
1.1 - Motivation 1

Distributed Mailing System

 (DMS)

Teză destinată obţinerii
titlului ştiinţific de doctor inginer

la
Universitatea “Politehnica” din Timişoara
în domeniul ŞTIINŢA CALCULATOARELOR

de către

Ing. Mezö Patrik Emanuel

Conducător ştiinţific: prof.univ.dr.ing. Mircea Vlăduţiu.

Referenţi ştiinţifici: prof.univ.dr.ing. Mircea Stelian Petrescu.

 prof.univ.dr.ing. Daniela Elena Popescu.

 prof.univ.dr.ing. Horia Ciocârlie.

Ziua susţinerii tezei: 23.11.2012

BUPT

2 Introduction - 1

Seriile Teze de doctorat ale UPT sunt:

1. Automatică 7. Inginerie Electronică şi Telecomunicaţii
2. Chimie 8. Inginerie Industrială
3. Energetică 9. Inginerie Mecanică
4. Ingineria Chimică 10. Ştiinţa Calculatoarelor
5. Inginerie Civilă 11. Ştiinţa şi Ingineria Materialelor

6. Inginerie Electrică

Universitatea „Politehnica” din Timişoara a iniţiat seriile de mai sus în scopul
diseminării expertizei, cunoştinţelor şi rezultatelor cercetărilor întreprinse în cadrul
şcolii doctorale a universităţii. Seriile conţin, potrivit H.B.Ex.S Nr. 14 / 14.07.2006,

tezele de doctorat susţinute în universitate începând cu 1 octombrie 2006.

Copyright © Editura Politehnica – Timişoara, 2012

Această publicaţie este supusă prevederilor legii dreptului de autor. Multiplicarea
acestei publicaţii, în mod integral sau în parte, traducerea, tipărirea, reutilizarea
ilustraţiilor, expunerea, radiodifuzarea, reproducerea pe microfilme sau în orice altă

formă este permisă numai cu respectarea prevederilor Legii române a dreptului de
autor în vigoare şi permisiunea pentru utilizare obţinută în scris din partea
Universităţii „Politehnica” din Timişoara. Toate încălcările acestor drepturi vor fi
penalizate potrivit Legii române a drepturilor de autor.

România, 300159 Timişoara, Bd. Republicii 9,
tel. 0256 403823, fax. 0256 403221

e-mail: editura@edipol.upt.ro

BUPT

1.1 - Motivation 3

Cuvânt înainte

 Teza de doctorat a fost elaborată pe parcursul activităţii mele în cadrul
Departamentului de Calculatoare al Universităţii „Politehnica” din Timişoara.

 Mulţumiri deosebite se cuvin conducătorului de doctorat prof.dr.ing. Mircea

Vlăduţiu pentru îndrumarea sa şi pentru încurajările din momentele mai puţin
favorabile.

Doresc de asemenea sa îi mulţumesc lui dr. Ing. Lucian Prodan pentru
sfaturile şi îndrumările sale pe parcursul activităţii mele de cercetare.

Aş dori să le mulţumesc părinţilor pentru suportul moral acordat în timpul

celor trei ani de cercetare, susţinere fără de care nu aş fi putut realiza această etapă
a vieţii.
 Teza de doctorat a fost realizata cu sprijin partial din grantul strategic
POSDRU/88/1.5/S/50783, Proiect ID50783 (2009), cofinantat din Fondul Social
European "Investeste in oameni", in cadrul Programului Operational Sectorial
Dezvoltare Resurse Umane 2007-2013.

Timişoara, Noiembrie 2012 Patrik Emanuel Mezö

BUPT

4 Introduction - 1

Tuturor celor care m-au susţinut.

Mezö, Patrik Emanuel

Distributed Mailing System (DMS)

Teze de doctorat ale UPT, Seria 10, Nr. 41, Editura Politehnica,
2012, 110 pagini, 37 figuri, 4 tabele.

ISSN: 1842-7707

ISBN: 978-606-554-568-7

Cuvinte cheie:

Peer-to-Peer, network, distributed mailing system, mailing

architecture, system architecture.

Rezumat, În prezenta lucrare, un nou concept privind
infrastructura de corespondenţă electronică va fi prezentat. Vor fi
prezentate soluţii la nivel software, arhitectural, protocoalele
utilizate în acest domeniu precum şi o altă perspectivă referitor la
conceptul de Client / Server pe care majoritatea programelor îl

implementează în scopul comunicării in reţea. Sistemul distribuit
de corespondenţă electronică nu are un element central care
gestionează conexiunile şi bazele de date. Fiecare nod al reţelei
(sistem de calcul) îndeplineşte în acelaşi timp partea de Client şi
de Server. Obiectivul prezentului document este de a prezenta o
cale prin care fiecare sistem de calcul personal poate contribui la

o singură aplicaţie devenid astfel parte componentă a acestui

sistem.

BUPT

1.1 - Motivation 5

Table of Contents

Table of Contents..5
List of Figures...7

List of Tables..8
Abstract...9
Published Papers and Impact..10

1. Introduction ... 11

1.1. Motivation .. 13

1.2. Thesis Goals ... 14

1.3. Thesis outline ... 16

2. Network Fundamentals .. 19

2.1. Network Protocol Standards .. 20

2.2. Transmission Control Protocol / Internet Protocol 21

2.3. Peer-to-Peer towards TCP/IP model ... 25

3. Peer-to-Peer .. 27

3.1. P2P Applications – Case Study .. 28

3.2. Addressing Scalability in P2P Implementations 32

3.2.1. Gnutella Architecture Overview .. 33

3.2.2. Kazaa Architecture Overview ... 34

3.2.3. Skype Architecture overview .. 35

3.2.4. Chord Architecture Overview .. 37

3.3. Efficiency model for the P2P Network ... 39

3.3.1. System Model .. 40

3.3.2. System design ... 41

3.3.3. System Operations ... 43

3.3.4. Performance Analysis .. 46

3.3.5. Simulation and Experimental Results .. 47

3.4. Peer Availability – Uptime Case Study .. 49

3.4.1. Replica Placement Algorithm using Uptime Prediction Methods 52

4. Current Mailing Architectures ... 55

4.1. Traditional Mailing Architectures .. 56

4.2. Distributed Mailing Architectures ... 59

4.2.1. NinjaMail Architecture Overview ... 60

BUPT

6 Introduction - 1

4.2.2. Decentralized Electronic Mail Architecture Overview 61

4.2.3. A Pull Based Peer-to-Peer Mailing Architecture - Overview 62

5. Interoperability Solution between current Mailing Systems 65

5.1. Architecture Preliminaries ... 66

5.2. Architecture Implementation .. 67

5.2.1. RFC Connector ... 68

5.2.2. Peer Connector .. 68

5.2.3. Address Store Centralization Unit ... 69

5.3. Conclusions and Discussions ... 69

6. Improving P2P Mailing Architecture mechanisms 71

6.1. Distributed Mailing System (DMS) ... 73

6.1.1. Preliminary Assumptions ... 73

6.1.2. Service Primitives ... 76

6.1.3. Email Mechanism .. 78

6.1.4. Experimental Results .. 80

6.2. HMail: A hybrid mailing system ... 82

6.2.1. Architecture Preliminaries .. 82

6.2.2. Basic Components .. 83

6.2.3. Email Operations .. 84

6.2.4. Interoperability Solutions .. 86

6.2.5. Simulation and Experimental Results .. 87

6.3. DMail: Distributed mailing system ... 89

6.3.1. Architecture Preliminaries .. 89

6.3.2. Email Operations .. 90

6.3.3. Interoperability and Applicability Solutions................................... 92

6.3.4. Simulation and Experimental Results .. 92

7. Conclusions.. 95

7.1. Original Contributions .. 95

7.2. Analysis of the results .. 96

7.3. Published Papers and Impact .. 99

7.4. Future Work and Research Direction .. 100

8. References ... 103

BUPT

1.1 - Motivation 7

List of Figures

Figure 1.1 Timeline of the Most Popular Peer-to-Peer Applications 12
Figure 1.2 DMS Research Fields across Peer-to-Peer Network Environment 15
Figure 2.1 OSI Reference Model [14] ... 21
Figure 2.2 TCP/IP Protocol Suite [14] .. 22
Figure 2.3 TCP/Header [3] ... 24
Figure 2.4 Peer-to-Peer concept related to OSI Model .. 25
Figure 3.1 Peer-to-Peer Application Classification [20] 28
Figure 3.2 Characteristics of Peer-to-Peer content distribution systems [20] 32
Figure 3.3 Gnutella Protocol - Ping/Pong - Query/QueryHit/Push Routing [4] 34
Figure 3.4 Skype Architecture Implementation ... 36
Figure 3.5 Chord Architecture Design .. 37
Figure 3.6 Two Tier Chord Overlay Extension ... 38
Figure 3.7 Overlay Framework Transparency for the P2P Applications 40
Figure 3.8 Hierarchical Architecture Design .. 42
Figure 3.9 Example of a two level depth Hierarchical Module 43
Figure 3.10 Hierarchical Architecture Design for 10:5:2 ratio 48
Figure 3.11 Hierarchical Architecture Design for 20:10:15 ratio 48
Figure 3.12 Kazaa Session Evolution [45] .. 50
Figure 3.13 Skype Session Evolution [46] .. 50
Figure 3.14 BitTorent Session Evolution [47] .. 50
Figure 3.15 Uptime Prediction Algorithms .. 53
Figure 4.1 Components of an Email System [51] .. 57
Figure 4.2 Mail Transfer Service [50] ... 58
Figure 4.3 Ninja Architecture Overview [55] ... 61
Figure 5.1 Interoperability Scenario between P2P and CS-based Mailing Systems . 66
Figure 5.2 Interoperability Interface between P2P and CS-based Mailing Systems . 67
Figure 6.1 Distributed Mailing System Architecture Overvies 74
Figure 6.2 Uptime Prediction Evaluation ... 75
Figure 6.3 Number Of Email Replicas ... 80
Figure 6.4 Average Email Availability per Day ... 81
Figure 6.5 Download Speed .. 81
Figure 6.6 HMail Architecture Design ... 84
Figure 6.7 Number of Email Replicas, 1000 Nodes Simulated 88
Figure 6.8 Average Email Availability per Day ... 88
Figure 6.9 DMail Architecture Design ... 91
Figure 6.10 Number of Email Replicas ... 93
Figure 6.11 Average Email Availability ... 94

BUPT

file:///C:/Documents%20and%20Settings/Administrator/My%20Documents/My%20Dropbox/doctorat/PhD%20work/backup%2027/PhD%20Thesis%20final.docx%23_Toc340526995
file:///C:/Documents%20and%20Settings/Administrator/My%20Documents/My%20Dropbox/doctorat/PhD%20work/backup%2027/PhD%20Thesis%20final.docx%23_Toc340526996
file:///C:/Documents%20and%20Settings/Administrator/My%20Documents/My%20Dropbox/doctorat/PhD%20work/backup%2027/PhD%20Thesis%20final.docx%23_Toc340526997
file:///C:/Documents%20and%20Settings/Administrator/My%20Documents/My%20Dropbox/doctorat/PhD%20work/backup%2027/PhD%20Thesis%20final.docx%23_Toc340526998
file:///C:/Documents%20and%20Settings/Administrator/My%20Documents/My%20Dropbox/doctorat/PhD%20work/backup%2027/PhD%20Thesis%20final.docx%23_Toc340526999
file:///C:/Documents%20and%20Settings/Administrator/My%20Documents/My%20Dropbox/doctorat/PhD%20work/backup%2027/PhD%20Thesis%20final.docx%23_Toc340527001
file:///C:/Documents%20and%20Settings/Administrator/My%20Documents/My%20Dropbox/doctorat/PhD%20work/backup%2027/PhD%20Thesis%20final.docx%23_Toc340527002
file:///C:/Documents%20and%20Settings/Administrator/My%20Documents/My%20Dropbox/doctorat/PhD%20work/backup%2027/PhD%20Thesis%20final.docx%23_Toc340527003
file:///C:/Documents%20and%20Settings/Administrator/My%20Documents/My%20Dropbox/doctorat/PhD%20work/backup%2027/PhD%20Thesis%20final.docx%23_Toc340527008
file:///C:/Documents%20and%20Settings/Administrator/My%20Documents/My%20Dropbox/doctorat/PhD%20work/backup%2027/PhD%20Thesis%20final.docx%23_Toc340527011
file:///C:/Documents%20and%20Settings/Administrator/My%20Documents/My%20Dropbox/doctorat/PhD%20work/backup%2027/PhD%20Thesis%20final.docx%23_Toc340527015
file:///C:/Documents%20and%20Settings/Administrator/My%20Documents/My%20Dropbox/doctorat/PhD%20work/backup%2027/PhD%20Thesis%20final.docx%23_Toc340527017
file:///C:/Documents%20and%20Settings/Administrator/My%20Documents/My%20Dropbox/doctorat/PhD%20work/backup%2027/PhD%20Thesis%20final.docx%23_Toc340527019
file:///C:/Documents%20and%20Settings/Administrator/My%20Documents/My%20Dropbox/doctorat/PhD%20work/backup%2027/PhD%20Thesis%20final.docx%23_Toc340527020
file:///C:/Documents%20and%20Settings/Administrator/My%20Documents/My%20Dropbox/doctorat/PhD%20work/backup%2027/PhD%20Thesis%20final.docx%23_Toc340527026

8 Introduction - 1

List of Tables

Table 2.1 Standard Applications Protocols [14] ... 23
Table 2.2 Internet Layer Description [14] .. 24
Table 3.1 Scalable Peer-to-Peer Architectures... 33
Table 3.2 General Peer-to-Peer Session Characteristics...................................... 51

BUPT

1.1 - Motivation 9

Abstract

This PhD thesis describes the research activity carried on as part of the
doctoral program entitled “Distributed Mailing System”. Several mailing architecture

alternatives based on the Peer-to-Peer (P2P) technology are proposed in this thesis
to lower the costs of the traditional mailing service available today.

Traditional mailing systems have adopted a server-centric model in handling

email traffic over the Internet. Although the traditional mailing providers employ a
large number of servers where mail operations are evenly distributed, all the emails
are routed to a central gateway, resulting in accessibility issues if the gateway link is
severed. Moreover, the necessity of having dedicated buildings and trained

personnel for handling large email operations and network traffic is unavoidable.
The Peer-to-Peer concept denotes a virtual network topology above the

physical one, where the entire architecture is managed through the application
software and sustained by personal computing resources. This model of harnessing
resources across the Internet has first gained its popularity through the file sharing
applications available even today. The architecture type of such complex systems is

developed over hybrid and structured network models. The hybrid model defines a
network environment managed through several server-centric elements and the
structured model provides a framework for the above running P2P applications.

Peer-to-peer mailing architectures were developed in response to the high

costs and numerous issues of using client-server mailing infrastructures. Through
this implementation design, every participant to the mailing system has to share
some of its computing resources, such as bandwidth, computing power, storage

space, etc. But this implementation also has some structural flaws. The most
pressing one would be the unpredictability connection status of peers in the
network. As a result, most of the current P2P mailing services were developed as
independent entities where no interoperability was provided with the traditional
email services.

Through my research activity I have been able to solve some of the P2P
structural flaws by developing new mailing architectures on both the hybrid and

structural network models. The thesis research field includes network topology and
scalability, privacy and security, data consistency, interoperability and platform
environment. I have built the entire mailing service on the existing network
topologies, adding my contributions through extending them accordingly, to provide

data consistency and security. By extending the framework of structural P2P
network I have provided an environment where several P2P applications can run at

the same time using the same computing resources registered as peers in the
network. Data caching occurs according to a prediction method by analysing peer
behaviour within the network, assuring this way a stable network holder for the
email content and user information. I provided the facilities of load balancing by
distributing mail tasks among participants according to a resource evaluation
method. This enables each peer to effectively contribute to the mailing system
according to the real evaluation of their resources, therefore increasing overall

application performance and reliability.

BUPT

10 Introduction - 1

Published Papers and Impact

This research work was sustained by the following publications:

 P. E. Mezo, M. Vladutiu and L. Prodan, “Design of a Hierarchical based DHT

Overlay P2P routing Algorithm”, 11th IEEE International Conference on
Computer and Information Technology, Paphos, Cyprus, Aug. 2011, pp. 415

– 420, ISBN: 978-1-4577-0383-6 (BDI, IEEE rank).

 P. E. Mezo, M. Vladutiu and L. Prodan, “Interoperability solution between
Peer-to-Peer and Client-Server based mailing systems”, 2011 IEEE 17th
International Symposium for Design and Technology in Electronic Packaging
(SIITME), Timisoara, Romania, Oct. 2011, pp. 45 – 48, ISBN: 978-1-4577-

1276-0. (BDI, IEEE rank).

 P. E. Mezo, M. Vladutiu and L. Prodan, “Distributed Mailing System (DMS)”,
2011 IEEE 17th International Symposium for Design and Technology in
Electronic Packaging (SIITME), Timisoara, Romania, Oct. 2011, pp. 349 –
354, ISBN: 978-1-4577-1277-7. (BDI, IEEE rank).

 P. E. Mezo, M. Vladutiu and L. Prodan, “HMail: A hybrid mailing system

based on the collaboration between traditional and Peer-to-Peer mailing
architectures”, 2012 IEEE 7th International Symposium on Applied
Intelligence and Informatics (SACI), Timisoara, Romania, May. 2012, pp.
255 – 260, ISBN: 978-1-4673-1014-7. (BDI, IEEE, Australian Research
Council list class C rank).

 P. E. Mezo, M. Vladutiu, L. Prodan and F. Opritoiu, “DMail: Distributed
mailing system based on the collaboration between traditional and Peer-to-

Peer mailing architectures”, 2012 International Conference on Information
Engineering, Lecture Notes In Information Technology, Vol. 25, Singapore,
Singapore, Jun. 27-28, pp. 128 -135, ISBN: 978-1-61275-024-8. (Ei
Compendex, Cambridge Scientific Abstracts, Google Scholar, IEE, ISI rank).

BUPT

1.1 - Motivation 11

1. Introduction

“The two words 'information' and 'communication' are often used

interchangeably, but they signify quite different things.
Information is giving out; communication is getting through.”
Sydney J. Harris.

One of the greatest breakthroughs in the digitalized society was the
communication possibility facilitated by the Internet technology. At its origin, the

Internet was designed as a shared resource among participants [1]. The model of
harnessing each individual entity in the network was a much complex task to handle
in an environment of its early stages (ARPANET – late 1960’s). The goal of this
network was to share computing resources over the U.S, integrating different type
of networks (universities, laboratories, etc.) into a single infrastructure. This concept
had to place the Internet at another perspective, where the participants had to play

an equal role in the network. This approach had to include a variety of new
elements that must contribute to the environment stability, such as: probability
prediction tasks, shared resources management, bandwidth management, etc.

Initially ARPANET was designed only for communication between research

institutions, but through the adopted Network Control Protocol (NCP) allowing host-
to-host communication [2], users were able to develop new applications by which
this network design became very popular. One of the first breakthroughs in

developing applications across the network was marked by the electronic message
delivery mechanism (electronic mail) designed by Ray Tomlinson. In 1972 the
mailing application was modified to run across the ARPANET network and the “@”
symbol was chosen for the first time.

The ARPANET popularity was stimulated by the widely use of email
application. Once the mailing application was available on every of the ARPANET
hosts, the network traffic grew significantly. Because the NCP protocol was

developed only as a device driver and its founders could not predict the rapid
growth of the ARPANET popularity, Vint Cerf and Bob Kahn initiated a new protocol
design and the result was the TCP protocol (Transport Control Protocol) published in
1974. In 1978 the TCP was split into TCP and IP and in between 1981-82 the first

plans were made to migrate from NCP to TCP, which marked the birth of the
Internet available today.

Now, the Internet is a shared resource, a cooperative network built from
millions of hosts all over the world. There are millions of applications that use the
network, placing strain on the most basic of resources: bandwidth [1].

Initially built for communication, the Internet has become a large
information holder. Recently statistics show that its dimensions have doubled every
year, having an actual storage capacity of hundreds of Exabyte [2] (1 Exabyte =
1024 petabytes = 1024² terabytes). This was possible through new storage

technologies, which brought larger capacity and diminished device size. As the
mobile technology emerged in the digitalized society, the number of Internet users
has grown significantly.

BUPT

12 Introduction - 1

With the permanent growth of the Internet resources across all over the

world, the network communication standards were also constantly improved. Any
participant to the Internet resource can exchange information with other parties
through aiming queries precisely at a well known destination addresses, assigned to
every computing resource in the network (Internet Protocol (IP) address). The
beginning of the year 2011 has marked the exhausting of the current network
standard (Version 4) in assigning computing resources with a unique address.
Although the event of exhausting IPv4 addresses was a known fact, the process was

delayed through mechanisms such as: class-full network design, Network Address
Translation (NAT) and Classless Inter-Domain Routing [3]. Because the barriers of

232 addresses space of the IPv4 were exceeded, the developing of its successor IPv6
started at the beginning of 1990’s. The Ipv6 has an address space of 2128 and its
deployment began in the middle of 2012.

Because the model of harnessing every computing resource over the

network was a difficult task to handle, the concept of master/slave has gained
popularity among the Internet applications. Through this model, a natural
segmentation of the Internet was possible. Now every application over the Internet
runs according to its own protocol standard, ranging from web based applications to
common operating system applications. All the mentioned examples imply the
necessity of two kinds of participants: Client and Server. The server usually
represents a high end computing resource able to provide services to the requesters

in a predefined order. The clients are represented through less capable resource
machines that are only able to request the facilities from the server side.

A new concept design that has imposed and encouraged the Client/Server

model is available by accessing the facilities of the “Cloud” resources. This solution
facilitated the possibility of handling data remotely gaining its popularity by the
following diversity of features: availability, security and consistency of data,
virtualization possibility of operating systems across the network, etc. Although this

solution provides several benefits for the end users, this implementation scales
proportional with the costs involved for managing such systems.

A balance was gained through the Peer-to-Peer network concept, which was
developed as an opposite model of the Client/Server. Trough this concept design a
network architecture model was built virtually above the physical one, generating a
second tier of the Internet resources. Every participant to the P2P overlay network

adopted both the Client and Server model facilitating and requesting resources at
the same time. This new model concept has been imposed by the active society of
the Internet and is represented through a select community. Its beginnings were
marked by the natural desire of sharing and communication. This concept has first

grown in popularity through the applications of file sharing (Figure 1.1), generating

Figure 1.1 Timeline of the Most Popular Peer-to-Peer Applications

BUPT

1.1 - Motivation 13

this way other research fields such as content storage platforms, distributed task

operations, messaging, etc. In Figure 1.1 some of the most popular applications
developed across P2P overlay network are shown through a timeline that marks the
beginning of the Internet: Napster [4], Gnutella [5][6], Freenet [7], Kazaa [8] and
eMule [9].

The Peer-to-Per concept has a significant contribution in providing incentive
mechanisms, stimulating new connections to the world’s biggest shared resource

available today: the Internet. Although the generated environment was stimulated

by the necessity of communication and sharing, the architecture design reflects the
natural desire of opening or closing a certain conversation. This principle represents
the foundation of such unstable and unpredictable network architectures where
participants can join or leave the network at any time. Many of the research areas
concentrate on this topic, trying to develop ways in which this unstable environment
can be transformed into a predictable one.

The Peer-to-Peer network architecture was designed to harness the
available computing resources over the Internet. Compared to the Client/Server
model, where the demand of resources are proportionally to the increased number
of users, the Peer-to-Peer concept handles resources in a more efficient way. The
resource demands do not vary in an alarming way. Although this solution has the
lowest cost on the market, it has also its downsides: increased network bandwidth
usage, unstable network environment, security and privacy issues.

1.1. Motivation

An important element of our society is communication. Since the beginning

of mankind, people have been trying to develop new ways to interact. As society
evolved, so did communication skills. A definition of communication, suggest that it
is a process of transferring information from a person to another. The tools of
communication may involve writing, drawing, sound or gestures.

Nowadays one of the most common communication tools is electronic mail
(e-mail or email). Built on a server – centric architecture [10][11], the mailing

system relies on two concepts: client and server. An email client is a front-end
application that connects to an email server facilitating the operations of reading,
sending and deleting email content. The term server describes here a complex
architecture, where several entities are grouped together to coordinate processes

such as: receiving, storing, replicating and delivery of email content.
Although email tasks are evenly distributed among cluster servers, email

traffic is forwarded to a central gateway where email content is processed. There

are also scenarios where failures are caused over the traditional mailing architecture
design: accessibility issues when the central gateway lies behind an access link that
has been severed or flooded, storage stress due to multiple email attachments and
server processing stress [10][11]. Another issue arises from the costs supported by
the mail providers in terms of dedicated buildings distributed geographically and
specialized trained personnel for maintenance and quality of service.

Peer-to-peer mailing architectures were developed in response to the high

costs and numerous issues of handling Client/Server mailing infrastructures.
Through this implementation design, every participant to the mailing system has to
share some of its computing resources, such as bandwidth, computing power,
storage space, etc. But this implementation also has some structural flaws: due to

BUPT

14 Introduction - 1

peer member behaviour (peer status is unpredictable – a certain peer can join or

leave the network at any time), it is very difficult to handle a complex architecture
design like the mailing system, which implies storage space, data availability,
bandwidth and computing power.

Two different architectural concepts, structured and unstructured, have
attempted to solve this issue in P2P network implementations. The unstructured
solution has promoted peers with above average computing resources (Super Nodes

- SN) over participants that could/would not share their resources. Mailing systems

developed on this concept were designed to rely their backbone on Super Node
entities, establishing a reliable and stable network environment.

