as it rises with the increase of PV production.  

In the second case, the produced PV power is locally consumed by a 
shiftable load. The load is equipped with a PI controller that regulates the power 
consumption in order to achieve the desired voltage at the busbar. This load is a 
unspecified type of loads as, at this moment, the purpose of the simulation is to see  
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Fig. 3.5. Electric measurement during VRB voltage control operation  

 
Figure 3.6 graphically represents the second case when a load control is 

implemented in order to consume the produced power in order to maintain the bus 
voltage at a certain prescribed value. The load control is implemented as a PI 
controller that reduces the difference between the reference and the measured 
voltage. 

As in the first case, the plots are representing the powers, the state of 
charge of the vanadium redox battery and the voltages at the three busbars.  

One can see that the voltage profile is rather constant during operation, as 
in figure 3.4.b. Also little energy is transported from bus3 to bus 2 as one can see 
from the small variation in the VRB’s state of charge. This, almost residual, power 
from the bus3 is due to the fact that weather measurements that affect the PV 
output power are taken at a one second interval and they can present large 
differences from one reading to the next as shadows are cast on the PV panels 
which affect the controller’s efficiency. In this case the measurements are slower 
that the process changes and the controller is unable to react with better 
performance, that is to follow the quick variations of the PV output. 

As power flows from high voltage to low voltage, by imposing the voltage 
profile from figure 3.4.b on the system, the load controller will also produce power 
in intervals that the PV installation is not injecting enough power. This load can be 
considered, in this case, as being a mixture of loads and power generators, as diesel 
generators, in order to achieve an energy independence of the local grid as well as 
having the possibility to sell the surplus energy to the distribution grid. 
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Fig. 3.6. Electric measurement during VRB voltage control and load control operation 

  

3.3. Voltage control by load shifting 
 
As seen from the study in the last section, an efficient way of controlling the 

voltage is to control the power consumption at the current bus. 
In this section simulations are presented that consider the model of the 

SYSLAB microgrid, presented in Appendix A. From the SYSLAB infrastructure, 
accurately modelled as a PowerFactory line diagram as shown in figure 3.7, a 
microgrid is formed with two buses and feeder. At one bus, the distribution grid is 
connected and at the other bus both a PV system, as described in section 2.1, and a 
house model as presented in section 2.3. For representing the house as a grid 
consumer the thermal model is used and the loads are represented by the ten 1kW 
electric heaters.  

The feeder is considered as having 1.4 km, as it runs through all the feeders 
and the buses of the modelled facility. This distance over the resistive feeder allows 
the voltage at the second bus to fluctuate and both the effect of power injection 
disturbance and the voltage controller response are easier to be seen. At the grid 
bus, the voltage is kept by the grid and a shorter feeder to bus2 would mean that 
the influence of the grid would be greater at the second bus. 
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Fig. 3.7. One line diagram of the studied microgrid based on SYSLAB infrastructure 
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The PV plant at the bus bar BB2, that is named PV_load in the system 

diagram presented in figure 3.7, is the same as discussed in chapter 2. It produces 
output power according to the weather conditions. In the simulations the weather 
measurements were taken from the local station, having a one second 
measurement interval. 

The house is represented in Figure 3.7 as FH_load. The house represents the 
load of the microgrid and it consists in the heating system loads, the electric 
heaters. For the house was used the model described in section 2.3, which is a 
thermal model of FlexHouse, the testing building from the SYSLAB facility. 

The overall Flexhouse controller is presented in the block diagram from 
figure 3.8; these blocs represent: 
- FH_ThermalSlot – contains the mathematical equations of the thermal model of 
FlexHouse; the inside temperature in the building is influenced by the solar 
irradiance and outside ambient temperature as well as by the electric heaters 
- FH_InputMeasurementsSlot – reads the weather conditions, the solar irradiance 
and ambient temperature, stored by the local weather station 
- FH_MeasSlot – is a voltage probe that measures the voltage at the bus bar where 
the house and PV are connected 
- FH_load – is the controlled load seen in the one line diagram which represents the 
power consumption of the electric heaters inside the FlexHouse 
- FH_Controller – is the developed controller slot; the controller’s diagram is 
presented in figure 3.9.  

 

 
Fig. 3.8. Controlled load circuit diagram 
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The diagram presented in figure 3.8 represents the frame needed in 

PowerFactory in order to define a ‘composite’ model and connect all the 
components. The composite model will contain a table of cross reference between 
the slots defined in the frame and the ‘common models’. 

The common models are objects of a certain defined type which have the 
inputs and outputs used in the frame’s definition. These common models will have 
numerically defined parameters for the specific simulation. 

The only slot that is visible in the simulation, and is connected in the one 
line diagram is the FH_Load which represent the electrical heaters. 

Two simulation scenarios were studied: 
- a temperature control that maintains the inside temperature at a certain reference 
(Tmp_ref)) 
- a thermostatic control that maintains the inside temperature inside a given range 
with regard to the bus voltage. 

Both cases are intended to study and develop local voltage control 
techniques at the consumer level. 

The FlexHouse controller used in these simulations are presented in figure 
3.9. It was develop to include both types of controllers and the possibility to switch 
between then.  

For the first study case a PI controller was used to maintain the temperature 
at a constant value, as presented in the graphical representation of the simulation 
results from figure 3.10. 

 
 

 
Fig. 3.9. FlexHouse heaters controller diagram 

 
A round function is used to transform the controller’s command to the 

heaters into integer numbers, for operating the ten 1kW electric heaters. Further 
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on, the command is limited to the available output power between 0 and 10kW. A 
coefficient is used to scale the command to the load’s active power set in the one 
line diagram. 

The second controller is a modified thermostatic controller whose operation 
is overwritten when an over voltage is measured at the bus bar, by connecting 
additional loads (heaters) to the local grid. 

The controller sequence is written in DSL (DigSILENT Simulation Language) 
using some specific functions: 

 

,݈݋݋ሺܾݐ݈ܿ݁݁ݏ ܺ, ܻሻ ൌ ൜ ܺ, ݈݋݋ܾ ൌ ݁ݑݎݐ
ܻ, ݈݋݋ܾ ൌ  ݁ݏ݈݂ܽ

 

limሺܺ, ݉݅݊, maxሻ ൌ ൝
݉݅݊, ܺ ൏ ݉݅݊

, ݔܽ݉ ܺ ൐ ݔܽ݉
      ܺ, ݉݅݊ ൑ ܺ ൑ ݔܽ݉

 

 

,ݐ݁ݏ݈݋݋ሺܾ݌݋݈݂݌݈݂݅ ሻݐ݁ݏ݁ݎ݈݋݋ܾ ൌ ൜ 0 ՜ ݐ݁ݏ݈݋݋ܾ      ,1 ൌ ݐ݁ݏ݁ݎ݈݋݋ܾ ݀݊ܽ 1 ൌ 0
  1 ՜ ݐ݁ݏ݈݋݋ܾ       ,0 ൌ ݐ݁ݏ݁ݎ݈݋݋ܾ ݀݊ܽ 0 ൌ 1  

 
The controller code is presented in the following: 
 
Tmax=21 
Tmin=19 
X=flipflop(Tinside<Tmin,Tinside>Tmax) 
Hout=select(X=1, yi2+0.01, yi2-0.01) 
Yo=select(yi1>limi, yi2+0.01, select(yi1<limi-0.004.and.upi=1, yi2-0.001, 

Hout)) 
Upo = select(yi1>limi, 1, select(yi1<limi-0.004.and.upi=1, 0, upi)) 
 
This controller was also implemented in Matlab and a state flow diagram is 

presented in figure 3.12.  
Basically, what the controller does is to maintain the output power of the 

heaters until a temperature limit is reached. If the upper limit is reached, the 
controller disconnects one heater and waits for the effect; the algorithm is repeated 
until the inside temperature remains under the upper limit, in the comfort zone, or 
all the heaters are turned off. 

The same algorithm is used in the case that the lower temperature limit is 
reached: the heaters are turned on one at a time until the temperature remains 
inside the comfort zone or all the heaters are turned on. 

If an over voltage is measured at the bus, the controller overwrites the 
above described states and increments the output power in 1kW steps until the 
voltage is at a convenient value or all the heaters are turned on. 

The simulation results for using the two controllers are shown in figures 3.9 
and 3.9. The plots have the following signification: 
- the first plot presents the solar irradiance values (in kW/m2) for a simulation time 
interval of six days  
- the second plot presents the outside ambient temperature for the considered days 
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Fig. 3.10. Simulation results when using a constant temperature controller 

 
- the third plot represents the electric heaters output power as they are commanded 
by the controller  
- the fourth plot presents the inside temperature in the FlexHouse 
- the fifth on shows the voltage at the consumers bus, in per unit values  

 
Figure 3.10 shows the results from the first simulation, which maintains a 

constant temperature inside the FlexHouse for the entire simulation interval, as 
seen in the fourth plot.  

The electric heaters’ power consumption is seen in the third plot. One can 
see that during mid day, when the solar irradiance is heating the house walls and 
windows and implicitly the inside of the house, the heaters’ consumption diminishes. 
Also during this moment of day the PV panels are injecting power into the local grid 
at the point of common coupling. The injection of power form one hand and the 
decrease in consumption on another hand has the effect of raising the voltage at the 
connection point, as illustrated in the fifth plot. 

This increase in voltage over an admissible value will generate the 
protection mechanisms to trigger and to disconnect different electric equipment 
from the bus bar. 
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Fig. 3.11. Simulation results when using a modified thermostatic controller with over voltage 

protection 
 
Figure 3.11 presents the simulation results when using a modified 

thermostatic controller with overwrite for voltage protection. In this case one can 
see that the inside temperature, fourth plot, is maintained at the preset 
temperature [19…21] during most of the time interval. However, when the injected 
power from the PV installation increases at mid day, the heaters are turned and 
maintained on, despite the fact that, as highlighted in the first case, at this moment 
the sun also has a heating effect on the house and the consumption would normally 
be lower.  

The fifth plot shows that the voltage is kept below 103% of the nominal 
voltage also during PV production, keeping the heaters on but increasing the inside 
temperature high above the thermal comfort zone. 

In the next chapter this problem will be again tackled and an advanced 
control algorithm will be implemented and used to shift the load, the electric heater 
consumption, to intervals with PV production also keeping the inside temperature 
between comfort limits. 

 

3.4. Voltage control by using a finite states machine 
 
The thermostatic controller presented in the last section was further 

developed in Matlab/Simulink by using the StateFlow toolbox. The controller was 
designed as a finite state machine having the schematic presented in figure 3.12.  

The control algorithm consists in three main states: 
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- Tcontrol – the thermostatic control state; it is responsible for maintaining the 
inside temperature between certain comfort limits. This state contains three 
substates: 
 - same state – in this state the current output of the controller (PH) is equal 
to the last output (Pi); in other words, the controller’s output remains the same as 
before 
 - on state – this state is responsible for turning on an additional electric 
heater at each state entry; the state is activated by two transitions: firstly, when 
the inside temperature is below the comfort lower limit (Tmin) and the second one 
is basically a loop that is made each 100 time-samples; if after this 100 time 
samples interval the transition condition from state ‘on’ to state ‘same’ is not 
validated, the ‘on’ state is re-entered and an additional heater is connected. The 
condition that the inside temperature is higher than the minimum temperature 
implies that the heaters output power should be kept constant as the system 
operation translates to state ‘same’ 
 - off state – is the state responsible for turning off one electric heater at a 
time. The operation and transition at the ‘same’ state is identical to the one 
presented for the ‘on’ state with the sole difference that this state refers to the 
upper comfort limit and so, the referred limits are Tmax 
- VOver_control – is the state activated when the measured voltage at the bus is 
over the maximum set voltage. The objective of this state is to decrease the voltage 
by increasing the consumed power – for this case, this translates by connecting 
additional heaters. At each state entry, an additional heater is turned on. The state 
is entered when the voltage is higher that the maximum bus voltage and repeatedly 
entered after 35 time samples, due to the loop, until the voltage is lowered below 
VmaxLow, which is defined below, and a state transition occur to the ‘Tcontrol’ 
state.  
- VUnder_control – is the state activated when the measured bus voltage is bellow 
the minimum set voltage. It operates similar to the state ‘VOver_control’ with the 
difference the transitions are related to the minimum voltage value and the heaters 
are turned off at the entry in this state in order to reduce the consumption and 
increase the voltage.  

The state machine has internal parameters as the prescribed limits of the 
temperature and voltage: 
- Tmax – the maximum limit of the thermal comfort interval 
- Tmin - the minimum limit of the thermal comfort interval 
Intended to eliminate the oscillations in the control process of the electric switches, 
deadband intervals were defined as below and a graphical representation is shown 
in figure 3.14 representing the conducted experiment’s results:  
- VmaxHigh – is the upper limit of the bus voltage at which the controller is 
designed to increase the power consumption that is to connect more heaters 
- VmaxLow – a dead band is define as the voltage level at which the controller 
switches from the over-voltage control state to the thermal control state 
- VminHigh - a dead band is define as the voltage level at which the controller 
switches from the underr-voltage control state to the thermal control state 
- VminLow - is the lower limit of the bus voltage at which the controller is designed 
to reduce the power consumption; that is to disconnect more heaters 
 as well as input measurement signals: 
- Tinside – the measured inside temperature of the FlexHouse 
- Vbus – the measured voltage at the FlexHouse’s bus bar 
- Pi – the output power of the electric heaters at the last sample time 
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Fig. 3.12. Finite states machine diagram 

 
 and an output signal 
- PH – represents the electric heaters output power commanded by the controller 

For the controller, the time sample (Ts) is considered to be 1 second. 
Due to large time constants of the thermal process the electrical heaters’ 

effect on the inside temperature can be measured, with the available devices, after 
a few seconds. 

Figure 3.13 shows the Matlab/Simulink line diagram of the finite state 
machine used with the thermal model of the FlexHouse presented previously in 
section 2.3. Here one can see the inputs and outputs of the overall system. This 
configuration was used both for simulation and for experiments. 

 

 
Fig. 3.13. FlexHouse state machine control diagram 
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An experiment was conducted to test the algorithm at the SYSLAB facility. 

The SYSLAB configuration used in the experiment is accurately represented in the 
one line diagram of figure 3.6, and presented for the simulation study described in 
section 3.3. 

For altering the voltage at the FlexHouse bus bar in the experiment the 
vanadium battery was connected at bus bar BC2, as seen in the facility’s diagram, 
figure 3.7. The VRB was used both to inject power into the grid along the feeder and 
thus raise the voltage, and also to consume power; thus disturbing the voltage 
profile along the feeder, the control algorithm was tested for both over and under 
voltage conditions. 

Figure 3.14 represents the experimental results. The first plot shows the 
electric heater’s consumed power, the second plot represents the inside 
temperature and the third one, the voltage at the FlexHouse bus bar. 

One can see in the third plot all four voltage limits: the maximum and 
minimum set voltage for the current bus bar as well as the two limits defining the 
dead band responsible for stabilizing the system and avoiding oscillations as defined 
above. 

The events that trigger state transitions in the plots are marked with 
coloured circles. The marks in the first plot correspond to the controller’s reactions 
and are the effect of the voltage limit intersection with the voltage at the house’s 
bus bar, seen in the third plot: 
- red circles represent events when the bus bar voltage is reaching the upper limit; 
as a consequence, the controller connects electrical heaters until the voltage 
reaches a safe limit, VmaxLow 
- blue circles represent events when safe voltage limits are reached and the 
controller turns back to the ‘Tcontrol’ state; these events correspond with the 
voltage exceeding the dead band imposed in order to prevent oscillations at the 
limits; 
- green circles represent events when the lower voltage boundary is reached; in this 
case the controller turns off heaters to lower the power consumption; when enough 
heaters were turned on and the voltage is in safety limits, the controller changes the 
state to ‘Tcontrol’ 

The results prove the concept of controlling the voltage profile by using the 
heating system as using the electric heaters’ power consumption when the voltage 
at the bus bar is due to power injection from other sources. 

One shortfall of this method is the fact that the inside temperature can 
exceed the comfort limit and could not be used any more; other types of loads can 
be used or in the case that the injected power along the feeder, that produces the 
increase in voltage, comes from a local installed renewable energy source as PV or 
wind turbine, the inverter that connects the RES to the grid can be set to inject 
reactive power into the low voltage grid instead of active power. In low voltage 
grids, where the R/X ration is higher than one, this will lead to smaller increases in 
the local voltage. 
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Fig. 3.14. Experimental results of using load shifting for voltage control 

 
 

3.5. Voltage control methods applicable in low voltage 
grids 

 
This section presents an overview on three proposed control algorithms for 

controlling the bus bar voltage at the connecting point of a household at the local 
low voltage grid. 

The simulations consider the following assumptions: 
- The system configuration is depicted in figure 3.2: the consumer is 

connected to the grid along a feeder; at the consumer level there are 
renewable energy sources, in the form of PV system, loads, represented 
by the electric heaters, and an energy storage device, represented by 
the modelled VRB. 

- The loads at the consumer level are represented only by the 1kW output 
power electric heaters 

- 1kW modifies the voltage with +/- 0.5% 
- The voltage is in per unit (p.u.) 
- For all the simulations, a thermostatic control like the one from figure 

3.15 is used the control the inside temperature of the FlexHouse; this 
controller runs independently of the PV or VRB 

- The simulation time step is one second equal to the time sample of the 
weather measurements; for the controller, Ts is chosen to be equal to 
10 simulation steps – this can be changed, and should be enlarged 
during an experiment  
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- The VRB is discharging during the night 
- For the VRB capacity, instead of 190kWh which was the real battery 

subject to modelling in section 2.2, this section considers a 20 and 10 
kWh capacity battery that would be used for an individual consumer. 

The proposed thermostatic controller was developed by using a finite state 
space machine as shown in figure 3.15. Unlike the classical thermostatic controller 
that has two states: all heaters on – when the lower temperature limit is reached 
and all heaters off – when the upper limit is reached, the proposed controller has 
three states, as explained in section 3.4. 

By including an additional ‘same’ state, the controller is able to achieve a 
more constant consumption over time, without having the large variations between 
zero and full power as in the case of a classical thermostatic control, as it is seen in 
the simulations presented in the following. 

 

 
Fig. 3.15. Thermostatic control. 

 
The circuit diagram used in simulations is presented in figure 3.16. It uses 

the models developed for the PV plant, FlexHouse and vanadium redox battery that 
were presented in Chapter 2. 

The output powers were connected to the same bus with an additional 
disturbance on the grid voltage and considering the above mentioned assumptions. 

 
Four simulation cases were investigated: 

1. Normal operation 
- Due to the PV output, the voltage increases over the limit and the PV inverter 
shuts down. 

2. Voltage control by load shifting 
- the thermostatic control from figure 3.15 is overwritten by states that maintain the 
voltage between limits as a priority, disregarding the inside temperature 
- when the voltage is reduced, the thermal controller is again activated. 

