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Rezumat,  
Teza abordează domeniul mecanicii fluidelor computaţionale şi analizei 
numerice, într-un demers interdisciplinar al cărui subiect este reprezentat 
de o problemă fundamentală de hidrodinamică corespunzătoare stabilităţii 
curgerilor cu rotaţie cu aplicaţii la curgerile decelerate cu vârtej în 
turbomaşini. Principalele obiective ale acestei teze sunt extinderea 
metodelor analitice de stabilitate hidrodinamică la obţinerea unor modele 
ale sistemelor fluide care dezvoltă vârtejuri, în paralel cu dezvoltarea unor 
aplicaţii informatice care să permită analiza calitativă a sistemului fluid prin 
prisma investigaţiilor numerice ale stabilităţii spaţio/temporale, procesate 
pe o structură distribuită de calcul paralel de tip cluster. Aceste instrumente 
sunt de mare relevanţă aplicativă nu numai din punct de vedere al reducerii 
drastice a costurilor legate de timp şi resurse, dar pot oferi informaţii şi 
despre cauzele fenomenelor de instabilitate hidrodinamică, conducând la 
optimizarea metodelor de control al stabilităţii. Aceste metode au fost 
validate pentru studii de stabilitate spaţială în cazul curgerilor paralele 
pentru profile de viteză existente în literatură (în cazul vârtejurilor de tip 
Batchelor) şi apoi aplicate pe exemple concrete derivate din măsurători 
experimentale în cazul vârtejurilor elicoidale în mişcare de precesie într-o 
curgere decelarată cu vârtej în turbine Francis.  
 

BUPT



 

TABLE OF CONTENTS 
 

 Preface 3 
 List of figures 7 
 List of tables 9 
   
1 Introduction  11 
 1.1 Motivation ...................................................................... 11 
 1.2 Literature review ……………………………………………………………......... 12 
 1.3 Thesis objectives …………………………………………………………………….. 14 
 1.4 Dissertation outline ……………………………………………………………….... 15 
   
2 Mathematical issues on stability of swirling hydrodynamic 

systems 
16 

 2.1 Linearized disturbance equations ....................................... 16 
 2.2 The method of normal modes analysis ................................ 20 
 2.3 Definition of temporal and spatial instability ........................ 22 
 2.4 Studies upon stability of swirling flows cited in literature …….. 23 
   
3 Mathematical model of swirling flow downstream a Francis 

turbine runner 
26 

 3.1 Discrete operator formulation of the hydrodynamic model …… 26 
 3.2 Axis and wall boundary conditions …………………………………………. 28 
   
4 Computational approaches for stability eigenvalue problems 33 
 4.1 Motivation of using the spectral methods in hydrodynamic 

stability problems ...................................................................... 
 

33 
 4.1.1 The 2L -Projection method …………………………………………… 34 

 4.1.2 The collocation method ........................................... 35 
 4.2 A new orthogonal base of polynomial expansion .................. 39 
 4.2.1 Considerations on shifted Chebyshev polynomials ....... 39 
 4.2.2 Orthogonality of the shifted Chebyshev polynomials …. 40 
 4.2.3 Evaluation of the shifted Chebyshev derivatives ………... 41 
 4.3 Computational domain and grid setup ................................ 42 
   
5 Numerical algorithm for non-axisymmetric stability 

investigation 
46 

 5.1 Boundary adapted radial spectral approximation ………………….. 46 
 5.1.1 Description of the method ....................................... 46 
 5.1.2 Interpolative derivative matrix ................................. 48 
 5.1.3 Implementation of the boundary adapted collocation 

method ……………………………………………………………………………………............ 
50 

 5.2 Summary and published papers supporting this chapter ……... 52 
   
6 Numerical algorithm for axisymmetric and bending modes 

stability investigation 
 

54 
 6.1 A modified 2L -Projection method based on shifted 

polynomials .............................................................................. 

 
54 

 6.1.1 Description of the method ....................................... 54 

BUPT



 

 6.1.2 Implementation of the projection method using 
symbolic and numeric conversions …………………………………………………….. 

 
58 

 6.2 Summary and published papers supporting this chapter ………. 62 
   
7 Parallel computation based on spectral descriptor technique 

for analysis of swirling flows hydrodynamic stability  
 

64 
 7.1 The analytical investigation of the eigenvalue problem …………. 64 
 7.2 Numerical approach based on collocation technique ……………… 67 
 7.2.1 Interpolative derivative  operator ............................. 67 
 7.2.2 Parallel implementation of the spectral collocation 

algorithm ................................................................................. 
 

67 
 7.3 Summary and published papers supporting this chapter ……... 76 
   
8 Validation of the new numerical procedures on a Batchelor 

vortex problem 
78 

 8.1 The Batchelor vortex profile .............................................. 78 
 8.2 Radial boundary adapted method validation and results ………. 79 
 8.3 2L -Projection method validation and results …………………………. 83 

 8.4  Spectral descriptor method validation and results ………………… 86 
 8.5 Comparative results ......................................................... 91 
   
9 Parallel and distributed investigation of the vortex rope 

model using Matlab Distributed Computing Server on a 
Windows operating system cluster 

 
92 

 9.1 Considerations about parallel computing ………………………………… 92 
 9.2 Theoretical model and computational domain ...................... 94 
 9.3 Influence of discharge coefficient on hydrodynamic stability .. 96 
 9.3.1 Investigation of axisymmetric mode ......................... 98 
 9.3.2 Investigation of bending modes ................................ 100 
 9.4 Study of absolute and convective instability of the swirl 

system with discrete velocity profiles ........................................... 
 

104 
 9.4.1 Computational aspects ............................................ 104 
 9.4.2 Validations with experimental results ……………………….... 105 
 9.5 Accuracy and convergence of the algorithm …………………………… 112 
 9.6 Evaluation of the parallel algorithm performance ………………….. 117 
 9.7 Summary and published papers supporting this chapter ………. 120 
   
10 Conclusions  122 
 10.1 Thesis summary ............................................................ 122 
 10.2 Contributions ................................................................ 124 
 10.3 Future work .................................................................. 126 
   
 Bibliography and references ................................................... 127 
  

APPENDIX   Published papers …………………………………………………………… 
 

133 
 

 

BUPT



 

List of Figures 
 
Figure 3.1 Types of perturbations for a core of columnar vortex: 1-core boundary, 

2-lines of fixed phase kz m const   (from Alekseenko et al. [35]). .....29 

Figure 4.1 Various modal basis functions on the interval  1,1 , for 4N  . ......38 

Figure 4.2  Illustration of a one-dimensional collocation grid used to compute the 
disturbance profile. ..............................................................................44 

Figure 5.1 The basis functions  r  on the clustered grid with 7N   nodes, on 

domain   0,3 . ...................................................................................47 

Figure 6.1 The basis of shifted Chebyshev functions  *kT  on domain  0,3 . .....55 

Figure 8.1 Spectra of the hydrodynamic eigenvalue problem computed at 
0.01  , 3m   , 0a  , 0.1q  . ..................................................79 

Figure 8.2 Comparative absolute values of eigenfunction amplitudes of the most 
unstable mode 0.01  , 3m   , 0a  , 0.1q  . .............................81 

Figure 8.3 Behavior of the eigenvalue problem residual as function of the spectral 
parameter N . ....................................................................................82 

Figure 8.4 Radial distribution of velocity field for perturbed flow with non- 
axisymmetric mode 2m  , 0a  , 0.05q   0.1  . .........................82 

Figure 8.5 Absolute values of eigenfunction amplitudes ....................................84 
Figure 8.6 Residual of the eigenvalue problem and corresponding histogram. ......86 
Figure 8.7 Spectra of the q-vortex hydrodynamic eigenvalue problem computed at 

parameters 0.01  , 3m   , 0a  , 0.1q  ...................................87 

Figure 8.8 Comparison of the absolute values of disturbances of the most unstable 
mode 0.01  , 3m   , 0a  , 0.1q  , without stabilization (a) and with 

lanczos stabilization (b). .......................................................................88 
Figure 8.9 Comparison of the radial evolution of the disturbances of the most 

unstable mode 1m   , at 0.78   , 1.268a   , 0.6q  . ...............89 

Figure 8.10 Comparison of the radial evolution of the disturbances of the most 
unstable mode 1m   , at 0.2  , 0.6q  , 0.01a  . ......................90 

Figure 8.11 Comparison of the radial evolution of the disturbances of the most 
unstable mode 1m  , at 0.0425  , 0.7q  , 0a  .........................90 

Figure 9.1 Computer aided mathematics and numerical analysis laboratory of the 
Engineering Faculty of Hunedoara, “Politehnica” University of Timisoara. .....92 

Figure 9.2 Scheme of cluster configuration. ....................................................93 
Figure 9.3 The model of helical vortex............................................................95 
Figure 9.4 The flow chart of the vortex hydrodynamic stability algorithm.............95 
Figure 9.5 The axial velocity component for different discharge coefficients. ........97 
Figure 9.6 The circumferential velocity component for different discharge 

coefficients. ........................................................................................97 

Figure 9.7 Comparison of radial distribution r G  corresponding to the eigenvalue 

with the largest negative imaginary part in axisymmetric mode 0, 0m   , 

for discharge coefficient 0.36  . .......................................................98 

BUPT



 

Figure 9.8 Evolution of the radial disturbance | |G  along the radial direction for 

several increasing discharge coefficients. ................................................99 
Figure 9.9 Evolution of the critical frequency as function of discharge coefficient for 

axisymmetric mode 0m  . ............................................................... 100 

Figure 9.10 Evolution of the axial disturbance | |F  on radial direction, for 

investigated mode 1, 0m   , for several discharge coefficients......... 101 

Figure 9.11 Evolution of the radial disturbance | |G  on radial direction, for 

investigated mode 1, 0m   , for several discharge coefficients......... 101 

Figure 9.12 Distribution of the critical eigenvalues of the perturbed flow at several 
operating points, in bending modes spatial investigation. ........................ 102 

Figure 9.13 Evolution of the critical frequency as function of discharge coefficient for 
mode 1m   .................................................................................. 103 

Figure 9.14 Evolution of the critical frequency as function of discharge coefficient for 
mode 1m  . ................................................................................... 104 

Figure 9.15 Axial and circumferential velocity profiles of the vortex rope model.. 105 
Figure 9.16 Maximum growth rate as function of mode in spatial analysis and 

temporal analysis. ............................................................................. 106 
Figure 9.17 Convective instability of the flow in hydraulic turbine draft tube after 

perturbing flow. the curves are extracted at several non-dimensional time units 
10,15,18,22,25t   at the wall boundary............................................ 107 

Figure 9.18 Fluctuating pressure as function of time, at the wall boundary, extracted 
at several locations on the draft tube: non-dimensional axial coordinates 

1.71,2.43,3.30,4.12,4.25z  .......................................................... 107 

Figure 9.19 Absolute instability of the flow in hydraulic turbine draft tube after 
perturbing flow. the curves are extracted at several non-dimensional time units 

10,15,18,22,25t   at the wall boundary............................................ 108 

Figure 9.20 Critical frequency as function of mode. the value of the critical 

frequency 0.3cr   for modes  0,1m   is the same as in the 

experiments [110] and [111]. ............................................................. 109 
Figure 9.21 Critical axial wavenumber as function of mode. the value of the critical 

wavenumber 3.2crk   for modes  0,1,2m   is the same as in the 

experiment [110]. ............................................................................. 110 
Figure 9.22 Variation of perturbed pressure at mode 0m  . ......................... 111 

Figure 9.23 Variation of perturbed pressure at mode 1m  . .......................... 111 

Figure 9.24 Dominant frequency for mode 3m   ....................................... 113 

Figure 9.25 Dominant frequency for mode 2m   ....................................... 113 

Figure 9.26 Dominant frequency for mode 1m   ....................................... 114 

Figure 9.27 Dominant frequency for mode 0m  ......................................... 114 

Figure 9.28 Dominant frequency for mode 1m  . ........................................ 114 

Figure 9.29 Dominant frequency for mode 2m  ......................................... 114 

Figure 9.30 Dominant frequency for mode 3m  ......................................... 114 

Figure 9.31 Residual along the optimum range for mode 3m   . .................. 115 

BUPT



 

Figure 9.32 Residual along the optimum range for mode 2m   ................... 115 

Figure 9.33 Residual along the optimum range for mode 1m   ................... 115 

Figure 9.34 Residual along the optimum range for mode 0m  ..................... 115 

Figure 9.35 Residual along the optimum range for mode 1m  ...................... 116 

Figure 9.36 Residual along the optimum range for mode 2m  ..................... 116 

Figure 9.37 Residual along the optimum range for mode 3m  ..................... 116 

Figure 9.38 Elapsed time for mode 1m   , on four cluster configurations....... 117 
Figure 9.39 Parallel algorithm speedup as function of the number of parallel 

processors, computed for spectral parameter  83,61,46N  ............... 119 

Figure 9.40 Parallel algorithm efficiency as function of the number of parallel 

processors, computed for spectral parameter  83,61,46N  ............... 119 

 
 
 
List of Tables 
 
Table 2.1 A synthesis of the methods used in literature for flow stability 

investigations......................................................................................24 
Table 3.1 Axis boundary equations comparison. ..............................................31 
Table 4.1 The function gridcheb.m  generates the clustered grid. .......................43 
Table 4.2 The function mapcheb.m for mapping the clustered grid onto the physical 

domain. .............................................................................................44 
Table 4.3 The function polycheb.m generates the values of the nth shifted 

Chebyshev polynomial in the collocation nodes, by polynomial relation. .......45 
Table 4.4 The function shiftrec.m generates the shifted Chebyshev polynomials by 

recurrence..........................................................................................45 
Table 5.1 Interpolative derivative matrix implementation..................................52 

Table 6.1 The function policevs.m generates symbolically the thn  Chebyshev 

polynomial defined on domain 0, wallr   .................................................59 

Table 6.2 Functions to generate symbolically the integrands..............................59 
Table 6.3 Function integrala.m......................................................................61 
Table 6.4 Sequence for construction of the evaluation matrices. ........................61 
Table 7.1 Dynamic matrices and boundary condition implementation in temporal 

analysis for mode 0m  . ....................................................................71 
Table 7.2 Dynamic matrices and boundary condition implementation in spatial 

analysis for mode 0m  . ....................................................................74 

Table 8.1 Comparative values of the most unstable mode at 0a  , 0.1q  , 

0.01   for the case of the counter-rotating mode 3m   : eigenvalue with 

largest imaginary part crk ....................................................................80 

Table 8.2 Convergence behavior of the critical eigenvalue for the most unstable 
mode 3m    with 0.01  ,  0a  , 0.1q  . ...................................81 

Table 8.3 The most amplified axial wavenumber for various modes. ...................81 

BUPT



 

Table 8.4 Comparative results of the most amplified spatial wave of the Batchelor-

vortex: eigenvalue with largest imaginary part  ,cr r ik k k . ..................83 

Table 8.5 Comparison of the convergence behavior of the algorithm assessing radial 

boundary adapted method and 2L -projection method. .............................85 
Table 8.6 Comparative results of the most amplified spatial wave of the Batchelor-

vortex: eigenvalue with largest imaginary part  ,cr r ik k k . ..................87 

Table 8.7 Numerical results comparison for bending modes investigation. ...........89 
Table 8.8 Comparative results of the most unstable spatial mode of the Batchelor-

vortex at 0a  , 0.1q  , 0.01   for the case of mode 3m   : 

eigenvalue with largest imaginary part  ,cr r ik k k  and estimated numerical 

error..................................................................................................91 
Table 9.1 Swirl parameters for investigated turbine operating points: φ ..............96 
Table 9.2 Eigenvalues of the most unstable axisymmetric mode at several operating 

points. ...............................................................................................99 
Table 9.3 The critical frequencies corresponding to axisymmetric mode 0m   at 

several operating points. .................................................................... 100 
Table 9.4 Eigenvalues of the most unstable modes for bending modes investigation, 

at several operating points.................................................................. 102 
Table 9.5 The critical frequencies corresponding to bending mode 1m   ....... 103 

Table 9.6 The critical frequencies corresponding to bending mode 1m  . ........ 103 
Table 9.7 The critical frequency and the maximum growth rates obtained for the 

investigated modes............................................................................ 106 
Table 9.8 Convergence of the algorithm for the investigated mode numbers. ..... 113 
Table 9.9 Elapsed time (in seconds) of numerical simulations for mode 1m   , in 

sequential processing and on four cluster configurations parallel processing118 

BUPT



 

 
 
 

1.  Introduction 
 
 

1.1 Motivation 
 

Renewable energy resources recently have become used in energy 
production of electrical energy. One of these resources is represented by the energy 
produced in hydropower plants. The possibility to store it and the fact that it has a 
relative simple production makes the hydro energy to become a preferred resource 
compared to other system of production.  

Production of energy at variable discharge coefficients makes that the 
turbines used in practice to be operated far from optimal exploit conditions. In 
particular, at part load operating conditions Francis turbine fixed-pitch runner shows 
a strong swirl at the runner outlet. As the incoming swirling flow is decelerating in 
the diffuser cone, a hydrodynamic instability arises under the form of a 
characteristic precession flow, named the vortex rope, see Jacob [1]. 

The vortex rope creates high-pressure unsteady fluctuations on the walls of 
the draft tube (Baya et al. [2]). These can lead to a poor performance of the turbine 
including fatigue damage (Frunzăverde et al. [3]). This phenomenon is especially 
severe when the frequency of the oscillations of the vortex rope matches the 
resonant frequency of the turbine or circuit. Modeling of the hydrodynamic 
phenomena which lead to vortex rope occurrence represent a complex task which 
requires to consider all the combinations which generate the instability in the fluid 
system.    

Experimental investigations of the conditions leading to vortex rope 
occurrence are difficult from technological point of view, requiring complex 
measurement systems (in case of laboratory investigation, Iliescu et al. [4]) which 
are not suited in the real systems evaluation. This makes that the mathematical 
modeling of the flow to become an important tool in the design of hydraulic system. 
The unsteady system must be dynamically analyzed which assumes solving the 
Navier-Stokes model for different sets of conditions enforced by the real 
characteristics of the flow. Due to the nonlinearity of the Navier-Stokes equations, 
the solution of the mathematical model requires a careful approach. Despite the 
latest progresses of the computational fluid dynamics (CFD) and in the 
computational resources respectively, modeling of turbulent flows remains a 
cumbersome task.  

The computational resources required by the software applications to 
accurately simulate the turbulent flows are huge, caused by several factors. These 
applications are mostly based on numerical methods like finite element or finite 
volume method. Beside the fact that these methods require a very fine mesh having 
a large number of nodes, methods based on finite element face difficulties also due 
to the instability of the real phenomenon. Finite element methods can lead to long 
computational time and parallel computational resources.   

In these conditions, stability analyses of swirling flow can help to better 
understand the dynamical behavior of the flow and offer an insight of the physical 
mechanics of the observed dynamics.   
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12 Introduction – 1 

As an alternative to classical methods the present thesis proposes a new 
approach of the analysis of the swirling flows, based on a recently mathematical 
method of spectral collocation. 

The stability investigation of the swirling flows supposes few steps. The first 
step is the boundary conditions determination for the studied situation. A problem 
which was studied in this thesis is the quality of the solution depends on the 
boundary conditions imposed. 

Many surveys cited in literature consider the problem of simulating the flow 
downstream the hydropower runner, but there no exists so far investigations 
considering the swirling flow in hydropower turbine from the point of hydrodynamic 
stability analysis. This thesis intend to cover this gap and presents the methodology 
developed for spatial/temporal stability investigation of the swirl flow in Francis 
diffuser and the results obtained.  

 
 
1.2 Literature Review 

 
Characterizations of the part load operating conditions in the Francis turbine 

have been carried out extensively by Susan-Resiga et al. in [5] and the technology 
for overcoming the draft tube surge through active control has been established.  

Thicke [6] reviews some optimum design rules for draft tubes, as well as 
some practical solutions for draft tube instability problems. McDonald et al. [7] 
provide basic design information for diffusers with incompressible swirling inlet flow. 
They show that swirling inlet flow does not affect the performance of diffusers which 
were no separated or only slightly separated with axial inlet flow. Resiga et al. [8] 
carried out an experimental and theoretical investigation of the flow at the outlet of 
a Francis turbine runner, in order to elucidate the causes of a sudden drop in the 
draft tube pressure recovery coefficient at a discharge near the best efficiency 
operating point. It was found that the investigated mean swirling flow can be 
accurately represented as a superposition of three distinct vortices. An eigenvalue 
analysis of the linearized equations for steady, axisymmetric and inviscid swirling 
flow revealed that the swirl reaches a critical state precisely (within 1.3%) at the 
discharge where the sudden variation in draft tube pressure recovery is observed. 
This is very useful for turbine design and optimization, where a suitable runner 
geometry should avoid such critical swirl configuration within the normal operating 
range. 

The availability of advanced optical instrumentation, such as laser Doppler 
velocimetry (LDV) or particle image velocimetry (PIV) systems, gives the 
opportunity to perform flow surveys in turbo machinery and in particular to 
investigate the unsteady characteristics of the complex flow velocity fields in the 
case of, for instance, the rotor-stator interactions, the draft tube, or the spiral 
casing. 

The progress of the numerical techniques in the prediction of the turbine 
characteristics for the operating ranges in the vicinity of the best efficiency point 
(BEP) insure a good accuracy, see Vu et al. [9]. The massively parallel computations 
development permits now the numerical simulation of the whole turbine, see 
Ruprecht et al. [10], or to detail the flow in a specific part of the turbine. 

One of the new challenges for the numerical turbine simulation is to predict 
the partial or full flow rate operating regimes and the first simulations are 
promising. Ruprecht et al. [11] are focused on the influence of different turbulence 
models on the modeling of the draft tube vortex, carried out in a straight daft tube 
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as well as in a real draft tube. Based on the length of the predicted vortex structure, 
certain turbulence models tend to have a damping effect and from this point of 
view, the most accurate is found to be a two-scale model, reduced to a two 
equations set by a Very Large Eddy Simulation (VLES) approach. An overview of 
unsteady simulations in hydraulic machineries is presented in [12]. Problems with 
self-excited unsteadiness, vortex rope in the draft tube, applications with externally 
forced unsteadiness and rotor-stator interactions are solved using a finite element 
code. The pressure is calculated by a pressure correction algorithm. The time 
discretization is obtained by a fully implicit 3-level scheme of 2nd order and the 
spatial discretization is done by using bi-linear 8-node brick elements. For the 
solution of the linear equation systems a conjugated gradient method is used for 
non-symmetrical matrices. 

Scherer et al. [13] reported the turbine design improvement for the draft 
tube operating at partial flow rate conditions by Computational Fluid Dynamics 
(CFD). An unsteady one-phase Reynold’s Averaged Navier-Stokes (RANS) 
simulation of the draft tube vortex in a Francis turbine model is used to compare 
two draft tube configurations. By comparing the calculated performances of two 
model machines over the operating range, the second one is found to have better 
draft tube efficiency at low flow rate operation, justified by the obtained pressure 
pulsations improvement, the diminishing of the strong velocity gradients, and 
backflow zone in the cone. The comparison with wall pressure experimental data 
shows a good agreement for the vortex frequency and a systematic underestimation 
of the pressure fluctuation amplitudes. 

Miyagawa et al. [14] performed an unsteady simulation of the draft tube 
vortex for a Francis pump turbine, consecutively for two different runners. The 
purpose was to analyze the influence of the velocity profile at the runner outlet on 
the flow instability in the draft tube. Two runner designs are tested for the same 
draft tube geometry using a mesh of 620.000 nodes. The same vortex behavior 
changes are observed in CFD and experimentally by qualitative comparisons with 
the rope visualizations. The authors tested a one phase and a two-phase model as 
well, and found that it influences mainly the fluctuation amplitude and has no 
influence on the vortex frequency, but no further details are given.  

A numerical study of the real flow through a Francis turbine having a  
high/medium specific speed was carried out by Magnoli [15], to predict the pressure 
pulsations induced by the interaction between rotor and stator. The numerical model 
reproduce as accurately as possible the model behavior at the test rig. Numerous 
numerical schemes and parameters were tested and verified with the available 
experimental results. 

Recently, the influence of turbine location on the flow system stability has 
been studied by Alligne et al. [16]. The hydro-acoustic models of hydraulic 
components have been made based on electrical equivalent schemes. An 
eigenanalysis tool, based on eigenvalues and eigenvectors computation of the 
nonlinear set of differential equations modeling the hydrodynamic system has been 
developed. An example of experimental investigation is carried out in paper [17] 
focusing on vortex rope breakdown on a high specific speed Francis turbine scale 
model. Observations of the cavitation vortex carried out with high speed camera 
have been recorded and synchronized with pressure fluctuations measurements at 
the draft tube cone. 
 
 

BUPT



14 Introduction – 1 

1.3 Thesis Objectives 
 

The main objectives of this thesis are the modeling of the swirling flows 
hydrodynamic instability assessing both analytically mathematical methods and 
development of numerical algorithms to investigate the spatial/temporal stability of 
the swirling flows systems. These instruments may offer information concerning the 
parameters that produce the hydrodynamic instability, which may lead to the 
optimization of flow control problems. 

Sophisticated mathematical calculations are needed to analytically modeling 
the swirling flows and we have no information concerning the software application 
for hydrodynamic stability investigation of the vortex structures.  

The numerical stability algorithms developed and presented in this thesis 
allow the sensing of the hydrodynamic instability states for characteristic 
parameters sets, in the process of understanding of the real fluid flow dynamic. 

Selection of the spectral methods as a tool for solving the eigenvalue 
problems governing the flow hydrodynamic stability is motivated by the accuracy of 
these methods and the exponentially decreasing of the error, differently form the 
finite element methods having an algebraic convergence rate. 

A major benefit of collocation based method is given by a fast processing 
time and available hardware resources. 

The spectral algorithms presented in this thesis have been validated with 
existing stability investigations concerning the swirling flow system with known 
velocity profiles, namely the Batchelor vortex problem and applied for the 
investigation of practical problems based on experimental test measured parameters 
of fluid flow in Francis turbine draft tube. 

The originality of the new spectral algorithms developed in this thesis 
consists in: 

Rebuilt of the mathematical model governing the swirling flow with 
differential operators; 

Development of a special orthogonal test functions defined directly on the 
physical space of the practical problem, increasing the solution accuracy; 

Recasting of the unknown eigenvectors in series of orthogonal expansions 
by means of boundary adapted test functions, satisfying the boundary conditions, 
this technique allowing to eliminate the axis singularities; 

Approximation of derivatives of the unknown eigenvectors by means of 
spectral differentiation matrices, particularly derived in different flow problems;  

Determination of an optimal clustered grid; 
Optimal implementation of the Dirichlet, Neumann and mixed boundary 

conditions; 
Inclusion of some efficient numerical libraries with eigensolvers in the 

software platform. 
The environment for algorithms development and test was Matlab, due to 

the very advanced mathematical embedded functions, allowing the user to focus on 
developing algorithms instead of the details of the implementation. 

