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Abstract:
The SAE J1939 protocol, built on the top of the CAN protocol, is a
standard for heavy-duty in-vehicle networks. This commercial vehicle
sector plays a significant role in various domains, including goods dis-
tribution, public transportation, construction, agriculture, forestry and
marine vehicular technologies, etc., all of these being essential for the
global economy. Given the high degree of inter-connectivity of modern
vehicles and the numerous cyber-attacks reported in the past decade,
detecting and preventing intrusions on J1939 communications is crucial.
In the light of the above, this thesis proposes various intrusion detection
systems for CAN buses focusing on the SAE J1939 heavy-duty vehicle
buses. The techniques behind the design and implementation of these
IDS varies from the use of machine learning algorithms, to deterring
adversaries by concealing the content of CAN frames using symmetric
encryption, or performing a fine-grained analysis at the control system
level. A novel mechanism to decode the content of the CAN frames, ID
and data field is introduced, which paves the way for real-time destruc-
tion of the intrusions before the complete reception of malicious frames.
Also, a more in-depth analysis performed at control system level opens
the road for complementing the traditional CAN bus attacks with more
knowledgeable attacks that can evade the intrusion detection and for de-
signing mitigation mechanisms to detect such attacks. The experimental
part builds on realistic frameworks deployed within an industry-standard
tool, i.e., the CANoe environment, which allows for the integration of
adversary models and intrusion detection.
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Chapter 1

Introduction

1.1 Motivation

The demand for human commuting and the delivery of goods is growing at an increasing
rate. This brings a significant increase in the number of vehicles and an expansion of
the transportation infrastructure. It is no surprise that between 2000 and 2021 there
was an increase in the number of registered heavy-duty trucks in the United States of
almost 93.5% [1]. Given the above, heavy-duty vehicles such as buses, tractors or trailers,
have a significant role. Millions of heavy-duty vehicles travel hundreds of kilometers on
highways every day and the likelihood of incidents increases, hence constantly boosting
the safety of the traffic participants is crucial. Furthermore, the commercial vehicle
sector may also have other applications such as agriculture where the automation of the
agricultural machinery (tractors, combines, etc.) is essential since it can enhance the
efficiency, productivity, product quality and sustainability [2]. According to [3] over 2.45
million of agricultural machinery were sold globally in 2020. This reflects an increase
compared to the previous year (2019) of around 4.1%. The sale of equipment in the
agricultural sector is anticipated to increase over the next years, reaching 2.7 million units
in 2029. The safety mechanisms are of great importance for this sector as well.

Regarding safety, several improved driver assistance systems, including forward
collision warning, lane departure warning, alcohol ignition interlock devices, autonomous
emergency braking and blind-spot recognition, have been developed over the past ten
years. The ability of vehicles to drive autonomously, without human involvement, is a
short-term goal that is especially important in the context of heavy-duty vehicles because
of the significantly larger distances they must travel. To fulfill these features, heavy-duty
vehicles are also turning into intricate cyber-physical systems with millions of lines of
code running through dozens of Electronic Control Units (ECUs) and a variety of sensors,
actuators, cameras, and radars. In-vehicle ECUs currently communicate with one another
over a variety of communication interfaces, including the traditional Controller Area
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Network (CAN), FlexRay, and the more recent 100BaseT1 Ethernet, which supports
substantially higher communication speeds. However, in spite of recent advancements,
CAN is still by far the most widely employed communication medium since it offers
a very good cost-performance ratio and a reliable solution for the majority of real-time
applications. Two updated versions of it, i.e., CAN-FD [4] as well as CAN-XL [5] enable
much higher bit rates and larger payloads, which ensure the longevity of the CAN protocol
for the future decades.

On the other hand, due to the increase of software-driven features, connectivity and
semi-automated functions, vehicles become vulnerable to cybersecurity attacks. As a
result, several attacks were reported by the researchers in various publications, e.g., [6],
[7], and [8]. These adversarial interventions may have catastrophic effects for both vehicle
occupants and traffic participants alike. Koscher et. al. [6] show that by mounting
CAN bus attacks on real world vehicles it is possible to take the control of several critical
automotive functions while completely ignoring the driver input. Examples of such actions
include disabling the brakes, unlock the car, stopping the engine, etc. Due to the fact that
the attacks demonstrated in [6] require a physical connection to the CAN bus, their impact
may be more limited. But in addition to this, the same authors proved in a subsequent
work [7] that similar attacks can be conducted remotely by establishing a connection with
mechanics tools or infotainment units using wireless interfaces such as Bluetooth or WiFi.
A comprehensive research on attack surfaces is also provided by Miller and Valasek in [8].
Foster et al. explore the use of a Telematic Control Unit (TCU) device, which is connected
to the OBD port, and can be remotely compromised. This TCU enables the access to the
CAN bus of the vehicle and is able to inject malicious CAN frames targeted to different
ECUs and thus interactively control the vehicular systems from arbitrary distances [9].
The web browser of a TESLA car was successfully exploited in a remote attack performed
by Nie et al. [10]. By leveraging the over-the-air (OTA) software update mechanism,
the same authors were able to remotely compromise various safety-critical ECUs from
TESLA cars [11]. A more recent work [12] provides a comprehensive analysis on the
security of 77 wireless OBD dongles acquired from Amazon. The authors developed
an automated tool that facilitates testing these dongles on a real-world vehicle against
several attack scenarios that can be mounted by an adversary. Consequently, these dongles
expose an attack surface that can be exploited by injecting malicious CAN frames into
the genuine CAN traffic of a vehicle. A practical wireless attack that targets the CAN
communication is proposed in [13]. The authors of [13] exploit the connection between
internal networks such as CAN and external networks such as 3G or 4G mobile networks,
which opens the road for an adversary to mount a long-range wireless attack targeting
CAN vulnerabilities.

Regardless of the attack access point, the lack of security of the CAN bus, which was
introduced by BOSCH in the 80s [14], is the root cause for the previously mentioned
attacks. The SAE J1939 standard [15], developed by the Society of Automotive Engi-
neers in the 90s, is dedicated to CAN communication within heavy-duty vehicles and
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complements the conventional CAN bus protocol by introducing specific features which
are detailed in Chapter 3. Since the SAE J1939 CAN protocol is built on top of the
standard CAN protocol, similar attacks to those previously described can also be mounted
on J1939 compliant CAN buses. A first example of such attacks on J1939 CAN buses was
proposed in [16]. Burakova et al. [16] demonstrate by practical experiments on two J1939
compliant vehicles (a semi-tractor as well as a school bus), that safety-critical attacks,
e.g., truck acceleration while it is moving, turning off the engine brake, can be mounted
through J1939 specific diagnostic port. The authors from [17] are the first that address
attacks on the SAE J1939 specific transport protocols and demonstrate a DoS attack that
targets multi-packet transmissions. A setup in which the adversary is connected to a J1939
compliant CAN bus and has the ability to intercept and inject malicious frames inside a
heavy-duty vehicle via the J1939 specific OBD port is depicted in Figure 1.1.

Figure 1.1: A typical heavy-duty vehicle implementing the SAE J1939 standard and tools
for data collection of the SAE J1939 CAN traffic

Considering the concerns for the protection of numerous passengers (inside buses),
or goods (inside heavy-duty trucks), the security solutions employed in the commercial
vehicle sector require a special attention. The motivation behind this thesis comes in the
light of the above. In this respect, this thesis pursues the deployment of intrusion detection
systems tailored to J1939 CAN buses.
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14 CHAPTER 1. INTRODUCTION

1.2 Research objectives

This section gives an overview of the research objectives from this thesis. The primary
research objective is the deployment of intrusion detection systems (IDSs) customized
to SAE J1939 protocol, which is built on top of the CAN protocol and defines the upper
layers from the communication stack, e.g., data link layer, network management layer,
etc., for implementing in-vehicle functionalities over CAN buses. But before moving
to J1939 specific solutions, some investigations on intrusion detection mechanism and
their integration for regular CAN bus traffic is also necessary. More precisely, the major
research objectives of this thesis, can be summed up as follows:

1. Review of the literature on relevant works for intrusion detection on CAN buses;

2. CAN traffic extraction from real-world passenger cars as well as J1939 compliant
vehicles for experimental purposes;

3. Performance assessment of machine learning algorithms as candidates for IDS on
CAN buses as well as the feasibility of using such detection mechanisms in real-life
vehicular applications;

4. Design and implementation of a framework which allows for the simulation of
adversarial models and intrusion detection in CANoe;

5. Design and implementation of an intrusion detection and prevention system targeting
J1939 CAN buses;

6. Analysis of attacks performed at the control system level on J1939 compliant CAN
buses and the design of the appropriate countermeasures.

1.3 Major contributions

An overview of the contributions of this thesis is provided in this section. This thesis
discusses several IDS approaches for CAN buses, with a focus on J1939 compliant CAN
buses in particular. In light of the stated research objectives, the contributions of the author
can be summed up as follows:

1. CAN traffic was collected by the author from several vehicles, specifically, 427,660
CAN frames collected from a heavy duty-vehicle in motion that is compliant to
SAE J1939 communication [18] and was directly used for the experiments in this
thesis;

2. CAN traffic was also collected by the author for several works which he co-authored
or partly used in his papers as a first author, specifically, 2,488,248 CAN frames
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collected from three different Dacia Dusters [19], [20]; 2,783,265 CAN frames and
90,723 voltage bit samples collected from 5 passenger cars [21]; 154,779 CAN
frames and 4,021 voltage bit samples collected from a heavy duty vehicle compliant
to SAE J1939 communication [21];

3. Evaluation of neural networks in detecting intrusions on CAN as well as their
computational performance on automotive embedded platforms [22];

4. Implementation and testing of a framework that allows the integration of adversary
models and intrusion detection systems in an industry standard environment, i.e.,
CANoe [19];

5. Deployment of an intrusion detection and prevention system tailored to meet J1939
specifications. To demonstrate the correctness as well as the feasibility of using the
suggested solution in real-world vehicles, a proof-of concept implementation in a
laboratory setup is provided [18];

6. A special implementation for decoding the content of CAN frames before the
receivers have set the acknowledgment bit. This makes it possible to instantly
discard the intrusions with no need for specialized hardware [18];

7. A proposal for a detection mechanism on attacks performed at the control system
level that are challenging to be detected by a traditional IDS [23];

8. Development of an experimental setup that connects the two most widely used tools
in industry, CANoe for the simulation of in-vehicle networks and MATLAB for
control system design, respectively [23].

These contributions are outlined by a number of scientific articles published in different
journals and conference proceedings as well. The application of neural networks as
possible candidates for IDSs in CAN was explored by the author in [22]. The majority
of the experiments were carried on traces from a J1939 simulation and a small part of
them were performed on other public datasets. The runtime of the detection algorithm
was evaluated on three automotive embedded platforms in order to determine whether the
proposed solution could be used in real-world scenarios. One of the platforms represents
the low-end device group, while the other two are high-end device candidates. Given the
fact that the attacks on J1939 CAN traffic from [22] were generated using a C# script, a
more realistic scenario would be to use real-world CAN traffic and to augment it with
injections using a CANoe simulation. Because of this, the author analyzes this scenario in
[19] where a framework is offered to replay the CAN traffic collected from actual vehicles
and permit the integration of adversary models along with detection systems inside a
CANoe-based simulation. The k-NN classifier was investigated as a candidate for IDS in
this work [19], although the framework was designed to support any other IDS method.
The next two papers of the author [18], [23] address IDS in the context of the SAE J1939
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16 CHAPTER 1. INTRODUCTION

CAN buses. In the first one [18], the author proposes a two-stage IDS complemented
by a prevention mechanism. In the first stage, the validity of the encrypted addresses
is verified. The second stage performs appropriate range checks to identify single bit
changes in the payload. Since the payloads of CAN messages are encrypted, the avalanche
effect of block ciphers makes it easier to spot adversary interventions. The prevention
mechanism requires the decoding of each CAN message (ID and payload) before the
receivers confirm the correct reception by overwriting a dominant bit in the ACK slot.
Then, if the current CAN frame is regarded as intrusion, it is then discarded by forcing an
error frame. To demonstrate the practical applicability of the solution, a proof-of concept
implementation on high-end in-vehicle controllers is provided. Last but not least, in [23],
the author examines attacks on J1939 CAN buses mounted at control system level and
proposes a detection mechanism for such adversarial manipulation. Additionally, this
research shows how poorly the machine learning based IDSs performs in identifying these
kind of subtle payload alterations and that change detection mechanisms are far more
effective.

In addition to the aforementioned research papers, which represent the core of this
thesis, the author has been involved in several other research papers, five of which, are
also related to automotive cybersecurity and one which addresses mobile device pairing
based on the environmental data. Concretely, an efficient approach for localizing the CAN
network nodes based on propagation delays of physical CAN signals has been investigated
in [24]. Two physical connections, one at either end of the bus, and merely one rising edge
are required to examine the propagation delays. In this work, the author has contributed
with voltage data collection based on a laboratory setup as well as with the preparation
of the data collection setup inside a real vehicle, i.e., Renault Megane. A comparative
performance between Android head units and automotive graded controllers for the
deployment of several binary classifiers as candidates for IDSs is discussed in [20]. The
author’s contribution to this work accounts for the CAN traffic collection from a real-world
SUV, i.e, Dacia Duster as well as for the augmentation of the collected traffic with specific
attacks inside a CANoe based simulation. Another work which is under submission
addresses a concept for a cloud-based IDS that makes use of the cloud infrastructure
and the computationally powerful Android head units employed in current vehicles. The
concept also includes an incident response team that performs additional evaluation of the
detection results and the final outcome of this is recorded on the Blockchain as reports
that comply with the ISO/SAE 21434 standard [25]. Here the CAN traffic was collected
from three different Dacia Duster vehicles in order to demonstrate the transfer learning
capability of the proposed IDS. Physical fingerprinting of the electronic control units
(ECUs) based on clock skews and voltage data is proposed in [21]. The performed analysis
led to the identification of 54 ECU fingerprints. An extensive dataset, including skew
and voltage data collected from 9 passenger cars and a J1939 compliant vehicle as well,
was used for the evaluation. The data collected from 5 out of 9 passenger cars and from
the J1939 heavy-duty vehicle were collected by the author. The author also contributed
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to a paper where the influence of wiring characteristics on CAN voltage fingerprints is
investigated [26]. As a result of this research, it has been determined that CAN networks
that rely on commercial or industrial cables have higher noise and slew rates than those
that rely on automotive graded cables. Last but not least, the author was a member of the
PRESENCE project were he also contributed to a work that addresses the secure device
pairing under multi-modal transport based on environmental data, i.e, accelerometer data
[27].

Overall, the author has contributed to 10 scientific articles, out of which 9 are focused
on automotive security and one is related to secure pairing of mobile devices based on
accelerometer data:

1. Camil Jichici, Bogdan Groza, and Pal-Stefan Murvay, “Examining the Use of Neural
Networks for Intrusion Detection in Controller Area Networks”, Innovative Security
Solutions for Information Technology and Communications: 11th International
Conference, SecITC 2018, Bucharest, Romania, November 8–9, 2018, Springer
International Publishing, 2019,

2. Camil Jichici, Bogdan Groza, and Pal-Stefan Murvay, “Integrating Adversary
Models and Intrusion Detection Systems for In-Vehicle Networks in CANoe”,
Innovative Security Solutions for Information Technology and Communications:
12th International Conference, SecITC 2019, Bucharest, Romania, November 14–15,
2019, Springer International Publishing, 2020,

3. Camil Jichici, Bogdan Groza, Radu Ragobete, Pal-Stefan Murvay and Tudor Andre-
ica, “Effective intrusion detection and prevention for the commercial vehicle SAE
J1939 CAN bus”, IEEE Transactions on Intelligent Transportation Systems, vol. 13,
pp. 17425-17439, 2022,

4. Camil Jichici, Adriana Berdich, Adrian Musuroi, and Bogdan Groza, “Control
System Level Intrusion Detection on J1939 Heavy-Duty Vehicle Buses”, IEEE
Transactions on Industrial Informatics, 2023,

5. Bogdan Groza, Lucian Popa, Pal-Stefan Murvay and Camil Jichici, “CAN-SQUARE-
Decimeter Level Localization of Electronic Control Units on CAN Buses”, Com-
puter Security–ESORICS 2021: 26th European Symposium on Research in Com-
puter Security, Darmstadt, Germany, October 4–8, 2021, Springer International
Publishing,

6. Lucian Popa, Bogdan Groza, Camil Jichici, and Pal-Stefan Murvay, “ECUPrint -
Physical Fingerprinting Electronic Control Units on CAN Buses Inside Cars and
SAE J1939 Compliant Vehicles”, IEEE Transactions on Information Forensics and
Security, vol. 17, pp. 1185–1200, 2022,
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7. Tudor Andreica, Christian-Daniel Curiac, Camil Jichici, and Bogdan Groza, “An-
droid Head Units vs. In-Vehicle ECUs: Performance Assessment for Deploying
In-Vehicle Intrusion Detection Systems for the CAN Bus,” IEEE Access, vol. 10,
pp. 95161–95178, 2022,

8. Lucian Popa, Camil Jichici, Tudor Andreica, Pal-Stefan Murvay and Bogdan Groza,
“Impact of Wiring Characteristics on Voltage-based Fingerprinting in Controller
Area Networks”, IEEE 17th International Symposium on Applied Computational
Intelligence and Informatics (SACI 2023), 2023,

9. Tudor Andreica, Adrian Musuroi, Alfred Anistoroaiei, Camil Jichici and Bog-
dan Groza, “Blockchain Integration for in-Vehicle CAN Bus Intrusion Detection
Systems with ISO/SAE 21434 Compliant Reporting”, (under submission),

10. Bogdan Groza, Adriana Berdich, Camil Jichici, and Rene Mayrhofer, “Secure
Accelerometer-Based Pairing of Mobile Devices in Multi-Modal Transport”, IEEE
Access, vol. 8, pp. 9246–9259, 2020.

1.4 Thesis organization

The structure of the thesis is explained in this section. A literature review on works that
address automotive security focusing on CAN IDS is discussed in Chapter 2. Chapter 3
provides an overview on CAN protocol and SAE J1939 specifics and finally introduces
the metrics required to evaluate the accuracy results in detecting intrusions for the pro-
posed solutions. In Chapter 4 a neural network based IDS is proposed. This chapter
presents results on detecting intrusions as well as computational results on different au-
tomotive graded controllers. Chapter 5 addresses a framework developed in CANoe
which facilitates the integration of adversary models and intrusion detection as well inside
a simulation. As an example, the integration of an IDS based on k-NN is shown. The
IDS is then evaluated using the defined adversarial models. A two-stage IDS specifically
designed to meet J1939 specification along with a prevention system that permits the
instantaneous destruction of CAN messages that have been manipulated by an adversary
are addressed in Chapter 6. The laboratory setup designed to deploy and test the proposed
intrusion detection and prevention system using J1939 compliant CAN traffic collected
from a heavy-duty truck, is also described. In Chapter 7 a control system level intrusion
detection on SAE J1939 CAN buses is proposed. Chapter 8 holds the conclusion of this
thesis.
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Chapter 2

Literature review and metrics for
intrusion detection

2.1 Related work on CAN security

This section provides a summary of the relevant works related to authentication methods
and intrusion detection systems for CAN buses. These are discussed as a background for
the next section, which are solely focused on J1939 CAN buses.

2.1.1 Authentication based approaches

A large number of works emerged to counter the attacks as stated in the introduction section.
Most of the proposed solutions account for the authentication of CAN messages by using
truncated Message Authentication Codes (MAC), e.g., [28], [29], [30]. A CAN frame
and the associated authentication tag must be transmitted in order to perform message
authentication. Given that a CAN frame can hold up to 8 data bytes, accommodating a
MAC code inside the payload is challenging. Consequently, most of the works truncate
the MAC before integrating the tags inside the payload [31], [32], [33]. Other works
decide to split the bits of the authentication tag between the payload and the ID [34], [35].
This generally requires the use of extended CAN format and since, for example, 18-bits
of the MAC will be packed into the extended ID, the payload is less loaded with security
elements. The use of a second frame that carries the MAC tag is also discussed in [36] and
[37]. However, this will result in a significant increase of the busload. The authors of [38]
suggest to authenticate only the CAN frames that are related to safety-critical functions in
order to minimize the busload.

19
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2.1.2 Intrusion detection systems

In computer networks, an IDS is a component (hardware or software) that monitors the
network for malicious activity. In regards to this, relevant IDSs that address CAN security
were proposed and are detailed next. The authors of [39] provides an in-depth analysis of
the most recent technical challenges for embedded systems inside vehicles, addressing
standards, techniques, hardware and software solutions, network topologies, functional
safety concepts, and security design strategies. A strong body of research provides an
extensive and structured overview of vulnerabilities of in-vehicle networks, adversarial
manipulations and security measures to mitigate them [40], [41], [42]. Similar efforts are
made in the works [43], [44], [45], but the focus is concentrated on IDS solutions.

Considering that most of the CAN frames are periodically transmitted in accordance
with the frequencies that the manufacturer has specified for them, any deviation from
this cycle time can be used to detect intrusions [46], [47] [48], [49] and [50]. Obviously,
if a DoS attack is mounted on the CAN bus, the periodicity of regular traffic exhibits a
different behavior compared to the normal one. The major drawback of such solutions
comes from CAN frames that have a spontaneous transmission, i.e., frames that are
triggered on event, since in this case periodicity cannot be used to distinguish between
frames that are manipulated by an adversary and the ones that are part of legitimate
CAN traffic. Marchetti et al. propose an IDS that relies on a transition matrix, which is
used to store patterns for legitimate CAN frame sequences and any deviation from such
sequences is regarded as an intrusion [51]. Moreover, the proposed solution is suitable for
deployment on resource-constraint devices, in-vehicle ECUs, due to its reduced memory
and processing requirements [51]. A similar approach is evaluated in [52] to detect low-
rate injection attacks in Control Area Network (CAN). The use of decision tree classifiers
(DTC) is explored in [53]. The inputs for the DTC are based on the entropy computed
over the number of IDs that occur in a time window.

Apart from the IDS solutions that rely on the frequency of the CAN traffic, there are
also relevant proposals that examine the payload of the CAN frames. The use of Hamming
distances to detect anomalies inside the payloads is evaluated in [54]. The proposed
solution consists of a preliminary stage as well as a detection stage. The authors determine
for each frame identifier the message validity limits – these represent the minimum and
maximum Hamming distances calculated between consecutive CAN frames that share
the same ID using 20% of the CAN traffic. The remaining messages are employed to test
the proposed IDS. An intrusion is detected when the distance exceeds the valid ranges.
Since the meaning of the CAN signals packed inside the payloads is not made public by
the OEMs or defined in the standards, the authors of [55] perform an in-depth analysis of
the data fields from the CAN traffic. As a result, they define four semantically-meaningful
formats: constant field, multi-value field, counter field as well as sensor field, and split the
content of the payloads according to these formats using a greedy algorithm. Based on
this separation the authors train and build a model using Ternary Content-Addressable
Memory (TCAM). In the testing phase, any anomaly from the model rules is considered
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as malicious [55].

Other lines of work are focused on machine learning based deployments to detect
intrusions. The use of recurrent neural networks with Long Short-Term Memory (LSTM)
to detect CAN bus intrusions is evaluated in [56]. The authors collected the CAN traffic for
19 hours from a 2012 Subaru Impreza in driving conditions, 13 hours of data is employed
for training and the rest for testing. In the training state, each input accounts for the
payload, i.e., 64 bit-values. This approach demonstrates good performance in detecting
intrusions on the CAN bus. Similarly, LSTM-based IDSs were evaluated in the works
[57] and [58]. The authors of [59] propose an IDS that relies on a deep neural network
(DNN). The structure of the DNN has been originally proposed in [60] and employs the
rectified linear unit (ReLU) as activation function. The experiments from this work [59]
are carried out on CAN traffic generated using a software tool OCTANE [61]. Similar to
previous work, the 64 bits of the payload serve as inputs for the DNN. These two works
[58] and [59] do not take into account the frequency of the CAN frames during the training
stage, hence they are unable to detect replay attacks. The use of deep convolutional neural
networks (DCNN) is explored in [62], while the use of k-NN and SVM is evaluated in
[63] for detecting DoS and fuzzing attacks.

Nevertheless, there are also proposals that rely on both frequency and payload of CAN
frames. Groza et al. examine the use of Bloom filters to detect replay and modification
attacks on the CAN bus [64]. The proposed IDS monitors the frequency of the messages
and payload for each CAN ID. The use of entropy computed over CAN frames is explored
in [65] and [66]. The authors of [67] discuss an IDS proposal that relies on a statistical
model, i.e., Hidden Markov model and its observations. Dong et al. [67] characterize the
anomaly detection problem as a multi-observation HMM. This determines the abnormal
state of a CAN message by estimating the likelihood of a frame occurring at a given time
with a certain ID and payload. In [68], the use of neural networks that take as inputs the
recurrent plots, is discussed.

