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Abstract:
Since Controller Area Network (CAN) buses used in vehicles are ex-
posed to certain threats that are described in research works and ex-
ploited in real-world conditions, certain updates with emphasis on its
security are required. The thesis includes an overview of the CAN vul-
nerabilities as well as research proposals for their mitigation through
physical layer security using timing and voltage characteristics. An in-
novative key-exchange method that makes use of CAN messages and
the CAN protocol requirements for exchanging session keys between
nodes is presented as part of the thesis. An improvement for a previous
work related to time-covert authentication methods by optimizing the
frame transmission times is also discussed in the thesis. From a hard-
ware standpoint, there are certain research papers that use clock skews
for periodic CAN messages as fingerprints for transmitter authentica-
tion. Other works use the unique voltage characteristics for both peri-
odic and on-event CAN messages as fingerprints for the senders. The
thesis includes a broad comparison of the reliability of clock skews and
voltage characteristics as fingerprint sources from 9 passenger vehicles.
The analysis is done on a public dataset of both frame timestamps used
for clock skew derivation and voltage samples used for extraction of
unique voltage characteristics for each node. Considering that realistic
CAN architectures need to be realized as experimental setups, a digi-
tal twin for a real-world vehicle CAN network is described in the later
part of the thesis. Considering the noise factor in voltage fingerprinting
activities, an analysis of the wiring influence from the digital twin ex-
perimental setup with other setups and the real-world vehicle conditions
is also presented in the thesis.
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Chapter 1

Introduction

Controller Area Networks (CAN) are still the most commonly used communication chan-
nels inside vehicles. Before they were introduced in the 1980s, electronics inside vehicles
were communicating using point-to-point connections with separate wires. In contrast,
the CAN protocol allows multiple nodes to transmit and receive data using only two wires
helping to reduce the cost and complexity of network communication. Another advan-
tage of the CAN bus is its reliability in automotive environments due to the differential
wires that define its physical layer. Due to its reliability and cost efficiency, the CAN
bus also has more recent updates like CAN-FD (since 2012) and CAN-XL (since 2018),
which proves the long-lasting presence of CAN in future vehicles.

1.1 Motivation

CAN is used as a communication medium for both safety and non-safety related sys-
tems, but one of its major vulnerabilities is related to communication security since CAN
had no such requirements. Considering that passenger vehicles have evolved from me-
chanical components to electric and electronics that execute multiple software modules
inside various operating systems, the security risks have increased as well. There are
various proposals regarding the integration of security mechanisms for Controller Area
Networks, both from research works and from the automotive industry, which were used
as the foundation for the studies presented in this thesis.

Controller Area Network security is the main motivation topic for all the research
works that are discussed in the thesis. Since CAN does not provide a mechanism for
transmitter identification, genuine nodes that communicate on the CAN bus can be eas-
ily impersonated by adversarial nodes that can take control over various vehicle func-
tionalities. Several research works have detailed multiple vulnerabilities concerning the
Controller Area Networks which are used as in-vehicle communication buses [1, 2].
In [1], the authors identified gaps in the CAN bus such as missing source identifica-
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tion/authentication fields, they performed various packet sniffing, targeted probing and
fuzzing attacks on several Electronic Control Units (ECUs), such as the Body Control
Module (BCM), Engine Control Module (ECM) or the Electronic Brake Control Mod-
ule (EBCM). Checkoway et. al. [2] analyzes and evaluates an attack path provided by
Tire-Pressure Monitoring Sensors (TPMS) and exploits the Telematics ECU to inject ad-
versarial CAN packets on the internal vehicle networks where this ECU is connected.
Considering the identified threats, the AUTOSAR specifications have included the Se-
cure On-Board communication (SecOC) [3] functionality starting with Release 4.2.2 in
2014 [4]. This functionality requires ECUs to include security data in the CAN frames
as authentication codes using a freshness counter, also included in the frame, and a se-
cret key that is pre-shared between nodes. The rationale for the SecOC is to protect
legitimate communication against injection and replay attacks that have been previously
studied. The last decade includes various software-based proposals for securing CAN
communication, such as using message authentication [5], [6], [7], identifier reallocation
[8], [9], [10], [11], etc. The identifier reallocation method requires periodic changes of
frame identifiers in order to protect transmitters of the frames against attacks through an
authentication mechanism that updates the frame identifiers with truncated MACs.

CAN bus attacks have many other implications. For example, more recently, several
vehicles were stolen using CAN injection attacks [12]. This was possible due to an at-
tack path that is available on the CAN network close to the headlights and near the front
bumper of the vehicle. The thief was able to unlock the doors and start the engine us-
ing a malicious device that transmits the expected CAN frame sequence. This has later
been reported as a known vulnerability and was added to the CVE (common vulnera-
bilities and exposures) with the unique identifier CVE-2023-29389 [13]. Other recent
weaknesses related to Controller Area Networks from real-world vehicles that were also
reported as vulnerabilities are CVE-2017-14937 [14] and CVE-2018-9322 [15]. The first
vulnerability is caused by predictable security access to the CAN bus that affects airbag
units. The second one is reported for the infotainment component of BMW vehicles that
can be maliciously used to inject frames on the internal CAN networks.

Another access point for internal CAN buses is the OBD-II/DLC port, which is com-
monly used for vehicle diagnostics. An OBD-II port from a real-world vehicle is shown
in Figure 1.1 that is usually positioned under the dashboard. In many vehicles that are
on the road today, this port is not isolated from the rest of the ECUs inside the car. Au-
thors from [16] have presented a comprehensive study that shows the vulnerabilities of
77 OBD-II dongles together with 21 companion applications. Hence, these dongles can
be used as an attack vector that injects malicious CAN frames into regular bus traffic. A
similar study done by the same authors [17] show how these dongles are used to send
malicious commands using CAN frames on two vehicles, a Toyota RAV4 and a Toyota
Corolla. Another research group has presented in [18] how diagnostic security keys were
extracted from a Fiat Grande Punto by breaking the challenge-response authentication
mechanism on the high-speed CAN bus, accessible via the OBD-II connector. Remote
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1.1. MOTIVATION 13

Figure 1.1: OBD-II/DLC port from a real-world vehicle

control of functionalities of a Tesla vehicle, from wireless access to the CAN bus, has
been studied by authors in [19]. Fuzzing attacks on the CAN bus targeting an instrument
cluster have been presented by authors in [20]. The diagnostic interface can be used to
access other internal networks from the vehicle that are connected through gateway ECUs
from the OBD-II/DLC network. For example, authors from [21] propose an update of
the FlexRay frames to include a lightweight authenticated encryption scheme that will
protect the FlexRay communication from OBD-II originated attacks. A summary of at-
tack interfaces for in-vehicle buses is shown by the authors in [22] with related references
for CAN and OBD-II and also for Local Interconnect Network (LIN), Media Oriented
Systems Transport (MOST) and FlexRay. An injection attack performed via the OBD-II
interface is presented by authors in [23]. In Figure 1.2 we show an example of three in-
vehicle buses, two CAN buses and a FlexRay network, that communicate over gateways.
This network configuration outlines various ECUs like the Accessory Protocol Interface
Module, Power Steering Control Module, Instrument Panel Cluster, Restraints Control
Module and Anti-lock Brake System from the Diagnostic CAN Bus. The Body CAN bus
connects four ECUs, the Body Control Module, Instrument Panel Cluster, Air Condition-
ing Unit and Rain Light Sensor. The FlexRay network is the communication interface
for the Anti-lock Brake System, Powertrain Control Module and Transmission Control
Module. The gateway between the CAN buses is the Instrument Panel Cluster while the
gateway between the Diagnostic CAN Bus and the FlexRay Network is the Anti-lock
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14 CHAPTER 1. INTRODUCTION

Brake System. Considering the aforementioned attacks, the DLC connector from the Di-
agnostic CAN Bus is highlighted as an intrusion point for the in-vehicle networks. This
can lead to various types of attacks performed through open ports or corrupted gateways
on any of the ECUs connected to the internal networks.

DLC

APIM

RFA

RCMPSCM

ABS

IPC

BCM RLS

PCM

FlexRay
Network

TCM

Diagnostic
CAN Bus

Body
CAN Bus

APIM - Accessory Protocol Interface Module PSCM - Power Steering Control Module IPC - Instrument Panel Cluster DLC - Data Link Connector

RFA - Remote Function Actuator RCM - Restraints Control Module ABS - Anti-lock Brake System PCM - Powertrain Control Module

BCM - Body Control Module RLS - Rain Light SensorTCM - Transmission Control Module

ACU

ACU - Air Conditioning Unit

Figure 1.2: Suggestive depiction of an in-vehicle network topology

Such vulnerabilities are the motivation for designing security for Controller Area
Networks. One approach that may seem straightforward for securing CAN buses is to
implement the data security part in software, transmit it as authentication tags on CAN
and verify it using end-to-end checks in software [6]. Unfortunately, CAN frames have
a limited size and can include only maximum 8 bytes of payload. Another aspect re-
garding cryptographic authentication is the use of private and public keys that need to be
exchanged, either prior to the communication or during communication. This requires
time and bandwidth which may not be available. Another option is to integrate message
authentication codes (MACs) inside the CAN frames [3]. The limitation related to the
payload size of CAN frames is also relevant for this case. The MACs can be truncated but
they require a shared key to be available between nodes. This key can be added to each
node during product manufacturing as a pre-shared or it can be dynamically generated
each time after vehicle startup as a fresh session key.

All these approaches have their own drawbacks that motivate our search for alterna-
tives, which is the subject of this thesis. A different technique to secure CAN buses is to
use covert channels on top of regular communication such as time-covert [24] or voltage-
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1.2. RESEARCH OBJECTIVES 15

covert authentication methods [25]. These approaches require nodes to actively authen-
ticate the transmitted frames using secure information that is hidden in time delays or
voltage levels. These should be seen as complementary methods to usual CAN commu-
nication since they do not require additional signatures or message authentication codes
to be part of CAN frames. Nevertheless, authentication of transmitters and frames using
voltage-covert channels [25] requires high-performance analog to digital converters. Fur-
thermore, the authentication for time-covert channels is based on sub-microsecond level
timers in order to ensure a security level that would ensure CAN communication is se-
cured against adversarial intervention. Using external devices to monitor Controller Area
Network communication and extract physical characteristics is another way to authen-
ticate the transmitters [26]. This is based on the characteristics of the transmitters and
not necessarily on the communicated data. Even though this method requires additional
equipment with high-performance capabilities concerning time capture of CAN frames
and voltage sampling of electrical data from the CAN wirings, it is a reliable method that
has been shown as efficient by several research works in the last years [26], [27].

1.2 Research objectives

There are several research objectives in this thesis. We start with the key exchange proto-
cols, which are essential in establishing a cryptographic key that can be used to bootstrap
security on CAN. We first evaluate elliptic curve cryptography software libraries inte-
grated into automotive controllers, which can be used for key exchange protocols on
CAN, and time-covert key-exchanges. Then we pursue time covert authentication and
use frame scheduling optimizations to improve the bandwidth of time-covert channels on
CAN. Another research area covered in this thesis is related to the physical fingerprinting
of Electronic Control Units (ECUs) from real-world vehicles using information collected
from the Controller Area Networks, for which we used 9 passenger vehicles having 51
ECUs. The last research topic of the thesis is related to the design and evaluation of a
digital twin for a Controller Area Network from a real-world vehicle. The experimen-
tal setup that is realized uses automotive-grade embedded boards and wiring harnesses
that were retrieved from a real car. The experimental setup is evaluated in the context of
wirings required for voltage fingerprinting of nodes in Controller Area Networks. The
research objectives of this thesis can be summarized as follows:

1. Literature review on related works for physical security for Controller Area Net-
works as well as for automotive system digital twins;

2. Evaluation of software libraries with support for elliptic curve cryptography in the
context of key-exchange on automotive microcontrollers;

3. Implementation and evaluation of four time-covert key exchange protocols for
Controller Area Networks that are fully compatible with existing networks and
fully compliant with the standard;
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16 CHAPTER 1. INTRODUCTION

4. Implementation of four frame scheduling optimization algorithms and evaluation
of the performance of a time-covert authentication channel in the context of opti-
mized frame transmission;

5. Data collection from four passenger vehicles of frame transmission times for clock
skew computation and voltage samples for voltage feature determination in the
context of Electronic Control Unit (ECU) fingerprinting;

6. Evaluation of ECU separation from nine passenger vehicles using the determined
clock skews and voltage features as well as the environmental impact for these
fingerprints;

7. Design and evaluation of an experimental setup that integrates a digital twin for
vehicle level functionalities implemented on a Controller Area Network from real-
world vehicle cables;

8. Voltage characteristic evaluation of the Controller Area Network from the exper-
imental setup that uses real vehicle cables in comparison with Controller Area
Networks from other experimental setups or real-world vehicles in the context of
physical fingerprinting.

1.3 Major contributions

This thesis describes several software and hardware methods to implement security for
the Controller Area Networks (CAN) used in automotive. The topics that are addressed
in the thesis are the elliptic curve evaluation of cryptographic libraries for automotive mi-
crocontrollers, key exchange protocols for Controller Area Networks, frame scheduling
optimization and time-covert authentication, fingerprinting of ECUs using voltage and
timing data from the CAN physical layer and a digital twin design and its evaluation for
automotive devices and physical fingerprinting. Considering the objectives defined, the
major contributions that this thesis brings are:

1. Timing evaluation of elliptic curve operations by integration of cryptographic li-
braries on an automotive embedded device [28];

2. Implementation and evaluation of the key-exchange protocols that use CAN frames
on automotive grade microcontrollers [29];

3. Implementation and evaluation of the frame scheduling optimization algorithms
and time-covert channel authentication protocol on automotive grade microcon-
trollers [30];

4. Data collection of voltage and clock skew data from the CAN bus from 4 passenger
vehicles [31];

5. Analysis of voltage and clock skew fingerprints for 9 passenger vehicles [31];
6. Design and implementation of a Digital Twin for a real-world vehicle CAN net-

work using a wiring harness from a car [32];
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7. Evaluation of voltage characteristics of wires used in the various experimental se-
tups and wires from a real-world vehicle [33].

These contributions are part of peer-reviewed publications in conference proceedings
and journals. The performance of elliptic curve cryptographic primitives on an auto-
motive microcontroller was evaluated in [28]. Three software libraries were integrated
into the source code project for the microcontroller and evaluated with respect to the
duration of cryptographic primitives, e.g., key-generation, signature, verification. Two
of these software libraries are implemented in C as the programming language while
the third one has both C and C++ implementations. It should be pointed out that these
software libraries are portable to different development environments. Nevertheless, the
time required for the execution of the elliptic curve methods can be considered a short-
coming. To circumvent this, four protocols for exchanging cryptographic keys on the
CAN bus based on timing characteristics are designed, implemented and evaluated on an
automotive-grade microcontroller in [29]. Two of the protocols rely only on the CAN
protocol particularities, i.e., data/remote frames and arbitration, while the other two also
depend on the internal hardware timers of the microcontroller. An extension that can be
applied to these protocols is presented as an option to increase the security level from the
low-entropy exchange key as basis for generating a high-entropy session key. The group
version of the proposed protocols and their extension is also briefly described.

Considering the timings for Controller Area Network communication and the size
limitation of the data field of its frames, an option to implement security protocols is by
using timing information relative to the frames. A time-covert authentication channel
was already described in [24] and included in the author’s Master Thesis. Unfortunately,
the performance of the time-covert channel is reduced by un-optimized traffic due to
frame arbitration in case frames are transmitted with a low inter-frame time. An im-
provement that can be considered for the time-covert channel is through optimizing the
frame scheduling on Controller Area Networks as later done by the author in [30]. There
are four frame scheduling optimization algorithms that are presented in this work, with
details related to optimal values for the minimum and maximum inter-frame times. One
of the frame scheduling algorithms is analyzed in the context of adversarial models with
both optimized and un-optimized traffic and with single or multiple nodes implementing
the protocol. The time-covert channel data rate, security level and the impact of the frame
scheduling algorithms on the worst-case arrival times are shown.

Even though time-covert channels are a good method for authenticating frames trans-
mitted on the CAN bus, they still carry small amounts of entropy and their security level
is low. Authenticating the frame transmitters is also possible through physical finger-
prints that are studied by the authors in [31]. The work presents specific limitations with
regards to using physical fingerprints alone, i.e., clock skews or only 1-2 voltage charac-
teristics, and the effects of environmental changes to the initial physical fingerprints. The
major contribution of the study is the number of collected and evaluated fingerprints since
it is done on 9 passenger vehicles from which 51 ECUs are identified using a dataset of
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18 CHAPTER 1. INTRODUCTION

physical samples from ∼400 different frame identifiers. The values determined for the
clock skews and voltage features are also presented in a supplemental material in the
work as well as in this thesis.

Since vehicle-level functionalities are usually tested on an experimental setup, it is
recommended that the setup is as close as possible to the real implementation in the car. In
this regard, the work from [32] proposes a Digital Twin for automotive Electronic Control
Units (ECUs) that communicate on CAN. The contribution of this work is the design of
an experimental setup that contains automotive-grade embedded boards connected on
a CAN bus that is part of three wiring harnesses that were removed from a real-world
vehicle. The evaluation of the Digital Twin models is done as a statistical analysis by
comparing its vehicle speed and engine speed outputs with those from a real-world car
when providing the same input for both, i.e., brake input. Possible applications for the
CarTwin [32] are suggested in the context of cyber-security and functional safety studies.
Furthermore, as the results from [33] show, the experimental setup designed for CarTwin
[32] can be used for voltage fingerprinting studies. That is, because, compared to other
experimental setups from previous works [34], [35] and to real-world conditions [31],
the voltage characteristics of the CAN bus from the CarTwin [32] setup are very close to
those from the cars.
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The first 6 of these papers are the main pillars for this thesis while the others also
address automotive security topics in the context of Controller Area Networks, FlexRay
[36], Trusted Platform Modules and interactions between the vehicle and smartphones.
One research paper written shortly before the author has started his PhD studies is [24].
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A time-covert authentication channel for CAN frames is presented as part of the study.
Its evaluation is performed on an automotive-grade microcontroller by using a free bus,
i.e., no additional traffic, and a bus that already has frames replayed from a trace collected
from a real car CAN bus. Time-triggered authentication on a different automotive net-
work, FlexRay, has been studied in [37]. The authentication methods are either based on
an existing variant [38] or one newly proposed that uses one-way key chains. Both meth-
ods require authentication tags to be transmitted as part of the frame or using a separate
frame. The evaluation of the authentication methods is done on two automotive-grade
embedded platforms. Voltage-covert channels have been proposed in [25] with the novel
idea of embedding secure bits on the physical channel of the CAN bus. Localization
methods for detecting intrusions on CAN buses by using propagation delays have been
proposed and studied in [35] on an experimental setup with automotive-grade embedded
platforms and a real-world vehicle.

A different technology that is in use on automotive units is represented by the trusted
platform modules (TPMs). A study that relies on TPMs for vehicle sharing using mobile
devices with identity based signatures is done in [39] while interaction between mobile
devices and vehicles is also studied in [40]. A software-based implementation for dy-
namically changing the frame identifiers for CAN messages and preserving their priority
on the bus is proposed in [8]. The method is designed to use a cipher message authentica-
tion code with the Advanced-Encryption Standard (CMAC-AES) based on a pre-shared
key between the nodes. A group key exchange algorithm for the CAN bus that uses
elliptic curve cryptography, evaluated on two automotive-grade embedded platforms, is
presented in [41].

New ideas related to dynamic CAN topology changes are presented in two different
works [42, 43]. The first one, [42], presents and evaluates an experimental setup with a
CAN network with multiple nodes which are connected with relays in the bus topology.
Using the relays, one of the nodes that is a bus guardian, can change the network topology
from bus to star, isolating the intruder on one side of the bus or dynamically separating the
intruder from one side of the bus to another. The second work [43] improves the design
of the experimental setup from the first by reducing the number of wires required and
providing new variants for intruder separation or isolation. In this work, a decentralized
version is also proposed, with the option of having all nodes switching the topology from
bus to daisy-chain.

1.4 Thesis organization

The motivation, objectives and major contributions for the thesis are presented in Chapter
1. A brief background related to CAN is presented in Chapter 2. Then, Chapter 3 begins
with the presentation of the timing evaluation for three elliptic curve cryptography soft-
ware libraries on an automotive embedded platform. In the same chapter, a time-covert
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key exchange protocol that is based on four different methods is presented. In Chap-
ter 4, four scheduling optimization algorithms for periodic CAN frames are described
while the performance evaluation of a time-covert channel authentication protocol that is
implemented together with one of the scheduling optimization algorithms is presented.
Chapter 5 presents the physical fingerprinting of ECUs from multiple passenger vehicles
that is performed using both voltage features and clock skews, considering the effect of
environmental variations on the collected datasets. In Chapter 6, a Digital Twin for sev-
eral automotive ECUs is described with the use of embedded devices and a real-world
vehicle harness. In the same chapter, the voltage characteristics of the CAN bus from the
vehicle harness are compared with voltage characteristics from other experimental setups
and a real-world vehicle ECU. Chapter 7, holds the conclusions of the thesis.
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Chapter 2

Brief Background on Controller
Area Networks

Electronic Control Units (ECUs), sensors and actuators from vehicles exchange signal
data using CAN (Controller Area Networks). There are two versions of the CAN proto-
cols that are used in vehicles, the low-speed CAN and high-speed CAN. The high-speed
CAN is the version that is presented in this section and discussed in all of the thesis
chapters.

2.1 CAN physical layer and bit encoding

The bit rate for high-speed CAN is of up to 1Mbps with a physical channel represented
by a pair of twisted wires. Nodes that communicate on the CAN bus transmit bits which
are either recessive or dominant. The bits represent bus logical states that are either 1 or
0 and are grouped into specific frame structures that start with the frame header followed
by data, checksum and acknowledge bit fields. The nodes use integrated circuits such as
microcontrollers to exchange data using the CAN transmission (CAN-TX) and reception
(CAN-RX) lines which are usually of 5V and 0V as voltage levels for the recessive and
dominant bits. The CAN-TX and CAN-RX lines are connected to a CAN transceiver
which links the node to the physical medium. On the wires, called CAN-High (CAN-H)
and CAN-Low (CAN-L), the voltage level is around 2.5V while the bus is idle or when
recessive bits are transmitted. The voltage level increases to ∼ 3.5V on CAN-H and
decreases to ∼1.5V on CAN-L whenever a dominant bit is transmitted. The bit states
and corresponding voltage levels for CAN-H and CAN-L on a CAN bus with the bit rate
of 500Kbps are shown in Figure 2.1.

23
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Figure 2.1: Bit states and voltage levels for CAN-H and CAN-L on a CAN bus with the
bit time of 2µs

2.2 CAN data and remote frames

As previously stated, the CAN messages have a specific structure. There are four types
of messages defined for CAN communication. These are the data frames, remote frames,
error frames and overload frames. For data and remote frames, the CAN header begins
with the start of the frame bit (SOF) and an arbitration field with the frame identifier. It is
denoted as an arbitration field because, during the arbitration phase described in the CAN
standard [44], multiple nodes are allowed to transmit bits on the CAN bus at the same
time. Due to the hardware design of the CAN transceivers, recessive bits are overwritten
by dominant bits. This means that frames with a lower value of the frame identifier "win"
the arbitration and continue the frame transmission. The frame header ends with the
control field that specifies the number of bytes that are sent in the data field. Depending
on the value from the control field, 0 to 8 bytes can be transmitted inside a CAN frame
as payload. The data field is followed by the CRC (cyclic redundancy check) bit field
that contains a 15-bit CRC which is used to verify the integrity of all bits transmitted in
the frame header and data area. After the CRC part, there is an acknowledge field that is
left as recessive by the transmitter and set to dominant by all receivers that have checked
the frame integrity and successfully received the frame information. CAN frames end
with an EOF (end of frame) field of 7 recessive bits. The bit fields for CAN2.0 data
frames with standard (11-bit) and extended (29-bit) identifiers are shown in Figure 2.2.
The bit fields from the frame header differ for standard and extended identifiers. The
arbitration field contains the IDE (identifier extension) bit for extended frames while the
control field contains the IDE for standard frames. The arbitration field for extended
frames contains an additional bit, the SRR (substitute remote request), that is not present
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in the arbitration field for standard frames. The RTR bit is the remote transmit request
bit which is dominant for data frames and recessive for remote frames. The bits r0 and
r1 are reserved bits, and require a dominant state during CAN communication.

STANDARD ID DATADLC

1b

BASE ID EXT. ID DLC DATA

Control 

RTR
IDE r0

32b

6b 0B-8B

1b
Arbitra�on

12b

SRR
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Data

r1 r0
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CRC-15 EOF

ACK
DEL
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7b2b

DEL

Arbitra�on Control Data
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DATA

CRC-15 EOF

ACK
DEL

CRC
16b

ACK
7b2b

DEL
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Figure 2.2: Frame structure and bit fields illustrated for standard CAN data frames (top)
and extended CAN data frames (bottom)

2.3 CAN error frames and error states

There are specific rules regarding the protocol described in the CAN standard [44] that
need to be applied by nodes that communicate on CAN. The errors that may be noticed
during CAN communication are:

• Bit error, when the node that transmits a data/remote frame on the bus reads a
different bit state from the physical layer than the one transmitted,

• Stuff error, when the node that transmits data on the bus violates the stuffing bit rule
by sending more than five consecutive bits with the same polarity, i.e., recessive or
dominant,

• Form error, when the node that transmits data on the bus violates the form rule
by sending a different bit state than expected for specific bits that are reserved,
delimiter bits, end of frame bits, etc.,

• CRC error, when the information transmitted in the CRC bit field is different from
the one computed by the nodes receiving the data,

• ACK error, when the transmitter reads back the acknowledge bit as recessive, i.e.,
there is no active receiver of the frame.

Any violation of the rules specified in the CAN standard [44] will result in an error
frame reported by the frame transmitter (Bit error, ACK error) or its receivers (Stuff error,
Form error, CRC error). An error frame may have between 6 and 12 bits in the error flag
area followed by 8 bits which represent the error delimiter. The error flag and error echo
bit fields may contain dominant or recessive bits, depending on the type of error flag
transmitted. Error frames which contain dominant bits in these bit fields are called active
error frames while error frames which contain recessive bits in these bit fields are called
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passive error frames. The type of error frame transmitted by the nodes is related to their
error state. The error delimiter contains only recessive bits. All error frames are reported
during a data or remote frame transmission. The bit fields for an error frame are shown
in Figure 2.3.

DATA/REMOTE FRAME ERROR FLAG

6b

ERROR ECHO ERROR DELIMITER

0b-6b 8b

Figure 2.3: Frame structure and bit fields illustrated for error frames reported after pro-
tocol violation during data or remote frame transmission

There are three error states defined in the CAN standard [44] that depend on two
counters which are used by each node during active communication. These counters
are denoted as transmission error count (TEC) and receive error count (REC) and are
incremented whenever error frames are reported by nodes for any violation of the CAN
protocol during data or remote frames transmission. For an error frame reported during
transmission, the transmitter increments its TEC with 8 while receivers of that frame
increment their REC with 1. The error states which are shown in Figure 2.4 are defined
as:

• Error active, when both TEC and REC values are smaller than 127, the first state
after startup where nodes are allowed to transmit active error frames,

• Error passive, when either TEC or REC is higher than 127, state in which nodes
are allowed to transmit passive error frames,

• Bus off, when TEC value is higher than 255, state in which nodes cannot transmit
error frames and are disconnected from bus communication.

2.4 Stuffing bits during CAN communication

Since the CAN physical layer only has the CAN-H and CAN-L lines with no clock line
for data transmission, it is asynchronous. Thereby, nodes that are active on the CAN
bus are required to re-synchronize during communication. The re-synchronization is
done during bit state changes from recessive to dominant. Since consecutive bits may be
transmitted with the same polarity, either dominant or recessive, bit stuffing is required
according to the CAN standard [44]. This method requires transmitters to add a bit with a
different polarity after five bits with the same polarity. If there are five consecutive domi-
nant bits transmitted, a recessive stuff bit is added. The same logic applies to consecutive
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Figure 2.4: Error states defined for CAN nodes and conditions to change the error state
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Figure 2.5: Bit stuffing performed by the transmitter after five consecutive dominant bits
on a CAN bus with the bit time of 2µs

recessive bits after which a dominant stuff bit is added. Receivers are required to perform
de-stuffing so the stuff bits are not considered as part of the frame content and are only
required on the physical layer to allow active node re-synchronization. An example of
the bit stuffing mechanism is shown in Figure 2.5 where a recessive bit is transmitted for
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stuffing after five consecutive dominant bits.

2.5 Other aspects regarding CAN communication

For the CAN communication channel, there are at least two nodes required to be ac-
tive. This is due to the acknowledgement of frames which takes place only if there is an
active receiver for the transmitter of a CAN frame. Otherwise, the transmitter will con-
tinuously report error frames due to the missing acknowledgement. Whenever multiple
nodes transmit bits during the arbitration field, only one will continue to send the entire
frame. All other nodes have to wait for frame transmission to end and try to pass the ar-
bitration field and transmit their frame. If a data frame and a remote frame with the same
identifier are transmitted at the same time on the bus, the data frame will be the only one
transmitted on the bus because the node which transmits a remote frame will not try to
perform re-transmission since it received the data frame during the request time.
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Chapter 3

Time-Covert Key Exchange on the
CAN Bus

This chapter is based on two previous research papers of the author, [28] and [29]. The
first research paper [28] presents the evaluation of key exchange algorithms based on
elliptic curve cryptography (ECC) by using open source libraries on an automotive em-
bedded platform. This paper aims to demonstrate the computational costs for such proce-
dures, which may cause significant concerns on embedded platforms. The second paper
presents a new method for performing an asymmetric key exchange in order to secure
communication on Controller Area Networks [29]. The scope of this paper is to show
that key exchange can also be performed based on timing characteristics that can be
merged with public-key cryptography to reinforce security or be used in their absence.

3.1 The cost of key-exchange mechanisms based on ECC

In this section, the background and related works for elliptic curve cryptography evalua-
tion are presented. After the background and related works are discussed, the experimen-
tal setup is presented and the software libraries that are integrated are detailed. Following
the experimental results, the run-time characteristics for the elliptic curve cryptographic
primitives are discussed.

3.1.1 Related works

Considering recent papers findings with respect to threats and vulnerabilities for in-
vehicle networks [2], [45], an alternative to protect sensitive data exchanged on them
is the use of cryptographic protocols. Since the classic AUTOSAR specification already
incorporates cryptographic primitives and protocols within the Crypto library (Crypto)

29
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[46] while they are executed as part of the Crypto Service Manager (CSM) [47], the au-
tomotive industry is moving forward towards securing vehicle network communication.
One way to ensure secure communication on the CAN bus is the implementation of cryp-
tographic protocols that rely on elliptic curves for key exchange and signatures that allow
verification using public keys.

Research works that evaluate open-source or custom elliptic curve libraries are pre-
sented in what follows. Computational time for MIRACL [48] and RELIC [49] was mea-
sured by Pigatto et. al [50] using the Ubuntu operating system that runs on a 2.10GHz
Pentium Dual-Code processor. They used key sizes of up to 256 bits and packets of
50KB and 100KB as settings for the evaluated libraries. An analysis that is closer to the
work presented in this chapter [28] is done by Ruan de Clercq et. al [51] which evaluate
the run-time performance on an ARM Cortex-M0+ platform of a cryptographic library
they implement and RELIC [49] using the Koblitz NIST K-233 elliptic curve. Power
consumption analysis on a MSP430 platform is performed by Hinterwälder et. al [52]
for their implementation of elliptic curve Diffie-Hellmann key-exchange (ECDH) [53]
using the EC25519 elliptic curve. Other research works evaluate cryptographic prim-
itives for automotive platforms or for specific automotive use-cases. Thereby, authors
from [54] implement an AUTOSAR compliant cryptographic library and evaluate the
execution speed on various automotive grade microcontroller platforms. Computational
performance for Transport Layer Security (TLS) using elliptic curve digital signature al-
gorithm (ECDSA) [55] is evaluated by Zelle et. al [56] on two Infineon AURIX TC297
platforms that exchange message frames using Automotive Ethernet. The authors utilized
wolfSSL [57] as their cryptographic library of choice for conducting their experiments,
with the goal of determining the latency introduced by cryptographic operations for data
block transfers.

Table 3.1: Evaluated cryptographic protocols from open-source libraries
Library ECDSA [55] ECDH Key-Exchange [53]

MIRACL [48] - ✓
RELIC [49] ✓ ✓

wolfSSL [57] ✓ ✓

These algorithms can be used for key exchange between nodes that communicate
on in-vehicle networks and even for wireless vehicle access to the car using mobile de-
vices. The open-source libraries are integrated in the software build environment from
Infineon for automotive-grade AURIX microcontrollers. We evaluate the run-time per-
formance for the primary operations required for elliptic curve digital signature algo-
rithm (ECDSA) [55] and elliptic curve Diffie-Hellmann key-exchange protocol (ECDH)
[53]. In this regard, three open source libraries that are available online are analyzed,
i.e., MIRACL [48], RELIC [49] and wolfSSL [57] which have support for cryptographic
primitives and protocols based on various standardized elliptic curves. Both MIRACL
[48] and RELIC [49] software libraries include the implementation for Diffie-Hellmann
key-exchange using elliptic curves (ECDH) [53]. The RELIC software library [49] also
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includes the implementation of the elliptic curve digital signature algorithm (ECDSA)
[55]. Finally, WolfSSL [57] supports both the elliptic curve digital signature algorithm
[55] and the elliptic curve Diffie-Hellmann key exchange protocol [53]. The crypto-
graphic operations that were evaluated from the open-source libraries are presented in
Table 3.1.

Figure 3.1: Experimental setup for run-time evaluation of elliptic curve algorithms

Figure 3.2: Share generation time for
ECDH

Figure 3.3: Key recovery time for ECDH
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3.1.2 Embedded platform setup and integration of software libraries

In this subsection, the embedded platform setup together with the integration details for
each software library are described. The evaluation method used for measuring the exe-
cution time of each cryptographic primitive is presented after the integration details.

Embedded Platform Description. The Infineon TC297 AURIX application kit
shown in Figure 3.1 was used for the experiments, since TC297 is a high-end automotive
grade microcontroller used in highway assist applications such as camera vision or radar
systems according to its datasheet. This controller integrates a processor that runs three
independent cores and 728KB of RAM (Random Access Memory), 384KB of EEPROM
(Electrically Erasable Programmable Read-Only Memory) and 8MB of FLASH mem-
ory. It also embeds a hardware security module (HSM) as part of the chip that allows
cryptographic operations to be executed with a higher speed and the exchange of results
to be done by a dedicated CPU with protected memory. The experimental setup used for
the evaluation of the elliptic curve cryptographic algorithm run-time is shown in Figure
3.3.

Software Library Integration. The integration of MIRACL [48], RELIC [49] and
wolfSSL [57] on the embedded platform is done considering their support for various
elliptic curves that are detailed in what follows. The MIRACL [48] includes both C and
C++ implementations for elliptic curve cryptographic primitives and libraries. For the
elliptic curve Diffie-Hellmann key-exchange protocol (ECDH) [53] implementation, the
192 bit prime field (NIST P-192 elliptic curve) is used

The RELIC [49] cryptographic library has C implementation support for security
algorithms like Rivest–Shamir–Adleman (RSA) [58] signatures and encryption, ellip-
tic curve Diffie-Hellmann key-exchange protocol (ECDH) [53] and elliptic curve digital
signature algorithm (ECDSA) [55]. The digit size is configured as 32 bit for the TC297
architecture, so all the cryptographic operations work with 32-bit size digits. There are
various configurations for the elliptic curves used since the software library supports
them. Based on the algorithm that is evaluated, the configuration is done as follows:

• For ECDH key exchange the prime fields used for the elliptic curves have the
following bit size (bits): 158, 160, 192, 221, 224, 226, 251, 254, 255, 256, 381,
382, 383, 384, 455, 477, 508, 511, 521, 638, 1536.

• For ECDSA signatures the prime fields used for the elliptic curves have the fol-
lowing bit size (bits): 160, 192, 224, 256, 384.

The wolfSSL [57] software library includes the implementation of SSL/TLS crypto-
graphic protocols in C language. Since wolfCrypt [59] provides the implementation for
the cryptographic primitives and algorithms used by wolfSSL [57], such as elliptic curve
Diffie-Hellmann key-exchange protocol (ECDH) [53] and elliptic curve digital signature
algorithm (ECDSA) [55], the discussion that follows is about wolfCrypt [59] instead of
wolfSSL [57]. Similar to the configuration of RELIC, 32-bit size digits were used in
wolfCrypt [59]. The elliptic curves used are SECP, PRIME, KOBLITZ and BRAIN-
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Figure 3.4: Key generation time for
ECDSA

Figure 3.5: Signing time for ECDSA Figure 3.6: Signature verification time for
ECDSA

BUPT



34 CHAPTER 3. TIME-COVERT KEY EXCHANGE ON THE CAN BUS

Table 3.2: Steps from cryptographic protocols that are evaluated for each algorithm
Security protocol Key generation Signature Verification Shared secret

ECDSA [55] ✓ ✓ ✓ N/A
ECDH [53] ✓ N/A N/A ✓

POOL for the ECDH and ECDSA operations over prime fields with various bit sizes.
These are the 112 bit prime field (SECP elliptic curve), 128 bit prime field (SECP el-
liptic curve), 160 bit prime field (SECP, KOBLITZ, BRAINPOOL elliptic curves), 192
bit prime field (SECP, PRIME, KOBLITZ, BRAINPOOL elliptic curves), 224 bit prime
field (SECP, KOBLITZ, BRAINPOOL elliptic curves), 239 bit prime field (PRIME el-
liptic curve), 256 bit prime field (PRIME, KOBLITZ, BRAINPOOL elliptic curves), 320
bit prime field (BRAINPOOL elliptic curve), 384 bit prime field (SECP, BRAINPOOL
elliptic curves), 512 bit prime field (BRAINPOOL elliptic curve) and 521 bit prime field
(SECP elliptic curve).