It is not possible to consider advanced computational algorithms without 
including the parallel and distributed processing. In this thesis, the numerical 
algorithms developed were further improved by means of parallel and distributed 
processing on a cluster structure. 
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1.4 Dissertation Outline 
 

This thesis is outlined as follows:  
Chapter 1 gives a motivation for the study of hydrodynamic stability of the 

swirling flow in Francis hydropower turbine using computer aided techniques of 
parallel and distributed computation.  

Chapter 2 gives an overview of the linear stability analysis of vortex 
hydrodynamics.  

The mathematical model of the swirling flow downstream the Francis turbine 
runner is developed in Chapter 3. 

Chapter 4 presents theoretical considerations about the spectral methods 
used in forthcoming numerical stability algorithms. Computational approaches for 
stability eigenvalue problems are presented here and a new orthogonal base of 
polynomial test functions is introduced.  

A boundary adapted radial spectral approximation for non-axisymmetric 
stability investigation is presented in Chapter 5. 

A modified 2L -projection method based on shifted polynomials for 
axisymmetric and bending modes stability investigation is presented in Chapter 6. 

A parallel computation method based on spectral descriptor technique for 
analysis of swirling flows hydrodynamic stability with sophisticated boundary 
conditions is presented in Chapter 7. 

In Chapter 8 validation of the numerical procedures on a Batchelor vortex 
problem is assessed. 

Chapter 9 presents the results of parallel and distributed investigation of the 
vortex rope model using Matlab Distributed Computing Server on a Windows 
operating system cluster. 

This thesis ends in Chapter 10 where conclusions and future work are 
outlined. 
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2.  MATHEMATICAL ISSUES ON STABILITY OF 
SWIRLING HYDRODYNAMIC SYSTEMS 

 
 

2.1 Linearized Disturbance Equations 
 

The role of the hydrodynamic stability theory in fluid mechanics reach a 
special attention, especially when researchers deal with problem of minimum 
consumption of energy. This theory deserves special mention in many engineering 
fields, such as the aerodynamics of profiles in supersonic regime, the construction of 
automation elements by fluid jets and the technique of emulsions.   

The field of hydrodynamic stability has a long history, going back to 
Reynolds and Lord Rayleigh in the late 19th century. Since then, its central role in 
many research efforts involving fluid flow resulted in a huge number of studies. The 
main interest in recent decades is to use the theory of hydrodynamic stability in 
predicting transitions between laminar and turbulent configurations for a given flow 
field. R.E. Langer [18] proposed a theoretical model for transition based on 
supercritical branching of the solutions of the Navier-Stokes equations. This model 
was substantiated mathematically by E. Hopf [19] for systems of nonlinear 
equations close to Navier-Stokes equations. C.C. Lin, a famous specialist in 
hydrodynamic stability theory, published his first paper on stability of fluid systems 
in which the mathematical formulation of the problems was essentially different 
from the conservative treatment [20]. The intermittent character of the transition of 
motions in pipes was identified for the first time by J.C. Rotta [21]. J.T. Stuart in 
[22] developed an energetic method frequently used in the investigation of 
transition, method that was undertaken by D.D. Joseph whose intensive activity has 
lead to the theory of the global stability of fluid flows [23]. The Nobel laureate 
Chandrasekhar [24] presents in his study considerations of typical problems in 
hydrodynamic and hydro magnetic stability as a branch of experimental physics. 
Among the subjects treated are thermal instability of a layer of fluid heated from 
below, the Benard problem, stability of Couette flow, and the Kelvin-Helmholtz 
instability.  
 The access to computers at an institutional and personal level has defined a 
new era in teaching and learning. The opportunity to extend the subject of 
hydrodynamic stability from the matter of traditional science and engineering 
disciplines into the realm of scientific computing has become not only desirable, but 
also necessary. The new environment has motivated the writing of texts and 
monographs with a modern perspective that incorporates numerical and computer 
programming aspects. In a beautiful monograph C. Pozrikidis [25] offer an 
introductory course in fluid mechanics, covering the traditional topics in a way that 
unifies theory, computation, computer programming and numerical simulation. 
Canuto et al. [26] introduce the main strategies for constructing numerical spectral 
approximations in complex domains, in particular, the spectral element method, the 
mortar element method, the spectral discontinuous Galerkin method, as well as the 
more traditional patching collocation method. Recently, new techniques to 
numerically solve all kinds of ordinary and partial differential equations connected 
with problems in fluid dynamics, quantum mechanics, vibrations, linear and 
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nonlinear waves and other fields were developed. The aim of the book of L. 
Trefethen [27] is to present the essentials of spectral collocation methods with the 
aids of a computer algebra system, presenting advanced numerical algorithms and 
solutions of nontrivial problems. 

Many publications in the field of hydrodynamics are focused on vortex 
motion as one of the basic states of a flowing continuum and effects that vortex can 
produce. Such problems may be of interest in the field of aerodynamics, where 
vortices trail on the tip of each wing of the airplane and stability analyses are 
needed and to study the hydrodynamics of rotating machines where confined 
vortices are developed due to the turbine rotation. Mayer [28] and Khorrami [29] 
have mapped out the stability of Q-vortices, identifying both inviscid and viscous 
modes of instability and studies of Leibovich et al. [30], Orszag [31], Parras et al. 
[32], Payne et al. [33], Reddy et al. [34] have examined the stability of vortex 
cores with axial velocities component.  

Hydrodynamic stability theory is concerned with the response of a laminar 
flow to a disturbance of small or moderate amplitude. If the flow returns to its 
original laminar state one defines the flow as stable, whereas if the disturbance 
grows and causes the laminar flow to change into a different state, one defines the 
flow as unstable. Instabilities often result in turbulent fluid motion, but they may 
also take the flow into a different laminar, usually more complicated state. Stability 
theory deals with the mathematical analysis of the evolution of disturbances 
superposed on a laminar base flow. In many cases one assumes the disturbances to 
be small so that further simplifications can be justified. In particular, a linear 
equation governing the evolution of disturbances is desirable. As the disturbance 
velocities grow above a few percent of the base flow, nonlinear effects become 
important and the linear equations no longer accurately predict the disturbance 
evolution. Although the linear equations have a limited region of validity they are 
important in detecting physical growth mechanisms and identifying dominant 
disturbance types. In this chapter we will derive the nonlinear equations, governing 
the development of a disturbance on a laminar base flow, define various types of 
stability and discuss some general concepts and results. 
 The equations governing the general evolution of fluid flow are known as the 
Navier-Stokes equations. They describe the conservation of mass and momentum.  
The radial and axial coordinates and also the time scale for the system equation 
governing the flow were considered normalized by a reference dimension and they 
are nondimensionalized, i.e. 

 
* * *

, , ,c
ref ref ref

z r t
z r t U

L L L
    (2.1) 

where refL  represents a characteristic length scale of the problem that will be 

defined for specific cases as the analysis proceeds, cU  represents a characteristic 

flow velocity of the problem and superscript *  denotes a dimensional quantity. 
To nondimensionalize the velocity field and pressure, we introduce the following 
scaling  

 
 

** * *

2
, , ,z r

z r
c c c c

uu u p
u u u p

U U U U





     (2.2) 

For an incompressible fluid, in terms of these normalizing variables using Cylindrical 
coordinates  , ,z r  , the Navier-Stokes  equations read 

BUPT



18 Mathematical Issues on Stability of Swirling Hydrodynamic Systems – 2 

  1 1
0,z

r
u u

ru
r r r z




 
  

  
 (2.3) 

  u
1

,
Re

z
z z

u p
u u

t z
 

      
 

 (2.4) 

  u
2

2 2
1 2

,
Re

r r
r r

u uu up
u u

t r r r r
 


   

             
 (2.5) 

  u
2 2

1 1 2
,

Re
r ru u u u up

u u
t r r r r
  

  
   

             
 (2.6) 

where  u , ,z ru u u  is the velocity vector of axial, radial and tangential  

components,  
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is the Laplace operator, the function p  is the fluctuating pressure, Re  represents 
the Reynolds number and 

 u r z
u

u u
r r z




  
    
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  (2.8) 

  The coordinates z , r ,   and the time t  are independent variables and the 
functions    , , , , , ,z ru u u p z r t   are the dependent variables. Equations (2.4), (2.5) 

and (2.6) are nonlinear, making the solution of the system nontrivial. As a result, 
theoretical assumptions and simplifications are made to reduce the nonlinear partial 
differential equations to solving a problem of either linear partial differential 
equations or linear ordinary differential equations. 

To derive the equations that control the small oscillations the parallel and 
steady mean flow assumptions are made. By parallel flow we mean that the 
dependent variables for the base flow are at most function of only one independent 
variable, while steady denotes that the mean flow does not change with time. This 
derivation is done in three steps: separation of fluctuations, linearization and solve 
the system for complex functions applying the method of normal modes.  

Since we are considering the class of stationary basic states, we assume 
that the flow can be decomposed into a laminar basic state   U ,0, , 'U W p  and a 

fluctuating component that oscillates about the basic flow   V , , ,z rv v v  , with 

the fluctuation being of order 0 1   
    , , , ( ) , , , ,z zu z r t U r v z r t     (2.9) 

    , , , , , , ,r ru z r t v z r t    (2.10)  

    , , , ( ) , , , ,u z r t W r v z r t      (2.11)  

    , , , '( ) , , , .p z r t p r z r t     (2.12) 

Consistent with the parallel mean flow assumption is that the functional 
form for the mean part of the velocity components only involves the cross-stream 
coordinate r  and also zero mean radial velocity. 
Expressing each flow quantity in the form of (2.9)-(2.12) and substituting these 
expressions into equations (2.3)-(2.6), gives 
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The basic-state quantities   U ,0, , 'U W p  are always solutions of the 

Navier-Stokes equations by themselves so equations (2.13)-(2.16) can be separated 
into disturbance-state equations and basic-state equations. The linearized 
disturbance equations are obtained after considering contributions of first order in 
delta.  
 
Basic state equations: 
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where 

 U
W

U
r z

 
   

 
 (2.21) 

Linearized disturbance equations: 
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The linearized Navier-Stokes equations are derived also in Alekseenko et al. 
[35] and in Drazin and Reid [36] and presented in a system equations form. 
For the stability studies concerning Francis turbine the fluid element being water the 
analysis can be simplified on the basis of hypothesis that viscosity can be neglected. 

In this case, for high Reynolds numbers as 5 610 10 for the flow in Francis hydraulic 

turbine, respectively 7 810 10  for the flow in the Francis turbine prototype, the 
linearized Euler equations are used instead of Navier-Stokes.  

The Euler basic state equations are the following: 
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The linearized Euler disturbance equations are presented in the following: 
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2.2 The Method of Normal Modes Analysis 
 

The normal mode method is synthesized by Criminale et al. in a remarkable 
treatise [37] devoted to the subject of stability of fluid motion. Robert Blevins used 
this method in vibration analysis which is presented as an important part of design 
[38]. He provided a range of the natural frequencies and mode shapes of several 
practical important structural and fluid systems. Dynamic characteristics of most 
natural structures as fluids, heat transfer and control are the subject of the book of 
Tzou and Bergman [39], which aims to document recent progress on the subject 
and to bring the technical applications of the normal modes analysis to the 
engineering community. The main advantage of linear stability analysis is that we 
can seek solutions in term of complex functions and reduce the system of partial 
differential equations to ordinary differential equations.  This particular approach of 
using complex quantities is called the normal mode approach and the solutions are 
called normal modes.  
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The factorization with respect to the axial coordinate z  is allowed by the 
assumption on an axisymmetric parallel flow in a cylindrical pipe, so we shape the 
normal mode solution in form 

 ikze   (2.35)  
where k  is the complex  axial wavenumber. 

The factorization in the tangential direction can be considered based on the 
angular periodicity flow assumption, so we shape the normal mode solution in form 

 ime    (2.36) 
where m  is the tangential integer wavenumber. 
 A linear stability study implies linearized infinitesimal type perturbations so a 
factorization in time can be considered, of form 

 i te    (2.37) 
where   represents the complex frequency.  

The disturbance components of velocity are shaped into normal mode 
solutions of the type 
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 


 







 

 

 

 

 









 (2.38) 

where , , ,F G H P  represent the complex normal mode forms of the amplitudes of the 
perturbations.   

Introducing the factorization form (2.38) into the linearized Euler 
disturbance equations (2.31)-(2.34) we obtain the following set of first order 
differential equations (ODE) with variable coefficients 

         0r
G r H r

d G r m kF r
r r

    , (2.39)  

 
           2

0r
W r W r H r

m kU r G r d P r
r r


 

      
 

, (2.40) 

 
             

0r
W r W r P r

m kU r H r d W r G r m
r r r


   
            
   

,(2.41) 

 
            0r

W r
m kU r F r G r d U r kP r

r


 
       
 

, (2.42) 

where rd  means differentiation with respect to the radius.  

 The system of first order differential equations (2.39)-(2.42) governs the 
hydrodynamic stability of the fluid system. The unknown functions 
       , , ,F r G r H r P r  depending on radial coordinate must be found solving the 

system and represent the disturbance amplitudes. A hydrodynamic model for a 
viscous swirling flow was derived in [40]. 
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2.3 Definition of Temporal and Spatial Instability 
 

The fact that many problems involving swirling flows motion can be cast in 
the formulation of vortex dynamics has stimulated much interest. Vortex dynamics 
is a frequent meet situation in fluid flow as modern dynamical system theory must 
include also turbulence and vortex studies.  

The fundamental properties of vorticity and a review of the classical theory 
of inviscid incompressible fluids containing finite regions of vorticity are emphasized 
in the monograph of Saffman [41].  Wu et al. [42] present fundamental processes 
in fluid motion and a description of the vortex evolution following its entire life. A 
review of recent developments in the hydrodynamic stability theory of spatially 
developing flows pertaining to absolute/convective and local/global instability 
concepts is presented in a beautiful synthesis in Huerre and Monkewitz [43]. 

The use of the normal mode relationship for perturbations (2.38) substituted 
into the linearized system (2.31)-(2.34) transforms the partial differential equations 
into ordinary differential system (2.39)-(2.42), where the complex eigenfunctions 
F , G , H  and P  are unknown functions of r . The complex frequency r ii   and 

the complex wavenumber r ik ik  introduce four additional unknowns, resulting in 

more unknowns than equations. Hence, in order to obtain the solutions, we must 
make assumptions concerning these unknowns. 

When the complex frequency r ii     , Re( )r  , Im( )i   is 

determined as a function of the real wavenumber k  a temporal or absolute stability 
analysis is performed. The disturbance is applied in space by the fixed wavenumber 
k  and is observed as it evolves in time through the complex frequency   
calculated as the eigenvalue. The eigenvalue problem governing the flow stability is 
expressed as 
  , ,f k m R  ,  (2.43) 

where f  is a complex map. Equation (2.43) yields a ,r i   pair when , ,k m  and R 

(denoting some other parameters of the system) are specified.  
In this case, the local normal mode is still given by (2.38), and when we 

decompose the amplitude r iF F iF    and temporal frequency r ii    , one 

sees how the real and imaginary part of F  and   contributes to the wave solution 

        cos sin cos cos sin sinit
r r i r i r r re F t F t F t F t               , 

 .kz m    (2.44) 
The temporal growth rate is given by i  for obvious reasons. Thus 

disturbances can be grouped into three classes depending on the sign of i , 

namely, 
 0i  : amplified disturbances; absolute unstable flow,  (2.45) 

 0i  : no change in time; neutral,  (2.46) 

 0i  : damped disturbances; stable flow.  (2.47) 

Conversely, solving the ODE system (2.39)-(2.42) for the complex 
wavenumber r ik k i k   , rk  Re( )k , Im( )ik k , when   is given real leads to 

the spatial branches ( , )k    where by   we denoted the set of all other physical 
parameters involved. The disturbance is applied in time, with real frequency   and 
the evolution of the perturbation is observed in space.  
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The eigenvalue problem of system (2.39)-(2.42) is expressed as 
  , ,k f m R ,  (2.48) 

where f  is a complex map. Equation (2.48) yields a ,r ik k  pair when , ,m  and R 

(denoting some other parameters of the system) are specified.  
The spatial growth rate of the wave solution in spatial case depends on the 

imaginary part of the axial wavenumber k, as described in the next formula 

        cos sin sin cos ,ik z
r r i r r r i re F k z F k z i F k z F k z               

 .m t     (2.49) 
Thus disturbances can be grouped into three classes depending on the sign of ik , 

namely, 
 0ik  : amplified disturbances; convective unstable flow,  (2.50) 

 0ik  : no change in time; neutral,  (2.51) 

 0ik  : damped disturbances; stable flow.  (2.52) 

 
 

2.4 Studies Upon Stability of Swirling Flows Cited in 
Literature 

 
Flows with swirling motions are subject of major changes in their dynamics, 

involving very large disturbances when a characteristic ratio of tangential to axial 
velocity components is varied. The results of the theoretical analysis of the stability 
of swirling fluid systems are widely present in literature. 
A synthesis of the methods used for flow stability investigations in some cited 
references is presented in Table 2.1.  

The linear versus nonlinear convective/absolute instability properties of a 
Batchelor vortex are investigated by Delbende et al. in [44] using the method of 
direct numerical simulation of the linear impulse response. The results of this 
numerical procedure were in good qualitative and quantitative agreement with those 
obtained by direct application of the Briggs-Bers criterion to the inviscid dispersion 
relation used in Olendraru et al. [45]. The characteristics of absolute/convective 
instability of a few families of swirling jets, examined with analytical and numerical 
tools, referred to the Batchelor vortex as a continuous basic flow whose velocity 
field is represented within trailing line vortices. 

The main objective of the study of Olendraru et al. [46] was to examine the 
spatial/temporal instability properties of the Batchelor q-vortex, as a function of 
swirl ratio and external axial flow parameter. For a set of a given values of the 
vortex parameters, the spatial branches were numerically determined as a function 
of the complex frequency by making use of a shooting algorithm. The results of the 
investigation presented in this paper may also be compared with the inviscid 
instability analysis of the Rankine vortex with axial flow performed by Loiseleux et 
al. [47]. In [47] a study of the absolute/convective instability transition curves 
pertaining to all helical modes has been conducted for both jets and wakes and for 
both centrifugally destabilizing and stabilizing swirl distributions. The paper focuses 
on systematically determine the absolute/convective instability boundary of the 
basic flow by locating the absolute/convective transition curves of all positive and 
negative helical modes. The results very significantly extend those obtained by Lim 
and Redekopp [48]. The characteristics of absolute/convective instability of two 
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idealized models of swirling flows that are centrifugally destabilized have been 
analyzed in [48]. A modified Rankine vortex model with superimposed axial flow is 
allowed to exhibit a centrifugally destabilizing tangential velocity discontinuity. The 
increasing magnitude of the discontinuity is then shown to very significantly 
enhance the absolute growth rate of the axisymmetric mode. 
 The stability of weakly compressible three-dimensional jets and their 
transition to turbulence was studied by Rudman et al. [49]. Here the naturally 
growing of the most unstable mode was obtained by adding a small white noise 
(random) perturbation to each component of the base jet velocity profile. The 
numerical method used here for temporal simulations is based on the piecewise 
parabolic method [50] combined with time-splitting of an additional diffusive term.  
The linear stability theory and the finite difference technique were utilized by Guohui 
et al. [51] to study the dynamics of a swirling jet. The temporal instability and 
nonlinear evolution of the swirling jet near a nozzle exit were studied by both 
normal-mode method and three dimensional direct numerical simulation method. 
The early stage numerical simulations showed that the results were well consistent 
with the prediction of the linear stability theory.  
 A key point in stability analysis is solving the eigenvalue problem that 
governs the hydrodynamic stability of the flow and practical difficulties can arise. 
The shooting technique requires a good initial guess of the eigenvalue and only a 
single eigenvalue is tracked. Another possibility is to make use of the compound 
matrix method as discussed by Anturkar et al. [52], Ng and Reid [53, 54], Yiantsios 
and Higgins [55], for solving difficult eigenvalue problems.  Although this method is 
in general superior to shooting techniques [46, 47], neither this method does not 
provide the overall picture of the eigenvalue spectrum.  
 
Table 2.1 A synthesis of the methods used in literature for flow stability 
investigations. 
 

Reference Method of investigation 
Delbende, Chomaz and Huerre [44] direct numerical simulation of the 

linear impulse response 
Olendraru, Sellier, Rossi and Huerre 
[45, 46] 

shooting numerical algorithm 
implemented by making use of 
IMSL routines 

Loiseleux, Delbende, Huerre [47] analytical investigation of the 
dispersion relation 

Lim and Redekopp [48] analytical investigation of  idealized 
flow models 

Rudman, Gathmann, Lesieur [49] piecewise parabolic method 
 
Guohui, Dejun, Xieyuan [51] 

normal mode method and three 
dimensional direct numerical 
simulation 

Anturkar, Papanastasiou, Wilkes [52], 
Ng and Reid [53, 54], Yiantsios and 
Higgins [55] 

 
compound matrix method 

Mehdi R. Khorrami [56], Su and 
Khomami [57], Boomkamp, Boersma, 
Miesen, Beijnon [58] 

 
spectral collocation technique 
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Building upon the paper by Mehdi R. Khorrami [56] and Su and Khomami 
[57], Boomkamp et al. [58] solve the eigenvalue problem by means of a Chebyshev 
collocation technique, which takes away the difficulties mentioned before. The 
spectral method has the convenient property that it converges exponentially unlike 
other types of approximations and become widely used in computational 
hydrodynamic stability problems. 
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3.  MATHEMATICAL MODEL OF SWIRLING FLOW 
DOWNSTREAM A FRANCIS TURBINE RUNNER 

 
 

3.1 Discrete Operator Formulation of the Hydrodynamic 
Model 

 
In practical engineering problems such as control of high-Reynolds number 

flow, stability analyses are needed to predict vortex motion and effects that 
vortices can produce. J.M. Burgers [59] in 1948 first studied the stability of a new 
three-dimensional vortices class, taking his name. A later note was made by Darren 
G. Crowdy [60], on the linear stability of Burgers vortex, giving an analytical 
perturbative solutions for disturbances for small Reynolds numbers, letting open 
the unsolved problem of the linear stability of Burgers vortex to axially varying 
disturbances. 

The investigations concerned the values of parameters for which the vortex 
become unstable may imply a large amount of measurement, thus one must resort 
to numerical techniques. 

The present section is focused on developing the mathematical model 
leading to the eigenvalue problem governing the linear stability of the inviscid 
swirling fluid flow under small perturbations, downstream the Francis runner. Due 
to the lack of spectral theory with respect to non-selfadjoint differential operators 
this type of problems are far from being solved.  

We assume the swirling flow downstream the Francis runner as a steady 
columnar vortex whose velocity and pressure profiles are written as 

         ,0, , 'U U r W r p r , (3.1) 

where U  represents the axial velocity component, the radial velocity component is 
negligible and W is the tangential component of the velocity, all depending only on 
radius. This assumption is validated in the daft tube throat of Francis turbine, by 
Muntean PhD Thesis [61], Resiga et al. [62]. 

Introducing the factorization form (2.38) discussed earlier, into the 
linearized Euler disturbance equations (2.31)-(2.34) we obtain the mathematical 
model of the swirling flow system  

            0r
G r H r

d G r m kF r
r r

, (3.2)  

 
           

 
      

 

2
0r

W r W r H r
m kU r G r d P r

r r
, (3.3) 

 
             


   
            
   

0r
W r W r P r

m kU r H r d W r G r m
r r r

, (3.4) 

 
           

 
       
 

0r
W r

m kU r F r G r d U r kP r
r

, (3.5) 
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where r
d

d
dr

 means differentiation with respect to the radius and the unknown 

functions , , ,F G H P  represent the disturbance amplitudes.  
The system (3.2)-(3.5) represents an eigenvalue problem with variable 

coefficients that governs the hydrodynamic stability of the fluid system.  To handle 
this eigenvalue problem in the system formulation is difficult due to the presence of 
the derivatives of the unknown functions ,r rd G d P . In this case, for a better 

manipulation in the process of deriving the numerical algorithm for stability analysis 
we write the mathematical model in descriptor notation (or operator formulation). 

Descriptor notation [65] is widely used in the control theory community to 
describe and analyze systems of differential-algebraic equations. In descriptor 
formulation of the ODE system governing the stability of the flow, the differential 

spatial operator rd  is preceded by a square, possibly singular matrix    I
rd D , 

where ID  is the differentiation matrix operator [26, 27] and   represents the 
modal collocated values of the unknown functions. 
 The eigenvalue problem governing the hydrodynamic stability of the flow 
system is written in operator formulation as follows 

    0,h h TF G H P  (3.6) 

where the matrix operator    is defined as 

          11 12 13 14
1

, , , 0,r m
k D

r r
 (3.7) 

            21 22 23 24
2

0, , , ,rmW W
kU D

r r
 (3.8) 

            31 32 33 340, ' , , ,
W mW m

W kU
r r r

 (3.9) 

           41 42 43 44, ', 0,
mW

kU U k
r

, (3.10) 

where prime  '  denotes derivative of the known velocity coefficients and   rD  

represents the radial differentiation operator, i.e.   r
rd A D a , where 

      , , ,A r F iG H P r  and a  represents the modal collocated values of the 

amplitudes. 
 To obtain the system (3.2)-(3.5) imply a large analytically calculations 
when we handle with the Euler equations in system formulation, during the 
procedure of normal modes analysis aforementioned. We present hereinafter a 
second way to obtain the hydrodynamic stability model of the flow, by performing 
the calculations in descriptor notations only. 
 We first put the linearized Euler disturbance equations (2.31)-(2.34) into 
operator formulation 

    0, T
z rLs s v v v  (3.11) 

where the elements of matrix operator L  are 

        11 12 13 14
1 1

, , , 0,z rL L L L
r r

 (3.12) 

  
  

          
  21 22 23 24

1
, , , ,t z z

W U U U
L U L L L

r z r r
 (3.13) 
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           31 32 33 340, , 2 , ,t z r
W W

L L U L L
r r

 (3.14) 

  
  

           
  41 42 43 44

1 1
, , , ,t z

W W W W W
L L L U L

z r r r r r
(3.15) 

when   , , ,t z r  denote the partial derivative operators. 