3. VRB control: voltage control mode 
- will charge the battery only when the PCS’s output terminal voltage exceeds the 
set point. If the voltage is always lower than the set point, the battery will never be 
charged. 
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Fig. 3.16. Low voltage grid simulation diagram 
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4. VRB control: schedule mode 

- will charge the battery based on the schedule. For example, battery will be 
charged from 10:00 to 18:00 everyday regardless the voltage. Since most of the 
over voltage occurred in between 10:00 to 18:00, this mode can avoid most of the 
output energy loss. The charge sequence is [-1 -4 -4 -1] kW, changed at two hours 
time interval. 

3.5.1. Normal operation 
 
In figure 3.17 the simulation results are shown of a six day period interval 

when only the thermostatic control is used and no voltage control is implemented. 
In the first plot are displayed the measured bus voltage at the coupling 

point, in the blue line, and the maximum voltage limit with a green line. The voltage 
at the coupling point is influenced by the power consumption, which lowers it, and 
the power injection due to the PV system production. 

 
Fig. 3.17. Normal operation scenario 

 
The second plot represents powers:  
- The available PV power – the power that the PV installation is able to 

produce given the current weather conditions 
- The PV output power – the actual power produced by the PV system; 

when the bus voltage reaches the maximum value, the PV inverters 
disconnect and thus the PV system stops producing power 

- Heaters power – the power consumed by the heaters using the 
thermostatic controller 

- Total power – is the power that is moved at the coupling point between 
the grid and the local consumer; if this power is positive on the graphic, 
the power is injected in the grid, due to PV production, and if the power 
is negative, the power is consumed 
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The third plot presents the inside temperature evolution during the 

simulation interval while is kept inside the comfort zone of 19-21 degrees Celsius. 
One can see the controller’s actions of smoothing the power consumption of 

the heaters in the second plot which has the effect of a ‘loose’ inside temperature 
evolution inside the preset boundaries: for example, in the interval starting from the 
80th our to the 110th, the heaters’ consumption is constant and the inside 
temperature changes inside the limits as a result of weather conditions as the solar 
irradiance and outside air temperature. 

The most important effect seen in this figure is the bus over voltage due to 
the PV power injection. As the injected power from the PV increases due to the solar 
irradiance during mid day, the voltage increases as well; when the maximum 
voltage is reached, the inverters are disconnecting the PV and the PV power 
production is stopped exactly when, otherwise, the largest amount of green power is 
available. 

3.5.2. Voltage control by load shifting 
 
Figure 3.18 presents the case discussed before in section 3.4 of using the 

electric heaters in order to increase consumption during high PV production intervals 
and lower the bus voltage to safe values.  

As the voltage increases over the limit, the controller, presented in figure 
3.12, is switching to the VOver_control state and connects additional heaters as 
seen in the second plot of figure 3.18; the increase in consumption lower the power 
injected into the grid (light blue line) and the voltage is kept under the maximum 
limit. This control, however, increases the inside temperature over the desired limits 
and is not practical.  

In practice this control would not allow the temperature limits to be 
breached and the temperature control to be overwritten by voltage control because 
the thermal comfort is of great importance to the consumer and thus, other types of 
controls have to be developed. 

 

 
Fig. 3.18. Voltage control by load shifting scenario 
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3.5.3. VRB control – Voltage control mode 
 
The problem with the electric energy is that it cannot be stored; it must be 

transformed in another kind of energy, two of which are used in this work: the 
thermal energy stored inside the building’s capacity and chemical energy inside a 
battery, a vanadium battery. 

For this study, the VRB model developed and presented in section 2.2 is 
used. The difference is in the capacity which is considered lower, 20kWh, as this 
case is for a single house usage. 

The VRB’s operation is defined as using the voltage control mode during day 
time, when the PV is able to inject power into the grid, and a constant discharge of 
1kW during the night. 

The voltage control mode is defined as the VRB operation mode when the 
battery is charging only when an overvoltage is detected. 

In figure 3.19 an additional plot is introduced that shows the VRB’s state of 
charge during the simulation interval. 

One can see the same evolution of the heaters’ consumption as in the first 
scenario, as the thermostatic controller is running in parallel with the VRB.  

The difference is introducing the ‘VRB power’, seen in the second plot. The 
VRB is connected when an over voltage occurs and it consumes the excess power 
until the power injected into the grid is not affecting the bus voltage to exceed the 
voltage limit. 

One can see form the state of charge plot that during cloudy days, when the 
PV production is low and no over voltage is manifesting, the VRB is unused. 

 
Fig. 3.19. VRB control – Voltage control mode scenario 

 
If the VRB is not well defined, its capacity being smaller than a full day PV 

energy production, the battery will charge to its limit and fail to provide voltage 
control over the entire time interval.  
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This case is seen in figure 3.20: as the VRB is controlling the voltage by 

charging itself with the extra power from the PVs, it reaches maximum capacity; at 
this moment the over voltage occurs and the PV inverter is disconnecting as seen in 
the fourth plot, the green line representing the PV output power dropping to zero. 

 
Fig. 3.20. VRB control – Voltage control mode with low capacity scenario 

3.5.4. VRB control – Schedule mode  
Another method of controlling the voltage with the help of the storage 

device is to set the VRB to run in schedule mode. Than means the battery is 
scheduled to operate regarding the weather conditions or voltage measurements: at 
predefined moments of the day, between 10:00 and 18:00, the battery is charging 
with a sequence of [-1 -4 -4 -1] kW, changed at two hours time interval and during 
the night it is discharging. 

The simulation results of using a 20kWh VRB in schedule mode can be seen 
in figure 3.21.  

This method is not requiring any voltage measurements on the bus bar; 
however, in order to operate in an efficient way, the VRB has to be appropriately 
scheduled of charging itself with the right amount of energy at mid day. 

One can see that the state of charge has the same profile along for each day 
in the studied interval, as it runs independently on the over voltage manifestation 
on the bus bar. 

Figure 3.22 shows the same schedule mode operation of the VRB in the case 
when the battery capacity is 10kWh, which is smaller than necessary for eliminating 
the over voltage. 

In this case, the battery is charging at the preset intervals, but doe to the 
small capacity it is not able to operate during the entire mid day power production 
of the PV. As the VRB is reaching its full charge mode, the PV power is injected into 
the grid and thus the bus voltage rises over the limit; at this moment the PV 
inverter is disconnecting and no more power is produced. 
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Fig. 3.21. VRB control – Schedule mode scenario. 

 

 
Fig. 3.22. VRB control – Schedule mode with low capacity scenario

3.6. Conclusions: 
 
In the first part of the chapter is presented a study of the voltage profile 

along a feeder in a microgrid in the presence of a PV installation. From this study it 
is concluded that the voltage profile can be controlled by using energy storage 
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devices and shiftable loads that are able to store or consume the power injected by 
the renewable energy resources. 

Further on, the chapter presents the development, implementation, and 
simulations of a proposed thermostatic controller designed as a state machine that 
operates with more constant power consumption that the classic thermostatic 
controller which turns all the heaters on/off at the same time. The proposed 
controller is affecting the voltage in a smaller way due to the ‘smoother’ 
consumption. 

An extension of the state space machine controller with additional under- 
and over- voltage states, tested both in simulations and experimental scenarios, 
proved the possibility of using this type of controller approach in order to shift the 
loads, the electric heaters, to consume the excess energy at time when the bus 
voltage is reaching high values, especially during mid day, when the PVs are 
injecting power.  

This controller has the shortcomings of having two sets of constraints that 
are hard to respect at the same time during the entire operation: the internal 
temperature constraints and the bus voltage limit constraints. The shortcoming 
comes from the fact that while the solar irradiance acts both on heating the inside of 
the house and on the increase of voltage due to the injected PV power, the 
controller uses the heaters to lower the voltage which also increase the inside 
temperature. From this perspective, some observations can be made for future 
development and improvement on the controller: 

- The controller can be designed to use other electric loads that do not 
affect the inside temperature, like different household appliances, to control the bus 
voltage 

- The controller can have states to set the PV’s inverters to operate in 
different regimes: injecting reactive power into the grid instead of active power, 
which in low voltage grids has a smaller influence on the voltage, or to limit the 
amount of harvested PV power by moving the panel’s operating power point away 
from the maximum, to a value that does not exceeds the voltage constraints – 
however, this is achieved with economic losses since the PV is operating far from 
the maximum available sun power; 

Further study cases at the end of the chapter presented additional control 
algorithms when using energy storage devices as batteries. These batteries can be 
set to operate in various modes, as the chapter presents the voltage control mode 
and the schedule mode. One can conclude that the easiest way of storing energy is 
by using batteries and, if they are large enough, they will prevent all over voltages; 
however, this is the most expensive solution and more ‘intelligent’ solutions have to 
be developed in order to control the distribution grid voltage and to support the 
increase of RES penetration. 

Load shifting is the right solution by which the loads are turned on when the 
local RES are producing energy. As a consequence, the consumer becomes more 
independent of the national grid which in return becomes more likely to avoid power 
grid congestions.  

Implementing complex energetic solutions on customer level will enhance 
the power system stability starting from the distribution grid and will boost the 
profitability of the power system both on local and general level. 
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4. Model Predictive Control for an Energy 
Efficient Building 

4.1. Introduction  
 
The MPC algorithm is difficult to be attributed to a single individual since it 

appeared in different forms and contexts; however, among the first implementations 
of MPC in industrial applications was the work of Cutler [Cutler1980] developing the 
so called Dynamic matrix control (DMC) and of Richalet [Richalet1978]. All the 
model predictive control algorithms formulations are based on an explicit model of 
the process. The initial conditions for the MPC used to project the state values over 
the prediction horizon depend on the explicit model used to describe the plant. 
These early MPC formulations used finite-impulse and step-response models in order 
to predict future system states. 

Generalized predictive control introduced by Clarke [Clarke1987] used 
autoregressive models as ARMAX and ARIMAX. In addition to the first generation of 
MPC, this approach allowed to specify the disturbance as a polynomial rather than a 
step change. The autoregressive models are still used due to the fact that simpler 
system identification algorithms are applied for model development. Such models 
are used in the work of [Huusom2010][Huusom2011]. 

State-space formulations of MPC were proposed later by Marquis 
[Marquis1988] Kwon [Kwon1988] and Rawlings and Muske [Rawlings1993]. In 
these formulations, disturbance rejection and offset free control is achieved by 
augmenting the state-space with integrating characteristics. This is the most 
common representation of a process, as in [Beccuti2009] [Begovich2007] 
[Joosten2008] [Mariethoz2008] [Prasath2010] [Zarkogianni2011] and almost 
exclusively in building control as in [Balan2010] [Bemporad2002] [Chen1996] 
[Chen2002] [Halvgaard2012] [Henze2004] [Hazyuk2012ab] [Kumert2001] 
[Ma2009, 2010, 2011, 2012] [Nagai2002] [Oldewurtel2010, 2012] [Pannochia2003] 
[Privara 2011] [Wu2008] [Koch2012a] [Koch2012b] [Xie2009] [Zong2011] 
[Zong2012] [Braun1990] [Kolokosta2009] [Winn1985]. 

From the application type perspective, at the beginning, model predictive 
control was used for systems with large time constants like, for example, the 
processes in the petrochemical industry as in [Cutler1979], irrigation canal control 
as in [Begovich2007], and cement mill plants [Prasath2010]. 

As the computational power of digital devices increased both in speed and 
memory size, additional research areas were opened to MPC: for power electronics 
in DC-DC converter applications [Mariethoz2007] [Geyer2008] [Xie2009] or electric 
generators as in [Nanayakkara1997] [Bououden2012]. 

Another domain for using MPC is the power systems control and operation 
on individual power system tasks as voltage control problem in Beccuti 
[Beccuti2007], a dispatch MPC in Xie and Ilic [Xie 2009] or on cascaded different 
time scales approach as in Ulbig [Ulbig 2011] or for large power system as in 
[Puglia2011] [Patrinos2011]. 

MPC solutions are studied in the field of diabetes treatment, in developing 
controls for artificial pancreases which maintain the glucose concentration inside a 
min/max envelope by controlling the injected dose of insulin [Markakis2008] 
[Amjad2010] [Zarkogianni2011].  
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The automotive industry is adopting MPC solutions for developing power 

management control of hybrid electrical vehicles as presented in [Ripaccioli2010] 
and [Bernardini2009]. 

The MPC is implemented also in the aerospace industry as it is a well suited 
candidate for providing trajectories and control commands adapted to the new flight 
conditions as presented in [Alexis2011] [Song2010] [Bemporad2011] [Joosten2008] 
as the fault tolerant flight control is an important topic in the flight industry which 
enables the controller to operate the aircraft subject to physical damage. 

In [Wu2008] is presented a model predictive control that improves the 
ventilation and the associated indoor environment in livestock barns. 

An extended survey on the industrial applications and developed software 
for solving MPC problems is presented by Qin [Qin2003] and the latest 
developments and diversifications of MPC algorithms are reviewed in [Lee2011]. 

Different augmented models were developed and presented in the literature 
for the system to present offset free operation in the presence of unknown and 
unmeasured disturbances. In the modelling process it is generally accepted the 
assumption that the disturbance is constant in time, from one step to the next, that 
is ηk+1= ηk. This disturbance can be considered to affect the state of the system 
[Muske2002] [Huusom2010], case in which the augmented state-space system is 
called the input disturbance model or, the output disturbance model when the 
disturbance is affecting only the output of the system [Levine2011]. Other works 
like [Morari91] represent the output disturbance as a ramp signal, in order to 
improve the rejection of input disturbance. Regarding the unmeasured disturbances, 
the best achievable closed-loop performance can be obtained by making the most 
realistic model of the real disturbance which is an identification problem based on 
experimental results. In addition to the deterministic term of a disturbance, 
stochastic evolution can be considered, as in [Huusom2010] represented by white 
noise [Koch2012a] [Koch2012b], integrating white noise or a combination of the 
two [Huusom2011].  

One potential problem of using the augmented models is the lack of 
detectability which means that is there cannot be more disturbances states, which 
have an integrating effect, than the number of system outputs for detectability to 
hold. Hence, in the design step, the engineer would have to choose between the 
input or output disturbance augmented model as well as for the system presented in 
this work, where there are two disturbances affecting the system, the solar 
irradiance and the ambient temperature. 

A method of obtaining offset-free control is to use a variation approach 
[Muske1993][Muske2002][Koch2012], where the variation of the process states are 
used as the state variable; in the present work the variation of the inside 
temperature is chosen to be the state variable, and not just the inside temperature, 
as it will be explained in later sections. 

The main advantage of this method is that there is no need to compute 
steady state targets since the state variation (∆x) and command variation (∆u) 
approach zero at steady state [Muske2002], as in the present system the steady 
state is achieved when there is no change in the inside temperature (∆x=0) and no 
variation in the output power of the heaters (∆u=0).  

The downside of this augmented state approach is especially manifested in 
large systems with many states and disturbances, where the computational time 
increases rapidly. In these cases, special attention has to be paid in the 
development stages to the systems’ coefficients order of magnitude, which can have 
large differences; when the controller projects the states over the prediction 
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horizon, some coefficients can tend to very large numbers and others can get close 
to zero; these large differences will introduce errors in solving the optimization 
algorithm. 

The MPC became very attractive due to its ability to handle process 
constraints on different variables. The ability of handling the constraints, 
represented by hard physical limitation of actuators eliminates the use of anti-
windup as for the case of PID controllers improving the operation near the optimal 
performance. 

Another advantage is the ability to control large multi variable processes 
with respect to constraints and assure stability as described in [Sahin2009] for two 
applications: hot blast stoves and water level regulation in a cascade of river power 
plants. 

Another important use of constraints is the presence, in many applications, 
like in the case of energy efficient buildings thermal control, of buffer tanks. These 
buffer tanks can be storage places for materials, storage elements for electrical 
energy [Borhan2010], or the thermal capacity of a building for storing thermal 
energy [Balan2010] [Bemporad2002] [Chen1996] [Chen2002] [Halvgaard2012] 
[Henze2004] [Hazyuk2012ab] [Kumert2001] [Ma2009, 2010, 2011, 2012] 
[Nagai2002] [Oldewurtel2010, 2012] [Pannochia2003] [Privara2011] [Wu2008] 
[Koch2012a] [Xie2009] [Zong2011] [Zong2012]. The buffer can be used to store 
any percentage of its capacity providing the MPC the ability to absorb the effect of 
disturbances and to optimize the use of different resources, as for the case of 
buildings, the thermal capacity is used to store energy at a low price (by reaching 
the upper limit) and consume it when the price is high (no electric heat is produced, 
and the inside temperature drops until the low limit is reached). 

However, the MPC cannot operate to close to the limits due to the unknown 
disturbances present in any processes. When information about these disturbances 
are available, deterministic and stochastic models can be made and the performance 
is considerably improved. 

Since the length of the prediction horizon of an MPC algorithm remains 
constant as it slides from one sample time to the next, repeating the optimization 
problem for the new interval, this algorithm is also called the receding horizon 
strategy.  

For heating, ventilation, and air conditioning (HVAC) systems for both 
private houses and office buildings, bang-bang and PID control has been widely 
used for decades. Shortcoming of these methods is the large thermal lags of the 
systems and varying set points (as different temperature and humidity conditions 
for specific hours) which in addition to disturbances due to outside weather 
conditions and occupancy are having difficulties in adapting to large changes in 
system dynamics.  

A comparison between an on-off controller, a PI and a generalized model 
predictive control is shown in [Chen2002] regarding a floor heating system with 
large thermal lag simulation. The controller uses an ARIMAX model of the system 
and the objective is to track the reference inside temperature. 

While the building thermal capacity is considered a passive method of 
thermal energy storage, the active methods are using an additional fluid to charge 
and discharge a storage tank like in the case of water heaters and floor heating 
system. In literature both approaches are studied, independently or in combination: 
passive methods are presented in works like [Braun1990] [Koch2012] and active 
methods are resented in the work of [Chen2001] [Halvgaard2011] [Hazyuk2012] 
[Henze2004] [Houwing2008]. 
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The opportunities of MPC, as being able to use the occupancy schedule and 

weather forecasts for optimal inside temperature control are the subject of research 
in [Hazyuk2012a]. The equivalent electric circuit analogy is used to model the 
thermal capacity of a building in the state-space form, considering three states: the 
wall temperature, the zone temperature and the floor temperature. The heating 
system uses water radiators which request special modelling attention due to 
nonlinearities in transmitting the command from the controller. The paper identifies 
the nonlinearities in the building’s thermal behaviour and represents the building by 
separating linear and nonlinear blocks. This paper focuses on building parameter 
identification as it uses pseudo-random binary signal (PRBS) for identification of 
building thermal model parameters. 

Next is presented a short overview of the existing literature on model 
predictive control usage in energy efficient buildings. 

Early work in this field is done by Winn [Winn1985] which presents a 
simulated optimal control of minimizing the energy cost and keeping the inside 
temperature in comfort limits based on simple models for the building and for the 
HVAC system. 

The work of Henze [Henze2004] presents a simulated MPC that combines 
the passive and active thermal energy storage approach for an office building using 
a quadratic program. It considers perfect predicted disturbances: occupancy for the 
office building, the solar irradiance and the outside temperature as well as a perfect 
model of the system. Comparisons between the usage of active, passive, and 
combined thermal energy storage MPC methods are made; the paper does not 
consider any disturbance rejection or estimation. 