Considering the support for elliptic curve operations from MIRACL [48], RELIC
[49] and wolfCrypt [59] the evaluation of the run-time execution for the following secu-
rity algorithms using the embedded platform is presented in what follows:

• Elliptic curve Diffie-Hellmann key-exchange [53] protocol for all software libraries,
• Elliptic curve digital signature algorithm [55] for RELIC [49] and wolfCrypt [59].
Embedded Platform Run-Time Evaluation Method. A logic analyzer tool is used

for measuring the execution time for each cryptographic function on the Infineon TC297
hardware platform. One probe of the hardware tool is connected to a GPIO pin from the
microcontroller exposed on a connector from the development kit. Once the execution
of one step from the security algorithm is started, the pin is toggled and at the end of
that step, the pin is toggled again. For the elliptic curve Diffie-Hellmann key-exchange
protocol [53], the time for key generation and computation of the shared secret between
two parties are measured. The time for several steps is measured for the elliptic curve
digital signature algorithm [55]. The first step is the key-pair generation, followed by
the signature using the private key and, in the end, the verification of the same signature
using the public key. The operations that are measured are summarized in Table 3.2.

3.1.3 Experimental results of the embedded platform evaluation

For the elliptic curve Diffie-Hellmann key-exchange protocol (ECDH) [53], evaluation is
performed on all elliptic curves supported by MIRACL [48], RELIC [49] and wolfCrypt
[59]. In this way, 52 elliptic curves are evaluated, 1 from MIRACL [48], 25 from RELIC
[49] and 26 from wolfCrypt [59]. The bit size of the prime fields supported by wolfCrypt
[59] is of 112 to 512 bits, while for RELIC [49] it is of 158 bits to 1536 bits and for
MIRACL [48] of 192 bits. The evaluation results for the key generation and shared secret
computation run-times for all elliptic curves are shown in Table 3.3 (up to 256 bit output
size)with a graphic overview presented in Figures 3.2 and 3.3 based on the data for some
of the evaluated elliptic curves. Comparing the time required for key generation or shared
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secret computation for the NISTP192 elliptic curve, it is noticeable that RELIC [49]
implementation performs faster than MIRACL [48] and wolfCrypt [59]. The execution
times for key generation are of 6.36ms for RELIC [49], 12.12ms for MIRACL [48] and
36.8ms for wolfCrypt. The execution time for the shared secret computation is 15.06ms
for RELIC [49], 13.9ms for MIRACL [48] and 36.4ms for wolfCrypt [59]. Considering
other elliptic curves such as SECP224K1 and SECGK224, both of 224 bits, the execution
time is also faster for RELIC [49] with 7.71ms and 13.01ms for the operations compared
to wolfCrypt [59] which takes 57.3ms and 56.8ms for performing the same steps. For
a prime field size of 256 bits, the execution times are still better for RELIC [49] with
13.04ms and 29.48ms for the operations using the NISTp256 elliptic curve compared
to wolfCrypt [59] with 60.3ms and 59.8ms for the same operations performed on the
SECP256R1 elliptic curve.

For the elliptic curve digital signature algorithm [55] evaluation, the C implementa-
tion from RELIC [49] and wolfCrypt [59] were integrated in the software project for the
AURIX microcontroller. A 20 byte message was used as input for computing and verify-
ing the ECDSA signature for all the experiments. There are 14 elliptic curves evaluated,
7 from RELIC [49] and 7 from wolfCrypt [59]. All run-times for ECDSA key gener-
ation, signature and verification of signature are shown in Table 3.4. The RELIC [49]
library allows selection of different hash functions with the same bit size, i.e., SHA-1 or
BLAKE2S-160 with 160 bits and SHA-256 and BLAKE2S-256 with 256 bits (BLAKE
is a faster and more compact hash function [60]). A graphical overview of execution
times for key generation, signature for a given message and verification of the signature
are shown in Figure 3.4, Figure 3.5 and Figure 3.6. Run-time execution of RELIC [49]
implementation is lower than that for the execution of the wolfCrypt [59] implementa-
tion. For the same prime field size of 224 bits, the operations were executed in 48.7ms,
37.4ms, 95.2ms for SEC224R1 on wolfCrypt [59] while for NISTP224 on RELIC [49]
they were executed in 10.6ms, 10.1ms and 28.31ms. For the same elliptic curve on
RELIC [49], but with different hash functions, the differences are negligible at the order
of a few milliseconds.

Based on the evaluation data for ECDH [53] and ECDSA [55] for all software li-
braries, RELIC [49] has more configuration options and supports more elliptic curves
compared to MIRACL [48] and wolfCrypt [59]. Its implementation of elliptic curve
cryptographic operations is the one that has faster execution, so it is the most conve-
nient candidate with regards to applications that have time-critical constraints. If there
are regulations that require software libraries with certifications, wolfCrypt [59], which
is part of wolfSSL [57], can be an option considering that it is FIPS 140-2 certified [61]
according to the information on their website. Considering that an application requires
a software library with C++ support that implements elliptic curve operations, MIRACL
[48] is the option that can fulfill this requirement. In the context of secure key-exchange
on Controller Area Networks, one of the limitations is the maximum payload for a CAN
frame of 64 bits. This means that, even for the fastest operation for a cryptographic key-
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Table 3.3: Operation time for ECDH ordered by output size of up to 256 bits
Library Elliptic curve Output size Operation type Duration [ms]

wolfCrypt SECP112R1 112 bits generate 19.8
compute shared secret 19.6

wolfCrypt SECP112R2 112 bits generate 23.7
compute shared secret 23.8

wolfCrypt SECP128R1 128 bits generate 21.9
compute shared secret 21.6

wolfCrypt SECP128R2 128 bits generate 27.6
compute shared secret 27.2

RELIC BNP158 158 bits generate 3.29
compute shared secret 6.01

wolfCrypt SECP160R1 160 bits generate 30
compute shared secret 29.6

wolfCrypt SECP160R2 160 bits generate 30.2
compute shared secret 29.8

wolfCrypt SECP160K1 160 bits generate 34.6
compute shared secret 34.3

wolfCrypt BRAINPOOLP160R1 160 bits generate 37.5
shared secret 37.2

RELIC SECGP160 160 bits generate 4.01
compute shared secret 9.78

RELIC SECGK160 160 bits generate 3.27
compute shared secret 5.78

wolfCrypt SECP192R1 192 bits generate 36.8
compute shared secret 36.4

wolfCrypt PRIME192V2 192 bits generate 37.4
compute shared secret 37

wolfCrypt PRIME192V3 192 bits generate 38.2
compute shared secret 37.8

wolfCrypt BRAINPOOLP192R1 192 bits generate 50.4
compute shared secret 49.9

wolfCrypt SECP192K1 192 bits generate 45.4
compute shared secret 45

RELIC SECGK192 192 bits generate 5.15
compute shared secret 8.94

RELIC NISTP192 192 bits generate 6.36
compute shared secret 15.06

MIRACL NISTP192 192 bits generate 12.127
compute shared secret 13.93

RELIC CURVE22103 221 bits generate 10.14
compute shared secret 25.92

wolfCrypt SECP224R1 224 bits generate 48.8
compute shared secret 48.4

wolfCrypt SECP224K1 224 bits generate 57.3
compute shared secret 56.8

wolfCrypt BRAINPOOLP224R1 224 bits generate 62.8
compute shared secret 62.4

RELIC NISTP224 224 bits generate 9.28
compute shared secret 21.31

RELIC SECGK224 224 bits generate 7.71
compute shared secret 13.01

RELIC CURVE4417 226 bits generate 12.73
compute shared secret 31.84

wolfCrypt PRIME239V1 239 bits generate 56.6
compute shared secret 56.2

wolfCrypt PRIME239V2 239 bits generate 55.7
compute shared secret 55.2

wolfCrypt PRIME239V3 239 bits generate 56.1
compute shared secret 55.7

RELIC CURVE1174 251 bits generate 13.88
compute shared secret 35.27

RELIC BNP254 254 bits generate 10.52
compute shared secret 17.54

RELIC CURVE25519 255 bits generate 14.72
compute shared secret 36.7

wolfCrypt BRAINPOOLP256R1 256 bits generate 78.4
compute shared secret 77.9

wolfCrypt SECP256R1 256 bits generate 60.3
compute shared secret 59.8

wolfCrypt SECP256K1 256 bits generate 69.1
compute shared secret 68.7

RELIC NISTP256 256 bits generate 13.04
compute shared secret 29.48

RELIC BSIP256 256 bits generate 14.64
compute shared secret 35.64

RELIC SECGK256 256 bits generate 10.36
compute shared secret 18.07

RELIC BNP256 256 bits generate 10.52
compute shared secret 18.22

exchange, i.e., with a security level of 158 bits, that takes roughly ∼ 10ms for generation
and computation of the shared secret, CAN frames are required to be exchanged between
nodes. This will require additional time for the key exchange between nodes to be estab-
lished. A different proposal that utilizes CAN frames without payload to exchange keys
is described in the following section – this proposal can be used with or without the help
of cryptography according to the specific constrains of the platform.
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Table 3.4: Operation time for ECDSA ordered by output size of up to 512 bits
Library Elliptic curve Hash function Output size Operation type Duration [ms]

wolfCrypt SECP160R1 SHA-1 320 bits
generate 30

sign 22.56
verify 59.3

wolfCrypt SECP160R2 SHA-1 320 bits
generate 30.1

sign 23.2
verify 59.8

RELIC SECGP160 BLAKE2S-160 320 bits
generate 4.54

sign 4.86
verify 13

RELIC SECGP160 SHA-1 320 bits
generate 4.54

sign 5.27
verify 13

RELIC SECGK160 BLAKE2S-160 320 bits
generate 3.65

sign 4.01
verify 8.94

RELIC SECGK160 SHA-1 320 bits
generate 3.65

sign 4.26
verify 9.78

RELIC NISTP192 SHA-1 384 bits
generate 7.23

sign 7.34
verify 19.43

RELIC SECGK192 SHA-1 384 bits
generate 5.81

sign 5.83
verify 14.37

wolfCrypt SECP224R1 SHA-1 448 bits
generate 48.7

sign 37.4
verify 95.2

RELIC NISTP224 SHA-1 448 bits
generate 10.6

sign 10.1
verify 28.31

wolfCrypt PRIME239V2 SHA-1 478 bits
generate 56.3

sign 41.9
verify 112.4

wolfCrypt PRIME239V3 SHA-1 478 bits
generate 56.8

sign 42.3
verify 110.7

wolfCrypt SECP256R1 SHA-256 512 bits
generate 61.2

sign 46.3
verify 121

RELIC NISTP256 BLAKE2S-256 512 bits
generate 14.9

sign 14.3
verify 38.6

RELIC NISTP256 SHA-256 512 bits
generate 14.8

sign 14.1
verify 38.4

3.2 A time-covert key-exchange protocol on the CAN Bus

This section introduces the time-covert key-exchange protocols to which the author con-
tributed in [29]. As stated, this kind of approach can alleviate the need for expensive
public-key operations or reinforce such security mechanisms.

3.2.1 Related works

Controller Area Network (CAN) security improvements have been proposed in the past,
as also shown in [62]. Some of the existing works propose the inclusion of message
authentication codes inside of the frames [63], [64], while others focus on group key
authentication methods [6], physical characteristics for authenticating the sender [26],
[65] or timing-based security [66], [67]. Whenever message authentication codes are
used [64], [63], [68], a shared secret needs to be known by all the parties that verify the
authenticity of the message. Except for the research works done by authors in [69] and
[70], there was little focus on the key exchange capabilities of the CAN communication
channel.

The proposal from Mueller and Lothspeich [69] is the utilization of CAN protocol
bit states as a medium to exchange a session key by transmitting random values of 0 and
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1 simultaneously on the vehicle bus. The idea behind their proposal is to rely on the
physical overwriting of a recessive bit by a dominant bit due to the logic-AND property
of the CAN network layer. This means that any combination of bits that are (dominant,
recessive), (recessive, dominant) and (dominant, dominant) would result in a dominant
state on the bus, so an external party cannot know which node had set the bit state on the
bus. For the nodes that communicate, if they transmit a recessive bit and read a dominant
state from the bus, they can extract one bit from the random session key. Afterwards,
both nodes exchange the complementary value of the generated random bits. In this way,
a node that transmits a dominant bit in the first iteration would transmit a recessive bit
and will be able to extract the bit state from the other node. This means that a pair of
(dominant, recessive) or (recessive, dominant) will remain unknown to an adversary that
will not be aware of the bit state transmitted by the nodes on the bus. The genuine nodes
are the only ones able to reconstruct the bits read from the bus state as a session key.

The CAN bus requires at least two nodes to be active during communication. A gen-
eral overview of a method for one of the proposed key-exchange protocols that uses the
arbitration mechanism on the CAN physical layer is shown in Figure 3.7. The value of ∆
represents a specific time interval when both nodes transmit a frame identifier value that
is either smaller (IDmin) or bigger (IDmax) for that iteration. A VN hardware device that is
used to log the network traffic is connected to the CAN bus. The shared key between the
nodes is also considered, possibly a common practice in the automotive industry, which
is denoted as w̃ in the same figure. An example would be an implementation of a secu-
rity protocol similar to the secure transient association proposed by authors in [71] that
require ECUs inside a vehicle to store a shared secret during the first seconds while the
vehicle is started for the first time in the production plant of the car manufacturer. A weak
shared secret, from cryptographic security standpoint, is considered as good enough for
the proposed methods. For nodes that implement the classic AUTOSAR specifications
[46], the shared secret can be strengthened, whenever required, i.e., for Secure On-Board
Communication (SecOC) [72]. The protocols that are proposed in what follows allow the
exchange of a session key in the application layer that can be further used to re-enforce
a weak key and generate a stronger key, as later shown. An extension of the protocols
is considered with additional cryptographic operations that will increase the efficiency
and security level for the established secure channel. There are four versions for the key
exchange that rely on data and remote frames, arbitration and timing-based transmission.
For the protocols that rely on timing-based transmission, the possibility to piggy-back
the frames with key parts exchange using Diffie-Hellman (DH) version of the Encrypted-
Key-Exchange protocol (EKE) [73] or the Simple Password Exponential Key Exchange
(SPEKE) [74] is considered as an extension. Thus, a weak shared secret is used to cre-
ate a stronger session key between two or more entities. This extension is optional for
low-end cores but highly recommended for mid-end and high-end cores allowing them
to enhance the security of data exchanged on the CAN communication channel.

Considering the current threats in the automotive networks emphasized by authors in
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Figure 3.7: Structure of the CAN bus and addressed scenario for time-triggered key
exchange

[2], [75], [76], there are various proposals from other works with methods to mitigate
them. Since data is transmitted in Controller Area Networks using frames, proposals that
include message authentication codes (MACs) are common [63], [77]. Other works pro-
vide mechanisms to optimize CAN frame transmission using different allocation methods
[78], [79], [80] or present the safety and security integration trade-offs [81]. Even though
methods based on message authentication codes are proven effective, there is little re-
search done on key exchange mechanisms considering that MACs require a shared secret
key to be shared between the parties. This is far from an easy topic because utiliza-
tion of well-known methods such as RSA [58] or Diffie-Hellman [82] is difficult to be
implemented due to the limited data field payload of CAN messages.

The method proposed by Mueller and Lothspeich [69] is somehow revolutionary for
the Controller Area Networks because it uses the logic-AND property of the physical
layer and is generally applicable to the protocol. Its extension done by Jain and Guajardo
[70] provides an example of its utility to exchange secrets, e.g., cryptographic keys, on
Controller Area Networks. Probing attacks [83] are possible on this type of key exchange
setup. They were evaluated by the authors in [84], which show how masking unique node
signaling behavior mitigates the effects of the probing attacks.

In our research work [29], discussed in this chapter, several key exchange mecha-
nisms are proposed with the use of entire frames and the wired-AND property of the
physical layer of the CAN bus. For ensuring resilience to probing attacks, the options are
either to use the parallel transmission of frames as proposed by authors in [84] or to add
random time delays to vary the clock drifts. In this way, the transmitter cannot be identi-
fied directly by an adversary. The physical layer has been proposed for key exchange in
wireless networks [85], a well-known communication channel that is also used in modern
vehicles.
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3.2.2 Adversary model

In order to evaluate the security of proposed algorithms, a Dolev-Yao adversary [86] with
full access to the Controller Area Network communication channel is considered. The
first algorithms are not secured against this adversarial type since a legitimate node can
be replaced from the vehicle bus without breaking the key exchange algorithm. The al-
gorithm proposed by Mueller and Lothspeich [69] is vulnerable to this type of adversary
as well. However, since it is hard to replace legitimate ECUs inside a vehicle without
compromising vehicle level functionalities, such attacks are not foreseen to be easy to
perform. Other types of attacks, such as bus-off attacks [66], will not remove legitimate
nodes from the bus, but they will keep them idle for some time, until they recover from
the bus-off state. Similarly, DoS attacks would compromise the key exchange protocol
since the genuine nodes will end up using wrong (modified) keys for cryptographic meth-
ods such as message authentication codes (MACs). For weak adversaries that can only
eavesdrop the communication from the channel, the proposals from [29] are considered
to be secure. For stronger adversaries, an extension of the protocols is required in order
to exchange the session keys using guessing resilient protocols such as Encrypted Key
Exchange (EKE) [73], [87] or SPEKE [74] protocols with elliptical curve cryptography
support and the changes proposed by [88].

3.2.3 Embedded platform setup and implementation considerations

For performing the experiments, Infineon development kits with automotive grade mi-
crocontrollers from the AURIX family were used. These boards are connected in pairs
of two to a vehicle bus interfaced to a computer by a VN hardware equipment. The
VN hardware equipment is developed by Vector and was used to log the communication
channel for determining the arrival time for frames on the physical bus. The experimental
setup is shown in Figure 3.8.

There are three microcontrollers which were used in the experiments:

• Infineon AURIX TC224, a single-core microcontroller with a maximum operating
frequency of 133MHz, an internal RAM memory of 96kB and internal FLASH
memory of 1MB,

• Infineon AURIX TC277, a triple-core microcontroller with a maximum operating
frequency of 200MHz, an internal RAM memory of 472kB and internal FLASH
memory of 4MB,

• Infineon AURIX TC297, a single-core microcontroller with a maximum operating
frequency of 300MHz, an internal RAM memory of 728kB and internal FLASH
memory of 8MB.

The Vector VN hardware equipment was connected to the CANoe tool from the lab-
oratory PC and to the network bus for recording the bus traffic in real-time as a basis for
the evaluation that was performed using the Mathematica tool.
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Figure 3.8: Hardware and software components employed for the experiments

Table 3.5: Summary of notations for time-trigger key-exchange protocols
ID identifier field of a CAN message

ECU Electronic Control Unit
Prbad probability that a frame discloses the corresponding bit

Haverage mean entropy (as function of k frames)
T duration of the key exchange (as function of k frames)
∆ estimated delay between two frames
b♦ array of random bits generated by ♦ ∈ {A,B}
¬b♦ complement of values in previous bit array ♦ ∈ {A,B}
x♦ random delay generated by ♦ ∈ {A,B}
id♦ array of random ID generated by ♦ ∈ {A,B}
IDmin the ID with the minimum value

(whenever two IDs occur at the same time)
IDmax the ID with the maximum value

(whenever two IDs occur at the same time)

In Table 3.5, all notations from the following paragraphs are summarized. The no-
tations are used in the equations that formalize the algorithms or their performance. For
evaluating the performance of each algorithm, there are three characteristics measured
during the experiments. The first is Prbad which is the probability that a frame is bad,
which means it can be used by an adversary to extract a bit of the session key. The sec-
ond characteristic is the mean entropy which is denoted as Haverage and depends on the
frames sent by each genuine node. The third characteristic is the time it takes to execute
the entire key-exchange method, denoted as T.

The implementation details for the algorithms are discussed in what follows. In order
to synchronize the transmission of frames at the same time between nodes, micro-second
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level timer interrupts are implemented using the T13 timer from Capture/Compare Unit
6 Timer (CCU6) module from the AURIX microcontrollers. For ensuring communica-
tion capabilities on the Controller Area Network, the MultiCAN+ drivers are used. The
drivers can store message objects with up to 64 different mailboxes. The bit rate for the
CAN communication channel was set to 500Kbit/s as recommended by the SAE J2284-3
[89] standard for automotive networks. As the initial step for each algorithm, after mi-
crocontroller startup and the initialization part, each device expects a CAN frame that
triggers the timer initialization with a timer interrupt period configured at 2µs. When
the interrupt is triggered, the node decides whether to send a remote or standard CAN
frame. The time varies for each algorithm, i.e., frames are transmitted at the same time
by both nodes, or they are transmitted at random timestamps so they do not overlap. Af-
ter sending the message, each node saves the transmitted ID, timestamp for transmission
time and reception time for each CAN frame sent by the other node. After all frames
are transmitted and received, each node either computes the key using the random bits
based on the timestamps for frames received from the other nodes or they compute the
key using random bits based on the timestamps from all frames exchanged on the bus.

3.2.4 Data vs. Remote frame negotiation

The first algorithm follows the principle proposed by Mueller and Lothspeich [69] but
requires frames to be exchanged on the bus between nodes instead of bits. The principle
is explained in what follows, since it is also similar to other algorithms that are later de-
scribed. Both nodes generate a random number of k bits, i.e., bA = b1A, b

2
A, ..., b

k
A, bB =

b1B, b
2
B, ..., b

k
B . If the generated bit is 0, the node transmits a data frame, otherwise it

sends a remote frame. Both nodes will start transmitting frames at the same time at in-
tervals with the same period denoted as ∆. The time interval value, i.e., ∆, needs to be
chosen to accommodate at least one frame and at most two frames for the chosen bitrate
of the CAN bus. Time intervals of 200µs were used, but that can also be reduced to the
maximum duration of two frames that have no data bytes, for the selected bitrate.

The possible collisions on the communication channel are shown in Figure 3.9. If the
bits are complementary, i.e., 01 transmitted by ECUA and ECUB in (i) or 10 transmitted
by the same ECUs in (ii), a data frame will be transmitted on the bus. The node that
transmits a remote frame will see that a data frame is actually sent on the bus, but the node
that transmits a data frame will have no information regarding what frame the other node
had sent, data or remote. This is visible as (ii) or (iii) from ECUB’s perspective. This
is later clarified by the transmission of the dominant bit complements shown in (v) and
(vi), where either remote frames or data frames are transmitted on the bus as 10 and 01,
opposite to (i), (ii) from the perspective of ECUA and ECUB . In the case of (iv), the bit
value is compromised since an adversary will know that both nodes exchange a bit with
the value of 1, since a remote frame is successfully transmitted on the communication
channel. The same frame identifier is used by both nodes in all experiments performed for
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evaluating the data vs. remote frame negotiation algorithm. For cases (iii) and (iv), Prbad
is considered to be 0.5 since half of the bits exchanged by nodes can be eavesdropped
by an adversarial node. This means that only half of the frames contribute to the key
entropy, so the Haverage = (1 − Prbad ) × k is equal to k/2 where k is the number of
frames. The time required to exchange the key between the nodes is twice the time k
frames are transmitted, so T(k) is 2 × k × ∆. The experimental results for 32 frames
exchanged by the nodes on the communication channel are shown in Figures 3.10, 3.11
and 3.12. The IDs for frames transmitted by both nodes where remote frames are shown
with the negative value of the data frame IDs are shown in Figure 3.10. The overlaps that
are visible on the CAN bus with associated timestamps are shown in Figure 3.11, while
Figure 3.12 depicts that all frames arrived at the expected time for each ∆ interval.
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Figure 3.9: Data vs. Remote frame negotiation (based on Mueller and Lothspeich prin-
ciple [69])

3.2.5 Minimax negotiation

This algorithm relies on random identifiers transmitted for each frame. Both nodes,
ECUA and ECUB , generate a random number k of identifiers, idA = id1

A, id
2
A, ..., id

k
A,

idB = id1
B, id

2
B, ..., id

k
B . In case the generated random identifiers are equal for one itera-

tion, only one frame will be visible on the bus and the adversarial node can extract that bit
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Figure 3.10: Data vs. Remote frame negotiation: frames on
node A and node B (orange vs. blue)

Figure 3.11: Data vs. Remote frame negotiation, frames ar-
rived on the bus data (square) vs. remote (empty square)

from the session key. If the random identifiers are different, the identifier with the smaller
value denoted IDmin is the first to be transmitted on the bus, followed by IDmax due to
CAN arbitration. So, there is a probability, Prbad , that the randomly generated IDs are
the same for one iteration of 1/211 when using standard identifiers, i.e., 11 bit size, and
1/229 when using extended identifiers, i.e., 29 bit size. This means 1 out of 2048 possi-
bilities for standard identifiers and 1 out of more than 500 million chances for extended
identifiers, which is a very low probability. One measure to avoid this types of collision
is to include random bytes in the data field. This method, if used, adds more time to the
frame duration and requires an increased value for ∆. During the experiments, frames
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Figure 3.12: Data vs. Remote frame negotiation: expected
arrival frame (as checkmark) vs. arrived frame (square)

without bytes in the data field are used, while the value of ∆ is set to 200µs and to 125µs.
This allows two frames to be transmitted in a 2×∆ interval without any overlaps. In the
first part of Figure 3.13 represented as (i), there are two identical frames transmitted on
the bus denoted as 00, since their identifiers are equal. For the following parts of Figure
3.13, (ii) and (iii), there are different frame identifiers transmitted by the nodes with the
lower value, IDmin, being transmitted on the bus first, followed by IDmax. This is denoted
as 01 and 10. Except for (i) where there is only one frame transmitted on the bus, for (ii)
and (iii) both frames are transmitted in a 2 ×∆ interval which encompasses two frames
with a maximum possible duration of 212µs for a baud rate of 500Kbps. In case there
are no equal identifiers, there is a 1 bit entropy that results for each transmission pair
extracted by the receivers that is based on the frame transmission order on the bus. For
2k, frames there is a mean entropy equal to k, i.e., Haverage(k) ≈ k. Considering that
each node transmits k frames but within a 2 × ∆ interval at a time, the key exchange
duration is of T(k) = 2k∆. The experimental results for 64 frames with a standard
identifier exchanged by the nodes on the communication channel are shown in Figures
3.14, 3.15, 3.16. In Figure 3.14, the IDs for frames transmitted by both nodes are shown
where frame identifiers are shown with blue and orange squares. The frame transmission
sequences visible on the CAN bus with associated timestamps are shown in Figure 3.15
while Figure 3.16 shows that all frames arrived at the expected time for each ∆ interval.

3.2.6 Time-triggered Minimax negotiation

Similarly to the Minimax Negotiation, this algorithm relies on k random identifiers for
each frame idA = id1

A, id
2
A, ..., id

k
A, idB = id1

B, id
2
B, ..., id

k
B but also on a second ran-

dom sequence of k bits generated by each node, bA = b1A, b
2
A, ..., b

k
A, bB = b1B, b

2
B, ..., b

k
B .
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Figure 3.13: Minimax frame negotiation: principle

Figure 3.14: Minimax frame negotiation: frames on nodes A
and B (orange vs. blue)

The time slots in which frames are expected to be sent are (2i+ bi)×∆, which, depend-
ing on the value of each bit would result in 2i ×∆ or (2i + 1) ×∆. For a specific time
slot, in case the bit value is different for the nodes, i.e., 10 or 01, both are extracted by
the nodes without revealing the information to an adversary. If the bit value is the same,
i.e., 00 or 11, bits are revealed to the adversary since the frame is transmitted one after
the other with a very low inter-frame space compared to the 10 and 01 cases. This means
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Figure 3.15: Minimax frame negotiation: frames arrived on the
bus from Node A (orange) vs. Node B (blue)

Figure 3.16: Minimax frame negotiation: expected arrival
frame (as checkmark) vs. arrived frame (square)

that, in half of the possible scenarios, an adversary will extract the bits shared by the
nodes, so the value of Prbad is 1/2 while the average entropy Haverage(k) is equal to half
of the iterations, k/2. In order to prevent overlaps between consecutive iterations, the
total time of one iteration is updated to 3 ×∆, which leads to a total key exchange time
of T(k) = 3k∆. In Figure 3.17 the 10, 01 and 11 scenarios are shown, omitting the 00
case, because in that case, the bits from the key-exchange protocol can be extracted by an
adversary. The experimental results for 64 frames exchanged by the nodes on the com-
munication channel with the value of ∆ set to 200µs are presented in Figures 3.18, 3.19
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and 3.20. In Figure 3.18, the IDs for frames transmitted by ECUA and ECUB are shown
with frame identifiers represented with blue and orange squares. The frame transmission
sequences visible on the CAN bus with associated timestamps are shown in Figure 3.19,
while Figure 3.20 shows that all frames arrived at the expected time inside each 3 × ∆
interval. In case the random IDs are different between nodes ECUA and ECUB for a
specific time slot, by combining this algorithm with the Minimax negotiation, the aver-
age entropy Haverage(k) can be increased from k/2 to k. The rationale is that the frames
are transmitted by both nodes and the frame with the lower ID value IDmin will win the
arbitration with IDmax, in case the ID values are different. So, the resulted entropy, is the
sum of entropies from both Minimax and Time-triggered Minimax protocols.
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Figure 3.17: Time-triggered Minimax frame negotiation: principle

Figure 3.18: Time-triggered Minimax frame negotiation:
frames on node A and node B (orange vs. blue)
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Figure 3.19: Time-triggered Minimax frame negotiation:
frames arrived on the bus from Node A (orange) vs. Node B
(blue)

Figure 3.20: Time-triggered Minimax frame negotiation: ex-
pected arrival frame (as checkmark) vs. arrived frame (square)

3.2.7 Randomized time-triggered key-exchange

This algorithm relies on random values generated by both nodes for selecting random
time slots when to transmit frames on the bus. Considering that each node generates k
random values, x1A, x

2
A, ..., x

k
A for ECUA and x1B, x

2
B, ..., x

k
B , for ECUB with k chosen

as part of interval [1..ℓ], frames are transmitted by each node at time xi × ∆. When
ECUA transmits a frame, ECUB considers it as 0 and when ECUB transmits a frame
ECUA will consider it as 1. The values chosen for the experiments are ∆ = 200µs
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and ℓ = 512. In Figure 3.21, the randomized transmission scenarios are shown where
both ECUA and ECUB broadcast frames at random ∆ intervals. The time difference
between consecutive frames transmitted by ECUA and ECUB are emphasized in the
same figure. The experimental results for 64 frames exchanged by the nodes on the
communication channel are shown in Figures 3.22, 3.23 and 3.24. Figures 3.22 and
3.23 show that first 64 frames arrived at the expected time. Since the time slots for
transmission are randomly generated by each node, it can be anticipated that nodes can
also transmit frames in the same time slot. For the first 64 frames, there was only one
such occurrence marked with X in Figure 3.23. There were multiple collisions during
the entire experiment marked with X in Figure 3.24, where all transmission times for
corresponding frame identifiers are shown. The probability for one collision to occur on
the bus, Prbad , is k/ℓ because the probability of having time slots with no collision is
(ℓ − k)/ℓ for k selected slots. This means that an adversary can extract the bits from
the bus in k/ℓ situations, so the collision probability is k/ℓ. Since ECUA transmits k
frames and there are 2k frames on the bus, there are (2k)!/k! possible combinations of
frames transmitted on the bus by ECUA. The entropy estimated for this protocol can
be computed based on the total possible combinations divided by k!, since the frame
order is also random. This means that Haverage(k) = − log2

(
(k!)2/(2k)!

)
. Considering

that an average number of frame collisions is of k2/ℓ, ℓ can be increased in order to
maximize the number of correct frames transmitted on the bus without collisions, that is
k − k2/ℓ. A graphical representation of average entropy that can be obtained by using
Randomized time-triggered key exchange is shown in Figure 3.25. If the values of k
and ℓ are higher, the entropy value is also higher, but the time duration for the entire
algorithm is increased. The total time for transmitting all frames, so for the randomized
time-triggered key exchange, is T(k) = ℓ∆.

A summary of Prbad , Haverage(k) and T(k) for the earlier described algorithms is
presented in Table 3.6. The information for each algorithm is based on the experimental
data. Frames were captured from the bus during the experiments using a Saleae logic
analyzer.
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Figure 3.21: Randomized time-triggered key exchange: principle
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Figure 3.22: Arrival time for the first 32 frames with Random-
ized time-triggered key-exchange

Figure 3.23: Arrival time for the last 32 frames with Random-
ized time-triggered key-exchange

3.2.8 Extension of the key negotiation protocols

An improved version of the Time-Triggered Minimax algorithm is shown in what fol-
lows using the Diffie-Hellman (DH) version [82] of the Encrypted Key Exchange (EKE)
protocol [73], which allows us to bootstrap a high entropy session key on a lower entropy
shared secret. Then, an extension of the improved version is shown, so a group session
key can be shared by all nodes from the communication channel.

Piggy-backed Diffie-Hellman EKE/SPEKE. Even though the proposed algorithms
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Figure 3.24: Frame arrival time and ID value with Randomized
time-triggered key-exchange

Figure 3.25: Entropy extracted from the Randomized time-triggered key-exchange (ap-
proximation)

rely on software implementation and do not require additional changes to the hardware
compared to the work from [69], there is a low efficiency for data and transmission times
since a covert bit exchange requires an entire CAN frame. But this drawback is changed
as an opportunity to piggyback the CAN frames with parts of Diffie-Hellman-based [82]
key shares of EKE [73]. This improvement is resilient to guessing attacks, as shown by
authors in [87]. In order to reduce the memory and time required for the computation, the
EKE [73] is updated to use elliptic curves by following the SPEKE protocol [74]. The
backbone for the EKE-DH frames can either be the Time-Triggered Minimax negotiation
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Table 3.6: Comparison of the key-exchange schemes
Data vs. Remote Minimax T-T Minimax Randomized T-T

Prbad 1/2 1/211 1/2 k/ℓ

Haverage k/2 k k/2 − log2

(
(k!)2

(2k)!

)
T 2k∆ 2k∆ 3k∆ ℓ∆, ℓ > k

or the Randomized Time-Triggered key exchange, because both nodes already know their
share of the key before starting the key exchange. The bits used for EKE-DH are piggy-
backed to the frames and illustrated in what follows using the Time-triggered Minimax
algorithm. Extraction of the session key is performed only after the key exchange is
finished.

Time-triggered Minimax with piggy-backed EKE/SPEKE. The following param-
eters are defined for the protocol: an elliptic curve E/Fq, a fixed point P = f(w̃) ∈
E(Fq) of prime order p and the time slot delay ∆. In this case, f maps the key ex-
changed using the algorithm to a point P on the elliptic curve. The key that is exchanged
is the same as a generator g in the SPEKE protocol [74]. Both nodes follow the steps that
are defined below:

1. Setup(1k) where, ECUA and ECUB based on, two random arrays of bits, bA =
b1A, b

2
A, ..., b

k
A, bB = b1B, b

2
B, ..., b

k
B , both with k elements, two arrays of random

IDs, idA = id1
A, id

2
A, ..., id

k
A, idB = id1

B, id
2
B, ..., id

k
B , with k elements and two

positive integers xA and xB compute sA = bAxAP = {s1A, s2A, ..., skA} ∈ E(Fq),
sB = bBxBP = {s1B, s2B, ..., skB} ∈ E(Fq) as shareable points from the elliptic
curve,

2. SendCyclic(i), i = 1..k where each node ECUα, α ∈ {A,B} transmits k frames
with the identifier id i

α and siα as payload in the 3i∆, i = 1..k time slots following
the time-triggered Minimax negotiation algorithm,

3. ExtractSessionKey(T ) where both nodes ECUA and ECUB recover the key based
on the time-triggered Minimax protocol using the timestamps for the received
frames T = {(id1, t1), (id2, t2), (id3, t3),..., (id2k, t2k)} and then extract session
key checking if |t2i−1 − t2i| < ϵ, i = 1..k and setting biβ = ¬biα or to biβ = biα,
having the shared session key computed as Kses = xαb

−1
α Q where Q is the point

from the elliptic curve recovered from k frames,
4. ConfirmSessionKey(Kses) where nodes transmit frames containing the MAC (mes-

sage authentication code) computed using the shared session key over the shareable
points from the elliptic curve transmitted by each node in step 2, sα, α ∈ {A,B}.
After receiving the frames, both nodes compute the MAC locally over sα, α ∈
{A,B} using the extracted session key Kses and verify the correctness of the re-
ceived MAC. After confirmation, the key recovered based on the Time-Triggered
Minimax protocol can be updated to w̃ = MAC w̃(Kses),

5. Abort(T ) where any of the nodes abort the key exchange protocol by transmitting
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error frames due to any of the following conditions: (1) more frames than expected
(2k) are received during step 2, (2) the frames are not sent in pairs so they do not
follow the time-triggered Minimax protocol, (3) one of the nodes does not send
any frame inside a 3×∆ time slot.

The final part of the protocol consists of the confirmation of session keys based on
the verification of the MAC. An elliptic curve defined over a 160-bit field is chosen, so
the X coordinate has a size of 20 bytes. One additional byte that contains the sign for
the point is also required. Thereby, in the experiments, k = 21 was used so there are 42
frames transmitted by the nodes.

Security arguments. The analysis for the security of the SPEKE protocol was out
of scope in [29] since this has already been done by others in research works [90], [91]
and [88] and it is already used in standards such as IEEE 1363.2 [92] and ISO 1170-4
[93]. Although impersonation attacks in parallel sessions or key malleability attacks are
deemed possible against SPEKE [74] by authors in [88], these types of attacks are not
applicable to the proposed methods and would not affect the disclosure of the weak se-
cret. The vulnerabilities for these attacks can be solved as shown in the research works
that analyze the SPEKE security [90], [91] and [88]. The counter-measures proposed
for existing vulnerabilities can be applied to this protocol considering that SPEKE [74]
can be used to increase the entropy of the weak secret w̃ from the Time-Triggered Mini-
max negotiation protocol. Considering a man-in-the-middle attack scenario, an adversary
cannot derive the point P = f(w̃) on the elliptical curve because of the unknown weak
shared secret. Thus, the adversary would generate a different point P ′ that, in the context
of the piggy-backed frames, results in badvxadvP ′ as transmitted payload with P ′ ̸= P .
This leads to a different session key between the genuine node, xαxadvP ′, and the ad-
versarial node α and xadvxαP , because of the different points, P and P ′. In case of
probing attack scenario, an adversary is unable to impersonate a genuine node unless he
learns the weak secret from the Time-Triggered Minimax negotiation and then replaces
the node on the communication channel before the piggy-backed encrypted key exchange
protocol is performed. This type of attacker is referenced by the authors from [69], but
this attack is hard to perform on in-vehicle networks since it requires physical access to
them. By following the resurrecting-duckling paradigm [71], the assumption is that all
nodes connected to the in-vehicle network have a weak shared secret from the factory or
from the first operating power cycle inside the vehicle. Using this secret, the nodes are
able to generate a stronger session key using the SPEKE protocol [74]. Timings for time
slots, total duration of key exchange and entropy for each protocol are shown in Table
3.7.