It is also worth mentioning that a strong body of research is focused on the use of
physical properties for IDS deployments. Typically, in-vehicle controllers operate inside
vehicles using local clocks which exhibit certain skews. In this respect, the research in [69]
proposes an IDS that relies on the clock-skew fingerprints. The rationale is to estimate the
clock skew for each ECU based on the cyclic CAN frames they send and further create a
baseline for the clock behavior. The IDS employs the CUSUM (Cumulative Sum) in order
to spot anomalous shifts from this baseline. However, further research [70], [71] proved
that the clock skew of a target ECU can be reproduced by an adversary node in order to
evade the detection mechanism. Moreover, such clock based fingerprinting methods can
be affected by temperature. Consequently, the authors of [72] analyze the relationship
between temperature and clock offset fluctuations in the context of sender identification
and intrusion detection. Murvay and Groza analyze the CAN electric signal characteristics
in order to uniquely identify each potential sender node [73]. The same authors use the
propagation delays of physical CAN signals to localize and detect intruders [74]. A more
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recent concern of the research community is related to ECU fingerprinting using voltage
based features. In this context, Cho et al. [75] employ the voltage profiles, which are
created based on voltage measurements of CAN frames, as well as the ACK voltage
thresholds in order to fingerprint ECUs and set the room for the detection of intruder
ECUs. The authors test the proposed methodology using an experimental setup and two
real-world vehicles. A similar work is proposed in [76], however, this requires the use of
extended CAN format to circumvent the arbitration phase. The rationale behind choosing
the extended format is as follows. The electric signals of the last 18 bits, in the case of
29-bit extended ID fields, are driven only by a single ECU, while in the case of a standard
CAN frame, some bits of the identifier can be generated from multiple ECUs engaged in
the arbitration phase. To overcome this limitation [76], a different approach for monitoring
the voltage signals is discussed in [69]. This accounts for the inspection of state transition
between recessive to dominant or vice-versa. The lack of consideration for environmental
factors like temperature and battery voltage level may be a downside of these proposals.
An edge based identification, which takes into account temperature and battery voltage
variations is discussed in [77].

2.2 Related work on J1939 security

This section provides a brief overview of relevant works that address the vulnerabilities of
the SAE J1939 protocol and the proposed solutions to mitigate them. The authors of [78]
compare the cybersecurity risks exposed by the heavy-duty vehicles to those exposed by
the regular cars in order to identify and assess potential cybersecurity threats and hazards
that could influence the dependability, safety, and operability of heavy-duty vehicles.
Murvay et al. investigate the shortcomings of the SAE J1939 specific features, which
open the road for several attacks such as: denial of service (DoS), distributed denial of
service (DdoS), and impersonation. [79]. A comprehensive analysis of the vulnerabilities
exposed by the Broadcast Data Transfer and Connection Mode Data Transfer, which are
employed as transport protocols in the SAE J1939 CAN networks, is presented in [80].
The experiments are conducted by the authors using a real-world heavy-duty truck, i.e., a
2014 Kenworth T270 Class 6 either in the stationary or moving scenarios [80].

In contrast to the context of passenger cars, where several efforts were done as a
response to the reported CAN bus attacks, in the context of heavy-duty vehicles, only a
few recent works started to address the security of J1939 CAN buses. Another difference
between the two sectors, regular cars and heavy-duty vehicles, is regarding the authentica-
tion of CAN frames. For the regular cars, some of the proposed solutions rely on the use of
cryptographic MACs (Message Authentication Codes) inside the payload to authenticate
each CAN message, while for the heavy-duty vehicles these cannot be integrated due to
the fully allocation of the payload [81]. Therefore, such an authentication mechanism
of each CAN frame, can be only performed by using an extra frame [82], but this will
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effectively double the busload. Considering the above, the research community explored
different options, which are detailed below.

The use of PKI (public key infrastructure) as an authentication mechanism for J1939
CAN traffic was suggested in [79]. Recently, the authors of [83] propose two authentication
mechanisms for J1939 buses with CAN and CAN-FD communication. One of them is
dedicated for resource-constraint nodes and the other for nodes with more computational
resources. Both of them require an authentication key exchange protocol as well as a
protocol responsible for time synchronization. The difference between the two is that
for the first (resource-constraint nodes) the key-exchange is performed using one-pass
authentication and for the second (powerful nodes), which support PKI, certificateless
signature scheme is used [83]. A solution for protecting CAN J1939 buses that employs
the secure CAN transceiver, which allows to define a whitelist as well as a blacklist of
frame identifiers, is proposed in [84]. Besides employing the secure CAN transceiver,
which was introduced by NXP [85], the authors of [84] also account for the use of CMACs
(Cipher-based Message Authentication Codes) that are computed and sent periodically,
i.e, at each second, to detect any message alterations that are transmitted during this time.
In [86], the use of strong FIPS 140-2 encryption applied on the SAE J1939 diagnostic
traffic exposed between the diagnostic tool and a laptop, which communicate either using
wired or wireless connections, is explored. A similar work accounts for the AES-128
encryption of the traffic between the diagnostic gateway ECU, which is responsible to
collect diagnostic faults from the other ECUs, and vehicle diagnostic adapter system, i.e,
tester and external dedicated tools [87].

The Technology and Maintenance Council (TMC) recommends the use of RP1210
devices for re-flashing the SW on the ECUs or examining emissions related to the ECUs
inside heavy-duty vehicles [88]. However, very recently, the authors of [89] demonstrated
that the data passing via RP1210-based diagnostic systems is susceptible to man-in-the-
middle (MitM) attacks mounted from the host diagnostics computer and propose the
use of machine authentication codes or authenticated encryption using the previously
exchanged keys between communication parties as a mitigation strategy for these attacks.
The viability of a specific attack that targets Address Claiming Procedure is demonstrate
in [90]. Basically, this attack disables the CAN communication to and from a target ECU
using a single CAN frame. The authors of [90] also propose an active defense mechanism
that enables both detection of such attack by using a bit-banged CAN filter and destruction
of the malicious frame with an error flag once an attack is discovered. Following the
introduction of the J1939 CAN-FD networks [91], the Society of Automotive Engineers
also proposed the Secure On-board Communications with optional Encryption (SecOC/E)
for protecting them [92]. The SecOC/E accounts for the authentication of the ECUs by
using digital certificates and a secret key is exchanged between ECUs to further encrypt
the relevant J1939 CAN-FD frames. A performance evaluation of a vehicle system, which
implements the SecOC/E, is provided in [93].

The implementation of the IDS for protecting CAN buses is of great interest to the
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research community, and the J1939 CAN buses are no exception. Shirazi et al. propose
a supervised machine learning based IDS that relies on various traditional classifiers
including Decision Tree, Gaussian Naïve Bayes, Gradient Boosting, K-Nearest-Neighbors,
Random Forrest as well as Support Vector Machine (SVM) to spot DoS and fuzzing
attacks [94]. An unsupervised learning approach based on hierarchical agglomerative
clustering is investigated in [95]. This IDS is designed to learn the normal operation of
the vehicle based on CAN packets and use that knowledge to detect the malicious CAN
traffic [95]. An anomaly detection approach for J1939 CAN buses, which is based on
a precedence graph-based, is explored in [96]. Recently, the authors of [97] propose a
solution that relies on the periodicity of the frames, on a dependency tree built using the
correlation between the payloads, as well as on the voltage techniques to detect spoofing,
masquerade, and manipulation attacks in J1939 and NMEA2000 networks. The voltage
analysis permits to detect manipulation attacks, even single bit manipulation by examining
unusual changes in the electric potential when a transition from a dominant to a passive
state occurs [97].

Some effort was also conducted towards testing the adversarial manipulations and
security mechanisms as well, using dedicated frameworks and automotive specific test
strategies. A verification and validation methodology is provided by Hariharan et al. [98].
This is based on a security testing strategy using fuzzing and penetration tests specifically
designed for J1939 heavy-duty in-vehicle buses. Another work accounts for a testbed
architecture that may be used to simulate attacks on a virtual J1939 compliant heavy-duty
vehicle [99]. The behavior of the vehicle is replicated using the CANoe environment. The
authors of [99] discuss how to extend this solution by linking the simulated environment
with physical ECUs, which would enable to evaluate the threat and risk assessment of
attacks using the designed controller models running with traffic in the loop. An in-vehicle
CAN fuzz-testing message generation model for validating intrusion detection systems
was explored by the authors in [100]. Their model is built on a machine learning algorithm,
that examines the SAE J1939-specific CAN messages, protocol specifications, and signal
correlation to learn about the behavior of the car and then generates the appropriate
CAN frames to activate various vehicle functions. The use of powertrace monitoring
(the capability of measuring an ECU’s power consumption) as a supplementary feedback
channel for the fuzz testing applied on embedded systems, was investigated in [101].

2.3 Metrics for evaluating the detection accuracy of an IDS

Since in some of the following chapters several intrusion detection systems are presented,
this section provides an overview of the most used performance metrics for the evaluation
of an IDS. In the context of an IDS for Controller Area Networks, which is in fact a binary
classification between genuine and attack CAN messages, a performance evaluation is
based on the following four usual parameters:
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1. True positives (TP) – stands for the number of attack frames that are correctly
classified by the IDS as attacks,

2. True negatives (TN) – stands for the number of genuine frames that are correctly
classified by the IDS as genuine,

3. False positives (FP) – stands for the number of genuine frames that are incorrectly
classified by the IDS as attacks,

4. False negatives (FN) – stands for the number of attack frames that are incorrectly
classified by the IDS as genuine.

Based on these parameters the following metrics are derived:

1. True positive rate (TPR) – stands for the ratio between the number of frames that
are correctly classified by the IDS as attacks and the total number of attack frames:

TPR =
TP

TP + FN
(2.1)

2. True negative rate (TNR) – stands for the ratio between the number of frames
that are correctly classified by the IDS as genuine and the total number of genuine
frames:

TNR =
TN

TN + FP
(2.2)

3. False positive rate (FPR) – stands for the ratio between the number of frames that
are wrongly classified by the IDS as attacks and the total number of genuine frames:

FPR =
FP

FP + TN
(2.3)

4. False negative rate (FNR) – stands for the ratio between the number of frames that
are wrongly classified by the IDS as genuine and the total number of attack frames:

FNR =
FN

FN + TP
(2.4)

5. Accuracy – is based on all four parameters and stands for the ratio between the
number of frames that are correctly classified by the IDS either genuine or attacks
and the total number of frames:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.5)
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6. Precision – stands for the ratio between the number of frames that are correctly
classified by the IDS as attacks and the number of frames that are classified by the
IDS (correctly or wrongly) as attacks:

Precision =
TP

TP + FP
(2.6)

Beside these metrics, the validation set MSE (Mean Squared Error) is also employed
(just for the evaluation of neural network based IDS). This metric measures the average
squared difference between the predicted values and the actual ones.

MSE =

∑n
i=0(DesiredValue −ActualValue)2

n
, (2.7)

where n stands for the number of CAN packets from validation set.
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Chapter 3

Background on SAE J1939
compliant CAN

This chapter presents the technical details of the Controller Area Network (CAN) protocol.
Then, this chapter gives a description of the SAE J1939 standard features and introduces
the metrics used for the evaluation of intrusion detection systems.

3.1 CAN bus description

This section gives an overview on general CAN features and then provides some de-
tails on the physical layer and data frame formats (standard and extended). In 1983,
BOSCH started the development of CAN protocol [14]. The CAN standard, also known
as ISO11898, was published ten years later by the International Organization for Stan-
dardization (ISO) in 1993. Subsequently, the ISO11898 standard was split in two parts
ISO11898-1 [4] and ISO11898-2 [102], respectively. The first part addresses the data-link
layer and physical signaling while the second includes details on the high-speed CAN
medium access unit. There are two additional ISO11898 that have been published for low
speed data communication, i.e., ISO11898-3 [103] and time-triggered communication,
i.e., ISO11898-4 [104].

3.1.1 General features

The CAN bus was designed to enable the communication between microcontrollers and
devices inside a vehicle. This is as a result of its robustness demonstrated in various severe
circumstances such as vibrations produced by cars, atmosphere with a high humidity level
as well as high or low temperatures. For low-speed CAN, the data can be transmitted at bit
rates of up to 125 Kbit/s , while using high-speed CAN, the bit rates can reach 1 Mbit/s .
A CAN frame can hold a maximum of 8 bytes of data. There are two extensions that were

27
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designed in order to support higher speed rate and increased payload. The first one, i.e.
CAN with Flexible Data-Rate (CAN-FD) [4] provides bit rates from 2 to 5 Mbit/s while
carrying a data of maximum 64 bytes. The second and more recent extension, i.e., CAN
Extra Long (CAN-XL) [5] supports data fields of up to 2048 bytes and communication
speed of up to 10 Mbit/s .

Since CAN is a broadcast protocol, a CAN frame sent by one node can be received by
every other node connected to the same network including the node which initiates the
transmission. However, if multiple nodes start a message transmission at the same time,
the access to the bus is granted to the node with the highest message priority. Outside of the
automotive industry, the CAN bus has several applications including building automation
[105], 3D printers [106], medical equipment [107], industrial application [108] or avionics
[109], [110].

3.1.2 A basic overview on physical layer

Figure 3.1 depicts the topology of a typical CAN network. As shown in the figure, each
node is connected to the main bus via a line stub. If the CAN network is responsible for
providing the access for diagnostic services an on-board diagnostic port is also connected
to the bus in addition to these nodes. There can be two different types of diagnostic ports:
the traditional OBD (On-board Diagnostic) port which is typically used in passenger cars,
and the J1939 diagnostic port [111], which is specific to heavy-duty vehicles. The CAN
physical layer is built on the two differential lines, CAN-High (CAN-H) and CAN-Low
(CAN-Low). In order to prevent signal reflections, both sides of the CAN bus must be
terminated with a resistor of 120Ω as is shown in Figure 3.1.

The physical and logical high-speed CAN bit format is shown in Figure 3.2. The

Figure 3.1: Typical CAN network topology for passenger cars and commercial vehicles

transmission of the logical information is encoded using the dominant (logical "0") and
recessive (logical "1") states of the physical CAN bit format. The recessive state takes
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Figure 3.2: Physical representation and logical level encoding for a high-speed CAN bit

place when the signals CAN-H and CAN-L are not actively driven by a network node.
During this state, both CAN-H and CAN-L signals exhibit a same voltage which is
typically around 2.5 V . In contrast, the dominant state occurs when the bus is driven by at
least one network node. When a node is transmitting a dominant bit, the CAN-H signal
is about 3.5 V while the CAN-L signal is close to 1.5 V . As a result, the recessive bits
are overwritten by the dominant ones. The arbitration and acknowledgment mechanisms,
which are detailed in next subsection, are based on the physical layer signaling.

Figure 3.3: Standard and extended CAN data frame structure
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3.1.3 The standard and extended formats of CAN data frame

Figure 3.3 depicts the layout of the standard and extended CAN data frame. A dominant
Start-of-frame (SOF) bit marks the beginning of each CAN message. The arbitration
field, which has a different structure for the standard and extended CAN frame formats,
comes after this bit. The arbitration field for the standard format consists of the 11-bit
message identifier (ID) and an extra bit called RTR which is "0" (dominant) in case of a
data frame or "1" (recessive) in case of a remote frame. On the other hand, the arbitration
field includes the 29-bit message ID (11-bit standard ID as well as 18 bit extended ID)
in case of extended format. In addition to this ID, the arbitration field accounts for three
additional bits. The first two bits, SRR and IDE are placed between standard and extended
part of the ID, while the the third bit, i.e., RTR follows after the extended part of the ID.
Any CAN message that has a dominant IDE bit is in standard format. The extended format
of the CAN message is indicated by a recessive IDE bit. The RTR bit from standard

Table 3.1: CAN2.0B – standard and extended format

Field Abbr. Details Std. Ext. Length
(bits)

Start-of frame SOF dominant bit that marks the begin-
ning of the message transmission

✓ ✓ 1

Base Identifier Base ID unique identifier for a message con-
sidering the standard format, base
ID (first part) for a message consid-
ering the extended format

✓ ✓ 11

Substitute remote request SRR recessive bit – ✓ 1
Identifier extension bit IDE dominant for standard frames while

recessive for extended frames
✓ ✓ 1

Extended Identifier Ext. ID extended ID (second part) for the
extended frames

– ✓ 18

Remote transmission request RTR recessive for a remote request mes-
sage, dominant in case of a data mes-
sage

✓ ✓ 1

Reserved bit r1 must be set as dominant by the trans-
mitter, but accepted in any state by
the receivers

– ✓ 1

Reserved bit r0 must be set as dominant by the trans-
mitter, but accepted in any state by
the receivers

✓ ✓ 1

Data length code DLC the number of data bytes carried by
the frame

✓ ✓ 4

Data field - the data that is packed inside the
frame

✓ ✓ 0-64

Cyclic redundancy check CRC a 15-bit checksum sent by the trans-
mitter for data integrity checks

✓ ✓ 15

Cyclic redundancy check delimiter CRC del. recessive bit ✓ ✓ 1
Acknowledge bit ACK set as recessive by the frame trans-

mitter and set to dominant by frame
receivers

✓ ✓ 1

Acknowledge delimiter ACK del. recessive bit ✓ ✓ 1
End-of-frame EOF recessive bits ✓ ✓ 7
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format is replaced in extended format by the SRR bit, which is always sent as recessive to
ensure that a standard data frame will win the arbitration with an extended data frame, in
case both frames share the same 11-bit base identifier. After the arbitration field there is
the control field, which accounts for one reserved bit for standard format or two reserved
bits for extended one and DLC. The DLC specifies how many bytes (0-8) are packed and
sent as payload (data field). To ensure the data integrity, an error detecting code, i.e., a
15-bit CRC, is computed over the previously transmitted bits from the frame and is placed
inside the CRC field. The ACK field starts with a ACK bit and ends with a recessive
ACK delimiter bit. The transmitters set the ACK bit to be recessive, and each node that
successfully receives the frame overwrites the recessive bit with a dominant bit to confirm
the reception of the CAN frame. The EOF field, which contains 7 recessive bits, marks
that the CAN message has ended. A detailed overview on the format and bit fields of the
standard and extended CAN frame is shown in Table 3.1.

3.2 SAE J1939 specifics

In this section, J1939 specific implementations such as the message identifier (ID) structure,
the address claiming mechanism as well as the multi-frame transmissions are presented.
The SAE J1939 specification for the CAN protocol is used by the commercial vehicle
sector of the automotive industry. Any vehicle that is employed in commercial or business
purposes, e.g., deliver goods or to transport passengers for a fee, is qualified as a commer-
cial vehicle. This specific sector comprises various motor vehicles including buses, trucks,
mobile cranes, excavators, tractors etc.

With a few minor modifications, i.e., bit rate restrictions, SAE J1939 implements the
ISO 11998 standard specification at the physical layer. A SAE J1939 vehicle network has
a maximum bit rate of up to 500 Kbit/s . When developing CAN buses inside commercial
vehicles, the typical employed bit rates are 250 Kbit/s or 500 Kbit/s . On top of the
CAN protocol, SAE J1939 defines a full communication stack by including additional
specific features, such as the data link standardized in SAE J1939-21 [112] and the vehicle
application layer specified in the SAE J1939-71 standard [81].

3.2.1 ID breakdown based on J1939 standardization

Only extended frames, meaning frames that have 29-bit identifiers, are used in J1939 CAN
communication buses. This is a specific feature of J1939 standard, while regular CAN
buses used inside passenger cars typically follows the standard format, which consists
of frames with 11-bit identifiers. Figure 3.4 depicts the specific layout designed for the
J1939 specific ID. The J1939 frame ID is split into six separate fields as follows: priority,
extended data page (EDP), data page (DP), protocol data unit format (PF), protocol data
unit specific (PS) and source address (SA). The Parameter Group Number (PGN) uniquely
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Figure 3.4: J1939 message identifier layout

identifies a parameter group (PG) which specifies that a set of particular parameters,
such as data, acknowledgments, etc., are packed inside the payload of a J1939 frame.
The following four fields: EDP, DP, PF, PS defines the PGN. The J1939-71 standard
[81] describes a complete set of standardized J1939 frames and the associated PG values,
which meet the requirements of various functions that are implemented on ECUs inside the
commercial vehicles. In addition to the set of J1939 standard frames, there is also defined a
range that is reserved for the OEM specific implementations [81]. As long as the particular
frame type is not OEM-specific, the data field carried by a J1939 frame (the parameters
that are packed inside the payload) can be interpreted based on J1939 specifications. The
J1939-71 standard is supplemented by the J1939 Digital Annex document [113], which
gives a detailed information in a format that is easy to use. Additionally, all the J1939
targeted areas, such as agricultural and forestry equipment, on-highway equipment, etc.
and the corresponding source addresses for different ECUs preferred by each area are
listed in this document. The J1939 specification defines two types of PDU formats. This
classification is performed based on the PDU format value following this rule:

1. if the value of the PF field is less than 240, the PDU format is labeled as PDU1.

2. if the value of the PF field is greater than or equal to 240, the PDU format is labeled
as PDU2.

The significance of PS field is the main difference between the two aforementioned types
of the PDU format. In case of a PDU1 format, the PS field specifies a destination address
while for the PDU2 means a group extension (GE).

3.2.2 Address claiming mechanism based on node address

A node address is an unique identification number for a J1939 network node. These
addresses are a component of the message identifiers and represent the source and destina-
tion of the frames. The DA will be 0xFF in the case of a broadcast transmission which
means a transmission that is addressed to all nodes from the network. Another important
aspect is that the only nodes with allocated addresses are allowed to exchange messages.
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The address claiming mechanism, which occurs prior to the start of the communication
inside the J1939 network, allows the nodes to claim an address. This procedure is part
of the J1939 network management specification described in SAE J1939-81 [114] and
occurs while the nodes are waking up, typically at system ignition phase. There are some
circumstances when the nodes are initialized on request or are later connected to the
network. In this scenario, the nodes will go through the identical address claiming process,
which the other nodes have already performed. According to [114], the CAN message
that has an ID with PGN 60928, corresponds to the address claiming procedure. The
transmission of this PGN is performed on request. As a result, any network node may send
this request (a particular frame with PGN 59904). The destination of such a request can be
either a global address, i.e., all nodes, or a particular address of a node. Before starting the
communication, a node must send a frame with PGN 60928, containing its NAME and the
requested address in order to claim its own address. In case of a global request, each ECU
within the J1939 network must reply with a frame based on the Address Claiming PGN
60928 providing its specific NAME and address if the node has previously claimed an
address. A node which is unable to claim an address must notify this failure by including
the null address (254) in the address field.

Each node has assigned a unique NAME parameter which provides details on the
ECU’s functions, the manufacturer code, the identify number and the industry sector.
Figure 3.5 is a depiction of the address claiming mechanism. As it can be observed, the
ECU1 designated as the Initiator node claims his own address in the first phase. The
ECU1 node then uses the global address to send a message to all other nodes that is a
PGN request for an Address Claim. All J1939 network ECUs that have already claimed
an address respond by sending an Address Claim message with their own source address.

3.3 Data transmissions via multi-frame

Transport protocols, which are another feature of the J939 communication standard,
are described in [112]. A J1939 CAN network uses transport protocols that enable the
transmission of larger payloads, i.e., up to 1785 bytes, by using multi-frame messages.
Since a CAN message can pack maximum 8 data bytes, messages that need to carry more
than 8 bytes may only be transmitted by splitting the data across multiple CAN frames.
This is feasible due to the existence of various J1939 specific frames, which are detailed in
Table 3.2. These frames are part of both the Transport Protocol Connection Management
(TP.CM) and the Transport Protocol Data Transfer (TP.DT). A connection between the
sender and receiver nodes is established via a TP.CM message, which also manages the
frame exchange. The actual data transfer is done using the TP.DT messages. Both, the
TP.CM and TP.DT messages enables two types of data transfer as follows:

1. Broadcast Data Transfer – as illustrated in Figure 3.6 (left). Here, the initiator
node labeled as ECU1 transmits a Broadcast Announce Message (BAM) in the first
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Figure 3.5: The flow of the messages exchanged while the J1939 address claiming
mechanism takes place

step to let the network know that a multi-packet message is coming. The DT (Data
Transfer) frames are then sent by the same node. Only the initiator node has control
over the message exchange.

2. Connection Mode Data Transfer – as illustrated in Figure 3.6 (right). In this
scenario, an RTS (Request to Send) - CTS (Clear to Send) message exchange is
used to create a connection between the sender and receiver nodes. Next, the DT
messages are sent by the initiator node (ECU1). Finally, the receiver node sends an
End of Message Acknowledgment (EndOfMsgACK) message to confirm the end of
a multi-frame transmission. The Connection Abort (Conn Abort) message can be
used at any time to suspend the connection between the initiator and receiver nodes.
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Figure 3.6: Broadcast Data Transfer (left) and Connection Mode Data Transfer (right) –
transport protocols used in multi-packet transmissions

Table 3.2: Transport protocol messages used in J1939 CAN networks

Message PF PS Description

TP.CM_BAM 236 FF through this message, the nodes are notified about a
specific PG and the number of data bytes that will be
packed into a multi-frame message.

TP.CM_RTS 236 DA a node can inform another node of their intention to
connect with it for a multi-frame message transmis-
sion.

TP.CM_CTS 236 DA the receiver transmits this frame as response to a
TP.CM RTS frame to let the connection initiator node
know that is available to receive the specified amount
of data bytes from the RTS message.