The structured concept was developed as a P2P framework for other
applications. This solution handled peers into a single identifier space and data had
to be placed at keys correlated with addresses within the overlay layer. This solution
has solved the issues raised by the hybrid model in terms of limitation of queries for

a better bandwidth latency usage and any peer could be directly addressed within
the identifier space. The mailing architectures developed on such frameworks are
more complex in terms of architecture design, security, data availability and overall
distribution of tasks.

Considering the overview presentation, I propose new architecture designs,
where every personal computing resource contributes to a single application system
and becomes a part of it. I entitled my work: “Distributed Mailing System (DMS)”,

through which a complex mailing architecture design is shaped by combining both

the peer behaviour, in terms of time spend over the Internet, and computing
resources evaluation methods. The distributed mailing system has no central unit
for managing connections and email content. There is no central server designed to
serve a certain task. All peers (computing systems) fulfil the Client and Server part,
where the whole system resources rely on end user computing systems. Based on

the P2P technology, such as [4-9], users have been able to harness their computing
resources to a global community. I have adopted the same technology to shape a
network architecture design, where attempts to centralize elements within a
decentralized system were made.

The domain of this Ph.D. thesis relates to the aspect of designing an e-mail
system where the entirely data and communication relies on end user systems and
compatibility with other mail systems is maintained.

The direction of research sets the basics for distributed mailing systems,
such as proposing a network architecture design for load – balancing data

availability in a stable environment. Further, my goal is to build the proposed
system within an unstable distributed network environment, as outlined in this
thesis.

The proposed thesis enrols under the Distributed Computing domain
addressed by the sub - domain of Distributed Computing Architecture domain and

Distributed Computing Cluster domain.

1.2. Thesis Goals

The distributed mailing system relies on two concepts: parallel computing
and Peer-to-Peer network design. Parallel computing represents a form of
computation where large problems can often be divided in smaller ones, which are
then solved concurrently (in parallel) [12].

BUPT

1.2 - Thesis Goals 15

Parallelism occurs in many forms such as: bit level, instruction level, data
and task level. Parallel computing represents one of the cost effective solutions for

processing large and intensive data problems. Data intensive applications are
represented through: transaction processing and information retrieval, data mining,
analysis and multimedia services. DMS mailing system implements the parallel
computing concept at instruction and data level.

 Instructions are distributed to other computing systems through network
queries and caching email content relies on algorithms designed for parallel

architectures.
The thesis main goal resumes in building a stable environment across the

P2P virtual network, generating this way a stable and secure holder for the email
content and user information. The research fields that are considered for building a
distributed mailing system are found in Figure 1.2. Although several mailing

architectures are presented in this thesis, every research area considered in Figure
1.2 represents one of the goals for building a stable data holder across the P2P

virtual network.
The first goal in building a mailing service across P2P network is finding a

network topology suited for adapting the email operations from the traditional
service to a distributed one. In this thesis I used existing topologies, but also added
my contributions trough extending them accordingly, at a community based
environment. Through this segmentation at community level, I can provide load-
balance among email tasks and network bandwidth latency usage.

One major issue arises when handling the unstable platform environment
generated by the joining peers. Every participant to the mailing system joins the
P2P network with an uncertain online status. The second goal of this thesis is to
provide an uptime prediction algorithm based on the peers joining behaviour. In this
manner the mailing system operations can be sustained by the network backbone

formed by nodes with above average uptime status.

DMS

Network
Topology

Scalability

Platform
Environment

Interoperability

Data
Consistency and

Availabilty

Privacy and
Security

Figure 1.2 DMS Research Fields across Peer-to-Peer Network Environment

BUPT

16 Introduction - 1

The third goal is to assure the data consistency and availability. This goal

can be reached through referring only to the nodes that meet higher requirements
(above average computing resources) in terms of uptime, bandwidth, computing
power and shared space.

The fourth goal is represented through designing a reliable system interface
between the Peer-to-Peer mailing system and current client-server based mailing
solutions. Several issues are raised by such an interface, one is the traditional P2P

mailing systems need to handle internal protocols by biding to a certain RFC

standard format. Another issue lies in the way peers are referred to from the
outside network. My approach involves separating the RFC standard from the
internal communication protocol between peers, thus enabling the interoperability
between systems even if the RFC standard is updated.

Privacy and security of both email operations and email content are assured
through layering the network topology at community level and by using the facilities

of private and public key encryption. My goal is to provide the minimal security
cover for the distributed mailing system design. To perform a fully secured
communication, one could easily extend the proposed security model by requiring
the services of an external certificate authority, which could provide a higher level of
security.

The last goal proposed in this thesis is represented through simulating the
mailing system across the P2P network environment and determine if such a system

model can be sustained from personal computers and if it does scale well under

certain case scenarios.

1.3. Thesis outline

For designing an email system that compares or even performs better than
the traditional architecture, I had to consider a variety of research domains:
network topologies and protocols, Peer-to-Peer architecture structure, current
mailing architecture implementation, interoperability issues, security and scalability.

In chapter two I will provide a quick overview regarding the protocol

standards used in handling the network communication. The information is provided
gradually starting from the standards of developing a certain protocol used in
network communication and finishing with my vision regarding the Peer-to-Peer
network model.

Chapter three provides a thorough classification and analysis of the current
Peer-to-Peer applications and infrastructures. In this chapter I will propose a new
P2P infrastructure design that serves as a common platform support for several

applications. By this proposal, every application implemented across such a platform
type can configure the virtual network according to its desired computing resources.
Further, this approach eliminates the issues raised by the differences between Peer-
to-peer applications in terms of architectural implementation and network
communication.

The issues raised by the unpredictable uptime status of joining peers are
also addressed in chapter three. One of the main characteristics of the Peer-to-Peer

application implementation is described by the free will of participants to join or
leave the network at any time. For this purpose, several P2P application types will
be studied, and I will conclude the analysis with designing an algorithm able to
predict the moment in time when a certain node is or will be present in the network.

BUPT

1.3 - Thesis outline 17

By this approach, I will be able to develop caching techniques of email content

across the P2P network environment with a minimum requirement of nodes involved
in replicating data content.

In chapter four I will analyse the current mailing architectures. Both the
traditional (Client/Server architecture) and Peer-to-Peer based mailing architectures
will be analysed. According to the deficiencies and issues raised by the analysed
mailing infrastructures I will later base my direction in developing new architectures

across the Peer-to-peer environment.

Through chapter five I solved the interoperability issues raised by the
incompatibility between the traditional and P2P based mailing architectures. For this
matter I have designed an interface model for the feature P2P mailing architectures
to adopt in their implementations. I have carefully selected the most popular and
used protocol standards in handling the traditional mail communication and the ones
used by the Peer-to-Peer model for providing a good foundation of the interface

design. I have also considered the intake of resources within the P2P network for
providing the support for compatibility between the two mailing models.

In chapter six I was able to harness all my research activity through
designing three mailing systems based on the Peer-to-Peer network model, different
in terms of architectural implementation, distributed tasks, network topologies and
mail operations. My focus remains set on generating first the stable environment
across the P2P virtual network and when this goal is reached the email operations

can be implemented. Three types of P2P architecture models were adopted for this

matter, one of the model relying on the research performed in chapter three. The
other two implementations were chosen according to their performance analysed
throughout this thesis. The mailing systems are developed according to the interface
layout proposed in chapter five, providing a two-way compatibility with the
traditional mailing architectures available today, handling outgoing and incoming

mails from one implementation to another. I have also provided certain security
facilities in handling the mailing operations in terms of sending, receiving and
caching the email content. Data consistency and availability is assured by replicating
the email content according to a self developed algorithm, able to provide a timeline
of peer availability across several days.

In chapter seven I will conclude my work by arguing upon the obtained
results and presenting my contributions throughout this thesis.

BUPT

18 Introduction - 1

BUPT

2. Network Fundamentals

A major breakthrough in the computer society was marked by the
communication possibility between random entities. This communication facility has
marked the evolution of computing era through constantly improving resources such
as hardware, applications, operating systems, transfer mediums, etc.

The term “computer network” [13] describes a collection of connected

computers that can exchange data (send and receiving operations) through a
shared access medium. Depending on the transmission medium kind (physical cable
or RF signal) the network type can be either wired (fixed network) or wireless.
Depending on its size, the network can be considered as personal area network
(PAN), local area network (LAN), metropolitan area network (MAN) or wide area

network (WAN).
The communicating entities in a computer network can be classified as

users, hosts and processes [13]:

 The user is represented by a human and all the actions triggered in the
network.

 A host is represented by a computing resource identified by a unique ID in
the network.

 The process is represented by the application that handles the network
operations of sending and receiving data.

o A server process provides services for the client side.

o A client process retrieves services from the server side.

The communication between random parties in the network occurs
according to a certain defined standard format. Although several protocols were
adopted as standard for network communication, every concept design must

conform to a common format.
To simplify a complex system, any protocol used in network communications

must present itself in a modular way. A layered network model reduces the

complexity of problems by dividing it into smaller tasks, allowing standardization of
interfaces among network devices and facilitates modular engineering for
development at a single layer, without being concerned about what happens at

another layer.
Any data exchange among computing resources across the network can

occur according to a set of common communication rules. A set of network
reference models were developed in order to standardize the way of communication
between network parties. Each reference model has a representation of several
interconnected protocol layers. The communication takes place gradually, sending
the packages through every protocol layer, until the requester protocol has been

reached.

BUPT

20 Network Fundamentals - 2

2.1. Network Protocol Standards

The International Standards Organization (ISO) Open System
interconnection (OSI) Reference Model (Figure 2.1) defines a standardization
proposal for the protocols that will be developed. The model was designed as a
modular entity proposing a set of seven interconnected layers. Each layer has the

task to reduce the complexity of handling network communication from the above

layer to the lower one and vice-versa.
The seven layers of the OSI model can be grouped into Host Layers

(Application, Presentation, Session and Transport) and Physical Media Layers (Data
Link and Physical). The host layers are used in handling communication at higher
level between computing resources and the physical layer handles the process of
delivering messages across network. The networking functions of each layer is

presented as follows according to [14]:

 Application. Layer 7. This layer provides an application program interface
(API) for the applications that use the network connection. This helps by
blending the steps needed for packaging and securing the delivery of data
sent over the network.

 Presentation. Layer 6. Assures data translation for both the Application

and Session layer. When data is to be received for the current host, this
layer formats the data according to the computer’s own syntax. When data
is to be sent from the Application layer, the Session layer formats the data
from the host syntax to the common transport syntax.

 Session. Layer 5. Assures that two applications can create a persistent
communication connection, through establishing, managing and closing
connections between processes.

 Transport. Layer 4. Includes the mechanism of safely delivering data
packets across the network. When data is to be received for the current
host, this layer reassembles data packets into a single message for the
Session layer. When data is to be transmitted, this layer breaks down the
message received from the Session layer into several smaller ones.

 Network. Layer 3. Provides logical network routing through sending the
assigned packets to their destination paths.

 Data-Link. Layer 2. Assures flow control, ordered delivery of frames, error
notifications, addressing and network topology.

 Physical. Layer 1. The physical transmission environment is established at
this layer. The data that is received or transmitted from/to the medium is
represented through ones and zeros that are the equivalent of voltage levels
used in handling the physical communication.

BUPT

2.2 - Transmission Control Protocol / Internet Protocol 21

Figure 2.1 describes the process [14] of sending data from one host to
another (Client-Server) by specifying every layer of the OSI model involved in
completing the communication task. When the data is to be received from the Client
side, the Application layer passes the data to the Presentation layer. At this layer

level, data formatting occurs into the transport layer syntax. When the Session layer
confirms that the destination host is ready to receive data, the Transport layer is
notified. The transport layer breaks down the data into smaller packets labelled so
that the message can be reassembled again. Every data packet is appended with a
destination header at the Network layer. The header consists of source and
destination logical address. At the Data-Link layer level, frames are attached to the

data packets, consisting in error checking, data offset, etc. The lowest layer involved
in securely transmitting data over the network, Physical layer, effectively transmits
the data packets at bit level trough the network transport medium (wired or wireless
medium).

When data is to be received at the server side, a similar process of
reassembling data through the arrived packets from the network medium takes
place.

2.2. Transmission Control Protocol / Internet Protocol

The TCP/IP protocol represents the research result of the first network

protocol attempt, ARPANET, founded by the Defence Advanced Research Projects
Agency (DARPA) [2]. The development of this protocol was critical in allowing the
future growth and scalability of the largest network architecture available today: the
Internet. The TCP/IP protocol provides a connection oriented binding between two
entities, guaranteeing that every data packet that is sent in the network to its
destination is successfully received.

Figure 2.1 OSI Reference Model [14]

BUPT

22 Network Fundamentals - 2

A set of four layered protocols form the TCP/IP model (Figure 2.2): Application,
Transport, Internet and Internet Interface. The four protocols are handled as

independent tasks within the TCP/IP stack [14], generating this way several
benefits:

 Multi-platform compatibility is generated trough the facility of having several
protocols developed at the same layer level.

 Applications can require specific services provided by a protocol within
certain layer level.

 Development of various protocols can be implemented at any of the four
layers simultaneously due to the layered design of the TCP/IP model.

The TCP/IP relates to the OSI model by structuring the layers accordingly:

 Application encapsulates the Application, Presentation and Session OSI
layers.

 Transport has the same functionality as the OSI layer.

 OSI Network layer is handled by the Internet TCP/IP layer.

 Data-Link and Physical are represented through the Network Interface.

The Application layer of the TCP/IP model facilitates the communication
between applications and the network resources. Although this layer provides the

support of several protocols running simultaneously, it provides an additional

Figure 2.2 TCP/IP Protocol Suite [14]

BUPT

2.2 - Transmission Control Protocol / Internet Protocol 23

feature by running different applications using the same protocol. This is possible
through assigning each connection successfully established, with the other network
parties, with a socket specified by the network address and the port number of the

connection in progress.
Throughout the evolution of computing system resources stimulated by

software development, some of the protocols adopted by applications mainly for
network communication have reached a standard state in the Application layer of
the TCP/IP model (Table 1 [14]).

Table 2.1 Standard Applications Protocols [14]

Protocol Description

HTTP Hypertext Transfer Protocol. Designates the protocol between

Web browsers and Web servers.

FTP File Transfer Protocol. Performs file management between

remote computers.

SMTP Simple Mail Transfer Protocol. Protocol used for email delivery

between mail servers.

DNS Domain Name System. Assigns hostnames to IP addresses.

POP3 Post Office Protocol version 3. Used by mail clients to retrieve

the email content.

SNMP Simple Network Management Protocol. Used for gathering

information about network devices which is define in the

Management Information Base (MIB).

Table 2.1 provides a hierarchical layering of protocols used for mail process

inter-communication. The TCP/IP model represents the base layer where other mail
exchange application protocols are built. The Simple Mail Transfer Protocol is used
for inter-server communication, so that the email message can travel across several

servers until it reaches destination. For ensuring the correct location addressing, the
implementation of Domain Names and Dynamic Host Control protocols are required.

Multipurpose Internet Mail Extension (MIME) refers to the mail format, extending it
by enabling other character sets than ASCII, multiple attachments or message
bodies with multiple parts. Both Post Office Protocol (POP) and Internet Mail
Transfer protocols are developed for the receiving process of email content. The
most basic retrieving operations are implemented through POP protocol and more
complex facilities are obtained by implementing the IMAP across mail servers.

The Transport layer of the TCP/IP model guarantees a reliable connection

between host to host transfers. A connection is represented through a logical
association between entities from different systems [3]. Most of the data transfers
over the network occur by implementing the TCP layer (Transport Control Protocol).
The TCP protocol guarantees a reliable network connection through confirming that
all the data packets are successfully sent to their destination.

BUPT

24 Network Fundamentals - 2

Figure 2.3 shows detailed aspects of the TCP header. Both source and
destination ports are 16 Bit long, and represent a unique identifier of the requester
or targeted process (application). Sequence and Acknowledgement numbers provide
the flow control. Because network packets do not always arrive in a predefined

order (routed through different paths or may be dropped), the sequence number is
used to reassemble data and also makes requests for the lost packets. Checksum is

used to detect errors in the TCP segment. Packets that fail checksum get
retransmitted.

Table 2.2 Internet Layer Description [14]

Protocol Description

IP Internet Protocol. Provides data routing and addressing of

data packets within the network.

ARP Address Resolution Protocol. Hardware addresses of hosts

within local network are obtained through this protocol.

IGMP Internet Group Management Protocol. Manages host

membership and IP multicast group.

ICMP Internet Control Message Protocol. Handles error reports

regarding delivery of data packets.

UDP (User Datagram Protocol) provides a connectionless and unreliable
communication [14]. Applications relying on this protocol are also responsible of
safely delivering data packets over the network. Because there is no waiting
involved for confirmation of the sent packets, the UDP protocol provides faster
communication than TCP. This protocol’s orientation purpose is based more on the
audio/video streaming applications.

The OSI Network layer is represented through the IP protocol in the TCP/IP
model. IP is used for routing purposes of the data packets within the network. Four
layers form the IP layer, presented in Table 2.2.

Figure 2.3 TCP/Header [3]

BUPT

2.3 - Peer-to-Peer towards TCP/IP model 25

The Network Interface layer forms the Data-Link and Physical layers of the
OSI model. This layer handles the transmission of data trough the assigned
transport medium of the network.

As presented in this chapter, the TCP/IP model is based on a suite of 4
layers, each one designed to work independently from the other layers. Although
many protocols were developed through developing applications that require
network access, only few were adopted as standards in the TCP/IP model. Every
protocol that has reached a mature state can be proposed as a standard by

publishing its implementation in a series of documents called requests for comments
(RFCs).

Figure 2.4 Peer-to-Peer concept related to OSI Model

2.3. Peer-to-Peer towards TCP/IP model

The Peer-to-Peer model concept designates a different approach in handling

hosts over the network. Although in its early stages, the Internet was built on a
point-to-point communication model, the Client/Server concept has gained
popularity among applications that want to use the resources of the largest network
available today – the Internet. The Peer-to-Peer concept combines the Client/Server

model at the same host side. Hence, a peer communicating with other peers in the
network can implement both client and server properties.

The Peer-to-Peer concept does not designate a new breakthrough in the
digitalized society. Its early stages began with the applications of file sharing [4-9],
most of which are available even today in an active state of continuous
development. As many applications have been developed, so did the protocols
implementations needed for the peer-to-peer communication.

Every Peer-to-Peer concept denotes also a multitude of computing domains
such as: network topology, bandwidth, uptime, computing resources, etc. When
handling the network topology, a protocol is built over an existing standard one,

which usually is represented through TCP/IP. Hence, the Peer-to-Peer applications

BUPT

26 Network Fundamentals - 2

reconstruct a model related to OSI above the application layer (Figure 2.4). In order
to standardize the way that peers communicate over the network, overlay models
have been developed [15-19]. The overlay concept tends to standardize a protocol

through providing an interface for the P2P applications that want to connect to the
network.

Distributed Hash Table (DHT) based overlay networks provide the
framework support for P2P applications. The mechanism behind the virtual network
is self-organizing through the operations that facilitate scalability, load-balance,

decentralization and availability. Through the Hash table, an identifier space is
created similar with the IP address from the TCP/IP model, hence virtual IP (Figure

2.4). The virtual Network corresponds with the used topology in handling peers over
the network (ring, mesh, etc.).

When designing a Distributed Mailing System, we have considered the
TCP/IP model as the fundamental protocol, which lies beneath the P2P protocol used
for the inter-peer communication. Although in this thesis we present several mailing
systems, every design has its own network protocol implementation. We will not

present the protocols used in this thesis, we will refer only to the used topologies
and provide interfaces to the standard protocols. For this matter we provide an
interoperability solution with the mailing services available today.

BUPT

3. Peer-to-Peer

The Peer-to-Peer concept denotes a network architecture model above the
physical network structure. The participants that architect the system are called
peers and in most cases they are represented by personal computers that share
resources such as computing power, bandwidth and storage space. The P2P concept

was first introduced in file sharing applications, continuing its presence afterwards in

other fields such as: voice over IP (VOIP), mailing systems, social applications, etc.
The participants that contribute to the P2P network architecture are treated

as individual computing resources that share a common characteristic: at the
application level, a virtual network is shaped according to its own routing
mechanism. The topology used in achieving the virtual network above the physical

network layer has a significant influence on the system (application) performance,
reliability and in some cases anonymity. The virtual topology has also a significant
influence in terms of bandwidth costs: some P2P implementations communicate
through broadcast messages and others aim messages directly to the requested
destination.

The Peer-to-Peer infrastructure defines no standard implementation, it was
shaped under the circumstances of developing new applications that facilitate

operations in a distributed environment. In this context, the authors of [6] have
identified several requirements regarding the implementations of P2P architectures:

 Ability to operate in a dynamic environment: the P2P network
environment permanently changes due to peer member behaviour (unable
to predict when a peer is connected to the network). Applications should
achieve transparency in handling data availability, security and anonymity in
the P2P network.

 Performance and Scalability: ideally, when scaling the network, the
storage space and data availability should grow linearly and the response
time should remain constant.

 Reliability: failures over the network should not cause significant data or
performance loss.

 Anonymity: is achieved in terms of privacy regarding the search queries,

unpopular information and peer (host) identification.

Another attempt to characterize the P2P environment was concluded in the

following definition [20]:

“Peer-to-Peer systems are distributed systems consisting of interconnected nodes
able to self-organize into network topologies with the purpose of sharing resources

such as content, CPU cycles, storage and bandwidth, capable of adapting to failures
and accommodating transient populations of nodes while maintaining acceptable
connectivity and performance, without requiring the intermediation or support of a
global centralized server or authority”.

BUPT

28 Peer-to-Peer - 3

By this definition, the authors [20] referred to the P2P concept as abstract
as possible by outlining every strong characteristic of this research area. The
authors provide also an integration model for the systems with different “degree of
centralization”, including applications that are fully decentralized (Gnutella [5]) and
partially decentralized (Kazaa [8]).

3.1. P2P Applications – Case Study

Throughout the evolution of Peer-to-Peer applications, a range of

architecture designs and implementations were also developed. The work presented
in [20] provides a good foundation for Peer-to-Peer application classification:

 Communication and Collaboration. The systems that facilitate real-time
communication are included in this category, such as instant messaging
(Yahoo messaging) or VOIP (Skype [21]).

 Distributed Computation. Systems that share processing power are
included in this category. By this approach, tasks that require intensive

workload can be split into several small ones that are sent to the
corresponding peers for processing. A central coordination is required for
handling the task distribution and result collection and processing. An

Figure 3.1 Peer-to-Peer Application Classification [20]

BUPT

3.1 - P2P Applications – Case Study 29

example of such systems is represented through the projects of SETI [22]
and GenomeAtHome [23].

 Internet Service Support. Peer-to-Peer applications that provide Internet

services facilities are included in this category. Applications such as Internet
indirection (Chord [19]) and security services (SOS [24]) are considered for
this purpose.

 Database Systems. One of the major challenges faced by the Peer-to-Peer
architecture design was handling the shared information among peers. Such
systems designs had to handle facilities such as data availability,
consistency, security and enhanced indexing. Such applications that focus

mainly on handling data over the P2P network can be found in [25], which
suggests that all data can be comprised of inconsistent local relational
databases, and [26] which describes PIER – a network topology that
provides relational queries in handling data search engines.

 Content Distribution. Most of the available Peer-to-Peer applications are
included in this category. Through this classification, current systems are

organized into application oriented concepts and virtual network
infrastructures. The systems that provide the application sharing facilities
are mainly focused on file exchange and content publishing operations. A

distinction between these two can be made through the generated shared
platform: file exchange applications [5-9] concentrate their resources mainly
on searching and transferring files between peers and content publishing
applications are more focused on generating the way through which peers

can publish, store and distribute content across the network (Oceanstore
[27]). The second subcategory of content distribution systems is
represented by the infrastructure framework providers. This provides P2P
applications with a predefined API, which facilitate operations to easily
implement across the virtual network. The routing and location services
provide an efficient environment for addressing queries. The addressing
space is related with the information that will be stored. Here systems are

mentioned such as CAN [15], Pastry [16], Tapestry [18] and Chord [19]. A
second subdivision of the infrastructure providing systems is oriented on
providing user anonymity. Systems such as Freenet [7] and Onion Routing

[28] provide confidentiality among peers. The Reputation Management
subdivision provides a central organization to maintain information for users
and their behaviour – PeerTrust [29].

Throughout this thorough analysis of current Peer-to-Peer systems, the
authors from [20] identified several attributes that highlight the strengths of certain
concepts. Figure 3.1 is self explanatory through illustrating the design decisions that
have a direct impact on the resulting attributes:

 Security. Further analysed in terms of Integrity and Authenticity. A
document cannot be modified or substituted by unauthorized entities.

 Privacy and Confidentiality. Data is only available to those authorized

and a control of how information is collected and used is provided.

BUPT

30 Peer-to-Peer - 3

 Availability and Persistence. Ensuring that data is available to authorized
users when required.

 Scalability. An increased number of nodes should not affect the

performance and availability of P2P systems.

 Performance. Reduced time performance in handling operations such as
publication, searching and document retrieval.

 Fairness. Ensures that users have access to resources in a fair and
balanced manner.

 Resource Management and Grouping. Operations such as publishing,
searching, content retrieval, editing/removing documents and management

of storage space are provided.

 Semantic Grouping of Information. Content distributed systems are
closely to a community related to the peers that share common interests.

 The decisions made throughout developing a Peer-to-Peer content
distribution system are crucial when it comes to highlighting the attributes that have

a great impact on the efficiency of the architecture design. In the next part I will

focus mainly on the structural decisions [20] through which P2P applications and
infrastructures are developed.