Houwing [Houwing2008] focuses on the usage of a micro-combined heat 
and power (micro-CHP) system for illustrating the potential of operational cost 
savings. It considers predictions on heat and electricity demand and energy prices. 
The optimization function is linear, as well as the equality and inequality constraints. 
As the system variables are both continuous and binary, this is a mixed-integer 
linear programming problem. The paper presents simulations to validate the 
controller algorithm. 

Kolokotsa [Kolokotsa2009] experiments with 10 minutes time interval, a 
quadratic program. For energy efficient building inside temperature control 
advanced control techniques can be implemented based on artificial intelligence like 
neural networks, fuzzy controllers, and genetic algorithms. The benefits are the low 
computational time of deployed algorithms and the low effort in modelling the 
system; the downside is the need of large sets of measured data to train the 
controller, and the  lack of adaptability in the case which the process operates 
outside the data set available during training. 

Kummert [Kummert2001] uses a state estimator for the zone temperature 
radiator supply and return water temperature; these values are fed into the 
optimization problem which is a trade-off between the thermal comfort and energy 
cost. The algorithm uses a 15 minutes prediction starting from the estimated 
variables. The optimization problem output is the water supply temperature for the 
water heating system, which is tracked with a PID controller. The cost function is a 
quadratic-linear function. It is shown that during sunny days, the upper comfort 
limit can be exceeded due to the large effect of solar radiation on the internal 
temperature, the errors in thermal model and in the prediction and the fact that the 
controller can only increase the temperature and not to cool down the temperature. 
Additional errors are due to water dynamics in the boiler and pipes. Simulations on 
the entire season show important savings 15-20% for an improved thermal comfort. 
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The paper concludes that energy savings in the range of 10% can be achieved to 
the “reference controller”, with a similar thermal comfort. If the occupants of an 
office building or a household that uses MPC desire to change the inside 
temperature, they just have to change the reference and the controller will adapt to 
the new desires. 

Liu and Henze in [Liu2004] evaluate the impact of modelling accuracy on the 
MPC of both active and passive thermal energy storage. Model errors due to 
simplification of factors like building’s geometry, zoning, construction materials, 
internal heat gains (light, equipment and, occupancy), and characteristics of the 
plan, including the base chillers and thermal energy storage system were studied. 
There is a trade-off between model simplification and computational effort which 
have to be studied for each application through experiments. 

Oldewurtel [Oldewurtel2012] presents a study conducted with data available 
from four different locations where MPC was used on a set of data spanning over 
one year. Conducts a comparison study between using different control algorithms: 
rule based control, deterministic MPC, and stochastic MPC. Stochastic MPC is a 
newly developed algorithm for the purpose of building inside temperature control 
and is able to deal with uncertainties by using weather and occupancy forecast. The 
difference between the deterministic and the stochastic MPC relies on the 
constraints formulation. By using stochastic MPC, in the optimization problem for the 
future states in the prediction horizon a stochastic term is added (chance constrain), 
which considers the forecast covariance error; during the time horizon, this term 
accumulates, proportionally with the dimension of the horizon, and influences the 
solution, by tightening the constraints, and forcing the algorithm to operate further 
away from the limits. To deal with this problem, a new term is presented in order to 
deal with the variations during the prediction horizon, which is the affine disturbance 
feedback. 

A large part of literature presents model predictive control for inside 
temperature or water heating systems only in the state of simulations [Winn1985] 
[Hazyuk2012a,b] [Henze2004] [Houwing2008] [Hovgaard2011] [Koch2012S]; 
however, in some places projects were started and experiment facilities were 
constructed with the purpose of developing and testing a usable large scale 
applicable technology involving MPC for energy efficient building and integration of 
distributed energy resources into the low voltage distribution grid. 

Research facilities were developed in order to study the impact of 
implementing intelligent solutions, especially the MPC, for energy efficient buildings. 
Such a project is OptiControl [OptiControlRep] from ETH Zurich which “aims at 
reducing their energy consumption at modest investment and operating costs, while 
at the same time improving occupant comfort and reducing peak power demand” 
[OptiControl] described in the work of [Oldewurtel2012]. Or at UC Merced Campus 
[Berkley] which transformed the campus in a “living laboratory” described in the 
papers of Ma [Ma2009] and []. At the Czech Technical University MPC were also 
deployed as shown in the work of Prívara and Siroky [Privara2011]. 

Another test building is “FlexHouse” from SYSLAB facility at Elektro 
department DTU at RISØ  campus. This building is presented in [Backer] and in 
chapter 2. The MPC implementation with cost optimization are presented in 
[Zong2012,2011] and with local PV produced output power in [KochCiobotaru2012]. 
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4.2. Objectives 
 
Model predictive control has its roots in the dynamic optimization which 

starts with a discrete dynamic model represented by the equation 
 

x(k + 1) = g(x(k), u(k)),                 x(0) = x0 
 
that describes the evolution of the state x(k) with time, starting from the 

initial condition x(0), as it is affected by the manipulated input u(k). 
The goal of the dynamic optimization procedure is to find the vector of 

manipulated inputs UN = [u(0)′, ..., u(N −1)′]′ such that the objective function is 
optimized over some time horizon N, typically: 

 

min
௨

Φ ൌ ෍ ,ሺ݇ሻݔ൫ݍ ሺ݇ሻ൯ݑ
ேିଵ

௞ୀ଴

൅  ሺܰሻ൯ݔ൫݌
 

 
The terms q(x, u) and p(x) are referred to as the stage cost and terminal 

cost, respectively [Borreli2011]. The terminal cost is introduced to insure stability of 
the system as explained in [Mayne2003]. 

From this optimization law sequence UN, only the first term is applied to the 
process. This is due to the unknown disturbances that can appear during the 
operation and can alter the system’s trajectory far from the optimal solution 
computed by the algorithm. Instead, the optimization problem is recalculated at the 
next step, considering the new measurements and system state. This feedback of 
the measurement information to the optimization endows the whole procedure with 
a robustness typical of closed-loop systems [Borreli2011]. 

If in the finite time optimal control problem solved by MPC at each time 
step, system model and constraints are linear and the performance index is 
expressed as weighted sum of 2-norm, 1-norm or∞-norm vectors, then the 
resulting optimization problem can be cast as a quadratic program (QP) or linear 
program (LP), respectively, for which a rich variety of efficient active-set and 
interior-point solvers are available [Borreli2011]. 

The optimization function is a quadratic problem and so it is a convex 
program, meaning a global optimal solution within a specified tolerance can be 
assured [Levine2011]. 

The conventional approach for solving QP is the so called active set method. 
The method consists of assuming a starting set of active constraints and solving the 
resulting least-squares problem through Lagrange multipliers, where the active 
constraints are treated as equality constraints. In general, this starting set is not the 
correct set which satisfies the inequality constraints of the problem. Through the use 
of Karush-Kuhn-Tucker (KKT) conditions the set is iteratively modified until the 
correction is found [Levine2011]. 
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Fig. 4.1. Model predictive control receding horizon 

 
More recently, a promising new approach called the interior point (IP) 

method has been developed for solving the QP. The idea of the IP method is to 
“trap” the solution within the feasible region by including a so-called “barrier” 
function in the objective function. Within the modified objective function, the 
Newton iteration is applied to find the solution. Though originally developed for LPs, 
the IP method can be readily generalized to QPs and other more general constrained 
optimization problems. [Levine2011] 

In the case of large systems, with multiple controlled and manipulated 
variables, considering constraints on every variable can be very demanding on the 
time needed for the control algorithm to solve the quadratic problem. A common 
approach is to consider constraints for the system’s variables only at selected time 
steps in the predicted horizon instead of all future steps. It is generally accepted 
that unless dealing with a highly oscillatory system, a few output constraints at the 
beginning and one at the end of the predicted horizon should keep the output more 
or less inside the constraints throughout the horizon. Even when constraints 
violations occur in the prediction, this does not imply constraints violations in the 
actual implementation because of the moving horizon. [Levine2011] 

While unconstrained MPC is a form of linear feedback control, constrained 
MPC is a nonlinear control algorithm. Thus, the behaviour for small deviations can 
be drastically different from that for large deviations [Levine2011]. 

The objective of this chapter is to present the development of MPC algorithm 
that controls the inside temperature of a household by commanding the electrical 
heaters installed in the heating system. Having a controller that maintains the inside 
temperature at specified values, the energy consumption of the heating system can 
be minimized by applying an efficient temperature reference profile during the day. 

The MPC has to be formulated to achieve offset free control by augmenting 
the state space with additional states and using an observer to estimate the 
additional states, in order to eliminate the effect of modelling errors and unknown 
disturbances coming from weather data prediction errors. 

Both the MPC algorithms are tested and validated through simulations and 
experiment and a comparison of the considered study cases is presented at the end 
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of the chapter which emphasizes the high performance of using the offset free MPC 
in tracking the reference in the presence of unknown errors and disturbances. 

4.3. Model of the system 
 
The objective of the optimization function is to control the inside 

temperature of a building, according to different model predictive control 
algorithms, by tracking a prescribed reference or to minimize the cost of energy 
used to heat the house by using the electric energy from the grid or with the local 
produced PV power. 

For simulations and experiments carried out in this work, the MPC algorithm 
uses the building thermal model presented in chapter 2, a state-space model with 
one state variable: 

 
݀ ௜ܶ

ݐ݀ ൌ െ
1

௜ܴ௜௔ܥ
௜ܶ ൅

1
݅ܥ P௛ ൅

1
௜ܴ௜௔ܥ

௔ܶ ൅
௪ܣ

௜ܥ
 ܩ (4.1) 

 
Where Ci is the heat capacity of the house. This includes the indoor air and 

the interior objects (=3.42 [kW/°C]) 
Ria is the thermal resistance from the indoor to the ambient environment 

(=4.87 [°C/kW]) 
Aw is the effective window area of the house with heating influence. (=5.53 

[m2]) 
The discrete state-space representation of this model, having a time step of 

10 minutes is: 
 

௞ାଵݔ ൌ ௞ݔܣ ൅ ௞ݑܤ ൅ ௞݀ܧ (4.2a) 
௞ݖ ൌ ௞ݔܥ (4.2b) 

Where: 
A=[0.99] B=[0.0487] E=[0.01 0.2695] C =[1]  
 
Simulations were carried out for the two cases: when the thermal model is a 

perfect match of the system and when a different model is used. 
For testing algorithms that deal with modelling errors, a three state-space 

model was used for the building’s thermal dynamics; this three states-model is 
presented in the work of Bacher and Tavlov (Bacher2010) as well as the parameters 
identification presented in Table 2.7. 

This extended three states model is represented by the following equations, 
representing the equivalent RC electric circuit represented in figure 2.44: 
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  (4.3) 

 
Where the state space variables are 
Ti – inside temperature 
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Tm – a second inside temperature which defines a internal medium 
Th – temperature in the electrical heaters 
 
The extended thermal model is represented in a discrete state-space form, 

having a time step of 10 minutes:  
 

௞ାଵݔ ൌ ௞ݔܣ ൅ ௞ݑܤ ൅ ௞݀ܧ (4.4a) 
௞ݖ ൌ ௞ݔܥ (4.4b) 

 
Where 
 

ܣ ൌ ൥
0.967 0.0182 0.0019

0.0157 0.9843 0
1.3034 0 െ0.3034

൩ ܤ ൌ ൥
0
0

43.4028
൩ 

 

ܧ ൌ ൥
0.013 0.3465

0 0
0 0

൩ ܥ ൌ ሾ1 0 0ሿ ܦ ൌ 0  

 
xk – state variable [Ti;Th;Tm]  
uk – heaters output power 
dk – disturbances vector,
 

4.4. Tracking MPC algorithm  
4.4.1. Algorithm development 
The objective of this particular MPC is to control the inside temperature (zk) 

to track the a priori described reference (rk) with constraints on the output power 
rate of the heaters, by using the one state model described in section 4.3, subject to 
model uncertainties, unknown disturbances and process and measurement noise, as 
presented in the study cases. 

The MPC output is chosen to be the solution of a constrained finite horizon 
quadratic optimization problem presented by the objective function (OF) in equation 
4.5 that is computed at each time step k using measured and predicted values. The 
solution represents the future N values for the command from witch only the first 
one is implemented on the process and the computation is repeated at the next 
simulation step with the new measured and predicted values. 

The diagram of the model predicitve control algorithm is presented in figure 
4.2. The variables with ‘p’ index are a priori known by the controller, as the case for 
the reference r and the weather forcast (Tap and Gp). In square brackets are 
represented vectors of length equal to the predicted horizon, data which are used by 
the controller to solve the optimization function over the predicted horizon. 
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Fig. 4.2. MPC algorithm diagram considering a perfect model and perfect weather 
(disturbance) forecast 

 
The model predictive control is formulated by the following mathematical 

equations: 
 
The objective function: 

min
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 (4.5a) 

Subject to: 
 
the discrete state-space model of the system: 

௞ାଵݔ ൌ ௞ݔܣ ൅ ௞ݑܤ ൅ ௞݀ܧ    (4.5b) 
௞ݖ ൌ ௞ݔܥ (4.5c) 

 
and constraints: 

௠௜௡ݑ ൑ ௞ݑ ൑  ௠௔௫ (4.5d)ݑ
Δݑ௞,௠௜௡ ൑ Δݑ௞ ൑ Δݑ௞,௠௔௫ (4.5e) 

௠௜௡ݖ ൑ ௞ݖ ൑ ௠௔௫ݖ (4.5f) 
 
The first optimization term from equation 4.5a forces the output of the 

process to follow the given trajectory, that is the inside temperature to track the 
prescribed trajectory. 

The second term considers minimizing the variation of the command signal 
u, representing the electric heaters output power. 

Another important aspect of this control is the ability to modify the 
importance of the optimization terms in the optimization function by using weight 
coefficients, in this case Q for minimizing the trajectory difference and S for 
minimizing the variations of the manipulated variables.  

The MPC algorithm was implemented in the Matlab software environment 
and the quadprog solver from the optimization toolbox was used for the 
optimization problem. In order to use the Matlab predefined function, the 
optimization problem formulated in the form of equation 4.5. has to be rewritten in 
the specific form of the solver as in equation 4.6: 
 

min
௎

f ൌ
1
2 ܷܪ′ܷ ൅ ݃′ܷ (4.6) 

Subject to  
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௤ܷܣ ൑ ܾ௤ (4.7) 
 

The model predictive control is an optimization problem that considers the 
projected states of the system over a prediction horizon in order to minimize an 
objective function. From equation 4.2, the next zk+i , (i=1...N) values over the 
prediction horizon can be computed considering: 

- x0 as the initial value for the state variable at each time step interval, 
- D - the predicted disturbance vector over the predicted horizon  
- U - the system input, the command variable, in this case the output power 

of the heaters: 
 

ۏ
ێ
ێ
ێ
ۍ
ଵݖ
ଶݖ
ଷݖ
ڭ

ےேݖ
ۑ
ۑ
ۑ
ې

ถ
ୀ௓

ൌ

ۏ
ێ
ێ
ێ
ۍ

ܣܥ
ଶܣܥ

ଷܣܥ

ڭ
ےேܣܥ

ۑ
ۑ
ۑ
ې

ᇣᇤᇥ
ୀ஍

଴ݔ ൅

ۏ
ێ
ێ
ێ
ۍ
ଵܪ 0 0 ڮ 0
ଶܪ ଵܪ 0 ڮ 0
ଷܪ ଶܪ ଵܪ ڮ 0
ڭ ڭ ڭ ڰ ڭ

ேܪ ேିଵܪ ேିଶܪ ڮ ےଵܪ
ۑ
ۑ
ۑ
ې

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ୀ୻

ۏ
ێ
ێ
ێ
ۍ

0ݑ
1ݑ
2ݑ
ڭ

ےെ1ܰݑ
ۑ
ۑ
ۑ
ې

൅

ۏ
ێ
ێ
ێ
ۍ
ଵ,ௗܪ 0 0 ڮ 0
ଶ,ௗܪ ଵ,ௗܪ 0 ڮ 0
ଷ,ௗܪ ଶ,ௗܪ ଵ,ௗܪ ڮ 0

ڭ ڭ ڭ ڰ ڭ
ே,ௗܪ ேିଵ,ௗܪ ேିଶ,ௗܪ ڮ ےଵ,ௗܪ

ۑ
ۑ
ۑ
ې

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ୀ୻೏

ۏ
ێ
ێ
ێ
ۍ ݀0

݀1
݀2
ڭ

݀ܰെ1ے
ۑ
ۑ
ۑ
ې

 

 
௞ܪ ൌ  ܤ௞ିଵܣܥ
௞,ௗܪ ൌ  ܧ௞ିଵܣܥ

(4.8) 

 
Which can be written in a short form: 
 

ܼ ൌ Φݔ଴ ൅ Γܷ ൅ Γௗ(4.9) ܦ 
 
The objective function defined in equation 4.5 has to be reformulated as a 

function of U, representing the manipulated variable, in this case the electrical 
heaters’ output power. 