 We substitute the partial derivatives operators as 
       , , ,t zi ik im  (3.16) 

and the factorization form (2.38) in (3.11)  leading to matrix relation 

  






 

   
 

                        
     
 

1 1
0

' 0
0

0 2

1
0 '

r

i kz m t

r

ik im
r r

FW
i im Uik U ik iGr e

W W H
i im Uik

r r P
W W

W i im Uik im
r r r

(3.17) 
which is equivalent with  

 






   
 

                       
     
 

1
0

' 0
0

0 2

0 '

r

r

m
k

r r
FW

m Uk U k Gr
W W H

m Uk
r r P

W W m
W m Uk

r r r

. (3.18) 

 One can observe that the matrix equation (3.18) is equivalent with (3.6), 
representing the hydrodynamic stability relation of the flow system. 
 
 

3.2 Axis and Wall Boundary Conditions 
 

Numerous stability studies led to the conclusion that many kinds of swirling 
flows, either bounded or free, exhibit instability. 

Before we begin the computational analysis of the instability problem, we 
will describe below the main types of axisymmetric and non-axisymmetric 
perturbations of a columnar vortex with a distinguish core of radius R , as presented 
in Alekseenko et al. [35]. The main types of disturbances affecting the core 
boundary, given by formula  
     cosr R a kz m  (3.19) 

are shown in Fig. 3.1 Amplitude is a R , k  is the axial wavenumber, m  is the 
integer tangential wavenumber,   is the tangential angle and   is the frequency. 
For analysis of disturbed core shape, the case when k  is real and  0t  is 
considered.  
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 The case of  0m  corresponds to the axisymmetric mode. The wavelength 
has the value 2 / k  and the cross-section z const  are concentric circles with a 

radius from  R a  to  R a . 

 For  0m  we obtain non-axisymmetric modes. The modes with  1m  are 
usually called bending modes. The core cross-section z const  is a circle of radius 
R , shifted by a distance a  along the radius r  at the angle    /kz m . The mode 

 1m  takes the form of a left-handed helix and  1m  of a right-handed one. 
 For  2m  the circular shape of the core cross-section transforms into an 

ellipse. For all the cases with  2m , the vortex axis remains undisturbed, due to 

the symmetry in disturbance. If the amplitude of the disturbance is not small, we 
cannot use the simple canonic form. For the limiting case of an infinitely thin vortex 
filament, the disturbed state can be described by one of the canonic curves, a 
helical line  r const ,  kz m const . 
 

 
Fig. 3.1 Types of perturbations for a core of columnar vortex: 1-core boundary, 2-lines of 

fixed phase kz m const   (from Alekseenko et al. [35]). 

 
To complete the flow equation system, appropriate boundary conditions 

must be satisfied for an accurate simulation of the flow behavior. These conditions 
are obtained from discretization issues and physical requirements. For our stability 
investigation of the fluid system, the boundary conditions must be specified in the 
axis and to the wall boundary. 

 The axial singularities in a cylindrical polar coordinates system occur due to 
the presence of terms 1/r, r-radial distance and because certain boundary 
conditions must be specified in  0r . The axis boundary conditions that complete 
the homogenous first order differential system (3.2) to (3.5) are detailed in 
Batchelor and Gill [64]. In the following, we will make a review of the derivation of 
the boundary equations in axis origin. 
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While the axis is not a physical boundary, it is both a computational 
boundary and a singular line of the form of system equations being solved. The 
boundary condition is necessary to ensure that physically realistic solutions are 
obtained.  

In the axisymmetric case, if the radial and tangential velocities do not 
vanish at  0r , then a vortex line must exist on the axis.  

Cylindrical coordinates may be converted into Cartesian coordinates by 
relations 

 

 

 

  
   




cos sin

sin cos
r

z

e i j

e i j

e k

  (3.20) 

where  , ,r ze e e  and  , ,i j k  are the local unit vectors at a point in cylindrical, 

respectively Cartesian system. Hence results 
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 
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
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

sin cos

cos sin

0

r

r

z

de
i j e

d
de

i j e
d
de
d

 (3.21) 

Representing the perturbation velocity field by  V , ,z rv v v  the flow is 

independent of   and this tidies up to  

 
V

0
lim 0
r 





 and 







0
lim 0
r

. (3.22) 

We further have 

 V
0 0

lim lim z z r r
r r
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   

 
 

0
lim z z r r

z z r r
r

v ev e v e
e v e v e v 

      

     
             

 

 
0

lim z r
z r r

r

vv v
e v e v e

   

                  
. (3.23) 

The derivatives of the velocity field with respect to   are expressed as  

 , , ( ), ( ), ( ) i kz m tz r vv v
F r iG r H r e  

   
    

         
 

       , , i kz m timF mG imH e . (3.24) 

The relation (3.23) becomes 

    V
0 0

lim lim 0z r
r r

imF e Gm H e iG imH e 

         
, (3.25) 

and the last condition is 

 




 

0
lim 0
r

imP . (3.26) 

In order for these equalities to hold, each component of the resultant 
vector must be zero. Summarizing, we have 
   0mG H ,   0G mH ,  0mF ,  0mP  (3.27) 
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in the center of the axis.  

  0m   

 
 
   

 
 



0 0

0 0

0 , 0

H

G

F P finite

; (3.28) 

  1m  

   
 
 

  
 




0 0 0

0 0

0 0

H G

F

P

; (3.29) 

  1m  

   
 
 

  
 




0 0 0

0 0

0 0

H G

F

P

; (3.30) 

 1m   
 


 

0
0

mG H
G mH

      21 0H m   

     0 0 0H G  and     0 0 0F P . (3.31) 

The axisymmetric boundary conditions in the axis have the form 
   0, 0, , ,m G H F P finite  (3.32) 

Both the axial velocity and the pressure must have local extrema on the 
axis, thus the equations are 
     0, 0, 0r rm G H d F d P , (3.33) 

rd  meaning the radial derivative operator. 

The non-axisymmetric boundary conditions derived in the axis are 
     | | 1, 0m F G H P , (3.34) 
      1, 0, 0m H G F P . (3.35) 
 A similar analysis was performed by O’Sullivan [65], but it seems to be 
slightly different in some assumptions. In particular, he arrives at the condition that 

  0 0G r  for all mode number m . This approach and the above method lead to 

boundary conditions with some differences. The discrepancies between the two sets 
of constraints arose in non-axisymmetric modes and are summarized in Table 3.1. 
O’Sullivan complete set of axis equations are 
     0, 0, 0,r rm G H d F d P  (3.36) 

     1,2, 0, 0,rm F H P d H  (3.37) 

       2, 0, 0r r rm F H P d F d H d P . (3.38) 

 
Table 3.1 Axis boundary equations comparison. 
 

  
Common conditions 

Batchelor and 
Gill [64] 
conditions 

 
O’Sullivan [65] 
conditions 

 0m     0, 0r rG H d F d P    

 1m    0F P    0H G   0, 0rH d H  

 2m     0F H P   0G   0rd H  

 2m     0F H P   0G     0r r rd F d H d P  
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In our stability analyses we have employed the Batchelor and Gill’s 
relations for axis boundary. 
 Following Batchelor [64], for a large enough radius, at the outer wall all 
components of the velocity are enforced to vanish, this condition leads to 
corresponding boundary conditions for  wallr r . We get 

  , , , 0, wallF G H P r r  (3.39) 

For the case of the flow downstream a Francis turbine runner, the physical 
condition that the radial amplitude of the velocity perturbation at the wall vanishes, 
i.e. ( ) 0wallG r , is valid.   

In conclusion, four boundary conditions must be added to complete the 
hydrodynamic eigenvalue problem (3.2)-(3.5) of four first order homogeneous 
differential equations. They have been deduced in axis and at the wall boundary.   

The boundary relations, depending on mode number are listed below 

 
     
 

       
 

0 0 0 0,
1,

0.wall

F r G r H r
m

G r r
 (3.40) 

 
       
 

          
 

0 0, 0 0 0, 0 0,
1,

0.wall

F r H r G r P r
m

G r r
 (3.41) 

 
     

 
       

 

0 0, 0 0 0,
0,

0.
r

wall

d F r G r H r
m

G r r
 (3.42) 

and they define the mechanical equilibrium of the fluid in our real flow problem of  
Francis turbine runner. 
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4.  COMPUTATIONAL APPROACHES FOR 
STABILITY EIGENVALUE PROBLEMS 

 
 

4.1 Motivation of Using the Spectral Methods in 
Hydrodynamic Stability Problems  

 
As an alternative to the classical finite element method [66,67,68,69], 

vortex element method [70], finite volume method [71] or variational methods 
[72], spectral methods are one of the most used technique for the numerical 
investigations in hydrodynamic stability problems. The main reason for using 
spectral methods is their exponential accuracy. Large classes of eigenvalue 
problems can be solved numerically using spectral methods, where, typically, the 
various unknown fields are expanded upon sets of orthogonal polynomials or 
functions. The convergence of these methods is, in most cases, easy to assure and 
they are efficient, accurate and fast. Started with Orszag [31], who first used the 
Chebyshev spectral methods for solving hydrodynamic stability problems, many 
other researchers have demonstrated the applicability of this technology with high 
degree of accuracy: M. Khorrami, M. Malik and R. Ash [40], L. Parras and R. 
Fernandez-Feria [32], J. Hesthaven, S. Gottlieb and D. Gottlieb [86], Canuto et al. 
[26]). 

The pseudospectral collocation method is associated with a grid, that is a set 
of nodes and that is why it is sometimes referred to as a nodal method. The 
unknown coefficients in the approximation are then obtained by requiring the 
residual function to be zero exactly at a set of nodes. The set of the collocation 
nodes is related to the set of basis functions as the nodes of the quadrature 
formulae which are used in the computation of the spectral coefficients from the grid 
values.  

Instead of representing the unknown function through its values on a finite 
number of grid points as doing in finite difference schemes, in spectral methods the 
coefficients   0..i i N  are used in a finite basis of known functions    0..i i N  

 


  
0

N

i i
i

. (4.1) 

The decomposition (4.1) is approximate in the sense that    0..i i N  

represent a complete basis of finite-dimensional functional space, whereas   
usually belongs to some other infinite-dimensional space. Moreover, the coefficients 
  0..i i N  are computed with finite accuracy. Among the major advantages of using 

spectral methods is the rapid decay of the error, often exponential Ne  for well-
behaved functions.  

Experiments showed that many swirling flows exhibits instabilities leading to 
the formation of a secondary vertical motion that can cause vortex breakdown. In 
fact, due to the large number of technical applications, swirling flows stability is a 
very active research field. From the mathematical point of view, the stability of a 
swirling flow against normal mode perturbations is governed by a nonlinear 
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eigenvalue problem with variable coefficients. Bistrian et al. [73] intend to be a 
preliminary survey on the standard spectral methods one can use for solving 
hydrodynamic eigenvalue problems. In this paper standard spectral methods 
(Galerkin, collocation, tau) are applied to solve an eigenvalue problem governing 
the linear stability of an inviscid swirling fluid flow under small perturbations.  

Spectral methods imply representing the problem solution as truncated 
series of smooth global functions. Remarks concerning the efficiency and the 
accuracy of each method in this case are presented and evaluations of the relative 
error are given. All the obtained results are compared to existing ones and they 
prove to agree quite well. 

 
 

4.1.1   The 2L -Projection Method 
 

Historically, this was the first method of spectral type used for nonperiodic 
problems. 

Considering a system of partial derivative equations (PDE) in operator form 
 Lu f , (4.2) 
where L  is the differential operator, u  is the vector of unknown functions, in the 
interval   ,I a b , coupled with the boundary conditions 

      1 2,u a u b , (4.3) 

the PDE system is required to be satisfied at each point in its domain. We introduce 
a finite basis    0..i i N  of orthogonal polynomials with respect to a weight function 

w  in the Hilbert space 2
wL , which satisfy  deg i i  and     ,i j i ijw

c  

 , 0,1,...i j  for suitable constants  0ic . Examples are the Chebyshev system 

 , 0,1,...iT i , for which     
1 /221w x x , the Legendre system  , 0,1,...iL i , 

for which    1w x , or, more generally, any Jacobi system     , , 0,1,...iP i , for 

which         1 1w x x x ,    , 1 . 

 The discrete solution is therefore represented as 

    


 
^

0

N
N

i i
i

u x u x , (4.4) 

where the unknowns are the expansion coefficients of Nu  along the chosen basis, 
computed as 

 
 
 




 

^ ,

,

N
i w

i
i i w

u
u . (4.5) 

 The boundary conditions (4.3) impose two linear combinations upon the 

coefficients of Nu , namely 

     
 

    
^ ^

1 2
0 0

,
N N

i i i i
i i

u a u b . (4.6) 
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 The residual    N Nr u f Lu  is required to be orthogonal to all polynomials 

of degree up to  2N , meaning that 

         , , , 0 2N
j j ww

Lu f j N . (4.7) 

At the algebraic level, this method produces a linear system of the form 

 Mu f , (4.8) 

where 
 

   
 

^ ^

0, ..., Nu u u   is the vector collecting the unknowns that represent Nu , 

 
 

   
 

^ ^

0 2 1 2, ..., , ,Nf f f  is a known vector depending on the data f  and the valued 

on the boundary , and M  is the matrix corresponding to the equations defined by 
the method. 

Dragomirescu et al. [74] reports a numerical investigation of the 
hydrodynamic instability of swirling flow with application in Francis hydraulic turbine 

assessing the tau spectral method. An 2L - projection algorithm is developed 
assessing both an analytical methodology and implementation using symbolic and 
numerical conversions. The model of the trailing vortex is used to validate the code 
with existing results in the literature and the results of the stability of the vortex 
rope were pointed out, together with the advantages of using the algorithm in flow 
control problems.   

A Chebyshev tau spectral method for the investigation of the eigenvalue 
problem governing the linear stability of swirling flows is presented also in Bistrian 
and Savii [75]. The accuracy of the developed algorithm imposed by the 
complicated boundary conditions corresponding to the real flow case of a fluid 
downstream a Francis turbine runner was validates on a benchmark model and the 
results proved to agree quite well. The results for the case of the hydraulic turbine 
runner were compared in this preliminary investigation with the existing ones in the 
case of steady axisymmetric swirling flow and good agreements were found.  

 
 
4.1.2  The Collocation Method 

 
If some of the coefficients of the equation are variable, the projection 

method is much less efficient and the collocation method is an efficient alternative. 
Consider again a system of partial derivative equations (PDE) in operator form 
 Lu f , (4.9) 
where L  is the differential operator, u  is the vector of unknown functions, in the 
interval   ,I a b , coupled with the boundary conditions 

      1 2,u a u b . (4.10) 

The collocation method is associated with a grid of clustered nodes jx  and 

weights jw    0,...,j N . The collocation nodes must cluster near the boundaries to 

diminish the negative effects of the Runge phenomenon, as described in [26]. 
Another aspect is that the convergence of the interpolation function on the clustered 
grid towards unknown solution is extremely fast. 
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We recall that the nodes 0x  and Nx  coincide with the endpoints of the 

interval   ,a b , and that the quadrature formula is exact for all polynomials of 

degree  2 1N , i. e., 

      


 
0

bN

j j
j a

v x w v x w x dx , (4.11) 

for all v  from the space of test functions. 
 Let     0..N  a finite basis of polynomials relative to the given set of nodes, 

not necessary being orthogonal. If we choose a basis of non-orthogonal polynomials 
we refer to it as a nodal basis (Lagrange polynomials for example).    

An example of nodal basis is given by Lagrange’s formula 

 
 
 

 



 






 

0 ,

( )

j N

j

j j

x x
x

x x
. (4.12) 

 For numerical stability reasons, often Lagrange polynomials are 
reformulated in barycentric form as 

    
 




 

  
             

 
 

 

11

0

1
,

N
k

k kk k
x

x x x x x x
. (4.13) 

In nodal approach, each function of the nodal basis is responsible for 
reproducing the value of the polynomial at one particular node in the interval. 

A different approach is obtained by taking as basis functions simple linear 
combinations of orthogonal polynomials. These are called bases of modal type, i. e., 
such that each basis function provides one particular pattern of oscillation of lower 
and higher frequency. 

Examples of simple modal bases are the following 
            2 , 0..x T x T x N ,  (4.14) 

      
     

    
 

    
    

 


 
2 4

2 1
2 , 0..

3 3
x T x T x T x N , (4.15) 

where  T x  are the Chebyshev polynomials, or the modal basis functions 

          
     

         

   





   
3 1 1 12 3

, 1..
2 2 3 2 5 2 1 2 1

L L L L
x N , (4.16) 

used by Melenk, Kirchner and Schwab that utilized a Legendre-Galerkin 
approximation in [76]. 

Boundary-adapted bases of modal type are also useful in numerical 
approximations of hydrodynamic stability problems. From their construction they 
contains two functions that are nonzero at precisely one endpoint of the interval, 
which are called vertex basis functions and 1N  functions that vanish at both 
endpoints, which are called bubble functions or internal basis functions [26] . An 
example of boundary adapted modal basis is as follows 
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      

      

 
   
   

 

 

 

 


   


   


      
  











0 0 1

1 0 1

0

1

1 1
,

2 2
1 1

,
2 2

, 2
, 2

, 3

x
x x x

x
x x x

x x even
x N

x x odd

 (4.17) 

where   x  denotes either  T x  or  L x . 

A comparison of the behavior of the members of the bases mentioned in 
(4.14), (4.15) and (4.16) is given in Fig. 4.1, for  4N . 
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Fig. 4.1 Various modal basis functions on the interval  1,1 , for 4N  : the modal orthogonal 

basis    given by (4.14) (left), the modal basis    given by (4.15) (center) and the 

modal basis    given by (4.16) (right). 

 
The main goal of the research performed by Bistrian et al. [77] was to 

develop a methodology for analyzing the swirling flows with helical vortex 
breakdown by means of linear stability analysis. For the case of high Reynolds 
numbers the eigenvalue problem governing the linear stability analysis of the 
Batchelor vortex was investigated using a boundary adapted spectral collocation 
technique and a weighted residuals (Galerkin type) method based on Chebyshev 
polynomials. Following standard procedures, in both methods, a symmmetrization 
was performed eliminating all geometric singularities on the left-hand sides of the 
governing equations set. Both methods provide an accurate approximation of the 
spectrum without any scale resolution restriction. Comparison of the eigenfunctions 
amplitudes with the ones from [46] have been presented proving that the obtained 
results agree very well with the existing ones. 

In Bistrian et al. [78] have been developed hydrodynamic models using 
spectral differential operators to investigate the spatial stability of swirling fluid 
systems. Including viscosity as a valid parameter of the fluid, the hydrodynamic 
model was derived using a nodal Lagrangean basis and the polynomial eigenvalue 
problem describing the viscous spatial stability was reduced to a generalized 
eigenvalue problem using the companion vector method. For inviscid study the 
hydrodynamic model was obtained by means of a class of shifted orthogonal 
expansion functions and the spectral differentiation matrix was derived to 
approximate the discrete derivatives. The models were applied to a Q-vortex 
structure, both schemes providing good results. 
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4.2 A New Orthogonal Base of Polynomial Expansion 

 
4.2.1  Considerations on Shifted Chebyshev Polynomials 

 
Chebyshev polynomials [79] are well-known family of orthogonal 

polynomials on the interval   1, 1  of the real line. These polynomials present, 

among others, very good properties in the approximation of functions. Spectral 
methods based on Chebyshev polynomials as basis functions for solving numerically 
differential equations have been used by many authors as Benjamin [80], 
Donaldson and Sullivan [81], Gardner  et al. [82], Gheorghiu [83]. 

The Chebyshev polynomial  nT  of the first kind is a polynomial in   of 

degree n , defined by the relation 
    cosnT n ,   cos . (4.18) 

If the range of the variable   is the interval   1, 1 , the range of the 

corresponding variable   can be taken as   0, . These ranges are traversed in 

opposite directions since  1x  corresponds to    and  1x  corresponds to 
  0 . 

We deduce that the first few Chebyshev polynomials are 

  0 1T ,   1T ,    2
2 2 1T ,     3

3 4 3T ,      4 2
4 8 8 1T , ... 

In some cases it is an inconvenient that the first polynomial index is zero.  
This may cause difficulties to implement the code in computer algebra systems that 
not support zero as the start index. For this reason, we consider from our future 
calculations that the Chebyshev polynomials are defined as 

  1 1T ,   2T ,    2
3 2 1T ,     3

4 4 3T ,      4 2
5 8 8 1T , ... 

We obtain the fundamental recurrence relation 
             1 22 , 3,4,...n n nT T T n , (4.19) 

which together with the initial conditions  
   1 1T ,   2T  (4.20) 

recursively generates all the polynomials   nT  very efficiently. 

Since the range   0, R  is more convenient to use than the range   1, 1  to 

discretize our hydrodynamic stability problems, we map the independent variable r  
in   0, R  to the variable   in   1, 1  by the transformation 

       
2

1 1
2

r R
r

R
 (4.21) 

and this leads to a shifted Chebyshev polynomial of the first kind  *
nT r  of degree 

1n  in r  on   0, R  given by 

         
 

* 2
1n n n

r
T r T T

R
. (4.22) 

 Thus we have the polynomials 

  *
1 1T r ,    *

2
2

1
r

T r
R

, 

BUPT



40 Computational Approaches For Stability Eigenvalue Problems – 4 

    
2

*
3 2

8 8
1

r r
T r

R R
,      

3 2
*
4 3 2

32 48 18
1

r r r
T r

R R R
,… 

From (4.19) and (4.22), we may deduce the recurrence relation for *
nT  in 

the form 

       
     
 

* * *
1 2

2
2 1n n n

r
T r T r T r

R
,  3,4,...n  (4.23) 

with  

      * *
1 2

2
1, 1

r
T r T r

R
. (4.24) 

 The use of a recurrence relation significantly increases the elapsed time to 
generate the shifted Chebyshev polynomials. To improve the performance of the 
numerical algorithm, we introduce in our code the equivalent polynomial relation 

  
                                    

     

1 1
2 2~ ~ ~ ~ ~

* 1 2
1 1 , 1

2

n n

n
r

T r r r r r r
R

 (4.25) 

to automatically generate the shifted Chebyshev polynomial *
nT  on   0, R . 

 The shifted Chebyshev polynomials defined as described above meet the 
relations 

       1* 0 1 n
nT ,      * 1nT R , (4.26) 

relations that we will frequently use in our future calculations. 
 
 

4.2.2  Orthogonality of the Shifted Chebyshev Polynomials 
 

A set of polynomials   iP x  are orthogonal polynomials over the interval 

 a x b  if each polynomial in the set satisfies the following relations 

 

     

     


 





 






0,

0,

b

n m
a
b

n n
a

w x P x P x dx n m

w x P x P x dx n m

 (4.27) 

The interval  ,a b  and the weighting function  w x  vary depending on the 

set of orthogonal polynomials. 
We deduce that the shifted Chebyshev polynomials of the first kind define 

an orthogonal set on the interval   0, R  and satisfy the following equations.  

We define the weighting function as 

  
 


  22 2 1

R
w r

R r
 (4.28) 

and let 

    
max

0

,
r

wf g w f g dr  (4.29) 
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be the inner product in the Hilbert space  2 0,wL R . Then we have the next relations 

 

 
 
 





   

  



 

* *

* *

* *

, 0, , , 1..

, , 1
2

, , 2..
4

n m w

n n w

n n w

T T n m n m N

T T R n

T T R n N

 (4.30) 

 
 

4.2.3  Evaluation of the Shifted Chebyshev Derivatives 
 

After the symbolically evaluation of the derivatives of the shifted Chebyshev 

polynomials *
nT , we expressed them as sum of the previous shifted Chebyshev 

polynomials, as follows 
 *

1 0T  

 * *
2 1

2
T T

R
 

 * *
3 2

8
T T

R
 

    
* * *
4 3 1

6
2T T T

R
 

    
* * *
5 4 2

8
2 2T T T

R
 

     
* * * *
6 5 3 1

10
2 2T T T T

R
 

     
* * * *
7 6 4 2

12
2 2 2T T T T

R
 

      
* * * * *
8 7 5 3 1

14
2 2 2T T T T T

R
 

      
* * * * *
9 8 6 4 2

16
2 2 2 2T T T T T

R
 

       
* * * * * *
10 9 7 5 3 1

18
2 2 2 2T T T T T T

R
. 

For the implementation procedure, we define the derivatives by the 
following formulae 

 

 

  


*
1

* *
2 1

0

2

T

T T
R

, (4.31) 

 
 

 

 
        


2

* *

1

2 1
2

3
r even

k r
r k

kk odd
T T

k R
, (4.32) 
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 

 

 
        


2

* * *
1

1

2 1
2

4
r odd

k r
r k

kk even
T T T

k R
. (4.33) 

 In the following, we develop another relation to define the shifted 
Chebyshev derivatives. 
 
Theorem. If the derivatives of the Chebyshev polynomials are generated by the 
recurrence relation 

      



    


1 1

2

1 ( ) ( )
, 2

2 1
n n

n
n T T

T n  (4.34) 

then the derivatives of the shifted Chebyshev polynomials on domain   0, R  fulfill 

the recurrence relation 

    
      
     

* * *
1 1

1
, 2

4n n n
nR

T r T r T r n
r R r

 (4.35) 

Proof.  Using relation (4.21) results 

            
   
 

* *
1 1*

2
1

2 2
1 1

n n
n

J r T r J r T rn
T r

r
R

, (4.36) 

where    2
J r

R
 and represents the Jacobian of the mapping. Furthermore, 

        
  
 

* *
1 1* 2 1
42 1

n n
n

T r T rn
T r

r rR
R R

. (4.37) 

Following calculations results 

   
      

    
* * *max

1 1
max

1

4n n n
nr

T r T r T r
r r r

  for  2n . 

 

 
4.3 Computational Domain and Grid Setup 

 
A particularity of the finite element methods is represented by the 

reconstruction of the unknown functions from a superposition of piecewise 
polynomial functions on subsets of a domain or its boundary. In contrast to this, the 
collocation technique surveyed here will avoid triangulations and meshing, but the 
unknown functions are reconstructed by the superposition of simple functions 
defined on the domain of interest. 

There are two possible approaches of the mathematical model at this point. 
The first one imply a transformation of the physical domain onto the standard 
interval of the definition of the Chebyshev polynomials [79] and in the second one, 
instead of using classical Chebyshev polynomials, we used shifted Chebyshev 

polynomials *
kT , directly defined on the physical interval of the problem. This second 

approach was our choice motivated by the form of the singular coefficients in the 
equations defining the eigenvalue problem. Following standard procedures such as 
those from [26], the Chebyshev spectral collocation method can be described as 
follows. An approximation based on Chebyshev polynomials to the unknown 
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functions is first introduced. The set of collocation equations is then generated. The 
equation system consists of two parts. The first part is formed by making the 
associated residual equal to zero at the collocation points, while the second part is 
obtained by forcing the boundary conditions to be satisfied at the boundary 
collocation points. 