The distributed location and routing of data within Peer-to-Peer networks
has a great impact on overall performance and efficiency of such architecture
designs. From the centralization point of view, P2P systems can be implemented in a
purely, partially or hybrid decentralized manner. Purely decentralized systems
(Gnutella [5][6]) do not require any coordination from a server-centric element and

every node implements the same amount of tasks as the others. In a partially
decentralized system, nodes are treated distinctively according to their resources
intake to the P2P network (Kazaa [8]). A super node is represented through a
computing system with above average resources (increased bandwidth, uptime,
processing power, etc.) and its purpose is to coordinate other nodes that do not
meet the same amount of resource requirements. A hybrid decentralized P2P

system requires the coordination of a server-centric authority whose scope is to

facilitate the interaction between peers. Applications such as Skype [21] meet such
requirements, where users at the login state, firstly connect to a server for
authentication, and if succeeded, the binding to the P2P network occurs after.

From the network structure point of view, Peer-to-Peer architectures can be
described as unstructured, structured infrastructures or structured systems. The
unstructured applications provide only the location and search mechanism

operations within the P2P network (ex. Gnutella [5][6]). The data available for peers
to manipulate is not related to the application architecture and search mechanisms
are limited according to a TTL (time to leave) descriptor and usually flood the
network. The structured infrastructures (ex. Chord[19]) hold both data and routing
mechanisms related through the distributed hash table (DHT). The structured
systems provide solutions for exact-match queries (Oceanstore [27]).

Data availability and consistency is assured through content caching,

replication and migration algorithms. Most of the content distributed systems gain

BUPT

3.1 - P2P Applications – Case Study 31

their popularity according to the variety of choice regarding the shared data. To
prevent data loss or data inconsistency, the P2P systems were developed through
handling several methods of data replications: passive, caching or migration.

Passive replication occurs on peer request of a certain data to be copied. Cache
based replication takes place when a data usually is queried through several peers.
Through this method, every peer involved in passing the information to the
requester, maintains a copy of the data for increasing its availability. Migrating
replication is used for increasing the data locality and availability throughout the P2P

network.
The subject of data security is very important when handling information on

content distributed systems. When data is made available on the Peer-to-Peer
network, certain levels of privacy, confidentiality, integrity and authenticity are
required. In general terms, security within content distributed systems addresses
the storage, routing, access control, authentication and identity management.
Secure storage refers to the cryptographic algorithms and protocols used in handling
data storing and publication throughout P2P network. Through secure routing the

problem of malicious nodes attempting to corrupt, delete or to deny access is
addressed and solved. The issues raised by access control, authentication and
identity management are usually ignored within content distributed systems. This
can generate an environment where peers can join a network with multiple
identities, posing a threat to systems that employ content replication or
fragmentation. Although this issue was several times argued by many

implementations to be unnecessary, this problem remains open in terms of the

intellectual property management and right management issues.
The anonymity decision remains with certain the most encouraged feature of

content distributed systems. The shared data content available on Peer-to-Peer
networks (ex. Freenet [7]) can be susceptible on targeting privacy, confidentiality
and censorship. According to [1], anonymity can refer to: the author of the content,
the identity and content of the document itself and the details of a query for
retrieval of the content. The deniability decision is close related to the anonymity.

Through this decision content distributed systems are encouraged to deliberately
deny the knowledge of content stored on any of the peers. As a consequence, users
cannot be held responsible for the content they store/share within the P2P network.

Content distributed systems evolved through promoting implementations
that facilitate the sharing concept among participants. Throughout their evolution,
every system provides some incentive mechanism to attract peers voluntarily by

joining and sharing their own resources. Although resources are “free” for everyone,
some peers contribute to the P2P network with their own resources and some are
labelled only as consumers. This generates the need of accountability of peer
behaviour and its actions. Reputation mechanisms are also required for inspiring
peers trust to contribute to the systems. This mechanism can be implemented
through several features: associating user comments with the shared resource or
implement algorithms that trace the peer behaviour in time.

Any of the content distributed systems provides at a certain level some
resource management capabilities. The resources that most P2P applications share
across the network are concluded in content (files), storage (disk space), computing
power and transmission capacity (bandwidth). Some implementations add some
additional facilities to the resource management such as removing or updating
content, maintaining previous versions of content, managing storage and setting
bandwidth limits.

BUPT

32 Peer-to-Peer - 3

 To enhance Peer-to-Peer operations facilities, a notion of semantic grouping
of information was developed. Through this approach, content distributed systems

are closely to a community related to the peers that share common interests.
Throughout this decision, P2P implementations are focusing more on handling
operations in a limited manner to the community established through some form of
interests. Also this generates reduced costs in handling distributed resources across
the network.

3.2. Addressing Scalability in P2P Implementations

Through the provided analysis of the previous subchapter, a classification of
Peer-to-Peer architecture designs was established. Although every implementation

is unique through combining several techniques for achieving a purely decentralized
architecture, the main issue arises when scaling such systems. I will focus mainly on
the unstructured and structured infrastructures and provide information about the
architecture implementation and protocols used (table 3.1). I have carefully selected
few of the most popular applications within the content distributed systems
classification. Through the provided analysis of the considered systems, I can select
the best performing architectures for developing a distributed mailing system.

Figure 3.2 Characteristics of Peer-to-Peer content distribution systems [20]

BUPT

3.2 - Addressing Scalability in P2P Implementations 33

Table 3.1 Scalable Peer-to-Peer Architectures

Centralization

Hybrid Partial None

Unstructured Skype Kazaa Gnutella

Structured
Infrastructures

- - Chord

3.2.1. Gnutella Architecture Overview

Gnutella represents one of the earliest attempts of handling hosts in a fully

decentralized manner, where all nodes are performing symmetric tasks, fulfilling the
roles of both client and server at the same time. The protocol used in handling peers
over the network is developed on top of the TCP/IP model, providing extensions for
peers to interact: establishing connection, resource information query and
exchange. Gnutella was rapidly adopted by the “peer society” due to the simple
protocol implementation and the variety of information that was to be exchanged.

The Gnutella protocol (Figure 3.3) consists of several queries and answers

addressed and received from the requester node. Throughout every query/response
a descriptor is attached to the information that is sent or received [5]:

 Ping. Used for discovering hosts within the P2P network. The receiver
usually responds with one or more Pong descriptors.

 Pong. Response descriptor to the Ping request. The address of the receiver
(IP) and information regarding the shared data are sent along with the Pong
response.

 Query. Describes the mechanism for searching data within the distributed
network. When a match takes pace, the QueryHit descriptor is sent.

 QueryHit. Response to a Query. Some information is sent along with this

descriptor, to ensure that the queried information can be safely acquired
from the receiver side.

 Push. A mechanism that allows peers behind a firewall or NAT (network

address translation) to contribute to the P2P application.

Through the specified protocol, Gnutella uses broadcast type queries, which
implies poor bandwidth latency usage. To overcome query duplicity, nodes store
requests and answers when no overload occurs on the current peer. Another
solution that overcomes the network flooding consists in assigning every sent query
over the P2P overlay network in a TTL descriptor (Time to Leave). Through this
method, every time a query reaches another node in the network, the assigned TTL

descriptor will be decremented. The forwarding process stops when the descriptor
reaches the zero value. To prevent bypassing this limitation, Gnutella protocol also

BUPT

34 Peer-to-Peer - 3

specifies the need of a second descriptor – Hop count, which is sent along with the

TTL. The query is valid and can pass through if no match was found when:

TTL(0) =TTL(i)+Hops(i) ,

 Where TTL(i) and Hops(i) represent the value of TTL and HPS fields of the
header of the descriptor’s ith hop, i>=0.

By this protocol description I can make the following statement that under
such circumstances Gnutella cannot perform well when scaling this architecture
design at very large number of nodes. Later versions of Gnutella implementation
promote nodes with above average resources with the status of super node.

Through this approach, ordinary nodes can connect only to the super node and
queries are addressed at this layer only. This represents a major enhancement to

the actual protocol of Gnutella, but the innovation represents only another limit to
break when it comes to scale this system at a higher number of nodes.

3.2.2. Kazaa Architecture Overview

Kazaa represents the next generation of the Gnutella implementation.
Although the protocol never went public, the work in [8] provides a solid foundation
of this application architecture design. This system concept is worth mentioning in
this subchapter because of its capability in handling an increased number of peers
(3 million daily [8]) and a large amount of data available on the overlay (5,000

terabytes [8]).

The architecture design is implemented through extending Gnutella by
Gnutella. The overlay is divided into a two tier overlay, the first tier handled by the
super nodes and the other from ordinary nodes. The Kazaa implementation exploits
the peer heterogeneity by promoting nodes with above average uptime, bandwidth
connectivity and CPU power. By this decision, Kazaa handles two kind of operations:
super (SN) and ordinary (ON) node tasks. The super node handles connections with

other super nodes and ordinary nodes. By handling connections with others of its
kind, a super node keeps track for other possible connections by always updating its
current list with newly ones queried from its neighbours.

The ordinary node (ON) performs the same operations of changing super
nodes addresses obtained from its neighbours. The information that an ON stores on
the SN side consists in: the file name, file size, content hash and the file descriptors
(ex. author name, album, etc.). The Kazaa application hashes every file to a hash

signature, used for identifying and downloading the file content related to the

Figure 3.3 Gnutella Protocol - Ping/Pong - Query/QueryHit/Push Routing [4]

BUPT

3.2 - Addressing Scalability in P2P Implementations 35

generated hash signature. Also when the download fails, Kazaa automatically
performs the request of another file matching the previously obtained hash for the
file content to download.

When query operations take place from the ON to SN, a limitation is set through
decrementing a TTL descriptor. This limit prevents network flooding and bandwidth
congestions.

Kazaa performs well when handling data in a dynamic environment. The
architecture design is focused more on indexing data and providing accessibility

range of hashed metadata. The availability is handled by the user’s ability to
permanently upload new data on the overlay network and by the increased uptime

determined by the incentive mechanism of the Kazaa application. Through this
approach, Kazaa manages a large amount of data that permanently refreshes due to
newly uploaded data. As a conclusion, Kazaa architecture is entirely sustained by
the incentive mechanism offered by this application and data consistency and
availability are handled poorly through this concept design.

3.2.3. Skype Architecture overview

Skype [21] is included in the category of communication and collaboration
and provides facilities such as VOIP (voice over IP), instant messaging,

conferencing, avoiding NAT and firewalls, codecs, media transfer and buddy lists.

Skype was developed by the Kazaa organization, having an architecture design
related to Kazaa [8], and moreover, it provides extensions by handling some of the
information on top of a third tier – a server centric element. Although Skype
architecture implementation and design was not released for publishing, I will use
the analysis provided by the authors in [21].

Skype architecture design (Figure 3.4) relies on a three tier overlay
composed of the ordinary node (ON), super node (SN) and login server (LNS). The
protocols used in handling communications are TCP, UDP and HTTP. Like Kazaa
implementation, nodes are carefully selected within the P2P network for achieving
the super node state through having increased bandwidth, CPU power and uptime.
At this tier layer, connections with other SNs are established in a variant and
periodical manner. The links with other SN’s are used for handling offline

information (messages) or connectivity related issues (bypassing NAT or firewalls).
An ordinary node performs only the operations of end-to-end call or instant

messaging. Any ON uses the connections established with several SNs to perform
the mentioned operations. The third tier layer is represented through the login
server used to store information about user IDs and buddy lists. When a node joins
the Skype overlay, it connects first to a known SN and after then performs the
authentication process through connecting to the login server. By storing user

information on the login server, Skype ensures that no duplicity can occur in terms
of user ID and buddy list information.

Additional server centric elements used for PC-to-PSTN and PSTN-to-PC
(Public Switch Telephone Network) bridging are implemented through SkypeOut
[30] and SkypeIn [31] servers.

BUPT

36 Peer-to-Peer - 3

Figure 3.4 Skype Architecture Implementation

An in dept analysis was presented in [21], which provides a more detailed
aspect of Skype functionalities:

 Ports. There is no TCP or UDP default port on which Skype listens to. Skype
uses a range of ports chosen randomly and publishes them (ON/SN) after
several connections were established with other Skype clients.

 Host Cache. Represents a list of IP addresses and port pairs cached on the

local host that periodically is built and refreshed from the Skype Client side.
When no connection can be established through the host cache, the node
uses the bootstrap IP addresses provided as default in the Skype
application.

 Codecs. Skype uses the codecs from GlobalIPSound [32], and the
frequency range used lies between 50-8,000 Hz.

 Buddy List. The buddy list is stored on both local host and login server.

 Encryption. Encryption is provided by using AES [33] (Advanced Encryption
Standard), also known as Rijndael. Skype uses a 1024 bit RSA to negotiate
symmetric AES keys and the user public keys are certified by the Skype
login server.

 NAT and Firewall. Skype application uses a variation of the STUN [34] and
TUN [35] protocols to determine the kind of NAT or firewall a client may lie
behind.

Skype represents the next generation of the Kazaa implementation. Through
handling connections on top of a three tiered network design, Skype performs well
when scaling the system at a large amount of users. Skype’s performance comes
with a cost: a server centric element manages most of Skype’s data availability and

consistency. Through analysing this architecture design, I can conclude that hybrid

BUPT

3.2 - Addressing Scalability in P2P Implementations 37

Peer-to-Peer network implementations represent a solution to the traditional Client-
Server model, where information can be handled two sided: the critical data can be
stored on the server side and data that is to be “refreshed” (consumed) in time can

be stored on the Peer-to-Peer overlay.

Figure 3.5 Chord Architecture Design

3.2.4. Chord Architecture Overview

With the demand of scaling at a large number of peers, the previous

mentioned architectures presented some structure flaws: one lookup query was
limited by a time-to-leave descriptor (Gnutella [5], Kazaa [8]) and the entire peer
community could not be mapped onto a single identifier space or reached from any
point of access in the architecture model. As a response the following designs were
developed to overcome these flaws and improve on existing features. I mention
here CAN [15], Pastry [16][17], Tapestry [18] and Chord [19].

Distributed Hash Table (DHT) based networks provide the framework

support for P2P applications. The mechanism behind the virtual network is self-
organizing through the operations that facilitate scalability, load-balance,

decentralization and availability. Chord [19] is built in this manner, describing a
ring-like virtual network (Figure 3.5), where each node has an unique ID in a m-bit
space using the SHA-1 hash function. Every node is linked to its successor and
maintains a list of nodes following it in the ring (predecessors). Data to be stored is

hashed in the same identifier space as the joining nodes under a certain key k, and
is to be placed at the node whose identifier equals or follows k. The node that is
responsible for the obtained hash key is called successor(k).

To accelerate the routing process, every node maintains a neighbor table
with m entries called finger table. The ith entry in the finger table at a node n
contains the address of successor(n+2i-1). Figure 3.5 exemplifies the lookup
operation of key 29 from node 3. Node 3 contacts node 19 from its finger table and

finds out that the searched key is closer to node 27. When contacting node 27, node
3 finds out that key 29 is stored under the node with the given ID of 30, the
successor of node 27.

BUPT

38 Peer-to-Peer - 3

The Chord implementation represents one of the early breakthroughs in
handling Peer-to-Peer network concepts separately from the application layer. As a
practical comparison, Chord is somehow related with Gnutella at its beginnings.

Although it scales well under any churn conditions, the issues of data availability
and consistency are affected.

Figure 3.6 Two Tier Chord Overlay Extension

Even if the whole peer community was mapped onto a single identifier space
and queries were precisely addressed at any point of architecture map, there is still

need to highlight peers with certain properties into different architecture location
while maintaining interconnection lookup to a minimum possible. A good example of
harnessing the benefits of computing resources within the P2P network is present in
[36], figure 3.6.

The two tier extension [36] of the Chord protocol carefully filters nodes with
above average resources (super nodes) from the normal nodes. The chosen
extension describes a structure formed through linking ring topologies to a single
one composed of super nodes. The protocol extension resumes in extending Chord
by Chord, where every normal node performs the operations described in [17] and
the super node duplicates these operations because of its double identity: maintains
connections with other super nodes within the first tier and also holds connections

with normal nodes from the lower tier. The identifier space of one lower tier lies
between the super node and the super node’s predecessor ID. The whole
mechanism behind this extension is dynamically implemented as when one normal
node gains the property of super node, first ask the leading super node for

acceptance, and when granted, it can join the first tier having set as lower tier the
normal nodes that previously were set as predecessors.

There are several hierarchical implementations that focus on the necessary

extensions to fit the demands of the original Chord protocol. The main principle,
applied by all existing solutions for their hierarchical approaches, is to represent a
hierarchical depth level by another tier, which is different than the original tier that
lies closer to the base level of those implementations. I will highlight some of the
implementations that meet the proprieties previously mentioned:

 The Crescendo [37] solution consists of several interconnected ring

implementations, where some nodes from each ring point to each other to
obtain an ordered distribution of keys per whole identifier space. Features of
load - balancing, fault isolation, hierarchical storage control and storage
access, are presented additional to the architecture design.

BUPT

3.3 - Efficiency model for the P2P Network 39

 The architecture design presented in [38] provides a hierarchical
implementation based on two tiers. The base Chord overlay coordinates the
second level depth of other overlays. Only the nodes that earned the

property of Super Node can coordinate other overlays within the base
overlay. One Super Node coordinates the second layer depth overlay
through an additional set of finger table and successor list to keep track of
the second level depth queries.

 Another approach [39] handles the hierarchy in a concentric manner. The
highly reliable P2P system called HIPEER represents the overlay that handles
the other hierarchical overlays situated above it.

 The approach used in [36] handles the hierarchy on top of a base overlay.
Links are built between several level depths with controlled cost, a lookup
operation between two hierarchic overlays being the amount of the total
hops needed for travelling to one level depth to another. If a node joins the
network, it must first join the base overlay, and then to continue until it
reaches the corresponding upper level depth.

Although many implementations pursued the need of handling peers in a
restrained framework, separately from the application decisions, there still remains
a need for a platform design where several P2P applications can work at the same

time interactively or independently. This represents one of the thesis work areas,
where an attempt of layering Chord over Chord is pursued, so that a range of
applications can work simultaneously on the same P2P overlay network.

3.3. Efficiency model for the P2P Network

The Peer-to-Peer applications available today differ in many aspects such as
architectural design, application purpose, network protocols, etc. Although many

implementations imposed their own architecture design, there is a need of
standardization of such platforms for several applications to interact safely at the
same time. Also harnessing the variety of resources within the dynamic environment
is one of the priorities that were proven to be a reliable aspect in designing such

architectural concepts.
Peer-to-Peer (P2P) applications running over a distributed hash table (DHT)

based overlay do not benefit from dominant characteristics of nodes in the network

(such as resources and speed). A model proposal that facilitates applications to
benefit from the predominant features of a node and also a way through which it
can prioritize those features on several hierarchical layers is presented in [41]. This
model concept is based on several hierarchical modules identified by an ID, each
one being modelled through a set of rules defined by the application at the upper
layer. Extensions were made to the original Chord protocol for scaling it under a

requested number of interconnected hierarchical modules.
The concept present in [41] enables that every application running on top of

a DHT overlay should select between specific properties of certain nodes
(bandwidth, shared space, computing power, etc.) within the P2P network. The
architecture is developed so that the dominant properties for an application define

hierarchical levels in restrained entities over Chord, called hierarchical modules

BUPT

40 Peer-to-Peer - 3

(HM). Every module is managed through a control file, defined here as a dispatch
list, whose lifetime is determined by the valid entries of the nodes participating to
that module.

Figure 3.7 Overlay Framework Transparency for the P2P Applications

3.3.1. System Model

The Chord architecture, like many other overlay systems, was designed as a
framework for applications situated above the overlay layer, such as file sharing or
VoIP applications. An application on top of Chord, handles queries only at key level.
The overlay framework underneath the application layer provides transparency
between keys and the network transport addresses, handling tasks such as: lookup
methods, stabilization, fix_finger_table () procedure, etc.

One hierarchical module from the HM architecture design is managed
through the coordination of a dispatch list. A dispatch list is can be identified by the
key obtained from hashing the ID of a certain module. A lookup operation between
two peers from different modules is associated with the operation of finding first the
dispatch list of the queried module, and then following the lookup operation

according to the acquired ID and set of rules obtained from that dispatch list.
The hierarchical architecture design serves as an application-driven lookup,

because in order to address a query to a certain module, a peer must first find its
associated dispatch list, and then it can perform a direct lookup operation to the
desired module.

The hierarchical extension of the Chord overlay serves as a framework for
the following application types:

 Location services: several hierarchical modules can be built according to

the validation of Country ID, provided for example from an external service
such as MaxMind [41]. Each hierarchical module can host several partitions
identified by the Region IDs of the inherited country module.

BUPT

3.3 - Efficiency model for the P2P Network 41

 Isolated storage space: gained through organizing Super Nodes in several
hierarchical modules. A Super Node property designates more than average
resources, such as: bandwidth, storage space, high uptime, etc.

 Security: a certain rule used to create a hierarchical level depth, may serve
as a public key for other peers to encrypt data. Only the peers that know the
private key can decrypt the available data at this level depth.

 Task simulations: for embedded systems over the network. Several tasks
cannot complete their activities until other are not finished. One can design
a system where dependencies between tasks are ordered from higher
priority level to lover ones.

3.3.2. System design

The architecture model [41] is structured according to the hierarchical
module validation. There can be several modules implemented, each one of them
being identified by a unique ID. Hierarchy depth is set depending on the number of
rules that help create such an entity. Each level depth can contain several partition
overlays according to the specified rule entry. A rule entry determines a range of
values for a certain node property (ex: bandwidth range values, storage space

range values, etc.).

Every hierarchical module managed through a dispatch list, which facilitates
the operations of joining, failure and lookup. One lookup cost between two different
modules is achieved through the number of hops necessary to get the dispatch list
of the queried module and the number of hops to get the requested information
directly from the resolved node.

The entire multi-ring format runs on top of a traditional Chord overlay.

Instead of organizing a range of connections between several hierarchical Chord
overlays, the entire multi-ring structure is mapped on top of Chord structure.

The hierarchical architecture design is present in Figure 3.8. Level 0 depth
marks the presence of the base Chord overlay network. One single partition overlay
can exist at this level and contains the total amount of nodes, through which several
hierarchic modules are created. The dispatch lists used to handle operations
between several hierarchical modules are stored at this level depth.

Each node is present in the network with a set of rules and a given ID that
marks the hierarchical module to which it belongs. A ruleI entry of a certain node will
place this node in one of the level I depths, 1 ≤ I ≤ R, R = limited. The value of a
certain ruleI entry can vary between 1 and MI value. The ruleI entry value specifies
the partition overlay for one level I depth and can be either static (constants) or
dynamic (ranges). Hence, a partition overlay designates a smaller number of linked
nodes within an overlay.

In Figure 3.9, an example of one hierarchical module built according to the
specification of location services provided by MaxMind [42] is shown. Two rules are
used for building one hierarchical module such as country and region. The rule1
entry specifies the country name, and partition overlays are formed through
grouping nodes with the same country.

BUPT

42 Peer-to-Peer - 3

At level depth 2, partition overlays are formed through grouping the nodes from one
country according to their region, marking the rule2 entry. The module identifies

itself according to one country (the dashed lines), and a single region (the dotted
lines).

Continuing with the example from Figure 3.8, level 1 depth has M’ partition
overlays. Also, level 1 depth marks the beginning of a certain hierarchical module
defined in the level 0 depth through its assigned dispatch list. One node can join a
certain partition overlay at this level depth, if the ruleI entry value is valid according
to this partition overlay specifications and the given ID is part of the hierarchical

module created at this partition overlay level depth. Furthermore, the level depth of
one hierarchical module is limited according to the R set of rules.

All the nodes needed for creating several hierarchical modules are present
at level 0 depth. All the node IDs are mapped under the same ID space, from level 0
depth following level R. Suppose nodek is present at level 0 with IDk, where 0 ≤ k ≤
N, N = total number of nodes in Chord. When nodek joins the upper level overlay

according to rule1 value, its hash ID at this point will be ID’
k and IDk = ID’

k.

Following this iteration, at level R, nodek’s ID will be IDR
k, where ID = ID’

k = … =
IDR

k. Hence, all the ID hashes at level depth 0 will be valid also at level R.
At each level, Chord overlays are formed through linking nodes with the

same rule. Notice that one link at a certain level depth, may or may not differ from
other links on other layers.

Given the example in Figure 3.9, a two-level depth hierarchical module is

presented. The base Chord overlay is formed through linking node IDs from range
between 0 and 30 and thus forming level depth 0. At level 1, partition overlay [1,0]
is present on top of the base overlay and is marked with dashed connections,
according to rule1 entry. This partition overlay marks the beginning of the
hierarchical module. Here, node IDs range between 3’ and 30’. Although, at this
layer, IDs are marked with abbreviation, notice that base Chord ID = ID of level
depth 1. At the top level, marked with dotted connections between nodes, partition

overlay [2,0] is presented and the number of grouped nodes is smaller than the
ones from level 1, level 0 respectively. At this level the link between nodes 12’’ and

Figure 3.8 Hierarchical Architecture Design

BUPT

3.3 - Efficiency model for the P2P Network 43

30’’appears also in the level depth bellow. This link is not reproduced from level 1 to
level 2, this just being mapped from the first level occurrence to the other upper
level depths that use the same connection.

Given a set of rules and an ID, one must design a hierarchical module in
such manner to avoid overload of keys from a certain level depth. Load balancing is
the key factor that allows scaling this architecture to an R level depth. In Figure 3.9
a key that is to be stored with the ID 0, places itself at node with ID 0 in the base
Chord overlay, at node 3’ at level 1 and at node 12’’ at level 2.