By developing the first term of the OF from equation 4.5, and using equation 
4.9, the next form is obtained: 
 

f୸ ൌ
1
2 ෍ԡݖ௞ െ ௞ԡொݎ

ଶ
ே

௞ୀ଴

ൌ
1
2

ԡܼ െ ܴԡொ
ଶ ൌ

1
2

ԡΓܷ െ ܾԡொ
ଶ  (4.10) 

With the additional notation: 
 

ܾ ൌ ܴ െΦݔ଴ െ Γௗ(4.11) ܦ 
 
The transformation into the required form of equation 4.6 is represented by 

the following equation: 
 

f௭ ൌ
1
2

ԡΓܷ െ ܾԡொ
ଶ ൌ

1
2

ሺΓܷ െ ܾሻ′ܳሺΓܷ െ ܾሻ ൌ
1
2 ܷ′Γ′ܳΓܷ െ ቀΓ′ܾܳቁ

′
ܷ ൅

1
2 ܾ′ܾܳ (4.12) 
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For the second term of the objective function, the command variation 

penalty, the reformulation evolves as: 
 

fΔ ൌ
1
2 ෍ԡΔݑ௞ԡௌ

ଶ ൌ
1
2

ேିଵ

௞ୀ଴

ԡ ൦

଴ݑ
ଵݑ
ڭ

ேିଵݑ

൪ െ ൦

ଵିݑ
଴ݑ
ڭ

ேିଶݑ

൪ ԡௌ
ଶ (4.13) 

 
And in the extended form: 
 

fΔ ൌ
1
2
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ێ
ێ
ۍ

଴ݑ
ଵݑ
ଶݑ
ڭ

ےேିଵݑ
ۑ
ۑ
ۑ
ې
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ێ
ێ
ۍ
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െܵ 2ܵ െܵ ڮ 0
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ۍ

଴ݑ
ଵݑ
ଶݑ
ڭ

ےேିଵݑ
ۑ
ۑ
ۑ
ې
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ێ
ێ
ێ
ۍ
ܵ
0
0
ڭ
ے0

ۑ
ۑ
ۑ
ې

ی

ۋ
ۊ

ᇣᇧᇧᇤᇧᇧᇥ
ୀுೠషభ

′

ଵିݑ

ۏ
ێ
ێ
ێ
ۍ

଴ݑ
ଵݑ
ଶݑ
ڭ

ےேିଵݑ
ۑ
ۑ
ۑ
ې
 (4.14) 

 
And in a more compact, matrix form, the second term becomes: 

 

fΔ ൌ
1
2 ௌܷܪ′ܷ ൅  ଵܷ (4.15)ିݑ௨షభܯ

 
From equation 4.12 and 4.15, the initial optimization function from equation 

4.5 can be rewritten in the form of equation 4.6, with an additional term p which is 
independent of u, having the following coefficients: 
 

ܪ ൌ Γ′ܳΓ൅ HS (4.16) 

݃ ൌ െΓ′ܳሺܴ െΦݔ଴ െ Γௗܦሻ ൅  ଵ (4.17)ିݑ௨షభܯ

݌ ൌ
1
2 ܾ′ܾܳ (4.18) 

 
The developed MPC algorithm implements hard constraints on: 

- the manipulated variable 
 

ܷ௠௜௡ ൑ ܷ ൑ ܷ௠௔௫, ݇ ൌ 0 … ܰ െ 1 (4.19) 
 

- the controlled variable: 
 

ܼ௠௜௡ ൑ ܼ ൑ ܼ௠௔௫, ݇ ൌ 1 … ܰ (4.20) 
As all the constraints have to be define according to U, by replacing equation 

4.8 in equation 4.20 the following relations are obtained: 
 

ܼ௠௜௡ െΦݔ଴ െ Γௗܦ ൑ Γܷ 
Γܷ ൑ ܼ௠௔௫ െΦݔ଴ െ Γௗܦ , ݇ ൌ 1 … ܰ 

(4.21) 

 

௤ܣ ൌ ൦

ேܫ
െܫே
െΓ
Γ

൪  ܾ௤ ൌ ൦

ܷ௠௔௫
െܷ௠௜௡

െܼ௠௜௡ ൅Φݔ଴ ൅ Γௗܦ
െZ୫ୟ୶ ൅Φݔ଴ െ Γௗܦ

൪ (4.22) 
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The obtained equations 4.16, 4.17, and 4.22 are used as the parameters for 

the Matlab solver – equations 4.6 and 4.7, which returns the solution for the 
optimization problem as a N dimensions vector, representing the next N values of 
the heaters output power: 
 

U = quadprog(H, g, Aq, bq) 
 

(4.23) 

The Matlab functions used to implement the MPC algorithm described in this 
section are presented in Apendix B. 
 

4.4.2. Offset Free Control  
 
In section 4.4.1 was presented the methodology of implementing the model 

predictive control starting from the explicit model of the thermodynamic process of 
the building, equation 4.2 and having the optimization function stated in equation 
4.3. However, so far, the model is considered to be a perfect representation of the 
plant dynamics, and the disturbances, the ambient data of solar irradiance and 
ambient temperature, were considered to be accurate predicted. 

These assumptions are forced away from the reality, where both the real 
system and the disturbances will present errors compared with the model and the 
predictions available to the control developer. Not considered, the errors will 
produce offsets of the systems output, the system will reach undesired states, will 
disregard the optimization objectives and constraints will be violated.  

The errors have to be introduced in the MPC, as an integrator element, in 
order to minimize the errors and achieve offset free operation. These errors can be 
experimentally observed and statistical data can be used in control algorithms in 
order to achieve better results. 

The solution is to use augmented state-space models of the system, by 
introducing additional states as in [Muske93] [Huusom10][Koch12]. If these 
additional states are not directly measurable, observers must be used; if the system 
is deterministic, a Luenberger observer can be successfully used; if the plant’s 
states and output are assumed to be subject to white noise with a known 
covariance, a Kalman filter must be used such that the mean square state 
estimation error is minimized.  

 

4.4.2.1. Augmented state­space system  
 
For this application, as in the general case, the predicted disturbances 

values (dk), represented here by the solar irradiance and ambient temperature, 
present an error (ηk) compared to the real measured values (dreal,k), as in equation 
4.24. In order to eliminate the offset caused by these differences, the system’s 
model has to be augmented with additional states, one for each of the disturbances 
[Maciejovski2002]. 

 
݀௥௘௔௟,௞ ൌ ݀௞ ൅  ௞ (4.24)ߟ

 
For the unknown errors in the disturbances, the assumption is made that 

they are constant and persistent, that is: 
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௞ାଵߟ ൌ  ௞ (4.25)ߟ
 
The resulting process model used by the MPC, including the unknown 

disturbance, has the form: 
 

௞ାଵݔ ൌ ௞ݔܣ ൅ ௞ݑܤ ൅ ሺ݀௞ܧ ൅ ௞ሻߟ (4.26a) 
௞ାଵߟ ൌ ௞ߟ (4.26b) 
௞ݖ ൌ ௞ݔܥ (4.26c) 

 
Using the augmented model, two consecutive states at moments k and k+1 

are calculated as:  
 

௞ݔ ൌ ௞ିଵݔܣ ൅ ௞ିଵݑܤ ൅ ሺ݀௞ିଵܧ ൅  ௞ିଵሻ (4.27)ߟ
 

௞ାଵݔ ൌ ௞ݔܣ ൅ ௞ݑܤ ൅ ሺ݀௞ܧ ൅  ௞ሻ (4.28)ߟ
 
The difference between the two consecutive states, or the evolution of the 

state after one step is: 
 

௞ାଵݔ െ ௞ݔ ൌ ௞ݔሺܣ െ ௞ିଵሻݔ ൅ ௞ିଵሻݑ௞ݑሺܤ ൅ ሺ݀௞ܧ ൅ ௞ߟ െ ݀௞ିଵ െ  ௞ିଵሻ (4.29)ߟ
 
Using the assumption of persistent disturbance (4.24), a variation based 

model is obtained: 
 

Δݔ௞ାଵ ൌ ௞ݔΔܣ ൅ ௞ݑΔܤ ൅ Δ݀௞ܧ (4.30a) 
௞ାଵߟ ൌ ௞ߟ (4.30b) 

Δݖ௞ ൌ ௞ݔΔܥ (4.30c) 
The augmented state space variation based model has the form: 
 

൤Δݔ௞ାଵ
௞ାଵߟ

൨ᇣᇧᇤᇧᇥ
ୀ௫ೌ,ೖశభ

ൌ ൤ܣ ܧ
0 ௗܣ

൨ᇣᇧᇤᇧᇥ
ୀ஺෨

൤Δݔ௞
௞ߟ

൨ᇣᇤᇥ
ୀ௫ೌ,ೖ

൅ ቂܤ
0ቃด

ୀ஻෨

௞ݑ∆ ൅ ቂܧ
0ቃด

ୀா෨

Δ݀௞ 

 

(4.31a) 

Δݖ௞ ൌ ሾܥ 0ሿถ
ୀ஼ሚ

൤Δݔ௞
௞ߟ

൨ᇣᇤᇥ
ୀ௫ೌ,ೖ

 
(4.31b) 

 
The augmented state-space system described in equation 4.31 has the state 

variable represented by: 
 

௔௞ݔ ൌ ൥
௞ݔ∆

௔,௞்ߟ
௞,ீߟ

൩ 
(4.32) 

Where: 
- ∆xk – the evolution of the inside temperature, how much it changed from the 

last step, as the effect of the variations in heaters’ output power (∆uk) and 
the variation of the predicted disturbances (∆dk) as well as of model error 
compared to the real system 
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- ηTa,k – the unknown disturbance error on predicted ambient temperature 
- ηG,k – the unknown disturbance error on predicted solar irradiance 

As the controller is not provided with actual measurements but only 
predictions, these errors and the ones produced by the differences between the 
model and the real system, an observer has to be used for estimating the state 
variable xk. 

This augmented variation based model, equation 4.30 can be used as the 
explicit model for the MPC algorithm described in section 4.3.  

The diagram of the developed MPC algorithm, used in future simulations and 
experiment is presented in Figure 4.3. 

 

 
 

Fig. 4.3. MPC algorithm diagram considering an identified model and non-perfect weather 
(disturbance) forecast 

 
For the MPC algorithm described in figure 4.3, the optimization function 

remains the one from equation 4.3, that is the inside temperature (the system’s 
output) to track the prescribed reference, with minimized variation on the heaters 
output power (the manipulated variable) in order to achieve a smooth energy 
consumption for reducing power peaks that can affect the voltage profile on a 
distribution grid. 

The modifications on the MPC are as follow: 
- in this case, the result of the MPC optimization problem is the difference ∆uk and 
the command to the system is uk = uk-1 + ∆uk. 
- the input reference for this MPC is not the prescribed reference over the prediction 
horizon N at the moment k - [rp|k] as for the case when using the system from 
equation 4.6, but the difference [∆rp|k] between these N references and the current 
inside temperature yk. 
 

ൣΔݎ௣,௞൧ ൌ ሾݎ௣,௞ െ ௞ݕ ௣,௞ାଵݎ െ ௞ݕ ڮ  ௞ሿ (4.33)ݕ௣,ேെݎ
 
- the input predicted disturbances are represented by their variation at each step k, 
for the next N length prediction horizon, that is: 
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ൣΔܶܽ௣,௞൧ ൌ ሾܶܽ௣,௞ െ ܶܽ௣,௞ିଵ ܶܽ௣,௞ାଵ െ ܶܽ௣,௞ ڮ ܶܽ௣,ேെܶܽ௣,ேିଵሿ (4.34) 

 
ൣΔܩ௣,௞൧ ൌ ሾܩ௣,௞ െ ௣,௞ିଵܩ ௣,௞ାଵܩ െ ௣,௞ܩ ڮ  ௣,ேିଵሿ (4.35)ܩ௣,ேെܩ

 
- the previous step command (∆u-1) has to be considered in order to include in the 
optimization function the variation of the manipulated variable, as it appears in 
equation 4.14. This term is responsible for smoothing the power peaks 
 
- as the state variables cannot be measured, an observer must be used to estimate 
the initial state Xa0 for each time step k. This is used to project the state-space 
model through the next N steps and the solution of the optimization problem is 
directly affected by this initial state of the model used in calculating equation 4.8. 
 
- the model used to estimate the state vector is presented in equation 4.30. 

The equations of the observer are: 
 

xୟෝ ሺ݇ ൅ 1|݇ሻ ൌ ሚxୟෝܣ ሺ݇|݇ሻ ൅ ෨ܤ Δݑሺ݇ሻ ൅  ෨Δ݀ሺ݇ሻ (4.36)ܧ
 

Δݕ෢ ሺ݇|݇ െ 1ሻ ൌ ሚxୟෝܥ ሺ݇|݇ െ 1ሻ (4.37) 
 

xୟෝ ሺ݇|݇ሻ ൌ xୟෝ ሺ݇|݇ െ 1ሻ ൅ ܮ ൥ݎሺ݇ሻ െ ሺ݇ሻᇣᇧᇧᇧᇤᇧᇧᇧᇥݕ
ୀ୼௬ሺ௞ሻ

െ ሚxୟෝܥ ሺ݇|݇ െ 1ሻ൩ 
(4.38) 

 
If we define the state estimation error as  
 

݁ሺ݇ሻ ൌ ௔ሺ݇ሻݔ െ ݇|௔ෞሺ݇ݔ െ 1ሻ (4.39) 
 
And using equations (4.32) and (4.34), the recurrent relation of the state 

estimation error becomes: 
 

݁ሺ݇ ൅ 1ሻ ൌ ൫ܣሚ െ  ሚ൯݁ሺ݇ሻ (4.40)ܥܮ
 
Equation 4.40 shows that the state estimation error converges to zero if the 

observer is stable, at a rate determined by the eigenvalues of A-LC. 
The values of L can be computed using a Luenberger observer, if the 

disturbance is deterministic or, if stochastic disturbances are supposed to affect the 
plant, which is more often the case, a Kalman filter is used. 

4.4.2.2. Kalman filter observer 
 
The Kalman filter is used to estimate values when a stochastic disturbance is 

affecting the states of a system or the measurements. Such a process is described 
by the state-space formulation of equation 4.41: 

 
௞ାଵݔ ൌ ௞ݔܣ ൅ ௞ݑܤ ൅ ௞݀ܧ ൅ ௞ݓ (4.41a) 

௞ݖ    ൌ ௞ݔܥ ൅ ௞ݒ (4.41b) 
where: 
wk represents the input white noise, considered to have the covariance 
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ሺ݇ሻሽ்ݓሺ݇ሻݓሼܧ ൌ ܳ (4.42) 

 
vk represents the output white noise having the covariance: 
 

ሺ݇ሻሽ்ݒሺ݇ሻݒሼܧ ൌ ܴ (4.43) 
 
The usage of a Kalman filter in the algorithm consists of two stages that run 

cyclically:  
Time update – responsible for projecting the state ahead, based on the 

available state space model 
 

௘,௞ାଵݔ ൌ ௣,௞ݔ௘ܣ ൅ ௞ݑ௘ܤ ൅  ௘݀௞ (4.44)ܧ
 

Measurement update – which has the role to ‘correct’ the estimated values 
by considering the last measurements taken from the system; at the end of this 
state, the observer is providing the best estimation, given the available measured 
data:  
 

௣,௞ݔ ൌ ௘,௞ݔ ൅ ௞ݖ௙൫ܭ െ  ௘,௞൯ (4.45)ݔܥ

 
As extensively presented in Appendix A, the Kalman filter minimizes the 

trace of the covariance error. The solution of the observer meaning the covariance 
of the innovations Re and the predictive Kalman gain Kf are computed using 
equations 4.46 and 4.47: 
 

ܴ௘ ൌ ′ܥܲܥ ൅ ܴ (4.46) 
 

௙ܭ ൌ ௘ܴ′ܥܲ
ିଵ (4.47) 

 
The covariance of the error from equation 4.47 is defined as: 
 

ܲሺ݇ሻ ൌ  ሼ݁ሺ݇ሻ்݁ሺ݇ሻሽ (4.48)ܧ
 
The covariance P is a symmetric positive semidefinite matrix, the solution of 

the discrete Ricatti equation: 
 

ܲ ൌ ′ܣܲܣ ൅ ܳ െ ′ܥܲܥ൫′ܥܲܣ ൅ ܴ൯
ିଵ

 (4.49) ′ܣܲܥ

4.4.3. Simulations  
 
For testing and validating the model predictive controllers formulated in the 

previous sections, the controllers were implemented in Matlab. Simulations under 
different considerations were carried out as well as real-time experiments on the 
real FlexHouse building. 

Simulations are run for the two MPC controllers, the one that uses no 
observers and the one that defines additional states for the disturbances and uses a 
Kalman filter to eliminate the modelling errors and the unknown disturbances. The 
two are compared and the benefits of using the MPC based on the augmented state-
space model is emphasised. 
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Both the MPC formulations are based on the thermodynamic mathematical 

model of FlexHouse presented in equation 4.6 for the specific case of controlling the 
inside temperature of the building, subject to restrictions.  

The second implemented MPC is using the augmented state-space variation 
based model, presented in equation 4.31 which, for the present system, is written 
as: 

 

൥
Δݔ௞ାଵ

௔,௞ାଵ்ߟ
௞ାଵ,ீߟ

൩ ൌ ൥
0.99 0.01 0.2695

0 1 0
0 0 1

൩ ൥
Δݔ௞

௔,௞்ߟ
௞,ீߟ

൩ ൅ ൥
0.0487

0
0

൩ ௞ݑ∆ ൅ ൥
0.01 0.2695

0 0
0 0

൩ ൤
Δd୘ୟ,୩
ΔdG,୩

൨ (4.50a) 

௞ݖ ൌ ሾ1 0 0ሿ ൥
௞ݔ

௔,௞்ߟ
௞,ீߟ

൩ (4.50b) 

 
The optimization function refers to penalizing the difference between the 

prescribed reference and the actual inside temperature  
 

min
௨אோ೙

fሺuሻ ൌ
1
2 ෍ԡݖ௞ െ ௞ԡொݎ

ଶ
ே

௞ୀ଴

൅
1
2 ෍ԡΔݑ௞ԡௌ

ଶ
ேିଵ

௞ୀ଴

 (4.50c) 

 
Subject to constraints: 

0 ൑ ௞ݑ ൑ 10 (4.50d) 
௞ିଵݑ ൑ ௞ݑ∆ ൑ 10 െ  ௞ିଵ (4.50e)ݑ

18 ൑ ௞ݖ ൑ 22 (4.50f) 
Where: 
zk – is the controlled variable, the system’s output and the inside 

temperature in FlexHouse at step k  
uk – is the manipulated variable, the heaters’ output power in kW  
 
Figure 4.4 presents the decision flow of the developed MPC algorithm used 

both for the simulations and experimental validation. 
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Fig. 4.4. Decision flow of the MPC algorithm used for simulation and experiments 
 
The weight parameters from equation 4.5 are chosen to be Q = 1 and 

S=0.1. The term that penalizing the error between the reference and the measured 
inside temperature has a weight coefficient that is one order of magnitude larger 
than the one penalizing the variation in command. This last weight has to be 
considered to prevent the case of high frequency variations in the command (most 
likely at every time sample) due to the system trying to eliminate the smallest 
unmeasured disturbances with the sole objective to accurately track the prescribed 
reference. By not considering a factor S, the controller’s command is likely to 
oscillate  

The noise was considered as having the following covariance: 
Q=0.5 – for the disturbances noise 
R=0.001 – for the output noise 

4.4.4. Simulation results  
In this section, a number of simulated case studies representing 

combinations of different assumptions, available data or actuator type, are 
presented: 

• For the system model were used the one state variable model from 
equation 4.4, the model M1, as well as the model with three states, M3, 
presented in equation 4.6. 

• Three cases of weather forecast were considered: 
o perfect forecast – W1 
o the 24 hours ahead forecast taken from a weather service – W2 
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o no weather forecast available, when an average temperature was 

used and an half of the maximum solar irradiance available for that 
day – W3 

• As for the stochastic noise, the cases S0 – no noise and S1 – with white 
noise were studied.  

• The electrical heaters can be regarded as having a continuous output 
power, represented by a real number between zero and the maximum 
power, the case H0, and the realistic case H1, where the heaters output 
represent an integer number between zero and ten, the sum of all the 
electrical heaters’ output power 

• The initial state X0 for the MPC calculation of future states, can be used 
from the last step state, by operating in open loop, O0, or by using an 
observer to estimate the current state O1; 

In each study case, both the results of using and not using a state observer 
are plotted in order to give a representation of the necessity and utility of such a 
component. 

 
The performances of the MPC algorithms will be defined by a cost function 

that reflects the operation of the system over the simulation horizon: 
 

Φഥ ൌ
1

2൫ ௙ܶ െ ଴ܶ൯
෍ ሾሺݖ௞ െ ௞ሻଶሿݎ

்೑

௧ୀ బ்

 (4.51) 

Where  
Tf – the final time step considered by the MPC, equal to the difference 

between the simulated horizon and the predicted horizon of the controller 
T0 – initial time step moment 
zk – the measured inside temperature at each time step 
rk – the prescribed reference 
 
A large number of simulations scenarios can result from different 

combinations of assumptions, available data or actuator type as presented above. 
However, only ten of the most significant results are presented and discussed here.  