TP.CM_EndOfMsgACK 236 DA through this message, the receiver node notifies the
sender node that all data bytes have been successfully
received

TP.Conn_Abort 236 DA both the receiver or sender can use this message to
suspend a connection before data transmission is com-
pleted
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Chapter 4

A preliminary approach with a
neural network based IDS on CAN

This chapter explores the effectiveness of neural networks in detecting intrusions in
Controller Area Networks. Also, it provides computational results for the detection
algorithm on three automotive graded platforms. The experiments are conducted on
a CAN trace that is taken from a J1939 CANoe simulation as well as on a publicly
accessible CAN dataset. In addition to the advantages of utilizing neural networks for
intrusion detection, this chapter also discusses the limitations caused by the required
computational time which is essential for real-time detection. This chapter is based on
the results published in a prior work of the author [22]. These experiments were started
while the author was enrolled on the MSc program and the current results are an extension
of those included in the author’s dissertation thesis [115]. The detection results were
evaluated using the MATLAB Neural Network Toolbox and the C++ implementation
of the detection algorithm was used for measuring the runtime on different embedded
platforms.

4.1 Targeted scenario and adversary model

This section outlines the scenario that an adversary might employ as well as the types of
attacks that are examined in this evaluation.

Figure 4.1 depicts the targeted setup which accounts for an adversary that is connected
to the CAN bus through the OBD port by using some malicious device and injects
messages on the bus. In this chapter, the CANoe trace is augmented with adversarial
frames using a C# based script. The following types of attacks are considered:

• Fuzzing attacks – are attacks in which the adversary injects malicious CAN messages
that have the same ID as a regular frame and the content of the data field is randomly

37
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Figure 4.1: Targeted setup

generated. The timestamp of the attack frame is randomly generated between
the timestamps of two consecutive genuine CAN messages (we assume that this
adversarial behavior matches with real-world attack scenarios). As a result, the
attack frame occurs at a random location in the legitimate trace. When a certain
CAN ID is targeted by an adversary, the intrusions take place randomly between
the timestamps of two consecutive genuine messages with the targeted ID. When
the full trace is considered, i.e, all CAN IDs, the intrusions occur at random points,
no later than several dozen messages from the legitimate one.

• Replay of regular CAN frames – are attacks in which the adversary injects malicious
CAN messages that have the same ID and data field as a genuine frame. The attack
frames take place at random locations, identical to the case of fuzzing attacks.

The proposed adversary model is comparable to the one used in [116]. The replay
and fuzzing attacks that are described in [116] are the same as the ones in the current
work. Apart from that, the authors in [116] also take into account DoS (Denial of Service)
attacks that are mounted by sending frames on the CAN bus with ID 0x000h, i.e., the
highest priority. However, these attacks are trivial to spot because ID 0x000h is not part of
the legitimate traffic. As a result, this type of attack is neglected in the evaluation from the
current chapter because its detection is straightforward.

4.2 Neural networks deployment and tools

This section presents the tools used for the deployment of neural networks and provides a
basic explanation of their architecture.
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4.2.1 Neural network Toolbox and C++ implementation

For the experiments that follow, both the Neural Network Toolbox provided by an industry
standard tool, i.e., MATLAB and an independent C++ implementation, are used. The
rationale behind employing both of these implementations is that the MATLAB neural
network toolset is well-known for its performance and features. Nevertheless, an open-
source C++ code is more suitable for deployment on embedded platforms. Due to this, the
majority of the detection results were obtained using MATLAB. However, we verify that
comparable detection results are achieved by using separate C++ code. 1. Consequently,
this C++ implementation is used for benchmarking the neural network based detection
algorithm on automotive graded platforms.

The MATLAB toolbox includes several algorithms to address classification problems.
To be more specific, for the current evaluation the training is done using the trainscg
algorithm, which is the scaled conjugate gradient back-propagation. This algorithm
updates the weights and bias values. The hyperbolic tangent sigmoid transfer function, i.e,
tansig, is used for connecting the layers of the neural network. This function provides a
value between [−1, 1]. The reason for choosing the tansig function is that, according to
the MATLAB documentation, it provides good trade-offs where computational speed is
crucial. The back-propagation method and the sigmoid function are also used in the C++
implementation.

To facilitate the training of the neural network and validating the results, the CAN
traffic dataset is split into three parts:

• training data (TD) – the data required for training the network, i.e., adjusting the
weights of the network accordingly,

• validation data (VD) – the data required to evaluate how well the neural network
performs when encountering new data (every epoch ends with the running of this
input),

• test data (TsD) – the data required after the training stage is finished (when the stop
conditions are met), and the accuracy of the detection results are computed over this
data.

We note that the test data from MATLAB implementation is referred to as validation
data in the C++ implementation while the validation data is referred to as generalization
data (this is just a naming convention).

An epoch represents the time in which both the entire training data set, as well as the
generalization data, are passed through the neural network which continues to operate until
the stopping criteria are satisfied. These are detailed next for MATLAB implementation.
As the training stage only took a few minutes or less, and since the training stage is

1https://takinginitiative.wordpress.com/2008/04/23/basic-neural-network-tutorial-c-implementation-
and-source-code/
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an off-line procedure that doesn’t need to satisfy real-time requirements, the maximum
amount of time, one of the stopping criteria for the training, was set to the default setting,
i.e,∞. This permits stopping on one of the subsequent criteria:

• the maximum epoch reached (configured to 1000),

• the performance goal is achieved (configured to 0),

• the performance gradient is lower than the minimum gradient (configured to 1e-06),

• the validation performance has improved for at least six consecutive times.

Similar stopping criteria were present in the C++ implementation. For instance, as
long as the accuracy of both the training and generalization set is below the required
accuracy, the network will continue to operate until the maximum amount of epochs is
achieved. If the previous stop conditions are not met, the training set accuracy (TSA),
which is the number of CAN frames accurately predicted as either attacks or legitimates
frames, can be used as a condition. The training set accuracy (TSA) is computed as
follows:

TSA = 100

(
1− NIC

NT

)
(4.1)

where NIC stands for the number of incorrect predictions and NT represents all of the
CAN messages from the training data. The last stopping criterion is the generalization set
accuracy (GSA), which is the same as TSA, but is computed using the generalization data.

4.2.2 Neural network architecture

Figure 4.2 shows the neural network architecture which consists of three layers: the
input layer, the hidden layer, and the output layer. The neural network input contains the
following features extracted from the CAN frames:

• the data field,

• the frame ID which has 29 bits in case of extended CAN frame,

• the interval (∆t) between timestamps with the same ID that are consecutive.

The data input vector I ∈ {0, 1}105 can be mathematically defined as:

I =
{
b0, b1, b2, ...b104

}
where: (4.2)

bits b0...b11 stand for the interval ∆t, bits b12...b75 stand for the 64-bit data field, and bits
b76...b104 stand for the 29-bit extended ID.

The output O ∈ {0, 1} is defined as:
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Figure 4.2: Neural network architecture

O =
{
b0
}

where: (4.3)

b0 =

{
1, denotes an attack message
0, denotes a genuine message

(4.4)

4.3 Experimental results

In this section, the detection results obtained for various experiments as well as the
computational results of the detection algorithm on several embedded platforms, are
presented.

4.3.1 Results on detecting intrusions using neural networks

The proposed IDS is evaluated using a trace that was recorded from a J1939 CANoe
simulation. In the first step, the performance evaluation is conducted on portions of traces
containing all frames with a certain CAN identifier. For the experiments that follow three
rates of injection are used: 5%, 10% and 20%. For each injection rate there are five cases
of data separation between three categories: training (TD), validation (VD) and testing
(TsD). These are presented in Table 4.1.

The first experiment was performed on a public real-world CAN dataset made acces-
sible by the authors in [116]. The traces from the dataset contains genuine CAN traffic
as well as CAN traffic that was augmented with malicious frames. Unfortunately, for the
later scenario, there is no indicator in the traces to distinguish between malicious frames
and legitimate frames. As a result, only traces containing fuzzing attacks were used in the
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Table 4.1: The separation of the dataset for each injection rate based on the training,
validation, and testing data

I 60% TD 20% VD 20% TsD
II 40% TD 20% VD 40% TsD
III 20% TD 20% VD 60% TsD
IV 10% TD 10% VD 80% TsD
V 5% TD 5% VD 90% TsD

Table 4.2: Detection results on fuzzing attacks from the public dataset

Inj. Case Neural Network Parameters Results

Validation
set max

fail

Gradient Validation set
MSE

Nr.
epochs

TN &
TNR

TP &
TPR

FP &
FPR

FN &
FNR

N/A I 1 7.07e-07 9.6381e-07 24 2454 5586 2 0
99.92% 100% 0.08% 0%

N/A II 1 5.21e-07 7.5294e-04 31 5277 10806 2 0
99.96% 100% 0.04% 0%

N/A III 1 8.22e-07 7.4193e-07 28 7860 16266 2 0
99.97% 100% 0.03% 0%

N/A IV 1 6.08e-07 1.4023e-06 27 10462 21707 2 0
99.98% 100% 0.02% 0%

N/A V 1 6.49e-07 1.4732e-06 26 11827 24363 2 0
99.98% 100% 0.02% 0%

experiments, with the assumption that the randomized frames are attacks while the other
frames are legitimate. The results are excellent, with a detection rate equal to 100% while
the false positive rates are below 0.1%, as shown in Table 4.2. This is primarily because
the adversary behavior is straightforward, i.e., it only targets a single ID. To explore the
limits of the neural network-based detection, the upcoming experiments will be more
complicated.

Results obtained for a single ID. In what follows, the detection performance is evalu-
ated on a single CAN ID from the J1939 CANoe trace. The detection results on a single
ID are relevant as a baseline because it is obvious that expanding detection to include all
of the IDs from the trace will require a neural network for each CAN ID, in other words, it
requires powerful resources in terms of processing power and storage capacity. It is worth
mentioning that the CAN traffic includes low entropy frames carried by some IDs, i.e.,
roughly 0, and high entropy frames by other IDs, i.e., 12-13 bits of entropy. This is due to
the fact that the data fields are mostly constant for the former while those for the latter
carry parameters that exhibit variations. Consequently, the evaluation is conducted to
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Table 4.3: Detection results for injections with random data obtained using a low-entropy
frame

Inj. Case Neural Network Parameters Results

Validation
set max

fail

Gradient Validation set
MSE

Nr.
epochs

TN &
TNR

TP &
TPR

FP &
FPR

FN &
FNR

20% I 0 8.79e-07 1.0677e-07 29 7519 1518 0 0
100% 100% 0% 0%

20% II 0 9.23e-07 5.7362e-07 27 15079 2995 0 0
100% 100% 0% 0%

20% III 1 7.21e-07 1.7136e-06 26 22645 4466 0 0
100% 100% 0% 0%

20% IV 0 7.34e-07 1.1782e-06 31 30152 5996 0 0
100% 100% 0% 0%

20% V 1 8.12e-07 7.9371e-05 25 33871 6794 0 1
100% 99.99% 0% 0.01%

account for both scenarios, i.e, low and high entropy frames. For injections with random
data (fuzzing attacks), the results are shown in Table 4.3 for a frame ID with low entropy
and Table 4.4 for a frame ID that carries a high entropy. Although there is a minor increase
in the false-negative rate for the frame with higher entropy, the detection rate is still very
close to 100% while none of the legitimate frames is classified as an intrusion.

For the case of replay attacks, the results are presented in Tables 4.5 and 4.6. In
contrast with fuzzing attacks, the low-entropy frame exhibits slightly worse detection
results. The detection rate for low-entropy frame can occasionally drop to around 86%,
and it is over 97% for the high-entropy frame. The true negative rate remains constant at
100% for both scenarios.

Results obtained over the full trace. In what follows, the evaluation of the detection
performance is conducted using the full trace. The results for both fuzzing and replay
attacks are shown in Tables 4.7 and 4.8, respectively. The attack traces were built in a
similar vein to those targeting a single ID, but to cover all IDs from the trace. The false
positive rate has increased for both types of attacks as a result of the extension over the full
trace. Nonetheless, the false positive rates remain within a few percentage points (0%-2%),
and only in the case of replay attacks with an injection rate of 20%, they reach 11.09% and
13.83%. A significant concern is the false negative rate, which shows a noticeable increase
at roughly 43.58% in case of replay attacks with an injection rate of 5%. Since the false
positive rate decreases from 43.58% to 17.64% when the injection rate increases from 5%
to 20%, the reduced number of attack frames (5% injection rate) from the training set may
be the cause for the higher rates of false positives.

Results obtained over the full trace using a reduced network size. Considering that
the computational power and storage demands may be too high for automotive-graded
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Table 4.4: Detection results for injections with random data obtained using a high-entropy
frame

Inj. Case Neural Network Parameters Results

Validation
set max

fail

Gradient Validation set
MSE

Nr.
epochs

TN &
TNR

TP &
TPR

FP &
FPR

FN &
FNR

20% I 1 9.63e-07 3.7269e-07 28 7562 1475 0 0
100% 100% 0% 0%

20% II 1 9.57e-07 7.5004e-06 28 15093 2981 0 0
100% 100% 0% 0%

20% III 1 6.32e-07 3.281e-05 28 22645 4457 0 0
100% 100% 0% 0%

20% IV 0 8.27e-07 3.8664e-05 28 30161 5987 0 0
100% 100% 0% 0%

20% V 0 7.31e-07 5.3963e-06 29 33890 6774 0 2
100% 99.97% 0% 0.03%

Table 4.5: Detection results for replay attacks obtained using a low-entropy frame

Inj. Case Neural Network Parameters Results

Validation
set max

fail

Gradient Validation set
MSE

Nr.
epochs

TN &
TNR

TP &
TPR

FP &
FPR

FN &
FNR

20% I 6 1.10e-03 2.9128e-04 26 7530 1507 0 0
100% 100% 0% 0%

20% II 6 2.32e-03 6.1636e-06 37 15086 2909 0 79
100% 97.36% 0% 2.64%

20% III 6 6.64e-04 6.0327e-03 33 22601 4297 0 213
100% 95.28% 0% 4.72%

20% IV 6 2.74e-03 4.3834e-03 16 30081 5639 0 428
100% 92.95% 0% 7.05%

20% V 6 4.23e-03 2.5314e-02 13 33886 5855 0 925
100% 86.36% 0% 13.64%
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Table 4.6: Detection results for replay attacks obtained using a high-entropy frame

Inj. Case Neural Network Parameters Results

Validation
set max

fail

Gradient Validation set
MSE

Nr.
epochs

TN &
TNR

TP &
TPR

FP &
FPR

FN &
FNR

20% I 6 9.61e-07 2.0248e-06 43 7557 1449 0 31
100% 97.91% 0% 2.09%

20% II 1 6.70e-07 3.7639e-03 45 15051 2992 0 31
100% 98.97% 0% 1.03%

20% III 6 6.64e-04 6.0327e-03 33 22592 4431 0 88
100% 98.05% 0% 1.95%

20% IV 1 8.85e-07 4.2954e-05 43 30147 5936 0 65
100% 98.92% 0% 1.08%

20% V 0 5.92e-07 1.8005e-05 42 33886 6585 0 195
100% 97.12% 0% 2.88%

Table 4.7: Detection results for injections with random data obtained using the full trace

Inj. Case Neural Network Parameters Results

Validation
set max

fail

Gradient Validation set
MSE

Nr.
epochs

TN &
TNR

TP &
TPR

FP &
FPR

FN &
FNR

5% IV 1 9.15e-07 9.4955e-04 47 79842 3833 257 68
99.68% 98.26% 0.32% 1.74%

5% V 1 7.51e-07 8.2342e-04 50 89782 4368 269 81
99.70% 98.18% 0.3% 1.82%

20% IV 0 6.07e-07 1.6087e-03 48 80137 15552 288 23
99.64% 99.85% 0.36% 0.15%

20% V 1 8.34e-07 3.6169e-04 41 89850 17700 347 103
99.62% 99.42% 0.38% 0.58%
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Table 4.8: Detection results for replay attacks obtained using the full trace

Inj. Case Neural Network Parameters Results

Validation
set max

fail

Gradient Validation set
MSE

Nr.
epochs

TN &
TNR

TP &
TPR

FP &
FPR

FN &
FNR

5% IV 6 1.41e-02 1.8857e-02 213 78749 2445 1305 1501
98.37% 61.96% 1.63% 38.04%

5% V 6 3.47e-03 2.1721e-02 167 88401 2526 1622 1951
98.20% 56.42% 1.80% 43.58%

20% IV 6 2.01e-02 3.8511e-02 150 69220 12909 11106 2765
86.17% 83.26% 13.83% 17.64%

20% V 6 9.12e-03 3.7179e-02 158 80157 14430 10001 3412
88.91% 80.88% 11.09% 19.12%

Table 4.9: Detection results for injections with random data obtained using the full trace
and 1/4 hidden layer size

Inj. Case Neural Network Parameters Results

Validation
set max

fail

Gradient Validation set
MSE

Nr.
epochs

TN &
TNR

TP &
TPR

FP &
FPR

FN &
FNR

5% IV 0 9.35e-07 4.9171e-04 45 79842 3846 257 67
99.68% 98.28% 0.32% 1.72%

5% V 1 4.60e-07 2.0366e-03 46 89665 4275 386 174
99.57% 96.09% 0.43% 3.91%

20% IV 6 5.42e-07 7.3191e-04 52 80153 15462 272 113
99.66% 99.27% 0.34% 0.73%

20% V 1 9.90e-07 1.0166e-03 50 89471 17695 726 108
99.20% 99.39% 0.80% 0.61%

controllers, as demonstrated in the next section, reducing the network size is essential.
The detection results for injections with random data and replay attacks obtained using
a network that has a hidden layer reduced to 1/4 are presented in Tables 4.9 and 4.10.
Similarly, the detection results obtained for the same attack scenarios, but based on a
network that has a hidden layer reduced to 1/16 are shown in Tables 4.11 and 4.12,
respectively. As anticipated, the accuracy performance is affected as network size is
reduced. Nevertheless, the detection results obtained with both 1/4 and 1/16 size of the
hidden layer, are acceptable. Once more, the primary concern is the false negative rate in
the case of replay attacks with an injection rate of 5%, which is around 40% and around
55% when the hidden layer is reduced to 1/4 and 1/16, respectively. The detection results
show an improvement after the injection rate is increased to 20%, indicating the necessity
for a larger training set.
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Table 4.10: Detection results for replay attacks obtained using the full trace and 1/4 hidden
layer size

Inj. Case Neural Network Parameters Results

Validation
set max

fail

Gradient Validation set
MSE

Nr.
epochs

TN &
TNR

TP &
TPR

FP &
FPR

FN &
FNR

5% IV 6 8.93e-03 1.8363e-02 281 78719 2476 1335 1470
98.33% 62.75% 1.67% 37.25%

5% V 6 1.07e-02 1.8056e-02 214 89050 2711 973 1766
98.92% 60.55% 1.08% 39.45%

20% IV 6 1.82e-02 3.4832e-02 306 72010 12742 8316 2932
89.65% 81.29% 10.35% 18.71%

20% V 6 1.09e-02 3.4798e-02 154 84019 14046 6139 3796
93.19% 78.72% 6.81% 21.28%

Table 4.11: Detection results for injections with random data obtained using the full trace
and 1/16 hidden layer size

Inj. Case Neural Network Parameters Results

Validation
set max

fail

Gradient Validation set
MSE

Nr.
epochs

TN &
TNR

TP &
TPR

FP &
FPR

FN &
FNR

5% IV 6 1.79e-04 1.1984e-03 53 79818 3757 281 144
99.65% 96.31% 0.35% 3.69%

5% V 6 3.15e-05 1.6704e-03 39 89444 4229 607 220
99.33% 95.06% 0.67% 4.94%

20% IV 6 4.0e-05 1.1148e-03 42 80007 15401 418 174
99.48% 98.88% 0.52% 1.12%

20% V 6 7.50e-05 2.3672e-03 54 88763 17439 1434 364
98.41% 97.96% 1.59% 2.04%
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Table 4.12: Detection results for replay attacks obtained using the full trace and 1/16
hidden layer size

Inj. Case Neural Network Parameters Results

Validation
set max

fail

Gradient Validation set
MSE

Nr.
epochs

TN &
TNR

TP &
TPR

FP &
FPR

FN &
FNR

5% IV 6 7.86e-03 2.8314e-02 125 79528 1791 526 2155
99.34% 45.39% 0.66% 54.61%

5% V 6 4.45e-03 2.6876e-02 113 88184 1871 1839 2606
97.96% 41.79% 2.04% 58.21%

20% IV 6 1.35e-02 4.1603e-02 189 63747 12704 16579 2970
79.36% 81.05% 20.64% 18.95%

20% V 6 1.69e-02 4.5909e-02 202 74453 13068 15705 4774
82.58% 73.24% 17.42% 26.76%

4.3.2 Runtime performance for neural networks

The computational power and storage capacity of the automotive embedded platforms used
in the implementation of the IDS are essential for the effective deployment in real-world
automotive applications. To assess the computational performance of the proposed IDS,
the experiments are conducted to measure the runtime of the detection mechanism on
three automotive-grade platforms. A microcontroller from NXP, i.e., S12XF512, is the
first and represents the low-end device sector. As representatives of the high-end device
group, an Infineon AURIX TC297 microcontroller as well as a Renesas RH850/E1x are
used. The S12XF chip is equipped with a 16-bit main core that can run at a maximum
frequency of 50MHz, 32KB of RAM as well as 512KB of Flash. The Infineon AURIX
TC297 microcontroller, on the other hand, offers three 32-bit cores that can operate at up
to 300MHz along with 728KB of RAM and 8MB of Flash. For the second device, i.e,
Renesas RH850/E1x the evaluation was done utilizing a dedicated simulator. Two 32-bit
cores running at a maximum clock speed of 320MHz along with 352KB of RAM and
4MB of Flash are available on the Renesas platform.

The first step is to compute the weights in an off-line manner based on the training
data set. The second one is the testing stage where the neural network based detection
algorithm was designed to operate on a single-core, while the precomputed weights are
stored in Flash memory. The experiments were carried to use three different sets of
weights that represent the neural network with a full size hidden layer, a hidden layer
reduced to 1/4 as well as a hidden layer reduced to 1/16. For each set of weights, the
testing was conducted using two floating point formats, i.e, single and double precision.
The runtimes determined for the proposed IDS in the investigated scenarios are presented
in Tables 4.13 and 4.14. Due to a constraint in the compiler that we used, the code could
not be executed on the S12XF device with the full size hidden layer.
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Table 4.13: Computational results obtained using single precision floats for weights

Platform Full hidden layer 1/4 hidden layer 1/16 hidden layer

S12XF512 n/a 52.3ms 13.22ms

TC297 3.904ms 899µs 237.5µs

RH850/E1x-FCC1 2.697ms 667.1µs 157.6µs

Table 4.14: Computational results obtained using double precision floats for weights

Platform Full hidden layer 1/4 hidden layer 1/16 hidden layer

S12XF512 n/a 110.5ms 25.76ms

TC297 15.26ms 3.744ms 822µs

RH850/E1x-FCC1 2.680ms 671.3µs 162.73µs

According to the expectations, the low-end platform exhibits a significant performance
bottleneck, making the implementation of the detection algorithm only possible for a
limited neural network size and a CAN network with a reduced number of nodes that sends
frames with high periodicity (i.e. greater than 100ms). The results of the experiments
demonstrate that the detection algorithm can be implemented more effectively on high
performance devices. However, real-time processing of the CAN frames with a periodicity
in the order of 10 milliseconds may still be a concern when implementing the full version
of the suggested neural network.

4.4 Concluding remarks

Although neural networks show promising capabilities in detecting CAN bus intrusions,
there are still certain limitations. The obtained results, as expected, differ between the two
types of attacks, replay and injections with random data. Due to the fact that in case of
replay attacks the injected frames are identical to the legitimate ones, the IDS exhibits
a lower detection rate for such attacks. The only indicator to detect such attacks is the
frequency of the CAN frames. On the other hand, the injections with random data are
easily detected by the IDS.

Neural networks appear to be an effective IDS for CAN buses from the perspective
of detection results. However, the bigger concern is with the computational and storage
requirements since neural networks don’t seem to be appropriate for real-time detection
on low-end automotive-grade controllers. While reduced-size neural networks may be
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supported by high-end controllers, computational needs remain considerable. Conse-
quently, unless specialized hardware becomes available, the detection phase may not
always be performed locally on each ECU from the network. A potential solution could
involve relying on gateways with more powerful cores that can monitor the traffic while
adhering to time constraints. The investigation of such a solution with stronger cores and
the extension of this evaluation to include more intricate real-world traffic from CAN,
CAN-FD, and FlexRay can be regarded as future directions.
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Chapter 5

A framework for integrating attacks
and intrusion detection in CANoe

This chapter pursues the integration of adversary models and intrusion detection systems
inside a CANoe simulation. The adversarial interventions are modelled using real-world
CAN traffic that has been extracted from actual vehicles and then submitted to intrusion
detection algorithms. The proposed IDS relies on the machine learning (ML) capabilities
that are already supported by the MATLAB platform and is carried over to the CANoe
simulation using C++ code. Such a unified platform that enables real-time simulation of
both attacks and intrusion detection is advantageous since it offers a testbed for different
intrusion detection algorithms. Given that CANoe is a standard tool in the automotive
industry, the integration of these features sets room for realistic testing. The content of
this chapter is based on the results published in a prior research paper by the author [19].