At each level depth, the traditional Chord protocol is used. A node keeps a
range of R finger tables and successor lists to route information inside a partition

overlay at levelI depth, where 1≤ I ≤ R, R = limited. The same operations specified
by the Chord protocol such as stabilization and fix_finger_table are implemented at
every partition overlay where a certain node joins.

Figure 3.9 Example of a two level depth Hierarchical Module

3.3.3. System Operations

Due to its concentric design, the hierarchical overlay is managed at each

level depth through a dispatch list, which is stored at base Chord overlay, level
depth 0. The key ID value of a dispatch list is equal to the ID of a certain
hierarchical module. Any access that defines ground rules, such as building or

reconfiguring hierarchical modules are made from the upper application layer
authority.

A dispatch list contains two parts: the first part consists of a set of general
rules and the second part consists of entry points for each ruleI, 1 ≤ I ≤ R. The set
of general rules has a global influence over a hierarchical module. In this case, rules
are built to control and limit the overlay level depths within a module.

Each node joins a module with a set of R known rules previously set from an
external service over the network architecture design such as an application layer.
The second part of a dispatch list consists of R other entries identified by the ruleI
ID, where 1 ≤ I ≤ R. One entry of a ruleI ID consists of a list of MI values
determined by the external service, where MI represents the range of values from
one ruleI entry. The value ranges are used for defining several partition overlays

BUPT

44 Peer-to-Peer - 3

according to ruleI ID. An entry for the valueJ consists of m identification entries,
where m represents the size of the finger table from the base Chord overlay; 0 ≤ J
≤ MI, MI = limited. The identification entry consists of certain information about a

node joining the module according to valueJ and ruleI ID, such as the ID in the base
Chord overlay, a number of successors within the partition overlay and its network
transport address. The range of the m identifier varies for each value according to a
certain rule is held in an MRU (Most Recently Used) buffer of last joining nodes. The
MRU buffer assures the m entries are always valid at a particular moment in time

when lookup services are required for a certain hierarchical module.
The second part of the dispatch list is used only for joining, lookup and

failure operations. It keeps track of a hierarchical module architecture
implementation, and is used for validating the joining nodes according to the known
set of rules.

The set of general rules has the same structure as the second part from the
dispatch list. Value entries are defined for each rule by the authority of an upper
layer application. A node can join an upper level partition overlay only if it matches

the according value of the rule (in case the value entry was defined as fixed) or if its
value falls inside the range values of ruleI.

The hierarchical architecture is designed to act as a framework for other
applications. There are two ways of interacting with the network overlay model:
static or dynamic. If managed dynamically, an initial set of rules is set, afterwards,
the dispatch list completes according to this set. Otherwise, the rules are written

manually into the dispatch list at certain points in time. Hence, the properties of the

dispatch list are highlighted: limit - through the level depth and control – through
the static or dynamic management of the list.

In order to perform lookup operations, a node must have access to all the
necessary information. The upper application layer must coordinate a lookup
operation between several hierarchical modules according to the ID and the set of
rules for a certain hierarchical module. This method of lookup operations confirms
that this implementation is more of an application driven network, where the two

layers cannot complete operations without the correlation of certain tasks.
A node establishes several connections with other nodes within the module /

level depth / partition. To maintain these connections, a node keeps track of a list
with as many finger tables as the number of partitions he is being part of. The node
can automatically translate itself at a certain level depth to perform queries between
partitions.

A lookup operation is performed in two steps. First, the dispatch list is
fetched from the base Chord overlay for the queried hierarchical module. Second,
the queried module is directly addressed through the information from dispatch list.

Suppose node p from level depth n, partition overlay [n,0], module 1, wants
to perform a lookup for a key value at module 2, level depth m, partition overlay
[m,0]. Node p uses its finger table according to the base Chord overlay partition and
fetches the dispatch list with the key ID 2 (for module 2). It filters the rule

identifiers according to the fetched dispatch list and retrieves the number of nodes
that matches the requested query. Then it contacts one of the nodes from the MRU
buffer and asks for the key for that partition. The contacted node accepts the query
and uses its finger table for the requested level depth /partition overlay and returns
the successor of the queried key.

When a new node n wants to join the hierarchical overlay, it has to contact
the upper application layer to retrieve the rules and module ID according to which it

can join the network. It obtains the address of a known node n’
exist already joining

BUPT

3.3 - Efficiency model for the P2P Network 45

the base overlay network and contacts that node. It may ask now for its ID under
the base overlay and for its successor according to Chord protocol. It builds its
finger table and announces his new place in the base overlay DHT. When all these

procedures have finished (also called stabilization procedures), it contacts the node
holding the dispatch list according to the ID he received from the upper application
layer. Node n fetches the dispatch list and retrieves the m nodes marked as a
perfect match to its current state of rules and continues its joining operation to the
upper level depth pointed by its set of rules. If one entry of a certain rule doesn’t fit

the requested value, this will force node n to remain at the current level depth until
that specific entry matches the rule. After the joining operation has been performed,

node n updates the dispatch list according to the level depths / partition overlays
where it joined. The update consists of several identifier entries according to the
values of the set of rules where the match was found. An identifier entry includes
the node ID in the base Chord overlay, the number of successors from a certain
partition overlay and the network transport address.

The joining procedure will proceed from the lowest level depth to the

highest. When node n joins a partition at a certain level depth, it only updates the
finger table from this partition overlay and informs the other nodes of its presence.
If the link, established at a lower level depth, is valid for the next upper level
depths, then this link is automatically mapped at the level where the common rule
ends. Each partition overlay is responsible for load balancing its data. This means
the new node will be responsible for a list of keys, each entry in that list

corresponding to a certain level depth partition overlay in the hierarchical module.

When failures occur over the overlay network, the base Chord overlay is the
first to assure the integrity of hierarchical modules. When a node n leaves the
network, it also leaves the hierarchical partitions overlays it is being part of. When a
node at a certain level depth calls the stabilization procedure and confirms that node
n is not part of the network, it checks the status of the dispatch list that handles the
current hierarchical module. If node n, which isn’t present in the network overlay
anymore, appears in any of the m entries of the R rules of the dispatch list, it will be

replaced by the node who first noticed node n disappearance from the network. In
this manner the integrity of the dispatch list is maintained.

The worst case scenario occurs when levels depth in hierarchical modules
cannot be established anymore. In this case, the keys are translated to the base
Chord overlay and marked so that if a level depth can be established again, the
nodes on that level must retrieve all the information according to the new level

depth partitions overlays that are newly formed. If one level depth fails the keys are
moved to the below level.

If the base Chord overlay is fragmented, then the architecture maintains the
connections at upper level depths. Suppose that a hierarchical module is structured
according to the MaxMind [42] with the following rules: R1 = Country, R2 = Region.
This example scales to a two level depth hierarchical module. Suppose that on level
depth 2, two region partitions are present, and for some reason are held by different

Internet service providers (ISP’s). If any of them goes offline, the failed partition is
still available at level depth 2 through the connections within its Internet service
provider (assuming that a certain local area network is still up). At level depth 1 and
base Chord overlay, the connection links are marked with the offline status. When
the connection is re-established between the fragmented partitions and the base
Chord overlay, the nodes will remap themselves at the level depth 0 and 1,
respectively.

BUPT

46 Peer-to-Peer - 3

 The dispatch list is handled at the upper application layer for
replication purposes. The lifetime of a hierarchical module is valid until there are no
more valid entries in the dispatch list.

3.3.4. Performance Analysis

This section provides an analysis of the lookup and maintenance costs of the

architecture design present in [41] and its comparison with Chord. The following
assumptions serve as a starting point for our cost analyses [19]:

 The total number of nodes in the base Chord overlay is N.

 The total number of hierarchical modules mapped over the base Chord
overlay is M’

 The total number of partition overlays (PO) at a certain level depth is

1
, 1

I

I

M
PO I R

M .

 The total number of nodes in one partition overlay (NPO) at a certain level
depth is:

1

R

I

I

N
NPO

M

.

 The probability that a node possesses a copy of a dispatch list for lookup

operation purposes, with a valid entry for a certain level depth is

,1
I

I R
.

When a node performs a lookup operation to a certain hierarchical module,
it first acquires the dispatch list of that module. According to the fetched dispatch
list, it performs a direct lookup operation to the desired level depth of the requested
hierarchical module. By using the standard lookup operation, the node acquires the
dispatch list in hops, according to the Chord protocol specification [19].

The total amount of hops that a node requires to perform a lookup operation
to a desired level depth of a certain hierarchical module (HM) is:

1

1 1
log log

2 2
H M R

I

I

N
Lookup N

M

 (3.1)

1
2

logN

BUPT

3.3 - Efficiency model for the P2P Network 47

The derivation of Equation 3.1 is a consequence of the property of a node to
translate its link connections at a certain level depth. Hence, the routing cost
between several level depths within the same hierarchical module is expressed in

terms of translation between level depths instead of going through several hops to
get to the desired level depth. This also shows that the number of hops of any
lookup operation is proportional to the number of hierarchical modules mapped over
the base Chord overlay.
If a node has performed lookup operations to the same hierarchical module and

already has a copy of the designated dispatch list, then Equation (3.1) depends on
μI:

1

1 1
(1) log log

2 2
HM I I R

I

I

N
Lookup N

M

(3.2)

The maintenance cost of the Chord overlay is determined by the periodic call

of fix_fingers() and stabilization() procedures [19]. For each partition overlay within
any level depth, our hierarchical module implementation conserves the maintenance
costs as present in Chord. Because the proposed architecture design does not aim to
build hierarchical modules at a 1:1 ratio, overall maintenance costs tend to a
minimum value at higher level depths.

3.3.5. Simulation and Experimental Results

The hierarchical architecture design was simulated through using the

Oversim simulation environment framework over the OMNET++ IDE [43], which is
designed according to the application and overlay network layer. The application
layer is built over the overlay network and provides transparency between keys and
network transport addresses.

The dispatch list is implemented at the application layer, and coordination
with the overlay takes place through remote procedure calls. Network parameters
such as hierarchical module count, rule count, rule entries, churn rate, are selected

at runtime. The probability of a valid entry in the dispatch list is simulated through
the churn rate of the simulation framework and through a parameter given at

runtime. A pre-generated file was used for naming hierarchical modules within the
Chord overlay. In order to compare the hierarchical architecture design with Chord,
every lookup operation was set first time for the hierarchical module and a second
time for the base Chord overlay according to the same queried key.

Simulation results were collected from a number of 100, 200, 500, 1000 and

2000 nodes. Only three level depth hierarchical modules with two different design
ratios were used.

Figure 3.10 presents a hierarchical architecture design implemented
according to the ratio of 10:5:2. Ten hierarchical modules are created according to
the level depth 1, each one holding 5 partition overlays at level depth 2, and at level
depth 3, 2 partitions are present. The probability of a node holding a valid copy of a

dispatch list is set to 0.5 and 0.3 respectively. The mean hop count of our
architecture design starts to be higher than Chord beginning with the number of
2000 simulated nodes. The mean hop count for the level depth 1 exceeds Chord

beginning with the count of 500 nodes. This can be explained through the number of

BUPT

48 Peer-to-Peer - 3

hops that a node has to take to reach the queried key. Both level depths 2 and 3
show better performance than Chord in our architecture design.

Figure 3.10 Hierarchical Architecture Design for 10:5:2 ratio

In Figure 3.11 hierarchical modules are created according to the 20:10:5
ratio. The same probability is used here for one node holding a valid copy of
dispatch list for performing lookup queries. Because the number of hierarchical

modules is greater than the previous simulation, it performs better until the number
of 2000 nodes is reached. The mean hop count remains below the Chord, and
matches it at 2000 nodes. The mean hop count for the level depth 1 exceeds Chord
beginning with the count of 1000 nodes in this case. The architecture design shows
good performance if the number of nodes, within hierarchical modules, is equally
proportioned throughout the architecture levels.

Figure 3.11 Hierarchical Architecture Design for 20:10:15 ratio

BUPT

3.4 - Peer Availability – Uptime Case Study 49

3.4. Peer Availability – Uptime Case Study

One of the many issues that Peer-to-Peer network architectures are
confronting with is represented by handling the availability of joining peers.
Although early implementations of P2P concepts were relying entirely on simulations
to adjust their internal protocols, new approaches base their implementations on the

case study of measurements obtained from previously developed systems.

The host availability is determined by the uptime property of every node that joins a
P2P network system. In an unpredictable environment, where every peer can join or
leave the network at any time, it is a great challenge to manage the information
safely. This generates the need of caching and replicating data content across such
platforms.
According to [44], host availability can be defined as:

“The degree to which a system, subsystem, or equipment is operable and in a
committable state at the start of a mission, when the mission is called for at an
unknown, i.e., a random, time”.

The host availability cannot be always determined by the intention of the

user to join or leave the network. There are factors that contribute to the
increased/decreased uptime level of a joining peer, such as: exchanging information
in a trusted manner, security issues, privacy and poor incentive mechanisms.

Further, my expectation of peer availability changes drastically according to the P2P
application type: a file sharing system has lower uptime expectation from its peers
than a VOIP application across the same distributed system.

The work available in [45] provides an accurate case study of the Kazaa

network session. In Figure 3.7 (Left) measurements of handling connections
between ordinary and super nodes were provided (ON-SN and SN-SN). The range of
connections varies for both cases: 100 to 160 for ON-SN session and 30 to 50 for
SN-SN session. Although there is a slight tendency to a constant, the individual
connections change frequently. The average duration of one individual connection is
34.4 minutes for ON-SN and 11 minutes for SN-SN.

The neighbour selection [45] of Kazaa entities (SN or ON) is made according

to one of the following:

 Low workload of the super node involved in one of the ON-SN or SN-SN

connections.

 Closer location based connections in terms of:

o Round-trip time (RTT) measurements. A connection can be established
within a value range of RTT less than 50 milliseconds.

o IP subnet mask matching. A connection between any of the ON or SN
can be established if their IP prefixes match.

Trough the provided analysis in [45] I conclude that any newly joined node
to the Kazaa application will establish several connections in any of the SN-SN or
ON-SN directions, until an adjustment of geographical area distribution takes place.

BUPT

50 Peer-to-Peer - 3

Figure 3.12 Kazaa Session Evolution [45]

Figure 3.13 Skype Session Evolution [46]

Figure 3.14 BitTorent Session Evolution [47]

BUPT

3.4 - Peer Availability – Uptime Case Study 51

After this limitation is reached, connections can still vary but only within the
same geographical distribution range. This approach proves that Kazaa carefully
places peer operations within a range geographical distribution limit to prevent

network overload.
In Figure 3.7 (Right) the super node uptime was analysed. A number of 965

unique super nodes were monitored over a period of 65 hours. As a conclusion, the
average SN uptime in the Kazaa overlay is 149 minutes (2.5 hours).

The work presented in [46] focuses only on Skype super node churn

analysis. Although Skype architecture design relates to Kazaa [8], peer activity
differs significantly in terms of uptime and connection stability. Figure 3.8 (Left)

shows that the number of super nodes is more stable than other Skype clients
(ordinary nodes). A range of 30 to 40 connections can be established between SNs,
with an average value of 35. Further, super nodes prove to have a diurnal
behaviour, causing a reduced usage of 40-50% at night. The average super node
uptime rises to 5.5 hours, higher than most of the available P2P sharing systems.

Figure 3.8 (Right) shows the geographical distribution of super nodes. The

peaks present in this figure confirm the diurnal behaviour of super nodes. Although
nodes sign out mostly at night, there is a significant difference in the overall SN
availability. This geographical distribution confirms that some regions adopt more or
less the facilities of P2P architectures.

The work presented in [47] analyses the BitTorrent [48] client availability.
BitTorrent represents one of the most popular P2P sharing application available

today. Measurements were made over a number of 10,000 nodes across 191

countries. The distribution of nodes was more pronounced in three countries (US,
UK and Canada) than others. From 10,000 nodes that were observed in 2 weeks, an
average availability of 28.39% was obtained, with a median of 15.67%. Figure 3.9
shows the variation of availability of 3 selected peers within the output average of
28% available peers. The circle represents a wall clock (24 h) and the length of the
radius refers to availability. The experimental process shows that the red peer is
available between 03:00 – 15:00, the green peer from 18:00 – 05:00 and the blue

peer from 14:00 – 21:00. As an overall output result, Bittorrent clients have an
average availability of 2.8 hours.

In table 3.2 a summary of the previously analysed Peer-to-Peer session
characteristics are presented:

Table 3.2 General Peer-to-Peer Session Characteristics

 Average
Uptime

Geographical
Distribution

Explore Peer
Heterogeneity

Established
Connections

Kazaa 2.5 h Yes Yes 20-50

Skype 5.5 h Yes Yes 30-40

BitTorrent 2.8 h No No 0

Although Kazaa and BitTorrent are two sharing applications that differ in
terms of architectural implementation, both have a similar average node uptime.
The main architectural difference between the two applications is represented
through the way that peers are sharing their resources. BitTorent determines peers
to create a torrent file pointing to the address of the host that wants to share any
information. The torrent file is then uploaded on a web server that facilitates the

operation of making the file available to other clients that query that information.

BitTorrent uses the third tier (web server) to centralize a small amount of

BUPT

52 Peer-to-Peer - 3

information that can lead to the files available for download on the first tier (Peer-
to-Peer layer). Kazaa determines peers to participate more actively in the sharing
process by centralizing the information needed for lookup operations on nodes with

above average computing resources. The environment held by the super nodes is
not comparable with the server’s property of guaranteeing data availability and
consistency. Also the limit imposed by the geographical distribution, decreases the
availability performance on the Kazaa P2P platform.

Skype proves to be a reliable P2P solution trough the following:

 Security. Skype secures both voice and message operations across the P2P
network.

 Information Exchange. Occurs in a trusted manner, by precisely
addressing the user to whom information is sent or communicated.

 Incentive mechanism. Determined by the need of communication.
Communication represents one of the key elements that is at the base of
development of society.

 Privacy. Skype collects data only to ensure better quality of the VOIP

service and better user experience.

Skype represents one of the Peer-to-Peer applications that perform well in
terms of performance and host availability. Although its architecture design is
implemented across three tiers, the login server is used just for storing and
authenticating user IDs. The entire mechanism of VOIP and messaging is supported
by the P2P structure: ordinary nodes and super nodes.

Through the provided analysis of host availability within P2P networks, I

conclude that a reason in obtaining a high uptime in a dynamic environment is
represented by the natural desire of communication and information sharing. The
trust gained by the environment generated by the P2P mechanism also plays a
major role in attracting new peers to the network.

3.4.1. Replica Placement Algorithm using Uptime Prediction
Methods

The Peer-to-Peer architecture concept denotes an unstable environment

sustained only from participants that can leave or join the network at any time. To
provide a stable holder for the data content that is to be stored across such
environment type, many algorithms were developed to provide, with a certain level
of accuracy, the moment in time when a peer is available in the network. The first
attempts in handling data consistency and availability across P2P networks were
relying on replicating information across a random number of peers. Thus, this
method offered a quick answer to the issued problems, the P2P system architecture

suffered from overall performance loss: high bandwidth resource usage, increased
computing power generated through the constant need of handling additional
replication techniques across the network, etc.

BUPT

3.4 - Peer Availability – Uptime Case Study 53

The replica placement algorithms were developed to minimize the effort
needed to handle both data consistency and availability across P2P networks.
Through precisely aiming at peers with an increased time spend across the P2P
network, the replica algorithms were able to minimize the number of nodes involved

in the caching process and also to increase the level of both consistency and
availability of data. One of the algorithms that perform in such manner is described
in [47], providing a good support for applications to safely store data across

unstable network environment.
The authors from [47] provided a probabilistic model of handling replicas

across structured P2P networks by building a peer availability table (PAT). The
algorithm breaks down the time interval of one week into several slots of 5 minutes
length. Through this measurement slot a day is divided into 288 units and a week
into 2,016 units. PAT indicates the peer availability at slot level, every entry being

computed according to the formula [47]:

IAV =
OnlineCounts

VerificationCounts
(3.3)

Through Equation 3.3, the provided algorithm can precisely specify the

user’s joining habits to the Peer-to-Peer network during a time interval of one week.
Analysing the user habit of joining the network, the authors refer to the precise

moment when the user usually spends most of its time to the P2P network. The
Online Counts refer to the current registered online status that one peer personally
keeps track and the Verification Counts are handled from other peer neighbours
from the network. The whole algorithm performs as a PING mechanism, where
merely the PAT table is adjusted from a restrained number of peers for a better
accuracy of the algorithm. The Verification Counts fields are refreshed every 5

minutes from both the subject and neighbour sides.
The presented algorithm provides a good foundation of replicating the data

among an interval of one week providing two replication techniques: across peers
with PAT similarity (consolidating data availability) and across peers with different

PAT configuration for a better data availability.

Figure 3.15 Uptime Prediction Algorithms

BUPT

54 Peer-to-Peer - 3

Although the smallest time unit has a five minutes length, the overall
observation window is handled into an interval of one week. This algorithm handles
well replication techniques across precisely delimited time spaces, but the

observation window needs to be adjusted for more accurate and prompt replications
decisions.

In a Peer-to-Peer network application that needs to handle critical data
promptly and safely on such unstable environments, the overall observation window
must be restricted to the smallest unit possible (Figure 3.15). The mailing system

generates a communication platform where the priority is first set on finding and
notifying the recipient for the already cached email content. If the replication

algorithm is highly accurate on a time window that requires an increased number of
nodes for caching the email content, several issues can occur such as: inaccurate
usage of the available time slots due to the limited number of nodes available of
caching, high bandwidth usage due to the multiple replicas involved in the storing
process and increased delay in notifying the recipient for the new incoming email.

The changes that are specific for a mailing architecture across the P2P

environment require decreasing the time window from one week to few days of
observation and also decreasing the time slot interval for reaching this performance.
An average mean of the computed availability per slot daily increases the prediction
performance of such algorithm.

Figure 3.15 presents the advantages brought by the new proposal of uptime
prediction algorithm. A time interval of seven days is analysed through

implementing both the uptime prediction algorithms present in [47] and [61]. The

grey indicator highlights the current day according to which the uptime is refreshed
or computed accordingly.

Although the algorithm used in [47] requires a time window of one week for
refreshing or updating the uptime status, it requires double the amount of time for
refreshing the status of one day. Hence, the uptime prediction computed for a
certain day may not have the same prediction a week later. When a file replication
takes place for a period of one week, faulty time slots can be used for this matter.

Through this implementation, the replicated file may be unavailable in a time
interval established from the faulty time slots computed or chosen for this matter.

The proposed algorithm is similar to the one presented in [47]. It uses a
prediction window of one day. The algorithm uses the criteria of updating the time
slots daily by using the information previously computed a day before. To provide
the best prediction results, the algorithm requires a time span of 5 days. The

algorithm is best fitted for handling the replication process according to a server-
centric implementation of P2P overlay design.

The new proposal computes the uptime prediction according to several time
slots, each one having a span of 1 minute. A weighted average of previously
computed uptime prediction is computed every day passes by.

Figure 3.15 shows that the new proposal takes in consideration only the
time slots that show a constant value in time. Any variation of the time spent over

the P2P overlay network cannot be taken into consideration for a good prediction
status of this algorithm. The new proposal can be implemented on applications that
require a prompt and quick replication process across the Peer-to-Peer overlay
network.

By using only the time slots that do not excessively vary in time, the
algorithm provides a precise uptime prediction suitable for file replication operation
across Peer-to-Peer overlay networks.

BUPT

4. Current Mailing Architectures

Initially designed for academic purposes, the electronic mail (email or e-
mail) application has become one of the most used tools that modern society has
adopted at daily basis. The traditional mailing mechanism relies on the server-
centric structure where the mailing client (mail user agent - MUA) connects to a

server to perform email operations such as sending, retrieving or querying
information. The term server describes a complex system in handling email
operations across several clusters in a distributed manner. The mechanism of
handling distributed mailing tasks is described by the mail transfer agent (MTA),
which assures the attributes of performance and quality of service in terms of data
replication, location services, network availability and load balance.

The traditional mailing system has reached a mature stage through
constantly improving several mechanisms such as the protocol standard format
[49], network topologies used in handling distributed tasks at cluster level,
computing system requirements and storage facilities. Although improvements have
been made, there are also scenarios that overcome the current mailing system
model: accessibility issues when the gateway lies behind a link that has been
severed or flooded, storage issues and processing stress due to multiple mail

attachments [10][11]. The constant need for scaling mailing architectures according

to the large number of service requirements, implies also higher costs in terms of
dedicated buildings and specialized trained personnel for managing, network
bandwidth latency and topologies for handling distributed tasks, computing
resources, etc.

Peer-to-peer mailing architectures were developed in response to the high
costs and numerous issues of handling client-server mailing infrastructure. Through

this implementation design, every participant to the mailing system has to share
some of its computing resources, such as bandwidth, computing power, storage
space, etc. But this implementation also has some structural flaws: due to peer
member behaviour (uptime is unpredictable), it is very difficult to handle a complex
architecture design like the mailing system, which implies storage space, data
availability, bandwidth, and computing power.

Recent P2P mailing solutions were developed across structured and
unstructured platform implementations. The solutions implemented across

unstructured platforms performed better on high churn rate (low uptime
expectations of certain peer) because the adopted model was able to carefully select
peers with above average resources across network for sustaining the whole
application backbone (mailing system services). The structured platform was
developed strictly as a framework for these P2P applications. Basically this

framework provides an application programming interface (API) for the applications
running virtually at the upper layer. This solution has solved the issues raised by the
unstructured model in terms of limitation of queries for a better bandwidth latency
usage and any peer could be directly addressed within the identifier space. The
mailing architectures developed on this platform were more complex and efficient
implemented than the hybrid models in terms of mailing operations, bandwidth
usage, architecture design and implementation.