The simulation results presented in the figures are numbered by the 
simulation number from the first column of table 4.1 and coded in the same table by 
their weather prediction availability, stochastic perturbation, type of models used for 
the controller and for the plant, and the type of heaters. 
Each simulation result is presented in a four plots figure, representing, from top to 
bottom: in the first plot the prescribed reference of the inside temperature, the 
simulated current temperature when using the Kalman filter as a state observer for 
the augmented state variation based MPC described by equation 4.31 and the MPC 
described in equation 4.5, with no state observer and no offset free control; the 
second plot shows the manipulated heaters’ output power for the two PMC 
algorithms developed in this chapter; the third and fourth plot present the predicted 
and measured weather data as the solar irradiance and outside temperature. 
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Fig. 4.5. Simulation Sim1 results ΦO0= 0.0148 ΦO1= 0.0163  

 
Figure 4.5 shows the evolution of the inside temperature in the case of 

Sim2 by using the two MPC strategies under the ideal conditions: the process is 
accurately modelled, the disturbances are perfectly predicted, there is no noise 
present in the system, and the heaters can be continuously controlled. This study 
case is far from reality, but it can be used as a bench mark. 

Under these conditions, the overall performance cost is ΦO0= 0.0148 for the 
normal MPC, and ΦO1= 0.0163 for the augmented state-space MPC. 
In figure 4.5 one can see very clearly a specific feature of the MPC strategy: prior to 
and after the step change in the reference, the system’s output (the inside 
temperature in this case) presents and overshoot before stabilizing. This is due to 
the fact that the MPC has prior knowledge of the step change of the reference and 
performs actions so that the overall difference between the system’s output and the 
prescribed reference to be minimal over the entire simulation horizon, as define in 
the optimization function of the MPC formulation. 
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Fig. 4.6. Simulation Sim2 results ΦO0= 0.0229 ΦO1= 0.0168 

 
Figure 4.6 presents the results for Sim2 when the heaters are considered, 

like in the real experiment, as having two operation states: on or off, so the 
manipulated variables can take only integer numbers as viable values. Under these 
considerations the performance of the two MPC diminishes to ΦO0= 0.0229 ΦO1= 
0.0168, a larger drop of performance being seen in the case where no state 
observer is used. 

Figure 4.7 shows the simulation results of Sim4, when for the weather 
prediction were used data from the local weather station with a 24 hours ahead 
prediction. The process is considered perfect modelled and the heaters are 
controlled in 1 kW step change. The weather prediction accuracy can vary in 
accuracy from one day to another, so the error of the disturbance, modelled by the 
additional state in the augmented state-space system used for the offset free MPC in 
equation 4.50  
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Fig. 4.7. Simulation Sim4 results ΦO0= 0.0252 ΦO1= 0.0174  

 
, can have different effect. Even if the performance is lower for both MPC solutions, 
the usage of the observer can be well justified starting with this simulation as ΦO0= 
0.0252 and ΦO1= 0.0174 and will be more meaningful in the future simulations, as 
they approach the realistic operation regime. 

In figure 4.8 is presented the case of Sim6, when no weather station is 
available and no predicted data on the disturbance of the system, the ambient 
temperature and solar irradiance. 

In this case, however historical data can be used, and were used for the 
simulation; that is for the ambient temperature one can use the historical average 
temperature for that area for the day, week or month depending on the data 
available, and for the solar irradiance one can compute the maximum solar 
irradiance shape of the current day, given the latitude, longitude and time of day, as 
presented in Chapter 2 for calculating the PV output power based on measurements 
taken at the horizontal plane. If for the augmented state-space MPC the  
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Fig. 4.8. Simulation Sim6 results ΦO0= 0.0312 ΦO1= 0.0173  

 
performance cost function is not notably influenced by this approximation, ΦO1= 
0.0173 being, for this simulation, even smaller than in the case of a weather 
forecast usage, the classical MPC presents a worst result compared to the last 
simulation, and a large difference from the augmented MPC for this simulation 
scenario with ΦO0= 0.0312. 

Starting from Sim10, presented in figure 4.9, the simulated process has the 
three state-variables system from equation 4.3, and the MPC uses, as before, the 
one state model augmented with disturbance states. As it can be seen from the first 
plot, the difference between the process output and the output of the model used by 
the MPC is the largest at the moment of the rising step reference. Due to the model 
difference, there is an oscillatory evolution of the controller until the difference is 
included in the disturbance error state of the augmented MPC. The differences 
between using the classic MPC and using an observer for the initial state  
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Fig. 4.9. Simulation Sim10 results ΦO0= 0.0938 ΦO1= 0.0264  

 
are reflected in the performance cost functions of the two for this simulation case: 
ΦO0= 0.0938 and ΦO1= 0.0264. 

Figure 4.10 presents the results of Sim12, for the case when the process 
has a different state space model than the one considered by the MPC algorithm to 
project the future state over the prediction horizon, real heaters that can be turned 
on and off which translate into 1kW steps of the manipulated variable and 
unavailable weather forecast. The performance of the offset free MPC is ΦO1= 
0.0262 while the performance of the classic MPC is rising to higher values of ΦO0= 
0.0992.  

Another assumption that can be changed is the presence of white noise 
disturbances into the process internal states or in the output of the process due to 
measurement noise. The state and output noise is introduced in future simulations 
for researching the effect on the controller’s performance under simulation scenarios 
presented so far. 
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Fig. 4.10. Simulation Sim12 results ΦO0= 0.0992 ΦO1= 0.0262  

 
Figure 4.11 presents the simulation case study Sim16 where the process 

and system model differ, the heaters are 1kW, the weather from the local weather 
station is available with a 24 hours ahead prediction, and white noise on the states 
and output. 

This simulation case is constructed from the simulation case Sim10, on 
which the white noise was added. From the performance cost of the two MPC 
strategies ΦO0= 0.0805 and ΦO1= 0.0337 one can conclude that the classic MPC is 
operating with a better result than the same algorithm in the case of Sim10; 
however, this is true only for this simulation, as the consistency of the result is not 
proved and will depend on the two white noise sequences affecting the states and 
the system output 

The augmented variation based MPC will perform with more close results on 
different white noise sequences than the classic MPC, as it results from the 
comparison chart at the end of the section. 
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Fig. 4.11. Simulation Sim16 results ΦO0= 0.0805 ΦO1= 0.0337  

 
The simulation case study Sim18 presented in figure 4.12 represents the 

worst case scenario for the MPC for controlling the inside temperature of a building: 
• The process and the model used by the controller are different  
• There is no weather prediction, and the values are considered 

constant (for the temperature) as the local average for that period 
and the solar irradiance is considered half of the maximum 
irradiance available for that particular day, in order to approach both 
the case of sunny weather – when the actual solar irradiance will get 
close to the maximum available irradiance and the case of cloud 
cover – when the irradiance will be closer to zero 

• The heaters have 1kW step change 
• There is noise both on the state of the process and on the output 

measurements  
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Fig. 4.12. Simulation Sim18 results ΦO0= 0.0893 ΦO1= 0.0315  

 
The performance results are given by the cost ΦO0= 0.0893 and ΦO1= 

0.0315. 
However, as stated before, the classical MPC is not consistent, as the 

performance varies over large intervals, due to the lack of adaptability to 
disturbances and modelling errors. As shown in simulation case study Sim18b, 
presented in figure 4.13, with different disturbance prediction – which can 
represent, for this case a different calendar day, for which the historical annual 
average is different from the study case of Sim18. As results the performances 
values of the two MPCs are ΦO0= 0.1138 and ΦO1= 0.0313. The performance of the 
augmented state variation based MPC is changed only by 0.0002 which is 
insignificant, while the classic MPC is subject to a decrease of 0.0345. 

A graphical overview of the simulated case studies considered here is 
presented in figure 4.14. 
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Fig. 4.13. Simulation Sim18b results ΦO0= 0.1138 ΦO1= 0.0313  

 
One can see from this representation of the performance cost of the 

considered study cases that the use of state observer enhances the performance 
and gives consistent results over simulation scenarios. 

The first simulation is considered the bench mark, as it runs under ideal 
conditions, with perfect predicted disturbances and a perfect model of the system. 

A large variation, especially on the classic MPC, is clearly seen beginning 
with simulation number 10, where the process and used model are different.  

From simulation number 16 noise is added on the states and on the output. 
Although the MPC using the Kalman filter for state estimation is constant in 

performance under same type of assumptions, as seen for groups of simulations 
{1,2,4,6}, {10,12} – when the process differs from the model and {16,18,18b} – 
where white noise is added, the classical MPC, with no observer has large variations 
in the performance index, influenced by the model errors and disturbances in an 
unpredictable way. 
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Fig. 4.14. Performance cost of the simulated study cases 

 
Table 4.1 presents the simulation results when using the two model 

predictive control algorithms developed in this chapter. There were 19 simulation 
scenarios considered for validating the algorithms, each having different initial 
assumptions regarding the system model, the stochastic noise, the weather 
forecast, and the electrical heaters, as described at the beginning of section 4.4.4. 
The first column of the table represents the simulation index, the most relevant of 
these simulation results being shown in the above presented figures.  

 
Table 4.1. Performance cost function values for different simulation scenarios 

Sim. 
System 
model 

Stochastic 
noise 

Weather 
forecast 

Electrical 
heaters 

Initial 
state 

Φഥ  

1 M1 S0 W1 H0 
O0 0.0148 
O1 0.0163 

2 M1 S0 W1 H1 
O0 0.0229 
O1 0.0168 

3 M1 S0 W2 H0 
O0 0.0195 
O1 0.0166 

4 M1 S0 W2 H1 
O0 0.0252 
O1 0.0174 

5 M1 S0 W3 H0 
O0 0.0267 
O1 0.0165 

6 M1 S0 W3 H1 
O0 0.0312 
O1 0.0173 

7 M3 S0 W1 H0 
O0 0.0716 
O1 0.0185 

8 M3 S0 W1 H1 
O0 0.0848 
O1 0.0252 

9 M3 S0 W2 H0 
O0 0.0754 
O1 0.0204 

10 M3 S0 W2 H1 
O0 0.0938 
O1 0.0264 

11 M3 S0 W3 H0 O0 0.0744 
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O1 0.0190 

12 M3 S0 W3 H1 
O0 0.0992 
O1 0.0262 

13 M3 S1 W1 H0 
O0 0.0581 
O1 0.0272 

14 M3 S1 W1 H1 
O0 0.0861 
O1 0.0311 

15 M3 S1 W2 H0 
O0 0.0604 
O1 0.0285 

16 M3 S1 W2 H1 
O0 0.0805 
O1 0.0337 

17 M3 S1 W3 H0 
O0 0.0633 
O1 0.0290 

18 M3 S1 W3 H1 
O0 0.0893 
O1 0.0315 

18b M3 S1 W3 H1 
O0 0.1138 
O1 0.0313 

 

4.4.5. Experimental results  
Experiments were conducted in order to test and validate the developed 

MPC strategy on the SYSLAB infrastructure from DTU Elektro at RISØ campus, as 
presented in chapter 2 and Appendix 1 of this thesis. 

The MPC was running in Matlab, on a computer connected to the network 
node of the FlexHouse (the energy efficient building used as the process for this 
experiment).  

The MPC solution – the command uk representing the number of heaters to 
turn on – was used to call a Java code which is connected to the main computer 
serving the FlaxHouse interface, responsible for controlling all the switches in the 
house – the heaters, the lights, the oven, and other appliances. 

For turning the heaters on and off a vector was defined having the 
dimension 10 by 1 containing the address of each of the 10 heaters and as the MPC 
was commanding a certain number of heaters uk to be turned on, a function would 
turn on the first uk heaters from the vector and turn off all the others. 

Using the same interface, the controller reads the inside temperature of the 
house, representing the process output on which the observer is used for the state 
estimation step. The experiments are running with a time sample of 10 minutes, 
and the x axis of the plots represent the time (in sample) of the day; for example, 
the day starts at sample 0 and end at sample 144 – representing midnight. 

The results plots from the experiment are arranged similar to the ones 
presenting the simulation results: 

• The first plot presents the prescribed reference and the measured 
inside temperature in the building (FlexHouse) 

• The second plot presents the number of heaters running at each 
time interval 

• The third presents the predicted (blue) and measured (red) solar 
irradiance 

• The fourth plot presents the predicted (blue) and measured (red) 
ambient temperature 
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Fig. 4.15. Experimental results 1 

 
After running the first experiment, with the results presented in figure 4.15, 

two undesired effects were observed: 
• Oscillations at the step increase in the reference 
• The temperature offset present from the second part of the 

experiment 

Having this in mind, after the first experiment, additional considerations and 
changes had to be made: 

• The inside temperature had to be calculated as the average 
temperature of the eight rooms, as for this experiment only one 
temperature was measured, the one from the main hall, room 0 

• The communication interface had to be enforced with additional 
function calls because it was observed that the heaters were not 
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responding to the MPC command; for example, in the morning, time 
between 160-180, the controller was requesting 0 heaters and there 
were two heaters turned on; this was seriously affecting the 
experiment 

 
Fig. 4.16. Experimental results 2 

 
The assumption on which the MPC was based that all the heaters have 1kW 

output power and the same effect on the inside temperature if a one room building 
model is used in a real life experiment are introducing additional modelling errors.  

The second experiment was using the average inside temperature of all the 
eight rooms and the modified communication interface in order to get better results, 
as seen in figure 4.16. 

The MPC was developed and ready for field tests at the end of April, when 
the weather started to become sunny and the temperatures rose as it can be seen 
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in the plots from experiment 1 and 2. During the day no heaters were necessary for 
the inside temperature to reach the prescribed values. 

All the electrical heaters were physically limited by a thermocouple which 
turns off the heaters when the temperature reaches 30 degrees Celsius. As the 
model considers one large room (with one temperature) and the real system 
consists of eight rooms (each with its own temperature) although all the inside 
doors are open, due to the building’s geometry, the rooms can have a large 
difference in temperature. Because the heaters are used in the same sequence by 
the MPC, starting from the low index of the vector defining the addresses of the 
heaters, the reference was not set to higher values closer to 30 degrees; in this 
case it is likely that in some rooms (which have their heaters set at the beginning of 
the vector and are started first) the inside temperature could reach 30 degrees and 
automatically shut down the heaters, altering the operation of the MPC. 

As it can be seen from figure 4.16, at the end of the day (sample 126 is 9 
PM), the temperature inside the house is 26 degrees and the MPC can operate only 
during the night to track the prescribed values. 

The controller of this process can affect only one direction of the system, 
that is the MPC cab only increase the temperature by turning heaters on and cannot 
take any action in lowering it. The decrease in temperature must come naturally, 
and the MPC can only set all the heaters to off. 

 

4.5. Conclusions  
 
The model predictive control is a well suited algorithm to be used for inside 

temperature control of a building. Due to the nature of the process which has large 
time constants, this advanced control algorithm can be used at time samples of 
minutes or tens of minutes, that overcomes the MPC’s shortcoming of requiring 
computation effort to solve a multivariable optimization problem.  

This MPC formulation presented in the first part of the chapter presents 
offset from the reference due to model errors and unknown disturbances as seen in 
the simulations case studies. The performance cost, defined to measure the systems 
offset, increase its value as the simulation scenarios are considering more difficult 
cases, showing a decay of performance. 

These unknown errors can be integrated into the model by augmenting the 
state-space model with additional disturbance states and using an observer to 
estimate the new states. As presented in the comparison results, by using this 
augmented model for the MPC formulation, the performance cost has better and 
consistent values over the simulation scenarios compared to the initial MPC and 
relatively close to the bench mark scenario that considers perfect simulation 
conditions. 

The MPC implementation for the experimental setup revealed the necessity 
of additional considerations and modifications: an average inside temperature based 
on measurements from all eight rooms of the building was used.  

Another onsite observation was that all the heaters have a thermostatic 
controller that disconnects the power if the temperature exceeds 30 degrees 
Celsius. This physical limitation, corroborated with the use of the average inside 
temperature as the controlled variable and the fact that the heaters were always 
switched in the same order, increased the probability that, even dough all the doors 
were open inside the house, in some rooms the temperature would exceed the 30 
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degrees limit; this would lead the heaters to be automatically switched off, 
disregarding the command from the controller, even if the house average 
temperature would not be achieved. 

The simulation results show that the MPC is operating with very good results 
even in the case when no data is available from a weather station for the predicted 
solar irradiance and outside ambient temperature. As the MPC needs the weather 
prediction in order to calculate future states over the prediction horizon, in this case, 
the controller is considering a constant outside temperature like the annual average 
temperature of the geographic location or the best approximation based on available 
data; for the solar irradiance the same can be done: a solar irradiance evolution 
during a sunny day can be generated considering the particularities of the location. 
The errors between the real and the roughly predicted values of the disturbance are 
integrated by the additional states of the system, and offset free control is achieved. 

As a Kalman filer is used to estimate the system’s states, the controlled 
process achieves good results, with low performance cost, when white noise is 
affecting the states and the process output. However, the information about the 
noise covariance has to be known, which itself, is a separate system identification 
problem. 

During simulations considering white noise disturbance, one could see that 
the evolution of the performance cost of the process controlled by the first MPC 
algorithm manifested large variations from one white noise sequence to another 
compared to the constancy of the second offset free MPC that presented very similar 
values. 
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5. Optimizing Energy Consumption by using 
Economic MPC 

5.1. Introduction 
On the objective of the MPC criteria, the literature concerning energy 

efficient buildings can be divided into two groups: controlling the inside comfort 
parameters, like the inside temperature to track a prescribed reference [Chen2002] 
[Henze2004] [Koch2012a] [Kolokotsa2009] [Kumemrt2001] and second, to 
minimize the energy cost of maintaining the parameters inside a comfort zone; the 
energy cost optimization is also referred to as economic MPC [Grande2008] 
[Halvgaard2012] [Hazyuk2012b] [Houwing2008] [Koch2012b] [Hovgaard2011] 
[Winn1985] [Ma2009] [DiGiorgio2012]. Recently Economic MPC has emerged as a 
general methodology with efficient numerical implementations and provable stability 
properties [Hovgaard2012]. 

This control is seeking to incorporate predictions of weather, occupancy 
behavior, renewable energy availability, and price signals from the grid. The model 
predictive control (MPC) presents a methodology that can use all these predicted 
values in order to improve the energy efficiency consumption by load shifting and 
peak shaving, minimize the cost of operation by using low price energy, as shown in 
(Nagai, 2002) and in (Ma 2011),  and maximizing the use of renewable energy. 

This chapter proposes a MPC that minimizes the overall electrical energy 
cost of heating a building which also has a local PV installation. By using the 
building’s ten 1 kW heaters, a price signal for electrical energy, a prediction of solar 
irradiation and of ambient temperature it is possible to coordinate the heaters 
consumption so that as much energy as possible is consumed from the locally 
produced PV. 

In [Hazyuk2012b] a simulation study is presented where a cost function 
minimization is proposed for MPC which ensures the thermal comfort in the building 
with minimal energy consumption. The problem is formulated as a linear program, 
the optimization function being linear as well as the constraints. 