5.1 Data collection and their integration inside CANoe

In this section, the data collection procedure inside vehicles is presented. Then this section
gives a brief overview of CAN network architecture and how the collected CAN traffic is
used in CANoe simulation.

5.1.1 Data retrieval from the OBD2 port

The goal is to design and evaluate an IDS based on real-world CAN traces that would make
the results more realistic in contrast to working with simulation based data. Therefore,
the CAN bus data collection was performed through the OBD ports from several cars.
The OBD port is dedicated to the collection of diagnostic information from all nodes
and provides the status of several vehicle functions to the tester. As a result, there are
many vehicles in which the OBD port has a direct connection to the main CAN bus.
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To avoid security vulnerabilities that are exposed by the OBD port, a CAN network
topology in which this port is linked to an ECU gateway responsible for the collection of
diagnostic data from all other nodes, should be implemented. In this scenario, the OBD
port would only expose diagnostic messages that are part of the UDS protocol and follow
the request-response protocol. Many cars, however, lack such a gateway ECU in order to
save additional costs, and the OBD port has access to the main CAN bus. The experiments
carried inside cars in this chapter demonstrate that the OBD port provides access to the
entire CAN communication (in the case of certain vehicles).

Before starting the data collection, the experiments were conducted to see whether
the CAN communication is accessible through CAN pins of the OBD port and what the
current bit rate is used. Using an oscilloscope, we observed that the CAN communication
is exposed. Also, we noticed that one vehicle employs a baud rate of 250 Kbit/s, while
the second operates at a baud rate of 500 Kbit/s. In the following phase, the CAN traffic
was recorded for approximately 20 minutes while the cars were parked (stationary) and 20
minutes while they were moving. Many driver-specific activities, such as switching the
car lights, accelerating and braking abruptly, gear shifts, etc., were carried out during this
time. These were conducted in order to record more complex CAN traffic. The previous
steps were performed on two types of vehicles: a sedan and an SUV.

Figure 5.1 shows the experimental setup. This accounts for a laptop that runs an
application based on the Vector XL Driver Library, the Vector VN1630 USB-to-CAN
interface, and the CAN cables which are connected with an OBD plug on one side and
DB9 female connector on the other side. The DB9 female connector is compatible with
the VN1630 device. The VN1630 device was designed by Vector, a reputable company
that offers solutions for the development of automotive networks. This device belongs to
the VN1600 family. Many software programs, including CANoe and CANape, as well as
the XL Driver Library, provide support for the VN1630 device. The XL Driver Library
enables the deployment of particular applications based on an Application Programming
Interface (API) suitable for Vector’s devices. Moreover, the library allows for interfacing
with several protocols including CAN, CAN-FD, LIN, FlexRay, etc., and gives access to
device functionalities such as message reception and transmission, various configuration
parameters, e.g., bit rate, etc. Figure 5.2 depicts an example of messages that a simple
application based on this library was able to capture through the OBD port from the
vehicle. Each recorded CAN frame has the following structure:

• the CAN channel index where the frame was received,

• the timestamp having a resolution in nanoseconds,

• the frame identifier,

• the size of the datafield in bytes,

• the datafield carried by the frame.
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Figure 5.1: Data collection setup Figure 5.2: Logged CAN frames

In order to prevent potential harm to the vehicle, the application was implemented solely
for message reception while the transmission of CAN messages (injections) is disabled.
Thus, the adversarial actions will be modelled using the CANoe simulation.

5.1.2 CAN network architecture and data usage in CANoe

The adversarial actions and intrusion detection features were embedded inside a CANoe-
based simulation. The use of CANoe, i.e., an all-in-one integrated software solution,
allows for the design, simulation, testing, and evaluation of in-vehicle networks. CANoe
is the most common software solution used in the automotive industry by OEMs (original
equipment manufacturers) to develop automotive networks.

CANoe makes use of the necessary building blocks to enable the modeling and real-
time detection of real-world CAN bus attacks. Figure 5.3 shows the designed CAN
network architecture for the analysis from this chapter. This network architecture is based
on the following three blocks:

• the replay node – is implemented as a replay block, i.e. a specialized type of node
which is responsible for replaying the recorded real-world CAN traffic,

• the adversary model node – is responsible for mimicking the real-world adversar-
ial actions and is implemented using a CAPL (CAN Application Programming
Language) node,

• the IDS node – is implemented utilizing a CAPL node and is responsible for
evaluating and classifying the frames as either genuine or attack.

The replay block can be easily disabled for online attacks and traffic analysis when the
CANoe simulated bus is connected to the in-vehicle bus through a VN device. CANoe-
specific functionalities including events, system variables, message structures, and mes-
sage databases are available by using CAPL, a C-based language [117].
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Figure 5.3: CAN network design inside CANoe simulation

5.2 Adversary Model

This section discusses the adversary model envisioned for the next experiments and
provide an overview on how these adversarial bahaviors are integrated in CANoe.

5.2.1 Types of Attacks

Typically, adversary models rely on the Dolev-Yao model [118]. This model accounts
for an adversary with complete network control. In other words, the adversary has the
ability to intercept, block, replay, modify, or inject frames into the network. If any security
measures exists, the adversary can only control them if he possesses the relevant keys. In
the experiments from this chapter, we do not discuss any security mechanism because
they are typically not present in the extracted CAN traffic from the vehicles and even if
they were implemented, there would be no access to the manufacturer’s specifications.
Authentication mechanisms over the CAN bus, for instance, are typically regarded as
confidential information.

The adversary envisioned for the next experiments has access to the CAN traffic
recorded inside the cars and is developed in a similar vein to the current research on
adversarial models for the CAN bus. These adversarial behaviors are integrated into the
CANoe simulation. The evaluation takes into account the following types of attacks:

1. Replay of regular CAN frames occurs when the adversary intercepts the legit-
imates frames and then sends them on the CAN bus. The malicious frames in
this instance are exact replicas of the legitimate ones sharing the same identifier
and data field as legitimate frames. The periodicity of the CAN frames that have
the same ID is the only sign that this kind of attack is taking place assuming that
more messages with the same ID will be visible on the bus. The interface from the
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CANoe simulation allows the configuration of the attacked frame identifier and the
delay at which the malicious frame is injected after the reception of a legitimate one
with the configured ID. The busload is increased as a result of the replay attacks,
delaying or even stopping the transmission of other genuine frames.

2. Injection attacks are defined as insertions of adversarial messages on the CAN bus
as we detail in the lines that follow:

2.1. Injection of random data, also known in the literature as fuzzing attacks
[116], is an attack in which the adversary intercepts legitimate frames and after
that, injects the malicious frames on the CAN bus with a predetermined delay
which can be configured from the interface. The identifier of the malicious
frames is identical to that of legitimate frames, while the data field is randomly
generated. The delay is represented by the amount of time between the genuine
frame being intercepted and the attack frame being triggered for transmission.
Furthermore, the delay at which the adversarial frame is transmitted can
be configured with a resolution of 1 µs. Similar with the attack that was
previously discussed, the ID of the targeted CAN frame can be selected using
the graphical user interface (GUI).

2.2. Injection with scalar addition or multiplication of the data field content -
network nodes transmit information acquired from different sensors placed
inside the vehicle, such as the speed sensor, fuel pressure, engine temperature,
steering angle, and braking pressure, across the CAN bus. Due to the possibil-
ity of sensor signals to rely on a linear transfer function, the slope of such a
function is a constant. As a result, in a real-world attack scenario, the payload
bytes of the intrusion frame may be increased or multiplied by some constant
values. Furthermore, delays can be configured to the adversarial messages.

2.3. Arbitrary injection - is the scenario in which the adversary can inject mes-
sages at discretion with a predefined or randomly generated payload and ID.
Unlike the case of the aforementioned attacks, the transmission of the ad-
versarial messages will occur periodically in accordance with the predefined
cycle time.

Although not considered for the current evaluation, other attacks have been proposed
in the literature as well. Now, we discuss why we did not take them into account, at least
not at this time.

1. DoS attacks are easy to mount on the CAN bus. Since the principle of bus arbitration
relies on CAN IDs to facilitate collision avoidance, continuously injecting messages
with the highest priority ID (0x000), causes the bus to become unavailable and
prevents regular frames from transmitting because of the loaded bus. Detecting an
attack in which the ID 0x000 is injected, on the other hand, is straightforward. This
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can be accomplished by simply looking for the successive transmissions of messages
with this ID that does not appear in regular traces. Sending CAN frames with low
priority IDs that are not null, nevertheless have a greater priority than genuine IDs,
is a more refined variation of this attack. These attacks can be configured through
the interface as arbitrary injections, which enables editing of both the ID and data
field, but we do not regard them independently as DoS attacks (which may be a
consequence). Although this kind of attacks is detectable by the IDS, the effect still
persists because such attacks cannot be stopped due to the high priority IDs which
will win the bus arbitration. Two recent works explore the use of relays to actively
block intruders in performing such attacks [119], [120].

2. Bus off attacks are adversarial actions that result in legitimate nodes being placed
in a bus-off state. This is possible because to the error management mechanism of
CAN. The works [121], [122] demonstrate the feasibility of such attacks. Although
examining such adversarial actions could be interesting, we lack information about
the behavior of each ECU and more importantly, of the car, in such situations (this
can be tested only in the actual car and known by the manufacturer). The network
that we use is simulated only based on the collected traces that do not exhibit this
behavior. Furthermore, the only way to defend against such attacks is to change the
CAN error-handling system, which is outside the scope of the current chapter.

Figure 5.4: Graphical user interface for the CANoe simulation
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5.2.2 Application Interface

Figure 5.4 depicts the application interface deployed inside the CANoe simulation to
enable the configuration of the adversary and IDS nodes. To create an user-friendly
interface, we use standard graphic controls, such as radio buttons and combo boxes.
System variables, which may be accessed by particular CAPL functions and events, are
used to facilitate the connection between the graphical user interface and the CAPL code.
As a result, the proposed adversary model offers a variety of attacks and is capable of
several actions like reading, altering, and replaying CAN frames. The user must first
choose the attack type that will be mounted. Beside this, the user can configure whether
the attack should be performed on a given ID or on all frames from the trace. Certain
parameters can be adjusted for every attack type.

The IDS node, on the other hand, is responsible for classifying each message as an
attack or a legitimate one, during the simulation run. The alarm led will be either red or
green depending on the classification of the received frame as either attack or genuine.
Also, the detection rates and the total number of classified messages are displayed when
the simulation has ended.

5.3 Intrusion Detection Algorithms: Background and Tools

In this section, the tools used in the current evaluation as well as the MATLAB-CANoe
integration are presented. Additionally, an overview of the k-NN algorithm as a candidate
for intrusion detection algorithm is discussed.

5.3.1 Statistics and Machine Learning Toolbox

The Statistics and Machine Learning Toolbox from MATLAB was used to implement
the intrusion detection system. This toolbox offers a variety of ML based approaches.
These ML algorithms can be supervised or unsupervised learning-based, and we decide
to use k-NN for this evaluation. The decision to use k-NN was made since it is typically
employed when the input data is unknown. Indeed, in this instance, the information is
derived from the CAN traffic that was recorded inside the cars and we lack access to
the manufacturer’s specifications. As a result, nothing about the data has been known in
advance. The CAN frames injected by the adversary CAPL node were marked in order to
generate the training trace.

In the training stage, the supervised learning (used by the k-NN based approach as
well) uses a set of n pairs as its observation samples. Mathematically, a pair can be
described as follows:

{
(i0, o0), (i1, o1), ...(in−1, on−1)

}
, where each pair contains the

input and the expected output. The result of the training stage is a model (a trained
function), which is able of making predictions over fresh data that will serve as inputs
during the test stage.
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Figure 5.5: An illustration of the data flow between MATLAB and CANoe using dll

In the evaluation from this chapter, we also account for the MATLAB’s ability to
generate C/C++ code. Consequently, the C/C++ code implements the trained model and
based on the generated code, a dynamic library dll is created. Following that, the dll is
integrated into the CANoe simulation with the help of CAPL code.

Integrating a customized library into CANoe has the benefit of allowing access to
system resources such as CPU and memory [123], that are not readily available in CANoe.
The data flow exchanged between CANoe and the MATLAB-based library in order to
embed the prediction function with the features extracted from the received CAN frames,
is shown in Figure 5.5.

5.3.2 k-NN Algorithm

The evaluation of the proposed IDS relies on the k-NN algorithm. This algorithm is
frequently used in classification problems and sometimes even in network IDS [124].
Basically, the k-NN algorithm employs a metric for measuring distance, such as the
Euclidean, Hamming, Minkowski, Jaccard, etc. We note that the Euclidean distance
is used in the majority of the experiments that follow, although changing to any of the
aforementioned distances is easy to do.

Typically, a ML based approach has two phases: the training phase and the testing
phase. As a result, the entire CAN trace was divided into training and testing parts. For
the experiments that follow, the first phase is carried out offline to facilitate the training
of the k-NN algorithm using inputs-output samples. In this phase, each input is assigned
to the true class c (legitimate or attack message). As a result, this phase ends with the
generation of the k-NN model. Real-time detection using the generated model represents
the second phase. At this point, the decision rule from the model is used to map each input
to the predicted class ĉ. According to how many neighbors k there are, the decision rule is
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as follows:

• Decision rule when k=1: considering that mt is a test message and mi is a training
message, then mn is nearest neighbor to mt if and only if the following condition
related to the Euclidean distance is satisfied:

de(mt,mn) = mini

{
de(mt,mi)

}
, (5.1)

where i represent the index of all training frames. The predicted class ĉ for the mt

based on the trained model is equal with the true class c of the mi with the smallest
Euclidean distance to mt.

• Decision rule when k>1: the predicted class ĉ for the mt based on the trained model
is equal with the most frequently c among the k nearest training frames.

The k-NN input sample is an array that takes into account the payload as well as the
time interval between successive timestamps of frames with the same ID. In this instance,
the mathematical description of the input is as follows:

I =
{
i0, i1, i2, ..., i8

}
, (5.2)

where i0 stands for the time interval and i1...i8 stands for every byte from the payload. To
facilitate a clear majority, the evaluation was carried out using an odd number of neighbors.
(for example 1, 3, 15).

5.4 Experimental results

This section presents the experiments that are conducted to test the proposed IDS and the
detection results, respectively.

5.4.1 Results on detecting intrusions

The experiments were devised to evaluate all of the adversary models that had been
previously described. There are multiple scenarios for each type of attack. These depend
on the delay of the injected message. Also, multiplication or addition coefficients can be
applied on the bytes from the payload. Due to the lack of extended frames in the recorded
traces from the cars, only standard frames were used for this evaluation. The datasets
were generated to cover the scenarios in which the adversary targets either a particular
CAN ID or the full trace, that is, all CAN IDs. This was done by injecting attack frames
using the CANoe simulation. The results on detecting intrusions when a single CAN ID is
targeted, relies on parts of traces that are split as follows: 500 frames for training phase
and 19500 frames for testing phase. The rationale behind selecting a small percentage for
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Table 5.1: Results on detecting intrusions for the defined types of attacks

Attack params. k-NN Parameters Detection rates

No. One/Full
ID

Att.
type

Operand Delay (ms) No.
neigh.

Distance TNR
(%)

TPR
(%)

FPR
(%)

FNR
(%)

1. one r n/a 9.750 1 Euclidean 99.00 99.65 1.00 0.35
2. one r n/a 0.001 1 Euclidean 100 100 0 0
3. one r n/a 0.001 1 Euclidean 88.86 100 11.14 0
4. one r n/a 5 1 Euclidean 88.88 100 11.12 0
5. one r n/a 9 1 Euclidean 90.33 83.47 9.67 16.53
6. one r n/a 9.750 1 Euclidean 87.98 51.88 12.02 48.12
7. one r n/a 50 1 Euclidean 88.31 84.66 11.69 15.34
8. one ir n/a 0.001 1 Euclidean 99.87 100 0.13 0
9. one ir n/a 9.750 1 Euclidean 99.87 100 0.13 0
10. one isa α = 2 0.001 1 Euclidean 89.63 100 10.37 0
11. one isa α = 2 9.750 1 Euclidean 91.34 53.98 8.66 46.02
12. one ism α = 2 0.001 1 Euclidean 89.65 100 10.35 0
13. one ism α = 2 9.750 1 Euclidean 91.38 67.74 8.62 32.26
14. one isa α = 2 9.750 1 E(∆t), H(data) 90.72 100 9.28 0
15. one ism α = 2 9.750 1 E(∆t), H(data) 90.75 85.87 9.25 14.13
16. full r n/a 0.001 1 Euclidean 95.21 100 4.79 0
17. full r n/a 5 1 Euclidean 95.45 100 4.55 0
18. full r n/a 9.750 1 Euclidean 95.23 66.58 4.77 33.42
19. full r n/a

{
9.75, 19.75, 39.75, 99.75

}
1 Euclidean 94.76 50.06 5.24 49.94

20. full ir n/a 0.001 1 Euclidean 99.53 100 0.47 0
21. full ir n/a 5 1 Euclidean 99.40 100 0.6 0
22. full ir n/a 9.750 1 Euclidean 99.57 91.52 0.43 8.48

training data is to address the more realistic case in which the IDS is trained for a brief
amount of time, such as during manufacturing, and then operates for the entire life of the
vehicle. The experiments performed on a single CAN ID aim for the attacks that are only
mounted on CAN frames with a periodicity of 10 ms because this is a typical cycle time
used in vehicular applications. Nevertheless, similar results will probably be produced for
other cycles. In case of the full trace analysis, the experiments are based on 500 frames
for training as well as 45000 frames for testing.

In what follows, the results obtained for replay injections are discussed. These results
are shown in Table 5.1 while the extended results are presented in Table 5.2. In this
scenario, the training stage was carried out on traces that have both legitimate and replay
attack frames that were transmitted 9.750 ms and 0.001 ms after the genuine frame,
respectively. Specifically, the results for the 9.750 ms delay are presented in row 1 from
Table 5.1 and rows 1-2 from Table 5.2 while for 0.001 ms delay the results are shown in
row 2 from Table 5.1 and rows 3-4 from Table 5.2. The first delay was precisely envisioned
so that the frame manipulated by adversary would arrive on the CAN bus just before the
legitimate frame, which is scheduled to arrive regularly at a cycle time of 10 ms and
typically ≈ 250 µs is the time spent by the frame on the physical bus. The goal for the
second one, i.e, 0.001 ms, is to make sure that the attack frame comes after the real frame
right away. As inputs for the training stage, we use the payload content as well as the
interval (∆t) between the timestamps of the successive frames defined by the targeted
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CAN ID. The true positive rate is around 99% for the attacks with a delay of 9.750 ms and
100% for attacks with 0.001 ms delay. In the first scenario there is a false positive rate of
about 1%, while for the second scenario there are no false positives. For the attacks with a
9.750 ms delay, there is a small amount of false positives because the frames manipulated
by the adversary are injected roughly at the same time as the legitimate ones. As a result,
sometimes the genuine frame and the malicious frame are mismatched. The excellent
detection performance is due to the injection of malicious frames with a fixed latency,
which is the same that was applied in the training stage as well (which is arguably too
simple and unrealistic).

As a result, the following step in the IDS assessment was conducted to examine a
more realistic scenario. So, the classifier was trained using a delay of 9.750 ms, whereas
the testing frames were generated using a different delay of 9 ms. As anticipated, the
true positive rates decreases significantly, i.e, below 20%. Considering that the IDS must
enable the detection of attacks frames transmitted with any latency, the solution to this
challenge was to train the classifier using traces generated with replay injections that take
place at a random delay, covering the entire range between 0 to the cycle time of the
message. All the experiments that follow are conducted using the traces produced with
randomized delays. Table 5.1 (rows 3-7) contains the results for the given scenario, while
Table 5.2 (rows 5–14) contains the extended results. The detection rate is close to 100%
and the false positive rate is roughly 10% for delays of 0.001 ms and 5 ms, respectively.
This percentage of false positives is brought on by the same payload of both genuine and
attack frames.

For the next steps in the evaluation of the IDS, the adversarial interventions are more
meticulously planned. The adversarial actions are refined so that injections takes place
just before the genuine frame, i.e, 9 ms delay, or even in some circumstances sufficiently
near to overlap with the legitimate message , i.e., 9.750 ms delay. The results for this
scenario are presented in rows 5-6 from Table 5.1 as well as in rows 9-12 from Table 5.2.
The performance of the IDS goes down at a level in which the detection rate decreases
under 80% for the first scenario and to approximately 50% for the second one. Most of
the results also show that, along with an increase in the amount of neighbors, there is a
minor decrease in FPR and sometimes a more noticeable decrease in TPR. A suggestive
example can be seen by comparing the row 5 from Table 5.1 where the detection rate is
83% and row 9 from Table 5.2 where the TPR drops to 52%.

For the fuzzing attacks the results are presented in rows 8-9 from Table 5.1. The
extended results for this type of attack are shown in rows 15-18 from Table 5.2. In this
instance, the results exhibit a true positive rate of roughly 100% for both investigated
delay conditions. Furthermore, there are very few false positives in the results. The high
randomness present inside the payload of attack frames which differs from the legitimate
messages, justifies the high performance in detecting intrusions. Typically, compared to
replay attacks, the fuzzing attacks are considerably trivial to be detected.

Since the experiments were performed using a relatively small value for the scalar (and
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hence only minor modifications are produced in the bytes of the datafield), the results for
injections with scalar addition or multiplication of the payload show lower performance in
detecting intrusions, as anticipated. The results for these scenarios are presented in rows
10-15 from Table 5.1 and the extension of the results can be shown in rows 19-30 from
Table 5.2. On initial inspection, the results are very comparable to those obtained for the
case of replay injections using the same delays: 0.001 ms and 9.750 ms. This may be
accounted for by the fact that the data field has a lower impact on the output from the
prediction function than the message frequency. This occurs because adding α = 2 to
every byte from the payload does not significantly change the Euclidean distance. Since a
bigger α will inevitably result in significant changes of the datafield and then detecting
the attacks will be straightforward, the experiments are conducted using a small value,
i.e., α = 2, to ensure that the payload of the message would only be slightly altered. The
operation of scalar multiplication with α = 2 has a bigger effect on the result of applying
the Euclidean distance. As a result, for injections with scalar multiplication of datafield, as
can be seen in row 13 from the Table 5.1, the detection rate is improved, i.e, around 67%.

An improvement in the performance of detecting such intrusions can be accomplished
by using two trained models. The first model is based only on ∆t utilizing Euclidean
distance while the second focuses on the data field and use the Hamming distance. Each
model classifier in the given scenario predicts a class for every message. The final
predicted class based on aforementioned models is:

ĉ ∈ ĉ1 ∨ ĉ2, (5.3)

where ĉ1 represents the predicted class for the first model and ĉ2 corresponds to the second
model.

With the help of this strategy, the sensitivity is increased to 100% for scalar addition
and to 85% for multiplication as it is shown in rows 14–15 of Table5.1. For this scenario
the amount of false positives is still at around 10%. We represent the Euclidean distance
on the time interval between consecutive frames having same CAN ID with E(∆t) and the
Hamming distance on data field with H(data), respectively.

The attack detection on a single CAN ID would require one trained model for each
CAN ID and result in the need for significant resources in terms of computation and
memory, which may not be available in resource constraint devices, i.e., automotive ECUs.
As a result, the experiments are conducted to test the detection performance over the full
trace, i.e, all CAN IDs.

The recorded trace includes frames with cycle times of 10, 20, 40, and 100 ms. Next,
we discuss how the complete attack trace was generated. In the CAPL code, the attack
probability is declared as a constant Pr(A) for each received CAN frame. Then, a variable
ϵ ∈

[
0, 100

]
, is initialized with random generated values. For every received CAN frame,

the attack is triggered if the value of ϵ is less than or equal to the value of Pr(A), else, no
attack is raised. For this evaluation, the defined attack probability is Pr(A) = 30. As a
result of testing the full trace, before the ∆t and data field, the CAN ID is considered in
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the input of the classifier.
For replay attack over the full trace, the results are shown in rows 16-19 from Table 5.1

as well as rows 31-38 from Table 5.2. On the other hand, for the case of fuzzing attacks,
the results are presented in rows 20-22 from Table 5.1 and rows 39-44 from Table 5.2.
Even if the evaluation was performed over the full trace, using a single trained model,
the results are still acceptable. For the scenarios in which 0.001 ms and 5 ms delays
were used for replay attacks, the detection performance is comparable to the one obtained
on replays over a single ID, or even superior when a 9.750 ms delay was used. Indeed,
this is the case, because the injected frame, which has a 9.750 ms delay, reaches the
bus before the regular frame or even overlaps with it exclusively in the case of frames
that have a 10 ms cycle, whereas the entire trace includes frames with different cycle
times values (20,40, 100 ms), for which the injected frame is much more obvious. Of
course, the adversarial actions can be clever, such that the delays of the injected frames
are more roughly comparable to the cycle time of each frame. The results obtained for
this scenario are shown in the row 18 from Table 5.1 as well as rows 37-38 from Table 5.2.
In the case of replay injection, the results exhibit a lower detection, roughly 50%, which is
approximately 2% less than the case of a single monitored ID. With the exception of a
9.750 ms delay, where it decreases to around 90% when one neighbor is employed and to
60% when multiple neighbors are employed, the detection rates for fuzzing attacks are
generally roughly 100%.