Considering this brief introduction, a thorough analysis of current mailing
architectures will be provided in this chapter. A focus is mainly set on the server

BUPT

56 Current Mailing Architectures - 4

centric architectures (traditional mailing systems) and Peer-to-Peer alternatives to
the ones exiting today.

4.1. Traditional Mailing Architectures

Traditional mailing architectures rely on a server centric design, where the

whole mechanism of sending and retrieving email content can be divided into two

main processes: the mechanism of handling client operations (editing, formatting,
transmitting email content) and the mechanism of handling inter-process
communication by the server side. Although mailing architectures rely on simple
architecture basis, a set of complete tasks is required for handling inter-process
communication between random parties. The protocols used in handling
intercommunications of such processes were categorized as standards from the
Internet Engineering Task Force (IETF) [50].

The tasks implemented across mail servers for handling email
communication [51] are shown in Figure 4.1:

 Mail User Agent (MUA). Represents the mail client application that
enables a direct interaction with the user. Facilities of editing, receiving and
sending email content are provided by such applications.

 Mail Retrieval Agent (MRA). Is closely related to MUA and most of the

modern systems are handling it within the MUA process. It is used for
retrieving email content from the main mail store by one of the available
POP or IMAP protocols.

 Mail Transport Agent (MTA). Provides message delivery from third parties
such as MUA or other MTAs. Email messages typically travel several MTAs
until the destination is reached.

 Mail Submission Agent (MSA). Specialized form of MTA. It accepts mail

submissions from MUA side and handles any specialized processes that may
be required.

 Mail Delivery Agent (MDA). When the mail message reaches destination,
the mail delivery agent specifies the inbox location holder for storing the
content.

Figure 4.2 provides a thorough analysis of how mail transfer is implemented
across the Network. When the user finishes editing his email, the MUA client is used

for sending the content through contacting the nearest assigned server for that
purpose. Considering that the receiver’s destination differs from the sender’s in
terms of mail service provider, the assigned server (MTA) performs a mx-lookup to
retrieve the mx-records from the Domain Name System DNS [52] service. A domain
system can point to several destinations, having several mx-records to the queried
destination mail service. The MTA connects to the server, from the acquired mx-

records, with the highest priority and delivers the mail content through the SMTP
protocol. If multiple mx-entries have the same priority, the MTA chooses the server

randomly and establishes the connection. When the mail content reaches the

BUPT

4.1 - Traditional Mailing Architectures 57

destination MTA, the email content is placed through the MDA to the mail message
store. The retrieving operation of email content is performed from the MUA client
application through the MRA according to POP or IMAP protocol.

Figure 4.1 Components of an Email System [51]

When performing the mx-lookup operation, a Mail Relay address can be
received from DNS service. The Mail Relay is often used to set an additional MTA for
performing filter operation for spam or virus scan. After the filter process, another

MTA is reached through performing the same operations of mx-lookups for finding
the recipient destination.

The paper present in [53] provides a mailing system classification according
to the design decisions that affect or help the users to access their email account:

 Store and Forward Servers

 Server-Only Mail Repositories

 Client-Side Caching Systems

Most of the Internet mail service providers are represented by store and
forward mail systems. Through this approach the email content is kept on the server
side until the process of retrieving occurs from the MUA side. The protocol used in
this operation is Post Office Protocol. This solution presents two advantages: very
little processing is involved in handling or caching email content over a limited
period of time and through caching all the email content locally, the users have

access to their mail even if no connection to the Internet is available.

BUPT

58 Current Mailing Architectures - 4

Unfortunately this approach of handling email content, partially on the mail
server and permanently on the personal computing resources, has also its

downsides. If the mail service is reached from different personal computing
resources for the same user account, the managing and administrating mail
inconsistency occurs on the user side. Further, replication and restoring email
content occurs also on the user side, this process requires heavy computational
resources from the personal computing resource. Another issue arises when no
connection can be established to the mail server and users cannot have access to

their inbox holder for retrieving new incoming mails.
An alternative to store and forward approach is to store all the messages on

the server side. This solution is currently available on web based mail servers such
as Yahoo and Hotmail, through the traditional enterprise mail servers such as
Microsoft Exchange and Lotus.

The advantages of Server-Only Mail Repositories solution are the following:

 A consistent view over the mail repository is achieved due to accessing the
mail from the server side.

 Data restoring and replication occurs on the server side.

 Several features are available though the mailing server side computing
resources. Features such as handling email content from mobile devices are
available on Server-Only Mail Repositories.

 Notifications are available through mail push services.

Figure 4.2 Mail Transfer Service [50]

BUPT

4.2 - Distributed Mailing Architectures 59

The drawbacks of the Server-Only mail system are as follows:

 The system is heavily dependent of the network. Failures over the network
will prevent users to connect to mail servers for accessing their mails.

 The server-only architecture has a limited number of network gateways. A
failover occurs when a large number of connections are established to the
server. This mainly results with a slow network connection for

sending/retrieving email content.

 Scalability to handle a large number of users is added over the expenses of
feature richness.

The Client-Side Caching solution combines both the features of previously
described systems for a better user experience. The assigned protocol in handling
email content over the network is Internet Message Access Protocol (IMAP).

The advantages of this approach includes the ones of previously described
mail systems such as disconnected access to mail messages, consistent message
store view from different clients and search facilities.

The downsides of Client-Side Caching Systems are as follows: increased

development time and bugs facility due to the client-server synchronization
protocol, runtime performance is reduced due to the overhead of synchronization
operations and high storage facilities decreases the number of features over the
mailing service.

4.2. Distributed Mailing Architectures

Attempts of avoiding the drawbacks of server-centric mailing architectures
were made in both the software and hardware directions. Software solutions were
able to harness computing resources over the Internet through the Peer-to-Peer

concept and hardware attempts were focused in handling resources in a distributed
manner at cluster level. Regardless of the distributed approach in developing
mailing architectures, the process is similar for every implementation: adapt the

traditional processes (agents) to the newest implementation. The agents of
retrieving, delivering, transporting and submission are redefined according to the
requirements or features of the distributed approach.

The software attempts of developing mailing architectures across P2P

networks were focused first on generating the stable environment for performing
mail operations such as sending, receiving, storing and replicating email content.
The second requirement was to achieve performance on the distributed network
platform through promoting nodes with above average resources across the network
and by harnessing the benefits of both the structured infrastructures and systems. A
classification of such implementations can be made according to the P2P network

approach:

 Unstructured. The mailing architecture design in [54] was developed over
a hybrid P2P network design. The proposal offers authentication and location

services under the coordination of a server-centric entity. The network

BUPT

60 Current Mailing Architectures - 4

architecture is structured according to community validation, each
community consisting of a number of nodes linked to a super node. The MTA
property is fulfilled from the super node side, all messages travelling first at

this layer and after that being forwarded to the other nodes linked to the
MTA node.

 Structured Infrastructures. Distributed mail architectures were developed
above the framework provided by such infrastructures:

o The approach used in [55] represents one of the best solutions
concerning the P2P mailing architectures. The proposal was developed
over the Chord overlay [19] placing inboxes at a precise key in the

identifier space. For security issues, the authors employed the services
of an external certificate authority, each user being able to identify itself
for retrieving mail data over the P2P network architecture.

o The solution presented in [56] was developed over an overlay network
layer. It offers a pull-based solution, where each peer keeps track of the
mail content marked for sending purposes and places over the overlay

only a notification for the receiver to download the mail content from the
sender side.

 Structured Systems. The solution presented in [57] was developed under
the mobile-object paradigm. The mailbox is represented through an object
that travels on the live network to ensure data availability. A second mobile
object defined here is the dispatch unit, which holds information about the
available active machines on the network. A computer system that goes

offline must first upload the mailbox objects to the available systems on the
network specified by the dispatch unit.

The hardware implementations of distributed mailing architectures were

relying on dedicated hardware equipments across which software mail operations
were developed. The solution found in [53] is developed on such preliminaries,
having an implementation where scalability is highly proportional with the costs

involved in managing the structure.

4.2.1. NinjaMail Architecture Overview

The NinjaMail architecture design was developed on top of the Berkeley’s
Ninja cluster architecture (Figure 4.3). Its design is built to provide users with highly
available, scalable and feature-rich services through a wide variety of access
methods.

Data storage and data replication is handled over Distributed Data
Structures (DDS), which administer cluster-wide data replication and

synchronization for metadata on Ninja infrastructure and other applications built on
top of it.

Ninja is implemented in java language, designed in an object oriented
manner, where each node is running a JVM, housing the management unit (vSpace)

BUPT

4.2 - Distributed Mailing Architectures 61

and other distributed applications. The distributed design yields from the methods
applied at communication level, between “worker” objects. Each serialized object
has a finite state life time, governing on a single thread allocated by the Ninja

architecture.
At cluster layer design, NinjaMail presents several API’s for access and

extension modules. At Ninja’s core module, storing operations are implemented
such as: saving and retrieving messages, updating message metadata and
performing simple per user message metadata. Access modules are used for

communication between users and intercommunication between Ninja clusters.

Figure 4.3 Ninja Architecture Overview [55]

NinjaMail is a response to handling the scaling of email use across the

Internet, providing reliable, high performance and feature – rich services to users.
Unfortunately this solution is expensive and hard to maintain, because dedicated

hardware and dedicated maintenance is needed to keep this system operational.

4.2.2. Decentralized Electronic Mail Architecture Overview

The Decentralized Electronic Mail (DEM) is built on a distributed application
middleware (Oceanstore [27]), being not hardware platform dependent and
maintenance is fulfilled from the mailing service itself. The software implementation
makes use of object serialized structures implemented in FarGo [58], which offers

several services:

 Explicit migration. The application can explicitly request to relocate data
structures over other specific hosts, while conserving correct state and
execution.

BUPT

62 Current Mailing Architectures - 4

 Implicit migration. Migration of components will execute in a developer –
define collocation relationship manner.

 Location transparency. The application manages it components through

valid pointer references, not to real location information.

 Monitoring. Object location and migration can be monitored through the
application’s API.

 Reference construction. An enhanced reference can be constructed in
such a manner that remote objects can be found on the fly.

All the primary components of the DEM are mobile objects. The mailbox
itself is a mobile object that travels on the live network to ensure data availability. A

second mobile object defined here is the dispatch unit, which holds information
about the available machines active on the network. A computer system that goes
offline, must first upload the mailbox objects to the available systems on the
network specified by the dispatch unit.

This solution is one of the best solutions presented, because it runs
independently from any hardware architecture. Disadvantages are present here

also, because the mail service keeps serialized all the mail information alive.

Travelling to one node to another, message information makes use of large amount
of bandwidth and computation power. The system doesn’t predict which elements
are offline and which aren’t.

4.2.3. A Pull Based Peer-to-Peer Mailing Architecture - Overview

The mailing system presented in [56] is developed across the Chord
overlay. This approach handles email content locally, signalling the receivers
through notifications stored across the DHT based overlay. The solution is similar to

the file-sharing concept by handling email content through a “pull based” approach.
The email content transfer occurs directly between the sender and receiver without
a central authentication or storage servers.

Each peer has both connectors for SMTP/IMAP protocols and act as a
daemon for local mail clients (MUA). The P2P mailing system has a running client on

each computing resource that facilitates connectors for other traditional mail clients
such as Outlook, etc.

4.1 Sending/Receiving an Email [56]

BUPT

4.2 - Distributed Mailing Architectures 63

Considering the traditional internal processes, each peer handles the
operations of a mail transfer agent (MTA) through implementing the following
(Figure 4.4):

 Spool Area. Contains the sent mail messages from the MUA side.

 Inbox Area. Contains the inbox holder of newly arrived mails.

 Outbox Area. Holding email that are waiting to be pulled directly from the
receiver.

 Key Cache Area. To store public keys for encrypting the email content. The
public keys are accessible to other peers within the overlay while the private
key is safely stored on the local machine.

The solution present in [56] also handles the case of sending an email
content to multiple receivers. The case of caching email content that waits to be
pulled is solved through assigning peer groups for the replication of outbox area
within the selected peers. By assigning a peer group for replicating the outgoing
email content, the sender must not always remain online, waiting for the pull
process to begin.

This approach represents one of the best solutions of handling email
operations in a P2P environment. Although every process is clearly explained, this
approach lacks in algorithms of carefully selecting peers across which the replication
process occurs. By this I refer to solutions based on monitoring the activity of every
peer in the P2P overlay and carefully selecting the nodes with above average uptime
resources.

BUPT

64 Current Mailing Architectures - 4

BUPT

5. Interoperability Solution between current
Mailing Systems

This chapter presents the work available in [59] where a reliable system
interface between several Peer-to-Peer (P2P) mailing systems and current client-
server based mailing solutions is developed. Several issues are raised by such an
interface, one being that traditional P2P mailing systems need to handle internal

protocols by biding to a certain RFC standard format. Another issue lies in the way

peers are referred to from the outside network. This approach involves separating
the RFC standard from the internal communication protocol between peers, thus
enabling the interoperability between systems even if the RFC standard is updated.

Many of the current P2P mailing concepts treat their internal protocol as
being compliant to a certain RFC protocol format. Due to this issue, it is very hard to
maintain the compatibility with the newest update when handling the internal
protocol directly and strictly according to a standard. In our days client/server (CS)

based mailing systems are more commonly used instead of P2P solutions. This
chapter presents a theoretical system interface to make the currently available P2P
mailing solutions compatible with the ones commonly used. Adding interoperability
between P2P and CS-based mailing systems holds potential benefits to both parties,
through compatibility between two different solutions.

Current P2P mailing solutions were developed on both structured and

unstructured overlay network. All the P2P mailing systems were designed to be
compliant to the actual server-centric model according to a certain RFC protocol
format.

The mailing architecture present in [54] was developed on a hybrid P2P
network concept. It offers the possibility of grouping peers according to the region
specification. Their internal protocol is handled according to another concept than
the one used in the server-centric model.

The solution presented in [55] was developed over the Chord overlay
network [19]. The authors also used a self-developed protocol for interaction among
peers that contribute to the mailing system. They provided an abstract solution of
an interface to handle the compatibility between their solution and the actual
today’s mailing implementation.

The solution found in [56] was developed above the framework provided by
the structured overlay network concept. It offers a pull-based manner in retrieving

the email content from the peers that belong to the same community validation.
Also the communication relies on a self developed protocol, through which peers are
handled into the same application layer: the mailing system.

In [57], all the elements that help shaping the mailing system are
implemented in an object oriented environment and the communication between
mailing parties relies on a self-developed protocol. The authors conclude their work

with requesting an interface design that would enable the compatibility between
their implementation design and the available email clients (e.g. Outlook) and the
server-centric mailing system implementation.

Through the provided analysis on the previous work on P2P mailing
concepts, the authors from [59] suggested that is necessary to design an interface
compliant with the traditional mailing design (based on the server-centric model)
and also with the commonly used mail client applications. The interface is built in

the manner of splitting the connections used for the RFC standard format from the

internal P2P communications. Also the shared space through which each peer

BUPT

66 Interoperability Solution between current Mailing Systems - 5

contributes to the mailing system is considered at an abstract level for providing a
reliable foundation for the P2P application concept. In this manner the future
implementations of P2P mailing implementations will also rely on a self-developed

protocol format without the concern of inter-compatibility with the traditional
mailing concept based on a server-centric model.

5.1. Architecture Preliminaries

The mailing system represents a complex infrastructure of a series of
precisely aimed tasks. Figure 5.1 shows a possible scenario for interconnectivity and
communication within a mailing system. For an ease of understanding all the
components that help clarify the mailing tasks were represented outside the
Internet cloud. Naturally, one email provider has its data centers distributed
according to geographical distribution (e.g. google.com [60]) to assure certain

agreements, such as: service uptime, store and data availability, service
performance, etc. In this example elements from different Internet service providers
(ISPs) were used to illustrate the mechanism of interoperability.

As previously mentioned before, the task of sending/receiving an email

content is fulfilled at an abstract level by both the mailing client and the server side.
If user 1, that uses the traditional mailing system, wants to send an email to user 2
from the same mailing service type, its mail client application contacts first the

assigned mailing server for that purpose. The mailing server performs an mx-lookup
to retrieve the mx-records from the domain name system (DNS) service [52]
according to which it finds out the user 2 destination server. Usually the requesting
mail server takes the mx-entry with the highest priority and tries to establish a
connection with the user 2 receiving server. After the connection was established
according to the mx-entries, the server handling user 1 email request, sends the

content via SMTP protocol to the server where user 2 is usually connecting and
performing his daily mailing activities. When user 2 wants to read its emails, it
connects to the dedicated mailing server and retrieves the new mails via the POP
protocol.

The P2P mailing infrastructure still represents a new concept over the

network infrastructure, and because of the behaviour of its peer members (uptime is

Figure 5.1 Interoperability Scenario between P2P and CS-based Mailing Systems

BUPT

5.2 - Architecture Implementation 67

unpredictable) it is very hard to determine a fixed address of such entities.

Therefore, a situation is presented in which the P2P mailing concept is present in an
institution [55] situated behind a gateway with a fixed address (IP address). For an
inter-compatibility with the traditional mailing system, a few number of peers must
be registered to the DNS service as mx-hosts, and also an implementation of an
SMTP interface is required. Hence, when the mailing process takes place from a
traditional mailing system to a P2P infrastructure or reversed, the same steps are

performed: retrieving first the mx-records, establish the connection with the mx-

host and perform the sending process of email content. When User 1, which uses
the P2P mailing infrastructure, is registered as an mx-host, receives an email with
the destination User 2 from the same mailing service type, it notifies the destination
user for new mail notification (if the notify feature is implemented). User 2, than
retrieves, according to the internal P2P mailing protocol, the new email content.

5.2. Architecture Implementation

The interoperability solution between P2P and server-centric mailing
systems relies on the interface presented in Figure 5.2. The interface separates the

protocol used under the RFC standard format from the internal protocol of inter-peer
communication. The RFC connector is used mainly for translating email content from
one side to another (P2P to/from RFC protocol) and for providing compatibility with

the traditional mailing system. The work in [57] suggests that the P2P email content
should travel according to a self-developed protocol, for separating the RFC
standard from the internal P2P communication. Only solutions for the TCP/IP

network layer were provided, however, for any other protocol implementations,
which are positioned higher or lower than the one presented in this chapter, the
main process remains the same.

For handling the disk space every peer is willing to share, the necessary
connections were provided to all the elements that help handle the interface design.
The shared space, specified here as the address store centralization unit (ASCU), is
protected against concurrent writing, through the presence of both reading and

writing buffers (POP and PUSH). Because the interface is implemented as an
additional application which serves as a service for the users of P2P mailing
infrastructure, it acts as a process (main processing and control unit) that handles
the internal blocks through several operational tasks (processing threads) activated

by the signals present in Figure 5.2.

Figure 5.2 Interoperability Interface between P2P and CS-based Mailing Systems

BUPT

68 Interoperability Solution between current Mailing Systems - 5

5.2.1. RFC Connector

The RFC connector specifies both the SMTP and POP connectors used for
communication with the traditional mailing system. The SMTP server interface is
used for receiving email messages content in an RFC standard format. If the peer is

registered as an mx-host, the SMTP interface binds to the assigned gateway
address, otherwise it uses the local host address (IP 127.0.0.1) only for mail client
connection purpose. When data is to be sent to this interface, signal c1 notifies the

request of storing data to the ASCU through the PUSH buffer. Depending on P2P
email protocol, the data newly arrived through this interface is automatically
adapted to the one used internally by the mailing system. If the destination of newly
arrived email represents the same peer host address, the email content is also

available on the POP buffer through signal c5 notification, if the mail client
application is also connected to the RFC Connector (POP server interface).

The POP protocol is used for retrieving email content from the ASCU after
the authorization process of a certain mail client request. This interface only binds to
a local host address and its main purpose is to answer to the mail client application
request of retrieving new incoming mails. When the mail client requests the
incoming mails, the POP interface signals the ASCU to make the new emails

available on the POP buffer (c2 signal). Through the RFC connector only the case of
store and forward mailing system property was handled, hence when an email is
retrieved through the POP interface signal c3 is also generated and its presence tells

the ASCU that the emails that are being retrieved from the mail client application
side are also marked for deletion from the shared space.

5.2.2. Peer Connector

There are several platforms through which the P2P mailing systems have

been developed and improved. The Peer Connector is considered as an abstract
solution for either the hybrid or overlay platform implementation of mailing
infrastructure. Either the implementations, the Peer Connector must consider both
the shared space and RFC Connector as independent entities for maintaining the
compatibility and format according to the server-centric mailing design. The TCP/IP
network layer is considered as being the foundation of other protocols developed

higher or lower than the one mentioned in this paper work.
The TCP Client and Server perform two different tasks: intercommunication

between peers according to the used mailing architecture design and the
notifications used for sending/retrieving email content. The work in [59] handles the
case scenario of one peer lying behind a network address translation (NAT) server,
which combines firewalls and dynamic IPs for blocking connections inside the
protected network. In this case both the TCP Client and Server have the property of

retrieving and sending email content in a direct relation with the ASCU and RFC
connector entities.

When the TCP Client receives a new email content it notifies the POP
interface through signal c4 if the receiver mail address matches the peer who
handles this operation; or thorough signal c8 for storing the email content for other
peers that are not online or have not read their email for a while. For retrieving an
email according to the internal P2P mailing protocol, the client signals the ASCU

BUPT

5.3 - Conclusions and Discussions 69

through the c7 signal for having the data available in the POP buffer for
transmission.

The TCP Server performs the same operations as the client: it notifies the

POP interface through signal c6 when the email has reached its destination, it stores
another peer’s email content according to signal c10 and is ready for sending cached
email content to another peer destination under the c9 signal.

5.2.3. Address Store Centralization Unit

The P2P concept implies most of the cases that participants contribute,
besides the computational power, with a certain percentage of disk space.
Regardless the operating system or carrier (mobile/desktop), the shared space must
be considered as a protected entity against failures that affect both the consistency

and privacy of data. Although for a mailing system, each email content is protected
according to the PGP (pretty good privacy) [61] method, data consistency should
also be consider as a reliable way of handling data integrity. The ASCU entity is
handled as abstract in the work available in [59], because every P2P mailing
implementation comes with a self-developed protocol through which data is also
being handled according to a different format.

5.3. Conclusions and Discussions

The authors from the work available in [59] solved the issues raised from
the interoperability request between the P2P and client-server mailing architectures.

They have provided an abstract model of an interface through which solutions of
handling both the internal peer-to-peer and server-centric communication protocols
were shown. This work also pointed out the cases according to which our interface
model represents a good solution for handling inter-compatibility between the two
mentioned concepts. The solution has been also tested with a self-developed P2P
mailing infrastructure, designed over a hybrid platform.

BUPT

70 Interoperability Solution between current Mailing Systems - 5

BUPT

6. Improving P2P Mailing Architecture
mechanisms

This chapter handles the software implementations of mailing architectures
across the Peer-to-Peer network environment. Although current implementations
harness the benefits of such distributed environments, there are still research fields
that can contribute significantly to their improvements:

 Dynamic Environment. Both structured and unstructured infrastructures

were designated for implementing mailing architectures.

 Replica Placement Algorithm. Replication techniques are implemented on
a P2P environment with an uptime expectation clearly specified.

 Security. Provided through encrypting data according to the public/private
key pair.

 Heterogeneity Classification. The backbone of P2P mailing operations
rely on nodes with above average resources such as CPU power, increased

uptime and bandwidth, and shared space.

 Interoperability Issues. The proposed mailing architectures should be
inter-compatible with the ones available today (traditional) in terms of the
following operations: send, receiving and notifications.

Chapter three provided a thorough analysis regarding the P2P architectural
design implementation. Statistics results have shown that promoting nodes with

above average resource expectation generates a reliable environment across which
the backbone of any application can rely on. Through designing a P2P mailing
architecture, the following computing resources were carefully chosen to validate
the classification among ordinary nodes and super nodes: computing power, uptime
evaluation, increased bandwidth expectation and shared space.

Throughout the developing of any of the presented mailing architectures
DMS [61], HMail [63] and DMail [64], which represent the authentic and innovative

part of this thesis, attempts of harnessing computing resources across P2P overlay
environment were made in several directions. One direction focuses on peer
resources already evaluated as super nodes within the P2P network. Through this
method of handling peers directly according to their SN state, structured and
unstructured architectures were chosen to rely their backbone on such nodes: Two-
Tier Chord extension [36] and the multi-ring topology available in [62]. In the
mailing architecture present in [64] built over the Two-Tier extension of Chord,

operations are divided according to the classification of joining nodes: caching and
replicating email content occurs on ordinary nodes and operations of sending,
receiving and notifying occur on the super node side.

The mailing implementation developed in [61] has an implementation
related to the validation of super nodes within the P2P overlay. Through the use of
multi-ring topology available in [62], an architectural design of three tiers was built.

The first tier is used for caching and replicating email content across ordinary nodes.
Both the second and third tiers are used for building communities in a ring shaped

BUPT

72 Improving P2P Mailing Architecture mechanisms - 6

manner for providing inter-communication between communities and email
operations. The inter-communication is handled internal (marked by the same
geographical area distribution) and external (third tier) by handling communication

between communities from different geographical areas.
A second direction of handling peers heterogeneity is present in the work

available in [41] which places resources of joining peers gradually on several
hierarchical layers. The same community validation of geographical distribution is
implemented in HMail [63], each community being defined as a hierarchical module

composed of two tier layers. Both layers define an inter-connected ring topology
built according to the Chord protocol specification [19]. The first layer validates

node with above average bandwidth and uptime resources and the second one
validates nodes with an increased status of shared space and computing power. The
content caching and replication occur on the second layer tier, this layer level
providing also security facilities in terms of unauthorized aces from other parties
within the network.