Multi-party version of the scheme. All the proposed key exchange protocols us-
ing the Diffie-Hellman [82] method or SPEKE [74] can be extended from two nodes to
multiple nodes as already discussed by authors in research works such as [94] or [95].
An alternative to the one presented in [94] is described in what follows. All ECUs, i.e.,
ECUi, i = 1..n, communicating on the CAN bus can be grouped in pairs. This means
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Table 3.7: Summary of experimental parameters and results
Data vs. Remote Minimax TT Minimax Randomized TT SPEKE TT-Minimax

∆ (µs) 200 125 200 200 200
Haverage (bits) 32 64 32 124 160
T (ms) 25 16 38 102 12 (bus) + 98 (comp.)

ECU1

b1x1P
ECU2

b2x2P

ECU3

x1x2P

b12x12P

b3x3P

x12x3P

ECUnb123...n-1x123...n-1P

bnxnP

x123...n-1xnP

Figure 3.26: Suggested group key exchange with EKE-DH

that if a session key, i.e., x1x2P , has been shared between ECU1 and ECU2, both can
generate a new point on the curve by applying the key derivation function on the session
key and providing it as input to the pseudo-random number generator (PRNG). This will
result in the b12x12P public key for the ECU1-ECU2 pair that can be exchanged with
ECU3 and a new session key can be shared between ECU1, ECU2 and ECU3. This
extension applies to any number of ECUs but requires the additional step of generating a
common public key between k nodes before sharing a session key with the k + 1 node.
For a number of n ECUs, this will result in a shared key computed as x123...n−1xnP . The
session key exchange between n ECUs is illustrated in Figure 3.26 and shows each ECU
in a rectangular box and the sessions key shared within each pair in gray ovals. The ar-
rows show the contribution of each node inside a pair and the shared session key for each
step. Any of the nodes inside a pair group of more than two nodes can take ownership of
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the pair and continue the group key exchange on the communication channel. If multiple
nodes from the same pair group transmit frames at the same time, this may lead to trans-
mission errors flagged by error frames. One way to prevent this is to allow one node to
perform the key exchange inside each pair group. In case ECUs have low computational
resources that cannot use Diffie-Hellman [82] method or SPEKE [74], the group key ex-
change using the Time-Triggered Minimax negotiation and Randomized Time-Triggered
key negotiation protocols. These key exchange methods rely only on the timings for the
transmitted and received frames, without the EKE-DH part (which can be additionally
used to bootstrap security based on low-entropy secrets when needed).

3.3 Concluding remarks

In this chapter, the evaluation of the libraries using the Infineon TC297 platform was
presented. Automotive systems that use microcontrollers from the AURIX family can
integrate elliptic curve cryptography in the applications they are intended for and can
secure the traffic data transmitted on the vehicle bus. Based on the evaluation, the library
with the fastest runtime for all operations is RELIC [49]. Support for securing high-level
applications with C++ libraries that implements elliptic curve cryptography is offered by
MIRACL [48]. Nonetheless, the library that is available to be used with a FIPS 140-2 [61]
certification is wolfCrypt [59], separate or as part of wolfSSL [57]. Four time-triggered
key exchange protocols, i.e., Data vs. Remote, Minimax, Time-triggered Minimax, Ran-
domized Time-Triggered, were presented and evaluated on an experimental setup with
respect to three main characteristics: the probability of exchanged bits to be revealed
during the key exchange, the average entropy and the total duration of the key exchange.
The first two characteristics were the same for Data vs. Remote and Time-triggered Min-
imax protocols but with an increased duration for the latter. The Minimax negotiation
protocol has a lower probability compared to these algorithms of revealing the covert bits
due to the utilization of 11-bit or 29-bit frame identifiers and a higher entropy. The Ran-
domized Time-Triggered algorithm depends on the number of intervals that is selected
for the key exchange. This means the key exchange will be executed with a higher dura-
tion than the other algorithms but with an increased entropy. An extension that combines
two of the proposed algorithms with public key exchange methods was evaluated with
the goal of increasing the entropy of the key exchange method. The multi-party variant
of the key exchange algorithms was discussed.
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Chapter 4

Time-Covert Authentication on the
CAN Bus

This chapter is based on a previous research paper of the author [30], which presents
several frame scheduling optimization methods that are necessary for improving the per-
formance of time-covert channels for the Controller Area Networks. A shorter previous
research work [24] was the foundation of the author’s Master Thesis which also ad-
dresses time-covert channel design but without the optimizations from the later work.
The evaluation on an embedded platform of the time-covert channel with frame schedul-
ing optimization is due to the later work [30]. The data throughput and security level
of the time-covert channel with frame scheduling optimization is compared with other
proposals as well.

4.1 Background on CAN timings and related works

In one of the previous research works of the author [24], an authentication protocol is
implemented based on a covert timing channel. The authentication protocol did not use
the data field of the CAN message and was entirely controlled through timing delays
using the hardware timers of a microcontroller. One limitation of this work is related to
the performance of the authentication protocol when real-world CAN data is transmitted
on the same network where the covert timing channel is implemented and which results
in a very reduced covert bit rate. The authors from a different research work [96] also
propose a covert timing channel for authenticating the transmitters, but the authentication
rate is also reduced to only one covert bit for each frame.

One option for improving the performance of covert timing channels is to optimize
the frame transmission times without reducing the communication channel busload. Op-
timization is based on time synchronization between nodes connected on the CAN bus.
This is rather a challenging aspect since the Controller Area Networks do not have a spe-
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cific clock line and nodes usually rely only on their local time base. Recent industry pub-
lications require time synchronization support for automotive communication networks
[97], with a worst-case accuracy for CAN node reference clocks of 10µs, as shown in
section 4.1 from [98]. This means that the assumptions for implementing a time covert
channel need to be aligned with the current requirements of the automotive industry con-
sidering the aforementioned specifications. The importance of time synchronization is
also confirmed by the availability of CAN-based time-triggered communication proto-
cols that were standardized [99] based on proposals from the past like Time Triggered
CAN (TT-CAN) [100].

In case there is no traffic optimization, the inter-frame delays from a real-world ve-
hicle trace are usually in the area of 20µs but can vary up to 4ms or more, as shown in
Figure 4.1. The information from this figure is presented for a CAN bus where cyclic
messages are transmitted by genuine nodes but they arrive at random times on the bus
with certain delays, whenever arbitration occurs, reducing the inter-frame space when-
ever this happens. By optimizing the frame scheduling, specific inter-frame delays are
predefined in order to follow a periodic pattern, as shown in Figure 4.2. The busload
for both scenarios is around 30%-40%, which is common for CAN buses used in the
automotive industry.

Figure 4.1: Delays between frames: real-world car at a busload of 30− 40%

4.1.1 Clock skews and limitations in a previous work

In order to explain the limitations of a previous work [24], the first thing that needs to be
discussed is how the clock skews accumulate and what is the main reason behind that.
Thereby, the frames transmitted by three ECUs at a specific time interval, δ are shown
in Figure 4.3. Due to internal clock imperfections, each node has a different view of δ
which is noted as δ1, δ2 and δ3 for ECU1, ECU2 and ECU3. If ECU1 measures the
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Figure 4.2: Delays between frames: optimized traffic on the setup at a busload of 30 −
40%

reception time for frames transmitted by ECU2 and ECU3, the delays caused by clock
imperfections will accumulate. In Figure 4.3, the clock skew representation is shown
for ECU2 and ECU3, as seen by ECU1. The differences between δ3 and δ1 increase
over time, so the slope for the skew is positive while the differences between δ1 and δ2
decrease in time, so the slope for the skew is negative. This means that the internal clock
from ECU1 is faster than the clock from ECU2, but slower than the one from ECU3.

t0δ1 

ECU1

ECU2

ECU3

2δ1 3δ1 

δ2 2δ2 3δ2 

δ3 2δ3 3δ3 

T1(δ3)-δ1

T1(2δ3)-2δ1

T1(3δ3)-3δ1

T1(δ2)-δ1

T1(2δ2)-2δ1

T1(3δ2)-3δ1

δ1 2δ1 3δ1 

t

Figure 4.3: Accumulation of clock skews for ECUs broadcasting at interval δ

In Figure 4.4 from the previous work [24], the clock skews that are depicted are
measured either by an Infineon board or a Vector VN adapter for frames that are trans-
mitted by an Infineon TC277 microcontroller. The frame transmission is done follow-
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Figure 4.4: Skews for a frame sent from an Infineon TC277 as recorded by an Infineon
board (left) and CANoe/VN CAN adapter (right) in [24]

ing a cycle time, but with delays, which are added based on timer ticks of 10ns, set at
±100,±250,±500 which are visible in both sides of the figure. This leads to different
slopes for each clock skew that depend on the delays and a different arrival time for the
frames as seen by the Infineon node and the Vector VN adapter.

Unfortunately, the design from the previous work [24] is limited by the bus traffic
that is not optimized which reduces the performance of the time-covert channel. This is
shown in Figure 4.5 where, as presented on the left side, if the bus is free, no additional
delays are visible. In the same figure, but on the right side, it is shown what happens
when frames transmitted using the covert channel are delayed by un-optimized regular
bus traffic. Additional delays caused by arbitration or a heavily loaded bus cause the
receiver nodes to report false positives, failing to authenticate genuine frames on the
time-covert channel that arrive late due to arbitration. One way to mitigate this limitation
is to optimize frame scheduling on top of the time-covert channel, which will prevent
arbitration between genuine frames and cause unexpected delays for the transmission
and reception time.

4.1.2 Worst-case arrival times

An important aspect that needs to be discussed before optimizing the frame scheduling
is the worst-case arrival time for frames transmitted on the CAN bus. Considering that
ID-based arbitration from the Controller Area Networks allows frames with lower ID
values to be transmitted first on the bus, frames with higher ID values will be transmitted
with some delays, depending on the bus load. The computation for the busy period t and
the worst-case queueing delay w are formalized for a CAN frame ID m based on the
notations and definitions from [101]:

tn+1
m = Bm +

∑
k∈hp(m)∪m

⌈ tnm + Jk
Tk

⌉
Ck (4.1)
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Figure 4.5: Forced delays as recorded in [24] for a free bus (left) vs. a bus with regular
network traffic (right)

wn+1
m (q) = Bm + qCm +

∑
k∈hp(m)

⌈wn
m + Jk + τbit

Tk

⌉
Ck (4.2)

The Equations 4.1, 4.2 and notations from [101] are explained in what follows con-
sidering that m is the CAN frame ID that also defines its priority on the bus. In both
equations, Bm is the blocking delay caused by frames with lower ID values to be trans-
mitted before message m, Jk is the queueing jitter for the frame with ID k, Tk is the
period for that frame, Ck is its worst-case transmission time, while hp(m) is the list of
messages with a lower ID value than m. Additional terms from the second equation are
q, which is the instance of CAN frame m, Cm, which is the maximum transmission time
for CAN frame m and τbit , which is the configured bit time for CAN communication.
According to authors from [101], in order to solve the busy period t and the worst-case
queueing delay w, the equations need to be solved for n frames until the same values are
obtained for consecutive iterations, i.e., tn+1

m = tnm and wn+1
m (q) = wn

m(q).
In order to determine the busy period t and the worst-case queueing delay w in the

defined scenario, the equations are applied to 40 different IDs with cycle times of 10ms,
20ms, 50ms and 100ms. The busload measured for the scenario is of 40%, quite com-
mon for real-world vehicles. The following values are set for the terms from the previous
equations: τbit = 2µs since the CAN bus bit rate is of 500Kbps, Ck = 270µs because
the worst-case duration for a CAN frame is of (55+10B)τbit based on information from
[101], where B is the payload size, and Bm = 270µs except for the CAN frame with
the lowest ID value. The busy period and worst-case queueing delay obtained for each
ID in the scenario are shown in Figures 4.6 and 4.7. The blue circles from Figures 4.6
and 4.7 are for the normal case where there are only the 40 IDs transmitted. In case ad-
ditional frames with authentication data are required for the original messages, i.e., the
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number of transmitted frames is doubled, both the busy period and queueing delay will
increase. For a 100ms cycle-time ID the busy period is of 12ms for normal traffic and up
to 34ms in case additional frames with authentication data are sent. This means that the
busload is problematic for all frames with a considerable negative impact on low-priority
frames, i.e., frames with a high ID value that are more likely to lose arbitration on the
bus. Thereby, optimizing frame allocation and authenticating frames using time-covert
channels may help in this regard, without requiring additional authentication frames.

Figure 4.6: Busy period as computed for the 40 IDs in the setup (blue) and impact of
doubling the number of IDs (red)

Figure 4.7: Worst-case queueing delay as computed for the 40 IDs in the setup (blue) and
impact of doubling the number of IDs (red)
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4.2 Related works

Even though previous research works [102], [103], [104] have studied the utilization of
time covert channels in computer networks, there was less research done for time covert
channels in Controller Area Networks [62], [96], [105]. With regards to optimization of
traffic allocation, there are a few research works that have performed these studies in the
past [106], [79], [107], [80] but without designing a time-covert channel after the traffic
is optimized. Since the proposal from CANTO [30] is relying on frame arrival time for
extracting the covert bits, there are related works which used these times for intrusion
detection [108] and [109]. A different approach that uses Bloom filters [110] on frame
arrival times together with the frame data to detect intrusions is proposed in [111].

4.3 Setup components

The embedded kit used to implement the frame optimization and time-covert authenti-
cation of frames is the AURIX TC224 Application Kit. This kit has an Infineon TC224
microcontroller that runs up to 133MHz core frequency and has 1MB of Flash memory
and 96 kB of RAM memory. The CANoe tool from the PC together with the VN1640
adapter from Vector are used to locally record the traffic data. The local files are analyzed
using the Mathematica tool, with respect to timing for frame scheduling optimization and
time-covert authentication. All hardware components used in the experiments are shown
in Figure 4.8.

The software application allows transmission of frames inside δ intervals using the
CCU6 (Capture/Compare Unit) timer configured to trigger interrupts every 1µs as base
configuration. The authentication data is computed in the main function using a MAC
that takes into account the frame data and a frame counter, also incremented as part of
the interrupt after a frame is transmitted. The last 7 bits of the MAC are used as ticks to
introduce an additional delay to the base configuration of the timer interrupt. This delay
is added to the cycle time of the frame together with the value of ϵ, also represented as
ticks. Whenever the timer ticks have passed, the authentication delay ξ is set for the
next timer interrupt. Whenever the interrupt is triggered, the frame is transmitted by the
TC224 node. The configured values for ϵ and the cycle times for each frame are defined
in the MultiCAN+ software component. After initialization of the CAN driver with the
500Kbps data rate and initialization of the hardware timer, frames are transmitted with
delays based on the value of ϵ and the authentication delay ξ from timer interrupts. After
each frame is successfully transmitted, the frame counter is incremented and a new MAC
value is computed for each frame using the counter and the data bytes.
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Figure 4.8: Experimental setup used for generating and recording CAN traffic according
to the proposed mechanisms

4.4 Optimizing traffic allocation

Frame scheduling optimization is required for preserving the data rate of the time-covert
channels. Four frame scheduling optimization algorithms are presented, providing the
theoretical models and results for their implementation on the embedded device from the
experimental setup. Then, the evaluation of the time-covert channel performance is done
using two of these algorithms.

For each of the algorithms, several pairs of frame identifiers are defined with their
cycle time represented as {(id1,∆1), (id2,∆2),..., (idn,∆n)}. On-event frames are not
considered since the focus is the design of time-covert channels for periodic messages.
The timestamp when each frame is transmitted on the bus has to be measured and used
by all receivers. In order to store the arrival time for each frame, pairs of frame identifiers
and their reception time are considered as {(id i, T

i
1), (id i, T

i
2), ..., (id i, T

i
l )}. Here, the

timestamp for reception of frame id i is T i
j ,∀j = 1..l. An assumption one can have

is that the arrival time difference between consecutive frames T i
j+1 − T i

j is equal to
∆i,∀i = 1..n, j = 1..l. This is not the case, since the arrival time seen by a receiver
node would be either faster or slower depending on the clock drift of the receiver relative
to the transmitter. Arbitration between frames allows those with lower-value identifiers
to be transmitted first whenever two nodes start a frame transmission at the same time.
Considering that frames are delayed on the CAN bus due to arbitration, the difference
between arrival times for consecutive cyclic frames increases even more, leading to a
higher T i

j+1 − T i
j compared to ∆i, ∀i = 1..n, j = 1..l.
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(i)

(ii)

(iii)

Figure 4.9: Frame arrival time and histogram distribution of frame arrival time, for frames
arriving at (i) 10ms, (ii) 40ms and (iii) 150ms delays

Frame arrival time in real-world traces. In Figures 4.9 (i), (ii) and (iii), the arrival
time and histograms for consecutive frames with a cycle time of 10ms, 40ms and 150ms
are shown. The delays from the expected frame arrival time are presented on the left side,
while the number of frames that deviate from their nominal cycle time is depicted on the
right side. As shown in these figures, it is common for frames with 10ms cycle time to
deviate with up to 400µs while frames with 150ms cycle time may arrive 2− 4ms later
than their expected time. The time-covert channel requires frames to be delayed only by
up to a few dozen microseconds from their expected arrival time in order to be considered
authentic. In practice, frames are delayed by up to 4ms depending on their priority, so it
is required to optimize frame scheduling to ensure the time-covert channel effectiveness.
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4.4.1 Frame scheduling optimization

In case a node transmits two frames with specific cycle times on the bus, if the cycle times
for the frames are ∆i,∆j , i, j = 1..n, the frame transmission for them happens at the
same time at multiples of lcm(∆i,∆j). The lcm represents the least common multiple
of the cycle times for frames i and j. For example, at every 150ms, if ∆i = 50ms
and ∆j = 75ms, the transmission time for frames i and j is the same, but one of the
frames is transmitted with a delay on the bus. This rule can be extended to any number of
frames because their transmission is started at the same time on the bus at every multiple
of lcm(∆1,∆2, ...,∆n), for n frames. Due to frame arbitration, any collision leads to
one or more frames being transmitted with a delay from their expected cycle time. This
affects the performance of the time covert channel because the delay causes arrival time
to be out of the tolerance range. In order to prevent arbitration between cyclic frames
from happening on the communication channel, a small delay is considered for each
frame. An extension to all frame identifiers and their cycle times with the additional
delay is {(id1,∆1, ϵ1), (id2,∆2, ϵ2), ..., (idn,∆n, ϵn)} where ϵi, i = 1..n is the delay.
This leads to a transmission and arrival time for frames at multiples of their cycle time
with a small offset, i.e., k∆i + ϵi , compared to only using their cycle time, i.e., k∆i.
The intention is to find a set of offsets, ϵi, i = 1..n, that ensures there are no collisions
between legitimate frames that implement the time-covert channel, while maximizing the
inter-frame space, whenever possible.

In order to define the frame scheduling optimization algorithms, the dataset shown in
the relation below is used. The dataset from Equation 4.3 contains the information for n
frame identifiers together with their cycle time and the offsets that are set for each frame.

T1 = {(id1, ϵ1), (id1,∆1 + ϵ1), ..., (id1, (l − 1)∆1 + ϵ1)}
T2 = {(id2, ϵ2), (id2,∆2 + ϵ2), ..., (id2, (l − 1)∆2 + ϵ2)}

.........

Tn = {(idn, ϵn), (idn,∆n + ϵn), ..., (idn, (l − 1)∆n + ϵn)}

(4.3)

The frame scheduling is considered to be optimal only if |T1 ∪ T2 ∪ ... ∪ Tn| =
|T1| + |T2| + ... + |Tn| where |Ti|, i = 1..n is the cardinality for every set from the
previous relation. The expectation is that all frames arrive at the expected time based
on the scheduling table. Considering that T ∗ = {t1, t2, ..., tn} is a set of the recorded
timestamps for k frames transmitted on the bus, the inter-frame time between each two
frames is ti − ti−1, i = 1..k. In order to maximize the inter-frame time, a quality factor,
q, that is used needs to be minimized. The quality factor, q, is defined as:

q =
1

n

n∑
i=2

1

ti − ti−1
(4.4)

The quality factor from Equation 4.4 needs to have a low value in order to minimize

BUPT



4.4. OPTIMIZING TRAFFIC ALLOCATION 67

the sum of inter-frame spaces and optimize the frame scheduling algorithms. Since the
time between consecutive frames, ti − ti−1, ∀i = 2..n, is represented in seconds, the
quality factor is measured in Hz or s−1.

A practical instantiation. As inputs defined for optimization of the frame scheduling
in the algorithms that follow, the array of frames that is used with the required cycle time
specified in milliseconds is ∆:

∆ = {10, 10, ..., 10︸ ︷︷ ︸
×6

, 20, 20, ..., 20︸ ︷︷ ︸
×8

,

50, 50, ..., 50︸ ︷︷ ︸
×12

, 100, 100, ..., 100︸ ︷︷ ︸
×14

}
(4.5)

The array from Equation 4.5 contains 6 frames with a cycle time of 10ms, 8 frames
with the cycle time of 20ms, 12 frames with the cycle time of 50ms and 14 frames with
the cycle time of 100ms. This means a total of 40 distinct frames with various cycle
times for which ϵi, i = 1, n is added in order to delay the transmission time for each
iteration, based on the predefined scheduling table.

Binary Symmetric Allocation. This is the first algorithm that is defined, which is
both easy to use and provides the expected results with regards to timings of frames
transmitted on the bus. The window size, w, defined for the scheduling optimization
algorithm, is the minimum cycle time value. The offset ϵ1 is set at half of the window
size while the following offsets are set at one quarter and three quarters of the window
size, w. The same logic is applied to the following steps until all frames are allocated in
the scheduling table. The expected frame timings with a detailed overview of the delays
lower than 500µs or 1.2ms are shown on the left and right side of Figure 4.10. The
experimental results presented in Figure 4.11, as graphical representation and histogram,
show a clear relation between theory and implementation but with some differences in
the maximum values for inter-frame time. The delays are expected to reach the value
of 1.2ms, but based on the experimental results, there are some delays between frames
of 2.5ms. These are caused by the transmitters, in case they miss the transmission time
slot, and the frame is sent at a later point in time. For the Binary Symmetric Allocation,
150µs is the minimum inter-frame time, which seems to be too short for some frames.

Randomized Search Allocation. This is the second algorithm that is defined, based
on a set of offsets, ϵi, i = 1..n, which are equally spaced inside the defined time window,
w, for the frame scheduling optimization. The inter-frame space is computed to be the
minimum cycle time of the frames divided by the count, i.e., min (∆1,∆2, ...,∆n)/n.
Other values for the inter-frame space also exist in the algorithm design as the theoretical
model and experimental results show. All offsets are randomly allocated for each frame
for a preset number of iterations. An improvement of the resulted offset list is possible by
increasing the number of iterations. The results obtained using the Randomized Search
Allocation algorithm for frame scheduling are better than those for the Binary Symmet-
ric algorithm, but there are still some delays higher than the theoretically expected ones,
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Figure 4.10: Theoretical displacement of delays in case of Binary Symmetric Allocation:
detail for delays lower than 300µs and overall view up to 1.2ms for the first 2,000 frames

Figure 4.11: Experimental measurements from CANoe of an Infineon node broadcasting
after Binary Symmetric Allocation: delays (left) and histogram distribution of delays
(right)

when running the experiments.The theoretical distribution of delays is shown in Figure
4.12, while the experimental results are presented in Figure 4.13. There are some inter-
frame times of 1.5ms or 2.5ms even though the maximum expected delays are of 1.2ms.
This happens for the same reason as for the Binary Symmetric Allocation, due to com-
putational delays for the transmitter that misses the transmission time slot. This means
that a minimum value of 250µs between frames is still too short, so an extension of the
minimum inter-frame space is done for the algorithms that are described in what follows.

Greedy Allocation. This is the third algorithm that is defined. It is based on a set
of offsets, ϵi, i = 1..n, that are generated similarly to the Randomized Search Allocation
algorithm. In order to optimize the delay offset value distribution, so, to minimize q,
the allocation of delays is performed in ascending order based on the frame cycle time.
The timing issue identified for the first two algorithms is also applicable for the Greedy
Allocation as well since the minimum inter-frame time is also set to 250µs. In order to
mitigate this limitation, an update for the Greedy Allocation with a multi-layer version is
defined, and explained in what follows.

Multi-Layer Greedy Allocation. This is the extension of the Greedy Allocation
algorithm called Multi-Layer Greedy Allocation. Compared to it, in order to increase
the minimum inter-frame space time, the way the offsets, i.e., ϵi, i = 1..n, are gen-
erated is changed. Now, instead of selecting the delays based on e as before, delays
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Figure 4.12: Theoretical displacement of delays in case of Randomized Search Alloca-
tion: detail for delays lower than 500µs and overall view up to 1.2ms for the first 2,000
frames

Figure 4.13: Experimental measurements from CANoe of an Infineon node broadcasting
after Randomized Search Allocation: delays (left) and histogram distribution of delays
(right)

are selected based on any multiple of e that is lower than the cycle time of the frame
∆i. This means that frames with larger cycle times have a higher offset outside of the
ranges defined for Randomized Search or Greedy Allocation algorithms which are of 0
to min (∆i), i = 1..n. The theoretical distribution of delays for Multi-Layer Greedy Al-
location is shown in Figure 4.14 while the experimental results are presented in Figure
4.15. For the Multi-Layer version of Greedy Allocation, the minimum inter-frame space
is extended to 500µs which is double compared to 250µs from the normal Greedy Allo-
cation. This allows the algorithm to provide experimental results with the same patterns
as the theoretical models, without additional delays between frames caused by nodes
missing frame transmission time slots due to a low inter-frame space.

GCD-based Allocation. This is the last optimization algorithm that is defined, also
named Circular-GCD algorithm. It is based on the allocation of delays with at least 500µs
inter-frame space and a small offset, δi, i = 1..n. The small offset is a multiple of the
gcd(∆1,∆2, ...,∆n) with the condition that 500µs + δi does not extend the cycle time
defined for the frame, ∆i. As experimental values, the array was configured as shown in
Equation 4.6:
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Figure 4.14: Theoretical displacement of delays in case of Multi-Layer Greedy Alloca-
tion: detail for delays lower than 300µs and overall view up to 1.2ms for the first 2,000
frames

Figure 4.15: Experimental measurements from CANoe of an Infineon node broadcasting
after Multi-Layer Greedy Allocation: delays (left) and histogram distribution of delays
(right)

ϵi:1,40 = {0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 13.0, 3.5, 13.5, 4.0, 14.0,
4.5, 14.5, 5.0, 15.0, 25.0, 35.0, 45.0, 5.5, 15.5, 25.5, 35.5,

45.5, 6.0, 16.0, 26.0, 36.0, 46.0, 76.0, 86.0, 96.0, 6.5, 16.5,

26.5, 36.5, 46.5, 56.5, 66.5, 76.5}

(4.6)

The theoretical distribution of delays for the GCD-based Allocation is shown in Fig-
ure 4.16, while the experimental results are presented in Figure 4.17. For the GCD-based
Allocation algorithm, the minimum inter-frame space is extended to 600µs, but this limits
the maximum inter-frame space to 2.2ms. Similar to the Multi-Layer greedy, GCD-based
Allocation works as expected for the experiments, so the experimental results show the
same patterns as the theoretical models. By limiting the minimum inter-frame space to
500µs, the maximum inter-frame space is of 4ms. Since the design goal is to minimize
the quality factor, q, without maximizing the inter-frame space, the values of 500µs and
4ms are used for the minimum and maximum IFS when computing the value of q.

A summary of the frame scheduling optimization algorithms that shows the qual-
ity factor, minimum and maximum inter-frame spaces is presented in Table 4.1. The
minimum inter-frame space from the Binary Symmetric search, Randomized Search and
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Figure 4.16: Theoretical displacement of delays in case of GCD Allocation at 0.6ms
allocation: detail for delays lower than 300µs and overal view up to 1.2ms for the first
2,000 frames

Figure 4.17: Experimental measurements from CANoe of an Infineon node broadcasting
after GCD Allocation at 0.6ms inter-frame space: delays (left) and histogram distribution
of delays (right)

Greedy algorithms turns out to be problematic since it is lower than or close to the time
it takes a node to transmit a frame on the vehicle bus. Whenever the scheduled minimum
inter-frame space is of 150µs − 250µs, in case of arbitration, each frame that wins the
bus delays the transmission time of the next one, in a cascading effect. Then, when the
bus reaches idle state for some time, the frame transmission is restarted according to the
scheduling table. Unfortunately, the minimum inter-frame space of 150µs − 250µs is
not enough for the time covert channel to work without any performance degradation.
On the other hand, due to lack of collisions between frames, the Multi-Layer Greedy and
Circular GCD Allocation algorithms can be used for implementing a time-covert chan-

Table 4.1: Comparison of allocation algorithms
Completeness q-Factor Min IFS Max IFS

(s−1) (ms) (ms)

Binary Sym. Search ✓ 2.37 0.15 2.5
Randomized Search ✓ 2.51 0.25 3.75

Greedy Search ✓ 2.39 0.25 2.5
Greedy ML Search ✓ 1.50 0.5 1.25

Circular GCD ✓ 1.86 0.5 4
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Figure 4.18: Basic depiction of the addressed scenario: ECUs sending/receiving packets
on the CAN bus, authentication data is encoded in delays

nel. Additionally, the busload is uniform whenever the values of minimum and maximum
inter-frame space are close. This can be seen as an option for practical implementations.
Now, the algorithms are classified based on the quality factor in ascending order. The
Multi-Layer Greedy provides the best allocation with q = 1.50, followed by Circular
GCD with q = 1.86, Binary Symmetric Allocation with q = 2.37, Greedy search with
q = 2.39 and Randomized Search Allocation with q = 2.51.

4.4.2 A time-covert authentication protocol

The design is based on a covert timing channel that provides authentication of frames
without using any byte from the data field. A summary of the proposal is shown in
Figure 4.18, where 2 nodes communicate on the CAN bus. Each node transmits frames
that have specific cycle times, ∆i, i = 1..n, with a small delay ϵi and and offset computed
as authentication data ξ. The offset is based on the frame identifier and computed over the
data bytes. The receiving node computes the offset, ξ, using the frame data field and then
verifies that each frame arrived with the expected drift ξ from its cycle time, taking into
account the small delay ϵi. The traffic is logged on a PC using a CAN Interface connected
to the same bus, e.g. a VN1640A from Vector, in order to evaluate the timings for each
frame sent on the network. Some of the improvements that timing covert channel with
authenticated delays for CAN communication bring are:

• Frame authentication does not require additional bytes from CAN frames,
• Additional frames with authentication data to be transmitted on the bus are not

required,
• It preserves the busload since authentication data is based only on the frame trans-

mission timing.
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The design goal for the frame scheduling optimization algorithms is to allow the time
covert channel from the previous work of the author, INCANTA [24], to work without
having its performance affected by frame collisions due to arbitration. The same imple-
mentation of the time covert channel is considered as it was done in INCANTA [24],
with small changes because now all frames also have the additional offset ϵi, i = 1..n
that results from the frame scheduling optimization algorithms. Thereby, the protocol
used for frame authentication using the time covert channel is denoted as INCANTA
and described below, taking into account its name from the previous research paper [24].
Each node that is part of the time covert channel has to follow the steps shown below:

1. SendCyclic(id i,m) where each node transmits a frame with the identifier id i and
the message content m at a fixed time interval k∆i + ϵi. The value of ∆i is the
cycle time of the frame, ϵi is defined as part of the frame scheduling optimization
algorithm and the authentication value, denoted as ξ or tag , is computed before
each transmission by the node as MAC k(k, id i,m), i = 1..n, using the iteration
for individual frames ki as freshness counter and the content of the message, m, as
input for the MAC. After k∆i + ϵi time has passed, the sender waits for tag timer
ticks before transmitting the frame.

2. RecCyclic(id i,m) where each node verifies if the received message falls within the
expected tolerance of the time covert authentication protocol based on the received
time. This means that for each iteration, k, nodes that receive the frame compute
MAC k(k, id i,m), i = 1..n and verify if |tk − tk−1| − (∆i + Tk − Tk−1)| ≤ ρ
to ensure the frame was received at time k∆i + ϵi + ξ, within the tolerance ρ. If
the arrival time is within expected tolerance, ρ, the frame is considered legitimate.
Otherwise, if it is received outside of the expected range, it is considered as an
intrusion.

A secret key is shared between nodes, k, used in the protocol for computing the mes-
sage authentication code MAC k(k, id i,m), i = 1..n. No key exchange is required to be
performed between nodes. The assumption is that the key is known by the nodes before
the time-covert channel is established. The scheduling table, T ∗, shown in Equation 4.7
is also pre-shared by the nodes.

T ∗ = {(id1,∆1, ϵ1), (id2,∆2, ϵ2), ..., (idn,∆n, ϵn)} (4.7)

This is required, so genuine receivers are able to compute the expected time for each
frame upon arrival using the expected cycle time ∆i and the offset from the scheduling
optimization protocol ϵi for each frame id i. During the experiments, the accumulated
clock skews for different nodes are also seen as a contributor for the measured delays,
since they affect the receive time even more than stuffing bits, relative to the expected
arrival time for each frame.
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4.4.3 Adversary model

The adversary model considered for the security analysis is the Dolev-Yao adversary [86]
with full control over the CAN bus. Another assumption in the design of the time-covert
channel is that genuine nodes use pre-shared keys and frame scheduling tables, while
adversarial nodes are external and do not have this knowledge. This is a realistic approach
since the car manufacturers are able to set keys inside the vehicle units or to request the
suppliers to do so without making them public. Usually, attacks on in-vehicle buses
are external and do not have inside information regarding previously shared knowledge
between nodes. In case a genuine transmitter is replaced as a result of an attack, the
adversarial node needs to transmit all the IDs expected from the genuine node following
the scheduling table and using the message authentication code. This means the adversary
success rate can be defined as the ratio between the delay tolerance, ρ, and the protocol
security level ℓ, as shown in Equation 4.8:

γadv =
ρ

2ℓ
(4.8)

The experiments show that a value for the delay tolerance, ρ, of up to 5µs can be used.
Considering that standards which define time-synchronization methods [98] require an
accuracy error of maximum 10µs between CAN nodes, an extension up to 10µs for the
tolerance used by the proposed time-covert channel can be considered.

4.4.4 Results with optimized traffic and a single sender

Since the CAN baud rate configuration is of 500Kbps, the worst-case frame duration is of
270µs. This means that, by using the Multi-Layer Greedy or Circular-GCD Allocation
algorithms which allow a minimum IFS of 500µs, the bus is idle for at least 230µs.
The security level that can be achieved for one frame is of 8 bits, as truncated MAC,
which results in an authenticated delay of up to 255µs. Even though this will cause
collisions on the communication channel depending on the frame duration, reducing it to
7 bits, as truncated MAC, can mitigate the risk and allow authentication delays to be done
with at most 127µs. The idle bus time is the main reason for choosing Greedy-ML and
Circular-GCD as frame scheduling algorithms. Due to frames that may vary in length
due to the number of stuffing bits, not all frames are deemed authentic, even for the 7 bit
truncated MAC. The inter-frame space available on the communication channel is shown
in Figure 4.19, without (i) and with (ii) the covert channel in place while using Circular
GCD optimization algorithm. As expected, without the covert channel in place, there
is no deviation seen for the frame scheduling algorithm that allows a minimum IFS of
500µs. Comparing the deviations on the right side of Figure 4.19, it is obvious that if
there is no time covert channel in place, the delays are always close to the expected value.
When the time covert channel is used, the variations are random based on the value of
the 7-bit truncated MAC with deviations that may be of up to 127µs. The variations are
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(i)

(ii)

Figure 4.19: Interframe delays (broadcast from Infineon TriCore node) in case of Circular
GCD optimization ϵ = 0.5 without a covert channel (i) and with the covert channel in
place (ii)

unpredictable for an adversary that cannot compute the value of the MAC since it does
not have knowledge of the secret key k so the time covert channel is resilient to replay
attacks.

All of the experiments show a good distribution of reception time, with a deviation
of up to ±15µs from the expected time. This variation may be influenced by a different
number of stuffing bits in consecutive frames since 15µs is the time it takes to transmit
7-8 bits at a bit rate of 500Kbps for CAN. Additional or fewer stuffing bits influence the
frame length. Without taking into account this change, the actual reception time differs
from the expected one. Deviations from the anticipated time for IDs transmitted at 10ms
(i), 20ms (ii), 50ms (iii) and 100ms (iv) are shown on the left side in Figure 4.20. On
the right side, the deviation time histogram distribution is presented for the same IDs.
This shows that most of the deviations are inside the ±5µs interval with few values that
go up to ±10µs or ±15µs for the ID with a 10ms cycle time. The variation is reduced to
±5µs from the expected reception time if stuffing bits from each frame are counted and
taken into account for the frame duration, as presented in what follows.