5.5 Concluding remarks

The proposed framework, which combines adversarial models with IDS inside a CANoe
simulation, proves to be useful for realistic testing. This is also strengthened by the
fact that the attacks traces were based on real-world CAN traffic. Another benefit of this
framework is the avoidance of any risk for harming the vehicles and passengers. Therefore,
evaluating adversarial behaviors in a simulation setup is safer and easier.

Allocating particular portions of CAN traffic to specific ECUs is interesting for future
work because it would open the road for targeted attacks against particular ECUs. A
comprehensive simulation that accounts for the behavior of each ECU is a more difficult
goal, but seems to be feasible in the future. Using ML functionalities, made available by
MATLAB, for the classification of CAN frames is an effective approach for implementing
and testing such intrusion detection algorithms because of the extensive ML toolkit that
MATLAB provides. Moreover, a future direction for extending the proposed framework,
is to add other intrusion detection algorithms.
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Table 5.2: Results on detecting intrusions for the defined types of attacks (k-NN with 3 or
15 neighbors)

Attack params. No. messages k-NN Parameters Detection rates

No. Att.
type

Operand Delay ms training testing No.
neigh.

Distance TNR TPR FPR FNR

1. r n/a 9.750 500 19500 3 Euclidean 98.55% 99.31% 1.45% 0.69%
2. r n/a 9.750 500 19500 15 Euclidean 97.55% 97.83% 2.45% 2.17%
3. r n/a 0.001 500 19500 3 Euclidean 100% 100% 0% 0%
4. r n/a 0.001 500 19500 15 Euclidean 100% 100% 0% 0%
5. r n/a 0.001 500 19500 3 Euclidean 90.02% 100% 9.98% 0%
6. r n/a 0.001 500 19500 15 Euclidean 91.32% 100% 8.68% 0%
7. r n/a 5 500 19500 3 Euclidean 89.99% 100% 10.01% 0%
8. r n/a 5 500 19500 15 Euclidean 91.30% 100% 8.70% 0%
9. r n/a 9 500 19500 3 Euclidean 91.61% 52.53% 8.39% 47.47%
10. r n/a 9 500 19500 15 Euclidean 91.33% 31.11% 8.67% 68.89%
11. r n/a 9.750 500 19500 3 Euclidean 89.33% 50.67% 10.67% 49.33%
12. r n/a 9.750 500 19500 15 Euclidean 91.26% 50.67% 8.74% 49.33%
13. r n/a 50 500 19500 3 Euclidean 89.96% 83.75% 10.04% 16.25%
14. r n/a 50 500 19500 15 Euclidean 91.40% 83.75% 8.60% 16.25%
15. ir n/a 0.001 500 19500 3 Euclidean 99.70% 100% 0.30% 0%
16. ir n/a 0.001 500 19500 15 Euclidean 98.63% 100% 1.37% 0%
17. ir n/a 9.750 500 19500 3 Euclidean 99.70% 100% 0.30% 0%
18. ir n/a 9.750 500 19500 15 Euclidean 98.63% 100% 1.37% 0%
19. isa α = 2 0.001 500 19500 3 Euclidean 91.37% 100% 8.63% 0%
20. isa α = 2 0.001 500 19500 15 Euclidean 91.13% 100% 8.87% 0%
21. isa α = 2 9.750 500 19500 3 Euclidean 92.15% 51.01% 7.85% 48.99%
22. isa α = 2 9.750 500 19500 15 Euclidean 91.09% 50.40% 8.91% 46.60%
23. ism α = 2 0.001 500 19500 3 Euclidean 91.39% 100% 8.61% 0%
24. ism α = 2 0.001 500 19500 15 Euclidean 91.12% 100% 8.88% 0%
25. ism α = 2 9.750 500 19500 3 Euclidean 92.16% 60.70% 7.84% 39.30%
26. ism α = 2 9.750 500 19500 15 Euclidean 91.11% 50.59% 8.89% 49.41%
27. isa α = 2 9.750 500 19500 3 E(∆t), H(data) 91.07% 100% 8.93% 0%
28. isa α = 2 9.750 500 19500 15 E(∆t), H(data) 91.06% 100% 8.94% 0%
29. ism α = 2 9.750 500 19500 3 E(∆t), H(data) 91.06% 85.52% 8.94% 14.48%
30. ism α = 2 9.750 500 19500 15 E(∆t), H(data) 91.09% 85.17% 8.91% 14.83%
31. r n/a 0.001 5000 45000 3 Euclidean 96.74% 100% 3.26% 0%
32. r n/a 0.001 5000 45000 15 Euclidean 98.77% 100% 1.23% 0%
33. r n/a 5 5000 45000 3 Euclidean 96.75% 100% 3.25% 0%
34. r n/a 5 5000 45000 15 Euclidean 98.70% 100% 1.30% 0%
35. r n/a 9.750 5000 45000 3 Euclidean 96.79% 65.33% 3.21% 34.67%
36. r n/a 9.750 5000 45000 15 Euclidean 98.83% 35.95% 1.17% 64.05%
37. r n/a

{
9.75, 19.75, 39.75, 99.75

}
5000 45000 3 Euclidean 96.40% 48.94% 3.60% 51.06%

38. r n/a
{

9.75, 19.75, 39.75, 99.75
}

5000 45000 15 Euclidean 98.68% 47.41% 1.32% 52.59%
39. ir n/a 0.001 5000 45000 3 Euclidean 99.47% 100% 0.53% 0%
40. ir n/a 0.001 5000 45000 15 Euclidean 99.57% 100% 0.43% 0%
41. ir n/a 5 5000 45000 3 Euclidean 99.31% 100% 0.69% 0%
42. ir n/a 5 5000 45000 15 Euclidean 99.49% 100% 0.51% 0%
43. ir n/a 9.750 5000 45000 3 Euclidean 99.53% 86.46% 0.47% 13.54%
44. ir n/a 9.750 5000 45000 15 Euclidean 99.63% 60.97% 0.37% 39.03%
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Chapter 6

Intrusion detection and prevention
on SAE J1939 CAN buses

This chapter presents a solution for securing J1939 CAN buses and is based on the
results of the author published in [18]. The solution relies on a two-stage IDS that is
complemented by an active prevention mechanism that eliminates the intrusions in real-
time. In order to get realistic detection results, the proposed solution is evaluated based on
real-world J1939 CAN traffic that was collected inside an agricultural heavy-duty vehicle.
Computational results on four automotive-graded development boards for evaluating the
applicability of the proposed solution are provided in this chapter. A proposal for an
algorithm that relies on an input capture unit (ICU) and interprets the content of the CAN
frames before the receivers place the dominant bit in the ACK slot, so that an intrusion
frame can be effectively destroyed before reception, is also discussed. Therefore, this
algorithm sets room for the real-time intrusion prevention. The designed prototype is
tested on attacks that are mounted in a laboratory setup.

6.1 Data collection and analysis

This section describes the data collection procedure and after that, it presents an investiga-
tion of J1939 specific features and a quantitative analysis, which are performed over the
collected CAN traffic.

6.1.1 Data extraction from the J1939 specific diagnostic port

The goal is to design an intrusion detection and prevention system (IDPS) tailored to
J1939 specifications and evaluate it based on real-world CAN traces. This approach
would provide more realistic results in contrast to relying solely on simulation data. For
a real-world instantiation of J1939 CAN bus traffic, the data collection was performed

65

BUPT



66 CHAPTER 6. INTRUSION DETECTION ON SAE J1939 CAN BUSES

through the specific OBD port from a recent agricultural vehicle produced by a reputable
manufacturer. Although we avoid to provide the identify of the manufacturer due to the
confidentiality concerns, the recorded CAN traffic complies with J1939 requirements.

Prior to initiating data collection, a fast verification using an oscilloscope was per-
formed to check if the CAN traffic is accessible through the 9-pin diagnostic port, which
is common in J1939 based deployments [111]. Figure 6.1 shows the pinout diagram of
the diagnostic port connector in accordance with J1939 standards, highlighting the pins
used for CAN communication. The oscilloscope based examination was conducted to
determine the availability of CAN traffic on each CAN channel, i.e, pairs C-D and H-J. The
evaluation shows that only the main channel (pin pair C-D), which operates at a bit rate of
250 Kbps, exposes the CAN communication. Regarding the second CAN channel (pin
pair H-J) that is allocated for OEM (original equipment manufacturer) specific solutions,
no CAN communication was detected.

After connecting to the J1939 diagnostic port, the CAN traffic was recorded for
roughly 30 minutes. Various generic driving-related and tractor-specific tasks, including
managing the bucket and moving forward or backward, were carried out throughout this
time interval. The previously described actions were conducted in an effort to activate as
many events as possible that will lead to a more complex CAN traffic.

Figure 6.1: J1939 9-pin diagnostic port

The data collection setup is shown in Figure 6.2 and includes a Vector VN1640 USB-
to-CAN interface, a laptop that runs the logging software application implemented based
on the Vector XL Driver Library as well as the CAN connection (cables) between the
VN1640 and the J1939 diagnostic port.

6.1.2 Examination of J1939 specific features in collected traffic

The recorded CAN data includes 51 CAN IDs, out of which 41 appear at runtime, while the
remaining 10 IDs are only visible at startup. Subsequently, an interpretation of the these
CAN IDs in accordance with the J1939 ID breakdown, is outlined. The ID breakdown
is shown in Table 6.1. In order to identify the ECUs that are connected in the CAN
network and are accessible from the outside world via the diagnostic port, the unique
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Figure 6.2: Experimental setup used for data collection

source addresses (SA) are examined according to the CAN IDs analysis. As a result, the
recorded CAN communication features three distinct source addresses: 0x00, 0x03, and
0x21. These details related to source addresses are provided in the J1939 Digital Annex
document [113]. Consequently, in accordance with [113], the following tasks are assigned
to each ECU that is connected to the CAN network:

1. Engine Control Module (ECM) – source address 0x00,

2. Body Control Module (BCM) – source address 0x21,

3. Transmission Control Module (TCM) – source address 0x03.

In what follows, a brief description of the detected ECUs is provided:

1. ECM – is one of the most important ECU inside cars. It collects data from various
engine sensors and evaluates them to adjust the engine actuators through the air-fuel
ratio, fuel injection, ignition timing and variable valve timing parameters in order to
achieve the best engine performance.

2. BCM – is the main ECU responsible for controlling a number of distinct body
related operations, including interior and exterior illumination, power windows, seat
position, climate control as well as central locking.

3. TCM – controls the automatic transmission and receives data from several sensors
including wheel speed, throttle position, turbine speed and others as inputs. These
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inputs are used by the TCU to produce an optimal performance by switching the
gears. This is accomplished by controlling different outputs, including torque
converter, clutch solenoid, shift lock, etc.

Table 6.1: ID breakdown according to [113] of the identified J1939 CAN packets

No. Pr. ID PF PS PDU1 PDU2 DA GE SA TP PGN PG description

1. 6 0x18EEFF03 238 255 ✓ – GLB – TCM – Address Claimed
2. 6 0x18EEFF00 238 255 ✓ – GLB – ECM – Address Claimed
3. 6 0x18EEFF21 238 255 ✓ – GLB – BCM – Address Claimed
4. 6 0x18EAFF00 234 255 ✓ – GLB – ECM – PGN Request
5. 6 0x18EAFF03 234 255 ✓ – GLB – TCM – PGN Request
6. 6 0x18FE0F21 254 15 – ✓ – 15 BCM – Language Command
7. 6 0x18FECA03 254 202 – ✓ – 202 TCM – Active Diagnostic Trouble Codes (DM1)
8. 6 0x18FECA21 254 202 – ✓ – 202 BCM – Active Diagnostic Trouble Codes (DM1)
9. 6 0x18FEF200 254 242 – ✓ – 242 ECM – Fuel Economy (Liquid)
10. 3 0xCF00400 240 4 – ✓ – 4 ECM – Electronic Engine Controller 1
11. 6 0x18FEF121 254 241 – ✓ – 241 BCM – Cruise Control/Vehicle Speed
12. 7 0x1CFEC303 254 195 – ✓ – 195 TCM – Electronic Transmission Controller 5
13. 3 0xCF00300 240 3 – ✓ – 3 ECM – Electronic Engine Controller 2
14. 6 0x18F00503 240 5 – ✓ – 5 TCM – Electronic Transmission Controller 2
15. 6 0x18FEDF00 254 223 – ✓ – 223 ECM – Electronic Engine Controller 3
16. 3 0xCFE4521 254 69 – ✓ – 69 BCM – Primary or Rear Hitch Status
17. 6 0x18FEF021 254 240 – ✓ – 240 BCM – Power Takeoff Information 1
18. 6 0x18FEF021 254 239 – ✓ – 239 ECM – Engine Fluid Level/Pressure 1
19. 3 0xCFE4421 254 68 – ✓ – 68 BCM – Front Power Take off Output Shaft
20. 3 0xCFE4321 254 67 – ✓ – 67 BCM – Rear Power Take off Output Shaft
21. 6 0x18FEF600 254 246 – ✓ – 246 ECM – Intake/Exhaust Conditions 1
22. 6 0x18FEAE21 254 174 – ✓ – 174 BCM – Air Supply Pressure
23. 7 0x1CFDDF21 253 223 – ✓ – 223 BCM – Front Wheel Drive Status
24. 6 0x18FEFC21 254 252 – ✓ – 252 BCM – Dash Display 1
25. 6 0x18FEF721 254 247 – ✓ – 247 BCM – Vehicle Electrical Power 1
26. 6 0x18F00621 240 6 – ✓ – 6 BCM – Electronic Axle Controller 1
27. 3 0xCFDCC21 253 204 – ✓ – 204 BCM – Operators External Light Controls
28. 6 0x18EAFF21 234 255 ✓ – GLB – BCM – PGN Request
29. 6 0x18FEE500 254 229 – ✓ – 229 ECM – Engine Hours, Revolutions
30. 6 0x18FEEE00 254 238 – ✓ – 238 ECM – Engine Temperature 1
31. 6 0x18FEF700 254 247 – ✓ – 247 ECM – Vehicle Electrical Power 1
32. 7 0x1CECFF00 236 255 ✓ – GLB – ECM CM.BAM Engine Configuration 1, VIN
33. 7 0x1CEBFF00 235 255 ✓ – GLB – ECM TP.DT Engine Configuration 1, VIN
34. 7 0x1CECFF21 236 255 ✓ – GLB – BCM CM.BAM Vehicle Identification Number
35. 7 0x1CEBFF21 235 255 ✓ – GLB – BCM TP.DT Vehicle Identification Number

Additionally, the collected CAN data contains J1939 specific multi-frame messages,
and the analysis shows that, as anticipated, the Broadcast Data Transfer was being used
as a transport protocol. Next, the analysis goes through a few specifics regarding the
recorded IDs. The examination of IDs shows that there are relevant messages for the
address claiming procedure (rows 1-3) from Table 6.1 as well as the corresponding PGN
request (rows 4-5 and 28) from the same table. There are numerous other IDs that occur
after the address claiming process and provide data about the engine or transmission, air
supply, cruise control, external light controls and many others. The Engine Configuration
1 and Vehicle Identification Number (VIN) PGNs, which are shown in rows 32 and 33 of
Table 6.1, are transmitted by the ECM through multi-frame based protocols, which are
J1939 specific as well. The BCM also sends the VIN as can be seen in rows 34-35 from
Table 6.1. Also, the collected traffic includes two diagnostic related J1939 frames that
carry the active diagnostic trouble codes transmitted by the BCM and ECM. These are
shown in rows 7-8 from Table 6.1 and are part of the on-board diagnostic subsystem. The
16 OEM specific IDs are absent from 6.1 since the standard does not define their function.
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6.1.3 A quantitative analysis of collected traffic

The prior examination of the collected CAN data was conducted in accordance with the
J1939 standard collection and describes aspects at a logical level that are useful in traffic
reconstruction. In what follows, a quantitative analysis of the captured traffic is done.
This enables to impose certain restrictions in the design of the intrusion detection and
prevention system.

Typically, in-vehicle ECUs transmit CAN messages with a predefined periodicity
for each particular CAN ID. This principle also extends to the J1939 deployment under
investigation in this study. Following a comprehensive examination of the traffic, CAN IDs
with the cycle times of 20, 25, 50, 100 or 500 ms were identified. Additionally, a small
part of the IDs exhibits a greater cycle time, being broadcast at 1 second time intervals.
Rarely, multi-frame IDs are transmitted at a cycle of 5 s, and, as anticipated, a burst of
frames follows after the BAM message. The plots displayed in Figure 6.3 demonstrate
that the cycle time is mostly stable (only very little deviations occur) for the IDs which are
sent every (i) 20, (ii) 25, (iii) 50, (iv) 100, and (v) 500 ms . On the other hand, as observed
in part (vi) of Figure 6.3 the multi-frame messages have a distinctive behavior compared
to the others. The multi-frame messages are sent at larger time intervals, i.e., 5 s, and are
followed by Data Transfer frames.

Nevertheless, it is important to draw attention to the time intervals between CAN
messages in the full trace, i.e, all CAN IDs, given the fact that the security mechanism
has to operate within these time restrictions. The left side of Figure 6.4 depicts the time
interval between successive frames for the first 1000 messages from the recorded CAN
traffic (to prevent overloading the figure). Their histogram distribution is shown in the right
side of the Figure 6.4 for all captured frames. The minimum delay between successive
frames is around 500 µs, which is approximately the amount of time that a CAN frame
sent at 250 Kbps spends on the bus. Ideally, this indicates that in order to prepare the ECU
and make it available for the next frame transmission, any applied security mechanism
must not exceed an execution time of 500 µs.

6.2 Proposed mitigation mechanism

This sections gives an overview of the adversary model that is considered for current
evaluation and then presents the complete solution designed for securing J1939 CAN bus
communications.

6.2.1 Adversary model

Replay, modification as well as DoS (Denial of Service) attacks are the common adversarial
interventions that are taken into account while designing, developing and testing intrusion
detection systems for CAN buses [64], [125], [47]. Note that, despite the fact that some
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(i) 20 ms

(ii) 25 ms

(iii) 50 ms

(iv) 100 ms

(v) 500 ms

(vi) multi-frame

Figure 6.3: Measured inter-frame delays as well as their histogram distribution for IDs
with a cylcle time of: 20, 25, 50, 100, 500 ms and a multi-packet transmission
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(i) (ii)

Figure 6.4: The accounted latency for the first 1000 messages as well as the histogram
distribution with the recorded latency for all captured CAN messages

works consider spoofing attacks in the adversary model, such adversarial actions are in
fact replays or modifications of frames with IDs that are part of the legitimate traffic.
Furthermore, other papers have explored fuzzying attacks [116], in which frames with
randomly generated IDs are injected on the bus. A part of these attacks accounts for
frames with IDs that are not associated with genuine communication. The detection of
such attacks is straightforward and can be done by simply evaluating whether the ID is
part of the genuine traffic. When the generated IDs are part of the legitimate network
communication, fuzzing attacks are in fact the modification attacks addressed by our work.
Otherwise, as stated, they can be immediately detected since they use IDs that do not exist
in the legitimate traffic.

The evaluation of the IDS will be based on an adversary model that includes both
replay and modification attacks. From the IDS perspective, the implementation that
relies on encrypted addresses allows for detect replays while the range checks that take
advantage of the avalanche effect produced in the encrypted data-field enable the detection
of modification attacks. This evaluation does not consider DoS attacks that can be done
by injecting additional high priority frames on the bus, or by targeting the CAN frame
format and the error confinement mechanism of the legitimate frames because they cannot
be stopped considering the nature of the CAN bus (ID based arbitration). According to
related publications, such as [121] and [17], an adversary can always destroy frames and
inject messages with high priority IDs to flood the bus. Even if, monitoring the busload
would be sufficient to detect DoS attacks that involve flooding, the ID oriented arbitration
employed in CAN buses makes the IDS to defend against such attacks. There is no other
way proposed in the literature to stop such attacks, except for decoupling sectors of the
bus which was only very recently addressed in [119] and [120]. Targeted DoS attacks,
such as the one proved in [121], in which the content of the frame is manipulated by an
adversary to produce transmission errors and put nodes into a bus-off state, are much more
difficult to detect and call for modifications in the CAN error handling mechanism that
can not be implemented into an IDS.
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6.2.2 Description of the proposed solution

Figure 6.5: The two-stage IDS: encrypted addresses validation and payload anomaly
verification
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The envisioned solution relies on an intrusion detection and prevention system with
two layers that evaluates the authenticity of the source and destination addresses in the
first step and then monitors for abnormalities inside the payload. In order to accomplish
this, the source and destination addresses are remapped with encrypted values that can be
only verified by the genuine nodes within the network. Furthermore, the data field can be
encrypted because doing so (together with the encrypted source and destination address of
the ID) will prevent an adversary from deducing the layout of the payload. So, despite
the existing specifications in the J1939 standard related to the parameters packed inside
the frame content, the encrypted parts of the ID combined with the encrypted payload
will confuse the adversary regarding the meaning of the parameters carried by the frames.
In addition, this will make it easier for the IDS to detect malicious alterations inside the
payload. The block diagram of the proposed two layer intrusion detection and prevention
system is depicted in Figure 6.5. In accordance with the schematic from Figure 6.5, the
ICU starts building the message by applying Algorithm 1 once a start of frame bit occurs,
that is, a change from the recessive state to the dominant state. This is required to get
the content of the ID and payload before the frame becomes available in the CAN buffer
because once that happens, the message is already accessible to network nodes and cannot
be discarded with an error flag. Subsequently, the proposed solution proceeds with the two
stages of intrusion detection, which rely on two different mechanisms. These mechanisms
are the usage of encrypted addresses and data field encryption, which are going to be
discussed next. The detected adversarial frames that are regarded as intrusions by the IDS,
will be destroyed with error flags.

Encrypted addressees – are used to substitute the typical address of both sender and
receiver nodes assigned to each node with addresses that have been encrypted using a
cryptographic one-way function. In this case, the encryption is done using AES. Both the
sender and receiver node addresses are re-mapped at regular intervals using an address
mapping matrix to prevent an attacker from injecting frames with disclosed addresses.

Integrating security elements in the ID field of a frame is consistent with recent works
that address similar methods [126], [127], [128]. The current approach, however, unlike
these works that aim to maintain the defined priority of the frames, encrypts only some
portions of the ID field, i.e, the source and destination node addresses. We note that,
according to J1939 specifications, only the first three bits of the ID, which remain unaltered
in the current approach, are used to establish the priority of the frames.

The current solution exhibits 16 bits of security by correctly encrypting the address of
the sender and receiver nodes that are part of the ID field, every one of them is 8 bits long.
Obviously, this can be increased to 24 bits of security in order to meet the AUTOSAR
standards [129] by encrypting the PDU format which is also part of the ID. Nevertheless,
we consider that ID filtering should be still possible and at least some of the ID field has
to be left unencrypted. This is the rationale behind staying with the 16 bit security level,
which substantially limits the adversary’s potential to successfully inject frames on the
bus. Indeed, for the injection to have higher chances to succeed, the payload alterations
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must remain undetected.
Data field authentication using encryption – is an extra layer of security added by us,

where the actual content of the payload is concealed using a fast encryption algorithm that
relies on a lightweight block cipher. Moreover, this encryption sets room for an avalanche
effect even if a single bit is manipulated by an adversary, facilitating the detection of
attacks by appropriate range checks.

The experiments that follow demonstrate that by using SPECK [130], one of the fastest
available block ciphers, high-end controllers can perform the decryption quickly enough
to facilitate the real-time destruction of frames that were manipulated by an adversary. For
well-motivated adversaries, encrypted traffic analysis could still represent an option. On
the other hand, it should be exceedingly challenging to extract any relevant knowledge
from the frames because both the identifier and payload are encrypted which makes them
pseudorandom. A deeper examination of such an attack scenario is not possible for the
current work due to space restrictions.

Key management. According to the suggested approach, each CAN node has to
possess a symmetric secret key. In the current deployment, this key was initialized for
each ECU with a randomly generated value that was hardcoded. Secure key sharing is
a different topic which was investigated in recent works, and it would be out of scope
to address mechanisms for this purpose. Because of this, we only draw attention to a
few recent works that deal with similar challenges. A proposal that relies on the physical
layer to securely exchange keys between the nodes from a CAN network and permits the
grouping of nodes that share exactly the same keys, is explored by the authors of [131].
In a recent work [132], group keying with implicit certification using the elliptical curve
Diffie-Hellman key agreement protocol was addressed. The elliptic curves are also taken
into account by works [133] and [134] for key exchange between the CAN network nodes.

6.2.3 Unique encrypted addresses by ordered binary trees

One potential problem that can occur when random addresses are generated in order
to replace the old ones, is related to the address collisions. According to the birthday
paradox, there is a 50% chance of a collision if each pair (DA, SA) becomes substituted
by a random 16-bit value after around

√
65536 = 256 generated pairs of addresses. In

order to avoid this, the mapping of the IDs was done using an ordered binary tree which
solely stores unique values.