A thorough analysis of uptime characteristics of peers within several

different implementations was provided in Chapter three. The peer availability within
file sharing and VOIP applications developed across P2P overlay networks was
analysed. As a conclusion, the applications based on facilitating only communication
presented the best results in terms of peer availability. The mailing application is
also a communication based application that everyone has adopted as daily based
tool. The average uptime expectation of super nodes within the Skype

implementation reached 5.5 hours daily. Although the email content replication

occurs according such premises of high peer availability, scenarios ranging from
worst case (0.1) to best case (0.9) were also considered. At the expectation of 0.1,
an email availability of several minutes, distributed in a time interval of 24 hours
was considered for replicating the email content. Through the expectation of 0.9,
peers with an average uptime status of 5.5 hours spent daily across the P2P overlay
was considered. Nevertheless, the increased uptime expectation of nodes with
above average computing resources, is used in handling the P2P environment across

several hierarchical tiers for providing task balance among participants. Without the
increased expectation of uptime facility, the backbone of such architectural
implementations cannot be sustained from ordinary nodes, which are joining the
network only for a small amount of time.

The P2P mailing architecture proposals are conform in terms of
interoperability with the ones available today, based on server centric architecture.

Two directions of compatibility were handled with the traditional implementations.
The first direction handles only incoming mails from the server-centric architecture
to the P2P mailing implementation. For this purpose the interface presented in
Chapter four is required. Only the protocols of SMTP and POP were handled as
traditional standards in handling email content across the network. A second
direction is based on a hybrid solution, which combines both technologies (P2P and
traditional) for an overall cost effective mailing architecture concept design. For this

matter the P2P mailing mechanism must handle also outgoing email content
according to the previously mentioned standards.

The security facility was addressed according to the public and private PGP
[40] keys. To perform a fully secured communication, one could easily extend this
security model by requiring the services of an external certificate authority, which
could provide a higher level of security.

BUPT

6.1 - Distributed Mailing System (DMS) 73

6.1. Distributed Mailing System (DMS)

The work available in [61] presents the concept of a new mailing
infrastructure over an unstructured Peer-to-Peer overlay network, covering the
system architecture and the specific mail operations. Current P2P mail
implementations are built on top of lower layer network architecture called overlay,

which is typically designed to rely on homogeneous computing resources such as:

bandwidth, computing power, storage space, etc. This proposal classifies the
participants to the network in entities and super nodes, depending on own resource
evaluation methods. This enables each peer to effectively contribute to the mailing
system according to the real performance of its resources, therefore increasing
overall application performance and reliability.

The presented mailing architecture model uses the concepts found in [54,

55] and is developed over a hybrid P2P network design. The architecture is
structured according to a community validation, each community being composed of
several super nodes; each super node managing a limited number of other nodes
called entity nodes. Each compound of the communities that address the same
location identifier has a member in its community that is addressed by a server-
centric element. If the destination of one’s email receiver is out of the sender’s

super node range, it contacts the member community for querying the sender
address. In this approach there is no need to rearrange mail data content over the
nodes that are currently online. It uses a prediction method for synchronizing the

data across entity nodes over a limited uptime interval.

6.1.1. Preliminary Assumptions

The architectural model used for designing this mailing system relies on the
concept used in [62], describing an interconnected multi-ring topology (Figure 6.1).
Each network ring model defines a community through interconnecting nodes that

present higher system resources than ordinary network participants (entity nodes -
E), called super nodes (SN). The interconnected rings are distributed over the
network according to an external location service provided by an external location
service such as MaxMind [42]. Through the GeoIp tagging, there can clearly be
distinguished across the network which nodes should interconnect and which should
not, according to the information provided by MaxMind: hostname, country code,

country name, region, region name, city, area code, etc. To prevent unnecessary

bandwidth usage, queries over the rings take place only by local area limitation (TTL
- limited) described in [42]. To overcome those limitations, a dispatch ring
community is present in every location area, being addressed and managed through
an external service of domain name service (DNS) [52]. Hence, every query
addressed outside the local area limitation is directed to the dispatch community,
ensuring optimization of network usage.

Three types of network links are handling communication in this design:

external, internal and local connections. The external links are used for
interconnecting ring topologies, links sustained only from the super nodes
participants. The internal links are used for connecting super nodes inside a ring and
to lower the time needed for propagate a query inside the ring. And the local
connections are held between entity nodes and super nodes for assuring load
balance among email operations and maintaining the mail service alive.

BUPT

74 Improving P2P Mailing Architecture mechanisms - 6

Figure 6.1 Distributed Mailing System Architecture Overvies

In Figure 6.1 the links used for interconnecting mail system parties to the

network service are shown. The dashed lines represent the external links, the dotted
ones the internal links and the ones with grey represent the local connections with
entity nodes. Through the information provided by MaxMind yields the membership
of one node to one certain country and the region inside that country. Because
limited TTL broadcast messages are used in this mailing architecture, a limitation is

imposed by the community connections to the same region code. Only dispatch
communities can perform connections to other communities from different region

codes, but under the same country code and only between dispatch communities. If
one query aims higher than the country distance limitation, than it asks the dispatch
community to address the destination address through the external service of DNS,
to which all the dispatch units are registered with a limited number of super nodes
members from each registered community.

Grouping unstable network parties together represents a major challenge for
a system that is unstable itself. The factors used in deciding which participant to the

mailing architecture gains the property of super node after a self evaluation process
are bandwidth, uptime, shared space and computing power. For each of the
considered metrics, evaluative score points are assigned, the final result being
computed according to a weighted average formula.

Bandwidth (as a metric) is expressed in terms of download and upload

speed. Typically, Internet service providers (ISPs) assure higher download speed

than upload because they have designed their systems to optimize download
speeds. Under these circumstances, in this architecture design the bandwidth
measurement is evaluated according to a weighted average, the upload speed being
offered a much higher weight.

Each participant should contribute to the mailing system by sharing some
percentage of its disk size. The shared space represents a small piece of the
system’s database. The mailing system is designed according to the concept of a

network attached storage (NAS), constructed from small sizes of disk spaces that
each user is willing to share. Unlike the NAS architecture, where disk storage failure
is controlled, watched and managed, DMS storage comes in a variable and
uncontrollable way. The shared space structure remains abstract for this research.

Regarding the computational power, there are several systems that have
different hardware configurations. Computing power will be tested in time, to see
how a peer handles its participation to the system. This will test how many threads

BUPT

6.1 - Distributed Mailing System (DMS) 75

a computing system can handle, access time to the local disk, memory availability,
etc. Periodically the application tests the CPU workload and how much memory is
required by the main application process.

Figure 6.2 Uptime Prediction Evaluation

Uptime represents the key factor in data caching and replication. To provide
a solid foundation for grouping participants, the mailing architecture is designed
according to an uptime availability prediction. The concept found in [47] provides a

thorough analysis of peer availability prediction over the network. The concept of
the inspired work relies on the number of counts per time interval sent periodically
from the peers that are still up in the network, letting the peer neighbours know the

current state of uptime availability over a period of time. The count unit is measured
according to a time slot of five minutes, generating a 12 time slots per hour, 288
time slots per day. The method used in [47] could generate a good prediction within
an interval of a week.

The work available in [61] handles uptime availability as an average mean
of a time slot of 60 minutes generating 24 time slots per day. The authors concern
remains only to predict what are the chances that a peer is available on the network

at a certain moment in time. In an unstable network architecture design, one cannot
predict precisely the moment when a peer will be up and running. Hence, the focus
is set on finding the total number of peers across a community needed for caching
and replicating data across an interval of 24 hours time slots. The history

background for providing a good analysis of uptime availability prediction is
provided in 5 days of peer observation.

Figure 6.2 represents one example of this method of analysing uptime
prediction of a certain peer. Assuming that the highest score point for a time slot of
one hour is 10 (a full range of 60 min), at day N – 1, the peer has obtained the
score of 3.5 at 00:00 AM and 5.5 at 23:00 PM. But the next day the same peer has
gained the score of 4.5 for both the same time slots. A mean value is then
computed and the final result remains 4 for the AM time slot and 5 for the PM time
slot. The score points can vary according to the peer’s contribution to the mailing

system.
Also the work present in [47] provides an analysis of peer availability

through the use of BitTorrent, an application which holds 53% of all P2P traffic on
the internet. Measurements were taken at geographical distribution level, acording
to MaxMind [42], yielding in 191 countrys tested with an average availability of

28.39%. The analyzed uptime availability was different for each timezone, fact that

BUPT

76 Improving P2P Mailing Architecture mechanisms - 6

provides a good foundation for grouping participants according to the location
services for our implementation design.
The final score point evaluation is computed according to a weighted average, where

the uptime has the greatest weight:

(6.1)

6.1.2. Service Primitives

Throughout the evolution of traditional mail protocol, the RFC standard

format has permanently changed, from the beginning of the mailing service until
today. To adapt constantly to the newest protocol available on the market and to
assure compatibility with the traditional mailing systems, this architecture was
designed to perform intercommunication between peers according to a self
developed protocol, maintaining the RFC format as an interface between the MUA
and every peer joining our architecture design. The concept was also used in [56],
and the interface was built according to a local SMTP/IMAP server which kept the

compatibility with the MUA client according to the newest RFC standard format.

Being able to perform the simplest mail operations (send and receive),
several service primitives were developed to help building certain tasks such as:
store, delete, fetch, append, read inbox and garbage collection. For security
purposes, the external services of PGP keys [40] implementation are required,
assuring this way data security and user privacy. Also all user IDs should append

after the domain name, the country and region code according to the MaxMind
external service, for ease of identifying users addresses among the communities
that form our network architecture design (i.e.
user_id@domain.contry_code.region_code).

Due to our three layered architecture design, a store primitive is defined for
each of the following: dispatch community layer, community layer and entity layer.

Throughout the community layer, lower peer elements (communities or

entities) are being managed. Hence, data availability and load – balance features
are defined through the presence of the internal connections between super nodes.

Every super node must replicate its data according to the prediction method
presented in the previous section. Because the final computed score point highlights
only peers with super node property among communities, a thorough evaluation is
performed to fulfil the availability feature. Therefore, score points that represent the
lowest unit (hour unit) are used. One super node must replicate its data according

to a 24 hour score point interval. The process is performed randomly across the
community, resulting the internal community links. Through the presence of the
internal links, a two-sided load-balancing feature is gained, for data and
communication. Load balancing is gained through caching replicas among a limited
number of super nodes; and through lowering the time needed for a query to travel
in a community.

The difference between dispatch and the lower layered community is the
caching content and the amount and type of queries. The dispatch unit is the one
who manages lower layered communities in the same region code provided by the

external service of MaxMind [42]. Therefore, it only performs connections with the

10

*2*2*24*
__ powerComputingspacesharedbandwidthuptime

ScpScpScpScp
ScpE

BUPT

mailto:user_id@domain.contry_code.region_code

6.1 - Distributed Mailing System (DMS) 77

lowered and other dispatch communities. The dispatch community manages
information regarding the area region code for which it is responsible, concluded in:
all user region IDs, public PGP keys and lists recording the community address for

each registered user (limited number of super nodes). Also, the dispatch unit
purpose is to perform load-balancing among queries aimed at the same level, and
not to forward them to the lower communities.

Each lower layered community manages its information according to the
present number of entity peers. Hence, information is distributed among community

units, data replication occurring only inside communities and not between them. The
information that resides in every community is concluded in: public PGP keys of

each peer connected to the same community, individual lists of received mails,
individual lists of peer score point evaluation (score point table - SPT), and
individual lists of the last sent mail addresses in a MRU manner (most recently
used). All the information is replicated among super nodes according to the method
presented in the Preliminary Assumptions section. At this layer level, the super
nodes interconnected with the scope of replicating data across the community, are

also building lists with entity nodes addresses according to the 24 hour validation,
forming the storage availability table (SAT). This is mainly done in the idle time,
when no requests (or very rarely) of email operations take place. The storage table
is used for replicating data among a limited entity peers that together provide a 24
hour data availability according to their score point evaluation.

The delete primitive is implemented according to each of the following

layer’s validation: entity node, community and dispatch community. The delete

operation can be triggered from the user side through erasing email content by
reading inbox (store and forward mailing property); or by the garbage collection
primitive, when no activity from the peer side was registered for a period of time.

When the read inbox operation takes place, the user only requests the email
content from few number of entity peers available on the network at a certain
moment in time. During the download of email content, the sender peers
automatically mark the sent item as ready for deletion. After the upload is

completed, the entity peers delete the email that was earlier sent to its receiver and
inform the community that the email was successfully sent to its destination. The
community stores this information for signalling other entity peers, that shared the
same sent email content, to delete this item from their shared space when logging
into the mailing system.

The content of every email that was previously sent to its destination is

stored among a few number of entity nodes managed from the community where
the sender logs in. If the email marked as unread is never read by its receiver, it is
automatically erased by both the community and the caching entity nodes sides.
This is done through assigning both the header and email content with a number of
counts (measured in days), that both community and entity nodes decrement, when
a day passes by. When the number of counts reaches zero, the email content is
automatically deleted.

At the dispatch community layer, information regarding the user and email
inbox is handled. The inbox entries are marked also with the count of days. The
super nodes being in charge of holding ones email inbox, browses daily the list
marking each entry with a decrement of one, deleting also the entries that have
reached zero value. Also, the group of super nodes being in charge of managing and
building the SAT tables, are performing daily the validation of each peer score point
evaluation. If no score point is registered according to one day validation, the final

score point is computed with the average mean of zero value. When the final score

BUPT

78 Improving P2P Mailing Architecture mechanisms - 6

point of one peer is equal to zero, the peer is marked with a count of days. After the
count reaches zero and the peer hasn’t registered to the mail service, it is
automatically deleted from the community database.

When a user is deleted from the community database, the unit in charge
must announce its deletion from the dispatch community also. The dispatch
community performs the deletion operations only at the same registered area region
community that the dispatch community is currently managing.

The fetch and append primitives define the operations of sending and

retrieving items through queries addressed among the peers that form our network
architecture design.

The fetch primitive is used when information is required between
communities with no specified destination address. Before replicating the email
content among the entity peers specified through the SAT validation, the community
must first know the receivers public PGP key, according to which encryption takes
place; and the receivers community address (number of super nodes that handle
the community, within the receiver logs in). The super node handling the sender, is

verifying first the receiver’s country and region code appended after the domain
name, in the specified user id. If both the country and region code match the
community’s region code, the fetch operation takes place through queries addressed
as broadcast messages. If one of the country or region code are different from the
hosting community, the dispatch community is being addressed to forward the
query. If the dispatch community is unreachable, the super node from the hosting

community uses the external services of DNS, being able to reach one of the super

nodes that form the dispatch community. Every query addressed outside the hosting
community, contains in its header the sender address of the requesting super node.
When the query reaches destination, the receiver can directly address the sender
through the information specified by the header.

The append primitive, usually takes place after a fetch operation, with a well
known destination address. After the process of replicating the encrypted email
content on the entity nodes, the super node handling the sender connection is now

appending the notification (with the addresses of entity nodes replicas) to the
community where the receiver logs in.

The read inbox primitive occurs between the MUA client and the interface
provided by the DMS service application. The interface is hosting the local
SMTP/IMAP server, and communicates with the MUA according to a specified RFC
protocol format. The authors [61] propose this implementation for an ease of

updating the protocol according to the latest version available on the market.
Hence, when an update is available for the RFC protocol, the architecture design
requires updating a small amount of data for a better quality of service.

When the user downloads its email according to the list of received emails
headers available on the hosting community, it also deletes the email content from
the entity nodes. The mail service is implemented as being one of the store and
forward service type. Therefore, the user’s MUA is in charge of replicating

downloaded email content on the computing machine that served as a peer in this
architecture design.

6.1.3. Email Mechanism

For sending and receiving email content through our network architecture

design, the primitives defined in the previous section are used. An example of the

BUPT

6.1 - Distributed Mailing System (DMS) 79

email operations is presented through the architecture overview present in Figure
6.1. For further explanation, both the users computing machines are evaluated from
the DMS system as being entity nodes handled from different community locations

(same operations take place if the computing systems are evaluated as super
nodes). The steps needed for sending an email m from sender S handled from
community 1 to receiver R from community 2 are explained in the following:

1. The user sends his email via the MUA client that connects to the DMS

interface application (local SMTP/IMAP server) by specifying in the sender
field the receiver’s R user ID, domain name, country code and region code
(R_ID@domain.country_code.region_code).

2. The peer property of the sender’s user machine, evaluated as an entity
node, makes the request of sending email content to the upper community
layer.

3. The super node from the community that currently handles S connections,
verifies if the country and region code matches its current location. In this
case only the region code is different from the current location, and the

super node forwards the request as a fetch operation to the dispatch
community.

4. The dispatch community receives the super node’s fetch request and verifies
if the specified location address is handled from one of the neighbor dispatch
communities. If there are no links with the desired dispatch community, the
fetch operation reaches its destination according to the external services of
DNS. In this case the requested community is directly connected to the

dispatch unit that matches the fetch operations request, and the query is
forwarded to it.

5. The dispatch unit matching the same location ID as the receivers email
address, responds to the super node that it initiated the fetch request
operation with the community address that handles R connections and its
public PGP key.

6. The super node receives the information according to the fetch operation,

and responds to S with the public PGP key and a list of entity nodes
according to the SAT evaluation for replication purposes.

7. S encrypts the email content according to R’s public PGP key, and starts the
replication operation with the entity nodes provided in the SAT table.

8. After the replication process, the super node appends the notify header to
the community that currently manages R’s connection. The header is also

encrypted according to R’s public key.

9. R performs the read inbox operation and downloads the email content from
the entity nodes that currently are online in the network in the community
where S has sent the email content.

BUPT

mailto:R_ID@domain.country_code.region_code

80 Improving P2P Mailing Architecture mechanisms - 6

6.1.4. Experimental Results

The mailing system was simulated in an object-oriented environment, where
both the entity and super node were handled as objects. The simulation was
performed closer to the research provided in [47], through which the users are

being characterized though their behaviour in time spent over the Internet. Hence,
an analysis was provided of the possibilities ranging from the user who only remains
logged in to he mailing service until it finishes reading emails (0.1 probability), to

the user with an increased spent uptime (0.9 probability).

Figure 6.3 Number Of Email Replicas

Figure 6.3 illustrates the number of replicas, of one individual email sent
from the user to destination, over a number of entity nodes designated from the
super node, handling the senders connections, according to the SAT probability
prediction. The obtained results are higher in number of replicas than the other
previously researched solutions. The authors aimed in obtaining solutions precisely

for situations in which all the participants act according to the uptime probability
described in Figure 6.3. The worst case scenario represents the case within the
participants are contributing to the mailing system according to the probability of
0.1. Because in this case users log in to the mailing system only for fetching email

content, it is very hard to predict the moment according to which the same process
can take place the day after.

Figure 6.4 presents the availability analyses for the results obtained in

Figure 6.3 according to a time window of 31 days. To reach in practice, the expected
results can be interpreted at the probability corresponding to the 0.5 – 0.7 range of
values. That is because the users cannot be described according to one category of
uptime probability. Hence, a good foundation for data availability under variable
circumstances was provided.

BUPT

6.1 - Distributed Mailing System (DMS) 81

Figure 6.4 Average Email Availability per Day

Figure 6.5 represents the bandwidth according to which email content can

be downloaded from a limited number of entity nodes from the receiver side. The
variation of speed for different cases of uptime probability marks the fact that the
mailing system relies mostly on uptime requirements than the bandwidth properties
of a certain entity node upon deciding the number of peers according to which

replication can take place.

Figure 6.5 Download Speed

This work presented a new concept regarding the mailing infrastructure over

an unstructured peer – to – peer network. A model of interconnecting peers
according to the location services and dividing them according to the user behaviour
in time spent over the Internet was shown. Also, a thorough analysis was provided
regarding the uptime prediction according to which data caching can take place at
any peer with a regular defined custom in terms of uptime availability. The obtained
results show that even users with low uptime probability can be used as targets for
caching data, but with an increased cost of higher number of replicas of email

content.

BUPT

82 Improving P2P Mailing Architecture mechanisms - 6

6.2. HMail: A hybrid mailing system

Current mailing systems have adopted a server-centric model in handling
email traffic over the Internet. Although the traditional mailing providers employ a
large number of servers where mail operations are evenly distributed, all the emails
are routed to a central gateway, resulting in accessibility issues if the gateway link is

severed. Moreover, the necessity of having dedicated buildings and trained

personnel for handling large email operations and network traffic is unavoidable.
The work present in [63] introduces a new mailing architecture design by

combining the research activities on developing a hierarchical Peer-to-Peer (P2P)
framework [41] and resource evaluation methods of a certain peer in the network.
Users are grouped according to their geographical distribution for assuring a load-
balance in network traffic regarding email operations and present a way that helps

the traditional mailing architecture rely on certain Peer-to-Peer decision blocks.
The author’s contribution to the existing P2P mailing architecture consists in

separating the decision tasks that facilitate the mailing operations over several
hierarchical blocks distributed geographically. For this purpose one can specify on
which computing resources the mailing operations can take place, and further, the
solution can provide a better security of data regarding the email content, storing,

sending and receiving operations. The authors chose to classify the hierarchical
layers by the geographical criteria of peers because of the P2P network behaviour
(instability of network). It is much faster to retrieve information from a peer located

geographically closer to the requester.

6.2.1. Architecture Preliminaries

HMail infrastructure relies on a hierarchical extension [41] of the Chord
protocol [19]. The hierarchical extension over the DHT framework provides some
additional features for the flat overlays like Chord regarding the P2P application

layer. Although the Chord overlay treats peers as being homogeneous resources in
the network, the solution found in [41] suggests that according to each P2P
application requirements specification, several hierarchical layers should be built.
The application requirements can be seen as computing resources of the
participants to the P2P network, such as uptime, computing power, bandwidth,
shared space, etc. The hierarchical layers built on these requirements are handled

into restrained entities over Chord, called hierarchical modules (HMs). Every layer is

built according to the Chord protocol by using the same nodes from the overlay.
Each HM is managed through a control file (dispatch list) stored on the Chord
overlay, described here as Base Chord Overlay. The lifetime of a dispatch list is
limited, determined by the valid entries of certain peers that are carefully selected
according to the application requirements in handling certain hierarchical layers of
the HM. Each control file has two sections: general set of rules, defined from the
upper application layer, which specifies the application requirements for a certain

HM; and entry points for each set of rules, where information about few number of
peers is registered for each hierarchical layer (IP address, Port number, login time).

There are two major structural components that build the HMail mailing
architecture design: the overlay framework and the application layer. The mailing
application layer basically performs three tasks: retrieve email from sender, store
the email content and send email to receiver when queried (store and forward). To

be able to perform these tasks safely on the P2P environment, where the behaviour

BUPT

6.2 - HMail: A hybrid mailing system 83

of participants is very unstable, the application layer should refer only to the nodes
that meet higher requirements in terms of uptime, bandwidth, computing power and
shared space. In the previous research [61], the authors have promoted super

nodes for this matter (peers with more than average computing resources), but the
expectation ratio of nodes performing all these requirements together was low.
Therefore this architecture design will take in consideration nodes that meet some of
the desired application requirements gradually on hierarchical layers above the
overlay framework. For this purpose the concepts used in the research found in [61]

for describing the terms of joining one hierarchical module of the overlay are used.
A major challenge in handling participants over a P2P network architecture

is finding one support group of nodes that can perform a variety of operations in a
stable manner. Finding such a support group of interest implies also fulfilling the
requirements expectation for a certain application. For the HMail architecture design
the authors from [63] require that participants meet the following resources
expectation: uptime, bandwidth, computing power and shared space.

The uptime prediction method remains one of the most critical requirements

in building the mailing application. Because of the unstable P2P environment, no
algorithm can exactly predict the moment when a peer will become active in the
network. The algorithm found in [61] is used for this matter, which associates every
node in the network with its own uptime evaluation in terms of score points
generated across an interval of 5 days of history analyses.

Because Internet Service Providers (ISPs) provide uneven bandwidth

resources concerning the upload and download speed, the requirement expectation

regarding this resource is focused more on the upload speed. Nodes are grouped
according to this metric for providing quality of service regarding the email
operations for the HMail architecture design (sending/receiving).

The computing power designates the quantity of operations a certain peer
can handle. Through quantity, the number of processes is referred that a peer (as a
computational machine) can handle at a certain moment in time, memory
availability, access time to the local disk, etc. Only nodes with this feature can reach

upper layers in the hierarchical module above the overlay.
The shared space represents the storage space assigned to the mailing

system, composed by the amount of space given freely from the peer side.

6.2.2. Basic Components

HMail platform framework design relies on several hierarchical modules built
above the Chord overlay (Figure 6.6). Every HM identifies itself through the
geographical area distribution of its nodes (peers). For this purpose the service of an
additional application is required, such as MaxMind [42], which provides the

following information based on IP address of joining peers to the mailing
architecture: hostname, country code, country name, region name, city, area code,
etc. Every control file, describing a certain HM, is stored on the Base Chord Overlay
under the hash ID of a certain country code. Therefore all user IDs should append
the country code next to the domain name (ex. user_id@domain.country_code).

BUPT

84 Improving P2P Mailing Architecture mechanisms - 6

This way the application side can easily mark the membership of a certain user
when email operations take place (joining, sending / retrieving messages, etc.).

The criteria in building the first hierarchical layer above the Chord overlay
lies in selecting nodes with more than average uptime and bandwidth resources

validated by the GeoIP tagging. This single partitioned layer defines the mail
submission agent (MSA) and the mail retrieval agent (MRA) components of the
mailing system. These components are used for sending and retrieving emails, and

common overlay nodes (peers) that were not validated by the HM, can query only
this layer of hierarchy.