In Figure 4.21, the experimental data is shown for the same IDs that are visually
depicted in Figure 4.20. On the left side of Figure 4.21, the deviations shown are in the
±5µs range. On the right side of Figure 4.21, in the histogram distribution, most of the
values that are shown are in the ±2µs range. This means that the deviation represents
only a 1 bit time difference for the 500Kbps CAN bit rate. Since the overall deviation is in
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(i)

(ii)

(iii)

(iv)

Figure 4.20: Experimental measurements for covert authenticated frames from an Infi-
neon TriCore node: deviation from the expected delays (left) and histogram distribution
(right) for an ID sent at 10ms (i), 20ms (ii), 50ms (iii) and 100ms (iv)

the ±5µs range, by setting the tolerance ρ to 5µs, it would lead to a 100% success rate for
frames transmitted on the time-covert channel to be seen as legitimate. Setting different
values for the tolerance ρ would lead to various success rates for genuine transmitters
and adversarial nodes based on the time a frame is received if compared to the expected
reception time. This is shown in Table 4.2 where single frame success rates vary from
93.34% to 100% for genuine transmitters and 3% to 7.8% for adversarial nodes when
the tolerance ρ is set in the 2 − 5µs range. The results are based on the experiments
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(i)

(ii)

(iii)

(iv)

Figure 4.21: Experimental measurements for covert authenticated frames from an Infi-
neon TriCore node: deviation from the expected delays (left) and histogram distribution
(right) for an ID sent at 10ms (i), 20ms (ii), 50ms (iii) and 100ms (iv)

Table 4.2: Success rates (%) with tolerance ρ ∈ {2, 3, 4, 5}µs at ℓ = 7
ρ k = 1 k = 2 k = 3 k = 4 k = 6

2µs
γecu 93.34 87.14 81.34 75.93 66.10
γadv 3.1 0.09 0.003 0.00009 9.3 × 10−8

3µs
γecu 99.56 99.12 98.68 98.25 97.38
γadv 4.7 0.22 0.01 0.0004 1.1 × 10−6

4µs
γecu 99.99 99.98 99.97 99.96 99.94
γadv 6.2 0.39 0.02 0.001 5.9 × 10−6

5µs
γecu 100 100 100 100 100
γadv 7.8 0.62 0.04 0.003 0.00002
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(i) (ii)

(iii) (iv)

Figure 4.22: Gaps due to synchronization loss in the expected arrival time of an ID
(i), detailed view in the [−10µs, 10µs] range (ii), histogram distribution of devia-
tions in the [−10µs, 10µs] range (iii) and histogram distribution of deviations in the
[−200µs,−10µs] ∪ [10µs, 200µs] range (iv)

performed on 1.2 million frames. Acceptance rate for genuine transmitters was computed
as mean value of acceptance rates for all frames. The values for the acceptance rates are
of 91.4% to 95.2% for the 2µs tolerance, 99.21% to 99.93% for the 3µs tolerance and
99.96% to 100% for the 4µs tolerance. The acceptance rates for adversarial transmitters
are computed with the tolerance set to 10mus for the ±5µs range and the security level ℓ
set to 7 bits. In order to improve the time-covert channel against adversarial transmitters,
the acceptance rate is defined in Equation 4.9 over multiple frames, as formalized in the
following Equation, where k is the number of frames:

γ♦(k) = γk♦,♦ ∈ {adv , ecu} (4.9)

As also shown in Table 4.2, by using the acceptance rate over 6 frames for a tolerance
set to 5µs, all frames transmitted by genuine nodes are seen as legitimate. The false
positive rate is of 2 out of 10 million frames, i.e., frames transmitted by adversarial nodes
that are seen as legitimate.
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4.4.5 The multi-sender case and noisy channels

In order to evaluate the time covert channel in realistic scenarios, the performance for a
scenario with multiple senders and the influence of un-optimized traffic are analyzed. In
case of multiple senders, the observed issues are related to desynchronization between
nodes and clock skew accumulation. These problems are solved by using periodic re-
synchronization and de-skewing of the clocks. Additionally, frames from un-optimized
traffic collide with the frames that are transmitted based on the scheduling tables and
cause delays that decrease the performance of the time-covert channel.

In order to define a multi-sender setup, the implementation of the time covert chan-
nel is ported to a second node, an Infineon AURIX TC237 microcontroller, using a sim-
ilar application kit as for the Infineon AURIX TC224 node. Both nodes communicate
on the CAN bus together with the Vector VN1640 equipment used to log the transmit-
ted frames. The time covert communication is started by the nodes after receival of
a start frame sent by the VN1640 from the CANoe tool. Loss of synchronization be-
tween nodes is noticed while analyzing the collected logs for a frame with a 10ms cycle
time that is shown in Figure 4.22 (i). Delays from the expected time are within the
range of ±200µs which is close to the frame duration of a 64-bit frame on CAN for a
bit rate of 500Kbps. This is the blocking delay Bm that was earlier described for the
worst-case arrival time on the CAN bus. The analyzed areas from Figure 4.22 are split
in the ranges of ±200µs (i) and ±10µs (ii) showing the histograms for both areas in
(iii) and (iv). Based on the experimental results, it is clear that most of the values are
within the ±10µs range. In order to improve the results, based on the measured clock
skew of one node relative to the other, an update is done in the software implemen-
tation to reduce the accumulated clock skew effect. The TC237 code is updated such
that the current time of TC237 is taking into account the skew of 0.999965645, rela-
tive to TC224’s clock. This means that the node updates its current internal time with
3.4355µs every 100ms, citime = citime − 3.4355 ∗ (citime/100, 000). This update
is required due to the skew accumulation, which means that every 1 second, the node
needs to adjust its internal clock with 34.355µs because the measured skew difference
is of 1s − 0.999965645s = 0.000034355s, following the recommendation from exist-
ing works which study skew adjustment techniques [112]. The measured delays after
performing the de-skewing of TC237 relative to TC224 are shown in Figure 4.23. Now
all the values are within the ±5µs range and in line with the previous experiments, with
optimized traffic and a single sender, which means that node synchronization and clock
de-skewing is successful. Even though the multiple sender scenario is verified using only
two nodes, extending this to more than two is possible by following the same approach
with regards to re-synchronization of transmitter clocks. This is also required as part of
AUTOSAR time synchronization protocol for CAN [98], where the maximum allowed
tolerance is of 10µs between all nodes. This synchronization error is used as tolerance
value for the time covert channel, but it does not affect the frame scheduling optimization
algorithms, which allow a higher inter-frame space of 150µs to 500µs.
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(i) (ii)

Figure 4.23: The same ID after de-skewing: deviations from the arrival time (i) and their
histogram distribution (ii)

The un-optimized scenario is based on a log collected from a real-world vehicle that
is replayed on the CAN bus using the Vector tool. There are two tests that are performed,
one using half of the log data, i.e., 18% car traffic, and the other with the full log data,
i.e., 36% car traffic. The TC224 contribution is of 18% of the busload in both scenarios
while sending frames based on the frame scheduling algorithm and using the time-covert
channel.

The results from both scenarios, multiple senders and single senders with un-optimized
traffic from the car are shown in Table 4.3. The same values for the tolerance ρ ∈
{2, 3, 4, 5}µs and for the security level ℓ = 7 are used as in the previous experiments.
This table contains information relative to multiple sender transmission and the impact
of implementing the frame scheduling algorithm without periodic synchronization be-
tween nodes. It also contains the effect of re-synchronization and of de-skewing to the
acceptance rates. The success rates for legitimate nodes are affected if synchronization
or de-skewing is not performed. In case they are, the acceptance rate is of 99.68% for
a ±5µs tolerance, similar to the single-sender approach, and very close to 100%. This
means that extension to multiple senders is possible if they are re-synchronized and the
clock skew between them is periodically adjusted. The final rows from Table 4.3 show
the results for the time covert channel for a single sender over un-optimized traffic. In
case of 18% un-optimized traffic, the success rate is at most 65.81% for a tolerance of
±5µs, while for the same tolerance, in case of 36% un-optimized traffic, the success rate
is 38.7%. In order to improve the performance of the time-covert channel, receivers must
use k-out-of-n frames instead of single frames. This will also increase the chances for
adversarial nodes to transmit frames that are considered legitimate. The success rate for
both genuine and adversarial nodes is defined in Equation 4.10 based on the binominal
distribution:

γ♦(k, n) =
n∑

l=k

(
n

l

)
γl♦(1− γ♦)

n−l,♦ ∈ {adv , ecu} (4.10)
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Table 4.3: Success rates (%) for legitimate frames in different scenarios (ρ ∈
{2, 3, 4, 5}µs and ℓ = 7)

Scenario ρ
2µs 3µs 4µs 5µs

Single Sender 93.34 99.56 99.99 100
Dual Sender (opt.) 59.19 71.29 77.76 80.25
Dual Sender (opt./sync.) 69.38 76.40 77.56 77.89
Dual Sender (opt./sync./de-skew) 85.07 95.52 98.68 99.68
Single Sender (on 18% car traffic) 34.30 50.81 61.70 65.81
Single Sender (on 36% car traffic) 17.75 28.02 35.70 38.70

Table 4.4: Success rates (%) for k-out-of-n scheme with tolerance ρ ∈ {2, 3, 4, 5}µs,
ℓ = 7, n = 24 over 18% car traffic

ρ k = 6 k = 8 k = 10 k = 12 k = 14

2µs
γecu 88.2321 61.5313 28.7884 8.23784 1.35971
γadv 0.00770 0.00004 1.2×10−7 1.6×10−10 1.2×10−13

3µs
γecu 99.7402 97.3359 86.4570 61.1860 29.7967
γadv 0.06864 0.00087 5.4×10−6 1.8×10−8 3.1×10−11

4µs
γecu 99.9946 99.8746 98.5952 91.6052 71.2112
γadv 0.30101 0.00689 0.00007 4.7×10−7 1.5×10−9

5µs
γecu 99.9992 99.9727 99.5740 96.5006 83.8611
γadv 0.89451 0.03255 0.00059 5.7×10−6 2.9×10−8

The values for k and n are chosen by following the experimental results. They are
shown together with the acceptance rates in Table 4.4. By allowing an arrival time of
6 out of 24 frames to be within the expected tolerance, the success rate from Table 4.3
increases from 65.81% for 5µs tolerance to 99.9992% (which is very close to 100%).
Increasing the value of k reduces the performance of the time-covert channel but also re-
duces chances for adversarial nodes to inject frames that are considered legitimate. The
assumption of use for the time-covert channel is that receivers are continuously moni-
toring if 6 out of 24 frames are received within the expected time and, if not, they are
discarded and an intrusion is reported. For the experimental data with 36% car traffic, the
k and n values are increased to k = 8 and n = 48 in order to achieve a 99.97% success
rate for legitimate transmitters and a lower value of 3.13% success rate for adversarial
nodes. These rates may be considered acceptable taking into account that either 1/2 or
2/3 of the entire bus load is actually un-optimized, noisy traffic transmitted on top of the
time-covert channel.

4.4.6 Channel data rate

Using the Arimoto-Blahut algorithm [113], [114] the maximum capacity for the time-
covert channel with un-optimized (noisy) and optimized traffic is analyzed, considering
a security level of 8 bits. The first step is the extraction of the channel matrix, using a
free MATLAB implementation of the Arimoto-Blahut algorithm 1. Then, the theoret-

1https://www.mathworks.com/matlabcentral/fileexchange/
32757-channel-capacity-using-arimoto-blahut-algorithm
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ical channel capacity is calculated resulting in ≈ 4.9 bits per frame. This means that
the required AUTOSAR security level of 24 bits [72] can be achieved using six consec-
utive frames. The channel capacity for the optimized traffic can be estimated based on
the tolerance value that is set. By setting the tolerance to ρ = 10µs, the covert channel
is not affected by delays and the theoretical channel capacity is reduced to ≈ 4.6 bits
per frame. Since, for the experiments, a security level of 7 bits is used to avoid timing
collisions between frames, the time covert channel data rate is reduced to log2(127/10),
which is of 3.66 bits per frame. In what follows, the covert channel data rate is mea-
sured in bits/second (bps). Considering the effective throughput from the experiments of
1, 379 frames/second, the maximum achievable data rate using a 8-bit security level is of
6, 757bps. The variant used in the experiments with a security level of 7 bits has an ef-
fective covert channel data rate of 1, 379× 3.66 = 5, 047bps. Considering that IDs used
in the experiments have a cycle time that varies from 10ms to 100ms, the effective data
rate of the implemented time covert channel would be of 36 − 366bps for the frames.
The maximum possible data rate of the channel is of 49 − 490bps, for the maximum
security level computed for the time-covert channel. By using more frames, both the
busload and the time-covert channel capacity will increase. For a 54% busload, by main-
taining an inter-frame space of 500µs, the channel data rate is increased to 9, 800bps, for
a tolerance of ρ = 10µs. Using the experimental results from both combined optimized
and un-optimized traffic, as shown in Table 4.3, the tolerance allows only 65.81% and
38.70% frames to be considered legitimate. These are the results for un-optimized traffic
of 18% and 36% from the total busload. The time-covert channel capacity is of 3, 321bps
for the first case and 1, 953bps for the second case.

4.4.7 Security level

Two different security levels, one of 15-bit (i) and one of 24-bit (ii) are compared in
what follows and presented in Figure 4.24. The 15-bit security level is selected since the
CRC bit field inside a CAN frame has 15 bits. Even though it is used only for integrity
checks and not for security purposes, its size is a good candidate for this comparison.
On the other hand, the 24 bit security level is required by the AUTOSAR standards [72].
In Figure 4.24, the adversarial success rate over multiple frames is shown with blue and
the adversarial success rate over k-out-of-n frames, with n = 24, with orange. For the
15-bit security level, the required level of protection against adversarial intervention can
be achieved with 6-7 frames. According to the covert channel data rate, security level
of 12 bits is reached after 3-4 frames, while the security level of 24 bits is reached after
6-7 frames. The time required for using the authentication delay is of up to 1.3ms for
3 consecutive frames and up to 6ms for 6 consecutive frames, as shown in Figure 4.25.
The timings are somehow expected since the inter-frame space is set to 500µs. The
time for achieving the security level of 24 bits required by the AUTOSAR standards
[72] is reasonable since only the MAC computation for delays is required, without any
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(i) (ii)

Figure 4.24: Adversary success rate for multiple frames, i.e., γadv (k), and k-out-of-n
frames, i.e., γadv (k, n), for: (i) k ∈ [1, 14] vs. a 2−15 security level and (ii) k ∈ [1, 16]
vs. a 2−24 security level (ρ = 5µs)

Figure 4.25: Delay between 3 (left) or 6 (right) consecutive frames

Table 4.5: Comparative performance results for covert timing channels on the CAN bus
Protocol Throughput Throughput BER Security Level

(single ID) (all IDs)

TACAN-IAT [96] 22.5 bps N/A <1% 1 bit/frame

INCANTA [62] 57 bps N/A 1.75% <5 bits/frame

CANTO [30] 36-366 bps 5047 bps 0.95% 3-5 bits/frame

influence on the communication channel busload. For the combination of optimized and
un-optimized channels, achieving the targeted security level of 24 bits would require
more frames so using k = 12 out of n = 24 frames would be necessary. This means that
it takes around 24ms for ensuring the security level in this case with an adversarial frame
success rate of 5.7 × 10−6 and with a legitimate success rate of 96.50%, as also shown
in Table 4.4.

4.5 Comparison to related works

The studies from INCANTA [62] and TACAN [96] present a covert channel by modi-
fying the transmission/arrival times for a single carrier frame. The carrier frame from

BUPT



84 CHAPTER 4. TIME-COVERT AUTHENTICATION ON THE CAN BUS

INCANTA [62] is sent with a 100ms cycle time and transmits five bits of covert informa-
tion. The carrier frame from TACAN [96] is sent with a 10ms cycle time and transmits
one bit of covert information. There is an additional bit used from the frame data field
in the proposal from TACAN [96] but, since it is not part of the covert channel, it is
not included as part of the comparison that is done concerning the inter-arrival time. As
part of the analysis, the bit-error rate (BER) is included, that is of 1.75% for INCANTA
[62], but it is computed for a high-priority frame identifier. In case of the proposal from
TACAN [96], the BER is less than 1%, if computed over consecutive frames. Neverthe-
less, depending on the busload, it can be as high as 40% for single frames. As covert
channel data throughput, the authors from TACAN [96] suggest there are 22.5bps for
their proposal. The data throughput from INCANTA [62] is of 57bps even though the
frame cycle time is 10 times higher than the one in TACAN [96]. The increased value is
due to the higher drift for the delay applied to the covert channel that is of 220ns with a
tolerance of 20ns which means there are 5 bits covertly transmitted by each frame. Since
there are only single frames used for the covert channels proposed by INCANTA [62]
and TACAN [96], it cannot be predicted if, by using multiple frames, the performances
would also increase. For the time covert channel from CANTO [30], that takes advantage
of the optimal traffic allocation, all frames that are part of the proposal transmit covert
bits. This results in a data throughput of ∼ 5, 047bps and a BER of 0.95%. The com-
parison between CANTO [30], INCANTA [62] and TACAN [96] is summarized in Table
4.5.

4.6 Concluding remarks

In this chapter, several frame scheduling optimization methods were proposed and evalu-
ated on automotive embedded platforms. These methods use the total number of frames
that are required to be scheduled and their cycle times in order to maximize the inter-
frame space on the CAN bus. Three of these methods, the Binary Symmetric Allocation,
the Randomized Search Allocation and Greedy Allocation were shown to give very close
results in the experiments to the expectations from the theoretical estimations. The dif-
ferences are caused by the minimum inter-frame time which, in rare occasions, caused
collisions on the bus. The Multi-Layer Greedy and GCD Allocation methods have shown
experimental results that are identical to the theoretical expectations, since the minimum
inter-frame space has increased. A time-covert authentication protocol was evaluated in
the context of using one of the frame scheduling optimization algorithms in two sce-
narios, using a single sender and multiple senders. Clock synchronization and clock
de-skewing were required in order to maintain the same global time between multiple
transmitters. Additional results were presented in a case when the optimized and un-
optimized traffic is combined. The channel data rate and security level were discussed
and compared with those from related works, showing an increased performance.
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Chapter 5

Clock and Voltage Fingerprinting
on the CAN Bus

This chapter is based on a previous research paper of the author [31], which studies the
utilization of clock skews and voltage features as fingerprint characteristics for Electronic
Control Units (ECUs) in real-world vehicles. The clock skews and voltage features are
used to classify and cluster individual frames belonging to ECUs from the same vehicle
or from different ones. The values that were obtained through statistical analysis are
presented for each vehicle, while several findings related to clock skews and voltage
features are discussed. A study of the impact on physical characteristics for 1 hour driving
is also presented.

5.1 Fingerprinting ECUs on CAN buses inside cars

ECU fingerprinting was performed using voltage and clock characteristics in a previous
work of the author, ECUPrint [31], with the identification of 51 ECUs from 9 vehicles.
Since the CAN frames transmitted in passenger cars cannot be directly linked to senders
by eavesdropping the frames, the data collected for each frame was used to define a
sender matrix. The information regarding frame transmission on in-vehicle networks is
known by the vehicle manufacturer and its suppliers, but they are not publicly shared.
Efforts in this regard have been made and some frames from in-vehicle networks have
been reverse engineered and made public 1 with information regarding cycle time, data
and the sender. Previous research works have extracted ECU fingerprints from cars based
on clock skews [115], [116] or voltage characteristics [65] but only from one or two cars
or by using an experimental setup. With our contribution, an extended number of vehicles
are used for extracting ECU physical characteristics, while comparing and correlating a
minimum of features required to perform the fingerprinting. Clock skews for transmitters

1https://github.com/commaai/opendbc
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can be determined and used to fingerprint nodes by using the measured received time for
periodic frames. It is not recommended to use clock skews alone for node fingerprinting
since some impediments regarding the usage of clock skews also exist. The clock skews
can be affected by unexpected delays or they may come from a different vehicle network
than the one which is monitored, e.g., frames re-transmitted through a gateway ECU. For
voltage-based fingerprints, using only one feature is not sufficient. Using four features,
i.e., the mean voltage, max voltage, bit time and plateau time, may be enough, as we
showed in [31]. Another important factor taken into account is the environmental aspect
that affects both clock skews and voltage characteristics. This is also analyzed in the final
part of this chapter.

Potential use cases for fingerprinting ECUs. The motivation for ECUPrint [31] is
the same as for the authors of Canvas [117] who have proposed a method to map frames to
specific senders using clock characteristics. The improvement from ECUPrint [31] is the
utilization of both clock skews and several voltage features extracted from 9 passenger
vehicles to identify 51 ECUs based on 400 different frame identifiers. A primary use-case
for physical fingerprinting methods is their use for the intrusion detection system (IDS)
on in-vehicle CAN networks. Nevertheless, an IDS mechanism that uses the physical
characteristics was not implemented in ECUPrint [31]. The main goal of the work was
voltage and clock skew collection from vehicles and their utilization as forensics to fin-
gerprint and identify ECUs. A report published by the FBI regarding crimes 2 provides
the statistics that show an increase of car thefts. Another report published by the National
Crime Prevention Council 3 shows a new problem that happens after cars are stolen and
that is the VIN cloning procedure. This method can be used by adversaries to forge VINs
in stolen cars with other VINs from genuine cars. One way to counteract the VIN cloning
issue is to store physical characteristics from vehicles for the ECUs that transmit the VIN
on the bus in authorized databases and to use them for verifying their authenticity every
1-2 years during the annual technical safety inspection. This method of verifying the
authenticity of ECU by physical fingerprints can also be used during traffic inspections
that are required for lorries. Of course, periodically updating the physical characteristics
in the authorized databases is also recommended, since the physical characteristics may
change due to aging of ECU components and vehicle wiring. As a study that helps in this
regard, in ECUPrint [31], the differences between physical characteristics from ECUs in
the same vehicle are analyzed as intra-distances and from ECUs that are in different ve-
hicles are analyzed as inter-distances. As already mentioned, the purpose of the analysis
from this work is the utilization of physical characteristics as forensics for authenticating
CAN transmitters, as a complementary measure for intrusion detection systems. All sam-
ples collected from the passenger vehicles are released as public dataset accessible from

2https://www.fbi.gov/news/pressrel/press-releases/
fbi-releases-2020-crime-statistics

3http://archive.ncpc.org/resources/files/pdf/celebrate-safe-communities/
NCPC-autotheft-101.pdf
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GitHub and on the institution’s website 4. The voltage samples from the dataset were also
used by the recent research in [118] as input for Convolutional Neural Networks (CNNs)
for voltage-based fingerprinting.

Sources for fingerprinting. Automotive ECUs have various functionalities inside
the vehicle, but, for CAN communication, they require a specific interface so they are
connected to the CAN bus. In Figure 5.1, the external and internal physical interfaces for
an ECU are shown, for the in-vehicle CAN bus context. The external interfaces are CAN-
H and CAN-L wires which connect the ECU to the CAN bus through the CAN transceiver
and battery voltage, VBAT, and ground, GND, lines which supply the unit. The inter-
nal interfaces required for CAN communication are the CAN serial lines, CAN-TX and
CAN-RX, between the CAN controller of a microcontroller and the transceiver. Both
the microcontroller and the CAN transceiver require the power supply lines, VCC-M
and VCC-T, and the ground so they can operate. During operation, the CAN transceiver
will convert the information received on the CAN-TX line from the microcontroller as a
differential voltage on the CAN-H and CAN-L lines. The microcontroller also requires
an external oscillator, OSC, that provides a clock input, CLK, for generating its internal
clock for its processor and peripherals. The internal clock of the microcontroller is used
to measure and control the bit time for CAN communication and, in addition, to allow
the transmission of periodic frames on the CAN bus. Both the oscillator and the CAN
transceiver are highlighted as genuine sources for fingerprinting ECUs using clock skews
or voltage characteristics.

5.2 Related works

Considering that several research works propose identification or intrusion detection
mechanisms on the CAN bus which use physical characteristics referred to as finger-
prints, there are two main areas that are described in what follows. The first physical
characteristics which were studied are the clock skews which can be extracted from peri-
odic messages during active communication. The clock skews have been used as finger-
prints for computers [119] and smartphones [120]. Clock skews have also been proposed
as intrusion detection characteristics for nodes in wireless sensor networks [121] or ac-
cess points in wireless networks [122]. With regards to automotive networks, clock skews
have been proposed as physical characteristics for ECU identification for the first time in
[66]. It was later shown that clock skews could be falsified by using fine-grained micro-
controller timers, so using them as fingerprints is a vulnerability to cloaking attacks [67],
[123]. Nevertheless, their utilization remains effective for genuine ECU identification,
which will not have its clock changed over time, so the fingerprinting source does not
change [117]. The environmental variation effects on clock skews, such as temperature
changes, were studied in [115]. In this work the clock skews are used for identification

4https://www.aut.upt.ro/~bgroza/projects/ecuprint/
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Figure 5.1: Internal block diagram of an automotive ECU with architectural components
required for CAN communication

of legitimate transmitters and for intrusion detection on the Controller Area Networks.

The second research method is based on voltage characteristics that are collected as
ECU fingerprints for transmitter identification or intrusion detection. Voltage features
have been proposed as fingerprints for devices used for Ethernet [124] and wireless com-
munication [125]. The first work which uses voltage features from devices that com-
municate on the Controller Area Network is [26]. A research paper [27] proposed the
usage of specific voltage characteristics from the CAN frame including the acknowledge
bit threshold for identifying the transmitter and detecting intrusions. The evaluation was
performed on an Arduino-based experimental setup and on two vehicles, a Honda Ac-
cord and a Chevrolet Trax. A different approach suggested by authors in [65] is to utilize
parts of dominant bits, rising and falling edges as electrical characteristics for transmit-
ter identification. Using several statistical features for the electrical samples, both in the
time and frequency domains, they trained Linear SVM (Support Vector Machine) and
BDT (Bagged Decision Trees) classifiers in order to detect masquerade attacks and in-
trusions. They evaluated their proposal using an experimental setup with 12 nodes and
two cars, a Kia Soul and a Hyundai Sonata. Authors from [126] propose the usage of
single CAN frames for identifying transmitters and reporting intrusions. The voltage fea-
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tures used for training a classification matrix are extracted from the CAN frames and are
based on samples collected from dominant or recessive bits after rising edges or falling
edges. Using the Mahalanobis distance, their algorithm verifies if the voltage sample
collected in real time on the vehicle bus matches the intended origin in the classification
matrix. The algorithm was both trained and evaluated using data from an experimental
setup with 10 nodes and two networks from real-world vehicles, a CAN bus with 5 ECUs
from Nissan Sentra and a CAN bus with 4 ECUs from a Subaru Outback. Separation of
electrical characteristics in different groups before training and testing is also suggested
in [127]. These groups contain samples for rising edges, falling edges and dominant bits,
which are analyzed using statistical features such as the mean value, standard deviation
or variance. In this work, the voltage samples are collected using a PicoScope 5204,
while the algorithm for detecting intrusions is implemented in Python. Evaluation is
done on an Arduino-based experimental setup with 6 nodes and two vehicles, a Fiat 500
and a Porsche Panamera, both with 6 ECUs connected on the vehicle bus. This work was
extended in [128] with focus on temperature variation influence on voltage data. Trans-
mitter identification using only the rising and falling edges is proposed in [129] where
the voltage samples are collected with a PicoScope 5000 series having the resolution set
to 8 bits. A broad analysis regarding the voltage sampling method selected for collect-
ing the data is done by authors in [130] for their previously proposed intrusion detection
algorithms [127, 128, 129]. The effects of different sampling methods are emphasized
by verifying the signal quality and verifying which option works better by evaluating it
on a real vehicle. They concluded that the average of the voltage samples is the better
choise for intrusion detection systems. A light version of an intrusion detection method
that uses voltage characteristics and is intended for low resource automotive microcon-
trollers is proposed by the same authors in [131]. The voltage sample dataset collected
from a CAN bus prototype was used as input for generation of the average and standard
deviation statistical features in [132]. The CAN bus prototype includes 9 different nodes
that communicate while one of them is dedicated for source identification. The authors
of [132] suggest that their proposal has an improved performance with regards to false
positives and false negatives compared to the proposal from [27].

Since all previous proposals use the voltage samples to fingerprint each transmitter,
the authors from [133] propose a network layout fingerprinting method based on time
domain reflectometry. This method allows a supervising node to determine if nodes
were added to the network or removed from the network. Bit time monitoring [134]
is a new proposal that makes use of both voltage and time characteristics for transmitter
identification with the use of classifiers trained with statistical features of the bit time such
as the mean value and its standard deviation. Since most of the research papers propose
the utilization of voltage characteristics for source identification or intrusion detection,
they can be used for detecting attackers during spoofing attacks or bus-off attacks as well,
as shown in [135]. The addition of an independent node that does not communicate on the
CAN bus but performs active monitoring for intrusions based on voltage characteristics
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is proposed in [136]. The performance of the intrusion detection capability is suggested
as being more than 97% as true positive rate. Using an experimental setup with 19 nodes
where 18 are genuine and 1 is adversarial, the authors from [137] propose a reinforcement
learning authentication method using CAN-H and CAN-L voltage samples for all frames
and arrival times for cyclic frames. There are 14 cyclic messages considered while 4 are
on-event with a busload of ∼38%. The performance improvements for this authentication
method, if compared with existing proposals, are both in regards to false positives, of
0.8%, for periodic frames and false negatives, of 4.4%, for on-event frames. Even though
the voltage information is feature-rich, one research work has proposed and evaluated a
method of evading voltage-based intrusion detection methods [138]. Their proposal is
a masquerading attack that can manipulate the voltage fingerprints for legitimate nodes
using two adversarial nodes, an attacker and an accomplice. The authors also propose a
method that needs to be used for re-training the voltage-based intrusion detection system
in order to validate that all transmitters are genuine. Mitigation of voltage fingerprinting
intrusion detection methods from [139] are evaluated against existing defense proposals.

5.3 Physical layer data collection from real vehicles

Considering the background for collecting fingerprint data from ECUs based on finger-
print sources like oscillators and CAN transceivers, the focus for data collection activities
is to sample data required for determination of clock skews and voltage features. Clock
skews can be calculated for periodic CAN messages, while voltage features can be deter-
mined from the CAN physical bus using both CAN-H and CAN-L communication lines.
Although previous research papers have used either clock skews or physical character-
istics to fingerprint ECUs from vehicles, there is no previous paper which shows both
physical characteristics for the same ECUs and in the same vehicles. The cars that were
used for data collection, the number of identified ECUs and frame identifiers, the average
busload and environmental conditions for the data collection are summarized in Table
5.1. The summary of frames collected in [31] for determination of the clock skew for
each ECU and CAN bits collected for determination of voltage features for each ECU is
shown in the same table. There are 9 passenger vehicles from which more than 220,000
bits were collected as voltage data and more than 8 million frames are collected for clock
skew determination. Accordingly, the comprehensive dataset can be used for analysis of
forensics or as basis for intrusion detection systems that can spot physical characteristics
differences between distinct automotive control units. Since the CAN matrix for each
vehicle which contains information regarding frame transmitters, the frame periodicity
and signals contained in each frame are unknown to the public, identification of ECUs
from passenger cars is considered to be a challenging activity. By determining the clock
skew for each frame identifier, the frames can be grouped using the same, or very similar
clock skews, as part of the same ECUs. The same goes for the voltage data which, even
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Table 5.1: Summary of identified ECUs based on evaluated data in [31]
Vehicle No. ECUs No. IDs Busload Temp. VBAT Collected frames(skew) Collected bits(voltage)

Honda Civic 6 43 31% 9 ◦C 12.8 V 1,039,512 40,073
Opel Corsa 4 29 23% 8 ◦C 13.9 V 442,992 9,187
Hyundai i20 7 40 35% 12 ◦C 14.2 V 616,296 17,767
Dacia Duster 3 12 14% 10 ◦C 14.4 V 247,154 9,086
Dacia Logan 6 46 14% 10 ◦C 12.6 V 629,662 31,579
Hyundai ix35 6 26 45% 9 ◦C 13.5 V 847,161 23,104
Ford Fiesta 6 46 51% 5-7 ◦C 14.9 V 2,243,359 43,861
Ford Kuga 9 70 65% 9 ◦C 13.7 V 1,233,545 28,024

Ford Ecosport 4 87 43% 9 ◦C 15.0 V 759,421 22,808
Total 51 399 - - - 8,059,102 225,489

though it is affected by the environmental factors, can be used to separate between the
sender ECUs. For voltage data, the changes over time are analyzed using data captured
in two cars. The data was collected from these vehicles at startup and, later, after they
were driven for one hour.

Using mixed physical characteristics as fingerprints. Both timing and voltage
characteristics are necessary for ECU fingerprinting, as explained in what follows. Us-
ing only clock skews for determining which ECU is the transmitter is easier than using
voltage characteristics even though it requires multiple frames for a stable value. Au-
thors from a previous research paper [67] show that clock skews can be easily adjusted
and legitimate ECUs can be replaced by adversarial nodes capable of faking the clock
skews. So, using clock skews alone, is proven to be insufficient. Using voltage features
is problematic because it is somewhat hard to collect the voltage data considering the
CAN bit rate and the capabilities for ADC sample rates. This means that, even if voltage
features cannot be falsified as easily as clock skews, they require equipment with im-
proved capabilities for collecting voltage samples. Another challenge for voltage-based
fingerprinting is related to the selection of voltage features. By using four features that
are mean and maximum voltages together with the bit and plateau times, ECUs can be
classified based on frames, as shown in the analysis part that follows.

Pros and cons for fingerprint sources. Now the pros and cons for using clock skews
or voltage features for ECU fingerprinting are discussed. A summary of the advantages
and disadvantages of using clock skews or voltage features is shown in Table 5.2. As
mentioned earlier, it is easy to collect frames for determination of the clock skews that
may already be preserved through gateways from the vehicle. Unfortunately, it is also
easy to falsify the clock skews which cannot be determined for on-event frames. In case
frames are affected by arbitration and arrive with delays on the vehicle bus, it will make
clock skew estimation harder. Another disadvantage of clock skew determination is that
a small number of frames is not sufficient. This means that for an accurate clock skew
determination, a larger number of frames is required. In contrast with the clock skews,
the voltage data is harder to collect since it requires both access to each physical bus and
equipment that uses high sample rate ADCs to allow the collection of voltage feature data
for single bits. It is harder to falsify voltage data because there are multiple features that
can be extracted from a few hundred or thousand samples from a single bit. This means
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Table 5.2: Pros and cons for skew-based and voltage-based fingerprinting on CAN
Fingerprint method Advantages Disadvantages
Clock Skews ✓easy to collect

✓may be preserved through gateways (possible
to retrieve from distinct buses)

✗easier to forge
✗do not work for on-event frames
✗affected by arbitration and processing delay
✗require many frames for estimation

Voltage Features ✓harder to forge
✓single bit/frame is sufficient

✗harder to collect, may require high sampling
rate ADCs

✓feature rich fingerprint ✗require physical access to the same bus

that using both clock skews and voltage data is required for fingerprinting ECUs and this
is shown as part of the analysis done on both physical characteristics using information
from the dataset.

The frame timings and voltage data from [31] are collected from 9 different passen-
ger vehicles with various body types. The Hyundai i20, Ford Fiesta, Opel Corsa and
Dacia Logan have a hatchback body-style. The Honda Civic is a sedan and Dacia Duster,
Hyundai ix35, Ford Kuga and Ford Ecosport have a Sport Utility Vehicle (SUV) config-
uration. As already mentioned, all vehicle models from which clock skew and voltage
samples were collected are shown in Table 5.1. One more thing worth mentioning is
that vehicles from which the data is collected for ECU fingerprinting have a worldwide
diversity because Ford is a United States manufacturer, Hyundai and Honda designed
their vehicles in Asia, while Opel and Dacia are European vehicle manufacturers. The
internal bus networks that were accessible were those connected to the OBD-II interface,
as shown in Figure 5.2 (i)–(ix). The number of ECUs that are referenced in the Figures is
based on the classification and clustering using voltage features and clock skews. Based
on the analysis, the ECU separation cannot be done using only the clock skews. This is
because some clock skew fingerprints are determined for ECUs connected to a different
vehicle network that are forwarded through gateways connected to the vehicle bus used
for data collection. By searching examples of vehicle networks that are shared on pub-
lic forums and web pages, the ECUs connected to the network with OBD-II interface
from some vehicles were identified. The ECU naming for the cars where the information
was not found online is represented using a generic name, ECUi, i = 1..n, as shown in
Figures 5.2 (i), (ii), (iii), (v), (vi), (ix). For Honda Civic there are 6 different ECUs iden-
tified connected to the OBD-II CAN bus, while Opel Corsa and Ford Ecosport has only
4 ECUs. The Hyundai i20 has 7 ECUs connected to the vehicle bus used for diagnostics,
while Dacia Logan and Hyundai ix35 have only 6 ECUs. The wiring diagrams for Dacia
Duster were found on a public forum [140]. Using this information, the nodes connected
to the OBD-II accessible network are identified. Based on the information found online,
the ECUs from the Dacia Duster are the ABS control unit (ABS), the injection system
control unit (INJ) and the front/rear torque distribution control unit (FRTD). They are
shown in Figure 5.2 (iv). Based on the wiring diagrams from [141], the 6 ECUs that com-
municate on the OBD-II CAN bus from the Ford Fiesta were identified. The Ford Fiesta
nodes shown in Figure 5.2 (vii) are the gateway module (GWM), sync module (APIM),
headlamp control module (HCM), powertrain control module (PCM), body control mod-
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Figure 5.2: Illustration of CAN networks with OBD-II access for Honda Civic (i), Opel
Corsa (ii), Hyundai i20 (iii), Dacia Duster (iv), Dacia Logan (v), Hyundai ix35 (vi), Ford
Fiesta (vii), Ford Kuga (viii) and Ford Ecosport (ix)
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ule (BCM) and parking aid module (PAM). Information related to the Ford Kuga wiring
networks is available on a webpage [142] that was used to specify the ECUs from the
Ford Kuga vehicle. The Ford Kuga nodes from Figure 5.2 (viii) are the keyless vehicle
module (KVM), instrument cluster module (IC), powertrain control module (PCM), fuel
additive system module (FUEL), ABS module (ABS), yawrate sensor (YAW), headlamp
leveling module (HLM), all-wheel drive control unit (AWD) and electrohydraulic power
steering module (EPS).

5.3.1 Data collection setup

Now, the tools used for collecting the frame and voltage data from the vehicles are de-
scribed. In order to collect the traffic data from the vehicle networks with OBD-II, a
CANcaseXL produced by Vector was used. Vector is one of the biggest companies to
provide hardware equipment for the automotive industry in order to interface laptops and
computers to vehicle buses such as CAN, CAN-FD or FlexRay. The software tools from
Vector that are already available can be used either to collect or inject data on existing
networks. One example is the XL Driver Library, which is an open source library from
Vector which allows communication on the CAN bus from a PC or laptop using Vector
hardware devices. A custom application that uses the XL Driver Library was built, since
the intention was to collect the vehicle bus data together with the internal timestamps of
the CANcaseXL device. In order to interface the CANcaseXL to the CAN bus from the
vehicles, the baudrate was configured to match the one from the vehicles of 500Kbps
(same for all passenger vehicles). In Figure 5.3 (ii), the OBD-II diagnostic port from the
Ford Fiesta vehicle is shown. This interface was used to collect CAN frames and voltage
samples. In the same figure, the CAN lines and the ground (GND) line are emphasized
since they were the physical access point required to perform data collection. In order
to interface the CANcase XL to the OBD-II port, a cable adapter was used with both the
DB9 and OBD-II interfaces which is the required pinout for the vehicle connector and the
Vector device. The frame data was collected in 5-10 minutes sessions, after the vehicle
was started. Frames that are sent at vehicle startup were not collected since there may be
initialization frames or on-event frames for which the clock skew cannot be determined.