The construction of a binary tree is depicted in Figure 6.6. The nodes of the tree are
added depending on their values. These values are the result of applying XOR between
the last 16 bits of the IDs (8 bits for sender address and 8 bits for destination address) and
address mask mskadr. Now, an example is discussed focusing on the first node from the
tree. The corresponding value for this node is 31463 which results from XOR operation
between the initial ID 0xCFE4421 and mskadr = 3EC6 as follows:
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4421⊕ 3EC6 = 7AE7 = 3146310 (6.1)

The updated sender address in this instance is obviously 0xE7, and the updated
destination address is 0x7A. In order to quickly examine for collisions in the generated
addresses, the binary tree is ordered according to these resulting values. When a new value
is created, the counters i and j are both incremented. The counter i represents a global
counter that is incremented for each ID generation whereas counter j is a local counter
that is incremented based on the value index for the actual ID. If a collision takes place,
an additional value is generated and the global counter i is incremented. Although such a
scenario is unlikely to happen frequently, it has to be accounted for.

Figure 6.6: Generating unique addresses using an ordered binary tree

The address generation procedure based on the ordered binary tree must be executed
periodically and comes up with concerns about processing power and storage capacity.
Now, the formalization of these limitations and discussion on the trade-offs are provided.
Let us consider the following:

• a collection of identifier-cycle pairs {(id1, δ1), (id2, δ2), ..., (idn, δn)}, that are
figured out from the collected CAN traffic,

• the life-time of the ID masks tree ∆,

• the unicity time interval of the ID masks δ.

The δ parameter specifies the amount of time in which the generated addresses are new. In
order to guarantee that all addresses are unique for every instance of the ordered binary tree,
i.e, the same addresses are not used more times during ∆ interval time, the ideal scenario
would be δ = ∆, however, this may demand excessive amounts of memory and processing
power. If these resources are not available to all nodes from the network, a δ < ∆ may be
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chosen. Because the majority of CAN messages are periodically transmitted by the nodes,
it is easy to determine the ratio of unique encrypted addresses as follows:

ρ = δ∆−1 (6.2)

Considering these, the total number of ID masks λi that are created for each id i, i = 1..n
and employed for the encryption of sender and destination addresses, can be defined as:

λi∈{1..n} = ρ
∆

δi
=

δ

δi
(6.3)

Moreover, the total number of ID masks Λ generated for all CAN traffic can be computed
as follows:

Λ =

n∑
i=1

λi (6.4)

The total number of encryption masks might be a bit greater than Λ because of potential
collisions that can occur, which results in an average computing time of:

Tcomp =

 n∑
i=1

216

216 − i

× tcrypt (6.5)

Here, tcrypt is the time needed for generating a set of encrypted destination and
source addresses. Since one AES computation produces 128 random bits and only 16 bits
are employed as mask in order to generate a pair of encrypted addresses, then tcrypt is
computed as follows:

tcrypt = tAES/8 (6.6)

where tAES is the time necessary for one AES encryption, which can be used as masks for
8 encrypted addresses. Given that there are only 41 IDs in the traffic collected from the
target vehicle and typically less than 100 IDs on real-world buses, Tcomp can be estimated
for the actual practical needs as follows:

Tcomp ≈ Λ× tcrypt (6.7)

Considering that, on average, only 1-2 additional encryptions with a probability of 0
collisions equal to:

216!

(216 − n)!216n
(6.8)

are needed to generate 50–100 unique encrypted addresses in the 216 address space, then
the previous estimation is roughly equal to the real number. In this relation, if there are n
IDs then 216n accounts for total number of potential addresses while 216!/(216 − n)! de-
notes the number of unique addresses. In the experimental section, specific measurements
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that confirm these estimations will be presented. The memory cost for storing the tree is
Λ×mnode , where mnode is the memory space needed by each node in the tree. The CPU
load can be simply represented as:

CPUload = Tcomp/∆ (6.9)

This is due to the fact that one such encrypted address tree must be generated for each
time interval ∆.

Figure 6.7: Re-mapping of sender and destination addresses using counter mode encryp-
tion as well as circular lists

Figure 6.7 provides a more detailed overview of how the sender and destination
addresses map is exported to a circular list associated with each ID, considering ∆ = 1s
and coverage ρ = 100%. The first ID is transmitted periodically at 100 ms, thus λ1 = 10,
the second and third have cycles of 50 ms and 20 ms, respectively, resulting in λ2 = 20
and λ3 = 50. The ID is shifted in accordance with the circular list throughout each
transmission. In order to prevent an adversary from memorizing the re-mapped IDs,
the ordered binary tree needs to be updated periodically using new AES computations.
Additional insights on this, coupled with experimental evaluations, will be provided in the
upcoming section, but in theory a new address tree might be generated every second or
even more quickly.

In order to provide a clearer picture of these tradeoffs, in what follows, a concrete
example based on the CAN network from the target vehicle, that is the subject of this
investigation, is discussed. The CAN traffic recorded from the heavy-duty vehicle contains
33 cyclic IDs transmitted by three different nodes as follows: 2 IDs are sent by TCM,
10 by ECM as well as 21 by BCM. The remaining IDs, up to 41 are not periodically
transmitted by nodes, thus it is employed a single encryption mask in these circumstances.
Figure 6.8 shows the CPU load in percents accounted during the life-time ∆ = 1 s of
the ID masks tree, with a coverage ρ ranging from 10% to 100%. In other words, when
using a coverage of 10%, each ID will be repeated ten times, whereas for a coverage of
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100%, every ID is used one time for a second. As one AES symmetric encryption takes
between 24.8 µs and 2.8 ms on high-end boards and low-end boards, respectively, these
computation requirements were chosen as a baseline for the minimum and maximum
time needed for one encryption. The high-end device group exhibits a CPU load lower
than 0.15% even when ρ = 100% while the low-end device group shows a CPU load of
17.92% which nevertheless remains reasonable. The experiments in the following section
validate these estimates.

Figure 6.8: CPU load recorded during address generation procedure relative to the encryp-
tion time tcrypt as well as coverage ρ

6.3 Experimental evaluation

This section presents an experimental evaluation regarding the performance of the pro-
posed IDS. Firstly, the computational results measured on automotive graded controllers
are presented. Then, this section gives an overview of the active defense mechanism re-
garded as prevention system. The section ends with results on intrusion detection accuracy
obtained for various J1939 specific parameters.

6.3.1 Computational results

In what follows, the effectiveness of the encryption operation is assessed. We do this
because in-vehicle controllers are frequently used in real-time applications that depend
on computational power and storage capacity. To demonstrate that the suggested method
is computationally appropriate for automotive devices, i.e., in-vehicle controllers, the
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experiments were conducted to measure the runtime required for the construction algorithm
of the ordered binary tree. In these experiments, a 32-bit S6J32GEKSN microcontroller
from Cypress’s Traveo Family is used as a reference for the high-end automotive graded
controllers. This microcontroller has an ARM cortex R5 single core processor and can run
at a top frequency of 240 MHz while the data and instruction cache are activated. There
are 2048 KB of Flash and 128 KB of RAM available on the microcontroller. The current
investigation also includes two other high-end representatives from the Infineon TriCore
series. The first one is a TC1797 microcontroller, which has a TriCore V1.3.1 core clocked
at a maximum speed of 180 MHz and offers 4 MB of Flash as well as 156 KB of RAM.
The second one, TC397, relies on a more recent generation core that incorporates 6 cores
and can operate at up to 300 MHz . It comes with 16 MB of Flash and 2528 KB of RAM.
As a baseline for the low-performance device group, the evaluation was conducted on a
16-bit S12XF chip with 32 KB of RAM and 512 KB of Flash, which operates at up to 50
MHz .

The computational costs of SPECK with 64-bit block and 96-bit key and AES with
128 bit block and key algorithms used for the symmetric encryption are shown in Table
6.2 while the costs for the generation of the encrypted addresses using different life-
times ∆ and coverage ρ, are shown in Table 6.3. The measured execution time for the
AES encryption is in the range of 24.8 µs - 77.6 µs when high-end devices are used
(S6J32GEKSN, TC1797 and TC397). On the other hand, the computational time is less
than 3 ms when the S12 was used, a representative for low-end boards. The run-times
measured for the SPECK are 5-15 times faster for high-end boards and for low-end board,
i.e, S12, exhibits roughly the same run-time like the one obtained for AES. Most probably,
this is because the microcontroller relies on a 16-bit architecture, whereas the used code
was designed for 32-bit systems and the 16-bit conversions are handled more efficiently
(at the compiler level). Even in the scenario of full coverage, i.e., ρ = 100%, the costs
for the generation of the ordered binary tree ranges from 2.16 ms when a high-end board
is employed to 246 ms in case of a low-end board. On the S12XF512 controller, in
case of ∆ = 10 s, ρ = 25%, the address generation procedure cannot be accommodated
using a single RAM page and consumes roughly 50% of the RAM, making it excessively
expensive for a single operation. In summary, the address generation procedure occupies
less than 1% of the CPU time per second for high-end boards while for low-end board
less than 25% of the CPU time per second, which is reasonable. We note that, for security
concerns, the address binary tree should be re-generated at regular time intervals, such
as every 1–10 s. Moreover, in order to prevent de-synchronizations, fresh addresses will
be prepared prior to use them, and after older addresses have been consumed, the more
recent ones will take their place. Therefore, the address refresh procedure necessitates
two address trees, which would double the amount of storage space needed, but even at
that cost, which varies from 0.86–7.47 KB , it is still manageable.
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Table 6.2: Computational results for the symmetric encryption using AES and SPECK

Encryption
AES 128/128 SPECK 64/96

Platform CPU CPU
S6J32GEKSN 24.8µs 5.32µs

S12XF512 2.8ms 2.56ms
Tricore TC1797 77.6µs 5.30µs
Tricore TC397 28.672µs 6.97µs

Table 6.3: Computational results for the generation of the ordered binary tree in relation
to life-time ∆ and coverage ρ

Address Generation Procedure
∆ = 1s, ρ = 25% ∆ = 1s, ρ = 50% ∆ = 1s, ρ = 100% ∆ = 10s, ρ = 25%

Platform CPU MEM CPU MEM CPU MEM CPU MEM
S6J32GEKSN 588µs

0.86KB

1.05ms

1.49KB

2.16ms

2.98KB

5.84ms

7.47KBS12XF512 68ms 120ms 246ms N/A
Tricore TC1797 1.76ms 2.98ms 6.24ms 15.20ms
Tricore TC397 746µs 1.30ms 2.79ms 7.37ms

6.3.2 Active prevention mechanism

Figure 7.14 depicts the experimental setup that was used to validate the efficacy of the
current approach. This includes the S6J32GEKSN development board that handles the
CAN communication acquisition via the input capture unit (ICU) pin, a S12 board that
plays the role of an adversary, a power supply, as well as a PicoScope for monitoring the
CAN messages. To enable the real-time detection and elimination of attack frames, a soft-
ware application that includes the following components was integrated on S6J32GEKSN
board:

• the acquisition and verification mechanism of the captured CAN frames,

• the CAN frame destruction mechanism which is initiated when an attack frame is
detected.

Next, these two components are explained.
CAN frames acquisition. Hardware-wise, the ICU pin as well as the actual CAN

Rx pin, both regarded as inputs for the µC are connected to the Rx output from the CAN
transceiver. Figure 6.9 shows the suggested hardware design while Figure 6.11 presents
the software algorithm. In most cases, an ICU is used to determine the duration time
of an input signal connected to the correlated pin of the microcontroller. The ICU may
determine either period or level duration according to its configuration. The measurement
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Figure 6.9: The hardware design for frame acquisition

of level duration is enabled by using a free-run timer (FRT) that is restarted using the flag
TReset each time a level change occurs (like a trigger) as can be seen in line 4 from the
algorithm.

Given this context, the employed algorithm relies on the ICU to determine every level
duration during the reception of a CAN frame. In other words, it determines the number
of bits, i.e, n, which are regarded either as dominant or recessive. To accomplish this, the
acquired FRT value measured in ticks is divided by a value that represents the duration
time (in ticks) of a single CAN bit which depends on the CAN baud rate. For the actual
scenario the baud rate is 250 Kbps , i.e., 4 µs/bit , which corresponds to 240 ticks at a
peripheral clock frequency of 60 MHz . This value, defined as Tbit is initialized in line
2 from the algorithm. To ensure that the entire value for one bit is not lost as a result of
the integer division, half of the value for one bit, i.e, 120, is added before computing the
number of bits as can be seen in line 3.

Also, in the same line 3 and in lines 6-9 of the algorithm, respectively, the CAN stuffing
bits accounted in the acquisition buffers are removed. In case of the value calculated in line
3 is greater than the value equivalent with the duration time of five bits that has the same
polarity, this value is discarded since it represents an inter-frame space. In this instance,
the initializations necessary for a new SOF bit are carried out as well as the acquisition
buffer indexes are accommodated to be ready for the following frame. These are done in
lines 20-22. We note that stuff and polarity variables are re-initialized. Because these
variables were globally declared, the RAM startup routine of the microcontroller will set
them to 0. Also, line 22 shows how many bits are reserved, i.e., 128 bits (4*32), in the
acquisition buffer for every captured CAN message.

A pointer *p is used to access the acquisition buffer, which is then filled bit by bit
(lines 12–14) in accordance with the number of bits that have the same polarity computed
in line 3. As shown in line 19, the polarity is switched for the next captured bits. We note
that the global variable msg serves as a frame counter inside the buffer while the step
variable denotes the bit index within the same buffer. When the application starts, these
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Figure 6.10: Experimental setup with the VN1640 device, S6J32GEKSN and S12 boards,
Power Supply as well as the PicoScope for monitoring the CAN communication

variables are initialized, and as soon as the buffer is fulfilled they are reset. Specifically,
the current application uses a buffer size of 128 CAN messages.

CAN frame destruction. The ICU detection stops working as soon as the complete
payload of the frame has been recorded in the acquisition buffer. This means that 103 bits,
as shown in line 15 from the algorithm, are stored in the acquisition buffer corresponding
to the following fields of the CAN frame: SOF (1 bit), arbitration (32 bits), control (6
bits) as well as the data field (64 bits). The ICU detection is turned off so that the buffer
can be processed without further interruptions from the ICU that could result from level
changes triggered by the remaining CAN frame fields, such as the CRC, ACK, etc., that are
received. In the first step, the legitimacy of the ID is verified. This is done by checking if
the ID of the captured frame matches the one from the precomputed set of IDs that is stored
in the memory. The precomputed set of IDs is stored in a matrix and generated based on
AES symmetric encryption, as was previously mentioned. The equality verification with
the ID from the captured frame is done based on an index that stands for the matrix column.
In the instance that the IDs match, the index is incremented. The same index is restarted,
i.e, set to 0, when it reaches its maximum value, which is equal to the total number of
precomputed encrypted addresses for the corresponding ID. In contrast, if the IDs do not
match, the procedure for eliminating the frame to prevent that the rest of nodes do not
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Algorithm 1 CAN frame acquisition
Input: TValue (current value of the timer in ticks)
Output: frame (content of the ID and datafield)

1: procedure FRAME ACQUISITION

2: Tbit ← 240
3: n← (TValue + 120)/Tbit− stuff

4: TReset ← 1
5: if (n ≤ 5) then
6: if (stuff = 1)&&(n = 4) then
7: stuff ← 1

8: else
9: stuff ← n/5

10: end if
11: for i = 0, i ≤ n do
12: p← &var [step/32];
13: ∗p← (∗p) ∨ ((polarity)≪ (31− (step%32)))

14: step ← step + 1

15: if (step ≥ (((msg − 1)≪ 7) + 103)) then
16: return frame

17: end if
18: end for
19: polarity ←!polarity

20: else
21: polarity ← 0, stuff ← 0

22: step ← (msg − 1) ∗ 128
23: end if
24: end procedure

Figure 6.11: CAN frame acquisition algorithm

receive it, is triggered. The frame is destroyed by holding the Tx pin in the dominant
state for a time interval greater than the time required for the tranmision of 5 CAN bits.
This will lead to a stuffing error on the CAN bus. Figure 6.12 shows the procedure of
destroying CAN frames. This was captured using a PicoScope tool, configured for CAN
serial decoding, that monitors both the CAN-H and CAN-L lines. The activation of the
error flag causes the decoding of the CAN frame to be interrupted as can also be seen
in the right part of Figure 6.12. For enabling the forcing of Tx CAN pin to a dominant
state, the pin function was configured as GPIO (General Purpose Input Output), while the
direction must be set as output. Afterwards, the pin value is configured to 0 logic. The
ICU detection is resumed as soon as the intrusive frame is eliminated In order to be ready
for the subsequent CAN frame.

6.3.3 Detection of intrusions using J1939 specifications

In what follows, we describe the detection mechanism of malicious modifications inside
the payload. This is based on certain knowledge that may be extracted from the predefined
structure of J1939 frames according to J1939 standardization. For brevity, the investigation
concentrates on the following five parameters:

• engine speed measured in rpm ,
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Figure 6.12: Digital oscilloscope plot with CAN frame destruction

• engine torque measured in %,

• fuel consumption measured in l/h ,

• vehicle speed measured in km/h ,

• engine temperature measured in °C .

Certainly, the evaluation can be expanded to encompass additional parameters carried by
the frames. The engine speed and engine torque are transmitted at a periodicity of 20 ms
by a frame with ID 0xCF00400. The fuel consumption is carried by a message with ID
0x18FEF200 while the vehicle speed corresponds to ID 0x18FEF121, both of them
are sent with a cycle time of 100 ms . The last parameter, i.e., engine temperature is sent
more rarely, i.e., 1 s cycle time, and is associated with ID 0x18FEEE00.

Table 6.4: Recorded variations for engine speed (rpm), engine torque (%), fuel consump-
tion (l/h), vehicle speed (km/h) and engine temperature (°C )

Parameter Unit Range Resolution ∆min ∆max

Engine speed rpm 0 to 8031.875 0.125 -35 62
Engine Torque % -125 to 125 1 -28 22
Fuel consumption l/h 0 to 3212.75 0.05 -16 5
Vehicle speed km/h 0 to 250.996 0.0039 -1 1.6
Engine temperature °C -40 to 210 1 -1 1

The evolution of these signals throughout a 20 minutes period of regular vehicle
operation is depicted (with blue line) in the left side of Figure 6.13. The right side of
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Figure 6.13 highlights the fluctuation of differences between successive parameter values
using a histogram distribution. We observe that despite the large data range, for example
in the actual scenario, up to 2000 rpm , 20 l/h , or 35 km/h at a resolution of up to 16
bits, the fluctuation between the values carried by consecutive frames are rather minimal
because of the high acquisition rate. For each parameter value vi, i = 1..n, a vector that
contains the differences accounted during regular operation is created as follows:

∆(vi) = vi − vi−1, i = 2..n (6.10)

Let ∆min and ∆max represent the minimum as well as the maximum values recorded for
this vector. The concrete min-max values can be seen in Table 6.4. Afterwards, based on
these, the following verification vi ∈ [vi−1 −∆min , vi−1 +∆max ] is performed for each
newly recorded parameter value vi.

The anticipated boundaries, represented by the minimum and maximum values, com-
puted over the actual parameter values are displayed using a green line on the left side of
Figure 6.13. This range checking allows the intrusion detection system to quickly detect
the anomalies inside the payload. It is worth mentioning that, unlike the case of engine
speed, engine torque, vehicle speed and coolant temperature, where both the maximum and
minimum value of the range can be examined, for fuel consumption only the maximum
value of the range may be monitored because, after a CAN traffic investigation, we remark
that the minimum value, i.e, zero, regardless of the current value, is frequently provided.

6.3.4 Accuracy results on detecting intrusions

By rebuilding the CAN bus topology from the target vehicle inside a CANoe based
simulation, our evaluation relies on a realistic laboratory testbed. This is used for the per-
formance evaluation of the proposed intrusion detection and prevention system. Moreover,
the testing of the prevention mechanism can be done in this setting without harming the
actual vehicle. Using this environment, the building of traces that are augmented by replay
and modification injections is performed.

Both of these adversarial manipulations can be detected by the first stage which
relies on the usage of encrypted addresses. Practically, since for each CAN ID the
sender and destination addresses are replaced by the encrypted ones, the likelihood of
guessing the proper future value for an ID is 2−16 (8 bits are used for each address).
This is the case when one certain ID is targeted by an adversary. On the other hand,
if the attack is not targeted on one particular ID, the most appropriate scenario for an
adversary to succeed is when injecting frames with the start of the IDs that have the highest
frequency, in this case, 0x18FE is associated with 12 IDs. For such adversarial scenario,
matching any of the 12 IDs which have the exact identical start is opportune. Therefore,
in this circumstance, the guessing of the 16 encrypted bits will result in a cumulative
probability equal with 12×2−16 = 0.018%. This corresponds to a security level of around
− log2(12/2

16) = 12.41 bits. The payload encryption, which is the second detection
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(i) engine speed

(ii) engine torque

(iii) fuel consumption

(iv) car speed

(v) coolant temperature

Figure 6.13: Predicted minimum and maximum limits accounted for (i) engine speed
(rpm), (ii) engine torque (%), (iii) fuel consumption (l/h), (iv) vehicle speed (km/h) and
(v) coolant temperature (°C) (left side) as well as histogram distribution of fluctuations
between consecutive parameter values (right side)

stage, provides extra resistance to adversarial interventions even when single bits are
manipulated because of the avalanche effect. After that, the range checks performed
on every J1939 parameter of the payload will disclose that the frame was altered by an
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Table 6.5: Detection results for attacks targeted on various J1939 parameters

Nr. of frames Detection results
Attacked param. Attacks Genuine TNR TPR FPR FNR ℓ (b)
ID 214175 427660 100% 99.99% 0% 0.01% 11.57
Engine speed 15546 61945 100% 97.25% 0% 2.75% 5.18
Engine torque 15446 61945 100% 79.25% 0% 20.75% 2.26
Fuel consumption 3082 12386 100% 99.48% 0% 0.52% 7.58
Vehicle speed 3098 12386 100% 98.61% 0% 1.39% 6.16
Engine temp. 295 1236 100% 98.64% 0% 1.36% 6.2

adversary.
Table 6.5 presents the performance results in detecting intrusions. For a clearer picture,

the corresponding security level is specified in the table as:

ℓ = − log2(FNR) (6.11)

Initially, the evaluation was conducted to see how the first stage of the proposed IDS
that relies on encrypted addressees defends against attacks. For this, random addresses
were generated to evaluate the possibility that an adversary will successfully guess any
legitimate ID that is predefined in the encrypted address matrix. In this scenario, there is
a very small possibility that an intrusion will go unreported, i.e., 0.01%, translating in a
security level of 11.57 bits. This is roughly equal with the theoretical approximation. In
case of attacks that target the payload alteration, the results show an excellent detection
rate, i.e, higher than 97%, with the exception of engine torque. For this parameter the TPR
exhibits a lower detection rate that is roughly 80%. The reason behind this is brought on
by the fluctuation accounted for this 8-bit parameter (-28, 22), which is much larger than
the ones recorded for the rest of the evaluated parameters, and due to this, the probability
for an adversary to inject a value into this interval is higher. Even though the engine speed
signal exhibits a wide range (-35,62), the adversary chances are significantly reduced
because of the 16-bit signal length. Since there are no false positives (FPR=0%), all
legitimate frames with valid addresses are correctly classified.

In scenarios where both IDS stages are employed, the probability of an intrusion
to succeed is so negligible and, thus, it is not quantifiable by attack experiments. In
other words, the probability that an adversary frame will remain undetected is in the
range of 0.000159–0.006820%, which led to 0 undetected intrusions if the results are
computed over this trace. Table 6.6 presents the synthetic computations of the detection
rates obtained for the merged stages. These results are obtained by multiplying both FNRs,
the first obtained from the attacks that target ID while the second from data field attack
scenarios. This was done in order to account for the probability that the adversary ID
will remain undetected as well as the probability that the manipulation of the datafield
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Table 6.6: Estimated detection results for combined layers: ID and data field

Target parameter TNR FPR TPR FNR ℓ (b)
Engine speed 100% 0% 99.9991% 0.000895% 16.76
Engine torque 100% 0% 99.9931% 0.006820% 13.83
Fuel consumption 100% 0% 99.9998% 0.000159% 12.61
Vehicle speed 100% 0% 99.9995% 0.000443% 17.78
Engine temp. 100% 0% 99.9995% 0.000443% 17.78

will remain undetected. The accuracy of the results presented in Table 6.6 indisputably
demonstrate that the probability of an adversary to mount an undetected attack is extremely
low. None of the reported attack messages will be properly received by the nodes from the
network thanks to the frame destruction technique that was introduced in a prior section.

Overall security level. The proposed IDS exhibits a security level that meets or
potentially exceeds the AUTOSAR SecOC [129] requirements. This standard calls for
packing inside each message 24-28 bits as an authentication tag as well as 0-8 bits regarded
as freshness parameter. Practically, the fresh addresses that are predefined in circular lists
exceed the 0-8 bit freshness threshold.