Since, in order to discretize our hydrodynamic stability problem, a much 
more convenient choice is the range   0, wallr   than the standard definition interval 

of classical Chebyshev polynomials   1, 1 , the independent variable     1, 1  is 

mapped to the variable    0, wallr r  by the linear transformation 

     11 2wallr r . (4.38) 

The shifted Chebyshev polynomials of the first kind  *
nT r  of degree 1n  

on   0, wallr  are given by 

     * 12 1n n wallT r T rr . (4.39) 

The shifted Chebyshev class is orthogonal in the Hilbert space  2 0,w wallL r , 

weighted by       
1 /2

11 2 1wallw r rr  and have the orthogonality properties 

     * *, 0, , , 1.. ,n m w
T T n m n m N  (4.40) 

    



  


* * 2 1
, , ,

4 2..n n wallw

if n
T T r

if n N
 (4.41) 

with respect to the inner product    
0

,
wallr

wu v uv w dr . 

Consider the one dimensional domain  0 wallr r , where wallr  means the 

radial distance to the wall. The domain of interest is represented by the modified 
Chebyshev-Gauss points in radial direction 

    




          

1

1
0

( 1)
1 cos

2 1

N
N wall

k k
i

r i N
r

N
 (4.42) 

as illustrated in Fig. 4.2. The grid (4.42) is generated by the function gridcheb.m , 
described in Table 4.1. 

 

Table 4.1 The function gridcheb.m  generates the clustered grid. 
 

function x = gridcheb(N) 
         x = cos(pi+pi*(0:N-1)/(N-1))'; % Chebyshev Gauss 

 

Examples: Chebyshev-Gauss nodes on   1,1 . 

>> 
gridcheb(2) 
ans = 
    -1 
     1 

>> 
gridcheb(3) 
ans = 
   -1.0000 
   -0.0000 
    1.0000 

>> 
gridcheb(4) 
ans = 
   -1.0000 
   -0.5000 
    0.5000 
    1.0000 

>> 
gridcheb(5) 
ans = 
   -1.0000 
   -0.7071 
   -0.0000 
    0.7071 
    1.0000 

>> 
gridcheb(6) 
ans = 
   -1.0000 
   -0.8090 
   -0.3090 
    0.3090 
    0.8090 
    1.0000 
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Fig. 4.2  Illustration of a one-dimensional collocation grid used to compute the disturbance 

profile. 
 

The mapping of the clustered grid onto the physical range   0, wallr  is done 

by the function mapcheb.m , given in Table 4.2. 
 
Table 4.2 The function mapcheb.m for mapping the clustered grid onto the physical 
domain. 
 

function  r = mapcheb(x,rmax) 
          r=rmax*x/2 + rmax/2 ;      

 
Examples: Chebyshev-Gauss grid mapped on domain   0,3 . 

>> 
r=gridcheb(2) 
mapcheb(r,3) 
ans = 
     0 
     3 

>> 
r=gridcheb(3)
mapcheb(r,3) 
ans = 
         0 
    1.5000 
    3.0000 

>> 
r=gridcheb(4) 
mapcheb(r,3) 
ans = 
         0 
    0.7500 
    2.2500 
    3.0000 

>> 
r=gridcheb(5) 
mapcheb(r,3) 
ans = 
         0 
    0.4393 
    1.5000 
    2.5607 
    3.0000 

>> 
r=gridcheb(6) 
mapcheb(r,3) 
ans = 
         0 
    0.2865 
    1.0365 
    1.9635 
    2.7135 
    3.0000 

 

The shifted Chebyshev polynomials  *
nT r  are generated using (4.25) by the 

function polycheb.m, given in Table 4.3. 
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Table 4.3 The function polycheb.m generates the values of the nth shifted 
Chebyshev polynomial in the collocation nodes, by polynomial relation. 
 

function Tc = polycheb(x,n,rmax) 
Tc=( (2.*x./rmax-1+sqrt( (2.*x./rmax-1).^2 -1 )).^(n-1) +...  
( 2.*x./rmax-1-sqrt( (2.*x./rmax-1).^2-1 ) ).^(n-1) )./2;  
    

 

Examples: The values of  *
nT r ,  1,2,3,4,5n , in four collocation nodes, on 

domain   0,3 . 

>> 
r=gridcheb(4) 
polycheb(r,1,
3) 
ans = 
     1 
     1 
     1 
     1 

>> 
r=gridcheb(4) 
polycheb(r,2,
3) 
ans = 
   -1.6667 
   -1.3333 
   -0.6667 
   -0.3333 

>> 
r=gridcheb(4) 
polycheb(r,3,
3) 
ans = 
    4.5556 
    2.5556 
   -0.1111 
   -0.7778 

>> 
r=gridcheb(4) 
polycheb(r,4,
3) 
ans = 
  -13.5185 
   -5.4815 
    0.8148 
    0.8519 

>> 
r=gridcheb(4) 
polycheb(r,5,
3) 
ans = 
   40.5062 
   12.0617 
   -0.9753 
    0.2099 

 
 Another way to generate the shifted Chebyshev polynomials is to use the 
recurrence function (4.23) given in Table 4.4, but this option increases significantly 
the computational time.  
 
Table 4.4 The function shiftrec.m generates the shifted Chebyshev polynomials by 
recurrence. 
 

function T = shiftrec(x,N,rmax) 
if N==1  
T=1; 
elseif N==2 

T=2.*x./rmax-1; 
else 

T=2.*(2.*x./rmax-1).*shiftcheb(x,N-1,rmax)-... 
shiftcheb(x,N 2,rmax); 

end 
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5.  NUMERICAL ALGORITHM FOR NON-
AXISYMMETRIC STABILITY INVESTIGATION 

 
 

5.1 Boundary Adapted Radial Spectral Approximation 
 

5.1.1  Description of the Method 
 

We propose in this section a boundary adapted radial spectral approximation 
to investigate the stability of swirling flows at non-axisymmetric modes with 
tangential wavenumbers  1m . 

To investigate the cases  1m , when the system (3.2)-(3.5) obey 

Dirichlet boundary conditions (3.40) at axis and wall, we developed a spectral 
numerical procedure. The key issue here is the choice of the grid and the choice of 
the modal trial basis based on orthogonal expansion functions satisfying the 
boundary conditions, hence the method is called boundary adapted [26]. 

The difference between the classical method and the modified version 
proposed here is given by the selected spaces involved in the discretization process 
motivated by the need to adapt the grid points to the singularities of the underlying 
solution.  

Following Canuto et al. [26], we define the boundary-adapted functions 
  , 1...,k k N  of modal type, i.e. each function provides one particular pattern of 

oscillation and optimize the interpolative procedure 

 

 

 

     





  


 


 



      

1

* *
1 1

1 ,

,

1
, 2... 1

2(2 1)

wall

N
wall

k k k

r
r

r

r
r

r

r T r T r k N
k

 (5.1) 

with *
kT  the shifted Chebyshev polynomials on   0, wallr , as shown in Fig. 5.1. The 

choice is based on the condition that the values of the grid points are given by the 
same elementary analytic expression for all values of N  and they did not have to 
be computed numerically for every N . 

The general form of the eigenvalue problem governing the linear stability of 
the flow can be written 

0, (0, )

0, 0

wall

wall

M s on r

B s in and r

  


 
, 

in which s  will be defined in the following using the eigenvector components, M  is 
a matrix differential operator acting in a Hilbert space defining the system of 
ordinary differential equations governing the linear stability of the fluid and B  is a 
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set of linear differential operators defined on  0r  and  wallr r , according to the 

boundary conditions (3.40). 

 
Fig. 5.1 The basis functions  r  on the clustered grid with 7N   nodes, on domain   0,3 . 

 
The strong form of the method applied here reads 

Find Nv  such that  ( ) 0N N iM v r ,   0,i wallr r ,   1,..., 1i N , 

(0) 0N NB v , ( ) 0N N wallB v r . 

The discrete operator NM  is defined on a finite dimensional subspace of the 

considered Hilbert space and NB  can be constructed as an approximation like NM , 

according to the boundary condition. The numerical approximation Nv  of the 

unknown perturbation field v  is searched in a space of algebraic polynomials of 
degree N , such that the equation is satisfied in a certain number of collocation 
points ir  on  0, wallr . 

The proposed method allowed us to discard the first and the last collocation 
nodes, expansion functions satisfying the boundary conditions from the 
construction of our modal boundary-adapted basis. In this way the critical 
singularities which occurred in evaluating terms like 1 / r  for the numerical 
treatment of the eigenvalue problem were eliminated. Then the perturbation field is 
approximated with respect to expansion set of the type 

      


 
1

, , , , , ,
N

k k k k k
k

F G H P f g h p r . (5.2). 

BUPT



48 Numerical Algorithm for Non-Axisymmetric Stability Investigation– 5 

We construct the modified Chebyshev Gauss grid    
 

1j j N
r  on radial 

direction   0, wallr  defined by (4.42), that preserves the clustering rate of the 

collocation nodes. 
In our case the collocation nodes clustered near the boundaries diminishing 

the negative effects of the Runge phenomenon [26, 27]. Another aspect is that the 
convergence of the interpolant on the clustered grid towards unknown function is 
extremely fast. Each of the basis functions (5.1) meet the relations 
        1 1 10 1, 0N wallr r r , (5.3) 

        1 0 0, 1N N N wallr r r , (5.4) 

        1 0 0k k N wallr r r , (5.5) 

      0, 1.. , 2.. 1k jr j N k N , (5.6) 

which implies that each functions , , ,F G H P  satisfy the boundary conditions, as 
described bellow 
              1 1 2 2 10 0 0 ... 0 0N NF f f f f , (5.7) 

              max 1 1 2 2 ... 0wall wall N N wall NF r f r f r f r f . (5.8) 

Similarly, the functions G , H  and P  satisfy the boundary conditions, 
having 
      1 1 10, 0, 0N N Ng g h h p p . (5.9) 

With (5.2) the mathematical model (3.2)-(3.5) derived in Chapter 3 takes 
the form 

        
  

     
1 1 1

1
0

N N N

k k k k r k k
k k k

m
k f r g r d G h r

r r
, (5.10) 

      
 

      
 

 
1 1

2
0

N N

k k k k r
k k

mW W
kU g r h r d P

r r
, (5.11) 
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  
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     
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    
 

  


 (5.12) 

         
  

      
 

  '

1 1 1
0

N N N

k k wall k k k k
k k k

mW
kU f r U g r k p r

r
, (5.13) 

where rd  means the radial derivative operator applied to unknown functions and 
'
wallU , '

wallW  represent the radial derivative of the axial, respectively the tangential 

velocity at  wallr r . 

 
 

5.1.2  Interpolative Derivative Matrix 
 

In the mathematical model derived above, terms like rd G  and rd P , 

meaning derivatives with respect to the radius of the perturbation in radial velocity 
and pressure, must be approximated using an interpolative derivative matrix 
operator [26, 78], which we will deduce in the following. 
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According to (5.2), let us consider 

        



  

1

1 1
2

( )
N

k k N N
k

F r f r f r f r . (5.14) 

By differentiating (5.14) results 

       




      
1

1 1
2

( )
N

k k N N
k

F r f r f r f r  

    


 


         


1
* *1

1 1
2

1

2(2 1)

N
N

k k k
wall wallk

f f
f T r T r

r rk
. (5.15) 

Now using the relation (4.35), namely 

   
      

    
* * *

1 1
1

4
wall

n n n
wall

nr
T r T r T r

r r r
    ,  2n  

in (5.15) yields 

 




 
         

 


1

1 22
3

1 1 16 8 1
( ) ( )

10

N

k k N
wall wall wallkwall

r
F r f f f E r f

r r rr
, (5.16) 

where  

          
       

* * *
2 2

1
( ) 2 2 2 ,

4 ( )2(2 1)
wall

k k k k
wall

r
E r k T r k T r kT r

r r rk
 

  3.. 1k N . (5.17) 
The interpolative derivative matrix  rD  has the expression 

  







  
   
 
 
  
   

 
  
 
 

1
3 1 1 12

2
3 2 1 22

3 12

161 1 8 1
( ) ... ( )

10

161 1 8 1
( ) ... ( )

10

... ... ... ... ... ...

161 1 8 1
( ) ... ( )

10

N
wall wall wallwall

N
wall wall wallr wall

N
N N N

wall wall wallwall

r
E r E r

r r rr

r
E r E r

D r r rr

r
E r E r

r r rr


 
 
 
 
 
 
 
 
 
 
 



 (5.18) 

and approximates the discrete derivatives as 

     1 2 ... T
r Nrd F D f f f  (5.19) 

     1 2 ... T
r Nrd G D g g g  (5.20) 

     1 2 ... T
r Nrd H D h h h  (5.21) 

     1 2 ... T
r Nrd P D p p p  (5.22) 

It is noticeable form expression (5.17) that ( )kE r  cannot be evaluated at 

extreme nodes 1 0r  and N wallr r  because of singularity. We proposed the trial 

basis which satisfy the boundary conditions, allowing us to discard the first and last 
collocation nodes.  

This was numerically implemented as part of spectral collocation method by 
discarding the first and last columns of the differentiation matrix  rD  and also the 
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first and the last lines and perform the computation on the reduced grid 

    , 2.. 1ir i N . 

 We denote by  rD  the reduced order matrix  rD . 

 
 

5.1.3  Implementation of the Boundary Adapted Collocation Method 
 

In the implementation of the radial boundary approximation, we reduce the 
Chebyshev-Gauss collocation grid (4.42) by discarding the extreme nodes, aiming 
to avoid the singularities produced by computing the equations of the 
hydrodynamic model in axis   0r  and by computing the interpolative derivative 
matrix operator in   0, wallr r . This is allowed by the fact that each of the basis 

functions satisfy the non-axisymmetric boundary conditions. 

A modified Chebyshev-Gauss grid     
 

2 1j j N
r  on radial direction  

  0, wallr  was constructed. 

Let us denote by     ( )ir diag r ,     

1
(1/ )idiag r

r
,     

  

    2 1,
2 1

( )ij i N
j N

, 

  ( )ij j ir ,     ( ( ))iU diag U r  ,     ( ( ))iW diag W r ,   2 1i N , i.e. 



 
      
 
 
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r
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 

2

1

1 / 0 0
1

0 ... 0
0 0 1 / N

r

r
r

,      

   

   

 


 



  

 
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 

2 2 1 2

2 1 1 1
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... ... ...
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N

N N N

r r

r r
, 

 

 

 
      
 
 

2

1

0 0
0 ... 0
0 0 N

U r
U

U r
,      

 

 

 
      
 
 

2

1

0 0
0 ... 0
0 0 N

W r
W

W r
, 

  2 1,..., T
Nf f f ,     2 1,..., T

Ng g g ,     2 1,..., T
Nh h h ,     2 1,..., T

Np p p  . 

The eigenvalue problem governing the inviscid stability of the swirling 
system has now the computational form  

                           

1 1
0rD g g m h k f

r r
, (5.23) 

      
                                       

2 0r
W W

m k U g h D p
r r

, (5.24) 

      
                                                                    

1
0

W W
m k U h W g m p

r r r
,  (5.25) 

      
                                        

0
W

m k U f U g k p
r

. (5.26) 

The equation of dispersion in matrix formulation is 
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      0k mkM M mM M s , (5.27) 

with  
T

s f g h p and the matrices kM , M , mM  and M  having the 

following explicit forms 

 







 

  
  

          
        

      
      

0 0 0

0 0 0

0 0 0

0 0

k

U
M

U

U

, (5.28) 

 







 
 

          
      

0 0 0 0

0 0 0

0 0 0

0 0 0

M , (5.29) 
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          
            
                  
 
         
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0 0 0

0 0 0

1
0 0
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W

r
M

W

r r
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r

, (5.30) 

 

 

 





 



          
             
  

                
 

        

1
0 0 0

0 0 2

0 0 0

0 ' 0 0

r

r

D
r

W
D

rM

W
W

r

U

 (5.31) 

where     represents matrix blocks of order      2 2N N  having specific 

elements and 0  means the null matrix block of the same order. 
The Matlab function that implements the interpolative derivative matrix is 

given in Table 5.1. 
This algorithm allows us to obtain the eigenvalue, the eigenvector, the index 

of the most unstable mode, the maximum amplitude of the most unstable mode and 
the critical distance where the perturbation is the most amplified.  
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Table 5.1 Interpolative derivative matrix implementation. 
 

function D = interpdervmtx(N, rmax) 
 
% N number of collocation nodes 
% rmax right domain limit 
r=gridcheb(N);  % the clustered grid on [0 rmax] 
for coloana=1:N+1 

TR(1:N,coloana)=polycheb(r,coloana,rmax);  
% the values of the shifted Chebyshev polynomials in  

    % each node is retained in matrix TR 
end 
D=zeros(N); 
D(2:N-2,2)=-(16.*r(2:N-2)./rmax^2 - 8/rmax)/sqrt(10) ;  

% the second column 
for col=3:N-1  % columns 3..N-1, lines 2..N-1  

D(2:N-1,col)=rmax.*( (col-2).*TR(2:N-1,col-2)-... 
  -(2*col-2).*TR(2:N-1,col) + col.*TR(2:N-1,col+2) )./... 
   (sqrt(4*col+2).*(4.*rmax.*r(2:N-1)-4.*r(2:N-1).*... 
   r(2:N-1)) ); 
end 

 
The main advantages of the proposed method consist in reducing the 

computational time by reducing the matrices order to   24 8N  instead of 

 24N and for a certain spectral parameter N we obtain an exponential decreasing 

error. 
 
 

5.2 Summary and Published Papers Supporting This 
Chapter 
 
In this section we developed a numerical procedure to investigate the 

spatial stability of a swirling flow subject to infinitesimal perturbations using a 
modal boundary adapted collocation technique. Our numerical procedure directly 
provided relevant information on perturbation amplitude for stable or unstable 
induced modes, the maximum amplitude of the most unstable mode and the critical 
distance where the perturbation is the most amplified.     

The accuracy of the method is assessed underlying the necessity for the 
construction of a certain class of orthogonal expansion functions satisfying the 
boundary conditions. The key issue was the choice of the grid and the choice of the 
modal trial basis.  

For boundary conditions other than the ones of Dirichlet type, the method 
is less flexible since the basis functions satisfying the corresponding boundary 
conditions are difficult to construct. 

The scheme based on shifted Chebyshev polynomials allow the numerical 
approximation of the unknown perturbation field to be searched directly in the 
physical space.  

In the next section we will present a numerical method based on a modified 
tau technique that approximates the perturbation field in axisymmetric mode 

 0m  and for bending modes  1m , when the boundary conditions are 
sophisticated expressions that increase the implementation effort. 
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The following published papers are based on the work presented in this 
chapter. 

 
In Proceedings of International Conferences (ISI) 

 
Paper 1. BISTRIAN, D.A., DRAGOMIRESCU, I., MUNTEAN, S., TOPOR, M, 
Numerical Methods for Convective Hydrodynamic Stability of Swirling Flows, Recent 
Advances in Systems, Proceedings of the 13th WSEAS International  Conference on 
Systems, 22-24 July, Rodos, pp. 283-288, ISBN 978-960-474-097-0, ISSN: 1790-
2769, 2009. 
 
Paper 2. SUSAN-RESIGA, R., SAVII, G., MAKSAY, ST., BISTRIAN, D.A., Numerical 
Methods Based On Shifted Polynomials In Swirling Flows Stability Analysis, Recent 
Advances in Computers, Proceedings of the 13th WSEAS International  Conference 
on Computers, 23-25 July, Rodos, pp. 481-486, ISBN: 978-960-474-099-4, ISSN: 
1790-5109, 2009. 
 

In Proceedings of International Conferences  
 

Paper 3. BISTRIAN, D.A., DRAGOMIRESCU, I., Standard spectral methods in a 
swirling flow stability problem, Proceedings of the 12th Symposium of Mathematics 
and its Applications, 5-7th November 2009, Timisoara, Romania, referred MR and 
ZB. 
 
Paper 4. BISTRIAN, D.A., DRAGOMIRESCU, I., Boundary adapted spectral 
approximation for spatial stability of Batchelor vortex, International Symposium 
Interdisciplinary Regional Research ISIRR 2009, Romania-Hungary-Serbia, 
Hunedoara, 23-24 April, 2009. 
 

In B+ cat. Journals 
 

Paper 5. BISTRIAN, D.A., DRAGOMIRESCU, I., Spectral boundary adapted model 
for swirling flow stability control, Journal of Engineering, Annals of Faculty of 
Engineering Hunedoara, Tome VIII,  Fascicule 3, pp. 158-163, ISSN 1584 – 2673, 
2010. 
 
Paper 6. BISTRIAN, D.A., Numerical algorithms for spatio-temporal stability of 
viscous swirling flows, Journal of Engineering, Annals of Faculty of Engineering 
Hunedoara, Tome VIII,  Fascicule 3, pp. 133-138, 2010. 
 
Paper 7. BISTRIAN, D.A., MAKSAY, ST., Reduced model for temporal stability of a 
Q-Vortex, Journal of Engineering, Annals of Faculty of Engineering Hunedoara, Tome  
VI, Fasc. 3, ISSN 1584 – 2673, pp. 307-311, sept. 2008.
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6.  NUMERICAL ALGORITHM FOR AXISYMMETRIC 
AND BENDING MODES STABILITY 

INVESTIGATION 
 
 

6.1 A Modified 2L -Projection Method Based On Shifted 
Polynomials 

 
6.1.1  Description of the Method 

 

The 2L -projection method, also known as the Chebyshev tau method, have 
been the attention of much study and has been successfully applied to many 
hydrodynamic stability problems. This represents an efficient numerical technique 
to solve eigenvalue problems with sophisticated boundary conditions by translate it 
into a linear system of equations. D. Bourne [84] is examined the Chebyshev tau 
method using the orthogonality of Chebyshev functions to rewrite the differential 
equations as a generalized eigenvalue problem. This problem is addressed here, in 
application to the Benard convection problem, and to the Orr-Sommerfeld equation 
which describes parallel flow. J.J. Dongarra, B. Straughan and D.W. Walker [85] 
examined in detail the Chebyshev tau method for a variety of eigenvalue problems 
arising in hydrodynamic stability studies, particularly those of Orr-Sommerfeld 
type. Physical problems explored in this study are those of Poiseuille flow, Couette 
flow, pressure gradient driven circular pipe flow, and Couette and Poiseuille 
problems for two viscous immiscible fluids. 

The projection method is an algorithm implying in the first step to expand 
the residual function as a series of shifted Chebyshev polynomials. We obtain a set 
of  4 2N  linear equations. The eight remaining equations are provided by the 

boundary conditions applied as side constraints. 
The sophisticated boundary conditions corresponding to the real flow case in 

a Francis turbine runner in axisymmetric case  0m  and for bending modes  1m  
motivated the use of the Chebyshev tau method suitable for non-periodic problems 
with complicated boundary conditions.  

Following [84] the difficult eigenvalue problem (3.2)-(3.5) is transformed 
into a system of linear equations describing the hydrodynamic context.  There are 
two possible approaches of the system at this point. The first one imply a 
transformation of the physical domain onto the standard interval of the definition of 

the Chebyshev polynomials. A linear transformation of the form  max ( 1)
2

r
r x  can 

be used to map the interval max[0, ]r  on the interval [ 1,1]. For the second 

approach, instead of using classical Chebyshev polynomials, we use shifted 
Chebyshev polynomials, introduced in Chapter 4, directly defined on the physical 
interval of the problem. This choice is motivated by the form of the nonconstant 
coefficient of the unknown functions from (3.2)-(3.5) and also by the orthogonality 
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of the shifted class directly in the physical space and therefore there will be no need 
for a numerical interpolation of the Jacobian.   

Let us define the perturbation amplitudes as a finite series of Chebyshev 
polynomials  

    


  *

1
, , , , , ,

N

k k k k k
k

F G H P f g h p T  (6.1) 

where *
kT  are shifted Chebyshev polynomials on the physical domain   0, wallr . The 

basis functions  *
kT  are depicted in Fig. 6.1.   

 
Fig. 6.1 The basis of shifted Chebyshev functions  *

kT  on domain  0,3 . 

 
In order to reduce the system (3.2)-(3.5) to a finite dimensional algebraic 

system in the expansion coefficients only, we impose the condition that each 

equation of the system to be orthogonal on 
iT ,   0,..., 2i N , in the Hilbert space 

 2 0,w wallL r ,   with   
2 ( )

wall

wall

r
w r

r r r
.   

Applying the spectral operator 

     
0

,
wallr

i iw
T T w dr  (6.2) 

to the system equations and introducing the notations  

       * * * *( ) , , ( ) ,d dU k l W k l
ijkld i j ijkld i j

w w
I r U T T I r W T T  (6.3) 

with  d  the derivation order, the first truncated  4 2N  equations of the 

hydrodynamic stability model become 
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 
   
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for   1.. 2i N , where the number c being defined as 




 

 

2, 1
4, 2.. 2

i
c

i N
 and 

 2NA M  is square      2 2N N  matrix, with 11 2wallA r , 

  4 , 2.. 2mm wallA r m N ,  0mnA , m n . The eigenvalue problem can be 

obtained as a system of 4N  equations written in matrix formulation as 

 
 
        

( ) ( ) ( )

1 1 1 1

0 ,

,

k m
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kM M mM M s

s f g h p
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   

   


 (6.8) 

where the elements of the matrices will be deduced from system (6.4)-(6.7) and 
the eight remaining equations are provided by the boundary conditions. 

Since four boundary relations were necessary to completely define the 
hydrodynamic model of ordinary differential equations and they have been 
discussed in Chapter 3, by applying the modified tau method which recast the 
disturbance amplitudes by series (6.1), the additional eight relations are needed to 
complete the algebraic system of equations that governs the flow stability. The 
remaining relations are obtained from the mathematical model (3.2)-(3.5) after 
imposing the natural no-slip condition at the wall boundary, i.e.    0wallG r . 

The boundary relations are translated into equations that complete the 
stability model using the properties of the shifted Chebyshev polynomials derived in 
Chapter 4. 

For the axisymmetric case  0m  the boundary conditions are 
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and imply the following equations 
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For the bending modes  1m , the boundary conditions read 
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 (6.16) 

resulting the equation set 

         1 1

1 1
1 1 0

N Nk k
k kg h , (6.17) 

BUPT



58 Numerical Algorithm for Axisymmetric and Bending Modes Investigation – 6 
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6.1.2  Implementation of the Projection Method Using 
Symbolic and Numeric Conversions   

 
 The numerical algorithm was developed to work automatically for any 
number of expansion terms. The method of automatically integrating factors that 
involve multiplication of few expressions was realized in four steps.   