In order to collect the voltage data from the vehicle networks, a 5000 Series Pico-
scope produced by Pico Technology was used. The probes were attached to the required
electrical interfaces, i.e., CAN-H, CAN-L and GND, that were accessible through an ad-
ditional cable. The additional cable has a DB9 interface on one side and on the other it
separates individual CAN wires and the GND line. Using the PicoScope 6.14 software
tool on a laptop, collected multiple files that contain voltage samples of the CAN network
were collected from each vehicle. The data collection setup installed in the Ford Fiesta
vehicle is shown in Figure 5.3 (i). The CAN serial decoding option from the tool was
used with the baud rate set to 500Kbps, so the CAN messages saved in each file were
visible in the tool with the entire data interpretation. Since the frame identifiers were
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recorded in the traffic data collection step for clock skew, the frames expected for volt-
age data collection were already known. As settings for the PicoScope software tool, the
voltage range was configured to ± 5V since a higher value than 4.5V for the CAN-H line
is not expected. The sample rate was configured to 500 MS/s because 2ns are required for
each sample while using two channels for collecting voltage data on CAN-H and CAN-L
lines. A maximum frame duration of around 270µs is expected since the bit rate for pas-
senger vehicles is of 500Kbps as recommended by SAE J2284-3 [89]. Considering the
bit rate and frame duration for the passenger vehicles, the windows for capturing voltage
data were configured to 4ms, so, voltage samples for a dozen of frames can be collected
in each capture window. For each channel, the hardware resolution was set by default
by the tool to 8 bits but, using the resolution enhancement option, it was extended for a
more accurate sampling to 12 bits. Even though the cost for a 5000 Series Picoscope is
somewhat high, the Xilinx XC6SLX25 FPGA or Texas Instruments ADC08D502 high
performance ADCs, which are similar to its key components, do not have an acquisition
cost of more than 100$ (US Dollars). This means that the design of a tool that meets the
capability needs for ECU fingerprinting is not as expensive as a 5000 Series Picoscope.

Each file which was collected with the Picoscope tool has 267 independent windows
with both voltage samples and CAN frame interpretation using the serial decoding op-
tion. The frames for which the voltage data was collected were checked offline since
the CAN-H threshold and the hysteresis were automatically set by the tool, allowing the
data interpretation to be visualized for each CAN frame. The sample windows were col-
lected based on a trigger on the CAN-H line to capture the SOF bit for a frame which is a
transition from bus idle (recessive) to dominant. The voltage threshold for the transition
was set to 3V. Since the files are stored with psdata extension, a PicoScope software tool
proprietary format, these files could not be used as input for analyzing the voltage data.
Using the PicoScope software tool, each sample window was exported in csv (comma
separated values) files that contain the timestamp and voltage data sampled every 2ns.
Since the csv files did not contain the frame identifiers, they had to be manually exported
from the PicoScope tool using the CAN serial decoding part that contains the timestamp
and CAN frame data from each sample window as separate data files. In order to combine
the information from the exported files, a python script was developed and used to extract
frame voltage data from the csv files as separate files using the timestamp information
from the data files. The combined files were grouped in separate folders, each folder
named with the CAN identifier for the frames for which the voltage data was collected.
In order to capture voltage data for individual CAN bits, the voltage samples for data and
CRC areas from the combined files were exported first. Only data and CRC areas were
used because the intention was not to use voltage data from the arbitration field, since
multiple nodes may communicate at the same time on the bus. From the voltage sam-
ples for data and CRC bitfields, the voltage samples for individual dominant bits which
are isolated between recessive bits were extracted. In this way, the dataset with voltage
samples for isolated dominant CAN bits from 9 passenger vehicles was created.
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(i) data collection setup

(ii) OBD-II port

Figure 5.3: Data collection setup from Ford Fiesta (i), the OBD-II port with specified
CAN differential lines and vehicle ground line (ii)

5.4 Theoretical framework

In this section, the details related to how the clock skews and voltage features were com-
puted are detailed. Some examples of the physical characteristics are presented before
the definition of the intra-distances and inter-distances.
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5.4.1 Clock skews

Using the notations from [112], the information regarding clocks, clock offset, clock
skew and clock drift is used in order to define the theoretical framework. The system
clock is defined as a continuous function C : R → R that is twice differentiable. The
offset of a clock is the difference between the expected time and the real time, as defined
in Equation 5.1. The first derivative of the clock is the clock frequency C′(t), while
the second derivative of the clock C′′(t) represents the clock drift. The clock skew is the
difference between the first derivatives of the clocks, as shown in Equation 5.2. The clock
drift is the difference between the second derivatives of the clocks, as shown in Equation
5.3.

CA
offset = CA(t)− t (5.1)

CA,B
skew = C′A(t)− C′B(t) (5.2)

CA,B
drift = C′′A(t)− C′′B(t) (5.3)

For periodic frames, the expected transmission time is defined as t = i× δid , where
δid represents the cycle time for each id . The clock skew for periodic frames from the
receiver standpoint can be estimated as defined in Equation 5.4 using the timestamps ti
and tj for the received frame. Even though the recommendation from [112] is to approx-
imate the clock skew using complex algorithms, the values computed using Equation 5.4
provide a clear separation between ECUs, if enough frames are collected to compute the
mean or median values over the reception times.

Cskew(id) ≈
tj − ti

(j − i)× δid
(5.4)

The cycle time (i), clock offsets (ii) and clock skew convergence (iii) for two distinct
IDs from a 30 second time window are shown in Figure 5.4. On the left side of the
figure, the information is shown for an ID with a cycle time of 50ms. On the right side
of the figure, the information is shown for an ID with a cycle time of 100ms. Since
the expected reception time for the frames is based on their cycle time and the measured
reception time is the one reported by the CANcaseXL device, the variation for each signal
can be determined. The cycle time shows a variation of ±0.6ms for both IDs but with a
different distribution between them. The ID on the left side has more frequent variations
from its theoretical cycle time, while the ID on the right has less. The clock drift has
similar variations for both IDs, but somehow, the slope for the clock offset increment is
similar. The clock skew for the ID on the left looks stable starting from the first 100
frames, while the clock skew for the ID on the right varies from 1.00010 to 1.00020 and
back. This happens due to lost arbitration that delays the frame transmission time on
the bus and affects its reception time by modifying the measured clock offset and the
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(i) cycle time

(ii) clock offsets

(iii) skew convergence

Figure 5.4: Cycle time (i), clock offsets (ii) and convergence of the skew (iii) for two IDs
with 50ms and 100ms cycle (left vs. right)

clock skew, as shown in Figure 5.4. This means that, even though clock skew can be
easily computed based on the expected and measured reception time, there is a minimum
of frames required to be received, so the clock skew value is reliable. Otherwise, lost
arbitration on the bus or internal delays caused by the transmitter for specific frames
would, in the end, lead to an erroneously estimated clock offset and clock skew for that
ID. Thereby, using only clock skews for real-time intrusion detection is not possible
because a certain number of frames is required to estimate a reliable clock skew for each
frame.
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5.4.2 Voltage features

The nodes are connected to the bus using CAN transceivers which provide unique fea-
tures for the voltage signals that they command. The CAN-H and CAN-L voltages can
be analyzed if enough samples are available and features can be extracted from them.
The differences between CAN differential voltages provided by nodes are also caused
by the CAN transceiver manufacturers which provide specific tolerances relative to how
each transceiver controls the voltage signals. This information is usually available in
the CAN transceiver datasheet. The voltage characteristics are also influenced by the re-
ceiver nodes connected on the same bus [34], but also by the cable length or the number
of stubs from the main cable to the nodes. The mean voltage, maximum voltage, bit time
and plateau time are used as voltage features in the analysis. These are extracted from the
voltage samples for individual dominant bits which are isolated between recessive bits.

Some of these voltage features have been proposed in previous works. The mean
voltage was proposed as voltage characteristics for ECU fingerprinting by authors in
[127], [129] and [143]. The maximum voltage level was used as voltage feature in [65],
[127], [129] and [143]. The bit time duration was extracted and used for transmitter fin-
gerprinting by authors in [134], [144], [145] and [146]. The plateau time has not been
proposed in previous works, even though it helps differentiate between transmitters. This
is why it is considered as the fourth voltage feature in the analysis. Using them as individ-
ual voltage features is somewhat satisfactory for fingerprinting ECUs, but, considering
overlaps, combining the information improves the ECU separation. The first paper that
proposed signal characteristics for fingerprinting nodes on Controller Area Networks is
[26]. There are several works which have followed with improvements on the separation
between fingerprinted ECUs using classification algorithms and machine learning on spe-
cific voltage features [66], [65], [127]. Studies related to the impact of the environment
on voltage characteristics for ECUs were examined in [128], [129], [126]. Most of the
works use the voltage characteristics to fingerprint each sender. A different approach is
proposed by authors in [133] who perform a fingerprint of the network layout in order to
detect if nodes are removed or added to the network. One of the voltage features that is
used is the mean voltage while the bus is in a dominant state, when the differential voltage
between CAN-H and CAN-L is of ∼2V . Even though mean voltage can be computed
over the rising edge and falling edge of each bit, in this case it is computed only using
the voltage samples from the dominant bit plateau area. Based on the voltage samples for
isolated dominant bits, s1, s2, ..., sℓ, the definition of mean voltage and maximum voltage
is formalized in Equations 5.5 and 5.6. The value for ℓ is set to 2,000 with one sample
available at every 2ns, since the capture window is of 4ms. Setting the value of τ to
150 allowed us to compute the maximum voltage after reaching the bit plateau and mean
voltage on the dominant bit plateau area. Considering the values of α ≤ ℓ/2, β > ℓ/2
and σ as the configured sample time of 2ns and the voltage samples for isolated dominant
bits s1, s2, ..., sℓ, the definition of bit time and plateau time is formalized in Equations
5.7 and 5.8. The value of ϵ, which is the threshold for measuring the bit time and plateau
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time, is set to 20mV based on the differences observed in the experimental data.

Vmean(id) = mean

{
si : i = ℓ/2− τ..ℓ/2 + τ

}
(5.5)

Vmax(id) = max

{
si : i = 1..ℓ/2− τ

}
(5.6)

Tbit(id) = min
α,β

{
(β − α)σ : |sα| ≤ ϵ, |sβ| ≤ ϵ

}
(5.7)

Tplat(id) = max
α,β

{
(β − α)σ : |sα − Vmean(id)| ≤ ϵ, |sβ − Vmean(id)| ≤ ϵ

}
(5.8)

The equations are applicable only for individual dominant bits, isolated between re-
cessive bits, as earlier mentioned. In case there are multiple dominant bits isolated be-
tween recessive bits, the equations can be adapted to this use case. By following the bit
stuffing requirements from the CAN standard, after transmission of 5 consecutive bits
with the same polarity, either recessive or dominant, the 6th bit must have a distinct po-
larity. The value for the plateau time for multiple bits can be computed as the division
of the entire plateau time to the number of consecutive dominant bits. The value for
the bit time can be computed as the total time for the bits from which the plateau time
for all bits except one is subtracted. The values for the mean voltage and maximum
voltage are computed in the same way as for individual bits. A visual representation
of the voltage features is provided in Figure 5.5. The features were extracted using
voltage samples from two bits that originate from different ECUs. The values deter-
mined for ID 171 (i) from Ford Ecosport are Vmean = 2.195mV , Vmax = 2.236mV ,
Tbit = 2.686µs, Tplat = 1.478µs, while those for for ID 428 (ii) from Hyundai ix35
are Vmean = 2.191mV , Vmax = 2.195mV , Tbit = 2.640µs, Tplat = 1.417µs. The
information that is represented on the Y axis from Figure 5.5 is the voltage data while
the samples are shown on the X axis. Since there are ∼1300 samples from the beginning
of the rising edge to the end of the falling edge, the bit time is expected to be of ∼2.6µs
which is confirmed by the voltage sample values for each ECU.

5.4.3 Intra-distances and inter-distances

Having the equations for clock skew determination and voltage features in place, the
intra-distances and inter-distances are defined. This supports the measurements for the
differences between physical characteristics for frames transmitted by the same ECU
or by different ECUs. Since the timings and voltage samples are numeric values, the
one dimension Euclidian distance is used, i.e., d(u, v) =

√
(u− v)2, to measure the

differences for the same features. This can be applied to multiple features, if required, by
extending the number of dimensions. The values for intra-distances and inter-distances
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(i) ID 171 (ii) ID 428

Figure 5.5: Collected voltage levels for IDs from distinct ECUs

Figure 5.6: Separation for ECUs in the Honda Civic based on skews

based on the sample data can be computed as Dskew
ω for clock skews, Dmean

ω for mean
voltage, Dmax

ω for max voltage, Dbit
ω for the bit time and Dplat

ω for the plateau time where
ω ∈ {inter, intra}. Using this information, the definition of the intra-distances and inter-
distances is formalized in Equations 5.9 and 5.10:

Dα
intra(i) =

{
d(φ(id ′), φ(id ′′)) : ∀id ′, id ′′∈ ECUi, id

′ ̸= id ′′
}

(5.9)
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Dα
inter(i, j) =

{
d(φ(id ′), φ(id ′′)) : ∀id ′∈ECUi, ∀id ′′∈ECUj

}
(5.10)

In these equations, (α,φ), are the clock skew and voltage feature fingerprints, i.e.,
(α,φ) ∈ {(skew,Cskew), (mean,Vmean), (max,Vmax), (tbit,Tbit), (tplat,Tplat)}.
The values of i, j = 1..n cover the n ECUs determined based on the experimental results.
This means that the intra-distances are determined for frames transmitted by the same
ECU while inter-distances are determined for frames transmitted by different ECUs.

5.5 Interpretation of experimental data

This section details the resulted clock skews and voltage features for all CAN frames from
the passenger vehicles. The grouping of frames in ECUs and the findings are discussed
in this section. The variation of the clock skews and voltage features after two vehicles
were driven for one hour is also explored at the end of this section.

5.5.1 ECU separation based on clock skews and voltage features

In what follows, the ECU separation is done for each vehicle using the computed clock
skew data and voltage characteristics that were determined for each cyclic frame. Taking
all results into consideration, the indication is that using single voltage features or only
the clock skews is insufficient for a clear separation of the frame transmitters. A draw-
back relevant for clock based fingerprinting is that frames transmitted by several nodes,
considered by the voltage fingerprint, would have different clock skews. This means that
those transmitters are actually gateways for those frames from other in-vehicle buses. A
downside for voltage based fingerprinting is that sometimes the extracted features are
similar for different transmitters. These limitations are explained, whenever they are
valid, for specific ECUs. The results for each physical characteristic are shown inside
Tables 5.3–5.11, where the table columns represent the following information. The ID
column contains the hexadecimal representation of the frame identifier, while the ECU
column contains the ECU number grouping the IDs. The frame cycle time, measured
in milliseconds, is written in the Cycle column, while the Cskew column contains the
determined clock skew. The Vmean and Vmax columns contain the mean and maximum
voltage, measured in Volts, while Tbit and Tplat columns contain the bit time and plateau
time, measured in microseconds.

In the Honda Civic passenger vehicle there are 6 ECUs found based on 43 cyclic
messages transmitted on the CAN bus. By using clock skews for ECU separation, there
are 6 clusters of IDs determined on the Y axis with the same values as shown in Figure
5.6. The voltage separation using mean voltage and maximum voltage features is clear
for 3 ECUs, but it is challenging for the remaining three, ECU2, ECU3 and ECU4. The
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(i) Honda Civic (ii) Opel Corsa (iii) Hyundai i20

(iv) Dacia Duster (v) Dacia Logan (vi) Hyundai ix35

(vii) Ford Fiesta (viii) Ford Kuga (ix) Ford Ecosport

Figure 5.7: Mean-max voltage separation

mean-max voltage separation presented in Figure 5.7 (i) shows the clusters for all ECUs
with the mean and maximum voltage in the range of 1.8V to 2.3V . Since the clock
skew separates ECU2 from ECU3, the voltage patterns for bits that are part of frames
with the IDs 18E (ECU3) and 091 (ECU4) are shown in Figure 5.9 (i) and (ii), for
comparison purposes. Considering that voltage patterns are different for these bits and
the separation using bit and plateau time from Figure 5.8 (i) show 6 separate clusters with
values between 1.38µs and 1.54µs for the plateau time and 2.56µs to 2.64µs for the bit
time, it confirms the findings of 6 ECUs. The physical characteristic values determined
for all IDs from the Honda Civic vehicle and the grouping as part of ECUs are shown in
Table 5.3.

In the Opel Corsa passenger vehicle there are 4 ECUs found based on 29 cyclic
messages transmitted on the CAN bus. For this vehicle, both the clock skews and the
voltage features allow a clear separation of transmitters as distinct ECUs. The mean
and maximum voltage separation is shown in Figure 5.7 (ii) where 4 clusters with mean
and maximum voltage between 1.9V and 2.5V can be easily distinguished. The physical
characteristic values determined for all IDs from the Opel Corsa vehicle and the grouping
as ECUs based on the frame identifiers are shown in Table 5.4.

In the Hyundai i20 passenger vehicle there are 7 ECUs found based on 40 cyclic
messages transmitted on the CAN bus. Similar to Honda Civic and Opel Corsa, the
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Table 5.3: Physical characteristics for Honda Civic
No. ECU ID Cycle Cskew Vmean Vmax Tbit Tplat

1 ECU1 039 40 1.000220 1.871 1.870 2.591 1.400
2 ECU1 305 100 1.000220 1.884 1.883 2.590 1.399
3 ECU1 401 300 1.000220 1.882 1.881 2.591 1.399
4 ECU2 1A6 20 1.000240 1.997 2.017 2.575 1.473
5 ECU2 21E 40 1.000240 1.996 2.0167 2.575 1.473
6 ECU2 221 40 1.000240 1.994 2.014 2.575 1.473
7 ECU2 294 40 1.000240 1.997 2.018 2.576 1.473
8 ECU2 295 40 1.000240 1.996 2.015 2.576 1.473
9 ECU2 309 100 1.000240 2.001 2.020 2.575 1.472

10 ECU2 372 100 1.000240 1.996 2.016 2.574 1.473
11 ECU2 374 100 1.000240 1.997 2.018 2.575 1.473
12 ECU2 377 100 1.000240 1.994 2.013 2.575 1.472
13 ECU2 378 100 1.000240 1.995 2.015 2.575 1.473
14 ECU2 386 100 1.000240 1.994 2.014 2.576 1.473
15 ECU2 405 300 1.000240 1.991 2.011 2.576 1.472
16 ECU2 428 300 1.000240 1.987 2.004 2.575 1.472
17 ECU2 42D 300 1.000240 1.991 2.011 2.575 1.472
18 ECU2 42E 300 1.000240 1.993 2.012 2.576 1.473
19 ECU3 18E 10 0.999994 2.003 2.029 2.631 1.508
20 ECU4 091 10 0.999969 2.018 2.027 2.617 1.422
21 ECU4 19B 10 0.999968 2.019 2.028 2.617 1.422
22 ECU4 1A4 20 0.999968 2.018 2.028 2.617 1.422
23 ECU4 1AA 20 0.999968 2.016 2.026 2.617 1.422
24 ECU4 1B0 20 0.999968 2.020 2.029 2.617 1.422
25 ECU4 1D0 20 0.999968 2.020 2.030 2.617 1.422
26 ECU4 1EA 20 0.999968 2.019 2.028 2.617 1.421
27 ECU4 255 40 0.999968 2.018 2.027 2.618 1.422
28 ECU4 3D9 200 0.9999668 2.018 2.028 2.616 1.422
29 ECU4 406 300 0.999965 2.017 2.027 2.618 1.422
30 ECU5 13C 10 0.999860 2.107 2.155 2.635 1.528
31 ECU5 158 10 0.999860 2.108 2.155 2.635 1.528
32 ECU5 17C 10 0.999860 2.107 2.154 2.636 1.528
33 ECU5 1DC 20 0.999861 2.105 2.153 2.635 1.528
34 ECU5 1ED 20 0.999861 2.103 2.151 2.635 1.529
35 ECU5 320 100 0.999861 2.105 2.152 2.636 1.528
36 ECU5 324 100 0.999861 2.105 2.153 2.635 1.528
37 ECU5 328 100 0.999861 2.107 2.155 2.636 1.528
38 ECU5 3D7 200 0.999862 2.109 2.157 2.636 1.529
39 ECU5 400 300 0.999861 2.107 2.155 2.636 1.529
40 ECU5 40C 300 0.999861 2.105 2.153 2.635 1.529
41 ECU5 454 300 0.999860 2.105 2.154 2.636 1.528
42 ECU5 465 300 0.999860 2.105 2.152 2.635 1.528
43 ECU6 156 10 1.000030 2.194 2.204 2.637 1.430
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(i) Honda Civic (ii) Dacia Logan

(iii) Ford Fiesta (iv) Ford Kuga

Figure 5.8: Bit-plateau time separation

(i) ID 18E (ii) ID 091

Figure 5.9: A zero bit from ID 18E and one from ID 091 for Honda Civic [31]

separation of ECUs was clear based on clock skews and voltage features. The mean and
maximum voltage separation is shown in Figure 5.7 (iii) where all 7 groups of IDs can be
identified in the 1.9V −2.5V range for both voltage features. The physical characteristic
values determined for all IDs from the Hyundai i20 vehicle and the grouping as part of
ECUs are shown in Table 5.5.

In the Dacia Duster passenger vehicle there are 3 ECUs found based on 12 cyclic
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Table 5.4: Physical characteristics for Opel Corsa
No. ECU ID Cycle Cskew Vmean Vmax Tbit Tplat

1 ECU1 361 100 0.997619 2.443 2.466 2.582 1.447
2 ECU1 460 100 0.997619 2.438 2.462 2.582 1.447
3 ECU1 1F1 100 0.997619 2.441 2.465 2.582 1.446
4 ECU1 1E1 30 0.997618 2.439 2.463 2.582 1.447
5 ECU1 0F1 10 0.997619 2.441 2.465 2.582 1.447
6 ECU1 3F1 250 0.997617 2.439 2.463 2.581 1.448
7 ECU1 440 1,000 0.997619 2.440 2.464 2.582 1.447
8 ECU2 265 1,000 0.999940 2.027 2.031 2.666 1.520
9 ECU2 2F9 50 0.999940 2.025 2.032 2.666 1.522

10 ECU2 1C9 20 0.999939 2.022 2.030 2.666 1.522
11 ECU2 1E9 20 0.999939 2.020 2.029 2.666 1.523
12 ECU2 0C1 10 0.999939 2.024 2.031 2.666 1.522
13 ECU2 363 100 0.999940 2.023 2.030 2.667 1.522
14 ECU2 0C5 10 0.999939 2.024 2.031 2.666 1.522
15 ECU2 530 1,000 0.999940 2.027 2.031 2.670 1.521
16 ECU3 370 500 0.999998 1.946 1.949 2.606 1.378
17 ECU3 1E5 10 0.999998 1.951 1.951 2.605 1.381
18 ECU4 3F9 250 1.000060 2.200 2.269 2.612 1.508
19 ECU4 772 1,000 1.000060 2.196 2.263 2.613 1.507
20 ECU4 4C1 500 1.000060 2.195 2.262 2.616 1.509
21 ECU4 4D1 500 1.000060 2.196 2.262 2.614 1.509
22 ECU4 3E9 100 1.000060 2.198 2.266 2.612 1.508
23 ECU4 3D1 100 1.000060 2.198 2.264 2.612 1.508
24 ECU4 2C5 50 1.000060 2.199 2.266 2.614 1.508
25 ECU4 1BD 50 1.000060 2.199 2.265 2.613 1.508
26 ECU4 1BC 10 1.000060 2.198 2.264 2.611 1.507
27 ECU4 0C9 10 1.000060 2.199 2.266 2.613 1.508
28 ECU4 1C1 20 1.000060 2.199 2.266 2.613 1.508
29 ECU4 1F5 20 1.000060 2.201 2.267 2.612 1.508

Table 5.5: Physical characteristics for Hyundai i20
No. ECU ID Cycle Cskew Vmean Vmax Tbit Tplat

1 ECU1 593 200 0.999477 1.950 1.949 2.718 1.374
2 ECU2 043 1,000 0.999163 1.966 1.965 2.693 1.351
3 ECU2 044 1,000 0.999163 1.968 1.963 2.691 1.355
4 ECU2 383 20 0.999163 1.970 1.968 2.706 1.357
5 ECU3 2B0 10 1.001009 1.987 1.996 2.678 1.399
6 ECU3 381 20 1.001009 1.991 2.000 2.679 1.398
7 ECU3 251 10 1.001009 1.991 2.001 2.680 1.397
8 ECU4 549 100 1.000030 2.160 2.173 2.731 1.447
9 ECU4 5CE 100 1.000030 2.157 2.172 2.729 1.449

10 ECU4 5CF 100 1.000032 2.158 2.171 2.731 1.446
11 ECU4 547 100 1.000036 2.160 2.173 2.732 1.446
12 ECU4 1BF 10 1.000031 2.156 2.172 2.730 1.447
13 ECU4 316 10 1.000031 2.155 2.169 2.729 1.448
14 ECU4 18F 10 1.000031 2.159 2.173 2.729 1.448
15 ECU4 260 10 1.000032 2.158 2.171 2.730 1.447
16 ECU4 329 10 1.000033 2.159 2.173 2.730 1.447
17 ECU4 4E5 100 1.000031 2.156 2.169 2.733 1.447
18 ECU4 4E6 100 1.000031 2.160 2.174 2.732 1.447
19 ECU4 545 100 1.000036 2.158 2.172 2.728 1.448
20 ECU4 4E7 100 1.000031 2.158 2.171 2.731 1.448
21 ECU4 200 10 1.000032 2.158 2.172 2.728 1.447
22 ECU4 492 50 1.000031 2.160 2.172 2.731 1.446
23 ECU4 556 100 1.000031 2.156 2.171 2.727 1.450
24 ECU4 557 100 1.000033 2.156 2.170 2.727 1.448
25 ECU5 164 10 0.999958 2.199 2.210 2.710 1.472
26 ECU5 220 10 0.999958 2.199 2.210 2.710 1.471
27 ECU5 153 10 0.999958 2.198 2.210 2.706 1.472
28 ECU5 387 20 0.999958 2.199 2.209 2.713 1.471
29 ECU5 386 20 0.999958 2.199 2.211 2.709 1.472
30 ECU5 507 100 0.999958 2.199 2.211 2.707 1.472
31 ECU6 500 100 0.999542 2.294 2.297 2.800 1.419
32 ECU6 5A0 1,000 0.999543 2.298 2.300 2.827 1.422
33 ECU6 5A1 1,000 0.999543 2.298 2.299 2.804 1.418
34 ECU7 4F1 20 0.999936 2.392 2.395 2.669 1.411
35 ECU7 50C 100 0.999936 2.393 2.398 2.671 1.412
36 ECU7 50E 200 0.999936 2.389 2.395 2.671 1.413
37 ECU7 541 100 0.999937 2.393 2.397 2.668 1.411
38 ECU7 52A 200 0.999937 2.396 2.400 2.668 1.411
39 ECU7 553 200 0.999937 2.389 2.396 2.669 1.413
40 ECU7 5B0 1,000 0.999936 2.390 2.395 2.667 1.412
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Table 5.6: Physical characteristics for Dacia Duster
No. ECU ID Cycle Cskew Vmean Vmax Tbit Tplat

1 ECU1 161 10 0.999967 2.464 2.535 2.477 1.452
2 ECU1 181 10 0.999967 2.464 2.535 2.477 1.452
3 ECU1 1F9 10 0.999967 2.463 2.534 2.477 1.452
4 ECU1 511 100 0.999967 2.462 2.527 2.478 1.450
5 ECU1 65C 100 0.999967 2.464 2.533 2.477 1.451
6 ECU1 5DD 100 0.999967 2.463 2.534 2.477 1.452
7 ECU1 551 100 0.999967 2.462 2.532 2.477 1.452
8 ECU2 284 20 0.999975 1.932 1.952 2.555 1.526
9 ECU2 285 20 0.999975 1.936 1.959 2.554 1.530

10 ECU2 244 20 0.999975 1.935 1.956 2.555 1.530
11 ECU2 354 40 0.999975 1.936 1.959 2.555 1.531
12 ECU3 1A5 10 1.000220 2.084 2.084 2.547 1.404

messages transmitted on the CAN bus. This is the smallest number of ECUs and frames
from the dataset, for a single vehicle. Same as for the previous vehicles, the ECU sep-
aration was clear both on clock skews and voltage features. The mean and maximum
voltage separation is shown in Figure 5.7 (iv) with 3 clusters that are distinguishable be-
tween 1.9V and 2.6V . The physical characteristic values determined for all IDs from the
Dacia Duster vehicle and the grouping as part of ECUs are shown in Table 5.6.

In the Dacia Logan passenger vehicle there are 6 ECUs found based on 46 cyclic
messages transmitted on the CAN bus. Since the ECUs from Dacia Duster are clearly
separated, the initial assumption was that separation would be clear for this vehicle as
well, but this is not the case. That is because two ECUs, ECU2 and ECU3, which are
clearly separated based on voltage fingerprints, have a difference of the determined clock
skew of only 1ppm that is of 0.000001. The mean and maximum voltage separation is
shown in Figure 5.7 (v) with 6 clusters that are distinguishable between 1.9V and 2.3V .
The voltage separation using bit and plateau time from Figure 5.8 (ii) shows 6 clusters
that correspond to 6 distinct ECUs connected on the OBD-II CAN bus of the Dacia
Logan. The physical characteristic values determined for all IDs from the Dacia Logan
vehicle and the grouping as part of ECUs are shown in Table 5.7.

In the Hyundai ix35 passenger vehicle there are 6 ECUs found based on 26 cyclic
messages transmitted on the CAN bus. The ECU separation is clear both on clock skews
and voltage features. The mean and maximum voltage separation is shown in Figure
91 5.7 (vi) with 6 clusters that are distinguishable between 1.9V and 2.3V . The phys-
ical characteristic values determined for all IDs from the Hyundai ix35 vehicle and the
grouping as part of ECUs are shown in Table 5.8.

In the Ford Fiesta passenger vehicle there are 6 ECUs found based on 46 cyclic mes-
sages transmitted on the CAN bus. The ECU separation was problematic on clock skews
since the observed timings on some IDs were not stable over time. The exemplification
of changes with respect to timing is shown in Figure 5.10. For ID 073 (i) the cycle time
is the same over all 6000 frames, so the obtained clock skew remains the same. On the
other hand, for IDs 364 (ii) and 360 (ii) there is a change in the offset value over time
which is unexpected. This means that clock skew is different based on the time slot used
to compute it. Therefore, the clock skew obtained from the first half of frames for IDs
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Table 5.7: Physical characteristics for Dacia Logan
No. ECU ID Cycle Cskew Vmean Vmax Tbit Tplat

1 ECU1 500 100 0.997246 1.940 1.941 2.734 1.451
2 ECU1 1B0 20 0.999574 1.940 1.941 2.734 1.452
3 ECU1 552 100 0.999574 1.940 1.941 2.735 1.452
4 ECU1 657 100 0.999574 1.941 1.942 2.734 1.452
5 ECU1 2BC 100 0.999574 1.940 1.941 2.734 1.451
6 ECU1 69F 1,000 0.999574 1.941 1.941 2.729 1.451
7 ECU1 4DE 100 0.999574 1.942 1.940 2.736 1.448
8 ECU1 55D 100 0.999574 1.940 1.940 2.735 1.451
9 ECU1 5DE 100 0.999574 1.940 1.941 2.733 1.452

10 ECU1 575 100 0.999574 1.940 1.941 2.734 1.451
11 ECU1 45C 100 0.999574 1.940 1.942 2.733 1.451
12 ECU1 5DF 100 0.999574 1.941 1.942 2.734 1.451
13 ECU1 350 100 0.999574 1.940 1.941 2.735 1.452
14 ECU1 4AC 100 0.999574 1.941 1.941 2.734 1.451
15 ECU2 217 20 0.999974 2.046 2.050 2.655 1.428
16 ECU2 2C6 20 0.999974 2.044 2.048 2.655 1.428
17 ECU2 2A9 20 0.999974 2.044 2.049 2.654 1.427
18 ECU2 18A 10 0.999974 2.045 2.050 2.655 1.428
19 ECU2 186 10 0.999974 2.044 2.048 2.654 1.428
20 ECU2 66A 100 0.999974 2.045 2.048 2.655 1.427
21 ECU2 511 100 0.999974 2.043 2.046 2.652 1.428
22 ECU2 1F6 10 0.999974 2.045 2.049 2.655 1.428
23 ECU2 5DA 100 0.999974 2.043 2.046 2.653 1.428
24 ECU2 648 100 0.999974 2.043 2.046 2.653 1.428
25 ECU2 65C 100 0.999974 2.042 2.045 2.653 1.428
26 ECU2 41A 100 0.999974 2.044 2.047 2.652 1.427
27 ECU2 41D 100 0.999974 2.046 2.049 2.657 1.427
28 ECU3 090 10 0.999973 2.118 2.128 2.679 1.459
29 ECU3 0C6 10 0.999973 2.116 2.126 2.681 1.459
30 ECU3 666 100 0.999973 2.124 2.133 2.674 1.458
31 ECU3 352 40 0.999973 2.117 2.128 2.677 1.460
32 ECU3 29C 20 0.999973 2.119 2.129 2.678 1.459
33 ECU3 12E 10 0.999973 2.117 2.128 2.680 1.459
34 ECU3 242 20 0.999973 2.116 2.127 2.680 1.460
35 ECU3 354 40 0.999973 2.122 2.133 2.678 1.459
36 ECU3 2B7 20 0.999973 2.118 2.129 2.680 1.459
37 ECU3 29A 20 0.999973 2.118 2.128 2.679 1.460
38 ECU3 5D7 100 0.999973 2.118 2.128 2.682 1.459
39 ECU4 1A0 100 1.000530 2.190 2.222 2.676 1.492
40 ECU4 62B 100 1.000530 2.192 2.225 2.677 1.492
41 ECU5 4F8 100 0.999507 2.201 2.222 2.739 1.415
42 ECU5 646 500 0.999507 2.200 2.222 2.742 1.414
43 ECU5 3B7 100 0.999507 2.199 2.220 2.738 1.415
44 ECU5 6FB 3,000 0.999507 2.200 2.220 2.740 1.415
45 ECU6 564 100 1.000510 2.221 2.237 2.739 1.439
46 ECU6 653 100 1.000510 2.229 2.246 2.743 1.439
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Table 5.8: Physical characteristics for Hyundai ix35
No. ECU ID Cycle Cskew Vmean Vmax Tbit Tplat

1 ECU1 350 10 0.999534 1.937 1.934 2.664 1.332
2 ECU2 5E4 100 0.999966 2.115 2.130 2.744 1.532
3 ECU2 165 10 0.999966 2.120 2.132 2.747 1.527
4 ECU2 2B0 10 0.999966 2.112 2.127 2.746 1.535
5 ECU3 4F0 20 0.998440 2.136 2.147 2.667 1.415
6 ECU3 690 100 0.998440 2.138 2.148 2.669 1.409
7 ECU4 430 21 1.000070 2.137 2.165 2.639 1.455
8 ECU4 4B1 21 1.000070 2.133 2.162 2.638 1.456
9 ECU4 4D0 21 1.000070 2.133 2.161 2.638 1.454

10 ECU4 153 7 1.000070 2.122 2.154 2.637 1.456
11 ECU4 164 7 1.000070 2.137 2.165 2.637 1.456
12 ECU4 220 7 1.000070 2.134 2.162 2.637 1.455
13 ECU4 1F1 21 1.000070 2.138 2.165 2.637 1.456
14 ECU5 316 10 1.000010 2.165 2.213 2.673 1.480
15 ECU5 0A1 10 1.000010 2.165 2.212 2.673 1.481
16 ECU5 0A0 10 1.000010 2.164 2.212 2.673 1.481
17 ECU5 18F 10 1.000010 2.166 2.213 2.673 1.481
18 ECU5 329 10 1.000010 2.165 2.213 2.673 1.481
19 ECU5 260 10 1.000010 2.166 2.213 2.673 1.481
20 ECU5 2A0 10 1.000010 2.165 2.214 2.673 1.481
21 ECU5 545 10 1.000020 2.165 2.213 2.673 1.480
22 ECU6 429 20 0.999900 2.198 2.205 2.666 1.428
23 ECU6 428 20 0.999900 2.191 2.195 2.640 1.417
24 ECU6 5A0 1,000 0.999921 2.201 2.212 2.674 1.445
25 ECU6 5A2 1,000 0.999921 2.204 2.213 2.673 1.443
26 ECU6 5A1 1,005 0.999920 2.197 2.206 2.648 1.442

364 and 360 is different than the clock skew computed from the second half of frames.
This means that, by selecting a low number of frames, it leads to an unreliable separation
of ECUs using estimated clock skews. Nevertheless, the ECU separation is clear if volt-
age features are used, as shown in Figure 5.7 (vii) and Figure 5.8 (iii). In both figures,
the 6 clusters that correspond to 6 distinct ECUs can be identified. The physical char-
acteristic values determined for all IDs from the Ford Fiesta vehicle and the grouping as
part of ECUs are shown in Table 5.9. Some IDs were omitted from the analysis and the
experimental results since they are on-event (non-cyclic), i.e., 455, 720, 727, 728, 72F,
7A5 and 7AD.