The proposed IDS, according to already described computations, obtains 12 bits of
security based on the encrypted addresses. The reason behind using only 16 bits from the
ID (sender and destination address) is to facilitate the message filtering at the CAN driver
level by utilizing the rest of the bits from the ID, i.e, 13 bits. If that is not required and for
the arbitration purpose only the first 3 bits from the identifier are reserved, all the rest of
26 bits from the ID can be encrypted, yielding a security level of:

− log2 (41/2
26 ) ≈ 20 bits. (6.12)

This computation was done assuming that the collected traffic contains 41 message
IDs. Regardless of whether this is not the case, each parameter packed inside the payload
provides an extra 2–8 bits of security, as can be seen in Table 6.5. In the worst circumstance,
this results in a rough security level of 2 bits/byte, as exhibited by the engine torque
parameter, for which was obtained the lowest accuracy in detecting intrusions. We note
that, constant parts of the payload provide an even higher security level of 4 bits/byte
considering that the avalanche effect will lead to modification of minimum 50% of bits.
In the light of the above, at 2 bits/byte, it is anticipated that decrypting the payload will
result in a corresponding security level of a minimum 16 bits for each message. The
security level of 28 bits that is obtained by merging the 16 bits from the payload with
the 12 bits from the ID field fully satisfies the 24-28 bit range proposed in AUTOSAR
SecOC requirements [129]. Therefore, the suggested IDS works well and complies with
the actual security requirements. In comparison to other IDS solutions that do not rely on
encrypted addresses as well as on the avalanche effect of the payloads, such as those in
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[96], [59], [135], [64], etc., the proposed IDS is obviously much more secure.

6.4 Concluding remarks

As proven by the experiments, the proposed mitigation approach, which is specially
designed to comply with J1939 requirements, shows an effective way to detect as well as
to eliminate the attack frames in real-time. Since the payloads are fully allocated in J1939
specific implementations, the truncated MACs required by AUTOSAR specifications
[129] cannot be accommodated inside them. To circumvent this issue, the current solution
relies on encrypted addresses as well as symmetric encryption on the data field. The
first one will make it more difficult for an adversary to determine the function of each
CAN packet and to inject attack frames with proper IDs on the bus, while the second one
will produce an avalanche effect if the encrypted payload is altered (which sets room for
proper range checks that will spot the attacks frames even if a single bit was altered inside
them). Moreover, as demonstrated in the experimental section, the proposed solution
comes with reduced computational costs and is suitable for deployment even on low-end
development boards. Last but not least, the proposed solution takes advantage of the faster
reconstruction of the CAN frames content provided by the ICU to instantly eliminate
intrusion frames. Future work could involve the extension of this evaluation on J1939
CAN-FD networks for which the specifications were recently released under J1939-17
[91] and the use of cryptographic hardware accelerators from the development boards to
improve the execution time for security computations.
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Chapter 7

Intrusion detection for control
systems on SAE J1939 CAN buses

The content of this chapter is based on the results of the author published in [23]. This
chapter explores adversarial tactics as well as potential defense mechanisms at the control
system level in the context of J1939 heavy-duty vehicle buses. This low-level strategy
complements the commonly used CAN bus attacks, in which a more knowledgeable
adversary can bypass the detection. We also propose appropriate solutions to counter
such attacks. In fact, as we further demonstrate in the experimental section, current
methods based on machine learning algorithms will mainly fail to spot such adversarial
manipulations. The experiments are conducted using a setup that connects the Simulink
environment (an extension of the MATLAB platform) with the CANoe environment. The
first environment is responsible with the simulation of in-vehicle control systems, while
the second allows for the simulation of in-vehicle networks.

7.1 CANoe-Simulink integration

This section provides an overview of CANoe environment and its interaction with the
Simulink environment. In-vehicle networks can be designed, simulated, analysed as well
as tested using CANoe, a market-leading software development solution. Additionally,
CANoe offers support for the connection with other widely used tools in the industry,
such as Simulink, a MATLAB-based environment employed in the modeling of dynamical
systems, e.g., in-vehicle control systems. Furthermore, Simulink allows C code generation
and this code can be effectively ported on automotive graded platforms.

Figure 7.1 shows a typical CANoe simulation setup. In the right side, a simulated bus
from the CANoe environment is depicted. The CAN communication from the simulated
environment can be transmitted on the actual physical bus, which is represented in the
left side, by using hardware components produced by Vector, e.g., CAN-case, VN1600,

91
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Figure 7.1: Typical CANoe simulation setup

etc. In this particular scenario, there are three CAN nodes in the simulation. In order to
define the behavior of a CAN node, multiple software layers are used. The application
layer is located on the upper side, and operates with the bus signals or the values obtained
from various types of sensors or actuators. These values can be received as inputs via the
graphical user interface. The CANoe environment employs CAPL (Communication Ac-
cess Programming Language) based code for the deployment of the application layer. The
event-controlled programming language CAPL has a syntax that is roughly comparable to
the C language and is enhanced by a variety of particular functions which respond to the
real-time events. These events can be related to CAN network communication (such as
the reception of a CAN message, changing the value of a signal inside payload, etc.) to
changes that could happen in the CANoe (like starting or stopping the simulation, etc.) or
to timings (e.g., elapsing a timer value).

In the actual configuration, the CAPL code is utilized to simulate a real-world adver-
sary that injects attack messages on the CAN bus. The interfacing with CAN messages
and parameters, as well as with values retrieved from sensors, becomes easier by utilizing
a CAN database (CANdb), which saves these as distinct objects: CAN signals, CAN
frames, environment variables. This makes them easily accessible in the CAPL based
programming. Moreover, the CANoe environment permits the extension of the CAPL
application layer or even its total replacement with Simulink models (a capability that is
in fact employed in this chapter).

The interaction between both the application and physical layer is mediated by the
next three layers:

BUPT



7.1. CANOE-SIMULINK INTEGRATION 93

• interaction layer (IL),

• network management layer (NM),

• transport protocol layer (TP).

A brief summary of each is given in the paragraphs that follow. The IL layer is responsible
for the interfacing between the application layer and the low level drivers. Since IL receives
data stream by is in an application-level format (bus signals), it is his responsibility to
ensure the conversion to a bit or byte format that is compatible with the physical layer.
The IL not only converts the bus signals, but also assigns them to a particular CAN frame
and manages their transmission on the bus. The NM layer, which carries out various bus
management tasks, enables the optimal operation of a CAN network. Some examples of
these tasks are:

• recognizing the CAN nodes at power on sequence,

• monitoring the CAN bus during operation phase,

• coordinating the change from one state to another (the sleep state),

• providing information regarding the status of the CAN network.

The TP is responsible for handling the layout of the data link layer. Certain scenarios
call for the transmission of data over CAN that cannot be carried by a single CAN frame
as is greater than 8 bytes (the maximum payload size allowed by standard CAN). Such
examples include the use of diagnostic buffers and multi-frame messages. Consequently,
the data must be split into many frames and re-packed on the receiver side. This is done
by the TP.

As shown in Figure 7.2, there are three different modes that ensure the connection
between Simulink and CANoe during run-time. The first is the offline mode and is
represented in Figure 7.2 (i). In this mode, the simulation operates inside the Simulink
environment, which serves as the lead system, whereas the CANoe environment acts as a
subordinate system. The offline mode, which is primarily employed for debugging needs,
relies on the simulation time-base handled by Simulink. Therefore, a real-time simulation
cannot operates in this mode, and no hardware device interaction is possible. Like in the
case of offline mode, the Simulink environment operates as the host for the simulation also
in synchronized mode. This is depicted in Figure 7.2 (ii). The main difference between
this mode and the previous one is regarding the simulation time-base, which now comes
from the CANoe environment. As a result, the simulation runs in real-time and enables
the interaction with Vector hardware devices. The hardware-in-the-loop mode, which
exhibits a different operation from the first two modes, is shown in Figure 7.2 (iii). In
this configuration, the simulation is hosted by the CANoe environment. The Simulink
models are embed into the CANoe simulation via DLLs (Dynamic Link Libraries). These
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(i) Offline mode

(ii) Synchronize mode

(iii) Hardware in the loop mode

Figure 7.2: CANoe-Simulink interraction – operation modes

DLLs are the result of a build procedure conducted in the Visual Studio using C code
produced by the Simulink Coder. In this study, the synchronized mode is used since
this accommodates the real-time limitations and enables immediate modifications of the
Simulink models and their testing as well, without the necessity to create a new DLL each
time the models are modified.

7.2 Control systems and adversary models

This section gives an overview of J1939 simulation at the control system level and
introduces the addressed adversary model.

7.2.1 J1939 simulation and Simulink models

The evaluation from this chapter focuses on the J1939 simulation configuration designed
for a heavy-duty vehicle, which is made available by the CANoe tool 1. The simulation
setup is presented in Figure 7.3. Inside the CANoe environment, this simulation includes
the defined CAN networks, together with the associated databases and nodes.

1https://www.vector.com/int/en/products/products-a-z/software/canoe
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Figure 7.3: Common J1939 CAN network inside a heavy-duty vehicle

The J1939 network architecture accounts for two CAN buses, one of which is dedicated
to Powertrain operations and the other to Fleet Management System (FMS) functionality.
There are six ECUs on the Powertrain bus, one of them serves as a gateway and is also
connected to the FMS bus. Table 7.1 lists the primary function of the ECUs that are
used in the current evaluation, along with the addresses and signals that are allocated to
them. The signals transmitted by the ECUs are listed in the Tx signal column, while the
signals that the ECUs receive are listed in the Rx signal column. Figure 7.4 depicts the
signal exchange between the ECUs. There is only one ECU on the FMS bus, which is
the same gateway ECU (VGW) accounted also for the Powertrain bus. The VGW ECU is
responsible for selecting the Parameter Groups that comply with the FMS standard [136]
as well as for forwarding them from one CAN bus to the other.

The J1939 simulation is complemented by the Simulink models that include the
control systems. This enables the modeling of the adversarial behavior. To protect the
CAN bus from adversarial manipulations, the signals that circulate over the CAN network
need to be predicted. Next, it is shown how these signals are estimated as well as the
corresponding Simulink blocks.

Vehicle speed prediction

The Simulink model that calculates the vehicle speed in km/h using the shaft vehicle
speed in rpm, which is transmitted by the TECU controller, is shown in Figure 7.5.
Mathematically, the following formula is used:

v =
3600

1000
× r × 2× π

60
× vshaft , (7.1)
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Table 7.1: Brief overview of the nodes used in the Powertrain network

Node Addr. Function Tx signal Rx signal

EMS 0x00
Engine

management
system

Vehicle Speed,
Trip Distance,
Engine Speed,

Torque

–

TECU 0x03 Transmission ECU Shaft Speed Clutch Slip,
Gear, Torque

IC 0x17 Instrument cluster –

Vehicle Speed,
Shaft Speed,

Trip Distance,
Engine Speed,

VGW 0xE6 Vehicle gateway – Engine Speed

Figure 7.4: Signal circulation among ECUs on the PCAN bus

where v represents the vehicle speed measured in km/h, r is the shaft axle diameter
measured in meters, i.e, 0.151 meters in this scenario, and vshaft represents the shaft
vehicle speed measured in rpm.

Typically, inside vehicles, a PWM signal that determines the rotation of the main axle
is used by the TCU controller to calculate the shaft vehicle speed.
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Figure 7.5: Vehicle speed prediction based on shaft speed

Trip distance prediction

Figure 7.6 illustrates how the trip distance is computed based on the vehicle speed. The
following formula is used:

dist =

∫
v × 0.1

3600
dx, (7.2)

where dist stands for the trip distance, v represents the vehicle speed while the
coefficient 0.1

3600 is employed for converting the vehicle speed from km/h to m/s.

Figure 7.6: Trip distance prediction based on vehicle speed

Acceleration estimation

The computation of the acceleration depending on vehicle speed is presented in Figure
7.7. The following formula is used:

acc =
dv

dt
, (7.3)

where acc stands for the acceleration in m/s2, v represents the vehicle speed, and t is the
time.

A low-pass filter was applied to the computed acceleration to remove unwanted spikes
so that it could be used in the prediction of other vehicle signals, such as the engine speed
and torque.
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Figure 7.7: Acceleration estimation

Engine speed prediction

Figure 7.8 depicts the prediction of the engine speed using the filtered acceleration and
gear. To do this, lookup tables are employed. These are frequently used in automotive
and control systems based projects. In this scenario, the lookup tables are calibrated with
breakpoints ranging from 3 to 100 based on a brief run-time of the simulation during
which multiple gear shifts occur. With the help of these, the prediction of the engine speed
is determined using the filtered acceleration and gear. The lookup tables are calibrated
using the signals captured during the running of the CANoe simulation. This involves
the selection of 3 to 100 values from the filtered acceleration for each gear and setting
the corresponding value of the engine speed. We note that the interpolation is in fact
used to calculate intermediary values. When needed, switching between two lookup
tables depending on the clutch slip value is performed in order to increase the prediction
accuracy. This is required since the engine speed ramps up or down more quickly when
the clutch is engaged than it does when it is released (a case in which the signal variation
is more stable). If the driver does not push the accelerator or brake pedals while the car is
stationary, the estimated engine speed is configured to idle speed, which is 250 rpm .

Torque prediction

The engine torque is determined using lookup tables (similarly to how engine speed is
estimated) that relies on the filtered values of acceleration as well as on gear, as can be
seen in Figure 7.9. When needed, the switching between three lookup tables is performed.
This requires to be done since if the accelerator pedal value is pressed more than 70% or
if the power take-off module is turned on, the torque exhibits a different behavior. When
the clutch is engaged, there is no torque request from the driver while the torque losses are
significant and the value of the current torque is configured to the minimum value which
is -1650 Nm and corresponds to the value from the CANoe simulation.

Engine speed signal as well as torque signal, are predicted without the use of a certain
physical model and instead based on look-up tables that are calibrated using the behavior
of the parameters deduced from previous runs of the J1939 CANoe simulation. Because
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Figure 7.8: Engine speed prediction based on acceleration and gear

of this, the detection results from the experimental section will be poorer on these two
signals, and should be regarded only as an example. More accurate predictions can be
done by using improved models, but these are out of reach for the evaluation from this
chapter.

Figure 7.9: Torque prediction based on acceleration, gear and clutch slip
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7.2.2 Adversary model

The majority of the existing studies on intrusion detection systems for CAN buses takes
into account three different attack types: replay, DoS as well as fuzzing. Such attacks
can be straightforwardly detected by verifying that the IDs are or not part of genuine
traffic. This is the case for a part of fuzzing attacks where the IDs are random generated as
well as for DoS attacks since these are mounted using smaller ID values that have higher
priority, in both cases the IDs are not part of legitimate traffic. The replay attacks can
be circumvented by ensuring that the periodicity of each ID matches what is anticipated,
which is typically not the case for replays.

Additionally, alterations inside the payload can be spotted considering the predicted
value of the signal y′♦(k) as well as the bias b, a change detection method is applied, which
examines the subsequent recurrent sum [137]:

S♦(k) = max
{
0, S♦(k − 1) + |y♦(k)− y′♦(k)| − b

}
, (7.4)

where S(0) = 0. An intrusion can be spotted by contrasting this cumulative sum
with an empirically determined threshold τ . This change detection method, known by the
acronym CUSUM, was firstly proposed in [138] and is regularly employed in intrusion
detection systems. It is also used in a recent work on intrusion detection for J1939 CAN
buses [97], however in the current evaluation we account for the control system level
as well as stealthy attacks, which have not previously been considered in the context of
in-vehicle networks.

According to [137], there are three types of stealthy attacks that may bypass the
detection system based on cumulative sums (CUSUM): surge attacks, bias attacks as well
as geometric attacks. Such kind of adversarial manipulations have not been taken into
account in prior researches on CAN bus intrusion detection. Consequently, we concentrate
particularly on these attacks in this chapter. Since replay as well as DoS attacks can be
easily spotted by checking the periodicity of frames (both of these attacks involve many
frames, which is uncommon given that CAN IDs are transmitted at regular intervals), the
current adversary model accounts for the following types of modification attacks:

1. fuzzing attacks – are the modification attacks in which randomly generated signal
values are injected in the payload of CAN messages,

2. surge attacks – are the modification attacks in which the value of the attack signal is
configured to the maximum value or minimum value with the assumption that doing
so will cause the maximum damage for the vehicle and yet remain undetected. In
this scenario, the attack signal value at step k + 1 will be y♦,max only if the related
sum at the next step is S♦(k + 1) ≤ τ , whereas if not, the attack signal value will
remain at y′♦(k) + |τ + b− S♦(k)|,

3. bias attacks – are the modification attacks in which the malicious signal value is
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altered by just adding a minor constant c = τ/n + b. i.e., ỹ♦(k)← y♦(k)+τ/n+b,
in order to guarantee that the attack goes undetected for n steps,

4. geometric attacks - are the modification attacks in which the malicious signal
value is altered by just adding a small drift in the beginning and then the drift
grows steadily in the following steps depending on a geometric expansion, i.e.,
ỹ♦(k)← y♦(k) + βαn−k where α is fixed and β = (τ+nb)(α−1−1)

1−αn .

The addressed adversary model and the corresponding countermeasures do not depend
on what entry point the adversary exploits. As mentioned previously, the majority of
attacks account for an adversary connecting to the bus or remotely compromising a device.
Notably, a recent study [139] suggests an ingenious approach in which standard CAN
frames are concealed inside CAN-FD frames. Indeed, such kind of attack has not been
previously investigated. However, the suggested IDS is intended to run locally on each
node, thus regardless of how the attack is carried out, it should be spotted by the IDS when
the payload of the frame is examined. Therefore, the proposed IDS should offer resistance
to this type of attack as well.

The proposed adversary model supposes that the intruder has a predefined (fixed)
success probability of altering the payload inside the frames. In what follows, the justi-
fication behind this model is presented. From a networking point of view, it is true that
attacks on the CAN bus are frequently carried out by injecting extra (attack) frames into
the network, but this gives a slightly inaccurate perception of how in-vehicle controllers
work. To put it more specifically, in-vehicle controllers execute cyclic activities that are
planned at fixed time intervals, such as 10-100 ms , and consume one CAN frame through
the course of each succeeding execution. The frames are typically stored in a buffer for
each CAN ID and a new received frame overwrites the previous one. As a result, the
controller will only consume the most recent message, even if an adversary injects several
attack frames between two genuine ones. Attacks are therefore probabilistic since there
are many attack frames competing with legitimate ones on the bus. This is the reason
why, instead of injecting messages, a fixed probability of whether a message is corrupted
or not is predefined. The above rationale is in line with the reality at the controller level
discussed in this work.

The proposed adversary model can be applied in multiple ways. The first one is the
obvious scenario in which a compromised task that runs on the ECU effectively replaces
the genuine frames with malicious ones. In addition to this scenario, there are two further
aspects at the networking layer that contribute to making the adversary model (which
instead of injecting additional messages, replaces genuine frames with compromised ones)
more plausible. One is a scenario in which the ECUs are the victims of bus off attacks,
which leave ECUs passive for a period of time and allows an adversary to inject corrupted
messages. The first example of such attacks were demonstrated in [121]. The second is
the possibility of messages being altered if they are forwarded by a compromised gateway.
Nevertheless, the vehicles are currently evolving from domain oriented architectures,
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where the ECUs that are responsible for similar features are placed on the same bus to
zone oriented architectures in which the ECUs are organized under a zonal controller in
accordance with the place where they perform. Even communications that are accountable
for the same functionality may need to be routed by gateways under this more recent
paradigm, increasing the probability that the frames may be corrupted.

The chapter proceeds with the experimental analysis considering the context of the
adversary model mentioned above.

7.3 Experimental results

This section presents the behavior of J1939 signals during adversarial manipulations, the
accuracy results in detecting intrusions as well as the computational results on automotive
devices, i.e., in-vehicle controllers.

7.3.1 Specific attacks on J1939 signals

(i) fuzzing attack (ii) surge attack

(iii) bias attack (iv) geometric attack

Figure 7.10: The variation of vehicle speed signal under various attack scenarios
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For current evaluation the focus is concentrated on J1939 specific signals for which the
J1939-71 standard [81] provides an easy way to identify them. The evaluation specifically
takes into account the following four parameters:

1. vehicle speed measured in (km/h),

2. trip distance measured in (km),

3. engine speed measured in (rpm),

4. engine torque measured in (Nm).

For a better understanding of the behavior of the attacks and the effects they cause, a
graphic representation with the J1939 specific signal fluctuations during various attacks
take place, is shown in Figures 7.10, 7.11, 7.12 and 7.13.

(i) fuzzing attack (ii) surge attack

(iii) bias attack (iv) geometric attack

Figure 7.11: The variation of trip distance signal under various attack scenarios

The fluctuation of the vehicle speed signal is depicted in Figure 7.10. The alterations
caused by the adversary are highlighted with green, while the valid signal appears with
blue. The fuzzing attacks, which take the form of spikes surrounding the genuine signal,
are depicted in Figure 7.10 (i). Figure 7.10 (ii) shows that during a surge attack, the
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(i) fuzzing attack (ii) surge attack

(iii) bias attack (iv) geometric attack

Figure 7.12: The variation of engine speed signal under various attack scenarios

falsified signal is kept at 90 km/h , but this only occurs when the genuine signal gets close
to the attack value. When bias attacks from Figure 7.10 (iii) and geometric attacks from
7.10 (iv) take place, the valid signals are only slightly deviated.

Bias attacks and geometric attacks differ in that the distance between the legitimate
signal and the attack signal stays constant for the former while for the latter it gradually
increases. The trip distance signal is incremented for every 125 m traveled and due to
this, exhibits a different waveform in comparison with other signals, as can be observed in
Figure 7.11. As seen in Figure 7.11 (ii), the manipulated signal reaches a top level of 1.2
km when surge attacks take place. Figures 7.11 (iii) and (iv) show the behavior for the
bias and geometric attacks, which is similar to the behavior for the preceding signal. As
depicted in Figure 7.12, the genuine engine speed signal exhibits a larger range of values,
which is 0–2050 rpm. In this scenario, when a surge attack takes place, the altered signal
is equal with 2250 rpm, as shown Figure 7.12 (ii). When the bias and geometric attacks
occurs, as depicted in Figures 7.12 (iii) and (iv), the manipulated signals exhibit higher
deviations from the genuine signals in comparison with the ones accounted for the vehicle
speed signal.

The attacks mounted on the torque signal are presented in Figure 7.13. They exhibit a
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behavior that is slightly similar to the one recorded for the engine speed except that the
signal also has negative values.

(i) fuzzing attack (ii) surge attack

(iii) bias attack (iv) geometric attack

Figure 7.13: The variation of torque signal under various attack scenarios

7.3.2 Results on detecting intrusions

Before providing the detection results, an overview of how the adversary behaves in the
current setup is presented. The adversary is configured to operate with a specified attack
probability patt for each parameter of the payload. This corresponds to the common
adversary model in which the frames that are manipulated by an adversary are injected
into genuine traffic. This attack probability is used in case of fuzzing, bias, as well as
geometric attacks, whereas the surge attack only occurs if the prerequisites outlined in the
adversary model section are satisfied. The attacks that produce signal values outside of
the expected range, e.g, negative signal values while the expected ones are positive, will
not be mounted because the range checks can spot them right away. The IDS (change
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detection mechanism) operates inside the Simulink environment and exchanges data with
the CANoe environment interacting with it in synchronized mode.

Table 7.2: Detection results for engine speed based on machine leaning algorithms

Algorithm Attack FPR FNR Accuracy Precision
type (%) (%) (%) (%)

k-NN fuzzing 16.20 74.87 69.50 33.33
k-NN surge 1.18 0.00 99.38 98.68
k-NN bias 1.06 98.54 82.25 22.22
k-NN geom 0.15 98.26 83.00 50.00
DTC fuzzing 28.26 37.95 69.38 41.44
DTC surge 0.00 0.00 100.00 100.00
DTC bias 0.45 100.00 82.50 0.00
DTC geometric 9.19 99.26 75.50 1.61
RFC fuzzing 12.73 55.38 76.88 53.05
RFC surge 0.00 0.00 100.00 100.00
RFC bias 0.60 100.00 82.38 0.00
RFC geometric 0.15 99.26 83.00 50.00

The results show that the machine learning algorithms are incapable of defending
against modification attacks. These machine learning based IDSs are deployed using the
Statistics and Machine Learning Toolbox made available by MATLAB and the Python
scikit-learn package https://scikit-learn.org/stable/. For the C code gen-
eration the sklearn-porter library https://github.com/nok/sklearn-porter
is employed. The generated code is then ported on embedded boards to determine the
time needed for the algorithms in order to classify one frame. The classification models
are trained using parts of the logged CAN traffic.

The CAN trace is split in two portions: 20% is for training purposes while the rest of
80% is employed for testing. The detection results from Table 7.2 are obtained using the
following common machine learning classifiers:

• k-nearest neighbors – k-NN,

• decision trees classifier – DTC,

• random forest classifier – RFC.

Only frames containing the targeted signal were subject to the attack. As can be
observed, the IDS based on these classifiers has significant shortcomings in terms of
detecting fuzzing, bias, and geometric attacks. The only attacks against which the IDS is
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effective are the surge attacks. Bias and geometric attacks exhibit a false negative rate of
over 98%, hence they go mostly undetected. In case of fuzzing attacks the FNR is lower,
ranging from 37% to 74%, but it is still inadequate. Table cells with poorer precision are
highlighted in gray.

Table 7.3: Adversary and IDS parameters used for different types of attacks on Vehicle
Speed, Trip Distance, Engine Speed and Torque

Adversary / IDS parameters
No. J1939 Att. Att. Bias Threshold

signal type prob. Adv. / IDS Adv. / IDS
1.