The second hierarchical layer of a certain HM is built according to the
validation of nodes within the first layer with more than average resources such as

computing power and shared space. Only nodes with higher computing power can
build the second layer of hierarchy at the same time as they build also the first one.
Because all information regarding the mail operations and HM maintenance is stored
at this layer, the validated nodes should also share some percentage of their
storage space. This layer is split into three partitions: spool area, inbox area and
monitor activity. The spool area represents a temporary holder for new emails

placed from the MSA side in order to be sent to their destination. Also the nodes
from this area perform the mail delivery agent (MDA) and mail transfer agent (MTA)
components of the mailing system. The inbox area is the holder for all incoming
mails referring the users with the same GeoIP tagging.

The monitor area represents the holder of public PGP keys [40] of mail users
from the same GeoIP tagging and users from other HMs that are authenticated to
place new incoming mail to the inbox area. As the number of mailing participants

increases, the higher the HM demands. The monitor area also contains data for
managing the HM, in terms of raising the expectation ratio of more than average
resources, supplying the HM with more nodes when needed.

6.2.3. Email Operations

Through the proposed hierarchical architecture design, communication
between mail components occurs in a restrained manner. Common mail users have
access through their email application only to the first level of hierarchy of a certain
HM. Although every node in the overlay has access to the information provided by

any control file of a certain HM, the interaction between parties occurs according to

Figure 6.6 HMail Architecture Design

BUPT

6.2 - HMail: A hybrid mailing system 85

an authentication method based on PGP keys. To perform a fully secured
communication, one could easily extend the proposed security model by requiring
the services of an external certificate authority, which could provide a higher level of

security.
HMail mailing application is a daemon that acts as a local server for common

MUA client applications (ex. Outlook, Mozilla Thunderbird, etc.). It provides the
protocol interfaces for SMTP (simple mail transfer protocol) and POP (post office
protocol) according to a RFC standard format [49].

The authors [63] have identified three types of email operations on HMail
mailing infrastructure: sending, receiving and deleting of email content. In these

three basic categories, details regarding the store, authentication and garbage
collector operations are specified.

In Figure 6.6 Alice’s computer represents one of the member peers of the
HMail architecture design. Alice uses her common email client to write an email to
Bob (sending operation). When the email is sent from the MUA side, the P2P mailing
application receives the email according to an RFC standard format and converts it

to an internal one. Assuming that Alice’s computing machine is not validated by an
HM, the P2P application first searches the Base Chord Overlay for the control file of
the HM who’s ID matches the country code where Alice lives. With the obtained
information from the control file, the application connects to the MSA layer of the
queried HM. The MSA performs an authentication process according to the
information from the second layer provided by the monitor area partition.

The MSA generates a random data and encrypts it according to Alice’s public

PGP key and sends it to the querying application. The application receives the
encrypted data, decrypts it according to the private key, which is securely stored on
Alice’s computer, and sends it back to the MSA. If the MSA confirms the match, it
requests for the email from Alice’s peer side. When the process of email retrieving
finishes, the MSA places the email content into the spool area partition from the
second layer of the same HM.

The email placed from the MSA side is stored into the spool area under the

hash ID obtained by combining the date, time and destination address. The nodes
from the spool area are responsible for placing Alice’s email into Bob’s HM inbox
area.

The node from the spool area responsible for holding Alice’s sent email
performs the operations described by a mail transfer agent. The MTA searches the
HM identified by the country code appended next to Bob’s email address. After

fetching the control file from the Base Chord Overlay, the MTA connects directly to
the inbox area of the HM where Bob logs in for checking new email notifications.

If no connection can be established to the inbox area, the MTA hashes
Alice’s email request by combining the date and time of the first attempt in
connecting to Bob’s HM, the number of connection attempts and the destination
email address, and stores it back in the spool area. The period of time needed for
requesting the same connection to Bob’s HM is computed according to the number

of attempts found under the ID of Alice’s email request. If this number of attempts
reaches a value specified in the monitor area, and no connection happened to be
established to Bob’s HM, Alice’s email is stored in her inbox area with the appended
message of error in sending the email request.

If the connection to Bob’s inbox area is established, the same authentication
method is performed through hashing a random data with the public PGP key of the
node registered as an MTA to Bob’s HM stored in the monitor area. After the

BUPT

86 Improving P2P Mailing Architecture mechanisms - 6

authentication has been succeeded, the MTA places the email on Bob’s inbox area
(MDA).

When Bob wants to check his inbox (receiving operation), he performs this

operation through the MUA application. The request is sent through the email client
by connecting locally to the mailing daemon. The mailing daemon connects to the
HM identified by hashing the country code appended next to Bob’s email address.
After a connection has been successfully established with the mail retrieval agent,
an authentication process is required in order to have access to the new incoming

emails. After the authentication has been made, Bob’s mailing daemon retrieves the
new incoming mails and marks them as read. After fetching the new emails, the

mailing daemon passes them the Bob’s MUA according to the standard RFC POP
protocol.

Bob’s inbox holder is composed from an index file and the email messages
that are stored separately on the inbox area. The index file is structured according
to the new and old entries of received emails. Every entry specifies a stored email in
the inbox area by appending next to the email header the hash ID of content in the

inbox area. Also the index file contains information about the space used by Bob and
notifies the daemon about the available store space.

The delete operation occurs due to mailbox area notification stored in Bob’s
inbox (index file). If Bob has exceeded the available storage space on the HM, first a
notification is sent to the mailing daemon and Bob needs to perform the deleting
operation himself. If Bob does not take action on the space notifications arrived

from the mailing daemon, than the garbage collector automatically performs the

deletion process. The garbage collector is implemented in an FIFO manner (first in
first out). Only the oldest messages on Bob’s inbox will be selected for the deletion
process.

The garbage collector is implemented on every node from the inbox area of
a certain HM. Every email newly arrived in this area is marked with a number of
counts measured in days. Every day passes by the count number is decremented by
every node that stores an index file in this area. When the count reaches zero value

a notification is automatically generated on the inbox holder for notifying the user to
take action. If the count reaches a negative value and the storage space limit was
exceeded, the emails with the higher number of negative counts will be
automatically deleted.

6.2.4. Interoperability Solutions

The authors from [63] have designed the mailing architecture according to
the interface solution found in [59]. This way the P2P application runs as a service
behind the operating system providing connectors for an RFC standard format (POP

for retrieving and SMTP for transport email content). The authors considered two
scenarios in handling operations with the traditional mailing service: standalone and
hybrid mailing service.

When considered as a standalone P2P mailing application, the HMail solution
design must handle only incoming mails from the traditional architecture. For this
purpose a number of few nodes are required from the spool area of certain defined

HMs registered as MX-Hosts in the domain name system (DNS) [52] named after
the architecture solution: HMail.com. This requires that the nodes registered, as MX-
Hosts should bind their SMTP connector to an IP associated with the HMail domain.

When an email is sent to this architecture from the traditional service, the HMail

BUPT

6.2 - HMail: A hybrid mailing system 87

domain system is queried for retrieving the MX-hosts and emails are sent via SMTP
protocol to the spool area of certain HM. If the email is intended for the HM
available as MX-Host, then the spool area transfers the email into the inbox area of

the recipient. Otherwise the spool area is in charge of securely transferring the
email content to its destination.

A hybrid model of this mailing architecture design is based on the
collaboration between the P2P and Client/Server structure model. The HMail domain
includes MX-entries for both the adopted models: datacenter gateways for the

traditional one and spool area hosts for the P2P architecture. When an email is to be
sent to this architecture design, the designated MTA retrieves the MX-hosts for this

purpose from the DNS. It receives a lists of hosts prioritized according to the P2P-
traditional order. If the nodes from the spool area are not reachable, overwhelmed
in terms of storage space, bandwidth usage, computational power, etc., the MTA
choses the hosts from the traditional model. This way a focus us set more on the
P2P model where the costs needed for handling the mailing operations are reduced
than using the traditional one, where extra storage space involves new investments

in terms of computing resources, specialized personal and dedicated buildings.
When an email is to be retrieved from the HMail architecture design a mail

relay should be designated for this purpose. The mail relay can point to both P2P
and traditional data holders according to the used location for storing the email
content.

6.2.5. Simulation and Experimental Results

We HMail architecture design was simulated in an object oriented
environment, where peers have been represented as objects within the application.

Every participant to the network was simulated through the presented metrics, and
every HM was represented through an additional object where peers can subscribe
or leave according to their own resource evaluation method [61]. Because peers can
join or leave the network at anytime, the authors [63] have also simulated case
scenarios for each of the uptime probabilities: 0.1 for worst case scenario, where
the entire network simulation depends on peers that join the network only for a
short period of time to check their mail inbox status; and 0.9 where peers remain

connected to the network for several hours daily.
In Figure 6.7 the number of email replicas needed for assuring the data

availability on the P2P network is represented. The worst case scenario (0.1 of
uptime expectation) requires more replicas than the other P2P mailing
implementations [61][55]. Because of the unstable environment generated from
peers that join the network only for a short period of time, it is difficult to maintain
the HM structures above the Chord overlay and also to assure the availability of

email content on the second hierarchical layer. As the uptime probability increases,
the network environment becomes more stable and the number of email replicas
decreases substantially. Because only the nodes with the highest resource
evaluation can be part of certain HM resource, data availability is assured from a
number of nodes proportional with the uptime expectation of the validated peers.

BUPT

88 Improving P2P Mailing Architecture mechanisms - 6

Figure 6.7 Number of Email Replicas, 1000 Nodes Simulated

Figure 6.8 Average Email Availability per Day

In Figure 6.8, the authors [63] have represented the data availability
expectation for each considered uptime case scenario and compared their results

with [61]. For the worst case scenario, the email content is available on the mailbox
area only for a short period of time that ranges from 5 to 6 hours per day. As the
uptime expectation rises for the considered simulation environment, the mailing
architecture design provides a stable data holder for the email content. The time
interval needed for storing the email content for higher uptime simulation scenarios
decreases because of the high peer resource expectation validated by the HM. When
the resource expectations are high for a certain HM, it becomes difficult for a node

to re-join a certain hierarchical layer. This is possible due to joining time offsets of
certain peer in the network, which sometimes yields with a lower resource
evaluation than expected.

To reach in practice, the obtained results ranged from 0.4 to 0.7 of uptime
probability, are to be considered. This covers the case scenario of all the discussed
user types.

BUPT

6.3 - DMail: Distributed mailing system 89

6.3. DMail: Distributed mailing system

Current Peer-to-Peer (P2P) mailing infrastructures were developed on the
foundations of unstructured and structured overlay models. The mailing systems
developed under the unstructured P2P network overlay have promoted nodes with
higher resources (in terms of bandwidth, computing power, shared space, etc.) as

super nodes, attempting to centralize and concentrate email operations across

stable peers. In the structured model, nodes have been treated as homogeneous
resources across the network, and email operations were possible due to the
complex protocol used for linking nodes in the network. The work available in [64]
proposes a new model of mailing architecture developed over a P2P overlay network
which combines the strengths of both structured and unstructured overlay
frameworks by promoting super nodes as gateways across the main overlay.

Through this implementation the authors provide load balance properties in terms of
email operations, bandwidth usage and processing power among peers. The authors
have designed the service as an integration model with the traditional Client/Server
mailing architecture and an applicability solution for this concept model is
presented.

The mailing architecture [64] design relies on the framework provided by

the two tier overlay implementation present in [36]. The author’s contribution to the
existing P2P mailing architectures consists in separating the decision tasks that
facilitate the mailing operations according to the geoIP tagging [42], providing load

balance in terms of bandwidth usage and processing power among participants to
our application. Further in this work, the authors provided an integration method
with the existing mailing service based on the Client/Server model and a case
scenario of applicability for this concept design.

6.3.1. Architecture Preliminaries

DMail mailing application is represented through a daemon that acts as a
local server for common MUA client applications (ex. Outlook, Mozilla Thunderbird,
etc.). It provides the protocol interfaces for SMTP (simple mail transfer protocol)
and POP (post office protocol) according to a RFC standard format [49]. For security
purposes, the external services of PGP keys [40] implementation are required,
assuring data security and user privacy. To perform a fully secured communication,

one could easily extend this security model by requiring the services of an external

certificate authority, which could provide a higher level of security [55].
The authors [64] designed their mailing architecture according to the

facilities provided by the two tier overlay concept [36]. Trough this option of
splitting super nodes from others, the authors were able to filter decision tasks of
certain mail operations.

In this model concept every lower tier of Chord implementation should be
identified by a geographical distribution of certain peers. This option can be

achieved through an external service, such as MaxMind [42], which provides some
information about the hostname, country code and name, region code, etc. The
hashing algorithm should order peers in the overlay according to their country and
region code (location ID). Therefore all user IDs automatically are generated with
the location ID appended next to the domain name (ex.
user_id@domain.location_id).

BUPT

90 Improving P2P Mailing Architecture mechanisms - 6

Because of the architectural preliminaries of the two tier overlay, mailing
operations are divided accordingly: lower tier overlays for storing/replicating email
content and super node overlay for notifications. For replicating email content across

lower tier the solution adopted in [47] is required. Through this implementation
every node evaluates itself according to the time spent to the mailing system. The
time is measured in counts (2 minutes) over an interval of 24 hours and every node
builds an availability chart according to its uptime evaluation. Every node from the
lower overlay knows information about few others availability chart through

synchronizing this information through the finger table, successor and predecessor.
Because of the geographical distribution of peers within lower tier overlay, time

zones discrepancies are not handled in the replicating process of email content.
In the super node overlay data availability is guaranteed from the Chord

protocol. Replication of email notifications across this side of the overlay are not
required because its member peers are present in the network with more than
average resources, such as computing power, uptime, shared space and bandwidth
speed.

The email notifications are stored separately for each user id in an inbox
holder. This holder is represented through a list of new and old entries of email
notifications and the public PGP key used for encrypting email content when emails
are to be sent to this address (user id). Each entry consists of the sender address,
subject message, and addresses of nodes within lower tier overlay where the email
is replicated according to a generated availability chart. The authors [64] considered

that every node stores one at the time notifications in the inbox holder without

being susceptible to concurrent writing.

6.3.2. Email Operations

In Figure 6.9 Alice’s computer represents one of the member peers of the
mailing architecture design situated in one of the lower Chord tier. Alice uses her
common email client to write an email to Bob (sending operation). When the email
is sent from the MUA side, the P2P mailing application receives the email according
to a RFC standard format and converts it to an internal one.

Alice’s mailing application passes the request to the lower tier overlay for

backing up the email content. First the public PGP key is fetched from the inbox
holder named after Bob’s email ID. For this purpose, the node situated in the lower

overlay, represented by Alice’s computing machine, searches in the super node
overlay for Bob’s inbox holder and retrieves the public PGP key (Figure 6.9 strong
line arrows). The email content is encrypted according to the fetched key and the
replication process begins in the same lower tier identified by the Alice’s
geographical location ID.

The dotted lines in Figure 6.9 represent the target nodes used for replicating
the email content. The replication process takes place through building another
availability chart for the email content requested for sending. The process finishes
when all gaps of 24 hours are filled with the corresponding uptime of targeted nodes
used for replication.

The email content is stored under the successor of the node that performs

the request (Alice’s computing machine) and other nodes from the finger table.
Every replication process occurs once at the time. Every node contacted as backup
target checks also its neighbour nodes to fill up the gaps from the availability chart.

BUPT

6.3 - DMail: Distributed mailing system 91

If other possible backup nodes are found, the targeted node responds to the
requester with the corresponding address.

Figure 6.9 DMail Architecture Design

If none of the lower tier nodes are available for replicating Alice’s email
content (overwhelmed in terms of processing stress, uptime availability, etc.), the

email request is passed to one of the super nodes from the upper tier. The super

node becomes the new email sender requester and the same replication process
takes place within its lower tier overlay.

After the completion of the replication process, the requester node fetches
again Bob’s inbox holder and stores the email notification with the corresponding
information: from, to, subject and replication nodes addresses.

Retrieving the new email for Bob’s user begins by connecting locally to the

mailing daemon from the MUA application. Once the connection with the other peers
was established, Bob’s computing machine fetches his inbox from the super node
overlay and Bob receives the new email notification (Figure 6.9 dashed and dotted
arrows). The content will be downloaded locally from the nodes which addresses are
appended in the notification. The download process will use all of the nodes
available on the network. After the downloading process has successfully completed,
Bob uses his private PGP key, which is securely stored on his computing machine,

for decrypting the email content.
The deletion operation is implemented on every node from the overlay. Any

data item that will be stored is marked with a number of counts measured in days.
Every day passes by, the count is decremented, and when it reaches zero the stored
data will be automatically deleted. The email content is referred here as every data
item, notifications entries and inbox holders. If one user does not check his inbox
for a period of time, all data will be automatically deleted from the overlay network.

The user can explicitly delete the email content from the replica nodes
trough appending the request to the garbage collector holder placed on the super
node overlay. When nodes join the overlay, they first check the garbage collector
holder to see if certain data requested for deletion is available. If matches were
found, the data is removed from the nodes and also the garbage collector is updated
accordingly.

BUPT

92 Improving P2P Mailing Architecture mechanisms - 6

6.3.3. Interoperability and Applicability Solutions

The authors from [64] have considered two scenarios in handling operations
with the traditional mailing service: standalone and hybrid mailing service.

For the considered scenario of standalone P2P mailing application, a small

number of super nodes are required, registered as MX-Hosts in the domain name
system (DNS) [52] named after the architecture solution: DMail.com. Trough this
approach this solution design must handle only incoming mails from the traditional

architecture. This requires that the nodes registered as MX-Hosts should bind their
SMTP connector to an IP associated with the DMail domain. When an email is sent to
this architecture from the traditional service, the DMail domain system is queried for
retrieving the MX-hosts and emails are sent via SMTP protocol to the registered

super node. The super node then performs the sending operation internally,
described earlier in this paper.

The hybrid model of the DMail mailing architecture design is built through
the collaboration between the P2P and Client/Server structure model. The DMail
domain includes MX-entries for both the adopted models: datacenter gateways for
the traditional one and super node hosts for the P2P architecture. When an email is
sent to this architecture design, the designated MTA retrieves the MX-hosts for this

purpose from the DNS. It receives a lists of hosts prioritized according to the P2P-
traditional order. If none of the super nodes are reachable, overwhelmed in terms of
storage space, bandwidth usage, computational power, etc., the MTA choses the

hosts from the traditional model. This way, a focus is set more on the P2P model
where the costs needed for handling the mailing operations are reduced than on
using the traditional one, in terms of computing resources, specialized personnel

and dedicated buildings. When an email is to be retrieved from this architecture
design a mail relay should be designated for this purpose. The mail relay can point
to both P2P and traditional data holders according to the used location for storing
the email content.

As the society heads towards mobile technology and the Internet becomes
more as a given resource, users will easily be able to use more efficiently P2P
technologies without any restrictions of mobility issues, network availability and low

uptime expectation. The DMail architecture concept can be applied without
constrains on the available devices today. One existing user from this mailing
service must explicitly select a target device for processing email operations such
as: mobile phone, desktop computer, tablet, etc. With this set, the user can also

access the mailing service from another device without the need of sharing
resources or syncing email content again. Suppose Bob had set his desktop
computer as the target device for contributing to the P2P mailing service. Bob can

sign in through his mobile device to the mailing service, by specifying the targeted
device address, without the need of sharing resources over the Internet again.
When emails are sent to Bob’s inbox address, Bob can be notified from two sources:
super node overlay and target device. This concept reduces the issues raised when
no replica node of email content is available on the network.

6.3.4. Simulation and Experimental Results

The authors [64] simulated the mailing architecture design in an object
oriented environment, where peers have been represented as objects within the

application. Because peers can join or leave the network at anytime, case scenarios

BUPT

6.3 - DMail: Distributed mailing system 93

were considered for each of the uptime probabilities: 0.1 where the entire network
simulation depends on peers that join the network only for a short period of time to
check their mail inbox status (5 to 10 minutes uptime); and 0.9 where peers remain

connected to the network for several hours daily (highest uptime). The results were
obtained through simulating a network environment of 10000 nodes.

Previous research authors have analysed their implementations [55][56]
according to the number of email copies and download speed. The authors used in
their work a new metric that they recently introduced in a previous research [61],

which specifies the availability of a replicated email.

Figure 6.10 Number of Email Replicas

In Figure 6.10 the authors analysed how many replica nodes are needed to
assure content availability for a sent email. The more nodes are involved in the
replication process, the overall mailing service performance decreases as well, as a

result of network traffic, storage stress and computing power usage. The DMail
architecture design requires a smaller number of email replicas and therefore
performs better due to the adopted overlay model and method of uptime prediction:
every new email is replicated according to an availability chart of 24 hours interval
located in the same geographical area, where no time zone discrepancies are
implied. A significant improvement was achieved regarding the number of copies in

terms of 22% less nodes involved in email content replication compared to Secure

Email[55], Experimental Mail [56] and DMS [61].
In Figure 6.11 the email content availability was analysed over an interval of

24 hours per day. Through this metric the optimum number of email copies
presented in Figure 6.10 were specified. The results show significant improvement
compared to [61]. A overall performance evaluation of 17% was gained, better
availability of email content. When relying on users that sign in to the mailing

service only for a short period of time (0.1 uptime probability), a benefit up to 6
hours per day of email availability was achieved. Through raising the uptime
expectation of joining peers, the email availability increases as well, tending to a
constant value that reaches 24 hours of email availability daily.

The authors shown in [61] that the download speed is not always
proportional with the number of peers selected for download and it is also limited
according to the Internet service provider specifications (limited network traffic).

Therefore the authors believe that download speed cannot be considered a metric

BUPT

94 Improving P2P Mailing Architecture mechanisms - 6

according to base our research results upon. In practice, uptime probabilities
ranging from 0.5 to 0.7 are to be considered mostly, covering all the discussed user
types.

Figure 6.11 Average Email Availability

In the work of [64] the authors designed a new mailing architecture solution

based on the P2P network model. They provided two types of interoperability with
the traditional mailing service and an integration solution with the up to date
technology. The simulation results show that the mailing architecture design can

handle well any type of requests from other Client/Server mailing services and also
provides a stable data holder for each of the considered uptime case scenarios.

BUPT

7.1 - Original Contributions 95

7. Conclusions

This chapter focuses on highlighting the original contributions added
throughout this thesis and also on concluding the experimental results obtained for
this purpose. Through highlighting the thesis contributions I will refer also to the
decisions taken towards designing one distributed mailing system. Although several

mailing architectures were described in this thesis, the goals mentioned in the first

chapter were met on every proposed implementation. The experimental results
highlight mainly the strengths of every developed mailing concept. Our main scope
is to prove that such mailing system architectures can be easily adopted and
implemented on today’s devices.

7.1. Original Contributions

I have chosen the name Distributed Mailing System for describing the thesis
theme in the simplest way, so it can be easily understood and the concept I have
developed throughout the 3 years of research activity can be anticipated. Yet one

simple designation reveals several research aspects for implementing such a
complex architecture design.

The Peer-to-Peer network concept sets the basis for our research. The

second chapter of this thesis provides a brief presentation of the network principles.
Through this chapter, elementary information regarding the used protocols in
handling the mailing architecture operations was presented. I cannot claim
authorship for most of the presented information, but an original contribution is

represented through my vision regarding the Peer-to-Peer network concept present
in the last part of chapter two.

Chapter three provides a state of the art introduction into the Peer-to-Peer
implementations available today. Through presenting and analysing several overlay
P2P concepts, I have highlighted my contribution by implementing a new approach
in handling peers over the network. My model proposal is built as a framework

support for several P2P applications, facilitating the operations of inter-
communication, resource evaluation and customization of the overlay according to
the application predominant characteristics. By this approach several applications
can be built across the same framework support, every implementation being able

to configure several virtual overlays across the one who serves as a common
network support.

In chapter three I also provided an analysis regarding the various uptimes

characteristics of peers throughout different applications types. I cannot claim
authorship regarding the measurements taken for each of the analysed
implementation, but throughout the investigative part I developed an algorithm
capable of predicting the moment in time when a certain peer will join or leave the
P2P network. The proposal is futile in handling caching techniques across the
unstable environment of P2P network, reducing dramatically the number of replica
nodes used in handling data availability and consistency across such network types.

Chapter four handles the current mailing architectures available today. A
state of the art introduction regarding the mailing implementations based on both
the server-centric and Peer-to-Peer architecture was presented. My contribution to
this chapter resumed in providing a top view regarding the available architecture

models available today. Through this investigation I was able to develop new

BUPT

96 Conclusions - 7

mailing architecture designs, improving the mechanisms of the current P2P
implementations.

Most of the current Peer-to-Peer mailing architectures were designed to be

compliant to a certain RFC standard format. Although their architecture
implementation relies on a P2P model, the operations of handling email content are
conform to the traditional protocols provided in chapter two. Chapter five handles
the issues raised by such implementations through an interface model proposal that
enables and encourages future mailing implementations developed across the P2P

network to handle all internal operations separately from the traditional
architectures. By this approach P2P mailing architectures have to handle only

outgoing or incoming email operations from or to the traditional mailing systems
available today. My contribution to chapter five yields through designing such an
interface model, in this manner the future implementations of P2P mailing
implementations will also rely on a self-developed protocol format without the
concern of inter-compatibility with the traditional mailing concept based on a server-
centric model.

The research activities performed in chapter six are entirely original. In this
chapter I have proposed three mailing architecture types that perform better than
the ones analysed in chapter 4. For this matter, I used the previous results provided
by chapters three and five for designing the mailing architectures. All the new
approaches in handling email operations over the P2P network were implemented
according to the uptime prediction algorithm provided in chapter three and

interoperability interface provided in chapter five.