In Norway an economic MPC was implemented on a small scale experiment 
as presented in [Grande2008], where market participation is involved in demand 
response. The paper presents a pilot study of distributed resources from household 
customers utilizing smart meters, remote load control and load shifting.  

Another paper that deals with a floor heating system and a heat pump 
presented in [Halvgaard2012]. The system is represented by a state space model 
and the objective is to minimize the cost of maintaining the inside temperature 
inside the thermal comfort zone. By shifting the consumption of the heat pumps 
used by the floor heating systems to periods of time when the energy has a lower 
price. The objective function is defined as a linear program which minimizes the cost 
of the problem – hence the usage of the name ‘economic MPC’. 

Another example of economic MPC is in [Hovgaard2011] where the 
simulation study of MPC implementation for supermarket refrigeration is presented. 
Models validated from real supermarkets as well as real weather data and energy 
prices from the Nordic power market are used. The paper considers the fluctuations 
of price in the real power market that are available for industrial consumers which 
can change within a time interval of 2 to 15 minutes. According to the movement of 
price due to the relation between production and consumption, this effect is named 
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up regulating price as primary reserve, when the production exceeds consumption, 
or down regulating as primary reserve, when the consumption is larger. As a cost 
objective function, the problem is regarded as a linear program. 

A system of a building equipped with a water tank used for storing cold 
water produced by chillers is presented in [Ma2009]. Predictive knowledge of 
building loads and weather conditions is available. A model predictive control 
algorithm for optimally store thermal energy in the tank is developed. Terminal 
constraints are introduced for ensuring stability of the optimization problem. 
Historical consumption patterns are considered that provide the predictor with an 
envelope for computing the future values into the prediction horizon. 

In [Ma2011] economic MPC with a linear programing problem is 
implemented. The problem is formulated as a single floor multi-zone commercial 
building equipped with a variable air volume cooling system. The MPC is 
implemented in Matlab and a virtual building is simulated in EnergyPlus. Matlab is 
also used to identify the model’s parameters by generating a set of inputs. The 
models for temperature and power consumption of the building are identified. The 
identification models are autoregressive exogenous (ARX) and the identification is 
realized by using a sequence of pseudorandom binary sequence (PRBS) inputs to 
each zone of the floor. It is showed that in a smart-grid environment the MPC can 
make cost savings by pre-cooling and load shifting at low-price energy tariffs.  

In [DiGiorgio2012] an economic MPC was used for load shifting of different 
house loads smart appliances, energy storage units and smart meters. The loads are 
categorized in plannable loads, which can be shifted from the set start time without 
a discomfort for the user, this is mainly true for the smart appliances, and the non 
plannable loads, represented by the loads that are required to operate at the time 
the consumer sets the start time, for example the lights and the TV set. This 
solution is implemented by using Matlab and the optimization function is solved 
using the commercial software package CPLEX [CPLEX]. 

 
The subject of this chapter is minimizing the cost of maintaining the inside 

temperature of the house between set limits, by using the electric heaters when the 
energy price from the grid is lower. Unlike the tracking MPC described in the last 
subchapter when the objective was to control the inside temperature to follow the 
reference in the presence of disturbances and model and prediction errors, in the 
case of economic MPC formulation, the thermal model of the house is used as a 
storage device which has the possibility to store thermal energy when the price is 
low, by reaching an upper comfort limit of the temperature and to use that excess 
heat in order to operate during high price of the grid energy periods by using as 
little grid energy as possible. 

 

5.2. Optimizing grid energy cost  
 
The economic MPC algorithm development in this work relies on the 

algorithm presented in section 4.4 as it is developed in Matlab using the quadprog 
solver from the Optimization Toolbox. 

An additional term was added to the optimization function which represents 
the grid energy price (CG) at each moment k, with the assumption that the energy 
price from the grid is accurately predicted. As the optimization algorithm relies on 
future values of the price, these price values must be known in order for the system 
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to react properly and to store low price energy into the inside environment of the 
building. This is one assumption made in this chapter, as the price is changing in 
real time. 

The optimization function is represented by Equation 5.1: 
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௨
Φ ൌ

1
2 ෍ԡݖ௞ െ ௞ԡொݎ

ଶ
ே

௞ୀ଴
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ଶ
ேିଵ

௞ୀ଴

൅ ܳ௖௢௦௧ ෍ ௞ݑ௞,ீܥ

ே

௞ୀ଴

 (5.1) 

 
The grid energy cost also has a weight factor Qcost, which enables a tradeoff 

between tracking the desired inside temperature and minimizing the consumption 
cost of the overall operation. 

For the simulation scenarios the setup presented in figure 5.1 was used. The 
household is connected to the grid which provides the house loads with electric 
power. The price of the grid electric power is known over the entire optimization 
horizon and the controller shifts the load power consumption to the time intervals 
when the price is lower. 

In all the simulations the MPC controller uses the formulation described in 
Equation 4.50 which relies on the process mode, equation 4.2, with two additional 
space variables for considered disturbances: solar irradiance and ambient 
temperature. These two additional state variables are estimated by the observer in 
order to achieve offset free control in the presence of deviations from the predicted 
values of the two disturbances. 

The MPC controller has hard limitations on the controlled variable – the 
inside temperature, that has to be inside [20...23] °C interval and on the 
manipulated variable – power supplied to the heaters, that has to be in the [0...10] 
kW interval, and can have only integer values as power consumption steps. 

The MPC controller starts with offline predicted values for solar irradiance, 
temperature, and grid price and for the third simulation case presented in this 
chapter, the predicted PV power output. 

The sample time of the simulations is 10 minutes, and the prediction horizon 
is 50 time steps. 

In addition to the power consumed from the grid, (represented by PGrid2Load 
in figure 5.1) the household can be supplied with green power produced by a local 
PV plant mounted, for example, on the roof of the house. This scenario, considering 
the presence of the PV plant, is used both in this section and in section 5.3, as the 
thesis presents the study of renewable energy resources integration in the low 
voltage distribution grids. 

In the case that the household is equipped with a PV installation, the PV it 
produces power independently of the heaters’ (load) consumption, according to the 
weather conditions; however, the power source of the heaters can be prioritized: it 
is considered that the load first consumes the necessary power form the PV 
(PPV2Load) and the remaining produced and locally unconsumed power is injected to 
the grid (PPV2Grid).  
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energy is consumed from the PV plant and second from the grid; the sources are 
also represented with red (PV) and green dotted lines (Grid). In this way both the 
cases when the household is provided with a PV plant and the case when the 
household has the grid as the single power source are described. 

In the third plot, one can see the energy price from the grid in Euro/MWh. 
These values were taken from Nord Pool spot market [NordPool]. 

The effect of economic MPC is clearer when the difference in the price is 
higher, as it is around the peak price at 30 hours and 130 hours.  

 

 
Fig. 5.2 . Economic MPC simulation results for the study case M1M1W1S0 

 
Plots four and five show the weather conditions: in this study case, the solar 

irradiance and the ambient outside temperature are perfect predicted. In addition, 
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134                        Optimizing energy consumption by using economic MPC – 5 
the MPC uses a perfect thermal model of the house. This case can be considered a 
benchmark case for further comparison of the performance of different algorithms. 

In figure 5.3 a study case of more realistic operation is simulated: 
• The economic MPC uses the one state-space model as for the plant 

model the three state-space model was used 
• There are weather prediction errors; the weather prediction was 

taken from a web resource, a weather station [WeatherRISO] and 
the real data was measured with onsite devices 

• White noise was considered on the input and output of the system – 
representing measurement errors and unknown stochastic evolution 
of the inside temperature 

The same plot representations as described above were used to illustrate 
the results in this case. 

One can see that the overall evolution is very similar to the first study case, 
in the sense that prior to the price peaks the controller stores thermal energy 
around 30 hours and 130 hours. However, the heaters are switched more often in 
order to cope with the disturbances and prediction errors.  

In some moments the lower limit is slightly breached due to the stochastic 
perturbation. This breach can be avoided by using the so called stochastic MPC, 
which considers the cumulative dispersion of the white noise over the optimization 
(prediction) horizon and includes this cumulus in the constraints definition at each 
computation step; This has the role of tightening the constraints, or the limits, on 
the controlled variable, in this case the inside temperature, and when the stochastic 
perturbation occurs, the imposed limit is not reached due to this extra ‘space’ that 
the tighten limit provided. 
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Fig. 5.3. Economic MPC simulation results for the study case M1M3W2S1 

 
In order to emphasize the effect of the economic MPC on the minimization of 

the overall operation cost for different study cases, the results by using the 
economic MPC were compared with the operation results by using the tracking MPC 
presented in section 4.4. For each study case, for the tracking MPC the prescribed 
reference is constant over the operation interval and is equal to the average inside 
temperature resulting from the simulation with the economic MPC. This 
consideration was intended to eliminate the differences in the consumed energy for 
the two cases and to be able to compare the effect of load shifting both from a 
qualitative and quantitative perspective. 

Figure 5.4 presents the operation results when the tracking MPC was used 
for the study case of M1M3W2S1; the same study case which is represented in 
figure 5.3 when the economic MPC is used. 

 
Fig. 5.4. Simulation results by using tracking MPC set at a constant value for the study case of 

M1M3W2S1 
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A number of six simulation study cases were chosen to compare the results 

of using the Economic MPC, presented in table 5.1, and the results by using the 
tracking MPC, presented in table 5.2, which does not take into account the price of 
energy. The simulations were realized under similar conditions, having the same 
weather data and the same models were used. Also the average inside temperature 
was chosen to be similar in order to make the comparison possible.  

 
Table 5.1. Economic MPC simulation results for different operation study cases 

Study Case EH EPV2H EG2H EPV2G CPV2H CG2H CG2HnoPV Tavg 
(kWh) (kWh) (kWh) (kWh) (Euro) (Euro) (Euro) (°C) 

M1M1W1S0 510.66 72.84 437.82 45.08 1.457 14.498 17.01 20.20 
M1M3W1S0 516.33 74.40 441.93 43.52 1.488 14.672 17.26 20.22 
M1M3W2S0 517.33 72.31 445.02 45.61 1.446 14.759 17.28 20.25 
M1M3W3S0 516.50 76.34 440.16 41.58 1.526 14.622 17.27 20.23 
M1M3W2S1 516.00 69.64 446.36 48.28 1.39 14.80 17.23 20.29 
M1M3W3S1 515.33 74.38 440.94 43.53 1.487 14.628 17.21 20.28 

 
Table 5.2. Tracking MPC simulation results for different operation study cases 

Study Case EH EPV2H EG2H EPV2G CPV2H CG2H CG2HnoPV Tavg 
(kWh) (kWh) (kWh) (kWh) (Euro) (Euro) (Euro) (°C) 

M1M1W1S0 526.33 83.47 442.86 34.48 1.67 14.82 17.79 20.20 
M1M3W1S0 531.16 84.21 446.96 33.74 1.68 14.97 17.96 20.18 
M1M3W2S0 533.83 81.85 451.98 36.09 1.64 15.15 18.07 20.25 
M1M3W3S0 533.00 82.21 450.79 35.74 1.64 15.10 18.20 20.23 
M1M3W2S1 531.66 79.36 452.30 38.58 1.58 15.15 17.98 20.27 
M1M3W3S1 531.83 80.25 451.57 37.69 1.60 15.13 17.98 20.28 

 
For the results presented in table 5.1 and table 5.2, the following notations 

have been used: 
Study case – simulation identifier  
EH – the total energy consumed by the heaters during simulation interval 
EPV2H – the amount of energy consumed by the heaters from the local 

produced PV energy 
EG2H – the amount of energy consumed by the heaters from the grid 
EPV2G – the amount of energy produced by the PV to be sold to the grid 
CPV2H – cost of EPV2H in Euros 
CG2H – cost of EG2H in Euros 
CG2HnoPV – cost of EH in Euros, in the case that no PV panels are present and 

the entire energy is taken from the grid, at the grid set price  
Avg. Ti – average inside temperature over the simulated time horizon 
 
For a more clear view over the benefits of the economic MPC regarding the 

cost minimization, the obtained results for the cost of energy used during operation 
are presented in figure 5.5. 
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Fig. 5.5. Comparative results between using a cost optimization MPC and a constant reference 

tracking MPC 
 
These results show a cost reduction of the energy bill for each study case 

over a time interval of one week, emphasizing the effect of the economic MPC. This 
is due to the fact that the tracking MPC keeps the inside temperature using a rather 
continuous energy consumption of the heaters while the economic MPC uses more 
low price energy and decreases consumption on the high price intervals. 

However, for single household, the savings are rather modest in a time 
interval of one week as presented in these simulations. The consumption 
optimization’s effect is seen better on large scale local grids when a large number of 
consumers are optimizing their consumption. 

5.3. Economic MPC with local PV production 
One of the most rapidly growing types of distributed generation is in 

household PV plants; this increased penetration adds to the complexity of 
distribution grid operation as stated in [Madureira2009]. 

In this section an approach was made to include in the economic MPC 
formulation the locally produced PV power availability. The purpose of this is to give 
high priority for consumption to the local green energy. In other words to integrate 
the PV resource installed by the consumer near the house, in the low voltage 
distribution network as presented in figure 5.1. 

By using the local produced energy, the amount of energy that flows 
between the grid and the consumer diminishes and the grid is less used as a storage 
device as it is nowadays, hence the consumer is more energy independently and the 
grid is less congested. 

During each simulation, two different cases can be studied:  
- The first, when the house does not have any PV installation – the 

heaters are consuming power entirely from the grid  
- The second, when the house has a PV installation – the heaters are 

consuming power both from the PV plant and from the grid. The higher priority is to 
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consume from the local PV plant and the remaining required power is taken from 
the grid. The amount of unused PV energy is sold to the grid. 

The MPC controller tracks the inside temperature with minimal overall 
energy cost, also considering the power production of the installed PV panels. The 
controller calculates a virtual price on which the available PV power, that has a 
lower cost for the user (CPV) of 0.02 Euros, is considered to alter, with a weight 
factor, the market imposed price. 

 
ܷ ൌ ܲீ ௥௜ௗ ൅ ௉ܲ௏ (5.2) 

where 
U – is the heaters’ consumed power  
Pgrid – is the amount of power consumed by the heaters from the grid 
PPV – is the amount of power consumed by the heaters from the local PV 

system. 
The cost minimization function would be  
 

min
௉ಸೝ೔೏

Φ ൌ ீܲீܥ ௥௜ௗ (5.3) 

 
Considering U as the optimization variable and replacing equation 5.2 in 

equation 5.3 the following relation is obtained: 
 

min
௎
Φ ൌ ܷீܥ ൬1 െ ௉ܲ௏

ܷ
൰ (5.4) 

 
where  
CG – is the predicted price of the grid energy 
U – represents the vector with the next N command values for the time 

horizon 
PPV – represents the predicted output power from the PV installation 
 
The virtual price which considers both the grid price and the PV available 

output power is calculated with the following mathematical relation: 
 

௩ܷܥ ൌ ீܥ ൬1 െ ߙ ௉ܲ௏

௦ݑ
൰ ܷ (5.5) 

 
Where additional assumptions were made: 

ߙ - ൌ ஼೛ೡ

஼ಸ
 - a weight factor 

- at each optimization step, us is taken as the last command 
value, uk-1. 
The optimization function is written as: 
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 (5.6) 

 
The optimization function in the case of the economic MPC with PV 

integration contains three terms referring to temperature tracking, command 
variation, and command cost each with a set weight: Q, S and Qcost respectively.  
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Figure 5.6 and figure 5.7 represent the result plots of two simulation study 

cases, under operation conditions explained in section 4.5 as coded in the case 
study index. 

The simulations were realized in the same conditions as presented in section 
4.5: the same models, the same available weather prediction data and time step. In 
this case however the economic MPC uses the objective function from equation 5.6 
that maximizes the consumption of the local produced PV energy by applying a 
virtual price, equation 5.5, depicted in the second plot of the next two figures. 

The plots illustrated here have the same represented values as described in 
section 4.5 which now have a different operation evolution according to the new 
objectives. 

 

 
Fig. 5.6. Economic MPC with PV integration simulation results for the study case M1M1W1S0. 
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Figure 5.6 plots the results from the study case M1M1W1S0 which is the 

ideal case when both the model used by the MPC and the weather prediction are 
perfect; thus this is more a bench mark study case. 

In figure 5.7 a more realistic case is presented where modelling errors, 
unknown disturbances and white noise are affecting the system. 

 

 
Fig. 5.7. Economic MPC with PV integration simulation results for the study case M1M3W2S1. 

 
From the simulations one can see that the controller shifts the load (the 

electrical heaters) to the intervals when the virtual price is low, that is when the PV 
production is high. In the second plot it is shown that the PV output power 
(represented with teal line) is largely consumed by the heaters, represented with 
red dotted line. 
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For a quantitative perspective of the proposed economic MPC with PV 

integration, an extensive array of study cases were investigated for testing. The 
numeric results are presented in table 5.3 and a visual representation is shown in 
figure 5.8. 

 
Table 5.3. Economic MPC with PV integration simulation results for different 

operation study cases 
Study Case EH EPV2H EG2H EPV2G CPV2H CG2H CG2HnoPV Tavg 

(kWh) (kWh) (kWh) (kWh) (Euro) (Euro) (Euro) (°C) 
M1M1W1S0 523.66 100.77 422.89 17.14 2.01 14.07 17.58 20.48 
M1M3W1S0 528.33 102.98 425.35 14.93 2.05 14.18 17.77 20.49 
M1M3W2S0 534.16 100.23 433.93 17.69 2.00 14.44 17.96 20.51 
M1M3W3S0 530.67 100.04 430.62 17.88 2.00 14.35 17.82 20.51 
M1M3W2S1 528.66 98.56 430.10 19.36 1.97 14.32 17.74 20.56 

 
Figure 5.8 shows graphical representations of the amount of local produced 

PV power used by the heaters in fife different operation scenarios. For each scenario 
the consumed PV power by using the proposed economic MPC and the tracking MPC 
algorithm are compared to the total amount of available produced PV power.  

 

 
Fig. 5.8 Comparative results between using a cost optimization MPC with PV integration and a 

constant reference tracking MPC 
 
It is shown that by using the proposed economic MPC algorithm with PV 

availability estimation the controllers manages to consume around 85% of the 
produced PV power 
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5.4. Comparison between traditional thermal control and 
proposed algorithms  

 
In this section it is presented a comparison between the results obtained by 

using a traditional thermostatic controller and the algorithms proposed and 
developed in the last section. The purpose of this comparison is to highlight the 
advantages of using control algorithms in controlling the inside temperature of a 
building introducing optimization in the operation cost and maximizing the local 
produced green energy. 

Making buildings energy efficient is an important task because, as presented 
in chapter 2, the building sector is responsible for an important percent of the total 
consumed power at the global scale. 

As presented in the simulation results from the last section, by using 
advanced control algorithms for cost optimization the benefits for a single household 
are rather modest, just a few Euros per month. This small gain is due to small 
variations in the grid energy price from high and low price intervals and also for the 
relatively small consumption of a household.  