Vehicle Speed
(km/h)

fuzzing 25% - / 0.5 - / 2
2. surge - 5 / 0.5 10 / 2
3. bias 25% 5 / 0.5 10 / 2
4. geometric 25% 5 / 0.5 10 / 2
5.

Trip Distance
(km)

fuzzing 25% - / 0.05 - / 0.075
6. surge - 0.2 / 0.05 0.25 / 0.075
7. bias 25% 0.2 / 0.05 0.25 / 0.075
8. geometric 25% 0.2 / 0.05 0.25 / 0.075
9.

Engine Speed
(rpm)

fuzzing 25% - / 100 - / 150
10. surge - 400 / 100 600 / 150
11. bias 25% 400 / 100 600 / 150
12. geometric 25% 400 / 100 600 / 150
13.

Torque
(Nm)

fuzzing 25% - / 200 - / 250
14. surge - 500 / 200 1000 / 250
15. bias 25% 500 / 200 1000 / 250
16. geometric 25% 500 / 200 1000 / 250

On the other hand, the change detection method works remarkably well. The rationale
behind selecting the thresholds values which are shown in Table 7.3 as well as the accuracy
results on detecting intrusions presented in Tables 7.4 and 7.5, are discussed next. The
rows with detection results from Tables 7.4 and 7.5 correspond to the rows with attack
scenarios and parameters accounted in Table 7.3, they can easily identified with the help of
the first column indicating the assessment number. The values for bias and threshold were
empirically established. Both values were determined for the IDS and for the adversary
as well. If both the adversary and the IDS use the same threshold values, only minor
modifications from the genuine parameters take place. In this case, the impact is minimal
and the adversarial manipulations remains undetected by the IDS. The IDS threshold,
for instance, is 2 km/h , while the threshold for engine speed is 150 rpm . Regardless
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of whether the adversary produces these deviations in order to confuse the driver, they
will likely have no impact. Consequently, it is expected that the adversary will try to
produce greater deviations that can more effectively deceive the driver, e.g, increasing or
decreasing the reported speed by 10 km/h . This clarifies why the thresholds from Table
7.3 were selected.

Table 7.4: Results in detecting intrusions on Vehicle Speed, Trip Distance, Engine Speed
and Torque – short 100 s simulation (1000 CAN frames)

Detection results
No. TN TP FP FN FPR FNR Accuracy Precision

(frames) (frames) (frames) (frames) (%) (%) (%) (%)
1. 759 233 0 8 0.00 3.32 99.20 100.00
2. 734 266 0 0 0.00 0.00 100.00 100.00
3. 842 158 0 0 0.00 0.00 100.00 100.00
4. 838 162 0 0 0.00 0.00 100.00 100.00
5. 759 229 0 12 0.00 4.98 98.80 100.00
6. 614 386 0 0 0.00 0.00 100.00 100.00
7. 842 158 0 0 0.00 0.00 100.00 100.00
8. 847 153 0 0 0.00 0.00 100.00 100.00
9. 753 196 6 45 0.79 18.67 94.90 97.03

10. 636 357 7 0 1.09 0.00 99.30 98.08
11. 820 172 6 2 0.73 1.15 99.20 96.63
12. 820 174 6 0 0.73 0.00 99.40 96.67
13. 752 192 7 49 0.92 20.33 94.40 96.48
14. 698 277 12 13 1.69 4.48 97.50 95.85
15. 752 230 7 11 0.92 4.56 98.20 97.05
16. 752 239 7 2 0.92 0.83 99.10 97.15

If the adversary thresholds values are larger than the IDS threshold values then the
attack can produce a major impact, however, this will be spotted by the IDS. The detection
results obtained for vehicle speed and trip distance signals exhibits an excellent accuracy
and precision that are around 100%. This is the case since the both signals have been
accurately predicted. On the other hand, the detection accuracy and precision obtained
for the engine speed as well as torque signals, are lower, at 94%–99% and 95%–98%,
respectively. The FPR and FNR have increased, but at 0%-1% and 0%-20%, respectively,
these still appear reasonable. This is because the estimation accuracy was not sufficiently
good as the last two genuine signals were predicted using the previously specified lookup
tables. Better predictions can be made using the vehicle mechanical data, which are
outside the scope for the current investigation.

The prior results were obtained using a simulation that lasts 100 seconds and the
simulation step has 0.1 second, yielding a total of 1000 CAN frames. It is true that other
studies based on CAN bus data recorded inside vehicles employ traces that last for at least
an hour. This strategy to use long traces is not always optimal since the complexity of
detecting attacks is determined by the variability of the CAN traffic rather than the length
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of the trace. The small trace (1000 CAN frames) that is used in the current evaluation
contains CAN traffic that exhibits considerable variations of the logged J1939 specific
signals. This trace (1000 CAN frames) contains CAN traffic that exhibits considerable
variations for the logged J1939 specific signals whereas a longer trace of several hours in
which the CAN traffic does not show noticeable variations is not always more convincing.

Table 7.5: Results in detecting intrusions on Vehicle Speed, Trip Distance, Engine Speed
and Torque – long 1 hour simulation (36000 CAN frames)

Detection results
No. TN TP FP FN FPR FNR Accuracy Precision

(frames) (frames) (frames) (frames) (%) (%) (%) (%)
1. 26988 8676 0 336 0.00 3.73 99.07 100.00
2. 2036 33964 0 0 0.00 0.00 100.00 100.00
3. 27202 8798 0 0 0.00 0.00 100.00 100.00
4. 27192 8808 0 0 0.00 0.00 100.00 100.00
5. 26988 8974 0 38 0.00 0.42 99.89 100.00
6. 35221 779 0 0 0.00 0.00 100.00 100.00
7. 27071 8929 0 0 0.00 0.00 100.00 100.00
8. 27076 8422 0 502 0.00 5.63 98.61 100.00
9. 26851 7481 137 1531 0.51 16.99 95.37 98.20

10. 25145 10758 97 0 0.38 0.00 99.73 99.11
11. 27021 8803 137 39 0.50 0.44 99.51 98.47
12. 27021 8798 137 44 0.50 0.50 99.50 98.47
13. 26805 7023 183 1989 0.68 22.07 93.97 97.46
14. 34352 1450 179 19 0.52 1.29 99.45 89.01
15. 26805 8828 183 184 0.68 2.04 98.98 97.97
16. 26805 8964 183 48 0.68 0.53 99.36 98.00

In what follows, the detection mechanism is evaluated based on a trace that lasts an
hour to demonstrate this. In this scope, an even more complex CAN traffic including
plenty of specific activities, such as gear shifts, braking suddenly, speed fluctuations,
etc., was generated. Table 7.5 shows the detection results. With a few exceptions, the
number of false positives and negatives substantially decreased when compared to the
short scenario (only 1000 frames). In other words, the false positive rate is now below 1%,
and the false negatives rate is between 0% and 5%, except for fuzzying attacks where the
FNR ranges from 0% to 22%. A closer investigation revealed the reason for the decrease
in false positives: roughly all of them are brought on by gear shifts which produce in turn
abruptly variations on engine speed and torque signals that are difficult to predict with the
lookup tables. Over the course of an hour, the long trace accounts around 30 gear shifts,
however the short trace exhibits 10 gear shifts in only 100 seconds. This indicates that the
sudden variations in engine speed or torque that are recorded when a gear shift take place
might be disregarded in order to prevent false alarms.

Since unexpected gear shifts can happen for a variety of seemingly unimportant
reasons, it is challenging to look deeper into this matter. To reduce the vehicle speed or to

BUPT



110 CHAPTER 7. INTRUSION DETECTION FOR CONTROL SYSTEMS

boost the torque when dealing with a slope, for instance, a driver could downshift gears
rather than press the brake pedal. This is possible in both circumstances, whether there is
a manual gearbox or an ECU specifically designed to handle these actions. All of these
behaviors, which in fact are not attacks, could result in abrupt variations of the engine
speed and torque signals.

By examining some relevant papers on CAN IDS, we can see that the reported FPR
is 1.60% in [59], 4.68% in [140], or even 6.45% in [141]. The study from [18] relies on
cryptographic security and reports an FPR of 0%. On the other hand, the FNR is 2.80%
in [59], 2.40% in [140] as well as 3.90% in [141]. Once more, the authors from [18]
report a 0.01% FNR but achieves this with cryptographic security. Consequently, the only
option if higher FPR and FNR are required would be to rely on cryptography and embed
security elements inside CAN frames. The AUTOSAR SecOC [129] recommends to pack
inside each CAN frame 32 bits of security elements, i.e., an authentication tag as well as a
freshness parameter. In accordance with security profiles 1–3 [129], the authentication tag
in this instance is 24–28 bits, and the probability to mount a succesfull attack is 2−24 to
2−28. However, keep in mind that due to the 0–8 bits small size of the freshness parameter
(depending on the security profile), after just 256 messages this parameter is repeated. As
a result, the probability of successful replay attack remains at 2−8, which is not negligible.

The previously mentioned attacks have an immediate effect on safety because many
ADAS (Advanced Driver Assistance Systems) systems rely on signals like engine speed,
torque, and vehicle speed. These signals can determine the car to accelerate or decelerate
unexpectedly, which might result in collisions. When predicting the time until a collision
occurs, keep in mind that a simple 5 km/h deviation from the real vehicle speed translates
into 1 m/s, which could have severe repercussions.

7.3.3 Runtime performance

The computational performance evaluation of DT and RFC classifiers as well as of
change detection mechanism was conducted on four automotive-graded platforms. These
platforms, named S12XF, SAM V71, TC277, and TC297, are produced by reputable
manufacturers: NXP, Microchip, and for the two remaining ones Infineon. The first one,
which serves as a benchmark for the low-end device sector, offers 32 KB of RAM as
well as 512 KB of Flash memory and operates at a maximum frequency of 50 MHz. On
the other hand, the other three platforms are candidates for high-end device sector and
operates on 32 bits. The Microchip SAM V71 Xplained Ultra platform is enabled by an
ATSAMV71Q21 microcontroller that complies with the ARM Cortex M7 specification
and provides a top operating frequency of 300 MHz and is equipped with 2 MB of Flash
and RAM.

Both the TC277 and TC297 controllers from Infineon have been designed based on
the Aurix TriCore architecture, however they exhibits different top operating frequencies.
The first can operate at a maximum frequency of 200 MHz, while the second can be
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Table 7.6: Main features of the used embedded development boards

Feature TC277 TC297 SAM
V71

Architecture TriCore TriCore ARM
CPU cores 3 3 1

Max.
frequency

200MHz 300MHz 300MHz

FLASH 4MB 8MB 2MB
RAM 472KB 728KB 2MB

EEPROM 384KB 768KB 256KB

clocked with a frequency at up to 300 MHz. All these aforementioned features are
summarized in Table 7.6. Figure 7.14 shows the experimental setup used for the evaluation
of computational performance. Every board was configured to operate at its top supported
frequency.

Figure 7.14: Experimental setup used for run-time assessment

Both DTC and RFC, which were employed as detection algorithms, were programmed
to run with the default settings, and for RFC there are 15 estimators configured. For the
k-NN implementation, a lot of memory is required to store the neighbors data for genuine
and malicious frames. As a result, this was not ported on the embedded platforms. The
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runtime results are listed in Table 7.7. The results obtained for the engine speed signal are
the only ones reported because the runtimes for the other signals are similar. The classifier
that was used and the type of attacks are listed in columns two and three, respectively. The
final four columns provide the runtime measured for each board.

Given that the RFC uses more estimators, it should come as no surprise that the RFC
classifier operates much slower than the DTC. The runtime for both machine learning
classifiers on the low-end device, i.e S12, ranges from 60.74 to 715 µs. On the other hand,
the measured runtime required to execute the less complex change detection technique
is only 39 µs microseconds. The time needed for the execution of machine learning
classifiers varies from 0.74 to 18.89 µs on high-end platforms while for the change
detection technique varies from 0.13 to 1.32 µs. This shows that in addition to the higher
accuracy results on detecting intrusions demonstrated in the preceding section, the change
detection mechanism is executed 2-65 times faster. Furthermore, compared to machine
learning based algorithms, which have a footprint of 10–30 KB, the change detection
mechanism requires minimal memory requirements – it just needs several lines of code.

Table 7.7: Computational results of IDS algorithms on automotive graded controllers

J1939 sig. Algorithm Attack Execution time on target (µs)
S12XF SAM V71 TC277 TC297

Engine Speed

DTC

fuzzing 199.12 18.89 2.34 1.86
surge 60.74 5.49 0.91 0.74
bias 130.23 12.48 1.64 1.28

geometric 153.83 15.07 1.94 1.51

RFC

fuzzing 575.20 16.92 13.12 8.55
surge 355.65 7.69 7.41 5.35
bias 620.38 15.44 8.91 6.41

geometric 715.00 16.98 9.15 6.56
Change

detection all 39.10 1.32 0.34 0.13

7.4 Concluding remarks

The analysis from this chapter demonstrates that, despite growing efforts to address CAN
bus intrusions using machine learning techniques, such algorithms are unable to detect
subtle alterations inside the payload. The deficiencies stem from two obvious factors: the
restricted training time, which means that the training dataset cannot cover all achievable
car states, and the minor alterations that adversaries might introduce to make the attack
stealthy. On the other hand, by employing specific change detection mechanism, the
detection results are better and only a significantly low computational cost is induced,
as proven by the experiments. Although redundancy is necessary for the deployment of
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such mechanisms, we have demonstrated that it is feasible in the J1939 model, which was
used for our tests. We therefore hope that the work from this chapter open the road in this
direction because there are few or no studies that cover such fine grain features.
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Chapter 8

Conclusion

This thesis investigates various intrusion detection systems for CAN buses with a focus
on the SAE J1939 heavy-duty vehicle deployments. The approaches utilized for the
deployment of these IDSs range from the use of machine learning algorithms to hindering
adversaries by the use of symmetric cryptography or making a fine grained analysis at the
control systems level. The majority of the results from this thesis are based on real-world
CAN traffic that was collected by the author either from a commercial vehicle (a modern
agricultural machinery) or from passenger cars (a sedan or SUV). Part of the results are
based on traces generated directly from the CANoe, an industry-standard tool that is
widely used in the implementation of in-vehicle networks. To test and demonstrate that
the detection mechanisms are suitable for real-world deployment inside vehicles, several
measurements on their runtime are performed on automotive devices, i.e., in-vehicle
controllers. Moreover, the performance results in detecting intrusions obtained using the
proposed solutions are compared with the ones reported by the related works on intrusion
detection for CAN buses in order to highlight the advantages offered by them. A brief
overview of each chapter follows, also highlighting some of the significant findings.

Chapter 3 gives an overview on CAN protocol in the context of the SAE J1939 com-
pliant CAN buses. Some details on the CAN physical layer, as well as the structure of the
data frame, are presented. The chapter continues with a decription of SAE J1939 specifics
such as: parameter group numbers, transport protocols, frame identifier breakdown as
well as the address claiming procedure. All of these are discussed in order to set room for
the deployment and evaluation of specific security solutions tailored to SAE J1939 CAN
buses that are presented in the next chapters.

Chapter 4 explores the use of neural networks as candidates for intrusion detection
in Controller Area Networks. The first section of this chapter starts with a presentation
of the scenarios that can be exploited by an adversary to gain access to the CAN bus via
the OBD port and injects adversarial CAN frames. The same section details the types
of attacks that are subject for the evaluation of the IDS. The following section describes
the development environments employed for the implementation of neural network based
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intrusion detection. Two different deployments are done, one using the Neural Network
Toolbox made available by the MATLAB platform while the other is based on a C++
implementation. The first approach is preferred since the neural network toolkit offered
by MATLAB is well-known for its performance, while the second is used since the C++
code can be easily ported on automotive-graded controllers. Nevertheless, a verification is
done to make sure that identical detection results are produced using both deployments,
and indeed this is the case. Then, this section briefly discusses the stopping conditions
(for the training stage), the neural network architecture as well as the features extracted
from the CAN traffic, which serve as inputs for the neural network. The experimental
results in terms of detection and runtime performance for the proposed IDS are detailed in
the next section from this chapter. The experiments are performed on a J1939 compliant
CAN traffic, recorded using a CANoe simulation and on a public CAN dataset. For each
type of attack (replay or injections with random data inside the payload), several scenarios
are tested depending on how the CAN traffic is split between training, validation and
testing as well as on how the attacks are performed, either on a single ID or on full trace
(all IDs). Moreover, in order to emphasize the trade-off between the accuracy of the
detection results and the runtime performance, the evaluation is carried out using three
different sizes for the neural network. The runtime performance of the detection algorithm
is measured on three automotive graded controllers, one regarded as candidate for the
low-end device group and the other two for the high-end device group. The proposed IDS
has a poorer accuracy in detecting replay attacks since the content of the injected frames
is the same to the one of the genuine frames (the arrival time of the CAN frames is the
sole way to identify such attacks). Overall, the experiments show that despite the good
results in detecting intrusions, the usage of such a solution for the real-time filtering of the
CAN traffic is debatable at least on microcontrollers from the low-end device group, since
the time required to classify a CAN frame is in order of dozens milliseconds. This can
be regarded as an important aspect since most of the related papers do not present such
results, or use a PC based environment with powerful resources, which does not reflect
the reality at microcontroller level.

A framework that enables the integration of various CAN bus attacks as well as
intrusion detection systems inside a CANoe based simulation and provides a realistic
testbed for them, is presented in Chapter 5. The first section of this chapter begins with a
description of the data collection procedure used by the author for extracting the CAN
traffic from the two passenger cars. Then, this section presents the setup employed for the
data extraction inside vehicles as well as the format of the recorded CAN messages. The
CAN network structure from the CANoe simulation and how the collected CAN traffic
is used inside it, are detailed at the end of this section. The second section introduces
various types of adversarial manipulations that were integrated into the CANoe simulation.
These attacks include replays, injections with randomly generated data inside the payload,
injections with scalar addition or multiplication of the payload content as well as arbitrary
injections. Then, this section proceeds with a presentation of how the designed graphical
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interface, which permits to configure various adversary parameters, can be used. In the
following section an overview of the Statistics and Machine Learning Toolbox offered by
MATLAB platform as well as of the k-NN algorithm, a candidate for IDS, are presented.
This section ends with a description of the input sample for the k-NN algorithm, which
contains the following features extracted from the CAN frames: the time interval elapsed
between consecutive arrivals of CAN messages that share the same identifier as well as
the data field content. Last but not least, the experimental section discussed the detection
results obtained for several scenarios. The experiments are conducted to cover all the
previously defined types of attacks. The tested scenarios depend on the attack delay, on
what the adversary targets (one ID or full CAN traffic), on how many neighbors and which
distance metric are used by the k-NN algorithm as well as on the scalar values utilized for
the addition and multiplication of payload bytes. As far as the author is aware, this is the
first framework that allows the simulation of both the CAN bus attacks and the IDS inside
a unified environment. At the same time, using a simulated environment is safer because
it prevents any potential danger to drivers or cars.

In Chapter 6, a targeted intrusion detection and prevention system for securing the SAE
J1939 heavy-duty CAN buses is evaluated. The first section summarizes how the J1939
compliant CAN traffic is collected by the author through the J1939 specific diagnostic
port from an agricultural machinery (a tractor). Following that, this section continues
with an inspection of the J1939 compliant features that are present inside the collected
traffic. The recorded traffic contains 51 frame identifiers and it is transmitted by three
different ECUs that are determined by investigating the unique source addresses that are
embed inside the IDs. According to J1939 standardization, the function of each ECU
from the network becomes apparent as follows: engine control module, body control
module and transmission control module, respectively. A quantitative analysis focusing
on the periodicity accounted for each CAN ID from the recorded CAN messages, is
discussed at the end of this section. The next section introduces the adversary model
which includes both replays and modification attacks. Nevertheless, the modification
attacks follow a different approach from the one used in Chapters 4 and 5 in that they are
mounted at parameter level, not on the complete payload. This section then presents the
two-stage IDS that was designed to protect J1939 CAN buses. The first stage relies on
the encrypted addresses, i.e., the source as well as the destination addresses from each
frame ID are encrypted using AES. The rationale behind embedding security elements
into CAN identifiers is as follows. According to J1939 standardization, the payload of the
J1939 CAN frames is fully allocated with specific J1939 parameters, which are assigned
to a parameter group. Security elements are therefore packed in the IDs rather than the
payload because doing otherwise would have been in contrast with J1939 specifications.
This stage is complemented by the second one, which is based on the encrypted payload.
This enables the detection even when single bits are tampered, due to the avalanche effect
resulted from the decryption of the payload and subsequent plausibility checks applied for
each J1939 parameter carried by the frame. Subsequently, this section discusses how these
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encrypted addresses will be generated and stored using an ordered binary tree as well as
circular lists. Since these addresses must be generated cyclically. The section ended with
a formalisation on the trade-off between the periodicity of address tree generation and
resources (computational power and storage capacity). Last but not least, the experimental
section gives a presentation of runtimes measured on automotive development boards
for the symmetric encryption operations as well as for the generation of the address tree.
Then, the section gives an overview of the active defense mechanism, which acts like a
prevention system. This mechanism permits the decoding of the CAN frame content (ID
and payload) before the ACK slot becomes overwritten by receivers in case of a correct
reception. Moreover, if the decoded frame is classified as an intrusion, then the destroying
procedure of it with error flag is triggered. To test and prove the frame destruction
capabilities of the prevention mechanism a laboratory setup is created. Lastly, this section
shows the detection results obtained for attacks mounted on different J1939 parameters
and provides an analogy between the security level accounted for the proposed solution
and one that meets AUTOSAR SecOC requirements [129]. Overall, the proposed solution,
which was specifically designed to meet J1939 specifications, proved to be a cost-effective
method for both real-time detection and the elimination of attack frames. Moreover, to
the best of author’s knowledge this is the first intrusion detection and prevention system
tailored for SAE J1939 heavy-duty vehicle buses. The innovative approach for decoding
the CAN frame using ICU is another significant development of this chapter.

Chapter 7 presents an intrusion detection system at control system level tailored to
meet J1939 specifications. An overview on the connection between Simulink and CANoe
and their combined operation modes is presented in the first section from this chapter.
The next section proceeds with a brief description of the J1939 CANoe Simulation, the
employed Simulink models as well as the adversary model. The Simulink models are
integrated into the CANoe simulation and allow the prediction of the following signals:
vehicle speed, trip distance, engine speed and torque. The adversary model accounts for
specific attacks mounted at the control system level such as: surge attacks, bias attacks and
geometric attack, which have not been considered by others works on CAN bus intrusion
detection until now. Beside these three attack types, also a more common type of attack is
taken into consideration, i.e., fuzzing attacks. The first part of the experimental section
points out the behavior of the J1939 parameters when such attacks are mounted. Then,
this section presents the performance results in detecting intrusion accounted for both
the machine learning based approaches and change detection mechanisms. A significant
finding from this section shows that, in spite of rising efforts to deploy machine learning
approaches as candidates for IDS, such algorithms are unable to spot minor changes in the
data field. On the other hand, as demonstrated by the experiments, the change detection
mechanism seems to be more effective in detecting such attacks. For each J1939 signal,
several attack scenarios are tested with regard to short simulations (1000 CAN frames) and
long simulations (1 hour). For each signal, regardless of the attack type, the same bias and
threshold values are maintained. This was done to cover the more realistic scenarios. The
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last part of this section discussed the runtime performance of the proposed IDS algorithms.
The obtained results clearly show that the runtime of the change detection mechanisms
is 2-65 times smaller than the one required for the execution of the machine learning
algorithms. Moreover, not only from the perspective of computational efficiency does
the change detection mechanism performs better, but also from the storage capacity point
of view – since it requires just several lines of codes, while the machine learning based
algorithms have a footprint of 10-30 KB .

All in all, this thesis investigates various security solutions that target SAE J1939
heavy-duty vehicle CAN buses, some of which could also be applied to regular CAN
deployments, e.g., from passenger cars. Their practical application has been tested
in various laboratory setups using equipment designed specifically for the automotive
industry (microcontrollers, VN1640, CAN cables, etc.). As a major result, this thesis
accounts for a realistic platform for testing in-vehicle CAN bus attacks and IDS as well, an
intrusion detection and prevention systems tailored to meet J1939 specifications, a novel
method to interpret the content of the CAN frames (ID and payload) before their correct
reception as well as an IDS designed at control system level. The results of this thesis
were published in relevant journals and conferences in the field of security, automotive,
and industry applications. Overall, the results indicate that the intrusion detection systems
are essential in boosting the security of in-vehicle networks and such mechanism can be
efficiently deployed.

Nevertheless, the research carried out in this thesis have produced certain results
that can serve as a starting point for additional investigations in this direction. For the
proposed machine learning based deployments, future work could involve the usage of
more powerful cores to enhance the computational efficiency which is crucial for real-time
CAN traffic filtering. On the other hand, the solution which relies on cryptography can
make use of cryptographic hardware accelerators from the in-vehicle controllers as this
would benefit to speed up the security operations. Another future direction, which can be
applied for all proposals, is the extension of the assessments on CAN-FD networks, which
recently have been adopted for J1939 as well [91]. This extension of CAN could lead to
an increase of the computational demands when considering solutions based on machine
learning because of the larger amount of data packed inside CAN-FD frames, but it may
also pave the way for a better integration of security elements inside the payload.
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