The function policevs.m given in Table 6.1 generates symbolically the 
shifted Chebyshev polynomial  defined by polynomial relation 
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 



                                   
     

1 1
2 2~ ~ ~ ~ ~

* 11
1 1 , 2 1

2

p p

p wallT r r r r r r rr . (6.24) 

Using the sym2string [87] function the symbolic integrands are converted 
into a Matlab equation strings. 

The symbol @(x) is concatenated to the integrands by using the Matlab 
strcat [88] procedure and the integrals are delivered as Matlab functions by eval 
[89] function.  

The integrals are evaluated on the physical domain   0, wallr  using quad  

[90] Matlab function that numerically evaluates the integrals using an recursive 
adaptive Simpson quadrature. 

The next functions were developed to evaluate symbolically the integrands.  
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Table 6.1 The function policevs.m generates symbolically the thn  Chebyshev 
polynomial defined on domain   0, wallr . 
 

function Tc1 = policevs(N1,rmax1) 
 syms x N rmax 
 Tc1=((2.*x./rmax-1+sqrt((2.*x./rmax-1).^2-1)).^(N-1) +... 
   (2.*x./rmax-1-sqrt((2.*x./rmax-1).^2-1)).^(N-1))./2;  
   Tc2=subs(Tc1,N,N1);           %replace N by N1 
   Tc1=subs(Tc2,rmax,rmax1);     %replace rmax by rmax1 

 
Examples:  
>> policevs(1,3) 

ans = 1 
>> policevs(2,3) 

ans = 2/3*x-1 
>> policevs(3,3) 

ans = 1/2*(2/3*x-1+((2/3*x-1)^2-1)^(1/2))^2+1/2*(2/3*x-1-
((2/3*x-1)^2-1)^(1/2))^2 
>> policevs(4,3) 

ans = 1/2*(2/3*x-1+((2/3*x-1)^2-1)^(1/2))^3+1/2*(2/3*x-1-
((2/3*x-1)^2-1)^(1/2))^3 
>> policevs(5,3) 

ans = 1/2*(2/3*x-1+((2/3*x-1)^2-1)^(1/2))^4+1/2*(2/3*x-1-
((2/3*x-1)^2-1)^(1/2))^4 
>> policevs(6,3) 

ans = 1/2*(2/3*x-1+((2/3*x-1)^2-1)^(1/2))^5+1/2*(2/3*x-1-
((2/3*x-1)^2-1)^(1/2))^5 
>> policevs(7,3) 

ans = 1/2*(2/3*x-1+((2/3*x-1)^2-1)^(1/2))^6+1/2*(2/3*x-1-
((2/3*x-1)^2-1)^(1/2))^6 
>> policevs(8,3) 

ans = 1/2*(2/3*x-1+((2/3*x-1)^2-1)^(1/2))^7+1/2*(2/3*x-1-
((2/3*x-1)^2-1)^(1/2))^7 
>> 
 

The integrands are generated symbolically on domain   0, wallr , using several 

functions given in Table 6.2. 
 

Table 6.2 Functions to generate symbolically the integrands. 
 

Integrand:          * *
n mU r T r T r w r  

function Tmn=produsJ(M1,N1,rmax,U0,U1,U2,R1,R2) 
 syms x 
    Tx=policevs(N1,rmax); 
    Ty=policevs(M1,rmax); 
    W=1./sqrt(1-(2.*x./rmax-1).^2); 
    U=U0+U1.*exp(-(x.^2)./(R1^2))+U2.*exp(-... 
(x.^2)./(R2^2));  
    % Vortex-rope 
    Tmn=U.*Tx.*Ty.*W; 
 

Integrand:            1 * *
n mr W r T r T r w r  
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function Tmn=produsK(M1,N1,rmax,Ome0,Ome1,Ome2,R1,R2) 
 syms x 
    Tx=policevs(N1,rmax); 
    Ty=policevs(M1,rmax); 
    W=1./sqrt(1-(2.*x./rmax-1).^2); 
    Wsupr=(Ome0.*x+Ome1.*(R1^2).*(1-exp(-(x.^2)./(R1^2)))./x + ... 
    Ome2.*(R2^2).*( 1- exp( -(x.^2)./(R2^2) ) )./x)./x;  
    % Vortex-rope  
    Tmn=Wsupr.*Tx.*Ty.*W; 

Integrand:            * *
n mr U r T r T r w r  

function Tmn=produsL(M1,N1,rmax,U0,U1,U2,R1,R2) 
 syms x 
    Tx=policevs(N1,rmax); 
    Ty=policevs(M1,rmax); 
    W=1./sqrt(1-(2.*x./rmax-1).^2); 
    rU=x.*(U0+U1.*exp( -(x.^2)./(R1^2) )+... 
    U2.*exp( -(x.^2)./(R2^2) )); % Vortex-rope 
    Tmn=rU.*Tx.*Ty.*W; 
 

Integrand:           * *
n mW r T r T r w r  

function Tmn=produsM(M1,N1,rmax,Ome0,Ome1,Ome2,R1,R2) 
 syms x 
    Tx=policevs(N1,rmax); 
    Ty=policevs(M1,rmax); 
    W=1./sqrt(1-(2.*x./rmax-1).^2); 
    Ww=Ome0.*x+Ome1.*(R1^2).*(1-exp(-(x.^2)./(R1^2)))./x +... 
    Ome2.*(R2^2).*( 1- exp( -(x.^2)./(R2^2) ) )./x;    
    % Vortex-rope 
    Tmn=Ww.*Tx.*Ty.*W; 
 

Integrand:           * *' n mr W r T r T r w r  

function Tmn=produsO(M1,N1,rmax,Ome0,Ome1,Ome2,R1,R2) 
 syms x 
    Tx=policevs(N1,rmax); 
    Ty=policevs(M1,rmax); 
    W=1./sqrt(1-(2.*x./rmax-1).^2); 
    rWder=x.*(Ome0+Ome1.*(R1^2).*( -1./(x.^2) +...     
        (1./(x.^2)+2/(R1^2)).*exp(-(x.^2)./(R1^2)) ) +... 
         Ome2.*(R2^2).*( -1./(x.^2) + ... 
         (1./(x.^2)+2/(R2^2)).*exp(-(x.^2)./(R2^2)) )); 
         % Vortex-rope 
    Tmn=rWder.*Tx.*Ty.*W; 
 

Integrand:          * *' n mU r T r T r w r  

function Tmn=produsP(M1,N1,rmax,U1,U2,R1,R2) 
 syms x 
    Tx=policevs(N1,rmax); 
    Ty=policevs(M1,rmax); 
    W=1./sqrt(1-(2.*x./rmax-1).^2); 
    Uder=( -2.*U1.*x.*exp( -(x.^2)./(R1^2) ) )./(R1^2) +... 
    ( -2.*U2.*x.*exp( -(x.^2)./(R2^2) ) )./(R2^2); 
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     % Vortex-rope 
    Tmn=Uder.*Tx.*Ty.*W; 
 

 
The integrals  

  * *

0

wallr

ij i jI rT T w dr    * *

0

wallr

ij i jJ UT T w dr    * *

0

wallr

ij i j
W

K T T w dr
r

 

  * *

0

wallr

ij i jL rUT T w dr    * *

0

wallr

ij i jM WT T w dr    * *

0

'
wallr

ij i jO rW T T w dr  

 
  * *

0

'
wallr

ij i jP U T T w dr  
 

 
are numerically evaluated by means of function integrala.m, given in Table 6.3. 
 
Table 6.3 Function integrala.m. 
 

function valoareint = integrala(functie,lim1,lim2) 
    tt=sym2str(functie); 
    f=strcat('@(x)', tt); 
    fn=eval(f); 
    valoareint=quad(fn,lim1,lim2); 

 
The results are retained in seven square N N  matrices. (see Table 6.4). 

 
Table 6.4 Sequence for construction of the evaluation matrices. 
 

I=zeros(N); J=zeros(N); K=zeros(N); L=zeros(N);  
M=zeros(N); O=zeros(N); P=zeros(N); 
for i=1:N 

for j=1:N 
I(i,j)=integrala(produsI(i,j,rmax),0,rmax); 
J(i,j)=integrala(produsJ(i,j,rmax,a),0,rmax); 
K(i,j)=integrala(produsK(i,j,rmax,q),0,rmax); 
L(i,j)=integrala(produsL(i,j,rmax,a),0,rmax); 
M(i,j)=integrala(produsM(i,j,rmax,q),0,rmax); 
O(i,j)=integrala(produsO(i,j,rmax,q),0,rmax); 
P(i,j)=integrala(produsP(i,j,rmax),0,rmax); 

end 
end 
 

 
The eigenvalue problem that governs the hydrodynamic stability is written 

in a matriceal form as  

 kkM s Ms , (6.25) 

where  

   1 1 1 1,..., , ,..., , ,..., , ,..., T
N N N Ns f f g g h h p p  (6.26) 

and matrices kM  and M  are constructed as described below 
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       
       
       
       
       

 
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  
 
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2 .1 1 1 1
2 sec .2 2 2 2

3 3 3 3 2 3 .
4 4 4 4 2 4 .

8

rd
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N rows derived from first eqkF kG kH kH
N rows derived from ond eqkF kG kH kH

M kF kG kH kH N rows derived from eq
kF kG kH kH N rows derived from eq
kLf kLg kLh kLp boundary conditions rows

 

       
       
       
       
       

 
   
  
 
  
 
 

2 .1 1 1 1
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8
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N rows derived from first eqF G H H
N rows derived from ond eqF G H H
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F G H H N rows derived from eq
Lf Lg Lh Lp boundary conditions rows

 

kM , M  are square matrices of dimension 4N  whose elements are matrix blocks of 

dimension   2N N . 

The generalized eigenvalue problem was solved during numerical 
simulations by an Arnoldi type algorithm implemented in the sptarn [91] Matlab’s 
procedure.  

The application returns an acceptably accurate approximation of the 
spectrum and relevant information on perturbation amplitudes for stable or 
unstable modes, the maximum amplitude of the most unstable mode and the 
critical distance where the perturbation is the most amplified.  

 
 
6.2 Summary and Published Papers Supporting This 
Chapter 

 
In this section a polynomials based tau-numerical procedure to investigate 

the spatial stability of a swirling flow subject to infinitesimal perturbations was 
developed. Using a shifted Chebyshev approach, our numerical procedure directly 
provided relevant information on perturbation amplitude for stable or unstable 
induced modes, the maximum amplitude of the most unstable mode and the critical 
distance where the perturbation is the most amplified. 

This method is not the most precise one. However, the major advantage is 
that it allows a good handling of the complicated boundary conditions, in order to 
translate the eigenvalue problem into a linear system. 

Another important aspect that must be pointed out is that the numerical 
approximations of the unknown perturbation fields are reached directly in the 
physical space due to a careful selection of the discretization spaces. A preliminary 
conclusion can be drawn: the non-symmetric boundary conditions have a major 
influence on the stability domain. 

The choice of the method was assessed underlying the necessity to 
implement an eigenvalue problem with sophisticated boundary conditions, governing 
the stability of the hydrodynamic system. In the next section we will present a 
numerical method based on collocation technique that approximates the 
perturbation field for all types of boundary conditions. 

The following published papers are based on the work presented in this 
chapter. 
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7.  PARALLEL COMPUTATION BASED ON 
SPECTRAL DESCRIPTOR TECHNIQUE FOR 

ANALYSIS OF SWIRLING FLOWS 
HYDRODYNAMIC STABILITY  

 
 

7.1 The Analytical Investigation of the Eigenvalue 
Problem 

 
This section presents the mathematical and numerical methodology to 

investigate the stability of the swirling flow downstream the Francis runner, in order 
to evaluate the frequency, pressure pulsation amplitude and other parameters 
under  operating conditions corresponding to all mode numbers.  

The numerical method considered here is a Chebyshev collocation type 
method that reduces the spatial stability problem to the study of an eigenvalue 
problem with variable coefficients. Finite element techniques [66-69] reconstruct 
functions from a superposition of piecewise polynomial functions on subsets of 
triangulations of a domain or its boundary. In contrast to this, the collocation 
technique surveyed here will avoid triangulations and meshing, but the unknown 
functions are reconstructed by the superposition of simple functions. 

The presented approach is different from the traditional optimization 
methods, since the spectral collocation technique that we developed has the peculiar 
feature that can approximate the perturbation field for all types of boundary 
conditions, especially when the boundary limits are described by sophisticated 
expressions.  

Following standard procedures [26, 86], the Chebyshev spectral collocation 
method can be described as follows. An approximation based on Chebyshev 
polynomials to the unknown functions is first introduced. The set of collocation 
equations is then generated. The equation system consists of two parts. The first 
part is formed by making the associated residual equal to zero at the collocation 
points, while the second part is obtained by forcing the boundary conditions to be 
satisfied at the boundary collocation points. 

Since, in order to discretize our hydrodynamic stability problem, a much 
more convenient choice is the range   0, wallr   than the standard definition interval 

of classical Chebyshev polynomials   1, 1 , the independent variable     1, 1  is 

mapped to the variable    max0,r r  by the linear transformation 

     11 2wallr r .  (7.1) 

We consider the hydrodynamic model of the flow described by relations 
(3.2)-(3.5). 

The unknown components of the perturbation field , , ,F G H P  are written as 

truncated series of orthonormal shifted Chebyshev polynomials *
kT  
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              


   *
1 1 1 1

1
, , , , , , ,

N N N N N
k kk k k k kk k k k

k
F G H P a T a f g h p . (7.2) 

Consider the one dimensional domain  0 wallr r , where wallr  means the 

radial distance to the wall. The domain of interest is represented by  2N  
Chebyshev-Gauss points in radial direction, excluding the axis and wall boundaries 

     





           

1
1
2

0

( 1)
1 cos 0,

2 1

N
N wall

k wallk
i

r i N
r r

N
. (7.3) 

By applying the collocation method, the first order differential model (3.2)-
(3.5) is transformed into a system of 4 8N  algebraic equations of form 

        
  

     * * *

1 1 1

1
0

N N N

k k i k k i r i k k i
i ik k k

m
k f T r g T r d G r h T r

r r
, (7.4) 

            
 

 
      

 
 * *

1 1

2
0

N N
i i

i k k i k k i r i
i ik k

mW r W r
kU r g T r h T r d P r

r r
, (7.5) 

 

          

   


  



 
     

 
 

    
 

  



* * *

1 1 1

' *

1
0,

N N N

i k k i i k k i k k i
ik k k

N
i

wall k k i
i k

m
kU r h T r W r h T r p T r

r

W r
W g T r

r

 (7.6) 

          
  

 
      

 
  * ' * *

1 1 1
0

N N N
i

i k k i wall k k i k k i
i k k k

mW r
kU r f T r U g T r k p T r

r
, (7.7) 

 2.. 1i N , where rd  means the radial derivative operator applied to unknown 

functions and '
wallU , '

wallW  represent the radial derivative of the axial, respectively 

the tangential velocity at  wallr r . 

The system must be completed with eight relations that are defined by the 
boundary equations and the additional relations obtained from the mathematical 
model after imposing the natural no-slip condition at the wall boundary, i.e. 

   0wallG r . 

The equations completing the 4N  algebraic system are then: 
 
Axis boundary conditions 
    1: 0,m F G H  (7.8) 

    0 : 0, 0,rm d F G H  (7.9) 

      1: 0, 0,m H G F P  (7.10) 
 
Wall boundary condition 
  1: 0,m G  (7.11) 

  0 : 0,m G  (7.12) 
   1: 0,m G  (7.13) 
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Additional stability equations  

 





 


 

 
      

 

    

0,

2
' 0,

1
0,

0.

wall

wall

wall

wall
wall

wall wall

wall
wall

wall

H
kF m

r

W H
P

r

W
H m H P kU H

r r

W
F m F kU F kP

r

 (7.14) 

The boundary relations are translated into algebraic equations that complete 
the stability model using the properties of the shifted Chebyshev polynomials 
derived in Chapter 4. For axysimmetric mode  0m  and for bending modes  1m  
the boundary relations have been detailed earlier by relations (6.10)-(6.15) and 
(6.17)-(6.23), respectively. By means of the spectral collocation as numerical 
investigation technique, we extended the stability analysis to non- axisymmetric 
mode, having mode number  1m . A boundary adapted numerical collocation was 

discussed in Chapter 5, this method being restrictive for fluids fulfilled Dirichlet 
boundary conditions only. In the case of our investigation, the fluid system exhibit 
sophisticated relations at the boundaries, even in non- axisymmetric mode, thus the 
spectral collocation is suitable for numerical investigation of the fluid system in 
Francis hydropower turbine. 

The boundary relations that we embedded in the numerical stability 
algorithm, for the non-axisymmetric case, are 

 

               1 1 1

1 1 1
1 1 1 0

N N Nk k k
k k kf g h , (7.15) 

 
1

0
N

kg , (7.16) 

   
1 1

0
N N

k k
wall

m
k f h

r
, (7.17) 

 
 

 

 
      

  
 

     
  

  

 

2

2
1 3 1

2

4 1

2 2 2( 1)
2

2( 1)
2 1 0,

k evenk odd

k even k odd

N N
wall

k k
wall wall wall r k

N

k
wall r k

W k
h p p

r r r

k
p

r

  (7.18) 

 
 

      
 

   
1 1 1 1

1
0

N N N N
wall

k k k wall k
wall wall

W
h m h p kU h

r r
, (7.19) 

 
 

      
 

   
1 1 1 1

0
N N N N

wall
k k wall k k

wall

W
f m f k U f p

r
. (7.20) 
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7.2 Numerical Approach Based on Collocation Technique 
 

7.2.1  Interpolative Derivative Operator 
 

In the radial direction, the values of relevant derivatives with respect to r  

at the grid points are computed by the differentiation matrix operator  rD . We 
deduced in Chapter 4 the formula that express the derivative of the shifted 

Chebyshev polynomial *
nT  as a difference between the previous and the following 

term 

    
      

     
* * *

1 1
1

, 2
4

wall
n n n

wall

nr
T r T r T r n

r r r
. (7.21) 

Let us consider 

      


  * *
1 1

2

N

k k
k

F r f T r f T r . (7.22) 

By differentiating (7.21) results 

      


    * *
1 1

2

N

k k
k

F r f T r f T r . (7.23) 

But   *
1 0T r  and involving relation (7.23) results 

      
      

 

      
 * * *

1 1
2 2

1

4

N N
wall

k k k k k
wallk k

kr
F r f T r f T r T r

r r r
. (7.24) 

The interpolative differentiation matrix  rD  can be written as 
 

  

     
     

     

  
  

  





   

 
 
   
  
 

2 2 3 2 1 2

2 3 3 3 1 3

2 1 3 1 1 1

...

...
... ... ... ...

...

N

r N

N N N N

r r r
r r r

D

r r r

, (7.25) 

where  

 
 
       

      
* *

1 1
1

( ) , 2.. 1k k k
wall

k
r T r T r k N

r r r
. (7.26) 

The discrete derivatives are approximated in descriptor formulation as 

              
     1 1 1 1
2 2 2 2, , , ,

TN N N Nr
k k kr k k k kk k k kd a D a a f g h p . (7.27) 

 
 

7.2.2  Parallel Implementation of the Spectral Collocation 
Algorithm 

 
Solving the resulting eigenvalue problem with variable coefficients imply 

imposing that the eigenvalue problem (7.4)-(7.14) to be satisfied at the   2N  

interior points    , 2.. 1ir i N . The system of 4N  equations is completed with the 

boundary relations, respectively.  
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It is noticeable form expression (7.26) that  ( )k r  isn’t necessary to be 

evaluated at extreme nodes 1 0r  and N wallr r , thus avoiding the singularities. 

The nature of the instability of the basic flow has been widely investigated 
either analytically, numerically or experimentally. Depending on whether the 
frequency is real and the wavenumber is complex or vice versa, the stability 
investigations are classified as temporal or spatial stability, respectively, as we 
describe in Chapter 2. In this way, a temporal stability analysis of normal modes 
imply that the  -roots     r ii ,   Re( )r ,   Im( )i , of the dispersion 

relation    0D  are obtained as functions of the real values of k . In this 

conditions, a characterization of the stability of the basic flow is: the basic flow is 
unstable if, for some real k , the growth rate,    Imi  is positive. If the growth 

rate is negative for all real k  then the basic flow is absolutely stable. 
Conversely, solving the dispersion relation for the complex wavenumber, 

  r ik k i k , rk Re( )k ,  Im( )ik k , when   is given real leads to the spatial 

branches. The disturbance is applied in time, with real frequency   and the 
evolution of the perturbation is observed in space. Here the flow is considered 
convective unstable when the disturbance grows, i.e. the imaginary part of k  is 
negative.    

Depending on the type of the stability analysis, as classified above, both 
cases lead to a two-point eigenvalue problem written in the computational form as 
follows 

 

        
1

01

1 1 1 1

0,

, , , .
TN N N N

k k k kk k k k

T SP
k v

BB B

v f g h p



   

     
              



 (7.28) 

Let us denote by  

   ( )ir diag r ,     

1
(1 / )idiag r

r
,    ( ( ))iU diag U r ,    ( ( ))iW diag W r ,   2 1i N , 

    
 

   2 1,
1

( )ij i N
j N

,     *( )ij j iT r ,    
  
 

   2 1,
1

( )r
ij i N

j N
D D , 

I  represents the identity matrix of order   2N  and 0  means the null matrix of 

the same order. 
P ,T  and S  are matrices of order   4 8 4N N  whose elements derive 

form the differential system (7.4)-(7.7) 

 






 
          
     

0 0 0 0
0 0 0

0 0 0

0 0 0

P , (7.29) 

 







 

    
        

     
          

0 0 0

0 0 0

0 0 0

0 0

U
T

U

U

, (7.30) 
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 

 

 

  

                      
                  

                                


                                           

1 1
0 0

1
' 0 0

1 1
0 2

1 1 1
0 '

D m
r r

m W U
r

S
m W W D

r r

W W m W m
r r r








. (7.31) 

  

To implement the boundary relations we define the following line matrices 
 

  

 

         
1

1
1 1 i

i
i N

e , 
        11 1i i N

e , 

 
 

 
 

 
 
  
 
 

  
          

     
   
        
      





2

1

2

1
1

0, 1
2

, 2

2( 1)
2 , 3,

2( 1)
2 1 , 4,

i even

i odd

wall

i
wall r i

wall r i
i N

if i

if i
r

i
if i oddp p r

i
if i even

r

. (7.32) 

 

Formula (7.32) defines the matrix   f  also. 

Here 0 means the line null matrix having N  elements on the line. The 

boundary matrices 1B , 1B  and 0B  of order 8 4N  have the elements deriving 

from the boundary equations. 
For non-axisymmetric case  1m  the boundary matrices are implemented 

as described here 
 

 
 
 
 
 
 

  
 
 
     
     

1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

1 0 0 0

B , 

 
 
 
 
 
 

     
 
 

   
        

1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

0 0 0 0
0 0 1 0

1 0 0 1
wall

wall

B

U

U

, 
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    
   

 
   

    
 

   
 
         
 
        
 
 

   
 

0

1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 0

0 0 1 0

2
0 0 1

1
0 0 1 1

1 0 0 0

wall

wall

wall

wall

wall wall

wall

wall

m
rB
W

p
r

W
m

r r

W
m

r

. (7.33) 

 

For axisymmetric case  0m  the boundary matrices are implemented as 
follows  

 
 
 
 
 
 

  
 
 
     
     

1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

1 0 0 0

B , 

 
 
 
 
 
 

     
 
 

   
        

1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

0 0 0 0
0 0 1 0

1 0 0 1
wall

wall

B

U

U

, 

 

 

    
   

 
   
    
   

        
 
 

   
 
 
 

0

0 1 0 0

0 0 1 0

0 0 0

0 1 0 0

0 0 0 0
2

0 0 1

1
0 0 0 1

0 0 0 0

wall

wall

wall

f

B
W

p
r

r

. (7.34) 

 

For bending modes  1m  we define the boundary matrices in the 
following form 
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 
 
 
 
 
 

  
 
 
     
     

1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

1 0 0 0

B , 

 
 
 
 
 
 

     
 
 

   
        

1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

0 0 0 0
0 0 1 0

1 0 0 1
wall

wall

B

U

U

, 

 

 

          
   

 
   

    
 

   
 
         
 
         
 
     
 

0

0 1 1 0

1 0 0 0

0 0 0 1

0 1 0 0

1
0 0 1 0

2
0 0 1

1
0 0 1 1

1 0 0 0

wall

wall

wall

wall

wall wall

wall

wall

rB
W

p
r

W
r r

W
r

. (7.35) 

 
 The function to implement the eigenvalue problem (7.28) in temporal 
stability analysis is listed in Table 7.1.  
 