Also this optimization consists in modifying the internal temperature set by 
the user on different time intervals, both for lowering and rising the temperature 
according to grid energy price and PV availability. This has been discussed by 
researchers and green energy sceptics like in [Vaclav2012] that considers that in 
real life the user will not be willing to give up the total comfort (in this case a 
constant temperature set by himself) for such a small amount of economic gain. 

However, even if for an individual the economic savings are not high and the 
advanced controllers could alter with the thermal comfort of a person, if these 
controllers are implemented on large scale some important benefits can be drown: 

- the savings are accumulating from a large number of households 
- considering the grid energy price, the consumption can be shifted to time 

intervals when energy is cheaper (that is the plants connected to the grid are 
producing more energy that is consumed) and thus fewer large energy storage 
devices are needed at the grid level 

- considering the local produced green energy for renewable resources the 
buildings can become more energy independent  

- the case when the consumer is becoming an energy producer and energy 
is transported into the grid in both ways is avoided 

This section will present comparisons from the perspective of the grid 
energy and grid energy cost used for the heating system in the case a 10 kW PV 
plant is installed near the household, as shown in figure 5.1 as well as the amount 
of available local produced PV energy is consumed by using different control 
algorithms. 

The four control algorithms are: 
- thermostatic control  
- tracking MPC 
- economic MPC with grid energy cot optimization 
- economic MPC with grid energy cot optimization and local PV availability 

5.4.1. Control algorithm 1 ­ Thermostatic controller 
 
The simplest controller for the inside temperature of a building is the 

thermostatic controller, which is an on/off controller: for its operation an upper and 
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a lower temperature limit are set; during operation, when the upper temperature 
limit is reached, the electric heaters are turned off and when the lower limit is 
reached, the heaters are turned on. 

For the simulation a thermostatic controller is implemented to maintain the 
inside temperature of the building between given limits: [19...21.5]. For comparison 
reasons, the limits in this simulation scenario differ from the other scenarios in order 
that the average temperature in the house, for the simulation time interval, to be 
the same. This has the purpose to accurately reflect the MPC controller’s effect in 
similar operation conditions.  

Figure 5.9 represents the operation results of using this controller. In the 
first plot is represented the inside temperature during the operation. One can see 
that it oscillates between the imposed limits, having a slower descent during 
daytime, when the solar irradiance heats the inside temperature of the building and 
slows its decay due to the low outside temperature. 

The second plot represents the power consumed by the heaters, which for 
this controller are all turned on or off in the same time, and the two energy sources 
consumed by these heaters, the PV and the grid, the local PV having higher priority. 
Also with teal is represented the available PV power, which in this case is largely 
unused by the heating system and is injected into the grid. 

 

 
Fig. 5.9: Thermostatic control simulation. 

 
From the simulation results two conclusions can be drawn regarding the 

thermostatic control: 
- this type of controller commands high power consumption on short time 

intervals (tens of minutes) 
- due to the solar irradiance heating effect on the inside temperature, the 

heaters are more likely to be switched off during sunny time intervals.  

5.4.2. Control algorithm 2 ­ Tracking MPC 
 
For the next three control algorithms the graphical illustrated study cases 

are the same and the operation considerations are for the worst case scenario, 
when modelling errors, unknown disturbances, and white noise on the input and 
output of the process are present. 
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The proposed tracking PMC minimizes the difference between a preset 

reference and the inside temperature under modelling errors and unknown 
disturbances as was explained in section 4.4. 

The results when using this algorithm are shown in figure 5.10. the first plot 
shows the inside temperature which is maintained inside the comfort limit. 

 
Fig. 5.10: Tracking MPC simulation. 

 

5.4.3. Control algorithm 3 ­ Economic MPC with grid energy cost 
optimization 

 
The economic MPC was formulated by adding a term to the optimization 

function which minimizes the operation cost of the heating system. This implies that 
the heaters will consume more energy at low price intervals and store thermal 
energy into the house internal environment. The tendency for the controller is to 
store energy prior to high peak prices as seen in figure 5.3.  

Although the operation cost is minimized in the case when the energy is 
consumed from the grid, as shown in the results from section 4.5 in figure 5.5, in 
the case of using a household configuration with an installed PV plant as in figure 
5.1, the amount of PV used is rather smaller than using the tracking algorithm. 

Also one can note that in the use of control algorithm 2 and 3, the energy 
consumed from the local PV plant has a fluctuating percentage of the total PV 
production, because the controllers are not directly correlated to the PV power 
availability. 

5.4.4. Control algorithm 4 ­ Economic MPC with grid energy cost 
optimization and local PV availability 

 
By defining a virtual energy price, as in equation 5-5, considering the grid 

energy price, the predicted available PV power and the necessary power for the 
electrical heaters a new economic MPC was proposed, developed and tested through 
simulations as explained in section 4.6. 
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The results during the worst case scenario simulation are represented in 

figure 5.7 and present the effect of the control which stores thermal energy both 
when solar energy is available and prior to the peak energy price in the grid. 

 

5.4.5. Results 
As the purpose of this study is to highlight the benefits of using the locally 

produced green energy, with a high priority over the energy taken from the grid, the 
discussions will focus on the amount of PV energy used by the heating system and 
the cost of consumed grid energy in each simulation study case. 

From the knowledge of the author, to this day, the national governments are 
subsidizing the individual renewable energy resources installation and production; 
this translates into policies in which the grid is buying energy from the consumer 
with a higher price than it is selling. In this case, it would be more economical 
convenient for the consumer to sell all the green energy that his PV is producing to 
the grid. As the RES are entering the low distribution grid in rising numbers and 
consumers are including them in the household setup even into the architectural 
design of the buildings, the policy on green energy price will change. 

This work considers the case when the selling price of the green energy from 
the consumer to the grid is lower than the grid energy price; this would encourage 
the consumer to use the locally production which is cheaper than buying energy 
from the grid. 

Comparative results between the four control algorithms developed in this 
section are presented in table 5.4 and in figures 5.11 to 5.13, for the simulation 
conditions defined by M1M3W2S1. For table 5.4 the following notations have been 
used: 

Controller type – one of the four controllers investigated in this study 
EG2H – the amount of energy consumed by the heaters from the grid 
CG2H – cost of EG2H in Euros 
EPV2H – the amount of energy consumed by the heaters from the local 

produced PV energy 
EPV2G – the amount of energy produced by the PV to be sold to the grid 
CPV2G – cost of EPV2H in Euros 
 

Table 5.4. Comparative results for the four control algorithms 
Controller type EG2H CG2H EPV2H EPV2G CPV2G 

 (kWh) (Euros) (kWh) (kWh) (Euros) 
Thermostatic 498.37 16.78 24.96 92.99 1.86 
Tracking MPC 451.57 15.13 80.25 37.70 0.75 
Economic MPC 440.94 14.63 74.38 43.57 0.87 
Ec. MPC PV  430.10 14.32 98.56 19.39 0.39 
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Fig. 5.11: Graphical representation of the energy consumed from the grid. 

 

 
Fig. 5.12: Graphical representation of the cost of the energy consumed from the grid. 

 

 
Fig. 5.13: Graphical representation of the energy consumed from the local PV plant. 

 
When interpreting the three figures presenting the simulation results, one 

needs to keep in mind the initial assumption on the household setup stating that the 
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heating system is supplied from two energy sources. The PV system has the high 
priority, the electric heaters consuming the energy from the PV, and the remaining 
energy deficit is taken from the grid. 

Another observation is that all the simulation study cases consider the same 
weather conditions and the same average inside temperature. This means that both 
the energy from the sun and the total energy consumed by the heaters, that are 
responsible for the inside temperature are the same for the four simulations. 

Figure 5.11 shows the evolution of the grid energy consumption when using 
the four algorithms. By using the thermostatic controller, the heaters will be turned 
off most of the time when the PVs are producing and hence, they will consume the 
largest amount of grid energy compared to the other controllers. 

The tracking MPC algorithm controls the electric heaters at a more constant 
consumption profile, operating also during the day and thus using more energy from 
the PV system; as a consequence, the energy consumed from the grid is less than in 
the first case. 

The economic MPC optimizes the energy consumption by minimizing the grid 
energy cost and so, the grid energy price will determine the amount of energy taken 
from the grid as the consumption is shifted to low price time interval. This does not 
assure a decrease in the grid energy consumption and, consequently, an increase of 
PV energy consumption.  

When using the economic MPC with maximizing the consumption of locally 
produced PV energy a decrease in the energy taken from the grid is obtained. This 
has an economic advantage for the consumer and also a stability advantage for the 
grid as it is less subject to congestions. 

The results plotted in figure 5.12 are in direct link to the results from the 
previous figure as it presents the economic cost of operation for the four algorithms.  

As the first two algorithms are running without any knowledge of grid price, 
their operation will achieve great economic costs.  

The economic MPC is formulated to achieve the minimum cost as if it would 
consume energy exclusively from the grid. This algorithm achieves lower operation 
costs than the first two. 

The last algorithm minimizes the operation cost considering also the 
consumption of PV output power. This economic MPC controller is able to achieve 
the best operation cost compared to the others. 

 

5.5. Conclusions 
The results presented in this chapter emphasize the benefits of using model 

predictive control for houses as a dynamic thermal energy storage.  
By formulating the optimization problems and feeding the controller with 

predictions on the system’s variables, the MPC is able to achieve cost reduction on 
the electrical energy consumption from the grid. 

As demonstrated through simulations in this chapter, the MPC formulation 
can consider the presence of an installed PV plant maximizing the usage of locally 
produced renewable energy. The consumption of locally produced energy has a 
major benefit both for the user, by lowering the overall cost of energy and also for 
the operation of distribution grids with a high penetration of renewable energy 
generation. 
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This chapter presented an algorithm that deals with the two problems: 

minimizing the operating cost of the house heating system and maximizing the use 
of local produced energy and thus, lowering the burden on the distribution grid. 

From the source of power consumption perspective, the algorithm can be 
extended to use the energy from other types of local renewable energy sources. It 
can be extended also from the perspective of the types of loads that are shifted, not 
focusing only on the heat system but also on different household appliances. 

The proposed algorithm can be used to manage energy produced by other 
types of renewable energy generation, such as wind turbines and combined heat 
and power plants. The algorithm can also be modified for other types of 
consumption that has the ability to be shifted in time, such as water heaters, air 
conditioning units and refrigeration systems. 
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6. Conclusions 
 

6.1. Results and conclusions 
 
The work presented in this thesis is contributing to solve current problems 

affecting the microgrids due to renewable energy resources (RES) penetration on 
the low voltage distribution grid, by proposing and testing algorithms for voltage 
control and for optimizing the load consumption according to the grid energy price 
and RES availability. 

 
The main body of the thesis is structured on chapters around the five major 

objectives of the work: 
- Development of mathematical models for microgrid components and their 

validation based on measurements at the SYSLAB facility from Elektro DTU at 
RISØ  campus 

- Development, implementation, and validation of voltage control algorithms at a 
local consumer level, having no information about the configuration or 
parameters grid except the measured voltage at the local busbar 

- Development, implementation, and validation of an advanced control algorithm 
for controlling the inside temperature of an energy efficient building 

- Development, implementation, and validation of an model predictive control that 
optimizes the energy consumption of the heating system of the efficient building 
regarding the grid energy price 

- Development, implementation, and validation of an model predictive control 
algorithm that maximizes the consumption of locally produced energy  

 
Based on solving the problems raised by these objectives, as it was 

presented in the thesis, the main conclusions can be drawn: 
- At the SYSLAB facility there was only one weather station that measured the 

solar irradiance on a horizontal plane at a height of a few meters. In order to 
estimate the values of the solar irradiance and the temperature of the PV 
panels, having different tilt angles and orientations, a correction module was 
needed to be developed to estimate these weather values. Comparisons 
between electrical measurements taken from the real PV panels and the model 
output power when using the measured weather data and the correction module 
emphasized the role of panel orientation on the power output profile and also 
the effect of both solar irradiance and wind speed on the PC cells temperature. 

- For the photovoltaic panels two mathematical models were used: the one diode 
equivalent model and a model that relies on coefficients stated by the PV 
manufacturer on the technical data sheet on calculating the output power given 
certain weather conditions. From simulations and comparisons with electrical 
measurements from the real PV panels, it is concluded that both the models 
achieve good performances and can be used in power grid simulations; however 
the model based of the coefficients given by the producer is much easier to use 
since it uses simple arithmetic operations and can be easily implemented in a 
software or on a microprocessor application. 

- The developed and validated models for the PV panels, the vanadium redox 
battery, and the thermodynamic model of the house were implemented in 
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specialized software which facilitates simulations and experiments regarding 
power grid research topics. 

- The proposed thermostatic controller developed for the inside temperature 
control of a house has additional states as to the classical bang-bang control. 
This algorithm is commanding a more constant power consumption of the 
heating system that the classical one, with benefits to the low voltage grid 
stability. 

- The proposed voltage control algorithm implemented as a finite state machine 
uses the controllable electric heaters of the heating system to consume energy 
when the voltage is reaching high values. This operation, however, cannot be 
always used due to the inside temperature constraints, as a comfort 
temperature zone needs to be assured for the people inside the house. 

- The study presented in the thesis presents a comparison between different load 
shifting algorithms used to achieve voltage control by commanding the electric 
heaters. For these load shifting algorithms, the house is used as an energy 
storage device that stores it in the form of thermal energy. This energy can be 
stored also in chemical form into batteries, with additional economic cost. 

- The above mentioned algorithm concerns both busbar voltage and inside 
temperature constraints which are dealt with in separate states. The 
shortcomings of these algorithms are the lack of correlation between the two 
constrains and the inability to use predictions about the operation states of the 
process. An advanced control algorithm was needed to cope with these 
problems. 

- A strong candidate algorithm for dealing with constraints on the inside 
temperature and on the consumed power was identified in the model predictive 
control (MPC). Its ability to formulate an optimization problem with respect to 
constraints and predicted values over a moving time horizon made it suited for 
the inside temperature control application. 

- After a thorough investigation on the up to day specialized literature, a MPC 
formulation was developed, implemented and validated. An augmented state-
space model, for integrating the unpredicted errors, was used for a second MPC 
that was presenting offset free control when operating during hard simulation 
conditions, in the presence of modelling errors, unknown disturbances and white 
noise. The comparison of simulation results considering scenarios with different 
operation conditions showed that the developed MPC presents good 
performances which are consistent and closer to the bench mark scenario 
performance than the classical MPC implementation with no additional 
disturbance states. 

- The MPC can be formulated in order to optimize the cost of grid energy 
consumption by adding a term to the optimization function that considers the 
real value of the grid energy price over the scenario horizon. The controller 
shifts the electric load of the heating system to time intervals when the price is 
lower, thus storing ‘cheap’ energy into the building’s thermal capacity, and turns 
off the heaters when the price is high. 

- The model predictive control can be used, as presented in the algorithm 
developed and validated in this thesis, to maximize the consumption of locally 
produced green energy, by defining a virtual price that includes the grid energy 
price, the predicted PV availability and the current power consumption of the 
heating system.  
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6.2. Personal contributions 
The present thesis includes, from the author’s point of view, the following 

major contributions: 
• Development of a simulation model for a specific photovoltaic (PV) plant based 

on local measurements and experimental validation 
• Development of a correction module that enables the estimation of the solar 

irradiance on the PV panels and the PV cells temperature based on 
measurements taken from the local weather station  

• Development of a simulation model for a specific vanadium redox battery (VRB) 
based on measurements and experimental validation 

• Implementation of both microgrid components models in specialized software 
Matlab/Simulink and PowerFactory 

• Development and implementation of a finite states machine for a proposed three 
states thermostatic controller 

• Development and implementation of a finite states machine for thermal control 
that include over- and under- voltage states for dealing with voltage fluctuations 
at the local bus bar due to power flow in the microgrid 

• Experimental validation of the proposed finite states machine on SYSLAB 
microgrid setup  

• Development and implementation of a model predictive control (MPC) algorithm 
for controlling the house’s inside temperature to track the prescribed 
temperature reference 

• Implement an offset free solution of the tracking MPC that operates during 
modelling uncertainties, unknown disturbances, and white noise presence 

• Experimental validation of the proposed tracking MPC by experiments conducted 
on the SYSLAB microgrid 

• Development, implementation and validation of an economic MPC for optimizing 
the energy cost according to the grid energy price 

• Definition of a new virtual price that considers the grid energy price, the 
predicted available PV production, and the current power consumption of the 
house’s heating system  

• Development, implementation and validation of a new economic MPC based on 
the defined virtual price that will maximize the consumption of the local 
produced PV power 

6.3. Future research generated by the present work 
The present thesis includes, from the author’s point of view, the following 

major contributions: 
• Experimentally test the economic MPC that regards maximization of locally 

produced PV power consumption 
• Formulate the economic MPC as a linear program and implement it on Java; this 

has the advantages that it can run for long time on the house’s designated 
computer and it consumes less memory that running Matlab for days 

• Investigate the explicit MPC algorithms and the possibility of using it for this 
type of process 

• Extend the MPC formulation to include more loads inside the house: the washing 
machine, the air conditioning unit, the fridge and the water boiler 

• Extend the MPC formulation to include other microgrid components as the 
storage devices and diesel generators 
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Appendix A 
The SYSLAB is a laboratory for research in distributed control and smart 

grids with a high share of renewable energy production. Its experimental facility is a 
Wind/PV/Diesel Hybrid Mini-Grid with local storage and a novel control 
infrastructure. The facility is spread across three sites located several hundred 
meters apart, as can be seen in figure A.1.  

The facility includes two wind turbines (11kW and 55kW), a PV-plant (7.8 
kW), a diesel generator-set (48kW/60kVA), an intelligent office building with 
controllable loads (20kW), a number of loads (75kW, 3*36kW) and a Vanadium 
Battery of 15 kW/120 kWh. At each of the three sites there is a switchboard that 
allows the components installed at the site to be connected to either of two bus 
bars. The two bus bars at each site are connected to a crossbar switchboard 
allowing the flexible setup of the system(s) to be studied. The bus bars can be 
either connected to the national grid or can be part of an isolated system. It allows 
components and systems to be in grid connected operation, island operation, or 
operation in parallel with wind turbine or PV-plant. 

The components are all connected in one distributed control and 
measurement system that enables very flexible setup with respect to experimental 
configuration. 

All units on the grid – generators, loads, storage systems, switchgear – are 
automates and remote-controllable. Each unit is supervised locally by a dedicated 
controller node. The node design combines an industrial PC, data storage, 
measurement and I/O interfaces, backup power and an Ethernet switch inside a 
compact, portable container. All nodes are interconnected via redundant high speed 
Ethernet, in a flexible setup permitting on-line changes of topology and the 
simulation of communication faults. 

A. PV Panels and Inverter 
48th PV panels of around 8 kWp are connected to the SYSLAB grid through a 

three-phase PV inverter (SMA Sunny Tripower). 
The PV inverter has the ability to provide active and reactive power 

regulation. PV controller can be programmed to automatically regulate the active 
power at frequency deviations and the reactive power at line voltage deviations 
when SYSLAB is operated in isolated mode and also grid connected mode. 