A special contribution yields from the research activity carried on during the
three years of developing and improving Peer-to-Peer mailing architecture. A major
effort was made in developing, designing and researching this domain of mailing
architecture developed across the unstable environment of Peer-to-Peer networks.

7.2. Analysis of the results

In this subchapter I will focus mainly on the results obtained after
developing new architectures (P2P overlay frameworks and mailing systems) and
argue our contributions.

In chapter three I proposed an extension [41] of the Chord overlay [19] that

enables applications to configure their infrastructure according to the computing

resources available throughout the Peer-to-Peer network. Chord, like most of the
available overlay models, is built in the manner of handling every node as equal in
the network. According to the analysis provided also in chapter three, I concluded
that the implementations that harness the heterogeneity of nodes within the P2P
network perform better in terms of search queries, data availability and consistency,

stable network backbone, etc. Most of the analysed implementations that perform
operations under such circumstances, promoted nodes with above average
computing resources (increased uptime, computing power, bandwidth, etc.) as
super nodes. Any other node that was not eligible for this category was threated as
an ordinary node. Trough the proposal present in chapter three, I wanted to design
an overlay that facilitates applications to build virtual layers gradually, according to
the resource selection of nodes within the network. The hierarchical layers built on

these requirements are handled into restrained entities over Chord, called
hierarchical modules (HMs). Every HM is configured and identified by a control file

BUPT

7.2 - Analysis of the results 97

stored on the original Chord overlay (Base Chord Overlay). Trough this method of
harnessing the most of the available computing resources throughout the P2P
network presents also some benefits such as task balance between the layers,

possibility of securing a certain layer level, data caching techniques are
implemented on carefully selected nodes for this purpose, etc.

The hierarchical extension of Chord [41] was simulated on the Oversim [43]
platform. The framework provided by the Oversim platform facilitates the
environment of building and testing P2P overlay models. The proposed hierarchical

extension has performed well on the simulation environment. The measurement of
lookup operations represents one of the most critical evaluation criteria in

evaluating an overlay model. The proposed model requires additional lookup
operations resulting in finding first the associated control file of a certain HM and
then the lookup operation can be performed on the queried module. Although this
hierarchical model requires additional lookup operations, the efforts are minimal
when compared to other implementations that provide extensions for the same
Chord overlay.

The interface design that handles protocol interoperability between
Client/Server and Peer-to-Peer mailing systems is strictly theoretical. No simulation
was required for proving the reliability of such an interface design. The scope of
such a proposal was to encourage future P2P mailing architecture to develop the
mailing mechanisms compatible only when handling operations outside the P2P
network.

In chapter six, three mailing architecture types were proposed, every

implantation having an unique approach in handling mailing operations across
different P2P architectural types: DMS [61], HMail [63] and DMail [64]. As a
common goal for building the mailing systems, I was focused first on achieving a
stable environment across which mail operations can be performed safely on the
P2P network environment.

DMS. The architecture design across which I developed the DMS
architecture is based on the unstructured overlay model present in [62]. The mailing

architecture present in [61] is structured according to the community validation.
Every community is formed through connecting super nodes within several ring
topologies. The email operations are handled onto a three tier overlay network:
ordinary nodes, ordinary community and dispatch community. The communities are
handled in restrained areas according to the GeoIp tagging of every participant to
the network. The mailing operations occur between communities as follows: caching

techniques occur only on the ordinary nodes and notifications are stored on the
community layer. Because of the unstructured overlay model adopted in designing
the DMS architecture, a third tier is used for handling operations throughout
communities within different geographical locations.

The simulation environment across which I tested the DMS implementation
is based on an object-oriented framework. The participants were simulated
according to various uptime case scenarios: 0.1 represents the worst case scenario

(users join the network only to check the inbox status) and the best case scenario is
represented by 0.9 describing the users who remain for several hours logged to the
P2P network. The obtained results show that although caching techniques perform
best by distributing (dividing) the tasks across several tiers, the architecture design
lacks in terms of limitation of the queries across the unstructured P2P network.
Because every query sent outside the communities handled into the same
geographical distribution is limited according to a TTL (time to leave) flag, the

bandwidth latency can be overloaded by broadcasting such message types.

BUPT

98 Conclusions - 7

Nevertheless, the mailing process is well balanced among users and the operations
of sending emails are not represented by persistent tasks. Hence I conclude that
this mailing system performs well in any of the situations generated by the P2P

network implementation.
HMail. The mailing system presented in [63] was developed across the

overlay model [41] described in chapter three. The hierarchical overlay model
extends Chord [19] by building several virtual layers across the platform already
established (Base Chord Overlay). Every virtual layer is built through connecting

several nodes from the layer underneath according to a validation process of certain
property (computing resources evaluation, etc.). By this approach, several

restrained entities are developed across the original Chord overlay, with a
predefined number of hierarchical layers called hierarchical modules (HM). Every HM
is configured through a control file stored on the lowest layer (original Chord
overlay) and the lifetime of such entity is limited, according to the valid entries of
certain nodes validated by the requirements established by the control file.

HMail defines several hierarchical modules validated by the geographical

distribution of joining peers. Every HM has two layer levels, the first one being
validated by nodes with above average resources of bandwidth and uptime; and the
second one is formed through connecting nodes within the first layer with increased
CPU power and shared space. The first layer of a certain hierarchical module is used
as a mail submission agent and mail retrieval agent. This layer interacts directly
with the user handling the operations of sending and retrieving the email content.

The second layer is divided in three overlays: spool area, mailbox area and activity

monitor. This layer handles incoming and outgoing email content providing all the
operations of mail transfer agent, garbage collector and public PGP keys used for
encrypting the email content. The sending process occurs safely between HMs
according to the validation of random data encrypted/decrypted according to the
PGP keys.

The solution presented in [63] represents one of the most complex mailing
architectures design, where every process involved in the traditional solution can be

found also across the P2P mail implementation. Throughout developing this new
mailing architecture, I considered also additional security facilities in handling the
mailing operations. By this approach, a limitation is set on every hierarchical module
which provides restriction mechanisms for any unauthorized access for unregistered
participants to the mailing system. The simulation results show significant
improvements than DMS where the email content is replicated across the nodes with

above average computing resources: shared space, bandwidth, uptime and CPU
power. The address space has no limitations in handling queries from every point of
the network and further, if a certain HM cannot be sustained from its nodes
anymore, the email content is distributed automatically across the lowest Chord
layer (Base Chord Overlay). The drawbacks of this implementation is triggered by
the high resource expectations of a certain HM. By this, it becomes difficult for a
node to re-join a certain hierarchical layer. This is possible due to joining time

offsets of certain peer in the network, which sometimes yields with a lower resource
evaluation than expected.

DMail. The mailing system presented in [64] is developed across the two
tier overlay available in [36]. The two tier overlay model handles nodes with above
average resources in a distinct Chord overlay from the others formed through
connecting ordinary nodes. The tasks used in handling the email operations are
evenly distributed among tiers: the email content is safely stored on the lower tier

overlays and notifications are kept on the tier sustained from super nodes. The store

BUPT

7.3 - Published Papers and Impact 99

process involves replication of the email content on several ordinary nodes
according to the algorithm presented in the third chapter of this thesis. The sending
and receiving processes occur by placing or retrieving notifications from the main

overlay tier (SN overlay).
Trough handling all the notifications centralized and separately from the

lower tiers this implementation design is similar with the traditional mailing service
available today. By handling the mailing architecture in this manner, I was able to
extend the features of this concept by proposing an applicability model for today’s

mobile technology evolution. As the society heads towards mobile technology and
the Internet becomes more as a given resource, users will easily be able to use

more efficiently P2P technologies without any restrictions of mobility issues, network
availability and low uptime expectation. The DMail architecture concept can be
applied without constrains on the available devices today. One existing user from
this mailing service must explicitly select a target device for processing email
operations such as: mobile phone, desktop computer, tablet, etc. With this set, the
user can also access the mailing service from another device without the need of

sharing resources or syncing email content again.
The DMail architecture model was simulated in an object oriented

environment that I personally developed for this matter. All the information
considered in this model was handled as objects within the environment:
participants to the network (peers), email content and notifications, metric
characteristics and network topology. The obtained results show a significant

improvement than the other proposed mail system models in terms of email

availability and accessibility, stable network environment and overall increased
performance in handling computing resources across the P2P network. This concept
design represents one of the closest implementations to the traditional mailing
service, where an attempt to centralize information within a decentralized network
model was made possible by harnessing the benefits of the overlay model presented
in [36].

7.3. Published Papers and Impact

My contribution in the domain of Distributed Mailing System is reflected in
the mentioned articles:

 P. E. Mezo, M. Vladutiu and L. Prodan, “Design of a Hierarchical based DHT
Overlay P2P routing Algorithm”, 11th IEEE International Conference on
Computer and Information Technology, Paphos, Cyprus, Aug. 2011, pp. 415
– 420, ISBN: 978-1-4577-0383-6 (BDI, IEEE rank).

 P. E. Mezo, M. Vladutiu and L. Prodan, “Interoperability solution between
Peer-to-Peer and Client-Server based mailing systems”, 2011 IEEE 17th

International Symposium for Design and Technology in Electronic Packaging
(SIITME), Timisoara, Romania, Oct. 2011, pp. 45 – 48, ISBN: 978-1-4577-
1276-0. (BDI, IEEE rank).

 P. E. Mezo, M. Vladutiu and L. Prodan, “Distributed Mailing System (DMS)”,
2011 IEEE 17th International Symposium for Design and Technology in

BUPT

100 Conclusions - 7

Electronic Packaging (SIITME), Timisoara, Romania, Oct. 2011, pp. 349 –
354, ISBN: 978-1-4577-1277-7. (BDI, IEEE rank).

 P. E. Mezo, M. Vladutiu and L. Prodan, “HMail: A hybrid mailing system

based on the collaboration between traditional and Peer-to-Peer mailing
architectures”, 2012 IEEE 7th International Symposium on Applied
Intelligence and Informatics (SACI), Timisoara, Romania, May. 2012, pp.
255 – 260, ISBN: 978-1-4673-1014-7. (BDI, IEEE, Australian Research

Council list class C rank).

 P. E. Mezo, M. Vladutiu, L. Prodan and F. Opritoiu, “DMail: Distributed
mailing system based on the collaboration between traditional and Peer-to-

Peer mailing architectures”, 2012 International Conference on Information
Engineering, Lecture Notes In Information Technology, Vol. 25, Singapore,
Singapore, Jun. 27-28, pp. 128 -135, ISBN: 978-1-61275-024-8. (Ei
Compendex, Cambridge Scientific Abstracts, Google Scholar, IEE, ISI rank).

Two Ph.D. reports were presented in the Computer Science and Engineering
Department, “Politehnica” University of Timisoara:

 P. E. Mezo, M. Vladutiu, L. Prodan, F. Opritoiu, “Distributed Mailing

System”, Ph.D. Report 1, “Politehnica” University of Timisoara, December
2011, pp. 1-60

 P. E. Mezo, M. Vladutiu, L. Prodan, F. Opritoiu, “Distributed Mailing
System”, Ph.D. Report 2, “Politehnica” University of Timisoara, July 2012,
pp. 1-70.

7.4. Future Work and Research Direction

The subject of Distributed Mailing System leaves open several research
fields for further debate. Although I have tried to include all the sub domains into

the research, I could only reach a minor part of the whole mailing mechanism
developed across the Peer-to-Peer environment.

One research direction would focus on generating a stable environment
across the Peer-to-Peer network. This research field includes network topology
design and simulation, uptime status behaviour analysis of the joining peers and
scalability of such model design. These three fields are close related because this
research direction is co-dependent on every one of them. The network topology

should consider the peer uptime behaviour for building distinct tiers in handling the
mailing operations, separately from the tier that provides a common access to all
the participants. Also the need of scaling a new concept of network topology
remains one of the major challenges in handling such architecture types. I also
encourage future extensions of my work to provide a common framework for
several applications across the P2P network. In this manner, every application

design can be inter-compatible with others, in terms of computing resources across
the network, implemented protocols, restricted storage area, etc.

Throughout developing the mailing system, I provided a minimal security

solution to guarantee only the email content. Future research directions could

BUPT

7.4 - Future Work and Research Direction 101

extend my model by addressing the security at communication level, or further, by
using existing certificate authorities for this matter.

As our society moves towards new mobile technologies, the traditional

mailing architecture will also suffer some changes. But as discussed in this thesis,
the changes added along with the current technology were minor, addressing only
the secure connection between entities. Another research direction that should
extend my work can refer to the newest implementations of traditional mailing
architectures. An interoperability solution can be developed for this matter, by

providing a two-side compatibility with the traditional architectures: handling
incoming and outgoing emails.

The newest trend in handling the mobile technology across the network is to
handle all the data into the “Cloud”. The computer society suggests that the current
mobile technology lacks drastically in terms of computing power and this has
generated a solution of handling all the information on a server-centric architecture.
This solution not only demands high costs for implementation, but also generates
high usage of bandwidth latencies. The Peer-to-Peer model remains a cost effective

solution for this matter and by constantly improving its mechanisms, the bandwidth
usage can be limited for such network architectures types.

I will continue this research activity in developing new mailing architecture
models across the Peer-to-Peer network environment. I will focus also on
implementing a version of the provided and discussed models across the current
technologies available today.

BUPT

102 Conclusions - 7

BUPT

References 103

8. References

[1] R. Dingledine, M. Freedman and D. Molnar, “PEER TO PEER: Harnessing the
benefits of Disruptive Technologies”, s.l. : O'Reilly Media, Feb 2001.
ISBN:978-0-596-00110-0.

[2] K. G. Coffman and A. M. Odlyzko, “Growth of the Internet”, AT&T Labs –

Research, Preliminary version July 6, 2001.

[3] William Stallings, “Operating Systems Internals and Design Principles”, Fifth
Edition, © 2005 Prentice Hall of India, New Delhi – 110 001,2006, ISBN:81-
203-2796-9.

[4] Stefan Saroiu, P. Krishna Gummadi and Steven D. Gribble, “Measuring and
Analyzing the Characteristics of Napster and Gnutella Hosts”, Department of
Computer Science and Engineering, University of Washington, Seatle, Mar.

31, Oct.

[5] Clip2 Distributed Search Services. "The Gnutella protocol specifications v0.4".
2000.

[6] M. Ripeanu. Peer-to-Peer Architecture Case Study: Gnutella Network.
University of Chicago, Computer Science Department.

[7] I.Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A distributed
anonymous information storage and retrieval system”, Berkeley,CA , USA : In

Proceedings of the ICSI Workshop on Design Issues in Anonymity and
Unobservability, Jun. 2000.

[8] N. Leibowitz, M. Ripeanu, and A. Wierzbicki, “Deconstructing the Kazaa
Network”, SantaClara, CA : 3rd IEEE Workshop on Internet Applications
(WIAPP’03), 2003.

[9] Yoram Kulbak, Danny Bicson and academic supervisor Prof. Scott Kirkpatrick,

“The eMule Protocol Specification”, January.

[10] D. A. Turner and K. W. Ross, “Continuous media e-mail on the internet:
Infrastructure inadequacies and a sender-side solution”, IEEE Network, 14(4):
30-37, July/Aug 2000.

[11] D. A. Turner and K. W. Ross, “A comprehensive architecture for continuous
media email”, IEEE Multimedia, 8(2): 88-98, Apr/June 2001.

[12] Ananth Grama, George Karypis, Vipin Kumar and Anshul Gupta. “Introduction

to Parallel Computing”, Second Edition. s.l. : Addison - Wesley, 2003. ISBN-
10: 0201648652.

BUPT

104 References

[13] C. Douligeris and P. Kotzanikolaou, “Network Security - Telecommunication

Systems and Technologies”, Vol. II, pp. 19, © Encyclopedia of Life Support
Systems (EOLSS).

[14] Microsoft, “Implementing a Microsoft® Windows Server TM 2003 Network
Infrastructure: Network Hosts”, © 2005 Microsoft Corporation.

[15] Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable

content addressable network”, U.C.Berkeley, CA : Technical Report, TR-00-
010 , 2000.

[16] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, descentralized object
location, and routing for large-scale peer - to - peer systems”, Heidelberg,

Germany : Proceedings of the 18th IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), Nov 2001.

[17] A. I. T. Rowstron and P. Druschel, “Storage management and caching in
PAST, A large-scale, persistent peer-to-peer storage utility”, Banff, Al- berta,
Canada : Proceedings of the 18th ACM Sympo- sium on Operating Systems
Principles (SOSP), Oct 2001.

[18] B. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: An infrastructure for fault-
tolerant widearea location and routing”, U.C.Berkeley, CA : Technical Report
UCB/CSD-01-1141, 2001.

[19] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Bal- akrishnan, “Chord: A
scalable peer-to-peer lookup service for internet applications”, s.l. : Technical
Report TR-819, MIT., Mar. 2001.

[20] S. Androutsellis-Theotokis and D. Spinellis, “A Survey of Peer-to-Peer Content

Distribution Technologies”, Athens University of Echonomics and Business,
ACM Computing Surveys, Vol. 36, No. 4, December 2004, pp. 335-371.

[21] S. A. Baset and H. G. Schultzrinne, “An analysis of the Skype Peer-to-Peer
Internet Telephony Protocol, Department of Computer Science, Columbia

University, New York NY 10027.

[22] W. Sulliwan, D. Werthimer, S. Bowyer, J. Cobb, D. Gedye and D. Anderson,
“A new major SETI project based on Project SERENDIP data and 100,000

personal computers”, Proceedings of the 5th International Conferemce on
Bioastronomy, 1997.

[23] ***.GenomeAtHome 2003. http://genomeathome.stanford.edu.

[24] A. V. M. Keromytis and D. Rubenstein, “SOS: Secure overlay services”,
Proceedings of the ACM SIGCOMM’02 Conference, Pittsburgh, PA., 2002.

[25] P. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini and

I. Zaihrayeu, “Data management for Peer-to-Peer computing: A vision”,

Proceedings of the Workshop on the Web and Databases (WebDB’02).

BUPT

http://genomeathome.stanford.edu/

References 105

[26] R. Huebsch, J. HellerStein, N. Lanham and B. Thau Loo, “Querying the

Internet witj PIER”, Proceedings of the 29th VLDB Conference, Berlin,
Germany, 2003.

[27] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, S. Gummandi, H.
Weatherspoon, W. Weimer, C. Wells and B. Zhao, “Oceanstore: An
architecture for global-scale persistent storage”, Proceedings of ACM ASPLOS,
2000.

[28] D. Goldschlag, M. Reed and P. Syverson, “Onion routing for anonymous and
private Internet connections”, Comm. ACM 42, pp. 39-41, 1999.

[29] L. Xiong and L. Liu, “Building trust in decentralized peer-to-peer

communities”, Proceedings of the International Conference on Electronic
Commerce Research, 2002.

[30] ***.SkypeOut. http://www.skype.com/products/skypeout

[31] ***.SkypeIn. http://www.skype.com/products/skypein

[32] ***. Global IP Sound. http://www.globalipsound.com

[33] J. Daemen, V. Rijmen, The Design of Rijndael: AES – The Advanced

Encryption Standard. Springer, 2002.

[34] J. Rosenberg, J. Weinberger, C. Huitema and R. Mahy. STUN: traversal of
user datagram protocol (UDP) through network address translators (NATs).
RFC 3489, IETF, Mar. 2003.

[35] J. Rosenberg, C. Huitema and R. Mahy, “TURN: traversal using relay NAT”,
Internet draft, Internet Engineering Task Force, September 2005.

[36] M. Pandey,S. Mushtaq Ahmed, B. D. Chaudhary, “2T-DHT: A Two Tier DHT for

Implementing Publish/Subscribe”, s.l. : International Conference on
Computational Science and Engineering, 2009.

[37] Prasanna Ganesan, Krishna Gummadi and Hector Garcia-Molina, “Canon in G
Major: Designing DHTs with Hierarchical Structure,” s.l. : Proceedings of the
24th International Conference on Distributed Computing Systems (ICDCS’04),
2004.

[38] Zhiyong Xu, Rui Min and Yiming Hu, “HIERAS: A DHT Based Hierarchical P2P

Routing Algorithm”, s.l. : Proceedings of the 2003 International Conference on
Parallel Processing (ICPP’03), 2003.

[39] Giscard Wepiwe and Plamen L. Simeonov, “A Concentric Multi-ring Overlay for
Highly Reliable P2P Networks”, s.l. : Proceedings of the 2005 Fourth IEEE
International Symposium on Network Computing and Applications (NCA’’05),
2005.

BUPT

http://www.skype.com/products/skypeout
http://www.skype.com/products/skypein
http://www.globalipsound.com/

106 References

[40] P. Zimmermann, “The Official PGP User’s Guide”, The MIT Press, 1995.

[41] P. E. Mezo, M. Vladutiu and L. Prodan, Design of a Hierarchical based DHT
Overlay P2P routing Algorithm, 11th IEEE International Conference on

Computer and Information Technology, pp. 415 – 420, Aug. 2011. Paphos.
Cyprus.

[42] ***.MaxMind.http://www.maxmind.com.

[43] Ingmar Baumgart, Bernhard Heep and Stephan Krause, “Over{S}im: A
Flexible Overlay Network Simulation Framework”, Ak, USA : Proceedings of
10th IEEE Global Internet Symposium, May 2007.

[44] F. Standard, “1037c: Glossary of Telecommunications terms”, The Institute

for Telecommunications Sciences, Oct. 2006.

[45] J. Liang, R. Kumar and K. W. Ross, “Understanding Kazaa. Department of
Computer and Information Science”, Polytechnic University Brooklyn, NY
11201.

[46] S. Guha, N. Daswani and R. Jain, “An Experimental Study of the Skype Peer-

to-Peer VOIP System”, Cornell university and Google.inc.

[47] G. Song, S. Kim and D. Seo, “Replica placement Algorithm for Highly
Available Peer-to-Peer Storage Systems”, First international Conference on
Advances in P2P Systems. IEEE 2009.

[48] B. Cohen, “Incentives build robustness in BitTorent. Workshop on Economics
of Peer-to-Peer Systems”, Vol 6, berkeley, CA, USA, 2003.

[49] ***.RFC Database.http://www.rfc-editor.org/rfc.html

[50] Sean Turner, Russ Housley, “Implementing Email Security and Tokens:

Current Standards, Tools, and Practices”, Indianapolis, IN 46256 : Wiley
Publishing Inc. ISBN: 978-0-470-25463-9.

[51] J. Mcbee and D. Elfassy, “Mastering Microsoft Exchange Server 2010”,
Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana, ISBN: 978-
0-470-52171-7.

[52] P. V. Mockapetris, “RFC 1035: Domain Names – implementation and
specification”, Nov. 1987.

[53] J. Robert, S. Czerwinsky, A. D. Joseph, E. A. Brewer and J. Kubiatowicz,
“NinjaMail: the Design of a High-Performance Clustered, Distributed E-mail
System”, Proceedings of the 2000 International Workshops on Parallel
Processing (ICPP’00 – Workshops), IEEE.

[54] Y. Zhao, S. Zhou, and A. Zhou, “E-mail services on hybrid P2P networks”, In

Grid and Cooperative Computing Conference, 2004.

BUPT

http://www.rfc-editor.org/rfc.html

References 107

[55] J. Kangasharju, K. W. Ross and D. A. Turner, “Secure and Resilient Peer-to-

Peer E-Mail: Design and Implementation”, Proceedings of the Third
International Conference on Peer-to-Peer Computing (P2P’03), 2003.

[56] E. Kageyama, C. Maziero and A. Santin, “An experimental peer-to-peer e-mail
system”, 11th IEEE ICCS, 2008.

[57] S. Bercovici, Y. Frishman, I. Keidar and A. Tal, “Decentralized Electronic Mail”,

Proceedings of the 26th IEEE International Conference on Distributed
Computing Systems Workshops (ICDCSW’06), 2006.

[58] O. Holder, I. Ben - Shaul, and H. Gazit, “Dynamic layout of distributed
applications in FarGo”, Proceedings of the 1999 international Conference on

Software Engeneering. IEEE Computer Society Press, 1999.

[59] P. E. Mezo, M. Vladutiu and L. Prodan, “Interoperability solution between
Peer-to-Peer and Client-Server based mailing systems”, 2011 IEEE 17th
International Symposium for Design and Technology in Electronic Packaging
(SIITME), Timisoara, Romania, Oct. 2011, pp. 45 – 48.

[60] ***. Google. http://www.google.com/about/datacenters/locations/index.htm

[61] P. E. Mezo, M. Vladutiu and L. Prodan, “Distributed Mailing System (DMS)”,
2011 IEEE 17th International Symposium for Design and Technology in
Electronic Packaging (SIITME), Timisoara, Romania, Oct. 2011, pp. 349 –
354.

[62] A. Moravek and I. Jelinek, “Using Centralized Element in P2P Network For
Better Community Management”, International Conference on Computer
Systems and Technologies - CompSysTech’2004.

[63] P. E. Mezo, M. Vladutiu and L. Prodan, “HMail: A hybrid mailing system based
on the collaboration between traditional and Peer-to-Peer mailing
architectures”, 2012 IEEE 7th International Symposium on Applied
Intelligence and Informatics (SACI), Timisoara, Romania, May. 2012, pp. 255

– 260.

[64] P. E. Mezo, M. Vladutiu, L. Prodan and F. Opritoiu, “DMail: Distributed mailing
system based on the collaboration between traditional and Peer-to-Peer

mailing architectures”, 2012 International Conference on Information
Engineering, Singapore, Singapore, Jun. 27-28, pp. 128 - 135.

BUPT

http://www.google.com/about/datacenters/locations/index.htm