Table 7.1 Dynamic matrices and boundary condition implementation in temporal 
analysis for mode  0m . 
 

function dynmtx0=boundarycond(N, kapa) 
% MATRICILE DINAMICE – Problema de valori proprii temporala 
Nc=N-2; 
Z=zeros(Nc,N); 
% matricea M_k 
M_k=[diag(rc)*PHIc Z Z Z ; ... 
    Z diag(uzc)*PHIc Z Z ;... 
    Z Z diag(rc)*diag(uzc)*PHIc Z;... 
    diag(uzc)*PHIc Z Z PHIc] ; 
  
% matricea M_omega 
M_omega1=[Z Z Z Z;... 
       Z -PHIc Z Z;... 
       Z Z -diag(rc)*PHIc Z;... 
       -PHIc Z Z Z]; 
  
%matricea M_m 
M_m=[Z Z PHIc Z;... 
    Z diag(1./rc)*diag(utec)*PHIc Z Z;... 
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    Z Z diag(utec)*PHIc PHIc;... 
    diag(1./rc)*diag(utec)*PHIc Z Z Z]; 
  
% matricea M_zero 
M_zero=[Z PHIc+diag(rc)*D1c Z Z;... 
    Z Z 2*diag(1./rc)*diag(utec)*PHIc -D1c;... 
    Z diag(utec)*PHIc+diag(rc)*diag(utederc)*PHIc Z Z;... 
    Z diag(uzderc)*PHIc Z Z]; 
  
MMplus=kapa*M_k+m*M_m+M_zero; 
MM1=-MMplus ; 
%Adaog conditiile la limita cazul m=0  F'=G=H=0 la 0 si 
c5,c6,c7,c8 la  rmax 
%in matricea M_omega 
  
oLf=zeros(8,N);   % 8 conditii 
for j=1:N 
    oLf(8,j)=-1; % c8 
end 
  
oLg=zeros(8,N); %c2 
  
oLh=zeros(8,N); %c2 
for j=1:N 
    oLh(7,j)=-1; %c7 
end 
  
oLp=zeros(8,N);   
  
M_omega=zeros(4*N); 
M_omega(1:4*N-8,:)=M_omega1; 
M_omega(4*N-7:4*N,1:N)=oLf; 
M_omega(4*N-7:4*N,N+1:2*N)=oLg; 
M_omega(4*N-7:4*N,2*N+1:3*N)=oLh; 
M_omega(4*N-7:4*N,3*N+1:4*N)=oLp; 
  
%in matricea MM conditiile la limita   caz m=0 
  
Lf=zeros(8,N); %c3  
Lf(3,2)=2/rmax;%c3  
for j=3:N 
    if mod(j,2)~=0  %coloana impara incepand de la 3 
        for rrr=j-1:-2:2   %r par 
                Lf(3,j)=Lf(3,j)+2*(j-1)*(-2)/rmax; 
        end 
    end 
    if mod(j,2)==0  %coloana para incepand de la 4 
        for ttt=j-1:-2:3    %rimpar   
               Lf(3,j)=Lf(3,j)+2*(j-1)*(2)/rmax; 
        end 
        Lf(3,j)=Lf(3,j)+1*2*(j-1)/rmax; %adun T1(0)=1*coeficient 
    end 
end 
for i=1:N      
    Lf(5,i)=kapa;  %c5           

BUPT



7.2 – Numerical Approach Based on Collocation Technique 73  

    Lf(8,i)=kapa*Urmax+m*Wrmax/rmax;  %c8    
end                    
  
 Lg=zeros(8,N); 
for i=1:N 
    Lg(1,i)=(-1)^(i+1); %c1 
    Lg(4,i)=1; %c4   
end 
  
  Lh=zeros(8,N); 
for i=1:N 
    Lh(2,i)=(-1)^(i+1); %c2 
    Lh(5,i)=m/rmax;    %c5 
    Lh(6,i)=-2*Wrmax/rmax; %c6 
    Lh(7,i)=kapa*Urmax+m*Wrmax/rmax ;  %c7 
end 
  
  Lp=zeros(8,N); 
    for i=1:N 
    Lp(7,i)=m/rmax;  %c7  
    Lp(8,i)=kapa;  %c8 
end 
% +P'  din c6 
Lp(6,2)=2/rmax; 
for j=3:N 
    if mod(j,2)~=0  %coloana impara incepand de la 3 
        for rrrr=j-1:-2:2   %r par 
                Lp(6,j)=Lp(6,j)+2*(j-1)*(2)/rmax; 
        end 
    end 
    if mod(j,2)==0  %coloana para incepand de la 4 
        for tttt=j-1:-2:3    %rimpar   
               Lp(6,j)=Lp(6,j)+2*(j-1)*(2)/rmax; 
        end 
        Lp(6,j)=Lp(6,j)+1*2*(j-1)/rmax;%adun T1(0)=1*coeficient 
    end 
end 
  
MM=zeros(4*N); 
MM(1:4*N-8,:)=MM1; 
MM(4*N-7:4*N,1:N)=-Lf; 
MM(4*N-7:4*N,N+1:2*N)=-Lg; 
MM(4*N-7:4*N,2*N+1:3*N)=-Lh;  
MM(4*N-7:4*N,3*N+1:4*N)=-Lp; 
return 

 
 

The function to implement the eigenvalue problem (7.28) for spatial 
stability analysis is listed in Table 7.2. 
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Table 7.2 Dynamic matrices and boundary condition implementation in spatial 
analysis for mode  0m . 
 

function dynmtx1=boundarycond1(N, omega) 
% MATRICILE DINAMICE – Problema de valori proprii spatiala 
Nc=N-2; 
Z=zeros(Nc,N); 
  
% matricea M_k 
  
M_k1=[diag(rc)*PHIc Z Z Z ; ... 
    Z diag(uzc)*PHIc Z Z ;... 
    Z Z diag(rc)*diag(uzc)*PHIc Z;... 
    diag(uzc)*PHIc Z Z PHIc] ; 
  
% matricea M_omega 
  
M_omega=[Z Z Z Z;... 
       Z -PHIc Z Z;... 
       Z Z -diag(rc)*PHIc Z;... 
       -PHIc Z Z Z]; 
  
%matricea M_m 
  
M_m=[Z Z PHIc Z;... 
    Z diag(1./rc)*diag(utec)*PHIc Z Z;... 
    Z Z diag(utec)*PHIc PHIc;... 
    diag(1./rc)*diag(utec)*PHIc Z Z Z]; 
  
% matricea M_zero 
  
M_zero=[Z PHIc+diag(rc)*D1c Z Z;... 
    Z Z 2*diag(1./rc)*diag(utec)*PHIc -D1c;... 
    Z diag(utec)*PHIc+diag(rc)*diag(utederc)*PHIc Z Z;... 
    Z diag(uzderc)*PHIc Z Z]; 
  
MMplus=omega*M_omega+m*M_m+M_zero; 
MM1=-MMplus ; 
  
%Adaog conditiile la limita cazul m=0  F'=G=H=0 la 0 si 
c5,c6,c7,c8 la  rmax 
%in matricea M_k 
  
kLf=zeros(8,N);   
for i=1:N 
    kLf(5,i)=1;  %c5 
    kLf(8,i)=Urmax;  %c8 
end 
  
kLg=zeros(8,N);  
  
kLh=zeros(8,N);  
for i=1:N 
    kLh(7,i)=Urmax;  %c7  
end 
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kLp=zeros(8,N);  
for i=1:N 
    kLp(8,i)=1;  %c8  
end 
  
M_k=zeros(4*N); 
M_k(1:4*N-8,:)=M_k1; 
M_k(4*N-7:4*N,1:N)=kLf; 
M_k(4*N-7:4*N,N+1:2*N)=kLg; 
M_k(4*N-7:4*N,2*N+1:3*N)=kLh; 
M_k(4*N-7:4*N,3*N+1:4*N)=kLp; 
 
%in matricea MM  conditiile la limita   caz m=0 
  
Lf=zeros(8,N); 
%c3  
Lf(3,2)=2/rmax; 
for j=3:N 
    if mod(j,2)~=0  %coloana impara incepand de la 3 
        for rrr=j-1:-2:2   %r par 
                Lf(3,j)=Lf(3,j)+2*(j-1)*(-2)/rmax; 
        end 
    end 
    if mod(j,2)==0  %coloana para incepand de la 4 
        for ttt=j-1:-2:3    %rimpar   
               Lf(3,j)=Lf(3,j)+2*(j-1)*(2)/rmax; 
        end 
        Lf(3,j)=Lf(3,j)+1*2*(j-1)/rmax; %adun T1(0)=1*coeficient 
    end 
end 
for i=1:N             
    Lf(8,i)=-omega+m*Wrmax/rmax;  %c8    
end                    
  
 Lg=zeros(8,N); 
for i=1:N 
    Lg(1,i)=(-1)^(i+1); %c1 
    Lg(4,i)=1; %c4   
end 
  
  Lh=zeros(8,N); 
for i=1:N 
    Lh(2,i)=(-1)^(i+1); %c2 
    Lh(5,i)=m/rmax;    %c5 
    Lh(6,i)=-2*Wrmax/rmax;    %c6 
    Lh(7,i)=-omega+m*Wrmax/rmax ;  % c7 
end 
  
  Lp=zeros(8,N); 
    for i=1:N 
    Lp(7,i)=m/rmax;  %c7  
end 
% +P'  din c6 
Lp(6,2)=2/rmax; 

BUPT



76 Parallel Computation Based on Spectral Descriptor Technique – 7 

for j=3:N 
    if mod(j,2)~=0  %coloana impara incepand de la 3 
        for rrrr=j-1:-2:2   %r par 
                Lp(6,j)=Lp(6,j)+2*(j-1)*(2)/rmax; 
        end 
    end 
    if mod(j,2)==0  %coloana para incepand de la 4 
        for tttt=j-1:-2:3    %rimpar   
               Lp(6,j)=Lp(6,j)+2*(j-1)*(2)/rmax; 
        end 
        Lp(6,j)=Lp(6,j)+1*2*(j-1)/rmax;%adun T1(0)=1*coeficient 
    end 
end 
  
MM=zeros(4*N); 
MM(1:4*N-8,:)=MM1; 
MM(4*N-7:4*N,1:N)=-Lf; 
MM(4*N-7:4*N,N+1:2*N)=-Lg; 
MM(4*N-7:4*N,2*N+1:3*N)=-Lh;  
MM(4*N-7:4*N,3*N+1:4*N)=-Lp; 
return 

 
 

7.3 Summary and Published Papers Supporting This 
Chapter 
 
We have developed in this section a collocation technique that has the 

peculiar feature that can approximate the perturbation field for all types of boundary 
conditions, especially when the boundary limits are described from sophisticated 
expressions. Using descriptor technique [63, 92], widely used in the control theory 
community, combined with the algebraic properties of the shifted Chebyshev 
orthogonal polynomials [73, 79], the PDE system governing the stability of the flow 
was translated in hydrodynamic eigenvalue problem in matriceal operators 
formulation. The problem of axial singularities was eliminated by inclusion of the 
boundary conditions as equations that complete the system that was collocated on 
reduced grid. 

The following papers based on the work presented in this chapter were 
published. 

 
In Proceedings of International Conferences (ISI) 

 
Paper 1. BISTRIAN, D.A., DRAGOMIRESCU, I., SAVII, G., STOICA, D., Spectral 
Differentiation Operators for Solving Hydrodynamic PSE Models, ICNAAM 2010, 8th 
International Conference of Numerical Analysis and Applied Mathematics, 19-25 
September, Rodos, American Institute of Physics Conference Proceedings 1281, 
September 30, Melville, New York, pp. 448-451, ISBN 978-0-7354-0831-9, ISSN 
0094-243X, 2010. 
 
Paper 2. BISTRIAN, D.A., DRAGOMIRESCU, I., SAVII, G., Spectral Differentiation 
Operators And Hydrodynamic Models For Stability Of Swirling Fluid Systems, 
Mathematics And Computers In Science And Engineering-Proceedings of the 14-th 
WSEAS International Conference on Applied Mathematics, 14-16 December, Puerto 
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De La Cruz, Canary Islands, pp. 328-333, ISBN 978-960-474-138-0, ISSN 1790-
2769, 2009. 
 

In Proceedings of International Conferences 
 
Paper 3. BISTRIAN, D.A.,  DRAGOMIRESCU, I., MUNTEAN, S., SUSAN-RESIGA, 
R., SAVII, G., Spectral Descriptor Approach For Solving Hydrodynamic PDE Models 
Of Swirling Flows With Applications, SIAM/RSME-SCM-SEMA Meeting Emerging 
Topics in Dynamical Systems and Partial Differential Equations DSPDEs'10,  May 
31st, – June 4th, Barcelona, Spain, 2010. 
 
Paper 4. BISTRIAN, D.A., MAKSAY, ST., Numerical spectral study for viscous 
temporal stability of a trailing vortex, Knowledge Based Organization 2008 The 14th 
International Conference, Sibiu, ISSN 1843-6722, pp. 241-248, nov. 2008. 
 

In International Journals 
 
Paper 5. BISTRIAN, D.A.,  DRAGOMIRESCU, I., SAVII, G., Descriptor Techniques 
for Modeling of Swirling Fluid Structures and Stability Analysis, WSEAS Transactions 
On Mathematics, Issue 1, Volume 9, pp. 56-66, ISSN: 1109-2769, 2010. 
 
Paper 6. BISTRIAN, D.A., SAVII, G., LATINOVIC, T., MAKSAY, ST., Stability 
Investigation Of Swirling Flows With Spectral Algorithms, IST Transactions Of 
Applied Mathematics-Modeling And Simulation, Vol. 1, No. 1 (2)  
pp. 20-27, ISSN 1913-8342, October 2010.  
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8.  VALIDATION OF THE NEW NUMERICAL 
PROCEDURES ON A BATCHELOR VORTEX 

PROBLEM 
 
 

8.1 The Batchelor Vortex Profile 
 

The presence of a large variety of vortex flows in nature and technology 
raised many theoretical and numerical problems concerning the stability of such 
structures. In these conditions, in order to minimize the simulation requirements for 
nonlinear time-dependent problems, stability analyses of vortex motions become 
very important in flow control problems.  

Most of the vortex stability investigation concerned axisymmetric vortices 
with axial flow have been made in order to explain the vortex breakdown 
phenomenon, observed experimentally for the first time on delta wings [93, 94], in 
pipes [95] and in cylinders with rotating ends [96].  

The methods for hydrodynamic stability that we have presented so far have 
been tested on a particular benchmark model, the Batchelor or Q-vortex, 
developing in nature at tip of each delta wing, which have been the subject of 
many analytically and computational investigations, related in the literature [32, 
44, 48, 98]. 

The Q-vortex flow field is characterized by the velocity field  

     ,0,U U r W r , in form related in [46] and [98] 

    
2rU r a e ,  

2
( ) (1 )rq

W r e
r

, (8.1) 

where U  represents the axial velocity component, the radial velocity component is 
negligible and W  is the tangential component of the velocity, all depending only on 
radius. Here q  represents the swirl number defined as the angular momentum flux 
divided by the axial momentum flux times the equivalent nozzle radius and a  
provides a measure of free-stream axial velocity. 

In the particular case  0a , Lessen and Paillet [93] have investigated 
stability characteristic of the velocity profile defined by (8.1). The solution was 
started with a Frobenius series at  0r  and with an asymptotic solution at  radial 
boundary  maxr r . Then a Taylor series expansion was used to integrate from both 

limits and the condition that the solution matched at some intermediate points was 
imposed. It was proven that for  1.5q  all unstable modes are highly damped and 
stabilized. 

In [98] a Chebyshev spectral collocation method for temporal and spatial 
stability is also presented and the accuracy of the developed algorithm is tested on 
various flow configurations. For the same particular case, it is pointed out that for 
 3r  the axial velocity  U r  is essentially 0 and the tangential velocity  W r  

approaches /q r , which is a potential vortex. In fact, this value is exactly the 

max 3r  chosen by Lessen and Paillet in [93] to start their asymptotic solution.  
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In [45, 46] the numerical investigation of the two-point boundary value 
problem was assessed based on a shooting method. The properties of the Batchelor 
vortex are pointed out by considering them as functions of the swirl ratio q  and the 
external flow parameter a . 

We have compared the numerical results obtained using the stability 
algorithms we have developed in Chapter 5, Chapter 6 and Chapter 7 with results 
related in the literature by Professor Olendraru et al. in paper [46]. 
 
 

8.2 Radial Boundary Adapted Method Validation and 
Results 

 
Radial boundary adapted method that we develop in Chapter 5 was used 

for stability investigation of the non-axisymmetric cases, having the mode number 
 1m , using a modal trial base based on orthogonal expansion functions satisfying 

the Dirichlet boundary conditions. 
The computed spectra of the eigenvalue problem (5.23)-(5.26) that 

governs the spatial stability of Q-vortex in this case is depicted in Fig. 8.1. 
 

 
Fig. 8.1 Spectra of the hydrodynamic eigenvalue problem computed at 0.01  , 3m   , 

0a  , 0.1q  . 
 
 In spatial stability analysis that we performed in this case, the eigenvalue 
with the largest negative imaginary part represents the critical eigenvalue of the 
most unstable mode, as described in formula (2.49). A comparison between the 
value of the critical eigenvalue returned by the radial boundary adapted algorithm 
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and the value presented in reference [46] where a shooting method was used, is 
presented in Table 8.1. 
 
Table 8.1 Comparative values of the most unstable mode at  0a ,  0.1q , 
  0.01  for the case of the counter-rotating mode  3m : eigenvalue with largest 
imaginary part crk . 
 

Shooting method 
results [46] 

Radial boundary adapted  
results 

 0.506 0.139crk i   0.508370160705651 - 0.141819497036924  crk i  

 
 
 A comparison between our results and those obtained by Olendraru et al. 
[46] is depicted again. It is obvious that our numerical results obtained by radial 
boundary adapted algorithm are in good agreement with the results of Olendraru et 
al., when using a shooting method. The convergence of the numerical algorithm is 
shown in Table 8.2. Considering the most unstable mode identified by the 
eigenvalue with the largest negative imaginary part (as seen in Fig. 8.1) we plot 
the radial distribution of the velocities perturbation mode in Fig. 8.2. Comparison 
with the results presented in Olendraru et al. [46] was done considering the critical 
axial wavenumber calculated for the value of the spectral parameter  150N  
(Table 8.2). 

In order to evaluate the spectral accuracy of the algorithm, we considered 
the residual vector as a three parameter set 
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(8.2) 
As the spectral parameter N is varying we retain the norm of the error 

vector  

        
1 /2

, ,er m N k N . (8.3) 
 

Fig. 8.3 presents the behavior of the error as the number of collocation node 
is increasing. It is shown that the error decays at an exponential rate when over 140 
collocation nodes are used. Our results agree very well with the existing ones. The 
numerical procedure directly provided relevant information on perturbation 
amplitude for stable or unstable induced modes, the maximum amplitude of the 
most unstable mode and the critical distance where the perturbation is the most 
amplified. Other results are presented. The most amplified axial wavenumber in the 
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zero-external flow jet case for various modes are listed in Table 8.3 and the radial 
distribution of perturbation velocity field for mode 2m   is depicted in Fig. 8.4. 
 
Table 8.2 Convergence behavior of the critical eigenvalue for the most unstable 
mode  3m  with   0.01 ,   0a ,  0.1q . 
 

Spectral 
parameter N 

Axial wavenumber crk  

30 0.368745231519635 - 0.063754824589523i  
50 0.387514934512687 - 0.084512374584563i  
80 0.498571235876258 - 0.098273651578456i  
100 0.508571649234756 - 0.141957563824185i  
150 0.508370160705651- 0.141819497036924i  
180 0.508375478563258 - 0.141819452369852i  
250 0.508375445872369 - 0.141819474528937i  
300 0.508375445865974 - 0.141819474563815i  

 

Table 8.3 The most amplified axial wavenumber for various modes.  
 

m   ,cr r ik k k  

2  (0.012728546932547,-0.900998541264957)  
3  (0.238598528459632,-0.000437147254586)  
4  (0.358181314285469,-0.001074521951956)  
5  (0.626902315964782,-0.001880624582356)  

 

 
Fig. 8.2 Comparative absolute values of eigenfunction amplitudes of the most unstable mode 

0.01  , 3m   , 0a  , 0.1q  , considering the critical eigenvalue with the largest 

imaginary part   0.50837016 - 0.14181949crk  . 
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Fig. 8.3 Behavior of the eigenvalue problem residual as function of the spectral parameter N . 

 
Fig. 8.4 Radial distribution of velocity field for perturbed flow with non- axisymmetric mode 

2m  , 0a  , 0.05q   0.1  . 
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8.3 2L -Projection Method Validation and Results 
 

The 2L -projection method, also known as the Chebyshev tau method 
represents an efficient numerical technique to solve eigenvalue problems with 
sophisticated boundary conditions by translate it into a linear system of equations. 
We employed this technique to develop numerical algorithms for bending modes 
investigation, having the mode number  1m . 
 In order to compare our results performed upon the Q-vortex velocity 
profile with the ones from [46] numerical evaluations of the axial wavenumber k  
were obtained for various sets of parameters associated with the investigated 
modes. In Table 8.4 these values are presented in comparison with the ones from 
reference [46].  

  
Table 8.4 Comparative results of the most amplified spatial wave of the Batchelor-
vortex: eigenvalue with largest imaginary part   ,cr r ik k k . 
 

 1m   1m  
Shooting method [46] 

  0.6,0crk    0.454, 1.276crk  

2L  Projection method 
  0.49,0crk    0.57, 1.358crk  

 
The next figures illustrate the behavior of the perturbation amplitudes for 

bending modes, computed with the critical axial wavenumbers listed in Table 8.4, 
in comparison with the results obtained by Olendraru et al [46]. 

 

a  
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b  
Fig. 8.5 Absolute values of eigenfunction amplitudes computed at: 

a) 1m  , 0a  , 0.7q  , 0.0425  ,  0.49,0crk   using 7N   expansion terms.  

b) 1m   , 1.268a   , 0.6q  , 0.78   ,  0.57, 1.358crk    using 8N   expansion 

terms. 
 

Following Tadmor [99], when differencing analytic functions using Chebyshev 
pseudo spectral methods, the error committed is expected to decay to zero at an 
exponential rate. The convergence behavior of the algorithm with respect to the 
number of expansion terms is shown in Table 8.5 in comparison with ones obtained 
using the radial boundary adapted technique in our previous investigations [77], 
[100].   

Clearly the numerical computation costs were less expansive in the 
projection method approach since the number of terms in the approximations was 
significantly reduced. In fact, in comparison with the boundary adapted collocation 
method this number was more than twenty times reduced. In consequence, with a 
reduced by far computational time, we can obtain accurate results in an acceptable 
agreement with existing ones. 

Although the projection method is a very efficient technique, the inclusion of 
the boundary conditions as equations in the system of the generalized eigenvalue 
problem have been observed to be one cause of spurious eigenvalues. The spurious 
eigenvalues, which are not always easy to identify, may lead one to a false 
conclusion regarding the stability of the fluid system, thus the elimination of them is 
of great importance. These are values returned by the algorithm which do not satisfy 
the eigenvalue problem. The spurious eigenvalues problems have been the attention 
of much study recently. Gardner et al. [82] and McFadden et al. [101] describe the 
tau methods to avoid spurious eigenvalues and in Dongara et al [85] the occurrence 
of the spurious eigenvalues is assessed in application to the Benard convection 
problem. 
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Table 8.5 Comparison of the convergence behavior of the algorithm assessing 

radial boundary adapted method and 2L -projection method. 
 

N Axial wavenumber crk  

Radial boundary adapted [77], [100] 
80  0.498571235876258 - 0.098273651578456i  
100  0.508571649234756 - 0.141957563824185i  
150  0.508370160705651- 0.141819497036924i  
180  0.508375478563258 - 0.141819452369852i  

2L - Projection [75] 
5  0.325249174525684 1.084625097561478i  
6  0.491576258945131 1.184214359658741i  
7  0.551854623988265 1.371519652384657i  
8  0.570546235874152 1.358152468512479i  

 
We implement in our numerical procedure a code sequence that identifies if 

an eigenvalue of the spectra is spurious or not. First the algorithm provides the 
entire spectra, then calculates the residual vector of the eigenvalue problem 

     = , = , , ,T v Ψ v v
T

IDENTIFIER k f g h p  (8.4) 

with  

               1 1 1 1, , , , , ,
TT N N N N

k k k kk k k kf g h p f g h p  (8.5) 

for each eigenvalue of the spectra. 

A true value of k  must satisfy the eigenvalue problem. We evaluate the 2L  
norm of the vector with respect to a given tolerance   . If the condition 
   >norm IDENTIFIER  (8.6) 

holds, the eigenvalue k  is declared spurious and discarded form the spectra. Fig. 
8.6 presents the residual of the eigenvalue problem, solved using the QZ algorithm 
implemented in the high level computing platform Matlab and the corresponding 
histogram.  

For bending modes  1m  and  1m , the eigenvalue problem and its 
sophisticated boundary conditions were translated into a linear system using a 
modified tau method based on orthogonal shifted Chebyshev expansions. The 
numerical approximation of the unknown perturbation field was searched directly in 
the physical space. The collocation method is more accurate, however the projection 
method is less expensive with respect to the numerical implementation costs, i.e. 
numerical results are obtained for a much smaller number of terms.  
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Fig. 8.6 Residual of the eigenvalue problem (up) and corresponding histogram (down). 

 
 
8.4 Spectral Descriptor Method Validation and Results 

 
The basic flow under consideration for the validation of the proposed 

method is the Batchelor vortex case or the q-vortex [46], that trails on the tip of 
each delta wing of the airplanes. The properties of the Batchelor vortex were 
pointed out in Olendradru et al. [46] where a shooting method was used. In order 
to compare our results with the ones from [46] numerical evaluations of the axial 
wavenumber k  were obtained for various sets of parameters associated with the 
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investigated modes.  
The spectral boundary adapted algorithm was developed in Chapter 5 to 

investigate the non-axisymmetrical modes  1m  satisfying Dirichlet boundary 

conditions, however, the spectral collocation method presented in Chapter 7 
allowed us to investigate the hydrodynamic models with sophisticated boundary 
conditions for all mode numbers. 

In Table 8.6 the values of the most unstable eigenvalue of the Q-vortex 
spatial problem are presented in comparison with the ones from Olendradru et al. 
[46] and the ones obtained by us using the radial boundary adapted technique in 
our previous investigation [77]. The numerical results obtained employing the 
collocation method are in agreement with the results presented in reference [46]. 

The spectra of the eigenvalue problem (7.28) governing the spatial stability 
of the Q-vortex for mode  3m  is depicted in Fig. 8.7. 

 
Table 8.6 Comparative results of the most amplified spatial wave of the Batchelor-
vortex: eigenvalue with largest imaginary part   ,cr r ik k k . 

Mode  3m   1m   1m  

Shooting method 
 [46] 

 0.506, 0.139   0.6,0   0.761, 0.336  

Boundary adapted 
collocation  

(previous research 
[77]) 

 
 0.50842, 0.14243  

 
This method is available for non 

axisymmetric modes  | | 1m with 
Dirichlet boundary conditions only. 

 
Collocation method 

(this research) 
 0.50819, 0.14192   0.5611,0   0.76146, 0.33722  

 

 
Fig. 8.7 Spectra of the Q-vortex hydrodynamic eigenvalue problem computed at parameters 

0.01  , 3m   , 0a  , 0.1q  , for 100N   collocation nodes. 
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a  
 

b  
 

Fig. 8.8 Comparison of the absolute values of disturbances of the most unstable mode 
0.01  , 3m   , 0a  , 0.1q  , considering the critical eigenvalue with the largest 

imaginary part 0.50819 0.14192crk i  , without stabilization (a) and with Lanczos 

stabilization (b). 
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Radial distribution of the velocity perturbation mode is depicted in Fig. 8.8, 
considering the critical wavenumber from Table 8.6. For non-axisymmetric 
conditions, Fig. 8.8a shows the profiles without stabilization and the Gibbs 
phenomenon occurs. In Fig. 8.8b a smoothing procedure was applied by 
multiplication with a Lanczos   factor [27] 

     *

1

2
, , , , , , , sin , 1 .

2

N

k k k k k k k
k

N k
F G H P f g h p T k N

k N
 


       (8.7) 

For bending modes investigation the results are depicted in Fig. 8.9, Fig. 
8.10 and Fig. 8.11. Table 8.7 lists the calculated critical wavenumbers for various 
parameters for which we have investigated the Q-vortex profile, in order to validate 
the spectral collocation algorithm. 