B. Data Acquisition and Control System 
The data acquisition and control system (hardware and software) is 

responsible for the supervision and control of the research platform for distributed 
intelligent energy systems with a high penetration of renewable energy. The 
supervisory software code was written in Java and is able to manage the data 
acquisition, processes the data and executes the control loop and outputs the 
control variables. The sensors outputs are connected to a signal conditioning board, 
which in turn is connected to the data acquisition (DAQ) board based on a PC 
(SCADA System). 

Some loads can be controlled by the central building controller which 
receives data and events from wireless switches and sensors. In one room, a small 
touch-screen user interface can be used to influence the controller policy (figure 
A.2). Through its own grid control node, the building controller can get information 
on the status of the power grid, and adapt its control strategy accordingly. Active 
policies, measurement data and user settings can be communicated back to the 
grid. 
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a) Aerial view of the SYSLAB facility 

 
 

b) wire diagram of the SYSLAB facility 
Fig. A.1. SYSLAB facility from Elektro DTU at Risø campus 
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Fig. A.2. Graphical user interface for control system. 

 
A dedicated controller node is collocated with each of the components. The 

nodes combined an X86-based computer, local disk storage, analogue measurement 
hardware, field-bus interfaces, status display backup power and an Ethernet switch 
inside a portable rack. 
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Appendix B 
 
The Kalman filter is used as a state observer in systems presenting white 

noise perturbation. It is able to estimate the value of a signal by processing the 
noisy measurements. 

A state space form of a system containing noise on both the internal states 
and on the measurement is: 

 

൜ݔሺ݇ ൅ 1ሻ ൌ ሺ݇ሻݔܣ ൅ ሺ݇ሻݑܤ ൅ ሺ݇ሻݓ
ሺ݇ሻݕ ൌ ሺ݇ሻݔܥ ൅ ሺ݇ሻݒ  

B-1 

 
As starting assumption we consider:  
 

ሺ݇ሻሽݓሼܧ ൌ 0 B-2a 
ሺ݇ሻሽݒሼܧ ൌ 0 B-2b 

ሺ݇ሻሽݒሺ݇ሻݓሼܧ ൌ 0 B-2c 
ሺ݇ሻሽ்ݓሺ݇ሻݓሼܧ ൌ ܳ B-2d 
ሺ݇ሻሽ்ݒሺ݇ሻݒሼܧ ൌ ܴ B-2e 

 
The state observer has the following form: 

ොሺ݇ݔ ൅ 1ሻ ൌ ොሺ݇ሻݔܣ ൅ ሺ݇ሻݑܤ ൅ ሺ݇ሻݕ൫ܮ െ  ොሺ݇ሻ൯ B-3ݔܥ
 
Considering the error between the real state and the estimated state, B-1 

and B-3, that is: 
 

ሺ݇ݔ ൅ 1ሻ െ ොሺ݇ݔ ൅ 1ሻᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
ୀఌሺ௞ାଵሻ

ൌ ܣ ൭ݔሺ݇ሻ െ ොሺ݇ሻᇣᇧᇧᇧᇤᇧᇧᇧᇥݔ
ୀఌሺ௞ାଵሻ

൱ െ ሺ݇ሻݔܥ൫ܮ ൅ ሺ݇ሻݒ െ ොሺ݇ሻ൯ݔܥ ൅  ሺ݇ሻݓ

B-4 

 
Or, in a condensed form: 

ሺ݇ߝ ൅ 1ሻ ൌ ሺܣ െ ሺ݇ሻߝሻܥܮ െ ሺ݇ሻݒܮ ൅  ሺ݇ሻ B-5ݓ
 
P is defined as being the error covariance:  

ܲሺ݇ሻ ൌ  ሺ݇ሻሽ B-6்ߝሺ݇ሻߝሼܧ
That is 

ሺ݇ߝሼܧ ൅ 1ሻ்ߝሺ݇ ൅ 1ሻሽ
ൌ ܣሼሺܧ െ ܣሺ݇ሻሾሺߝሻܥܮ െ ሺ݇ሻሿ்ሽߝሻܥܮ ൅ ሺ݇ሻሿ்ሽݒܮሺ݇ሻሾݒܮሼܧ
൅  ሺ݇ሻሽ்ݓሺ݇ሻݓሼܧ

B-7 

Or. In a condensed form: 
 

ܲሺ݇ ൅ 1ሻ ൌ ܣሼሺܧ െ ܣሺ݇ሻሺ்ߝሺ݇ሻߝሻܥܮ െ ሻ்ሽܥܮ ൅ ሽ்ܮሺ݇ሻ்ݒሺ݇ሻݒܮሼܧ ൅ ܳ B-8 
 

ܲሺ݇ ൅ 1ሻ ൌ ሺܣ െ ܣሺ݇ሻሽሺ்ߝሺ݇ሻߝሼܧሻܥܮ െ ሻ்ܥܮ ൅ ்ܮሺ݇ሻሽ்ݒሺ݇ሻݒሼܧܮ ൅ ܳ B-9 
 

ܲሺ݇ ൅ 1ሻ ൌ ሺܣ െ ܣሻܲሺ݇ሻሺܥܮ െ ሻ்ܥܮ ൅ ்ܮܴܮ ൅ ܳ B-10 
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The observer’s objective is to minimize the error between the state and its 

estimate. The Kalman filter is minimizing the trace of the error variance, a measure 
of minimizing the overall error of all the estimated states: 

 
൫ܲሺ݇ݎݐ ൅ 1ሻ൯ ൌ ܣ൫ሺݎݐ െ ܣሻܲሺ݇ሻሺܥܮ െ ሻ்൯ܥܮ ൅ ሻ்ܮܴܮሺݎݐ ൅  B-11 ܳݎݐ

 
Minimizing equation B.11 implies that the derivative over the controlled 

variable L, the filter gain, has to be zero: 
 

൫ܲሺ݇ݎݐ߲ ൅ 1ሻ൯
ܮ߲ ൌ

ܣ൫ሺݎݐ߲ െ ܣሻܲሺ݇ሻሺܥܮ െ ሻ்൯ܥܮ
ܮ߲ ൅

ሻ்ܮܴܮሺݎݐ߲
ܮ߲ ൅

ܳݎݐ߲
ܮ߲  

B-12 

 
Or 
 

ݎݐ ቆ
߲ܲሺ݇ ൅ 1ሻ

ܮ߲ ቇ ൌ ݎݐ ቆ
߲ሺܣ െ ܣሻܲሺ݇ሻሺܥܮ െ ሻ்ܥܮ

ܮ߲ ቇ ൅ ݎݐ ቆ
߲ሺ்ܮܴܮሻ

ܮ߲ ቇ ൅ ݎݐ
߲ܳ
ܮ߲  

B-13 

 
Equation B.13 can be solved using relations from linear algebra: 
 

ݎݐ ቆ
ܥ்ܣܤܣ߲

ܣ߲ ቇ ൌ ்ܤܣ்ܥ ൅  ܤܣܥ
B-14 

 

ݎݐ ൬
ܤܣ߲
ܣ߲ ൰ ൌ  ்ܤ

B-15 

 
ሻܤܣሺݎݐ ൌ  ሻ B-16ܣܤሺݎݐ

 
The first term of equation B.13 develops into: 
 

ݎݐ ቆ
߲ሺܣ െ ܣሻܲሺ݇ሻሺܥܮ െ ሻ்ܥܮ

ܮ߲
ቇ ൌ ݎݐ ቆ

߲൫ሺܣ െ ்ܮ்ܥሻܲሺെܥܮ ൅ ሻ൯்ܣ
ܮ߲

ቇ

ൌ ݎݐ ቆ
߲ሺെ்ܮ்ܥܲܣ ൅ ்ܣܲܣ ൅ ்ܮ்ܥܲܥܮ െ ሻ்ܣܲܥܮ

ܮ߲ ቇ 

B-17 

 
Applying equations B.14 to B.16, and considering that P = PT for individual 

terms of B.17, the following results are obtained: 
 

ሻ்ܮ்ܥܲܣሺݎݐ߲
ܮ߲ ൌ

ሻ்ܣ்ܲܥܮሺݎݐ߲
ܮ߲ ൌ  ்ܥܲܣ

B-18 

 
ሻ்ܣܲܣሺݎݐ߲

ܮ߲
ൌ 0 

B-19 

 
ሻ்ܣܲܥܮሺݎݐ߲

ܮ߲ ൌ  ்ܥ்ܲܣ
B-20 
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ݎݐ߲ ቀܮ ᇣᇤᇥ்ܥܲܥ ቁ்ܮ
ܮ߲

ൌ ்ܥܲܥܮ ൅ ்ܥ்ܲܥܮ ൌ  ்ܥܲܥܮ2
B-21 

 
Equation B.13 becomes 
 

ݎݐ ቆ
߲ܲሺ݇ ൅ 1ሻ

ܮ߲
ቇ ൌ െ2்ܥܲܣ ൅ ்ܥܲܥܮ2 ൅  ܴܮ2

B-22 

 
For solving equation B.22 considering the unknown variable L, for minimum 

values of P 
 

்ܥܲܥܮ െ ்ܥܲܣ ൅ ܴܮ ൌ 0 B-23 
 
The solution for the Kalman filter coefficient is given in equation B.23  
 

ܮ ൌ ሺ்ܥܲܥ ൅ ܴሻିଵ்ܥܲܣ B-23 
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function [Ad,Bd,Cd,Dd,Ed] = MPC_ModelInit() 
% System parameters  
CiA = 3.42;   % for a time interval of 1 hour 
RiaA = 4.87; % 
AwA = 5.53; % 
% State-space formulation 
AA = -1/(CiA*RiaA); 
BA =  1/(CiA); 
CA = 1; 
EA = [1/(CiA*RiaA)  AwA/CiA]; 
DA = [0 0 0]; 
% Discrete time state space formulation 
delta = 1/6; % time step of 10 minutes (1/6 of an hour)  
Ad = eye(1)+delta*AA; 
Bd = delta*BA; 
Cd = CA; 
Ed = delta*EA; 
Dd = DA; 

 
function [A3d,B3d,C3d,D3d,E3d] = MPC_3SM() 
% Augmented 3 states system model  
Ci = 2.66; 
Cm = 3.08; 
Ch = 0.00384; 
Ria = 4.82; 
Rim = 3.45; 
Rih = 33.3; 
Aw = 5.53; 
 % State-space formulation 
 A3 = [-(1/(Ci*Ria)+1/(Ci*Rim)+1/(Ci*Rih))       1/(Ci*Rim)      1/(Ci*Rih); 
                    1/(Cm*Rim)                 -1/(Cm*Rim)          0; 
                    1/(Ch*Rih)                      0          -1/(Ch*Rih)]; 
B3 = [0 0 1/Ch]'; 
C3 = [1 0 0]; 
E3 = [1/(Ci*Ria)    Aw/Ci; 
        0              0; 
        0              0]; 
D3 = 0; 
% Discrete time state space formulation 
delta = 1/6;% time step of 10 minutes (1/6 of an hour)  
A3d = eye(3)+delta*A3; 
B3d = delta*B3; 
C3d = C3; 
E3d = delta*E3; 
D3d = D3;         

 
function [Kf, Ae,Be,Ce,Ee] = MPC_AugmentedSystem(A,B,C,E,qw,qxi,rv) 
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% The function builds the matrix for the augmented model of the system and        
% determines the Kalman filter gain  
[nA,mA] = size(A); 
[nB,mB] = size(B); 
[nC,mC] = size(C); 
[nE,mE] = size(E); 
% Noise matrix formulation based on the noise covariances 
Qw = qw * eye(nA,mA); % responsable for the process noise 
Qxi = qxi * eye(mE,mE); % responsable for the disturbance noise 
Rv = rv * eye(mC,mC); % responsable for the output noise 
% Design the augmented system 
Ad = eye(mE,mE);  
Ae = [A E; zeros(mE,mA) Ad]; 
Be = [B; zeros(mE,mB)]; 
Ee = [E; zeros(mE,mE)];  %!!!! 
Ce = [C zeros(nC,mE)]; 
Qe = [Qw            zeros(nA,mE);... 
       zeros(mE,mA)  Qxi]; 
% Kalman filter  
P = dare(Ae',Ce',Qe,Rv); % solution of the discrete Riccati equation 
Re = Ce*P*Ce'+Rv;  % the inovation covariance  
Kf = P*Ce'/Re;  % Kalman filter gain 

 
function [phi, gama, gamad, MPC] = MPC_HorizonFormulation(A,B,C,E,Nc,S,Qz) 
%% phi generation 
%    phi = [CA 
%          CA^2 
%          CA^3 
%           
%          CA^Np] 
[nA,mA] = size(A); 
[nB,mB] = size(B); 
[nC,mC] = size(C); 
Ap = A; 
for i=1:Nc 
  phi((i-1)*nC+1:i*nC, 1:mA)= C*Ap;     
  Ap = Ap * A; 
end 
%% gama, gamad generation 
% gama (Np,Nc) 
% gama = [        CB              0           ...          0 
%                      CAB            CB         ...          0 
%                    CA^2B          CAB       ...          0] 
%         ... 
%               CA^(Np-1)B    CA^(Np-2)B ..... CA^(Np-Nc-1)B] 
 [nE,mE] = size(E); 
v = zeros(nB,mB*Nc); 
vTa = zeros(nE,mE*Nc); 
Phi=zeros(nC*Nc,mB*Nc); 
PhiTa = zeros(nC*Nc,mE*Nc); 
for i=1:Nc 

BUPT



160                                                                                                Appendix – C 
   Bv = zeros(nB,Nc); 
   Tav = zeros(nE,mE*Nc); 
   if i<=Nc 
      Bv(1:nB,i) = B; 
      Tav(1:nE,(i-1)*mE+1:i*mE) = E; 
   end 
   v = A * v + Bv; 
   vTa = A * vTa + Tav; 
   Phi(i,:)= C * v; 
   PhiTa(i,:) = C * vTa; 
end 
gama = Phi; %  
gamad = PhiTa; 
Hs = zeros(Nc,Nc); 
Hs(1,1:Nc) = [2*S,-S,zeros(1,Nc-2)]; 
for i=2:Nc-1 
    Hs(i,1:Nc)=[zeros(1,i-2),-S,2*S,-S,zeros(1,Nc-i-1)]; 
end 
Hs(Nc,1:Nc) = [zeros(1,Nc-2),-S,S]; 
% generating the matrix for MPC formulation as a convex optimization 
% function 
H = gama' * Qz * gama + Hs; 
Mx0 = gama' * Qz * phi; 
MR = -gama'*Qz; 
Mu = -[S, zeros(1,Nc-1)]'; 
Md = gama' * Qz * gamad; 
% MPC formulation including H, Hs, Mx0, MR, Mu, Md 
MPC.H = H; 
MPC.Hs = Hs; 
MPC.Mx0 = Mx0; 
MPC.MR = MR; 
MPC.Mu = Mu; 
MPC.Md = Md; 
MPC.Nc = Nc; 
 
function [x,fval,exitflag,output,lambda] = MPC_Solver(MPC, xk, u_1,dTaG, R, Ulim) 
% the function calls the Matlab solver after the optimization problem was written in 
the standard form 
AMPC = [eye(MPC.Nc,MPC.Nc); -eye(MPC.Nc,MPC.Nc)];  
g = MPC.Mx0*xk+MPC.MR*R+MPC.Md*dTaG+MPC.Mu*u_1; 
 [x,fval,exitflag,output,lambda] = quadprog(MPC.H,g, AMPC, Ulim); 
 
 
 
Main program 
%% MPC offline 
Np = 30; 
Nc = 30; 
% model initialization 
[Ad,Bd,Cd,Dd,Ed] = MPC_ModelInit(); 
% weights initialization and noise covariance  
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Qz = 0.5; 
S = 0.3; 
qw = 0.01; 
qxi =  0.5 ; 
rv =  0.001; 
% augmented model generation and Kalman filter gain calculation 
[Kf, Ae,Be,Ce,Ee] = MPC_AugmentedSystem(Ad,Bd,Cd,Ed,qw,qxi,rv); 
% the MPC prediction horizon matrix generation  
[phi, gama, gamaTa, MPC] = MPC_HorizonFormulation(Ae,Be,Ce,Ee,Nc,S,Qz); 
% real plant - 3 states model 
[A3d,B3d,C3d,D3d,E3d] = MPC_3SM(); 
% initializing the vectors of MPC available known data : 
% R2 - the reference vector [N,1] vector 
% dTaG - the predicted ambient temperature and solar irradiance [2N,1] 
% vector 
 % initializing the vector of measurements taken online 
% dTaGreal - the measured ambient temperature and solar irradiance [2N,1] 
% vector 

 
%% MPC online 
for i= 1:Horizon-Nc 
    ys = Tin; % the current system output - measured inside temperature 
    rs = r(i); % the current prescribed reference 
    dy = rs - ys; % the difference between the reference and the output 
    dum1 = uk_1-us ; % the command variation at the last step 
% the reference and predicted disturbance for the next prediction horizon:     
    dR = reshape(r(:,i+1:i+Nc)-repmat(ys,1,Nc), Nc*nz,1); 
    dD = reshape(d(:,(i-1)*2+1:(i-1)*2+mE*Nc)-repmat(ds,1,Nc), Nc*nd,1); 
% the difference between the current and last step predicted disturbance: 
    dd = d(1,(i-1)*nd+1:i*nd)'-ds'; 
% the Kalman filter correction step     
    e = -dy  - Ce * (xp); % inovation calculation 
    xf = xp + Kf * e; % the best available estimation of the augmented states - the 
% inside temperature and the unknown perturbation errors setting the constrain    
% limits for the prediction horizon considering the current step      
    Umin = ones(MPC.Nc,1)*us; 
    Umax = ones(MPC.Nc,1)*(10-us); 
    Ulim = [Umax;Umin]; 
% solving the optimization problem considering the prediction horizon future states 
%based on the one state-space model of the system, predicted disturbances and 
%prescribed reference and constraints on the inside temperature (controlled 
%variable) and electrical heaters output power (manipulated variable) 
    [x,fval,exitflag,output,lambda] = MPC_Solver(MPC, xf, dum1, dD, dR, Ulim); 
    x(1)=round(x(1)); % used for calculating the 1 kW step of the electrical heaters  
 
% the next state is calculated by the MPC according to the 1 state space model used 
%in the MPC formulation 
    xp = Ae * xf + Be * x(1) + Ee * dd;  
    yk = Ce*xp; 
% the last command for the next step is the current command:     
    uk_1 = us; 
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% and the command that is applyed to the building's heaters     
    us  = uk_1 + x(1); 
% the last predicted disturbances for the next step are:     
    ds = [dTaG((i-1)*2+1,1) dTaG(i*2,1)]; 
 
    % THE PROCESS  
% the one state-space model of the process       
%     Tin = Ad * ys + Bd * (us) + Ed * [dTaGreal((i-1)*2+1,1) dTaGreal(i*2,1)]'; 
%     Tinsidereal(i,1) = Tin; 
% the three state-space model of the process       
    xplant = A3d * xplant + B3d * us+ E3d * [dTaGreal((i-1)*2+1,1) 
dTaGreal(i*2,1)]'; 
    Tin = xplant(1,1); 
    Tinsidereal(i,1) = Tin; 
End 
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