In the Ford Kuga passenger vehicle there are 9 ECUs found based on 70 cyclic
messages transmitted on the CAN bus. This is the highest number of ECUs from the
dataset, for a single vehicle. In the dataset for Ford Kuga, there are frames with the same
voltage fingerprint but with different clock skew, which suggests that some frames are
gatewayed by the nodes from other vehicle buses. An example of this problem is shown
on the top side of Figure 5.11 with two IDs that originate from ECU6, i.e., 1D0 (i) and
208 (ii). In case of the ID number 1D0, the measured cycle time variation is of ±4ms
from the expected 20ms cycle time, while for ID 208 the measured cycle time variation
is of ±7ms from the expected 25ms cycle time. Since the second ID is quite noisy, the
assumption is that ID 208 is the one re-transmitted by the gateway ECU from another
in-vehicle bus. The clock skew is of 0.999956 for ID 1D0 and of 1.002190 for ID 208
with the clock skew accumulation (iii) shown on the top side of Figure 5.11. Even though
multiple clock skews are determined, the ECU separation is clear if voltage features are
used, as shown in Figure 5.7 (viii) and Figure 5.8 (iv). In both Figures there are 9 clusters
visible that correspond to 9 distinct ECUs. The physical characteristic values determined
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Table 5.9: Physical characteristics for Ford Fiesta
No. ECU ID Cycle Cskew Vmean Vmax Tbit Tplat

1 ECU1 023 100 0.999861 2.117 2.158 2.705 1.475
2 ECU1 04A 100 0.999861 2.113 2.154 2.701 1.476
3 ECU1 04B 100 0.999861 2.113 2.152 2.699 1.475
4 ECU1 460 100 0.999862 2.108 2.148 2.699 1.479
5 ECU2 073 10 0.999948 2.154 2.173 2.725 1.458
6 ECU2 090 10 0.999948 2.151 2.168 2.725 1.458
7 ECU2 20E 10 0.999948 2.155 2.173 2.725 1.458
8 ECU2 20F 10 0.999948 2.155 2.174 2.725 1.458
9 ECU2 211 10 0.999948 2.152 2.169 2.725 1.458

10 ECU2 212 100 0.999946 2.150 2.167 2.723 1.457
11 ECU2 213 20 0.999948 2.156 2.175 2.725 1.458
12 ECU2 215 20 0.999946 2.150 2.167 2.725 1.458
13 ECU2 216 20 0.999946 2.150 2.168 2.727 1.458
14 ECU2 2C3 1,000 0.999946 2.160 2.180 2.726 1.458
15 ECU2 4B0 10 0.999948 2.155 2.175 2.725 1.458
16 ECU3 150 25 1.000000 2.182 2.200 2.691 1.444
17 ECU4 190 20 1.002000 2.212 2.234 2.753 1.421
18 ECU4 275 100 1.001990 2.214 2.236 2.755 1.422
19 ECU4 400 100 1.001990 2.214 2.236 2.749 1.420
20 ECU4 405 100 1.002000 2.208 2.228 2.753 1.417
21 ECU4 430 100 1.002000 2.212 2.234 2.756 1.421
22 ECU4 432 100 1.002000 2.218 2.240 2.762 1.421
23 ECU4 433 100 1.001990 2.212 2.235 2.751 1.423
24 ECU4 4E3 30 1.002000 2.210 2.232 2.754 1.420
25 ECU4 2C1 1,000 1.001990 2.211 2.233 2.753 1.420
26 ECU4 4F2 1,000 1.001990 2.209 2.229 2.748 1.421
27 ECU5 0FD 20 0.999908 2.242 2.312 2.705 1.480
28 ECU5 200 10 0.999908 2.243 2.312 2.705 1.480
29 ECU5 201 10 0.999908 2.241 2.311 2.705 1.480
30 ECU5 203 30 0.999908 2.245 2.314 2.706 1.480
31 ECU5 205 10 0.999908 2.241 2.311 2.705 1.480
32 ECU5 228 25 0.999908 2.242 2.312 2.705 1.480
33 ECU5 231 10 0.999908 2.238 2.308 2.704 1.480
34 ECU5 232 10 0.999908 2.243 2.313 2.705 1.480
35 ECU5 261 50 0.999908 2.246 2.315 2.709 1.479
36 ECU5 268 10 0.999908 2.242 2.311 2.705 1.480
37 ECU5 280 50 0.999908 2.243 2.312 2.706 1.479
38 ECU5 2BA 100 0.999906 2.244 2.313 2.706 1.480
39 ECU5 360 10 0.999908 2.243 2.313 2.705 1.480
40 ECU5 364 30 0.999908 2.242 2.312 2.705 1.480
41 ECU5 420 100 0.999909 2.242 2.312 2.705 1.480
42 ECU5 424 100 0.999910 2.243 2.313 2.706 1.480
43 ECU5 428 100 0.999906 2.243 2.312 2.705 1.480
44 ECU5 4F1 1,000 0.999905 2.240 2.311 2.710 1.480
45 ECU6 080 15 0.956060 2.433 2.450 2.681 1.370
46 ECU6 240 10 0.956059 2.433 2.449 2.681 1.368
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(i) ID 073

(ii) ID 364

(iii) ID 360

Figure 5.10: Cycle time (left) and offset (right) for 3 IDs in the Ford Fiesta

for all IDs from the Ford Kuga vehicle and the grouping as part of ECUs are shown in
Table 5.10. One ID was omitted from the analysis and the experimental results since it is
on-event (non-cyclic), i.e., 35E.

In the Ford Ecosport passenger vehicle there are 4 ECUs found based on 87 cyclic
messages transmitted on the CAN bus. This is the highest number of IDs from the dataset,
for a single vehicle. Similar problems regarding different clock skews determined for the
same ECUs are present for Ford Ecosport as there are for Ford Kuga. An example of
this problem is shown on the bottom side of Figure 5.11 with two IDs that originate from
ECU4, i.e., 049 (iv) and 091 (v). Their cycle time is of 20ms. The reception time for both
IDs is noisy, so it is unknown if one of them or both are transmitted by the node which
acts as a gateway ECU. The clock skew is of 0.999926 for ID 049 and of 0.999611 for
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Table 5.10: Physical characteristics for Ford Kuga
No. ECU ID Cycle Cskew Vmean Vmax Tbit Tplat

1 ECU1 140 20 0.999661 1.943 1.968 2.871 1.436
2 ECU1 0B0 20 0.999661 1.940 1.965 2.871 1.436
3 ECU2 455 100 0.999995 2.115 2.127 2.893 1.342
4 ECU2 3EA 1,000 0.999995 2.115 2.127 2.892 1.346
5 ECU2 3E2 1,000 0.999995 2.121 2.131 2.890 1.339
6 ECU3 2B0 40 1.000010 2.104 2.183 2.840 1.470
7 ECU3 06A 20 1.000010 2.105 2.186 2.840 1.471
8 ECU3 050 10 1.000010 2.106 2.187 2.840 1.471
9 ECU3 0E0 20 1.000010 2.106 2.186 2.839 1.470

10 ECU3 0D0 20 1.000010 2.105 2.185 2.840 1.470
11 ECU3 0F0 10 1.000010 2.104 2.185 2.840 1.470
12 ECU3 0F5 10 1.000010 2.106 2.184 2.840 1.470
13 ECU3 100 20 1.000010 2.106 2.187 2.840 1.470
14 ECU4 435 300 0.999983 2.134 2.178 2.905 1.400
15 ECU4 40A 125 0.999983 2.134 2.178 2.903 1.403
16 ECU4 581 1,000 0.999980 2.130 2.175 2.905 1.401
17 ECU4 360 150 0.999982 2.135 2.178 2.901 1.401
18 ECU4 310 100 0.999983 2.136 2.179 2.903 1.401
19 ECU4 260 25 0.999982 2.135 2.178 2.904 1.402
20 ECU4 150 20 0.999982 2.135 2.179 2.903 1.401
21 ECU4 0C8 20 0.999982 2.134 2.177 2.904 1.401
22 ECU4 030 10 0.999983 2.134 2.179 2.903 1.405
23 ECU4 17E 100 0.999983 2.135 2.179 2.902 1.404
24 ECU4 290 30 0.999983 2.136 2.180 2.904 1.401
25 ECU4 400 250 0.999983 2.135 2.178 2.905 1.403
26 ECU4 380 300 0.999984 2.137 2.181 2.902 1.402
27 ECU4 3B4 300 0.999984 2.135 2.178 2.898 1.400
28 ECU4 420 600 0.999984 2.135 2.178 2.899 1.398
29 ECU4 405 250 1.028590 2.135 2.178 2.903 1.401
30 ECU5 090 10 1.000010 2.134 2.208 2.872 1.460
31 ECU5 060 15 1.000010 2.135 2.211 2.873 1.459
32 ECU5 2F0 90 1.000010 2.135 2.207 2.871 1.458
33 ECU5 280 30 1.000010 2.134 2.207 2.872 1.459
34 ECU5 200 25 1.000010 2.133 2.207 2.873 1.459
35 ECU5 270 30 1.000010 2.134 2.208 2.873 1.459
36 ECU5 0A0 15 1.000010 2.134 2.207 2.871 1.460
37 ECU5 1A0 20 1.000010 2.133 2.207 2.872 1.460
38 ECU5 1B0 30 1.000010 2.134 2.208 2.873 1.459
39 ECU5 130 20 1.000010 2.133 2.207 2.873 1.460
40 ECU5 138 20 1.000010 2.132 2.206 2.871 1.460
41 ECU5 080 20 1.000010 2.132 2.206 2.871 1.460
42 ECU5 120 20 1.000010 2.134 2.208 2.873 1.460
43 ECU5 070 20 1.000010 2.133 2.207 2.870 1.460
44 ECU5 0C0 20 1.000010 2.133 2.208 2.872 1.459
45 ECU5 0F8 20 1.000010 2.134 2.208 2.871 1.460
46 ECU5 2D8 60 1.000010 2.136 2.210 2.873 1.459
47 ECU5 340 120 1.000020 2.140 2.212 2.878 1.457
48 ECU6 2D0 40 0.999957 2.158 2.170 2.885 1.388
49 ECU6 218 30 0.999956 2.160 2.172 2.884 1.387
50 ECU6 252 20 0.999957 2.158 2.170 2.884 1.387
51 ECU6 190 10 0.999956 2.155 2.167 2.884 1.387
52 ECU6 2D4 60 0.999956 2.154 2.165 2.884 1.387
53 ECU6 180 20 0.999956 2.155 2.167 2.884 1.387
54 ECU6 1C0 20 0.999956 2.155 2.167 2.884 1.388
55 ECU6 1D0 20 0.999956 2.154 2.166 2.883 1.388
56 ECU6 1E0 20 0.999956 2.159 2.172 2.885 1.388
57 ECU6 210 20 0.999956 2.158 2.170 2.884 1.387
58 ECU6 160 20 0.999956 2.157 2.169 2.884 1.388
59 ECU6 213 20 0.999956 2.153 2.165 2.883 1.387
60 ECU6 388 801 1.000930 2.159 2.169 2.905 1.397
61 ECU6 208 25 1.002190 2.156 2.169 2.911 1.401
62 ECU6 2E0 70 1.000940 2.157 2.176 2.902 1.365
63 ECU7 2A0 40 0.999600 2.163 2.180 2.891 1.410
64 ECU7 2A5 40 0.999600 2.164 2.181 2.890 1.410
65 ECU7 229 40 0.999600 2.167 2.185 2.890 1.410
66 ECU7 170 20 0.999600 2.165 2.182 2.889 1.410
67 ECU7 04A 1,000 1.002190 2.163 2.174 2.906 1.396
68 ECU7 04B 1,000 1.002190 2.161 2.173 2.910 1.397
69 ECU8 010 10 0.999997 2.181 2.193 2.897 1.341
70 ECU9 269 30 1.000530 2.169 2.201 2.902 1.396
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(i) ID 1D0 (ii) ID 208 (iii) IDs 1D0 vs. 208 (offset)

(iv) ID 049 (v) ID 091 (vi) IDs 049 vs. 091 (offset)

Figure 5.11: Cycle time and skews for IDs 1D0 and 208 in Ford Kuga and IDs 049 and
091 in Ford Ecosport

ID 091 with the clock skew accumulation (vi) shown on the bottom side of Figure 5.11.
Even though multiple clock skews are determined for frames sent by ECU1, ECU3 or
ECU4, the ECU separation is clear if voltage features are used, as shown in Figure 5.7
(ix). By using the mean and maximum voltage separation, 4 clusters can be identified
that correspond to 4 distinct ECUs. The physical characteristic values determined for
all IDs from the Ford Ecosport vehicle and their grouping as part of ECUs are shown in
Table 5.11.

5.5.2 Overview of intra-distances and inter-distances

Since the information regarding ECU classification is provided for each vehicle, the intra-
distances and inter-distances are discussed in what follows. The intra-distances and inter-
distances are shown as heatmaps in Figure 5.12 for clock skews and Figures 5.13 (i) to
(iv) for separate voltage features. Then, all voltage features are used to measure the
intra-distances and inter-distances in case mean voltage, maximum voltage, bit time and
plateau time, so a better separation between nodes can be evaluated. This is shown in
Figure 5.14. The thresholds used for the heatmaps are of 10ppm for separation of the
skews, 25mV for separation of the mean and maximum voltage and 10ns for separation
of the bit time and plateau time. The inter-distances are higher for ECUs from the same
vehicle and, are sometimes very close, for ECUs in different vehicles.

There is a clear separation between most of the ECUs if clock skews are used, as
shown in Figure 5.12. As mentioned earlier, in some vehicles, some ECUs with dif-
ferent voltage characteristics and the same or very similar clock skews were identified.
This means that, for Ford Kuga and Ford Ecosport there are more groups of transmit-
ters that can be classified using the clock skew compared to those using voltage features.
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Table 5.11: Physical characteristics for Ford Ecosport
No. ECU ID Cycle Cskew Vmean Vmax Tbit Tplat

1 ECU1 447 1,000 0.965410 1.906 1.916 2.647 1.417
2 ECU1 041 20 0.982994 1.901 1.913 2.647 1.420
3 ECU1 331 500 0.996618 1.899 1.911 2.648 1.420
4 ECU1 3B3 500 0.978530 1.904 1.915 2.651 1.420
5 ECU1 084 1,000 0.999990 1.905 1.917 2.643 1.419
6 ECU1 3A9 20 0.997814 1.907 1.909 2.738 1.470
7 ECU1 3A8 20 0.997814 1.906 1.908 2.718 1.471
8 ECU1 3AB 200 0.997813 1.907 1.909 2.716 1.471
9 ECU1 3AA 200 0.997813 1.906 1.908 2.717 1.472

10 ECU1 40A 197 0.997962 1.903 1.915 2.648 1.421
11 ECU1 3B7 250 0.982993 1.904 1.915 2.647 1.421
12 ECU1 3B6 250 0.982993 1.901 1.913 2.646 1.420
13 ECU1 3AE 1,000 0.997806 1.911 1.911 2.725 1.466
14 ECU1 581 1,000 0.982989 1.901 1.913 2.648 1.421
15 ECU1 3B4 1,000 0.982993 1.893 1.906 2.650 1.421
16 ECU1 3E3 1,000 0.983002 1.903 1.915 2.646 1.421
17 ECU1 3EB 1,000 0.983003 1.900 1.912 2.648 1.420
18 ECU1 43C 1,000 0.983003 1.903 1.914 2.652 1.420
19 ECU1 3B1 1,000 0.983001 1.904 1.917 2.654 1.422
20 ECU1 3C7 1,000 0.982992 1.901 1.913 2.646 1.421
21 ECU1 3C3 1,000 0.982993 1.903 1.914 2.649 1.420
22 ECU1 38D 1,000 0.983001 1.909 1.918 2.654 1.418
23 ECU1 3B8 500 0.983004 1.901 1.913 2.646 1.422
24 ECU1 3B5 500 0.982994 1.902 1.914 2.645 1.421
25 ECU1 42C 50 0.982992 1.899 1.912 2.647 1.421
26 ECU1 242 39 1.008200 1.902 1.914 2.648 1.420
27 ECU2 3E2 1,000 0.999998 2.116 2.131 2.668 1.405
28 ECU2 3EA 1,000 0.999998 2.122 2.135 2.671 1.402
29 ECU2 455 100 0.999998 2.114 2.127 2.670 1.404
30 ECU3 43D 50 0.999999 2.196 2.234 2.682 1.478
31 ECU3 43E 50 0.999996 2.196 2.235 2.684 1.478
32 ECU3 42F 30 0.999998 2.196 2.235 2.684 1.478
33 ECU3 171 30 1.000000 2.195 2.236 2.686 1.478
34 ECU3 421 100 1.000000 2.197 2.236 2.684 1.478
35 ECU3 424 100 1.000000 2.197 2.236 2.681 1.477
36 ECU3 41F 100 1.000000 2.193 2.231 2.682 1.478
37 ECU3 42D 100 1.000000 2.194 2.233 2.679 1.478
38 ECU3 230 20 1.000000 2.193 2.232 2.682 1.479
39 ECU3 595 1,000 1.000000 2.188 2.228 2.679 1.478
40 ECU3 202 20 1.000000 2.194 2.233 2.684 1.478
41 ECU3 179 100 1.000000 2.196 2.234 2.683 1.479
42 ECU3 200 20 1.000000 2.194 2.233 2.683 1.478
43 ECU3 178 100 1.000000 2.195 2.234 2.684 1.478
44 ECU3 17C 100 1.000000 2.197 2.236 2.684 1.478
45 ECU3 156 100 1.000000 2.196 2.234 2.683 1.478
46 ECU3 166 100 1.000000 2.195 2.233 2.683 1.478
47 ECU3 167 10 1.000000 2.193 2.232 2.683 1.479
48 ECU3 204 10 1.000000 2.195 2.233 2.683 1.478
49 ECU3 047 20 1.000000 2.197 2.236 2.684 1.479
50 ECU3 165 20 1.000000 2.194 2.233 2.683 1.478
51 ECU4 332 100 0.999078 2.225 2.238 2.694 1.393
52 ECU4 333 100 0.999183 2.229 2.242 2.695 1.390
53 ECU4 439 1,000 0.999614 2.227 2.239 2.695 1.390
54 ECU4 43A 1,000 0.999614 2.227 2.239 2.694 1.390
55 ECU4 437 1,000 0.999614 2.227 2.240 2.696 1.391
56 ECU4 438 1,000 0.999614 2.227 2.241 2.695 1.391
57 ECU4 091 20 0.999611 2.224 2.237 2.694 1.391
58 ECU4 23A 100 0.999612 2.223 2.236 2.694 1.391
59 ECU4 430 100 0.999612 2.227 2.240 2.694 1.393
60 ECU4 434 100 0.999612 2.227 2.240 2.695 1.392
61 ECU4 2F1 1,000 0.999612 2.231 2.242 2.686 1.384
62 ECU4 092 100 0.999612 2.228 2.241 2.694 1.392
63 ECU4 59E 1,000 0.999612 2.223 2.237 2.693 1.392
64 ECU4 435 100 0.999613 2.227 2.240 2.695 1.392
65 ECU4 386 1,000 0.999613 2.224 2.236 2.696 1.389
66 ECU4 07E 20 0.999613 2.225 2.238 2.694 1.390
67 ECU4 217 10 0.999927 2.227 2.240 2.694 1.392
68 ECU4 4B0 20 0.999926 2.226 2.239 2.694 1.392
69 ECU4 415 20 0.999925 2.224 2.237 2.694 1.392
70 ECU4 049 20 0.999926 2.227 2.240 2.694 1.393
71 ECU4 077 20 0.999926 2.224 2.237 2.694 1.392
72 ECU4 07D 20 0.999926 2.226 2.239 2.694 1.392
73 ECU4 07F 20 0.999926 2.224 2.237 2.695 1.392
74 ECU4 214 20 0.999925 2.227 2.240 2.694 1.391
75 ECU4 216 20 0.999925 2.226 2.240 2.694 1.392
76 ECU4 213 20 0.999925 2.223 2.236 2.694 1.391
77 ECU4 076 500 0.999926 2.228 2.240 2.694 1.391
78 ECU4 416 100 0.999930 2.225 2.238 2.695 1.391
79 ECU4 083 100 0.999930 2.222 2.237 2.693 1.395
80 ECU4 326 100 0.999940 2.228 2.240 2.694 1.391
81 ECU4 3DA 1,000 0.999990 2.227 2.240 2.692 1.391
82 ECU4 3E0 1,000 0.999993 2.229 2.241 2.696 1.389
83 ECU4 3C8 1,000 0.999993 2.229 2.242 2.695 1.391
84 ECU4 04A 100 1.000080 2.225 2.239 2.694 1.392
85 ECU4 04B 100 1.000080 2.227 2.240 2.694 1.392
86 ECU4 04C 100 1.000080 2.225 2.238 2.694 1.391
87 ECU4 082 19 1.006160 2.227 2.240 2.694 1.391
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Figure 5.12: Skew heatmaps for the IDs belonging to the ECUs in the vehicles from the
experiments

The ECUs from Dacia Logan, which have a difference of only 1ppm if clock skew is
used and a much higher difference due to voltage characteristics, may be hard to sep-
arate using only the clock skew as reference. The same applies to Honda Civic, Dacia
Duster, Hyundai i20 and Hyundai ix35 where differences between clock skews for dif-
ferent ECUs are close to 20ppm. This means that collisions between clock skews are
possible due to small intra-distances between ECU1 and ECU2 from Honda Civic or
ECU1 and ECU2 from Dacia Duster.

There is a cleaner separation between most of the ECUs compared to clock skews if
mean and maximum voltage are used, as shown in Figures 5.13 (i) and (ii). As shown
earlier, in the paragraph that discussed the separation of ECUs inside vehicles, there are
ECUs where the values are close to each other, so the intra-distances are small. This
applies to ECU3 and ECU4 from Honda Civic where the mean voltage and maximum
voltage differ with only a few mV . This is also the case mean and maximum voltage
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(i) Mean voltage (ii) Max voltage

(iii) Bit time (iv) Plateau time

Figure 5.13: Mean voltage (i), Max voltage (ii), Bit time (iii) and Plateau time (iv)
heatmaps for the 433 IDs belonging to the 54 ECUs in the vehicles from the experi-
ments

data is compared between ECUs from different vehicles. Thereby, there is a small inter-
distance between ECU3 and ECU4 from Honda Civic and ECU2 from Opel Corsa. The
same goes for ECU4 from Opel Corsa and ECU3 in Ford Ecosport. Even though the bits
extracted from different vehicles have a distinctive pattern with regards to rise time, sta-
bilization time for the voltage, etc., this would require machine learning algorithms to be
trained so they could clearly separate the transmitters using voltage patterns. Neverthe-
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Figure 5.14: Combined mean-max-bit-plateau heatmaps for the IDs belonging to the
ECUs in the vehicles from our experiments

less, it was not in scope of this work, since the focus is on the computation of statistical
features from the voltage sample dataset.

A cleaner separation between ECUs, as shown in Figures 5.13 (iii) and (iv), can be
done using bit and plateau time since they depend on voltage characteristics and also on
the clock variations between the transmitters. There are more collisions in the plateau
time heatmap (ii) compared to the bit time heatmap (i). This is mostly visible for inter-
distances between ECUs that are from different vehicles compared to those from the same
vehicle. There are small overlaps which are visible for ECU4 and ECU6 from Hyundai
ix35 or ECU1 and ECU5 from Ford Fiesta. This also applies to ECU2, ECU4, ECU7

and ECU8 from Ford Kuga or ECU2 and ECU3 from Ford Ecosport. There are small
inter-distances for the bit time between ECU2 and ECU5 from Honda Civic and ECU1

and ECU4 from Opel Corsa. Since there are no overlaps between ECUs from Opel Corsa
and Dacia Duster, inter-distances are high and intra-distances are low, so the ECUs can
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Table 5.12: Differences of physical characteristics after 1 hour of runtime for Honda
Civic

No. ECU ID Cycle ∆Cskew ∆Vmean ∆Vmax ∆Tbit ∆Tplat

1 ECU1 039 40 0.000007 0.014 0.014 0.011 -0.015
2 ECU1 305 100 0.000007 0.013 0.012 0.011 -0.011
3 ECU1 401 300 0.000007 0.016 0.016 0.010 -0.003
4 ECU2 1A6 20 0.000005 -0.047 -0.050 0.003 -0.003
5 ECU2 21E 40 0.000005 -0.044 -0.047 0.003 -0.003
6 ECU2 221 40 0.000005 -0.042 -0.044 0.004 -0.003
7 ECU2 294 40 0.000005 -0.045 -0.048 0.002 -0.003
8 ECU2 295 40 0.000005 -0.044 -0.047 0.002 -0.004
9 ECU2 309 100 0.000005 -0.048 -0.051 0.005 -0.003

10 ECU2 372 100 0.000005 -0.047 -0.050 0.004 -0.003
11 ECU2 374 100 0.000005 -0.048 -0.052 0.000 -0.002
12 ECU2 377 100 0.000005 -0.049 -0.051 0.002 -0.003
13 ECU2 378 100 0.000005 -0.048 -0.050 0.002 -0.003
14 ECU2 386 100 0.000005 -0.041 -0.043 0.005 -0.003
15 ECU2 405 300 0.000005 -0.040 -0.041 0.002 -0.002
16 ECU2 428 300 0.000005 -0.040 -0.040 0.005 -0.003
17 ECU2 42D 300 0.000004 -0.040 -0.042 0.004 -0.003
18 ECU2 42E 300 0.000004 -0.040 -0.041 0.004 -0.004
19 ECU3 18E 10 0.000010 0.059 0.058 0.010 -0.003
20 ECU4 091 10 0.000011 0.002 0.004 0.010 0.002
21 ECU4 19B 10 0.000012 -0.002 -0.001 0.010 0.002
22 ECU4 1A4 20 0.000012 0.003 0.004 0.010 0.002
23 ECU4 1AA 20 0.000012 0.004 0.004 0.011 0.002
24 ECU4 1B0 20 0.000012 0.002 0.003 0.012 0.002
25 ECU4 1D0 20 0.000012 0.002 0.003 0.011 0.002
26 ECU4 1EA 20 0.000015 0.002 0.003 0.013 0.002
27 ECU4 255 40 0.000015 0.003 0.003 0.010 0.001
28 ECU4 3D9 200 0.000018 0.005 0.006 0.014 0.001
29 ECU4 406 300 0.000019 0.004 0.002 0.013 -0.003
30 ECU5 13C 10 0.000023 0.035 0.035 0.010 0.001
31 ECU5 158 10 0.000023 0.034 0.035 0.010 0.002
32 ECU5 17C 10 0.000023 0.036 0.037 0.010 0.001
33 ECU5 1DC 20 0.000023 0.035 0.036 0.008 0.001
34 ECU5 1ED 20 0.000023 0.038 0.038 0.009 0.001
35 ECU5 320 100 0.000023 0.040 0.044 0.011 0.001
36 ECU5 324 100 0.000024 0.039 0.036 0.008 -0.001
37 ECU5 328 100 0.000024 0.035 0.035 0.006 0.001
38 ECU5 3D7 200 0.000023 0.039 0.040 0.020 0.001
39 ECU5 400 300 0.000023 0.039 0.037 0.008 -0.001
40 ECU5 40C 300 0.000023 0.037 0.036 0.012 0.001
41 ECU5 454 300 0.000024 0.039 0.038 0.009 0.001
42 ECU5 465 300 0.000024 0.037 0.038 0.010 0.002
43 ECU6 156 10 0.000017 0.007 0.005 0.016 -0.013

be clearly separated using the bit time. Similar overlaps that were determined for the bit
time apply to the plateau time as it happens for ECU1 and ECU3 from Dacia Logan,
ECU1 and ECU2 from Ford Ecosport or ECU1 and ECU5 from Ford Fiesta. There are
overlaps for plateau time between ECU5 from Hyundai i20 and ECU2 from Honda Civic
or ECU4 from Hyundai i20 and ECU1 from Opel Corsa due to small inter-distances. The
same goes for ECU2 from Ford Fiesta, ECU3 from Dacia Logan, ECU4 from Hyundai
ix35 and ECU5 from Ford Kuga that have a similar plateau time.

In case all four voltage features are mixed, by using mixed physical characteristics,
as shown in Figure 5.14, almost all overlaps between ECUs are reduced, with an increase
in the inter-distances but also in the intra-distances. Some overlaps which still remain,
but with a higher inter-distance than single separation heatmaps, are between Hyundai
i20 and Ford Fiesta, Hyundai ix35 and Ford Fiesta or Dacia Logan and Ford Fiesta.
There are small overlaps between IDs from Ford Kuga and Ford Ecosport ECUs that can
be seen, but their effect is minor. This means that, by using only one or two voltage

BUPT



5.5. INTERPRETATION OF EXPERIMENTAL DATA 119

Table 5.13: Differences of physical characteristics after 1 hour of runtime for Ford Fiesta
No. ECU ID Cycle ∆Cskew ∆Vmean ∆Vmax ∆Tbit ∆Tplat

1 ECU1 023 100 -0.000145 0.020 0.023 0.009 -0.004
2 ECU1 04A 100 -0.000145 0.019 0.021 0.009 0.001
3 ECU1 04B 100 -0.000145 0.018 0.020 0.007 0.003
4 ECU1 460 100 -0.000147 0.025 0.029 0.013 -0.001
5 ECU2 073 10 0.000013 0.011 0.011 0.028 -0.001
6 ECU2 090 10 0.000013 0.011 0.011 0.024 0.000
7 ECU2 20E 10 0.000015 0.010 0.010 0.028 -0.001
8 ECU2 20F 10 0.000015 0.010 0.009 0.027 -0.001
9 ECU2 211 10 0.000015 0.010 0.010 0.018 0.000

10 ECU2 212 100 0.000017 0.015 0.015 0.023 0.000
11 ECU2 213 20 0.000015 0.009 0.008 0.032 0.000
12 ECU2 215 20 0.000017 0.010 0.010 0.015 0.000
13 ECU2 216 20 0.000017 0.010 0.010 0.016 0.000
14 ECU2 2C3 1,000 0.000019 0.009 0.008 0.012 -0.001
15 ECU2 4B0 10 0.000017 0.010 0.009 0.029 0.001
16 ECU3 150 25 0.000009 0.003 0.004 0.004 0.000
17 ECU4 190 20 -0.000119 0.020 0.017 0.017 -0.007
18 ECU4 275 100 -0.000118 0.017 0.015 0.002 -0.005
19 ECU4 400 100 -0.000118 0.017 0.014 0.019 -0.005
20 ECU4 405 100 -0.000119 0.021 0.020 0.017 -0.002
21 ECU4 430 100 -0.000119 0.020 0.017 0.016 -0.005
22 ECU4 432 100 -0.000113 0.014 0.010 0.010 -0.006
23 ECU4 433 100 -0.000108 0.019 0.015 0.018 -0.009
24 ECU4 4E3 30 -0.000118 0.020 0.018 0.013 -0.005
25 ECU4 2C1 1,000 -0.000106 0.013 0.014 0.007 -0.002
26 ECU4 4F2 1,000 -0.000116 0.023 0.022 0.019 -0.007
27 ECU5 0FD 20 0.000019 0.022 0.020 0.008 -0.002
28 ECU5 200 10 0.000020 0.021 0.019 0.009 -0.002
29 ECU5 201 10 0.000020 0.022 0.021 0.008 -0.002
30 ECU5 203 30 0.000020 0.020 0.018 0.008 -0.002
31 ECU5 205 10 0.000020 0.023 0.021 0.006 -0.002
32 ECU5 228 25 0.000019 0.023 0.021 0.000 -0.002
33 ECU5 231 10 0.000022 0.024 0.022 0.007 -0.002
34 ECU5 232 10 0.000019 0.022 0.021 0.011 -0.002
35 ECU5 261 50 0.000022 0.019 0.019 0.002 0.000
36 ECU5 268 10 0.000022 0.022 0.020 0.007 0.002
37 ECU5 280 50 0.000022 0.023 0.021 0.004 0.002
38 ECU5 2BA 100 0.000025 0.022 0.020 0.001 -0.003
39 ECU5 360 10 0.000022 0.022 0.020 0.007 -0.002
40 ECU5 364 30 0.000022 0.021 0.020 0.010 -0.002
41 ECU5 420 100 0.000013 0.021 0.020 0.012 -0.001
42 ECU5 424 100 0.000017 0.021 0.020 0.003 -0.002
43 ECU5 428 100 0.000025 0.021 0.020 0.001 -0.003
44 ECU5 4F1 1,000 0.000028 0.019 0.019 0.017 -0.001
45 ECU6 080 15 -0.000290 0.016 0.012 -0.002 -0.013
46 ECU6 240 10 -0.000270 0.015 0.013 -0.003 -0.007

characteristics for fingerprinting purposes, there may be many overlaps, and at least four
voltage characteristics are required for a clean separation of ECUs.

5.5.3 Impact of vehicle run-time

Since the ECU separation is performed using voltage data collected after vehicles were
started, what follows is the evaluation of the environmental impact on the clock and volt-
age characteristics for the Honda Civic and Ford Fiesta passenger vehicles. The reason
for this is the consideration that an analysis of environmental change impact on the phys-
ical characteristics is deemed necessary. Even though previous works have reported that
the physical characteristics have a slight change while the vehicle is running, there are no
clear details regarding how they change. The main observation from this analysis is that
the variation of physical characteristics does not follow a pattern. The voltage features
have either increased or decreased for ECUs from the same vehicle, so no prediction can
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be made regarding how they would change over time. The same thing applies to clock
skews where values have either increased or decreased based on the samples collected
after the 1 hour drive. This means that, in order to cover the changes that impact the
physical characteristics over time, extensive studies on the variations of physical char-
acteristics are required for months or even years. Nevertheless, considering one of the
use-cases regarding verification of unauthorized ECU presence during annual technical
safety inspection, the environmental impact would be minimal if the vehicle is placed in a
similar environment, e.g., an authorized service center. The other use-case would be just
the generation of an ECU matrix with the transmitters from the in-vehicle buses, based
on the access points that are available in a similar fashion to the proposal from [117].
Additional experimental data is presented in Table 5.12 for Honda Civic and Table 5.13
for Ford Fiesta with new columns, ∆, which are emphasized for each physical character-
istic. The value inside the ∆ columns contains the deviation after 1 hour of driving from
the initial value that was measured after vehicle startup.

The clock skew variation for some ECUs in the traces collected after 1 hour of driving
the Ford Fiesta and Honda Civic passenger vehicles are shown in Figure 5.15. In the
figure, only the clock skew values that have increased after 1 hour are shown. This means
that, after this time, either the clock oscillators on these ECUs run a bit faster or the clock
oscillator from the CANcaseXL device runs a bit slower. Considering that variations
are not uniform for all ECUs, the supposition is that the oscillators from each ECU are
mainly responsible for these changes since the reference, i.e., clock of the CANcaseXL,
is the same at vehicle startup and after the 1 hour drive.

The mean voltage variation for the ECUs after 1 hour of driving the Ford Fiesta and
Honda Civic passenger vehicles are shown in Figure 5.16. The variations for ECUs from
Honda Civic are both positive and negative, within 40mV from the initial value, or even
at 59mV for ECU3. The ECU from Honda Civic with a negative variation of the mean
voltage is ECU2 while all other ECUs have a positive variation of the same voltage
feature. All ECUs from Ford Fiesta have a positive variation of the mean voltage, within
20mV from the initial value that tops at 25mV for ECU1. Most of the variations are
close to or above the threshold set to 25mV for intra-distances and inter-distances.

Following the analyzed results, due to the fact that after 1 hour of driving, since the
engine and ECU temperatures increase, the voltage for dominant bits on the CAN bus in-
creases as well while the oscillators have a slight change of their frequency. This is not a
general rule since not all mean voltage values increase over time. One of the ECUs from
Honda Civic, i.e., ECU2, had a negative trend of the mean voltage in the samples col-
lected after the 1 hour drive. Since the physical value variation cannot be predicted over
time, in order to avoid false reports of intrusions or mis-classification between ECUs,
periodic updates of the physical characteristics can help in this regard. Authors from pre-
vious research works [27], [127] have proposed re-training of their models with updates
of existing fingerprints for intrusion detection systems. It is also possible to update or
add new voltage characteristics on intrusion detection systems [27]. This can be done
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Honda Civic (i)

Ford Fiesta (ii)

Figure 5.15: Skew variations in the Honda Civic (i) and Ford Fiesta (ii) from a cold start
(blue) to 60 minutes driving (red)

using secured updates of the machine learning algorithms through authenticated frames,
as shown by authors in [127].
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Honda Civic (i)

Ford Fiesta (ii)

Figure 5.16: Voltage variations in the Honda Civic (i) and Ford Fiesta (ii) from a cold
start (blue) to 60 minutes driving (red)

5.6 Concluding remarks

In this chapter, several physical fingerprinting methods were discussed using time and
voltage data which was collected from real vehicles. The CAN bus traffic and voltage
data samples were collected from 9 passenger vehicles. These were used as inputs for
computing the time and voltage features for each frame, based on the frame identifier.
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The outcome of the classification was the frame clustering inside ECUs and the clear
separation of frames between ECUs. There are 51 ECUs that were identified from the
vehicles using the voltage features, while some frames from the same ECU have different
clock skews. The reason behind this may be that the ECU is also a gateway for frames
transmitted on other vehicle networks. The separation of ECUs based on clock skew
and voltage features was also analyzed using inter-distances and intra-distances. There
are several overlaps if single voltage features are used for ECU separation, but these are
no longer present if multiple voltage features are combined. The impact of vehicle run-
time is presented after 1 hour drive for 2 passenger vehicles and the differences discussed.
Considering the unpredictable variations, periodic updates of the clock skews and voltage
features are necessary, an aspect which was also suggested by other research works.
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Chapter 6

An Experimental Setup with
Real-world Vehicle Harnesses

This chapter of the thesis is based on two research papers by the author [32], [33]. The
first research paper [32] proposes a digital twin for several vehicle level functionalities
that are deployed on automotive-grade microcontrollers. Development and integration
of MATLAB models on the embedded devices, together with the design of a supporting
tool for the CAN interface, are presented in this paper with a comparison of the model
outputs with vehicle signals collected from a real car. The second paper [33] uses this
setup to perform an analysis of three voltage characteristics for CAN bits. This is needed
in order to point out the importance of the wiring harness used on CAN buses regarding
voltage fingerprinting techniques.

6.1 Digital Twins for automotive Controller Area Networks

The number of ECUs inside vehicles has increased and each ECU runs specific software
components while they require in-vehicle networks to exchange data in real-time. One of
the reasons this happened is due to the development of vehicle level functionalities such
as adaptive cruise control that require data from multiple systems and sensors to ensure
that acceleration and deceleration are safe for the traffic participants. Another change
which happened in the automotive industry is related to the upgrade from purely mechan-
ical features such as braking or steering that has been updated by some manufacturers to
a combination of mechanical, hardware and software features such as brake-by-wire or
steer-by-wire. Following the automotive directions towards autonomous vehicles and au-
tonomous driving there will be many more changes with respect to addition of hardware
and software to control the vehicle mechanics or remote software updates [147]. Due to
the introduction of more hardware and software components inside the vehicle, the num-
ber of vulnerabilities and possible hazards also increased. This allows research groups
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ECU3

DLC

ECU7ECU1

ECU4

ECU5

ECU6

ECU2

CAN-H

CAN-L

Figure 6.1: Overview of the in-vehicle network CarTwin model

to study already existing and newly developed ECUs that are utilized for several vehicle
level functionalities using simulations [148], models [149] and digital twins [150].