 

Table 8.7 Numerical results comparison for bending modes investigation. 
 

 1m  

crk : Shooting method 

[46] 
crk : Collocation 

method  

  0.78 , 
 1.268a ,  0.6q  

(0.454, 1.276)  (0.45428, 1.27835) 

 
Q-vortex 
parameters 

  0.2 ,  0.6q  
 0.01a  

 0.761, 0.336   0.76146, 0.33722  

 1m  

crk : Shooting method 

[46] 
crk : Collocation 

method 

Q-vortex 
parameters 

  0.0425 ,  0.7q
 0a  

 0.6,0   0.5611,0  
 

 
Fig. 8.9 Comparison of the radial evolution of the disturbances of the most unstable mode 

1m   , at 0.78   , 1.268a   , 0.6q  , considering the critical eigenvalue with the largest 

imaginary part 0.45428 1.27835crk i  . 
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Fig. 8.10 Comparison of the radial evolution of the disturbances of the most unstable mode 

1m   , at 0.2  , 0.6q  , 0.01a  , considering the critical eigenvalue with the largest 

imaginary part 0.76146 0.33722crk i  . 

 

 
Fig. 8.11 Comparison of the radial evolution of the disturbances of the most unstable mode 

1m  , at 0.0425  , 0.7q  , 0a  , considering the critical eigenvalue with the largest 

imaginary part 0.5611crk  . 
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8.5 Comparative Results 
 

We performed in this chapter validations of the numerical algorithms 
developed for stability analysis of swirl hydrodynamic systems. Comparisons with 
results from literature were illustrated. In the next table we present a review of the 
results obtained in particular case of non-axisymmetric mode  3m  using the 
modal boundary adapted collocation technique, the projection Chebyshev-tau 
technique and the spectral collocation method, developed during this survey. The  
error surveyed in case of each algorithm is calculated relative to the result obtained 
in [46]. The numerical costs which depend on the value of the spectral parameter 
N  are also presented in Table 8.8. 
 
Table 8.8 Comparative results of the most unstable spatial mode of the Batchelor-
vortex at  0a ,  0.1q , 0.01   for the case of mode  3m : eigenvalue with 

largest imaginary part   ,cr r ik k k  and estimated numerical error. 
 

                     Eigenvalue of most unstable mode  
                                   ,cr r ik k k  

 
Shooting method 

[46] 

 
 0.506, 0.139  

 
Spectral 

parameter N  

Estimated error 

 
*

1 100%
Shooting
Val

Val
 

Radial boundary 
adapted [77] 

 
 0.50842, 0.14243  

 
150  

 
4.14%  

2L -projection [75]  0.46375, 0.27935  8  16.5%  

Spectral collocation 
[92] 

 0.50819, 0.14192  100 2.94% 

 
The results were in good agreement with the ones from reference  

Olendradru et al. [46]. The collocation method is the most accurate technique, 
however the projection method is less expensive, i.e. numerical results are obtained 
using a much smaller series expansion.  
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9.  PARALLEL AND DISTRIBUTED 
INVESTIGATION OF THE VORTEX ROPE MODEL 

USING MATLAB DISTRIBUTED COMPUTING 
SERVER ON A WINDOWS OPERATING SYSTEM 

CLUSTER 
 
 

9.1 Considerations About Parallel Computing 
 

The test platform is represented during this survey by a cluster based on the 
Matlab Parallel Processing Toolbox. Using the internal cluster manager from Matlab 
we were able to evaluate the algorithms behavior using a distributed process. In this 
situations we have performed the profiling and we have noticed a speed increase of 
the algorithms compared to a single computer run. The cluster was conceived using 
homogenous hardware 

Dell Optiplex 755 
Intel(R) Core(TM)2 Duo CPU, 2.66GHz 
1.97 GHz, 1.95 GB of RAM 

For numerical investigation of swirling flows stability, a Windows operating 
system cluster was configured in Computer Aided Mathematics and Numerical 
Analysis Laboratory of the Engineering Faculty of Hunedoara (Fig. 9.1).  

MATLAB Distributed Computing Server (MDCS) is a toolbox that lets users 
solve computationally and data-intensive problems by executing MATLAB and 
Simulink based applications on a computer cluster. 

One of the major tasks of the MDCS service is to recover job manager and 
worker sessions after a system crash, so that jobs and tasks are not lost as a result 
of such accidents.  To run the MDCS, the license manager must be running on the 
head node. We made sure the license manager was running by performing a Status 
Enquiry. The next step in configuring the cluster was to start the job manager and 
workers (Fig. 9.2).  

 

 
 

Fig. 9.1 Computer Aided Mathematics and Numerical Analysis Laboratory of the Engineering 
Faculty of Hunedoara, “Politehnica” University of Timisoara. 
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Fig. 9.2 Scheme of cluster configuration. 

 
In computational fluid dynamics, several software packages solving either 

the Euler or the Navier-Stokes equations around complex geometries have been 
developed and are currently used by aircraft or engine manufacturers. 
Venkatakrishnan et al. [102] in early 1992, demonstrated that a good 
supercomputer performance can be reached by implementing a 2D unstructured 
flow solver on parallel computers. They showed that a careful implementation of the 
message passing routines is a critical point. 

 In 1995, Lanteri [103] developed a parallel version of an industrial code 
based on a mixed finite element/finite volume method. The parallelization strategy 
combines mesh partitioning and message passing programming model such that the 
same serial code is going to be executed within every subdomain. The literature on 
these topics can be considered exhaustive for two-dimensional applications and 
parallel machines of the old generation. The same cannot be said for three-
dimensional complex flows and for the new machines in terms of optimization of the 
performances and assessment of algorithms and techniques (i.e. [104-106]). 

Quantitative accuracy is readily achieved in flows in which the balance of 
fluid-mechanic processes is dominated by convection and pressure gradients. A 
serious challenge to CFD is posed by flows combining complex strain with 
substantial turbulence transport.  

The difficulty occurred in numerical simulation of swirling flows consists in: 
• the simulation of swirling flows is highly CPU and memory intensive;  
• present vortex models, however elaborate, are simplified models of the real 

flows leading to misinterpretation of the real dynamic of the fluid; 
• the models which are most appropriate to complex flows consist of many 

transport equations which are strongly coupled and highly nonlinear, thus difficult to 
solve numerically; 

• due to the complexity of the model, a high density mesh is required, 
especially at wall boundaries where the fluid viscosity affects the turbulence 
processes. 

The algorithms that are developed in this thesis for hydrodynamic stability 
investigation of swirling flows are based on meshless techniques. The collocation 
technique that we have used in numerical computation has the benefit of reducing 
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the computational time compared to finite element based algorithms and they reach 
an exponential convergence. Secondly, running the algorithms on a cluster 
configuration we can take the benefits of parallel processing capabilities offered by 
the Matlab environment.  

A major feature of MATLAB [107] consists in allowing users to concentrate 
on the techniques for creating parallel algorithms, instead of the details of the 
syntactic mechanics of writing parallel programs. When using parallel computing 
with Matlab designing, coding, debugging and testing techniques are required to 
quickly produce well performing parallel programs in a matter of hours instead of 
weeks or months.  

In this case, we include an efficient numerical library as NAG Toolbox for 
MATLAB [108], beside standard Matlab functions, providing good eigensolver 
solutions for the eigenvalue problems.  

 
 
9.2 Theoretical Model and Computational Domain  

 
The 3d domain of the physical problem is modeled based on 2d 

axisymmetric domain. Using the boundary conditions determined and the velocity 
profiles the spectral model is build using the shifted Chebysev functions.  

The theory used in our investigations of precessing helical vortices in 
swirling flows was developed by Alekseenko et al. [35] up to analytical solutions for 
velocity and pressure fields in cylindrical and conical geometries. A further step 
toward practical applications in hydraulic machines is presented by Kuibin et al. 
[109], where it is shown that the vortex rope geometry, precession frequency, as 
well as the wall pressure fluctuations can be computed given a set of swirling flow 
integral quantities. 

The theoretical approach is based on a model of vortex with a core in form 
of helical rope of circular cross-section, introduced in [110] with boundary 
conditions presented in Chapter 3. 

Consider a model of vortex with a core in form of helical rope of circular 
cross-section with radius   (Fig. 9.3). Let us denote the helix radius as a , pitch 

 2h , and intensity of the vortex  . The helix is placed coaxially in a tube of 
radius R , and velocity at the tube axis is 0u . Suppose that the axial vorticity 

component z  is uniform inside the core and outside it the flow is potential. 
The vortex stability is analyzed both from the point of spatial stability and 

from the point of temporal stability. The structure of the algorithm is depicted in Fig. 
9.4. 

Stability investigation will provide the necessary information concerning the 
critical parameters which influence the flow and vortex stability.  

 

In the numerical stability evaluation of the vortex rope profile we have 
considered two approaches: 

 influence of discharge coefficient on hydrodynamic stability;  
 study of absolute and convective instability of the swirl system with discrete 

velocity profiles. 
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Fig. 9.3 The model of helical vortex. 
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Fig. 9.4 The flow chart of the vortex hydrodynamic stability algorithm. 
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9.3 Influence of Discharge Coefficient on Hydrodynamic 
Stability  

 
The start of the stability analysis presented in this section is the analytical 

representation of the velocity field, derived by Professor Resiga et al. [8]. The mean 
swirling flow downstream the Francis turbine runner can be accurately represented 
as a superposition of three distinct vortices 

  

 

   
         

    
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2 22 2
1 2
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counter rotating co rotating

R Rr r
W r r

r rR R
, (9.2) 

where U  and W  represent the axial (Fig. 9.5) and circumferential velocity (Fig. 
9.6) component, respectively, in a parallel flow assumption. 0U , 1U , 2U  are the 

vortex characteristic axial velocities, 0 , 1 , 2  are the vortex characteristic 

angular velocities, and 1R , 2R  are the vortex core radii, determined by fitting the 

experimental data.  
According to the qualitative picture of this three vortex system, Vortex 0 is a 

rigid body rotation with angular speed 0  and we can associate with it a constant 

axial velocity 0U . Vortex 1, which has a vortex core extent about half the wall 

radius, is counter-rotating and co-flowing with respect to vortex 0. The strength of 
this vortex, both in 1  and 1U  is growing as the turbine discharge increases. Vortex 

2 has a core at least four times smaller than vortex 1, is co-rotating and counter-
flowing with respect to vortex 0, and its strength increases as the discharge 
decreases.  

Swirl parameters found by fitting formulas (9.1)-(9.2) to experimental data 
for several operating points are listed in Table 9.1. 

 
Table 9.1 Swirl parameters for investigated turbine operating points:   

  -Discharge coefficient,   -Energy coefficient 
 

Operating point Swirl parameters 
      Speed 

[rpm] 
0  1  2  0U  1U  2U  1R  2R  

0.34 1.18 1000 0.31765 -0.62888 2.2545 0.30697 0.01056 -0.31889 0.46643 0.13051 
0.35 1.18 1000 0.28980 -0.69745 3.0923 0.30940 0.047003 -0.30049 0.40334 0.10266 
0.36 1.18 1000 0.26675 -0.79994 3.3512 0.31501 0.07324 -0.29672 0.36339 0.09304 
0.368 1.18 1000 0.27113 -0.80310 3.4960 0.31991 0.08710 -0.27350 0.37291 0.08305 
0.37 1.18 1000 0.27388 -0.77707 3.49045 0.32092 0.09043 -0.23936 0.39260 0.08161 
0.38 1.18 1000 0.27536 -0.81730 3.5187 0.32447 0.10618 -0.23545 0.38125 0.07188 
0.39 1.18 1000 0.27419 -0.86579 3.2687 0.32916 0.12677 -0.19061 0.37819 0.06502 
0.40 1.18 1000 0.25796 -0.90445 2.34395 0.33289 0.16626 -0.13164 0.37477 0.05173 
0.41 1.18 1000 0.28802 -0.96687 1.4590 0.33623 0.19121 -0.09215 0.39108 0.05012 

 
The axial and circumferential velocity component are represented in Fig. 9.5 

and Fig. 9.6, respectively, for several discharge coefficients. 
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Fig. 9.5 The axial velocity component for different discharge coefficients. 

 

 
Fig. 9.6 The circumferential velocity component for different discharge coefficients. 
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9.3.1  Investigation of Axisymmetric Mode 
 

The simple stability analysis carried out in Resiga et al. [8] can be recovered 
as a particular case for axisymmetric mode  0m  and frequency   0 . In these 
conditions, the mathematical model reduces to a much simpler form in which the 
number of components of the eigenvector was reduced 

 

 

0,

0,

0,

r

r

r

krF G rd G

kUG d P

k UF P d UG

  

 

  

 (9.3) 

with the corresponding boundary conditions 
    0 0,r r wallG d F d P at r r . (9.4) 

Obviously, a simple handling of the equations from (9.3) should lead to an 
eigenvalue problem written in one perturbation function only equivalent to the one 
from [5] written in the perturbation of the streamfunction of the basic flow    when 

the auxiliary variables are used. The amplitude of the radial velocity perturbation G  

should then be proportional to 1
r

 and the amplitude of the axial velocity 

perturbation with 
1 d

r dr
. 

As a result, Fig. 9.7 presents the radial perturbation computed using the 
algorithms presented in this thesis against the values obtained in Resiga et al. [8].  

 

 
Fig. 9.7 Comparison of radial distribution r G  corresponding to the eigenvalue with the 

largest negative imaginary part in axisymmetric mode 0, 0m   , for discharge coefficient 
0.36  . 
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One can observe a shifted distribution of the radial disturbance r G  

computed based on our algorithms but additional conditions must be considered in 
order to increase the accuracy. Due to the linearization procedure, the perturbations 
are disconnected by the basic flow. Consequently, the eigenfunction values are not 
significant but the shapes provide the relevant information.  
 The evolution of the radial disturbance along the radial direction is also 
presented in Fig. 9.8. As the discharge coefficient is increasing the absolute values 
of the radial disturbance suffer reduction. 

 
Fig. 9.8 Evolution of the radial disturbance | |G  along the radial direction for several 

increasing discharge coefficients. 
 

In spatial stability analysis that we performed on the swirl system with 
velocity profiles given by relations (9.1) and (9.2) with parameters corresponding to 
several discharge coefficients, the growth rate of the perturbed state is measured by 
the imaginary part of the most unstable eigenvalue. The most unstable eigenvalues 
of the axisymmetric mode investigated numerically at several discharge coefficients 
are listed in Table 9.2. For all discharge coefficients the growth rates are 
insignificantly small, i.e. the flow in axisymmetric state remains stable. 

 

Table 9.2 Eigenvalues of the most unstable axisymmetric mode at several 
operating points. 
 

Frequency   0  Eigenvalue of the most unstable mode 
Discharge coefficient  0m  

0.34  0.0033700 0.0001137i  
0.35  0.0030653 0.0002591i  
0.36  0.0028728 0.00022689i  
0.37  0.0026571 0.00022442i  
0.38  0.0025342 0.0001309i  
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Varying the frequency omega, we denote by the critical frequency cr , the 

temporal frequency corresponding to maximum growth rate  ik   for a given 

discharge coefficient. The critical frequencies and their corresponding discharge 
coefficients for numerical investigation of the axisymmetric mode are listed in Table 
9.3 and the evolution of the critical frequency is presented in Fig. 9.9. 
 
Table 9.3 The critical frequencies corresponding to axisymmetric mode  0m  at 
several operating points.   
 

  0.34  0.35  0.36  0.37  0.38  0.39  0.4  0.41 
cr  0.1007  0.2005  0.3002  0.1007  0.3002  0.2005  0.2005  0.3002  

 

 
Fig. 9.9 Evolution of the critical frequency as function of discharge coefficient for axisymmetric 

mode 0m  . 
 
 

9.3.2  Investigation of Bending Modes 
 
 We present in the following numerical results obtained employing the 
spectral collocation algorithm for hydrodynamic stability investigation of the 
bending modes of the swirl system. Fig. 9.10 and Fig. 9.11 illustrate the form of 
the axial and the radial disturbance, respectively, in case of bending mode 

 1, 0m , at several operating points. It is shown that the sensitivity on axial 
perturbations is located near the center, for a small radius. 
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Fig. 9.10 Evolution of the axial disturbance | |F  on radial direction, for investigated mode 

1, 0m   , for several discharge coefficients. 

 
Fig. 9.11 Evolution of the radial disturbance | |G  on radial direction, for investigated mode 

1, 0m   , for several discharge coefficients. 
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In Table 9.4 the eigenvalues of the most unstable modes are listed for both 
bending modes  1m . Spatial stability analysis was performed for several 
discharge operating points. The imaginary part of the critical eigenvalue is a 
measure of the growth rate of the perturbed flow. It is noticeable that the growth 
rates of the negative mode  1m  are significantly larger than the ones of the 
counterpart mode  1m , as Fig. 9.12 depicts, i.e. the flow in negative mode 

 1m  is most unstable than the bending mode flow  1m . 
 

Table 9.4 Eigenvalues of the most unstable modes for bending modes investigation, 
at several operating points. 
 

Frequency   0  Eigenvalue of the most unstable mode 
Discharge coefficient  1m   1m  

0.36  0.035762 6.7512i  0.11258 0.010826i  
0.37  0.030159 6.7151i  0.19658 0.014276i  
0.38  0.049165 6.6818i  0.33747 0.029463i  
0.39  0.053326 6.6521i  0.50339 0.059298i  
0.40  0.081607 6.6137i  0.71225 0.064163i  
0.41 0.085371 6.5942i  0.91892 0.078713i  

 

 
Fig. 9.12 Distribution of the critical eigenvalues of the perturbed flow at several operating 

points, in bending modes spatial investigation. 
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The critical frequencies and their corresponding discharge coefficients for 
numerical investigation of  1m  mode and  1m  mode are listed in Table 9.5 and 
Table 9.6, respectively.  

The evolution of the critical frequency is depicted in Fig. 9.13 for mode 
 1m  and in Fig. 9.14 for mode  1m . 

 
Table 9.5 The critical frequencies corresponding to bending mode  1m . 
 

  0.34  0.35  0.36  0.37  0.38  0.39  0.4  0.41 
cr  0  0.106  0.106  0.212  0.212  0.424  0.424  0.424  

 
 

 
Fig. 9.13 Evolution of the critical frequency as function of discharge coefficient for mode 

1m   . 
 
 
Table 9.6 The critical frequencies corresponding to bending mode .  1m  
 

  0.34  0.35  0.36  0.37  0.38  0.39  0.4  0.41 
cr  0.318  0.318  0.318  0.318  0.1855  0.1749  0.106  0.0477  
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Fig. 9.14 Evolution of the critical frequency as function of discharge coefficient for mode 

1m  . 
 
 

9.4 Study of Absolute and Convective Instability of the 
Swirl System With Discrete Velocity Profiles 
 
9.4.1  Computational Aspects 

 
The vortex rope in a hydro turbine draft cone is one the main and strong 

sources of pulsations in non-optimal modes of hydro turbine operation. Kuibin et al. 
examine in [110] the case of a Francis turbine model operated at partial discharge, 
where a strong precessing vortex rope is developed in the discharge cone 
downstream the runner. Experimental data available in reference [110] provide the 
circumferentially averaged axial and tangential velocity profiles, as well as the 
vortex rope geometry, precessing frequency and the level of pressure fluctuation at 
the wall.  

The start of the stability analysis presented in this section is represented by 
the discrete velocity profiles (depicted in Fig. 9.15) with stagnant region 
corresponding to the fit performed by Kuibin et al. [110] using precessing helical 
vortex model that we described in Section 9.2. with following parameters: vortex 
intensity Γ=0.531, vortex core radius ε = 0.126 and helix radius a = 0.349.  
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Fig. 9.15 Axial and circumferential velocity profiles of the vortex rope model. 

 
The numerical investigation employed both the spatial (convective) analysis 

and temporal (absolute) analysis. The two-point eigenvalue problem (7.28) 
governing the inviscid spatial/temporal stability analysis is solved assessing the 
parallel algorithm based on spectral collocation technique in descriptor formulation, 
detailed in Chapter 7 and validated in Chapter 8. The numerical code was further 
developed for parallel processing in order to take benefit of parallel and distributed 
compute system.  

 
 
9.4.2  Numerical Validation With Experimental Results 

 
The numerical results obtained during our simulations are summarized in 

Table 9.7. 
Fig. 9.16 depicts the variation of the disturbance growth rates as function of 

mode number in temporal vs. spatial stability analysis. One may notice from Fig. 
9.16 that the positive modes have an increased amplitude showing that the 
instability is more likely to occur in this situations. The growth rate of the 
disturbance in spatial analysis has higher values than in the case of temporal 
analysis for all investigated modes, i.e. the flow exhibit a spatially (convective) 
instability. 

Linear stability analysis is used to help in the interpretation of the observed 
dynamics. Fig. 9.17 through Fig. 9.19 present a perspective of the evolution of the 
pressure magnitude of the flow system in the Francis turbine, for non-axisymmetric 
perturbation.  
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Table 9.7 The critical frequency and the maximum growth rates obtained for the 
investigated modes. 
 

Mode m 3 2 1 0 1 2 3 
Spatial stability results 

Critical 
frequency 

0.4 
 

0.4 0.4 0.3 0.3 0.4 0.4 
 

Maximum 
growth 
rate 

0.1379 
 

0.1255 
 

0.0603 
 

0.0345 
 

0.9223 
 

0.8102 
 

0.8224 
 

Temporal stability results 
Critical 
axial 
wave- 
number 

 
4 

 
4 

 
4 

 
3.2 

 
3.2 

 
3.2 

 
2.4 

Maximum 
growth 
rate 

0.2025 0.0661 0.0108 0.0388 0.1802 0.2701 0.2578 

 

 
Fig. 9.16 Maximum growth rate as function of mode in spatial analysis and temporal analysis. 
 

In spatial stability investigation of the flow, as shown in Fig. 9.17, the 
evolution of the perturbation in pressure as function of time, at the wall boundary, 
extracted at several locations on the non-dimensional axial coordinate is depicted. 
The magnitude of the pressure is growing toward the outlet of the draft tube, but 
decreases in time, meaning that the flow is convective unstable. Fig. 9.18 depicts 
the amplitudes of the disturbances extracted at several locations on the wall 
boundary. Amplitudes peak and decay as time increases, observation that leads to 
the conclusion that the flow exhibit pressure fluctuations at the wall.  
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   Absolute instability of the perturbed flow is depicted in Fig. 9.19. The 
growing evolution of the perturbation in pressure is observed as it evolves in time.  
As time increases the disturbances grow in magnitude, their leading edges move 
toward the wall boundary along the draft tube.  

 

 
Fig. 9.17 Convective instability of the flow in hydraulic turbine draft tube after perturbing flow. 
The curves are extracted at several non-dimensional time units 10,15,18,22,25t   at the wall 

boundary. 
 

 
Fig. 9.18 Fluctuating pressure as function of time, at the wall boundary, extracted at several 
locations on the draft tube: non-dimensional axial coordinates 1.71,2.43,3.30,4.12,4.25z  . 
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Fig. 9.19 Absolute instability of the flow in hydraulic turbine draft tube after perturbing flow. 

The curves are extracted at several non-dimensional time units 10,15,18,22,25t   at the wall 
boundary. 

 
The dimensionless rope frequency is defined as    /rope rope . i.e. it 

represents the ratio between the rope precession angular speed and the runner 
speed. In [110] it was found that the uniform core frequency yields   0.305rope , 

the same as in the experiment of Ciocan et al. [111]. 
The dynamics of the rotating vortex taking place in the discharge ring of a 

Francis turbine for partial flow rate operating conditions and cavitation free 
conditions is studied in [111] by carrying out both experimental flow survey and 
numerical simulations. 2D laser Doppler velocimetry, 3D particle image velocimetry, 
and unsteady wall pressure measurements were performed to investigate 
thoroughly the velocity and pressure fields in the discharge ring and to give access 
to the vortex dynamics. Unsteady RANS simulation were performed and compared 
to the experimental results. 

We found in our research that the frequency of the vortex precession equals 
  0.3cr  for mode numbers   0,1m , which is the same as the measured 

dimensionless frequency   0.3rope  in [110] and the value obtained in the 

experiment [111] (Fig. 9.20). 
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Fig. 9.20 Critical frequency as function of mode. The value of the critical frequency 0.3cr   

for modes  0,1m   is the same as in the experiments [110] and [111]. 

 
The first step in finding the vortex rope configuration for a given 

circumferentially averaged swirling flow is to examine the helical symmetry property 
of the flow. It is shown in [110] that the helical symmetry condition implies 

   


constantaxisr
U W U , (9.5) 

where U  is the axial velocity, W  is the tangential velocity and axisU  is the axial 

velocity value at the axis. The characteristic length   is related to the axial pitch h  
by the relationship 
  2h . (9.6) 

The correspondence between the axial wavenumber and the axial pitch goes 
from relation 

      2k z h kz      



2

h
k

. (9.7) 

In the same time applying equation (9.6) the axial wavenumber and the 
characteristic length   are related by the formula 

 


1
k . (9.8) 

The numerical simulations of the vortex rope model performed by Kuibin at 
al. in [110] resulting in  0.311num  having a corresponding axial wavenumber 

 3.215numk  were compared with the numerical results obtained in our study. In 

Fig. 9.21 the critical axial wavenumber is plotted as function of mode number. The 
value of the critical wavenumber  3.2crk  for modes   0,1,2m  is the same as 

obtained in the experiment related in [110]. 
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Fig. 9.21 Critical axial wavenumber as function of mode. The value of the critical wavenumber 

3.2crk   for modes  0,1,2m   is the same as in the experiment [110]. 

 
 

There is a clear agreement between the result obtained in reference [110] 
with the numerical results obtained using the method and the algorithm related in 
this thesis. 

The mathematical and numerical tools presented in this thesis can recover 
the main information describing the behavior of the perturbed flow without 
computing the full three-dimensional unsteady flow in the hydraulic turbine. 
 Post processing represents the stage when the velocities and pressure fields 
are visualized. The main purpose of the post processing requires the study of the 
flow parameters for optimization. Fig. 9.22 and Fig. 9.23 present the variation of the 
perturbed pressure at a dimensionless time value, at different investigated modes. 
The grey colored plane represents the wall boundary. 
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Fig. 9.22 Variation of perturbed pressure at mode 0m  . 

 

 
Fig. 9.23 Variation of perturbed pressure at mode 1m  . 
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9.5 Accuracy and Convergence of the Algorithm 
 

In order to obtain the set of experimental results, we design the stability 
algorithm in two stages. First, the algorithm solves the eigenvalue problem (7.28) 
and finds the critical eigenvalue with largest negative imaginary part, that 
corresponds to the most unstable perturbation. In the second stage, varying the 
frequency omega at different numbers of collocation parameters N , we retain the 
maximum growth rate and the corresponding frequency, denoted as the critical 
frequency. The question here is how to find the optimum value of the spectral 
parameter N  that defines the number of Chebyshev collocation nodes? 

Let us define the eigenvalue problem (7.28) in operator formulation 

          0,u u Tkk L L L F G H P   (9.9) 

where  

   
   
       
   
   

   

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0

, ,
0 0 0 0 0 1 0

0 0 1 1 0 0 0

k U
L L

U
U

 

 

 
   
 
 
 

0 1 / / 0
0 / 2 /
0 / / / /

/ / 0 0

r

r

r d m r
mW r W r d

L
W r dW dr mW r m r

mW r dU dr

. (9.10) 

Let us denote by 

        
      , 0uk

r ik k k k L L L  (9.11) 

the spectra of the eigenvalue problem (6.1) computed for a given frequency, 
    mingr imag   (9.12) 

the growth rate of the most unstable perturbation at a given frequency. 
Let us define the set 

    0,0.4N gr         (9.13) 

and the pair 

               1
max max max, max ,cr N cr Ngr gr gr . (9.14) 

The set   N  and the pair (9.14) are computed for each mode number 

investigated     3, 2, 1,0,1,2,3m  for an optimum collocation number of nodes 

N . Following Tadmor [99], when the Chebyshev pseudospectral methods are used, 
the error committed is expected to decay to zero at an exponential rate.  

For this reason, we run the algorithm for the values of collocation parameter 
N  along an interval sufficiently large to reach the convergence, between 5 and 60. 
The output cr  which is the dominant frequency, that is returned over the optimum 

value of the collocation parameter min
crN  is expected to have the greatest number of 

occurrences. 
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The convergence of the algorithm is depicted in Table 9.8. Fig. 9.24 through 
Fig. 9.30 represent histograms that show the occurrence of the dominant frequency 
for each investigated mode. 

 
Table 9.8 Convergence of the algorithm for the investigated mode numbers. 
 

 3m   2m   1m   0m   1m   2m   3m  
N cr  N cr  N cr  N cr  N cr  N cr  N cr  

6 0.4 5 0.15 5 0.25 6 0.15 6 0.1 6 0.1 6 0.05 
8 0.05 7 0.05 6 0.1 8 0.2 8 0.2 8 0.25 8 0.1 
13 0.15 8 0.05 8 0.1 11 0.25 10 0.35 10 0.15 14 0.15 
14 0.4 9 0.35 10 0.25 12 0.3 15 0.25 11 0.2 17 0.25 
18 0.4 10 0.4 12 0.4 19 0.3 20 0.2 14 0.2 23 0.3 
21 0.4 26 0.4 16 0.4 22 0.3 27 0.35 23 0.3 26 0.4 
26 0.4 31 0.4 17 0.4 31 0.3 33 0.3 33 0.4 30 0.4 
30 0.4 32 0.4 19 0.4 37 0.3 36 0.3 35 0.4 32 0.4 
44 0.4 34 0.4 29 0.4 43 0.3 39 0.3 37 0.4 35 0.4 
47 0.4 37 0.4 31 0.4 52 0.3 42 0.3 41 0.4 50 0.4 
59 0.4 43 0.4 37 0.4 55 0.3 55 0.3 53 0.4 53 0.4 
  47 0.4 40 0.4 60 0.3 57 0.3 56 0.4   
  49 0.4 46 0.4 65 0.3 60 0.3     
    61 0.4   64 0.3     

 
 

 
Fig. 9.24 Dominant frequency for mode 

3m   . 

 
Fig. 9.25 Dominant frequency 

for mode 2m   . 
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Fig. 9.26 Dominant frequency 

for mode 1m   .                 
                           

 
Fig. 9.27 Dominant frequency 

for mode 0m  . 
 

 
Fig. 9.28 Dominant frequency for mode 

1m  . 
 

 
Fig. 9.29 Dominant frequency 

for mode 2m  . 

 

 
Fig. 9.30 Dominant frequency for mode 3m  . 
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Let us define  

         
          


 1 /22
,u u Tk

cre N abs k L L L F G H P  (9.15) 

the residual vector of the eigenvalue problem computed for a frequency equal to the 

critical frequency cr  and for a spectral parameter    
min max,cr crN N N  along the 

optimum interval where the algorithm convergence is achieved. Let be 

    min maxmax ,N cr crE e N N N N    


 (9.16) 

the set of maximum values of the residual along the optimum interval of 
collocation.  

For each mode number we present the set value (9.16) on a logarithmical 

representation in figures 9.31 – 9.37. The 1310  order residual proves that the 
convergence is reached for all mode numbers considered here.  

One may notice that the optimum node number varies function of mode 
number. Using the logarithmic representation is possible to observe the fact that, 
along the optimum interval of collocation, the error is not decreasing with the 
number of nodes as expected, having a rather an exponential increase. This leads to 
the conclusion that there exists a spectral parameter N  located into the optimum  
collocation interval, but this is not necessary be the largest value.
 
 

 
Fig. 9.31 Residual along the optimum 

range for mode 3m   . 

 
Fig. 9.32 Residual along the 

optimum range for mode 2m   . 

 
Fig. 9.33 Residual along the 

optimum range for mode 1m   . 

 
Fig. 9.34 Residual along the 

optimum range for mode 0m  . 
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Fig. 9.35 Residual along the 

optimum  range for mode 1m  . 

 

 
Fig. 9.36 Residual along the 

optimum range for mode 2m  . 
 

 
Fig. 9.37 Residual along the optimum range 

for mode 3m 
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9.6 Evaluation of the Parallel Algorithm Performance 
 

The processing time of the collocation algorithm for  1m  case is reported 
in Table 9.9 in sequential processing and on four cluster configurations parallel 
processing.  

Fig. 9.38 presents the parallel processing time on four cluster 
configurations, as function of the spectral parameter N , in comparison with 
sequential elapsed time. It is noticeable that the optimal processing time is reached 
when the numerical experiments are running on four or six parallel processors 
instead of the other configuration, as seen in Fig. 9.38.  

Thus the conclusion that the cluster has no need to be extended over six 
parallel workers for numerical processing of our stability analysis.  
 

 
Fig. 9.38 Elapsed time for mode 1m   , on four cluster configurations. 

 
 

In parallel computing, speedup refers to how much a parallel algorithm is 
faster than the corresponding sequential algorithm. We evaluated the speedup of 
the parallel algorithm developed in this chapter by using the formula 

  s
p

p

T
S

T
 (9.17) 

where 
p  represents the number of processors; 

sT  is the execution time of the sequential algorithm; 

pT  is the execution time of the parallel algorithm with p processors. 
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Table 9.9 Elapsed time (in seconds) of numerical simulations for mode  1m , in 
sequential processing and on four cluster configurations parallel processing. 
 

N Sequential  
time 
(Ts) 

Elapsed time   
on 2 labs  

(T2) 

Elapsed time   
on 4 labs  

(T4) 

Elapsed time  
on 6 labs  

(T6) 

Elapsed 
time  

on 12 labs  
(T12) 

5 0.8100 1.463658 0.196285 0.211601 0.234809 
6 0.8175 1.569234 0.225536 0.193199 0.234809 
8 0.8421 1.584621 0.210344 0.222434 0.283018 
10 0.8892 1.611874 0.328014 0.341408 0.283018 
12 1.0254 1.632951 0.345925 0.360558 0.309034 
16 1.1420 1.751369 0.431654 0.431196 0.411551 
17 1.2188 1.836951 0.460168 0.451093 0.432002 
19 1.3085 1.854693 0.519268 0.524420 0.521150 
29 2.1862 2.313272 1.005637 1.015383 0.970903 
32 2.7741 2.836218 1.479596 1.448778 1.275429 
37 3.5554 3.611222 1.682333 1.726657 1.708823 
40 4.4024 4.719515 2.064365 2.087408 2.100683 
46 6.1310 6.297927 2.942432 2.948638 3.088599 
61 12.5150 12.98305 6.453132 6.318485 11.612987 
83 32.0864 31.43445 9.587423 9.146582 15.780547 

 
 

The speedup of the parallel algorithm computed for three values of the 
spectral parameter into the convergence interval   83,61,46N  is depicted in Fig. 

9.39 as function of the processors number. 
A maximum speedup is obtained when the algorithm is processed on four 

parallel processors with spectral parameter  83N  for which the convergence is 
reached.  

It is noticeable that pS p  for all cluster configurations investigated here, 

thus we reach a sublinear speedup. 
Efficiency is a performance metric typically between zero and one, 

estimating how well-utilized the processors are in solving the problem, compared to 
how much effort is wasted in communication and synchronization. We evaluated the 
algorithm efficiency by using the formula 

   ps
p

p

ST
E

pT p
 (9.18) 

where 
p , sT , pT , pS  are the same metrix defined above. 

The efficiency of the parallel algorithm computed for the same values of the 
spectral parameter located the convergence interval   83,61,46N  is depicted in 

Fig. 9.40 as function of the processors number. 
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Fig. 9.39 Parallel algorithm speedup as function of the number of parallel processors, 

computed for spectral parameter  83,61,46N  . 

 

 
Fig. 9.40 Parallel algorithm efficiency as function of the number of parallel processors, 

computed for spectral parameter  83,61,46N  . 
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It is confirmed again that the best efficiency of the spectral algorithm 
presented in this chapter is reached when the cluster is configured with four parallel 
processors, setting the spectral parameter  83N  collocation nodes.  
 
 

9.7 Summary and Published Papers Supporting This 
Chapter 
 
In this chapter, a numerical algorithm based on spectral collocation with 

shifted Chebyshev polynomials was developed to investigate the hydrodynamic 
stability of the flow in Francis turbine diffuser cone, in condition of a sophisticated 
boundary relations fulfilled in axis and to the wall boundary. Two research directions 
have been considered: influence of discharge coefficient on hydrodynamic stability 
and study of absolute and convective instability of the swirl system with discrete 
velocity profiles, obtained from reference [110]. The dominant frequency of the 
vortex rope and correspondent axial wavenumber have been numerically computed 
by means of the algorithm presented in this chapter. There is a clear agreement 
between the result computed in reference [110] with the numerical results obtained 
by us. The accuracy and convergence of the algorithm was also addressed and the 
performance of the parallel algorithm was investigated by means of the speedup 
and efficiency estimations.  

The following published papers are based on the work presented in this 
chapter. 
 

In Proceedings of International Conferences (ISI) 
 

Paper 1. BISTRIAN, D.A., DRAGOMIRESCU, I., SAVII, G., STOICA, D., Spectral 
Differentiation Operators for Solving Hydrodynamic PSE Models, ICNAAM 2010, 8th 
International Conference of Numerical Analysis and Applied Mathematics 19-25 
September, Rodos, American Institute of Physics Conference Proceedings 1281, 
September 30, Melville, New York, pp. 448-451, ISBN 978-0-7354-0831-9, ISSN 
0094-243X, 2010. 
 
Paper 2. SUSAN-RESIGA, R., SAVII, G., MAKSAY, ST., BISTRIAN, D.A., Numerical 
Methods Based On Shifted Polynomials In Swirling Flows Stability Analysis, Recent 
Advances in Computers, Proceedings of the 13th WSEAS International  Conference 
on Computers, 23-25 July, Rodos, pp. 481-486, ISBN: 978-960-474-099-4, ISSN: 
1790-5109, 2009. 
 
Paper 3. BISTRIAN, D.A., DRAGOMIRESCU, I., SAVII, G., Spectral Differentiation 
Operators And Hydrodynamic Models For Stability Of Swirling Fluid Systems, 
Mathematics And Computers In Science And Engineering-Proceedings of the 14-th 
WSEAS International Conference on Applied Mathematics, 14-16 December, Puerto 
De La Cruz, Canary Islands, pp. 328-333, ISBN 978-960-474-138-0, ISSN 1790-
2769, 2009. 
 

In International Journals 
 
Paper 4. BISTRIAN, D.A.,  DRAGOMIRESCU, I., SAVII, G., Descriptor Techniques 
for Modeling of Swirling Fluid Structures and Stability Analysis, WSEAS Transactions 
On Mathematics, Issue 1, Volume 9, pp. 56-66, ISSN: 1109-2769, 2010. 
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Paper 5. BISTRIAN, D.A., Spectral Techniques For Solving PDE Stability Model Of 
Vortex Rope, WSEAS Transactions On Mathematics, Issue 9, Volume 9, pp. 711-
722, ISSN: 1109-2769, 2010. 
 
Paper 6. BISTRIAN, D.A., SAVII, G., LATINOVIC, T., MAKSAY, ST., Stability 
Investigation Of Swirling Flows With Spectral Algorithms, IST Transactions Of 
Applied Mathematics-Modeling And Simulation, Vol. 1, No. 1 (2)  
pp. 20-27, ISSN 1913-8342, October 2010  
 

In International Conferences Presentation 
 
Paper 7. BISTRIAN, D.A.,  DRAGOMIRESCU, I., MUNTEAN, S., SUSAN-RESIGA, 
R., SAVII, G., Spectral Descriptor Approach For Solving Hydrodynamic PDE Models 
Of Swirling Flows With Applications, SIAM/RSME-SCM-SEMA Meeting Emerging 
Topics in Dynamical Systems and Partial Differential Equations DSPDEs'10,  May 
31st, – June 4th, Barcelona, Spain, 2010. 
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10.  Conclusions 
 
 

10.1 Thesis Summary 
 

The hydrodynamic instability arising under the form of a characteristic 
precession flow, named the vortex rope creates high-pressure unsteady fluctuations 
on the walls of the draft tube, leading to a poor performance of the turbine including 
fatigue damage. Modeling of the hydrodynamic phenomena which lead to vortex 
rope occurrence and the numerical investigation of the hydrodynamic instability of 
this fluid system were tasks that have been assessed in this thesis. 

The subject of this thesis consists in development of new instruments to 
study the hydrodynamic stability of the swirl flow downstream the Francis turbine 
runner. The mathematical methodology based on linear stability analysis was 
developed and new parallel algorithms for numerical investigation of hydrodynamic 
stability of the swirl flow have been implemented under Matlab Distributed 
Computing Server (MDCS) platform.  

Many studies cited in literature consider the problem of simulating the flow 
downstream the hydropower runner, but there no exists so far investigations from 
the point of hydrodynamic stability of the swirling flow in hydropower turbine. This 
thesis intended to cover this gap and presents the methodology developed for 
spatial/temporal stability investigation of the swirl flow in Francis diffuser and the 
results obtained.  

As an alternative to classical methods as finite volume and finite element 
methods, the present thesis proposed a new approach of the analysis of the swirling 
flows based on a recently mathematical method of spectral collocation. 

In this thesis, advanced computational algorithms based on spectral 
collocation method have been specifically designed considering each hydrodynamic 
stability analysis request and they have been implemented including the parallel and 
distributed processing on a cluster structure. 

Selection of the spectral methods as a tool for solving the eigenvalue 
problems governing the flow hydrodynamic stability is motivated by the accuracy of 
these methods and the exponentially decreasing of the error, differently form the 
finite element methods having an algebraic convergence rate. 

A major benefit of collocation based method is given by a fast processing 
time and small hardware requirements. This thesis was outlined as follows: 

In Chapter 1 a motivation for the study of hydrodynamic stability of the 
swirling flow in Francis hydropower turbine using computer aided techniques and 
parallel and distributed computation was presented.  

Chapter 2 gives an overview of the linear stability analysis of vortex 
hydrodynamics.  

The mathematical model of the swirling flow downstream the Francis turbine 
runner is developed in Chapter 3. 

Chapter 4 presents mathematical considerations about the spectral methods 
used in forthcoming numerical stability algorithms. Computational approaches for 
stability eigenvalue problems are presented here and a new orthogonal base of 
polynomial test functions is introduced.  
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In Chapter 5 we developed a numerical procedure to investigate the spatial 
stability of a swirling flow subject to infinitesimal perturbations using a modal 
boundary adapted collocation technique. The accuracy of the method is assessed 
underlying the necessity for the construction of a certain class of orthogonal 
expansion functions satisfying the Dirichlet boundary conditions. The key issue was 
the choice of the grid and the choice of the modal trial basis. This modal scheme 
based on shifted Chebyshev polynomials allow the numerical approximation of the 
unknown perturbation field to be searched directly in the physical space of the 
problem.  

Our numerical procedure directly provided relevant information on 
perturbation amplitude for stable or unstable induced modes, the maximum 
amplitude of the most unstable mode and the critical distance where the 
perturbation is the most amplified.     

For boundary conditions other than the ones of Dirichlet type, the method is 
less flexible since the basis functions satisfying the corresponding boundary 
conditions are difficult to construct. In Chapter 6 we presented a numerical method 
based on a modified tau technique that approximates the perturbation field in 
axisymmetric mode 0m   and for bending modes 1m   , when the boundary 
conditions are sophisticated expressions that increase the implementation effort. 
Using a shifted Chebyshev approach introduced in Chapter 4, the major advantage 
of this algorithm is that it allows a good handling of the complicated boundary 
conditions, in order to translate the eigenvalue problem into a linear system. 
Another important aspect that must be pointed out is that the numerical 
approximations of the unknown perturbation fields are reached directly in the 
physical space due to a careful selection of the test polynomial functions.  

A parallel computation method based on spectral descriptor technique for 
analysis of swirling flows hydrodynamic stability with sophisticated boundary 
conditions is presented in Chapter 7. 

This section presents the mathematical and numerical methodology to 
investigate the stability of the fluid system downstream the Francis runner, to 
simulate the frequency, pressure pulsation amplitude and other parameters under  
operating conditions corresponding to all mode numbers.  

The new spectral algorithms presented in this thesis have been validated in 
Chapter 8 with existing stability investigations concerning the swirling flow system 
with known velocity profiles, namely the Batchelor vortex problem. Comparisons 
with results from literature were illustrated and a comparative review of the results 
obtained in particular case of non-axisymmetric modes using the modal boundary 
adapted collocation technique, the projection Chebyshev-tau technique and the 
spectral collocation method, developed during this survey have been presented. The 
collocation method is more accurate, however the projection method is less 
expensive with respect to the numerical implementation costs, i.e. numerical results 
are obtained using a much smaller terms in series expansion.  

Chapter 9 presents the results of parallel and distributed investigation of the 
vortex rope model using Matlab Distributed Computing Server on a Windows 
operating system cluster. The test platform was represented during this survey by a 
cluster based on the Matlab Parallel Processing Toolbox. Using the internal cluster 
manager from Matlab we were able to evaluate the algorithms behavior using a 
distributed process.  

In this chapter, a numerical algorithm based on spectral collocation with 
shifted Chebyshev polynomials was developed to investigate the hydrodynamic 
stability of the flow in Francis turbine diffuser cone, in condition of a sophisticated 
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boundary relations fulfilled in axis and to the wall boundary. Two research directions 
have been considered: the influence of discharge coefficient on hydrodynamic 
stability and linear stability analysis of the swirling flow with stagnant region, using 
velocity profile in Francis turbine throat at 70% partial discharge provided by 
researches of Kutateladze Institute of Thermophysics, Novosibirsk, Russia [110]. 
The dominant frequency of the vortex rope and correspondent axial wavenumber 
have been numerically computed by means of the algorithm presented in this 
chapter. There was a clear agreement between the result obtained in reference 
[110] and the numerical results obtained in this thesis.  

The accuracy and convergence of the algorithm was also addressed here and 
an investigation upon the optimum number of collocation nodes was carried. The 
conclusion is that there exists an optimum collocation interval which can be 
determined considering the parameters of the stability analysis and a spectral 
parameter N  located into the optimum collocation interval, but this is not necessary 
be the largest value into this interval. 

The algorithm was tested on few cluster configurations and the performance 
of the parallel algorithm was investigated by means of the speedup and efficiency 
estimations.  

It was noticeable that the optimal processing time is reached when the 
numerical experiments are running on four or six parallel processors instead of other 
configuration, thus the conclusion that the cluster has no need to be extended for 
numerical improvements of our stability analysis.  
 
 

10.2 Contributions 
 

The mathematical model presented in this thesis can recover the 
information in the prediction of the turbine characteristics without computing the full 
three-dimensional unsteady flow in the hydraulic turbine. As a result, this thesis 
provides valuable mathematical tools for assessing the turbine behaviour at off-
design operating regimes in the early stages of runner design, with computational 
effort several orders of magnitude less than the approaches of simulating the 
complex 3D turbine flow. 

The environment for parallel algorithms development and tesed was Matlab, 
due to the very advanced mathematical embedded functions, allowing the user to 
focus on developing algorithms instead of the details of the implementation. 

The originality of the new spectral algorithms developed in this thesis 
consists in the following features: 

 Handling with the Euler equations in system formulation, during the 
procedure of normal modes analysis and rebuilt of the mathematical model 
governing the swirling flow stability in matriceal formulation by performing the 
calculations in descriptor notations only, by means of partial derivatives 
operators introduced in Chapter 3; 

 Development of a special orthogonal test functions based on shifted 
Chebyshev polynomials, allowing the numerical approximation of the unknown 
perturbation field to be searched directly in the physical space of the practical 
problem, as presented in Chapter 4, Section 4.2. Solving the hydrodynamic 
stability problem directly in the physical space increases the solution accuracy 
because there is no need for a computation of the Jacobian matrix, as performed 
in classical algorithms, to map the definition interval of the test functions into the 
physical space; 
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 Introducing in Chapter 5 of a new set of boundary adapted test 
functions, satisfying the Dirichlet boundary conditions to recast the unknown 
eigenvectors in series of orthogonal expansions, satisfying the boundary 
conditions. The main advantages of the proposed method consist in elimination 
of the problem of axial singularities and reducing the computational time by 
reducing the matrices order and for a certain spectral parameter N we obtain an 
exponential decreasing error; 

 As an alternative to approximation of derivatives of the unknown 
functions using finite difference technique that is functional only for nonconstant 
monotonic functions, the discrete eigenvectors derivatives have been 
approximated by means of spectral differentiation matrices, particularly derived 
in different flow problems as in Chapter 5 and Chapter 7;  

 Determination in Chapter 4, Section 4.3 of an optimal clustered 
collocation grid used to compute the disturbance profile, as an alternative to 
classical equidistant positioned nodes, thus avoiding the negative effects of the 
Runge phenomena; 

 Optimal implementation of the Dirichlet, Neumann and mixed boundary 
conditions by developing and implementing three different algorithms for study 
the non-axisymmetric mode in Chapter 5, the axisymmetric and bending modes 
in Chapter 6 and for modes satisfying sophisticated boundary relations a spectral 
descriptor technique was described in Chapter 7; 

 The approach presented in Chapter 7 is different from the traditional 
optimization methods, since the spectral collocation technique that is developed 
in this thesis has the peculiar feature that can approximate the perturbation field 
for all types of boundary conditions, especially when the boundary limits are 
described by sophisticated expressions.  

Using descriptor technique [58, 82], widely used in the control theory 
community, combined with the algebraic properties of the Chebyshev orthogonal 
polynomials, the partial differential system governing the stability of the flow was 
translated in hydrodynamic eigenvalue problem in matrix operators formulation. 
The problem of axial singularities was eliminated by inclusion of the boundary 
conditions as equations that complete the system. 

 Assembling the polynomial functions embedding both symbolic and 
numeric processing in algorithm described in Chapter 6;  

 Inclusion of the efficient numerical library NAG Toolbox for MATLAB 
which provided a good eigensolver solution for our numerical computational 
needs, beaside standard Matlab functions, used in Chapter 6, Chapter 7 and 
Chapter 9; 

 Development in Chapter 8, Section 8.3 of an original method to 
determine the spurious eigenvalues and to eliminate them from the 
hydrodynamic spectra; 

 The algorithms that we developed in this thesis for hydrodynamic 
stability investigation of swirling flows are based on meshless techniques. The 
collocation technique that we have used in numerical computation has the benefit 
of reducing the computational time compared to finite element based algorithms 
and they reach an exponential convergence; 

 For numerical investigation of swirling flows stability, a Windows 
operating system cluster was configured, based on the Matlab Parallel Processing 
Toolbox. Using the internal cluster manager from Matlab we were able to 
evaluate the algorithms behavior using a distributed process, as described in 
Chapter 7. In this situations we have performed the profiling and we have 
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noticed a speed increase of the algorithms compared to sequential processing. 
The cluster was conceived using homogenous hardware 

Dell Optiplex 755 
Intel(R) Core(TM)2 Duo CPU, 2.66GHz 
1.97 GHz, 1.95 GB of RAM 

 Testing the collocation algorithm capable to solve hydrodynamic 
stability problems with complex boundary conditions on few cluster 
configurations we have investigated the performance of the parallel processing 
as an alternative to the sequential processing and we have determined the 
optimal cluster configuration, as related in Chapter 9.. 

 Running the algorithms on a cluster configuration we took the benefits 
of parallel processing capabilities offered by the Matlab environment. However, 
even without modifying the solver we can notice an increase in time requirement 
for solving the problem, as presented in Chapter 9.  

 
 

10.3 Future work  
 

While the hydrodynamic stability analysis conducted in this thesis has 
considered an inlet perturbation which depends only on radial variable, the effect of 
different perturbations needs to be examined in a future study and a non parallel 
stability analysis should be considered for an accurate simulation. 

As a future study, a nonparallel stability analysis using parabolized stability   
equations (PSE) will be assessed, in order to increase the accuracy of the stability 
analysis in the conical geometry of the draft tube. A first attempt was made by 
Bistrian et al. in [112]. The nonparallel effects of the basic flow play an important 
role in the development of both axisymmetric and non-axisymmetric unstable 
perturbations upstream of the vortex breakdown station and can show the 
convective nature of these instabilities. 

New classes of orthogonal test polynomials would also be considered in 
numerical algorithms development. The numerical procedures for hydrodynamic 
stability analyses will be specifically developed to take advantage of parallel and 
distributed computers memory, using available hardware requirements.  

Computers and numerical techniques will be used in future studies to solve 
real world complex problems, such as stability of swirling flows in hydraulic turbines, 
modeling of sanguine flux, control problems in electromagnetics, that do not allow 
analytical solutions. 

For the presented study developed in this thesis we can emphasize some  
considerable benefits mentioned hereinafter: 

 Mathematics gives a transferable knowledge in approaching interdisciplinary 
problems that occur in modern science, which can be applied to a number of 
different disciplines sometimes unrelated. 

 Enables to recognize that mathematics development taking in account 
computational advances can be applied to important technological issues 
that need to be solved at state or national level. 

 Enables the any research team to be infused with state of the art tools that 
make the problem to be straightforward.  
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