Considering that there is an increasing need of digital twin development for the auto-
motive industry, the intended outcome of our work was a car twin which acts as a digital
twin for an in-vehicle CAN network. The digital twin includes development boards from
Infineon with CAN interfaces that are connected to real CAN network wires from wiring
harnesses that were part of a real vehicle. The experimental network is shown in Figure
6.1 with 7 development boards that are placed along the CAN bus, close to the original
connectors, and a DLC interface where the CAN interface is connected to the PC. Each
development board embeds a MATLAB model which receives inputs and provides real-
time outputs using the CAN bus interface. Digital twins of real vehicle CAN networks
can be used to examine the security shortcomings in the closest way as possible to a real,
practical implementation of the network in the car. Since the number of reported security
issues related to the CAN bus is increasing [1, 2, 19], the development of techniques to
secure the CAN communication is of utmost necessity. Hence, the design of a vehicle
CAN bus digital twin can also pave the road to an improved security analysis of vehicle
level functionalities.

6.2 Related works

There are many research papers published in the last decade addressing Controller Area
Network topics since they are widely used as communication layers in vehicles. Starting
from the initial proposal from Bosch [151] there have been works that studied the bus
capacity for message scheduling [152, 153] and also transmission and reception times
for frames [154] considering frame arbitration and the error confinement mechanism im-
plemented by CAN nodes. Proposals to enhance the Controller Area Networks have also
been published in works like TT-CAN [100] or CANOpen [155]. Others have proposed
changes to the original specification in order to increase the communication bandwidth
[156, 157]. Newer embodiments of CAN have already been standardized, i.e., CAN-FD
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[44, 158], or are in the process of standardization, i.e., CAN-XL [159] for the automation
and automotive industries. The updates that the industries bring to the Controller Area
Networks show that this bus is still considered as one of the main in-vehicle communica-
tion buses. This means that studies related to automotive Controller Area Networks are
still of high interest for both the industry and research groups.

The digital twins were first proposed by Michael Grieves in 2002 as part of the prod-
uct lifecycle management process [160] which was further detailed by the same author
in a whitepaper from 2014 [161]. A good definition of a digital twin comes from the
International Council on Systems Engineering (INCOSE) which describe it as a high-
fidelity model of the system [162]. The authors of [163] mention that there are multiple
levels defined for the digital twins, depending on the complexity of their interfaces or
the amount of data exchanged with their physical counterparts. Some are preliminary
versions of the digital twins called pre-digital twins. The advanced versions are either
adaptive digital twins that adapt their interfaces over time or intelligent digital twins with
reinforced learning capabilities.

Even though the first digital twins have been practically implemented for manufac-
turing processes or product lifecycle management activities [164], they are now studied
in multiple areas with various use-cases. The idea that a digital twin is an authentic copy
of a physical system helps in regards to actively monitoring behaviors or studying partic-
ular aspects of the twin, without requiring a connection to the physical system. Some of
the applications where the digital twins are developed and researched are the production
of cyber-physical systems [165, 166], aerospace equipment [167], oil and gas industry
[168], healthcare services [169] or the 5G/6G networks for the Internet of Things (IOT)
[169]. In the automotive area, research works propose digital twins for brake systems
[170], battery systems [171] or wiring harnesses [172]. In a recently published master
thesis [173], its author proposes the realization of a digital twin for the vehicle dynam-
ics of a Toyota Prius vehicle. The design includes single-track, two-track or multi-body
MATLAB models to create digital twins for the vehicle dynamics and to capture the
model outputs by feeding the vehicle inputs from the CAN bus in real-time. The valida-
tion of the digital twin models is done by comparing their outputs with the real-vehicle
signal values. There is also increasing interest in studies related to digital twins architec-
tures for autonomous vehicles [174]. As automotive security papers that study different
aspects using digital twins, the areas of interest are related to privacy enhancement [175]
or the prediction of cybersecurity incidents [176] as well as protection for the infrastruc-
ture of intelligent transportation systems [177]. Other related works regarding design
details or security overviews for specific automotive systems are briefly described at the
end of each paragraph from the following subsection.
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6.3 The in-vehicle subsystems from the designed Digital Twin

The CAN bus that serves as basis for the digital twin has a diagnostic interface, so it is
the network with the most common access point from the vehicle. There are 7 ECUs
are connected to this bus. These are the Accessory Protocol Interface Module (APIM),
Power Steering Control Module (PSCM), Instrument Panel Cluster (IPC), Remote Func-
tion Actuator (RFA), Restraints Control Module (RCM), Anti-lock Brake System (ABS)
and Powertrain Control Module (PCM).

The Accessory Protocol Interface Module (APIM), usually referred to as the SYNC
module, is an automotive system with entertainment and multimedia purposes. This sys-
tem allows vehicle occupants to control the radio channel or the music inputs, connect
their mobile devices to the car to allow hands-free voice calls or voice commands. More
details regarding this module and its capabilities are provided by the authors of [178].

The Power Steering Control Module (PSCM) controls the steering of the wheels
by adapting the position of a column angle using a motor. The input comes from the
mechanical rotation of the steering wheel, the measured driver torque and road distur-
bances. The design of an electric power steering system is presented in [179] with details
that include the system model, various block diagrams and equations that define its func-
tionality.

The Instrument Panel Cluster (IPC) provides visual information to the driver re-
garding the real-time vehicle speed, fuel level, odometer, etc.. This node communicates
with other nodes from the vehicle’s bus, either directly or through gateways. An in-depth
analysis of the instrument cluster is done by authors in [180] with details regarding its
functionalities but also attack capabilities that are shown as part of a risk assessment. The
work done by authors in [181] is similar, with a summary of attack paths identified for
the instrument cluster.

The Remote Function Actuator (RFA) is connected to a remote function receiver
and communicates data related to the intelligent key presence. This supports door lock/unlock
features but also checks if the intelligent key is in the vehicle or not. There is a multitude
of research papers from the past decade that have addresses vulnerabilities and security
gaps for keyless door unlock or keyless engine start [182, 183, 184, 185].

The Restraints Control Module (RCM) handles the passive safety of a vehicle
with the main functionalities closely related to the passenger occupant seat, seatbelt and
airbag. In the event of a car accident, based on acceleration and pressure data, it controls
the airbag firing and the pretensioner of the seatbelts. The security of restraint control
modules is evaluated in [186] which proposes corrective measures and security verifica-
tion methods to reduce existing risks and minimize the impact of attacks.

The Anti-lock Brake System (ABS) supports in prevention of tire lock or skidding
while driving by maintaining traction between the tires and the road surface. The system
is effective for the driver also in case there are conditions on the road that affect the
friction between any tire and the road. One of the inputs received from its sensors is
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the speed of each wheel. This input is monitored and a hydraulic brake is controlled
by the system for each wheel that lost its grip on the road surface due to snow, ice or
sand. Authors from [187, 188] analyze the security gaps of anti-lock brake systems and
propose counter-measures for them.

The Powertrain Control Module (PCM) handles the engine and transmission for
vehicles by controlling fuel injection, real-time emissions and change of the gear for
combustion engines. This is a complex module with a multitude of features that were
analyzed from a security standpoint by authors in recent works [189, 190], but in the
context of electric or hybrid vehicles, where some of the described features may differ
from vehicles with petrol or diesel engines.

6.3.1 Wiring schematic and details

Modern cars have multiple wiring harnesses, connectors, wires and their number is grow-
ing on an year to year basis as recent studies show [191]. According to the same study,
some vehicles include up to 40 distinct harnesses that have over 3,000 wires and more
than 700 connectors. The length and weight of the wiring harnesses and connectors
would be of 4km and 60kg, which makes them both heavy to integrate in the vehicle and
hard to maintain over time.

The experimental setup for CarTwin contains three distinct wiring harnesses from a
real-world vehicle with multiple connectors and wires. Since we don’t want to bias this
research to a particular car manufacturer, as many vehicles have similar architectures, we
keep the model anonymous. From all the connectors that were part of the wiring harness,
only the connectors that had the CAN bus linked to them are maintained. There is a total
of 8 connectors which are part of the setup, 1 is the DLC (OBD-II) diagnostic connector
and 7 are for the ECUs that communicated on the CAN bus in the vehicle. An overview
of the original network configuration from the real vehicle that we considered with details
regarding the ECUs that are connected and the bus termination that is part of the terminal
nodes is shown in Figure 6.2. The wire length with respect to the CAN bus that contains
the main cables and the stubs is shown in Figure 6.3 for the wiring harnesses from the
vehicle. These wiring harnesses are called wiring harness #A, #B and #C. For each of the
wiring harnesses, the nodes which are connected to them are shown in the same figure.
In case of wiring harness #A, the main wire length is of 140cm while the stub length for
the PSCM, IPC and DLC is of 15cm, 50cm and 15cm. The wiring harness #B connects
the RCM and RFA to the CAN bus with a main wire length of 195cm and the length for
the stubs of 120cm and 100cm. The last one, wiring harness #C, provides access on the
CAN bus to the ABS and PCM modules with a main wire length of 175cm and 25cm for
the stub that goes to the ABS system. This leads to a total of 510cm for the main wire
length, without the stubs that are a total of 325cm of twisted-pair wires. The terminal
nodes, APIM and PCM, also include a 120Ω resistor that connects CAN-H and CAN-L
on both ends of the network.
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Figure 6.2: Schematic view of the in-vehicle high-speed CAN bus that are used for the
digital twin network

IPC

DLC

APIM

PSCM

HS-CAN on 
harness #A

80cm 60cm

15cm

50cm

65cm

15cm

(i) CAN bus on harness #A

HS-CAN on 
harness #B

RFA

65cm

120cm

100cm

RCM

130cm 95cm

(ii) CAN bus on harness #B

HS-CAN on 
harness #C

ABS

95cm

25cm

PCM80cm

(iii) CAN bus on harness #C

Figure 6.3: Wire and stub lengths for the in-vehicle high-speed CAN bus from vehicle
harnesses

6.3.2 Design and validation of the models

The overview for the block diagram that contains all the MATLAB models developed in
the work together with the input and output signals for each model is shown in Figure
6.4. The models were developed for the ECUs connected to the CAN bus from the wiring
harness. These are the APIM, PSCM, IPC, RFA, RCM, ABS and PCM. In addition to the
ECU models, the RestBus simulation tool that provides signals required by some models
is represented as a block. The RestBus simulation tool 1 provides the CAN signals on
the experimental setup, while in MATLAB, the signals provided by this block, are set
in the simulation environment. The signals transmitted from this block, marked with
orange in the figure, are the driving direction, brake status, buckle status, steering wheel
angle and door lock button status. Based on a pre-set target vehicle speed, the vehicle
speed marked with green in the figure is computed by the ABS and provided to PSCM
and PCM. In what follows next, each model will be described with details regarding the
inputs required, input data processing and outputs that are provided.

The inputs used by the Power Steering Control Module (PSCM) model are the steer-

1https://www.ni.com/ro-ro/innovations/white-papers/12/
the-fundamentals-of-restbus-simulation.html
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Figure 6.4: Overview of the Simulink model including the seven ECUs
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ing wheel angle provided from the RestBus simulation tool and the estimated vehicle
speed value provided by the ABS model. Since the Mapped Steering block was available
as part of the Simulink library, it was used as the main block for computing the wheel
angles. The wheel angles are computed based on interpolation tables that are defined
according to the vehicle settings. The output from the PSCM model is represented by the
vehicle trajectory defined as x(t), y(t) coordinates and the vehicle rotation angle defined
as ψ(t). The values for x(t), y(t) and ψ(t) are computed based on the vehicle speed, v(t)
and the wheel angle as shown in Equations 6.1, 6.2 and 6.3. The value for the vehicle
speed is divided by 3 in Equation 6.3, since the wheelbase, i.e., distance between the rear
and front axles, is set to 3m. The wheel angle for the right wheel is referenced as AngR,
while the vehicle speed is referenced as v(t).

x(t) =

∫
cosψ × v(t) dt (6.1)

y(t) =

∫
sinψ × v(t) dt (6.2)

ψ(t) =

∫
tan (AngR)× v(t)

3
dt (6.3)

The inputs used by the Anti-lock Brake System (ABS) model are the target vehicle
speed value and the brake status from the RestBus simulation tool. The estimated value
of the speed for each is computed by the model using the brake status. In case the brake
status is active, i.e., the brake is pressed, the wheel speed is decreased based on the output
of an integral controller block. The vehicle speed, if the brake is applied, is computed
using a proportional controller block and an integral controller block. As inputs to the
proportional controller block, either the vehicle speed target is used, when the brake is not
applied or 0 when the brake is applied. The value for the vehicle speed is limited to the
vehicle speed target if there is no brake applied, or computed using an integral controller
block otherwise. The slip for each wheel, sx(t), is computed based on the vehicle speed
and the speed of the wheel x, x = 1..4. This is described in Equation 6.4 where vx(t)
is the speed for wheel x, x = 1..4, and v(t) is the vehicle speed. The brake state for
each wheel is computed based on the determined slip and the vehicle speed value. The
brake state values can be set to either Apply , Hold or Release. Whenever the brake is
applied, i.e., brake state is set to Apply , the input valve opens while the output valve is
closed and the pressure is applied to the wheel. After the valve is open and the applied
pressure locks the wheel, in order to keep the wheel locked, the input valve is closed. As
a result, the brake is kept pressed on the wheel. In this case, the brake state is set to Hold .
Based on the slip value for the wheel, the output value is open and the brake is released,
allowing the wheel to rotate, i.e., brake state is set to Release. Control of the input and
output valves is done based on the brake state with the same logic for all four wheels.
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sx(t) =
vx(t)− v(t)

v(t)
(6.4)

The inputs used by the Powertrain Control Module (PCM) model are the vehicle
speed value provided by the ABS model and the driving direction from the RestBus sim-
ulation tool. The PCM provides multiple outputs that will be explained in what follows.
One of the main outputs is the vehicle acceleration, acc(t), computed as the time deriva-
tive of the received vehicle speed, v(t), as shown in Equation 6.5. In order to have a stable
value of acceleration due to fast transitions of the vehicle speed, two low-pass filters with
a filter coefficient set to 0.1 are used in the model before the acceleration is provided
outside of the module. Another important output provided by the PCM system is the
gear that is computed based on the input vehicle speed. There are 6 gears considered in
the model with the vehicle speed threshold to shift between gears of 15km/h, 30km/h,
50km/h, 60km/h and 80km/h. The transition between gears is based on an interpo-
lation table. The engine speed is computed by the PCM model using the shaft vehicle
speed, shaftVS (t), axle ratio, axleRatio and gear transmission ratio, trRatio, as shown
in Equation 6.6. The shaft vehicle speed, shaftVS (t), is determined based on the vehi-
cle speed (v(t)) and the wheel radius, which is set to 0.381m as shown in Equation 6.7.
Using the engine speed and the gear, the PCM provides the engine torque based on a 2-D
lookup table. Other signals provided by the PCM from the model are the engine power,
air mass flow, fuel flow, exhaust temperature, efficiency and emission performance sig-
nals, crankshaft power, fuel input power and power loss. All these signals are provided
by the Mapped SI Engine block from the Simulink library that contains multiple
lookup tables.

acc(t) =
dv(t)

dt
(6.5)

engineSpeed(t) = shaftVS (t)× axleRatio × trRatio (6.6)

shaftVS (t) =
v(t)× 25

3× π × 0.381
(6.7)

The inputs used by the Instrument Panel Cluster (IPC) model are the vehicle speed
value provided by the ABS model and the buckle status from the RestBus simulation tool.
The model of the IPC provides three outputs that are the buckle alert (i), trip distance (ii)
and average vehicle speed (iii). The trip distance (dist) is computed as integral of the
received vehicle speed signal v(t) as shown in Equation 6.8. The average vehicle speed
is computed based on the received vehicle speed over time. Since the vehicle speed is
sometimes used in m/s in the model due to the implementation of some blocks, it is
converted to km/h before the trip distance or average vehicle speed values are computed.
The buckle alert is reported as active whenever the vehicle speed is higher than 10m/s
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(36km/h) and the seatbelt is not buckled. In case of a lower vehicle speed or, if the
seatbelt is buckled, the buckle alert becomes inactive.

dist(t) =

∫
v(t)dt (6.8)

The inputs used by the Restraints Control Module (RCM) model are the vehicle speed
value provided by the ABS model and the buckle status from the RestBus simulation
tool. The RCM from the model provides the airbag status as the single output signal.
The airbag status is active whenever the vehicle speed is higher than 10m/s (36km/h)
and the seatbelt is buckled. The airbag status is active whenever the seatbelt buckle alert
provided by the instrument cluster is inactive and inactive in the other case since the
airbag shouldn’t work without the seatbelt fastened.

The input used by the Protocol Interface Module (APIM) model is the driving di-
rection from the RestBus simulation tool. The APIM from the model provides a single
output signal that is the rear camera status. The rear camera status is active whenever the
driving direction is set to reverse and inactive if the driving direction is set to forward.
This means that the images captured by the rear camera are shown to the driver whenever
the vehicle is driven in a backward direction.

The input used by the Remote Function Actuator (RFA) model is the door lock button
from the RestBus simulation tool. The APIM from the model provides a single output
signal that is the door status. The door status is updated from unlocked to locked when-
ever the door lock button is pressed. If the door lock button is continuously pressed, the
transition between locked-unlocked or unlocked-locked transition is done every 1s.

6.3.3 Hardware and software level deployment of the Digital Twin

The signal representation from the models and the RestBus simulation was set according
to existing signals from CAN databases that are part of the opendbc GitHub project 2

from commaai. Even though some of the signals, such as the speed or angles, are rep-
resented on 15 bits, they are extended to 16 bits so the information can be captured in
2 bytes, but limiting the physical range to 15 bits. This helped us in the implementa-
tion of the RestBus simulation tool and the integration and verification of the models on
the embedded boards. The RestBus simulation tool was developed in C# and integrated
the Vector XL Driver Library 3 to allow transmission, reception and logging of CAN
frames in real time using a Vector VN5610 hardware tool. A configurable timer with a
microsecond step allows the configuration of the cycle time for the main function that
includes the frames transmitted by the RestBus simulation tool. The RestBus simulation
tool is configured to transmit specific values for each signal provided to the embedded

2https://github.com/commaai/opendbc
3https://www.vector.com/int/en/products/products-a-z/

libraries-drivers/xl-driver-library/
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boards, except for the door lock button, which is always transmitted as pressed in the
model. The signals transmitted in the frames follow a format that is interpreted and used
by the embedded boards as input for the integrated models. Using the "Start transmis-
sion" and "Stop transmission" buttons, communication from the RestBus simulation tool
can be started, stopped and restarted based on the end-user input. The signals that are
transmitted by the tool are shown on the top part of Table 6.1 where the transmitter is
represented by the "CAN Tool". The signals that can be configured using the RestBus
simulation tool are the vehicle speed target, vehicle direction, brake status, steering wheel
angle and buckle status. The vehicle speed target is the value of the vehicle speed that is
reached and maintained by the ABS model in case the brake pedal is not pressed. The
vehicle direction is the driving direction for the vehicle that can be in a straight or reverse
direction. The brake status is used by the ABS model to control the brakes for each wheel
and to compute the vehicle speed value after braking. The steering wheel angle is used
by the PSCM model to compute the wheel steering angle, vehicle rotation angle and ve-
hicle trajectory values. The buckle status is used by the IPC and RCM models to provide
both the buckle alert and airbag status. The real-time communication with the embedded
boards can be visualized either in CAN frame format as "Received frames" or using the
interpreted signal values that are shown on the top right side of the tool. The graphical
user interface of the RestBus simulation tool with the information that was previously
described is shown in Figure 6.5.

The integration of the MATLAB models was done on 7 TC275 lite kit embedded
boards from Infineon that have an AURIX TC275 microcontroller and a TLE9251VSJ
CAN Transceiver. All boards have a USB interface used for programming the binaries
using the Infineon software development environment. They also include a CAN in-
terface with 120Ω resistor between CAN-H and CAN-L. The microcontroller has three
individual cores with a core operating frequency of 200MHz. The internal memory of
the microcontroller is of 4MB of Flash and 472KB of RAM. According to the datasheet,
these microcontrollers are usually used as main controllers for automotive safety systems
related to braking, airbag deployment or engine control. A TC275 lite kit is used as an
embedded device in the experimental setup as shown in Figure 6.6 (i). The pins used for
CAN communication from the embedded boards are P20.8 and P20.7, which are the CAN
TX and CAN RX lines. These lines are traced to the TLE9251VSJ CAN Transceiver on
the embedded board, so they allow the integration of the microcontroller on the CAN bus
using 2.54mm 2-pin male connector. The P20.6 pin state was configured to LOW since
this line is connected to the standby input of the TLE9251VSJ CAN Transceiver, which
is active HIGH. Since the physical CAN bus requires only two termination resistors, the
120Ω resistors that were connected between CAN-H and CAN-L were removed from
5 boards that integrated the MATLAB models for PSCM, IPC, RCM, RFA and ABS.
The 120Ω resistor was maintained on the nodes from the bus ends which are the APIM
and PCM. Physical connection of CAN wires from the wiring harness to the embedded
boards was possible after the wires were cut from the original vehicle connectors and
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Figure 6.5: User interface for the transmission and visualization of CAN signals

had 2.54mm female headers soldered in order to mate the existing connectors from the
embedded boards. The visual representation of the experimental setup is shown in Figure
6.6 (ii) with labels for each embedded device and the MATLAB model it integrates and
the VN5610 hardware tool that is connected close to the DLC port.

The information regarding the integration of CarTwin models in the embedded boards
is described in what follows. The models from MATLAB/Simulink can be generated as
C or C++ code using the Simulink Embedded Coder feature from MATLAB 4. This
functionality from MATLAB performs source code generation from existing models, but
specific settings are required in the model if the code is intended for embedded devices.
The first setting is related to the solver type from the MATLAB environment that had to
be set to "discrete states", to allow setting of the cycle time. The next setting is related to
the cycle time of the task executed on the embedded device is the step time in the model
that was set to 20ms. In order to execute the generated code outside of the MATLAB
environment without any dependencies, all continuous blocks used by Simulink need to
be changed to discrete. Since the model uses discrete blocks, the configured step time
is used both in the model simulation and generated source code by the discrete blocks.
The final setting is related to the embedded board target for the model that was set to
"Infineon" and "Tricore" because AURIX TC275 microcontrollers are used. This allowed

4https://www.mathworks.com/help/ecoder/
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(i) AURIX TC275 development kit

(ii) Experimental setup of the vehicle bus network digital twin

Figure 6.6: Aurix node and experimental setup for CarTwin

the generated source code to be aligned with the embedded board compiler with respect
to the endianness and utilized data types. An additional change related to updates in
all MATLAB/Simulink models of continuous time blocks to discrete time blocks is also
required. Without this change, the generated source code relies on specific dependencies
that are available only where the MATLAB tool is installed. The source code generated
from the updated model that has all the continuous time blocks replaced by discrete time
blocks is portable to the Infineon embedded device.

The generated source code was integrated in the template projects available as part of
the build system from Infineon, i.e., AURIX studio. The project configuration was set for
the AURIX TC275 microcontroller since the target devices are the TC275 lite kit embed-
ded boards. The template project includes all required drivers that allow configuration of
the peripherals, such as the CAN controller or other functionalities like internal timers.
The generated MATLAB/Simulink model contains two functions, one that initializes all

BUPT



138CHAPTER 6. AN EXPERIMENTAL SETUP WITH REAL-WORLD VEHICLE HARNESSES

the structures with default data and a runnable that updates the structures based on re-
ceived input data and provides the output. The initialization function was placed after
the initialization part of the microcontroller, where both the CAN controller and internal
timer were also initialized. The CAN controller was configured to communicate using a
500Kbit/s bit rate using the P20.8 and P20.7 pins as CAN TX and CAN RX interfaces.
The state of P20.6 pin was configured to output, LOW, to enable the CAN transceiver
to switch from standby to normal mode. Frame receival is configured to happen during
interrupts that are set whenever a frame is received from the CAN bus. The internal timer
of the microcontroller was configured to trigger an interrupt every 20ms, which is in line
with the step time configured in MATLAB for the model. The interrupt service routine
(ISR) updates a flag that is used in the main function to execute the model runnable and
to send the latest output on the CAN bus. The information is sent using one or multiple
CAN frames depending on the signals produced by the model. The signals computed
by the ABS model are the slip value and valve status for all four wheels, while the in-
put required by the model is the brake status signal sent by the RestBus simulation tool.
The signals computed by the PCM model are the engine speed and gear position while
the input required by the model are the vehicle speed provided by the ABS module and
the driving direction sent by the RestBus simulation tool. The signals computed by the
PSCM model are the vehicle steering offset and trajectory information, while the inputs
required by the model are the steering wheel angle sent by the RestBus simulation tool
and the vehicle speed provided by the ABS module. The signal computed by the RCM
model is the airbag status while the input required by the model is the buckle status sig-
nal sent by the RestBus simulation tool. The signals computed by the IPC model are
the average vehicle speed, trip distance and buckle alert, while the inputs required by
the model are the vehicle speed provided by the ABS module and the buckle status sig-
nal sent by the RestBus simulation tool. The signal computed by the RFA model is the
door lock status, updated every 1 second, based on the door lock button input. For the
RFA model, the door lock button input is hardcoded as always pressed in the software
implementation. The signal computed by the APIM model is the rear-view camera sta-
tus, while the input required by the model is the driving direction sent by the RestBus
simulation tool. All input and output signals from the model and the RestBus simulation
tool with their maximum data size are summarized in Table 6.1. As already mentioned,
the first part of the table which has the "Transmitter" set to CAN tool contains CAN sig-
nals and frame identifiers that contain the signals transmitted by the RestBus simulation
tool. The other signals and frames from the table that have the "Transmitter" set to PCM,
ABS, PSCM, RCM, IPC, RFA or APIM are transmitted by the nodes that integrate the
MATLAB/Simulink models respectively.
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Table 6.1: Summary of signals transmitted by the CAN tool and CarTwin nodes
CAN Signal CAN ID Transmitter Data size (bits)

Vehicle speed target 0x7FA CAN tool 16
Vehicle direction 0x7FB CAN tool 2

Brake status 0x7FB CAN tool 1
Steering wheel angle 0x7FD CAN tool 16

Buckle status 0x7FE CAN tool 1
Engine speed 0x11 PCM 32

Gear 0x13 PCM 4
Vehicle speed 0x24 ABS 32

Vehicle steering offset 0x30 PSCM 32
Vehicle position X 0x31 PSCM 32
Vehicle position Y 0x31 PSCM 32

Airbag status 0x23 RCM 1
Vehicle average speed 0x21 IPC 32

Trip distance 0x21 IPC 32
Buckle alert 0x22 IPC 1

Door lock status 0x40 RFA 1
Rear camera video status 0x12 APIM 1

6.3.4 Experimental results

The results related to the integration of the models on the embedded devices and a com-
parison between the model outputs and real-world vehicle data are presented in what
follows. After this, information related to practical use-cases of the models and experi-
mental setup as well as possible updates of the CarTwin are also discussed. Furthermore,
a comparison between CarTwin and similar implementations from the automotive areas
that use models or digital twins is shown.

After the models were deployed on the embedded boards as part of the software
modules executed during runtime, the model integration test was performed. The model
integration check consists of verification between outputs from the MATLAB/Simulink
models and the embedded boards after providing the same input values. The first step of
the integration test was an offline verification on the embedded boards where the input
signals used in MATLAB/Simulink were stored as an input array. The values from this
array were provided each time the model runnable was executed. The output arrays from
the embedded board were stored as a separate array and verified against the output arrays
from the MATLAB/Simulink environment. After confirmation that the values from both
output arrays are the same, the second step of the integration test was done by providing
the same input array was added in a modified version of the C# tool so the input signals
were consumed by the boards from the CAN network. The CAN bus communication was
logged using the C# tool, so both input values to each embedded board and embedded
board output values were recorded. The integration test was considered successful since
the output values from MATLAB/Simulink models and the embedded boards were the
same. This denotes that the MATLAB/Simulink models are a digital twin of the embed-
ded boards that communicate on the CAN bus.

In order to compare the CarTwin with real-world behavior of automotive systems,
values for three signals were extracted from a CAN trace recorded for this work, in a
passenger vehicle, during a ∼40 minute drive. The signals that were extracted are also
computed by the ABS, PCM and IPC models in CarTwin. The relevant signals in this
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respect are the vehicle speed after braking provided by the ABS model, the engine speed
provided by the PCM model and the trip distance provided by the IPC model. Since
the brake signal could not be identified in the recorded CAN trace, it was estimated
in MATLAB/Simulink based on the vehicle speed variation. In case the vehicle speed
was constant or increasing, it was considered that the vehicle accelerates so the brake is
not active. When the vehicle speed was decreasing, it was considered that the vehicle
decelerates, so the brake is active. In addition to the brake status, the vehicle direction
was always sent as straight because there were no reverse driving parts recorded in the
real vehicle CAN trace. Since the driving scenario contains an area where the vehicle is
driven on the highway, the vehicle speed target input for the model was set to 140km/h.
In this case, this is also the initial speed of the model, before the brake input is taken
into account, in contrast with the real vehicle where the initial speed is of 0km/h. For
the CarTwin model, in case the brake status is constantly active, the vehicle speed after
braking will decrease down to 0km/h. On the other hand, if the brake status is constantly
inactive, the vehicle speed after braking will increase up to or remain at 140km/h, similar
to the cruise control feature from real-world vehicles. The steering wheel angle was
always sent as 0, since it could not be extracted from the real vehicle CAN trace while
the buckle status was sent as buckled since the driver had fastened the seatbelt before
driving in the real-world drive. An overview of the vehicle speed, engine speed and trip
distance outputs from the CarTwin models is shown in Figure 6.7 (i), (iii) and (v), while
the vehicle speed, engine speed and trip distance outputs from the real-world vehicle are
shown in Figure 6.7 (ii), (iv) and (vi).

The vehicle speed and engine speed are transmitted in the same CAN frame in the
real-world vehicle with a cycle time of 10ms. The odometer is transmitted in a different
CAN frame in the real-world vehicle with a cycle time of 1s. These were the CAN
frames used to extract the relevant signals from the traces recorded from the vehicle.
The interpretation of data bytes from the frame, as recorded by the Vector XL Driver
Library, was possible by using a python script that was developed for this work. The
mapping of data bytes to signal values in km/h, rpm or km is possible using reverse
engineering methods that are available online. The information regarding the vehicle
model and the signal to frame mapping is not disclosed since it is considered property of
the automaker. In order to align the odometer value from the real-world vehicle to the
trip distance from the CarTwin setup, the trip distance from the vehicle is represented
as the difference between the actual odometer value and the initial odometer value from
the trace. During the ∼40 minute drive there were more than 50,000 samples used for
the vehicle speed and engine speed signals and more than 2,500 samples used for the
odometer value / trip distance signal. This is visually depicted in Figures 6.7 (ii), (iv)
and (vi). The number of samples from the CarTwin models is aligned to the one from
the vehicle trace except for the trip distance where the number of samples is the same
for vehicle speed, engine speed and trip distance. The vehicle trace contains two driving
conditions, one with lower speeds that vary between 0km/h and 60km/h with a small
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(i) Vehicle speed computed by the models (ii) Vehicle speed collected from the car

(iii) Engine speed computed by the models (iv) Engine speed collected from the car

(v) Trip distance computed by the models (vi) Trip distance based on odometer value collected from
the car

Figure 6.7: Signals computed by CarTwin models (left) and signals collected from a car
(right)

peak over 100km/h for the first ∼100, 000 samples and the other with an approximately
constant value of around 130km/h for the next 150,000 samples. The engine speed
value from the first part varies between 1,000rpm and 4,500rpm while the engine speed
from the second part is close to 3,000rpm for around 100,000 samples until it drops to
2, 000rpm and down to 1,000rpm at the end of the trace. Due to a lower vehicle speed in
the first part, the trip distance computed based on the odometer value has a low increase
rate. Once the vehicle speed reaches 130km/h and is maintained for the next ∼100,000
samples, the trip distance computed based on the odometer value has a higher increase
rate. In order to provide a detailed comparison between the CarTwin model outputs and
the real-world vehicle signals, the two parts are separated and explained in the following
paragraphs. The visual depiction of the relevant signals from the CarTwin model and
real-world vehicle trace from Figure 6.7 is split in Figure 6.8 and Figure 6.9 based on the
driving location and driving conditions. The vehicle driving location was on local roads
in the first part of the vehicle trace, as shown in Figure 6.8 and on the highway on the
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(i) Vehicle speed computed by the models (ii) Vehicle speed collected from the car

(iii) Engine speed computed by the models (iv) Engine speed collected from the car

(v) Trip distance computed by the models
(vi) Trip distance based on odometer value collected from

the car

Figure 6.8: Signals computed by CarTwin models (left) and signals collected from a car
(right) on local roads

second part of the vehicle trace, as shown in Figure 6.9.

Local roads. The vehicle signals collected while the vehicle driving location was
on local roads, which means in the city and the rural surroundings, before entering on
the highway, are shown on the right side in Figure 6.8. The output signals from the
CarTwin model using the inputs described in the previous paragraph are shown on the
left side of Figure 6.8. The vehicle speed variation interval is [0km/h, 85km/h] for the
CarTwin output, as shown in Figure 6.8 (i), and [0km/h, 80km/h] for the real vehicle
output, except for an increase to 120km/h that happened during a car overtake as shown
in Figure 6.8 (ii). At some point the vehicle was stationary and the vehicle speed was
0km/h during that time for both the CarTwin model and the passenger vehicle. The
engine speed variation interval is [800rpm, 2500rpm] for the CarTwin output, as visually
depicted in Figure 6.8 (iii), and of [900rpm, 2500rpm] for the real vehicle output except
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(i) Vehicle speed computed by the models (ii) Vehicle speed collected from the car

(iii) Engine speed computed by the models (iv) Engine speed collected from the car

(v) Trip distance computed by the models
(vi) Trip distance based on odometer value collected from

the car

Figure 6.9: Signals computed by CarTwin models (left) and signals collected from a car
(right) on highway

for fast increases of the vehicle speed when the engine speed had small peaks at around
4000–4500rpm as shown in Figure 6.8 (iv). Even though the sample rate for the trip
distance in CarTwin is different than the one for the odometer from the real vehicle, since
the signal is transmitted with a cycle time of 20ms in the first case and of 1s in the
latter, the trend for the signals shown in Figures 6.8 (v) and (vi) is similar and related to
variations of the vehicle speed.

Highway. The vehicle signals collected while the vehicle driving location was on the
highway are shown on the right side in Figure 6.9. The output signals from the CarTwin
model using the inputs described in the previous paragraph are shown on the left side of
Figure 6.9. The vehicle speed variation interval is [90km/h, 135km/h] for the CarTwin
output as shown in Figure 6.9 (i) and [125km/h, 148km/h] for the real vehicle output,
except for a drop at around 90km/h while entering the highway at the beginning of
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Figure 6.9 (ii). The engine speed variation interval is [2,600rpm, 3,700rpm] for the
CarTwin output as presented in Figure 6.9 (iii) and [2,600rpm, 3,400rpm] for the real
vehicle output, except for the engine speed at the beginning of Figure 6.9 (iv) where
there engine speed varies between 1,000rpm and 4,500rpm. Even though the sample
rate for the trip distance in CarTwin is different than the one for the odometer from the
real vehicle, the trend for the signals is very similar and related to variations of the vehicle
speed, as presented in Figure 6.9 (v) and (vi).

Statistical comparison. In order to measure the accuracy of the CarTwin model, an
extension of the initial comparison of its output values and the output values from the real-
world vehicle is done by computing the mean values for the sample-by-sample differ-
ences between the same signals. Then, the correlation coefficient based on the differences
is computed with the support of the MATLAB/Simulink environment to show the corre-
spondence between signals. As a first step in this direction, the histogram distribution
of the vehicle speed and engine speed values, together with the differences, are shown
in Figure 6.10. Each plot contains 7 bins with specific range intervals that are detailed
as follows. For the vehicle speed signal from the CarTwin model, the ranges are defined
as [0km/h, 20km/h), [20km/h, 40km/h), [40km/h, 60km/h), [60km/h, 80km/h),
[80km/h, 100km/h), [100km/h, 120km/h), [120km/h, 140km/h). For the CarTwin
vehicle speed output, more than 20% of the values are either in the first two bins or in the
last two bins , as depicted in Figure 6.10 (i). For the vehicle speed signal from the vehicle,
the ranges are defined as [0km/h, 22km/h), [22km/h, 44km/h), [44km/h, 66km/h),
[66km/h, 88km/h), [88km/h, 110km/h), [110km/h, 132km/h), [132km/h, 154
km/h). For the vehicle speed output from the real-world vehicle, more than 20% of the
values are either in the third bin or in the last bin, as depicted in Figure 6.10 (ii). For the
engine speed signal from the CarTwin model, the ranges are defined as [0rpm, 540rpm),
[540rpm, 1,080rpm), [1,080rpm, 1,620rpm), [1,620rpm, 2,160rpm), [2,160 rpm,
2700 rpm), [2,700rpm, 3,240rpm), [3,240rpm, 3,780rpm). For the CarTwin engine
speed output, more than 20% of the values are either in the third bin or in the last two
bins, as shown in Figure 6.10 (iii). For the engine speed signal from the real-world
vehicle, the ranges are defined as [0rpm, 700rpm), [700rpm, 1,400rpm), [1,400rpm,
2,100rpm), [2,100rpm, 2,800rpm), [2,800rpm, 3,500rpm), [3,500rpm, 4,200rpm),
[4,200rpm, 4,900rpm). For the CarTwin engine speed output, more than 40% of the
values are in the fifth bin, while more than 15% of the values are in the third and fourth
bins, as presented in Figure 6.10 (iv). For the differences, the distributions are shown
in Figures 6.10 (v) and (vi). For the vehicle speed values, more than 75% of the values
are within the [0km/h, 40km/h) interval, while for the engine speed, more than 80% of
the values are within the [0rpm, 1,120rpm) interval. The values for the bin percentages
for the vehicle speed and engine speed output signals and the differences between them,
together with the bin width for each histogram, are summarized in Table 6.2.
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(i) Distribution of vehicle speed values from model (ii) Distribution of engine speed values from model

(iii) Distribution of vehicle speed values from vehicle trace (iv) Distribution of engine speed values from vehicle trace

(v) Distribution of vehicle speed differences (vi) Distribution of engine speed differences

Figure 6.10: Distribution of values from model output, vehicle trace and differences
between them for vehicle speed (left) and engine speed (right)

Table 6.2: Statistical data for distribution of model output, real vehicle signal and their
difference

Signal Bin Width Bin Percentages [bins 1 to 7]
Vehicle speed (model) 20 [km/h] 27, 15, 5, 2, 2, 26, 23 [%]
Engine speed (model) 540 [rpm] 4, 20, 15, 7, 3, 21, 30 [%]
Vehicle speed (trace) 22 [km/h] 7, 9, 25, 7, 9, 9, 34 [%]
Engine speed (trace) 700 [rpm] 0, 12, 25, 19, 43, 1, 0 [%]

Vehicle speed (difference) 20 [km/h] 46, 34, 15, 4, 1, 0, 0 [%]
Engine speed (difference) 560 [rpm] 60, 23, 13, 3, 1, 0, 0 [%]

Table 6.3 contains both the mean difference and the correlation coefficient between
signals computed using all their samples, in both driving locations, which are the local
roads and the highway. Since the CarTwin is a model of vehicle level functionalities that
produces synthetic outputs while the signal outputs from the car are produced by real
automotive systems, differences between them is expected. The resulted mean difference
between the vehicle speed signals is of 25km/h, while the mean difference for the engine
speed signals is of 610rpm. Since the CarTwin model for the ABS module and the real
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system have only one thing in common which is that they receive the same brake signal
as input, these differences are somehow expected. The correlation coefficient is of 0.85
between CarTwin vehicle speed and the vehicle speed collected from the car, while the
correlation coefficient is of 0.71 between CarTwin engine speed and the engine speed
collected from the car. This confirms that there is a good correlation between the realized
CarTwin model and the real-world vehicle functionalities related to vehicle speed and
engine speed.

Table 6.3: Statistical comparison of the synthetic model outputs with the real vehicle
signals

Signal Range Mean Difference Correlation coefficient
Vehicle speed 0–148 [km/h] 25.08 0.85
Engine speed 0–4,597 [rpm] 610.01 0.71

Possible applications. As a primary use-case, the CarTwin model and experimental
setup can be used for evaluating cyberattacks on CAN buses. This is a topic that has been
studied in the recent years with changes applied to traces generated with local tools or
collected from real-world vehicles [192], [193], [194], to include offline attacks with the
main purpose of detecting intrusions. The fuzzing attacks that, in the context of CAN,
transmit randomized data bytes inside legitimate frames or randomized frames, were also
studied in the previous years [195], [196], [197]. In case the attacks are performed di-
rectly on CAN buses from the vehicle, which was also studied in the past [45], the risk of
damaging the car or affecting the driver, passenger and traffic safety is highly increased
compared to attacks on experimental setups that produce no damage to the vehicle and
no harm to human beings. This means that performing offline attacks is a good way to
study cyberattacks for the CAN bus, but there is one key aspect that affects the output of
offline attacks compared to real-time attacks. As shown in Figures 6.11 (i) and (iii), of-
fline attacks performed on the traces collected from the vehicles look like spikes because
there are multiple random value changes over time that do not follow a linear path. This
means that, during an offline attack, the correlation between the vehicle speed and engine
speed is reduced because the random changes of vehicle speed and engine speed lead to a
minimized relation between the signals. This, of course, would not be the case in a real-
vehicle, online, attack, where the correlation between the vehicle speed and engine speed
would be maintained also during the attack. This allows us to see the offline attacks as a
more synthetic, artificial type, that do not entirely follow the practical behavior of signals
on the bus and also diminish the correlation between them. By measuring the correlation
coefficients, the correlation in the vehicle trace between vehicle speed is of 0.88 when
there is no attack present, 0.70 in case of a fuzzing attack with 10% probability, 0.57
in case of a fuzzing attack with 25% probability, 0.43 in case of a fuzzing attack with
50% probability and 0.35 in case of a fuzzing attack with 75% probability. In case an
offline fuzzing attack is performed with a 100% probability, that means attack only, the
correlation coefficient for the signals in modified vehicle trace would be 0 because all
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(i) Vehicle speed collected from the car (ii) Vehicle speed computed in the models

(iii) Engine speed collected from the car (iv) Engine speed computed in the models

Figure 6.11: Vehicle speed and engine speed under a fuzzing attack with 25% probability
in an off-line augmented trace (left) and the same signals within the CarTwin models
(right)

signal values are random. The CarTwin model has a better correlation between signals
during attacks starting from a value of 0.93 when there are no frames attacked. In case
of a fuzzing attack with 10% probability the correlation coefficient drops to0.83 while
for 25% probability it drops to 0.72. If the fuzzing attack affects 50% or 75% of the le-
gitimate frames and their signal values, the correlation coefficient decreases to 0.61 and
0.56. Even for a fuzzing attack with 100% probability, the correlation coefficient from
the CarTwin model is of 0.49. A summary of the experimental results with regards to
correlation coefficients is shown in Table 6.4. The results indicate that, even if offline
attacks are helpful for intrusion detection systems, they are not aligned to the realistic
behavior of automotive systems. On the other hand, the CarTwin model allows the cor-
relation between signals to be preserved, maintaining the signal changes over time as
also shown in Figures 6.11 (ii) and (iv). The presumption is the same behavior would be
visible in case of attacks on CAN frames and signals in real vehicles. Thus the analysis
shows that CarTwin is a good candidate for cyber-attack studies.

Table 6.4: Attack correlation augmented trace vs. CarTwin
Correlation coefficients

Experiment no attack attack at attack at attack at attack at attack
frames p = 0.1 p = 0.25 p = 0.5 p = 0.75 only

Generic trace 0.88 0.70 0.57 0.43 0.35 0.00
CarTwin[32] 0.93 0.83 0.72 0.61 0.56 0.49

Another use-case for the CarTwin model is for the safety and fault tolerance studies.
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Since the CarTwin model includes the PCM and ABS models which are safety relevant
systems from the vehicle that receive or provide safety critical signals such as the vehicle
speed, brake, buckle or airbag status, an improvement would include redundant calcula-
tions for them using separate input sources or using different computation methods. One
practical example is the vehicle speed that can be computed after brake by two distinct
models. The ABS model can compute the vehicle speed based on the sensors connected
to the brake and the factor of the applied brake and the PCM module can compute the
vehicle speed based on acceleration data from a remote sensor. In this way, an attack em-
ployed on the vehicle speed provided by the ABS model can be easily observed based on
its variation and the variation of the vehicle speed provided by the PCM model. Multiple
redundancies of safety critical signals, e.g., 3, 4 or more, may be required to allow a fault
tolerant operation of the safety relevant systems.

6.3.5 Comparison with related works

Digital twins for Controller Area Networks are rather new or an emerging topic, so there
are just a few research works on this area that can be compared with CarTwin. One of
the research works is actually a Masters Thesis [173] that describes the development of
a digital twin for vehicle dynamics with the support of the power-steering, braking, and
powertrain modules based on MATLAB/Simulink models. Additionally to the utilization
of Simulink models, CarTwin also has embedded devices that run the models and that are
connected to real-world vehicle bus wiring harnesses that follow the same network topol-
ogy from the vehicle. The authors from two other works, PASTA (Portable Automotive
Security Testbed with Adaptability) [198] and RAMN (Resistant Automotive Miniature
Network) [199] propose two automotive testbeds for cybersecurity evaluation that do not
have any Simulink models only open source software that can be deployed on the embed-
ded devices. There are various ECU modules in the PASTA testbed that communicate on
two separate CAN channels connected through a gateway module. The RAMN testbed
is considered small and inexpensive and includes only one CAN channel that allows four
ECU modules, i.e., powertrain, chassis, gateway, body control module, to transmit and
receive frames. A summary that contains a comparison between CarTwin and related
works with respect to the number of modules, usage of Simulink for the models and of
real wiring harnesses and topologies is shown in Table 6.5.

Table 6.5: Comparison of research papers addressing Digital Twins for ECUs or automo-
tive testbeds

Research paper ECUs Simulink Real-world vehicle
Models bus wiring and topology

PASTA [198] 4 - -
RAMN [199] 4 - -

Toyota Digital Twin [173] 3 ✓ -
CarTwin [32] 7 ✓ ✓
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6.4 Evaluating the wiring impact on voltage fingerprints using

the Digital Twin

Modern cars use the Controller Area Network (CAN) as a main communication chan-
nel between Electronic Control Units (ECUs), sensors and actuators. Considering the
known vulnerabilities of the CAN bus [2, 45], the automotive industry manufacturers
and suppliers are now required to perform vulnerability testing on their products and on
the vehicles, as shown by [200, 201]. One of the research areas that cover these vul-
nerabilities is the physical fingerprinting of nodes that communicate on the Controller
Area Networks [27, 65, 127]. There are research works that study voltage fingerprinting
methods but use experimental setups that include non-automotive grade wiring [27, 143].
This can have an impact on the resulted datasets due to noise that may be induced by the
wiring itself, if improper wiring is used. The newer embodiment of the CAN with Flex-
ible Data Rate (CAN-FD) was standardized and adopted by the automotive industry due
to the upcoming needs of autonomous vehicles with regards to the increase of bit rates
and frame data payloads [202]. Even though the increase in communication speed is
favorable, the voltage characteristic qualities are affected by the fast electrical changes
on the CAN-H and CAN-L lines during active communication. Thereby, ringing effects
and other signal distortions that may influence voltage signals on CAN-FD networks are
studied by authors in [203] for reliable physical bus designs. Electromagnetic emissions
can be caused by transmitters, so they have a negative effect on the physical layer of the
CAN-FD networks. Authors from [204] study various changes required for CAN-FD
transmitters in order to minimize the electromagnetic emission effects during CAN-FD
communication. CAN wires are also subject to noise from neighboring equipment, such
as actuators or converters. A study from [205] proposes masking the logical flips that
may appear during transmission to reduce or eliminate the noise caused by a buck con-
verter. In this way, the electromagnetic interference (EMI) is also studied with respect to
the negative influence on the physical layer of Controller Area Networks.

6.4.1 Tools used for data collection and evaluation

The tools that were used to collect the voltage data from the CarTwin [32] experimental
setup but also from previous experimental setups from other works [34, 35] are the Pico-
Scope 5000 Series hardware tool and the PicoScope software tool that runs on Windows.
This tool allows voltage data to be sampled based on pre-configured triggers and can
collect up to 2GS (giga-samples), if one channel is used. If multiple channels are used,
depending on the capture window size, the sample rate is reduced to 1GS (giga-sample)
or 500MS (mega-samples). In all data collection activities, the PicoScope was configured
to capture the voltage data based on a trigger of a rising edge on the CAN-H input that is
the SOF (start of frame) bit. Voltage samples for both CAN channels, i.e., CAN-H and
CAN-L, are collected during each data collection step. An example of a collected data
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Figure 6.12: CAN-H and CAN-L voltage samples for a CAN frame with details on bit
fields

window is shown in Figure 6.12 with a color-coding representation of each bit field from
the CAN frame that is reconstructed by the PicoScope software tool based on bit infor-
mation coming from the voltage data and the selected baud-rate that is of 500Kbps in this
case, i.e., bit time is of 2µs. The software tool that was used for voltage data analysis for
the various wirings used in the experimental setups is MATLAB R2022a.

6.4.2 Distinct datasets based on various experimental setups

There are several datasets from different experimental setups, built by our group, that are
used for voltage analysis. None of these previous setups, with the exception of the afore-
mentioned CarTwin [32], were based on actual in-vehicle wires. Each setup is described
in what follows, with information regarding the wiring that is used to define the CAN
network including the corresponding AWG (American Wire Gauge) code.

TIDAL-CAN setup. There are 10 devices connected to the CAN network from
the experimental setup that is used in TIDAL-CAN [34]. The CAN network from the
experimental setup is realized from a cable with three wires, one twisted pair of CAN-H
cand CAN-L wires and a ground (GND) wire. The total wire length for the CAN bus is
of 5m and there are two 120Ω resistors on the left and right ends of the CAN bus. The
electrical conductor from the twisted pair wires used for CAN communication is solid
bare copper of 0.6mm2 (19 AWG). The cable diameter including the insulation part is of
3.1mm.

CAN-SQUARE setup. There are 5 devices connected to the CAN network in the
clean setup from the experimental setup that is used in CAN-SQUARE [35]. In case
that adversarial nodes are included, there will be up to 8 devices connected. The CAN
network from the experimental setup is realized from an industry grade cable with a
twisted pair of wires and a shield as ground. The twisted pair contains the CAN-H and
CAN-L wires. The total wire length for the CAN bus is of 5m. There are two 2 ×
60Ω connected to a 10nF capacitor, in series, as split terminations, on the left and right
ends of the CAN bus. The electrical conductor from the twisted pair wires used for
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Table 6.6: Summary of CAN wiring details from experimental setups used in previous
works

Experimental Wire type and its Wiring Grade
Setup cross-section (AWG)

TIDAL-CAN [34] Solid Bare Copper Wire Unshielded Off-the-shelf
of 0.6mm2 (19 AWG) Twisted Pair

(UTP)
CAN-SQUARE [35] Stranded Copper Wire Shielded Industrial

of 0.22mm2 (24 AWG) Twisted Pair
(STP)

CarTwin [32] Stranded Copper Wire Unshielded Automotive
of 0.5mm2 (20 AWG) Twisted Pair

(UTP)

CAN communication is stranded copper of 0.22mm2 (24 AWG). The wire diameter is
of 0.6mm, while the cable diameter including the insulation part is of 5.4mm.

CarTwin setup. There are 8 devices connected to the CAN network in the clean setup
from the experimental setup that is used in CarTwin [32]. The CAN network from the
experimental setup is realized from an automotive grade cable from a real-world vehicle
with multiple wires including the twisted pair of wires for CAN that was preserved from
the original wiring. The twisted pair contains the CAN-H and CAN-L wires. The total
wire length excluding stubs and splices for the CAN bus is of ∼ 5m. The additional stubs
have a length that varies from 0.5m to 1.2m, based on the wiring harness location in the
real-world vehicle. The 120Ω resistors were preserved on the embedded devices that are
close to the end of the CAN bus on the left and right sides and were removed from all the
other boards in order to maintain the required impedance for the communication medium.
The electrical conductor from the twisted pair wires used for CAN communication is
stranded copper of 0.5mm2 (20 AWG). The cable diameter including the insulation part
is of 2.5mm.

The information regarding the wires that are used, the wire cross-section and cor-
responding AWG value, the wiring types and the wiring grade is shown in Table 6.6.
An example of the wires of an automotive grade wiring harness from the CarTwin [32]
experimental setup is shown in Figure 6.13.

The datasets that are collected from the experimental setups defined in TIDAL-CAN
[34], CAN-SQUARE [35] and CarTwin [32] are described in what follows, including the
dataset from ECUPrint [31] that was collected from real-world vehicles. The reason
for including this dataset is to provide comparative results of voltage samples to those
collected from the experimental setup configurations.

TIDAL-CAN dataset. There are voltage samples collected from the CAN-H line
of 1000 CAN frames, for each experiment performed in the data collection work from
TIDAL-CAN [34]. The PicoScope tool configuration for voltage sampling is done to
collect one voltage sample at every 1ns while the collection window size is of 2µs.

CAN-SQUARE dataset. There are voltage samples collected from the CAN-H and
CAN-L lines of 500 CAN frames, for each experiment performed in the data collection
work from CAN-SQUARE [35]. The PicoScope tool configuration for voltage sampling
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Figure 6.13: Wires from the automotive wiring harness that is part of CarTwin [32]
experimental setup

is done to collect one voltage sample at every 2ns or 4ns, while the collection window
size is of 2µs.

ECUPrint dataset. There are voltage samples collected from the CAN-H and CAN-
L lines of multiple frames during the data collection work from ECUPrint [31]. The
PicoScope tool configuration for voltage sampling is done to collect one voltage sample
every 2ns while the collection window size is of 2µs. The information from Table 1
in the ECUPrint [31] paper contains the total amount of voltage samples collected from
each vehicle, e.g., ∼32k bits for Dacia Logan.

CarTwin dataset. There are voltage samples collected from the CAN-H and CAN-L
lines of 916 frames during the data collection work from the CarTwin [32] experimental
setup done as a contribution in [33]. The PicoScope tool configuration for voltage sam-
pling is done to collect one voltage sample every 2ns while the collection window size is
of 2µs.

6.4.3 Theoretical framework for data evaluation

Dataset alignment. The first step required before voltage analysis is to align the datasets
from previous works since the signals and voltage samples are different for TIDAL-CAN
[34] and CAN-SQUARE [35]. Thereby, only the CAN-H voltage samples are used from
each work that contains the rising edge before a dominant bit was transmitted on the bus
and part of the plateau of the dominant bit. There are 500 voltage samples used for each
CAN-H bit over a time of 2µs which is the bit time for the 500Kbps baud rate configured
for CAN communication in all works. By using this alignment, all voltage data that is
used from existing datasets is the same, so the voltage characteristics that are analyzed
can be compared.
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Slew rate. One of the voltage characteristics that are analyzed is the slew rate which
is measured as the absolute voltage change over time. The slew rate can be computed both
on rising edges and falling edges and is 0 whenever the voltage is constant. The definition
of the measurement of slew rate from the existing datasets is the absolute difference
between 10% and 90% of the voltage for CAN-H from the rising edge over the time
difference. This is also formalized in Equation 6.9 and visually represented in Figure
6.14. In this figure, the slew rate is emphasized in the gray area, between the green and
red dashed lines, for dominant bits, in TIDAL-CAN [34] (i) , CAN-SQUARE [35] (ii),
CarTwin [32] (iii) and ECUPrint [31] (iv).

SRCAN = (|V10% − V90%
∆t

|) (6.9)

(i) Bit from TIDAL-CAN [34] exp. setup (ii) Bit from CAN-SQUARE [35] exp. setup

(iii) Bit from CarTwin [32] exp. setup (iv) Bit from ECUPrint [31] dataset for Dacia Duster
vehicle

Figure 6.14: The slew rate represented in MATLAB for the CAN-H rising edge of a bit
collected in the TIDAL-CAN [34] experimental setup (i), CAN-SQUARE [35] experimen-
tal setup (ii), CarTwin [32] experimental setup (iii) and the ECUPrint [31] dataset (iv)

Peak-to-peak and peak to root mean square value. The other voltage characteris-
tics that are analyzed are the peak-to-peak (xP2P ) and peak-to-root mean square values
(xP2RMS) for the CAN-H voltage. In order to measure the (xP2RMS), the root mean
square value is required (xRMS). The peak-to-peak value is computed as a difference
between the maximum value and the minimum value of the signal x over a specified
number of samples, as shown in Equation 6.10. The root mean square (xRMS) value is
computed as the square root of the square sum of N samples, as shown in Equation 6.11.
The peak-to-root mean square (xP2RMS) is computed as the ratio between the maximum
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value of the signal and its root mean square, as shown in Equation 6.12. An example of
the Vmin , Vmax and VRMS values computed on 250 voltage samples are shown in the
gray area of Figure 6.15 as purple, yellow and orange dashed lines.

xP2P = max(x)−min(x) (6.10)

xRMS = (

√
1

N

∑N

n=1
x2n) (6.11)

xP2RMS =
max(x)

xRMS
(6.12)

Figure 6.15: The VP2P (Vmin to Vmax) and VRMS values represented in MATLAB for
the CAN-H dominant plateau area of a bit collected in the TIDAL-CAN [34] exp. setup

6.4.4 Data evaluation and discussions

The evaluation is done using 500 bits from each voltage dataset, from CAN frames trans-
mitted by the same VN5610A device. This means a total of 1500 bits that were transmit-
ted by the same device in a CAN network with different wiring. In order to compare the
results with those from real-world vehicles, there are 500 bits used from the ECUPrint
[31] dataset for the Dacia Duster passenger car. The voltage characteristics which are
analyzed in what follows are the slew rate for the CAN-H line transition from recessive
to dominant state and the peak-to-peak and peak to root mean square values from the
plateau area of the dominant bit.

Slew rate distribution. As already described with the theoretical framework, the
slew rate is computed between 10% and 90% of the voltage range for the rising edge of
a dominant bit on the CAN-H line. The values that are obtained for the TIDAL-CAN
[34] distributions are between 21V/µs and 29V/µs with most of the values between
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(i) SRCAN for VN1650A in TIDAL-CAN [34] exp. setup (ii) SRCAN for VN1650A in CAN-SQUARE [35] exp.
setup

(iii) SRCAN for VN1650A in CarTwin [32] exp. setup (iv) SRCAN for ECU1 in the Dacia Duster from
ECUPrint [31] dataset

Figure 6.16: The SRCAN (slew rate) distribution for 500 bits transmitted by Vector
VN5610A in the TIDAL-CAN [34] experimental setup (i), CAN-SQUARE [35] experi-
mental setup (ii), CarTwin [32] experimental setup (iii) and by ECU1 in the Dacia Duster
from the ECUPrint [31] dataset (iv)

23V/µs and 25V/µs. This is also shown in Figure 6.16 (i). For the CAN-SQUARE
[35] dataset, the slew rate values are between 18V/µs and 22V/µs with most of them in
the 19V/µs− 21V/µs range. This is presented in Figure 6.16 (ii). For the CarTwin [32]
dataset, the slew rate values are between 4.10V/µs and 4.45V/µswith most of the values
between 4.2V/µs and 4.3V/µs. This is presented in Figure 6.16 (iii). For comparative
purposes with real-world values, the slew rate distribution obtained from the ECUPrint
[31] dataset, contains values in the 4.7−5V/µs range. This is visually depicted in Figure
6.16 (iv). By comparing the values obtained from the experimental setup datasets with
those from the real-world vehicle dataset, there is a clear difference in the slew rate that
depends on the wire type and the wiring used. The slew rate distribution for compared
values from the CarTwin [32] and ECUPrint [31] datasets has values below 10V/µs. This
means that the slew rate characteristic for the CAN bus from CarTwin [32] is very close
to the real conditions from the vehicle. This is somehow expected because the CAN bus
was preserved from the original wiring harnesses that were removed from a real vehicle.

Peak-to-peak distribution. As already described in the theoretical framework and
shown in the gray area of Figure 6.15, the peak-to-peak value is computed over 250
voltage samples from the plateau area of a dominant bit on the CAN-H line. The values
that are obtained for the TIDAL-CAN [34] distributions are between 25mV and 200mV
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(i) VP2P for VN1650A in TIDAL-CAN [34] exp. setup (ii) VP2P for VN1650A in CAN-SQUARE [35] exp. setup

(iii) VP2P for VN1650A in CarTwin [32] exp. setup (iv) VP2P for ECU1 in the Dacia Duster from ECUPrint
[31] dataset

Figure 6.17: The VP2P (voltage peak-to-peak) distribution for 500 bits transmitted by
Vector VN5610A in the TIDAL-CAN [34] experimental setup (i), CAN-SQUARE [35]
experimental setup (ii), CarTwin [32] experimental setup (iii) and by ECU1 in the Dacia
Duster from the ECUPrint [31] dataset (iv)

with most of the values between 25mV and 100mV . This is also shown in Figure 6.17
(i). For the CAN-SQUARE [35] dataset, the slew rate values are between 50mV and
275mV with most of them in the 50mV − 150mV range. This is presented in Figure
6.17 (ii). For the CarTwin [32] dataset, the slew rate values are between 5mV and 55mV.
This is presented in Figure 6.17 (iii). For comparative purposes with real-world values,
the peak-to-peak distribution obtained from the ECUPrint [31] dataset, contains values
in the 9mV − 35mV range. This is visually depicted in Figure 6.17 (iv). By comparing
the values obtained from the experimental setup datasets with those from the real-world
vehicle dataset, there is a higher value for the peak-to-peak voltage on the plateau area
of a bit that may be influenced by the wire cross-section that can cause additional noise.
The peak-to-peak distributions from the CarTwin [32] and ECUPrint [31] datasets have
values below 60mV . This means that the peak-to-peak voltage distribution for the CAN
bus from CarTwin [32] is very close to the real conditions from the vehicle.

Peak-to-RMS distribution. As already described within the theoretical framework,
the peak-to-RMS value is computed over 250 voltage samples from the plateau area of a
dominant bit on the CAN-H line. The values that are obtained for the TIDAL-CAN [34]
distributions are between 1.004 and 1.030, which means max(V ) is higher by up to 3%
compared to VRMS . This is also shown in Figure 6.18 (i). For the CAN-SQUARE [35]
dataset, the peak-to-RMS values are between 1.010 and 1.040, which means max(V ) is
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(i) VP2RMS for VN1650A in TIDAL-CAN [34] exp. setup
(ii) VP2RMS for VN1650A in CAN-SQUARE [35] exp.

setup

(iii) VP2RMS for VN1650A in CarTwin [32] exp. setup
(iv) VP2RMS for ECU1 in the Dacia Duster from

ECUPrint [31] dataset

Figure 6.18: The VP2RMS (voltage peak-to-RMS) distribution for 500 bits transmitted
by Vector VN5610A in the TIDAL-CAN [34] experimental setup (i), CAN-SQUARE [35]
experimental setup (ii), CarTwin [32] experimental setup (iii) and by ECU1 in the Dacia
Duster from the ECUPrint [31] dataset (iv)

higher by up to 4% than VRMS . This is presented in Figure 6.18 (ii). For the CarTwin
[32] dataset, the peak-to-RMS values are between 1.000 to 1.011. This is presented in
Figure 6.18 (iii). For comparative purposes with real-world values, the peak-to-RMS
distribution obtained from the ECUPrint [31] dataset, contains values in the 1.001 −
1.007 range. This is visually depicted in Figure 6.18 (iv). By comparing the values
obtained from the experimental setup datasets with those from the real-world vehicle
dataset, there is a higher value for the peak-to-RMS voltage on the plateau area of a bit
that may be influenced by the wire characteristics in a similar way it does for the peak-to-
peak. The peak-to-RMS distributions from the CarTwin [32] and ECUPrint [31] datasets
have values below 1.02. This means that the peak-to-RMS voltage distribution for the
CAN bus from CarTwin [32] is very close to the real conditions from the vehicle.

6.5 Concluding remarks

In this chapter, the digital twin of a real CAN vehicle network, i.e., CarTwin, was pre-
sented. There are 7 MATLAB/Simulink models which were described for the systems
connected on a CAN bus from a vehicle. Moreover, the original CAN wires from three
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wiring harnesses which were removed from a real-world vehicle, define the CAN bus
for CarTwin. Since the models require additional vehicle signals, a tool designed in
C# that provides the expected inputs was described. The deployment of the models on
automotive-grade embedded boards was also presented, with details related to the execu-
tion cycle time, software drivers and timer configurations. Three of the CarTwin model
output signals, i.e., vehicle speed, engine speed and trip distance, were compared to
those from a real car during local road driving and highway driving conditions. Further,
the wiring impact on CAN voltage fingerprints was discussed based on the car twin that
we designed. Three experimental setups were described with details regarding the wire
conductor type, wiring type and grade. The voltage datasets collected from these exper-
imental setups have been presented together with an additional voltage dataset collected
from real-world vehicles, that was used for comparison. The voltage characteristics that
were analyzed from the datasets are the slew rate for CAN-H rising edges of dominant
bits, peak-to-peak and peak-to-root mean square on the plateau area of dominant bits.
The values obtained for dominant bits from the CarTwin experimental setup dataset are
closer to those from the real-world vehicle dataset than those obtained for the other ex-
perimental setups. This shows that the selection of the wire type and wiring harness is an
important factor for voltage-based fingerprinting in Controller Area Networks.
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Chapter 7

Conclusion

This thesis examined various security applications and their evaluation for Controller
Area Networks. The security applications utilize the physical layer for cryptographic
key-exchange, sender and frame authentication and transmitter fingerprinting. These ap-
plications were either compared with existing proposals by emphasizing the performance
improvements or analyzed in the context of existing related works from the literature.

Chapter 3 presents time-covert key exchange mechanism for the Controller Area Net-
works. The chapter begins with a presentation of the computational cost with regards to
timing if only software-based elliptic curve cryptography is utilized for key exchange or
digital signatures on Controller Area Networks. Evaluation of software execution time
for the Elliptic Curve Diffie-Hellmann (ECDH) key exchange and Elliptic Curve Digi-
tal Signature Algorithms (ECDSA) is performed on an automotive grade microcontroller
from the AURIX family produced by Infineon. The experimental results are compared
between three open-source libraries which provide the implementation of the primitives
for the evaluated elliptic curve security algorithms. Nevertheless, the ECDH key ex-
change requires multiple CAN frames to be transmitted until the key negotiation is per-
formed. In what follows from the same chapter, a time-covert key-exchange protocol
between two CAN nodes is described, after the background and related studies are dis-
cussed. The evaluation platform used for the protocol evaluation is also presented be-
fore the protocol. The key-exchange protocol has four different key exchange methods
proposed. The first one is Data vs. Remote frame negotiation which is based on the ar-
bitration procedure on the physical layer of the CAN bus between randomly transmitted
as data frame or remote frames, with the same identifier, at fixed time intervals. The
next method is Minimax Negotiation that is also based on the arbitration procedure but
requires data frames to be transmitted with random identifiers, at fixed time slots. The
following method is the Time-Triggered Minimax Negotiation which is based on both
random identifiers and random time slots inside the same time interval. The last method
is the Randomized Time-Triggered Key Exchange that is based on a specified number
of frames and random time slots when these frames are transmitted. All key exchange
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methods are compared with respect to three characteristics. These are the probability that
a frame can be used for extraction of a bit from the session key, the mean entropy and
the time it takes to execute the method. Since the shared secret resulted from the key
exchange has a lower entropy than the key normally used in cryptographic protocols, an
extension of the last two methods is proposed using the Simple Password Exponential
Key Exchange (SPEKE) protocol. The multi-party version of the proposed methods or
their extension is described at the end of this chapter.

Chapter 4 presents a time-covert authentication protocol on the Controller Area Net-
works that is improved through frame scheduling optimization. In the first part of the
chapter, the background and related studies are discussed together with limitations from
existing works that are overcome with the proposal discussed in the next sections. The
worst-case arrival times for CAN frames are discussed as a theoretical background that
is practically evaluated using the frame arrival times from real vehicle times. Consider-
ing the delays that one CAN frame may have from the expected transmission time to the
time it is actually sent and in the end received by the other nodes, the frame scheduling
optimization is proposed to overcome these findings. As input for the frame schedul-
ing optimization, there is a dataset defined that contains all the frame identifiers, their
cycle times and the time offset that is added to the cycle time for each frame identifier.
The evaluation platform which consists of an automotive device for CAN communica-
tion and an embedded device is described before the algorithms are discussed. There
are four scheduling optimization algorithms which are described as part of this chapter.
The first one is the Binary Symmetric Allocation algorithm which is simple to determine
and integrate but has some timing issues in the practical implementation compared to the
theoretical distribution caused by small inter-frame spaces. The second is the Random-
ized Search Allocation algorithm that, even though it has an increased inter-frame space
compared to the first algorithm, it still has timing issues in the practical implementation.
The next one is the Greedy Allocation algorithm which is described both in single layer
and multi-layer variants. The Multi-Layer Greedy variant allows an inter-frame space
that is two times the one from the single-layer Greedy Allocation or the Randomized
Search Allocation. The experimental results for Multi-Layer Greedy implementation are
those expected from the theoretical distribution. The last algorithm is the GCD-based
Allocation which allows the same inter-frame space as the Multi-Layer Greedy Alloca-
tion. Thereby, its practical implementation follows the theoretical distribution with no
deviations. Each algorithm is evaluated based on the minimization of a quality factor
that depends on the optimization of inter-frame spacing and the minimum value of the
inter-frame space. After the frame scheduling optimization algorithms are described,
the time-covert authentication protocol from a previous work is presented together with
the adversary model that is considered for its evaluation. The evaluation of the time-
covert authentication protocol is done in different scenarios. The first scenario is based
on optimized traffic and a single sender. The next scenario is based on both optimized
and unoptimized traffic with multiple senders. In the case of multiple senders, there are
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additional actions proposed in order to improve the performance of the time-covert chan-
nel. These are the re-synchronization of the transmitters time and the de-skewing of their
clocks. The channel data rate and security level of the time-covert authentication protocol
is described at the end of the second section. The final section of this chapter presents the
comparison of the time-covert channel with frame scheduling optimization with related
studies.

Chapter 5 presents a physical fingerprinting approach for Electronic Control Units
(ECUs) that communicate on the Controller Area Networks inside real-world vehicles.
The first section of this chapter contains details related to existing works that perform
either timing-based or voltage-based fingerprinting for nodes connected on CAN buses.
The summary of the data collection framework, the data collected by the thesis author
as well as a comparison between clock skews and voltage features for ECU fingerprint-
ing are also shown as part of this section. The following section details the theoretical
framework for computing clock skews and voltage features that are extracted from the
sample data that is collected from several passenger vehicles. There are four voltage fea-
tures which are determined for each frame identifier. The voltage features that are used
in what follows are the mean and maximum voltages from the plateau area of a dominant
bit, the bit time and the plateau time. For the separation of IDs from the same ECU or
from different ECUs, the intra-distances and inter-distances are also defined using the
Euclidian distance. The final section of this chapter details the values that are obtained
for each passenger vehicle and emphasizes the limitations in case only one physical char-
acteristic is used. The separation is done based on the feature values determined from the
data collected for each frame identifier. The frame identifiers are separated into ECUs
based on the voltage features and the resulted clock skews. There are 51 ECUs identified
using physical characteristics from 9 passenger vehicles based on data collected for close
to 400 frame identifiers. For some vehicles such as the Ford Fiesta and Ford Kuga, the
clock skew determination was somehow problematic since the variation of reception time
was inconsistent. In the dataset collected for Dacia Logan, there are two ECUs separated
based on voltage features which have a clock skew difference of only 1ppm (part per
million). The inter-distances and intra-distances show separations between IDs from the
same ECU or from different ECUs but there are multiple collisions in case only one phys-
ical feature is used. When all voltage features are combined, the number of collisions is
reduced and the separation becomes very clear. The environmental influence on physical
fingerprinting is the last topic discussed in this chapter. Based on data collected after
startup and after 1 hour drive from two vehicles, both timing and voltage-based char-
acteristics are evaluated with respect to changes over time. Since the changes are both
positive and negative meaning that the values have either increased or decreased over
time, the environmental impact on physical fingerprinting cannot be generalized. This is
why, updates of fingerprints need to be performed in order to keep the collected values
as close as possible to the expected data.

Chapter 6 presents a digital twin for a real-world vehicle Controller Area Network.
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The first section of this chapter starts with the presentation of the motivation for the de-
sign of the digital twin for a CAN bus as well as the related studies. The digital twin
is based on ECU models deployed on automotive grade boards that are physically con-
nected to a CAN bus. The CAN bus is preserved from existing wiring harnesses that
were removed from a real-world vehicle. The Electronic Control Units (ECUs) from the
real-world vehicle connected to the physical CAN bus were determined from a wiring
handbook diagram. The physical wiring from the real-world vehicle is also described
with respect to the wiring length and number of stubs. After the physical medium for
the CAN bus is described, the design and validation aspects for the ECU models that
were performed in MATLAB/Simulink are presented. The ECUs which are modeled and
described are the Accessory Protocol Interface Module (APIM), Power Steering Control
Module (PSCM), Instrument Panel Cluster (IPC), Remote Function Actuator (RFA), Re-
straints Control Module (RCM), Anti-lock Brake System (ABS) and Powertrain Control
Module (PCM). The ECU models were afterwards deployed on automotive-grade mi-
crocontrollers from the AURIX family that are produced by Infineon. The development
of a C#-based tool that provides specific vehicle level signals required by some of the
ECU models is also described in this section. The integration of the models on the em-
bedded devices was done by verifying the outputs from the CAN bus with those from
the modelling tool having the same input arrays provided for both. Afterwards, the ve-
hicle speed and engine speed provided by the digital twin models are compared with the
vehicle speed and engine speed from a real world vehicle. The input that is provided
to the digital twin model is the brake status that reduces the vehicle speed and engine
speed, if applied. There are two driving conditions which are compared, the local roads
and the highway. A statistical comparison is performed by showing the differences and
correlation coefficients for vehicle speed from the model and the vehicle trace. Possible
applications for the digital twin model as well as a brief comparison with related works
are shown in what follows. The second section addresses the wiring impacts on voltage
fingerprints performed on Controller Area Networks. Several related works are presented
before the data collection tool configuration is described. The wiring impacts are eval-
uated using datasets from three experimental setups with different wirings and a dataset
collected from a real-world vehicle. The characteristics which are evaluated are the slew
rate for a rising edge, for a dominant bit, the peak-to-peak value on the bit plateau area
and the peak-to-root mean square value on the same area. Considering the differences
between the wirings used in experimental setups and the real-world vehicle, it seems that
automotive cables are highly recommended to be used for testbeds where the intention
is to collect voltage samples for fingerprinting the nodes that communicate on the CAN
bus. If other wiring types are used, additional noise that may be induced by the cables
would have a negative impact on the fingerprinting results.

To summarize, this thesis presents various methods for securing the Controller Area
Network that can be implemented on automotive-grade embedded devices, from time-
covert authentication protocols, which benefit from frame scheduling optimization, to
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physical device fingerprinting using time and voltage characteristics. An experimental
setup which is realized as a digital twin for a real-world vehicle Controller Area Network
is also described. The wiring impact from this experimental setup is evaluated in the
context of voltage-based fingerprinting, a relevant topic for transmitter identification and
intrusion detection in Controller Area Networks. There are still many open questions
regarding the use of physical layer security on CAN buses which can serve as future
works. With regards to time-covert authentication channels, an open research topic is
related to the maximum data-rate that can be retrieved from such channels. If voltage or
timing characteristics are used as fingerprints for CAN transmitters, their stability over
time and the impact of the ECUs’ voltage supply are future research directions. Since
digital twins are an emerging topic in the automotive areas, they can be further used for
studies of CAN safety and cybersecurity in the automotive context. Automotive digital
twins clearly need much more exploration at the current time since only a few papers
about them were published so far.
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