
HARDWARE IMPLEMENTATION OF FFT/IFFT ALGORITHMS

INCORPORATING EFFICIENT COMPUTATIONAL ELEMENTS

E.Konguvel1, M. Kannan2

Department of Electronics Engineering,

Madras Institute of Technology Campus, Anna University,

Chennai – 600044, India.

konguart08@gmail.com1, mkannan@annauniv.edu2

ABSTRACT – Fast Fourier Transform (FFT) and Inverse

Fast Fourier Transform (IFFT) computation involves a quite

large number of complex multiplications and complex additions.

Optimizing the FFT processing elements in terms of complex

multiplication reduces area and power consumption. In this

work, complex multipliers in the FFT processors are replaced by

area and power efficient approximate multipliers. In image and

signal processing applications which can tolerate minimum error,

accurate computing units are always not necessary. Accurate

computing units can be replaced with approximate computing

units. Approximate computing can decrease the design

complexity with an increase in area and power efficiency. In this

paper, approximate 8- and 16-bit multipliers are designed and

implemented in radix-2 butterfly unit which is the crucial

computational component in FFT/IFFT processing. The designed

FFT/IFFT processing units are analyzed, synthesized and

simulated in Altera Cyclone II EP2C35F672C6 FPGA device.

Experimental results shows that the proposed 16-point FFT

architecture incorporating approximate complex multiplier

achieves an area efficiency of about 33.47% and power efficiency

of 1.8% when compared to accurate 16-point FFT processor. The

8 point and 16 point Decimation-In-Time (DIT) – FFT

incorporating approximate computational elements operates at a

speed of 26.69Gbps and 46.20Gbps respectively.

Keywords— FFT, IFFT, Approximate computing, FPGA

implementation.

I. INTRODUCTION
A comparative study on efficient FFT/IFFT algorithms,

architectures and significance of length of the data sequences
for FFT/IFFT computations on corresponding applications
were discussed [1]. Several real-time implementation
strategies and complexities during run-time environment of
FFT/IFFT processing units were stated in [2 - 4]. The
implementation of a complex multiplier plays a major role in
the butterfly element which is the integral part of FFT/IFFT
processing algorithms. Multiplication is the critical
computation compared to addition because switching activity
of multipliers are high compared to other data path units of
any processing architecture. Hence, it is extremely essential to
implement a complex multiplier that operates in low power
and of high efficiency. It is also obvious that precise
computation of a complex multiplier consumes more power
than approximate computing [5]. Approximate computation
will decrease the design complexity with an increase in
performance and decrease in power consumption with a
minimum error that would be tolerant based on the specific
application. The accuracy of this approximate complex
multiplier can also be increased by using optimal error
correction schemes [6].

Many approximation techniques are available in the
literature to improve power and energy efficiency of complex
multipliers. The most common techniques are truncation,
voltage over scaling and simplification of logic complexity by
modifying the truth table. Truncation helps in complexity

reduction by eliminating partial product term matrix lower
parts in the complex multiplier [7 - 8]. This truncation may
result in an error. Voltage over scaling is lowering the supply
voltage below Vdd – Vcritical which may result in transient
circuit timing errors [9]. Selection of approximate arithmetic
architecture is very important in voltage over scaling since
different hardware implementation of same arithmetic
function responds differently [10]. An approximate 2X2
multiplier with tunable error characteristics (3.32% of error)
with an average power savings of 31.78% ~ 45.40% when
compared with precise 2X2 multiplier is proposed [11]. In
designing fast multiplier, compressors have been used widely
to speed up the partial product reduction stage. Two designs of
approximate compressor have been proposed where exact full
adder cells are replaced by the approximate full adder cells
[12]. However, this is not efficient because the error rate of
this compressor is more than 53%. The use of m x m
multiplier to perform n x n multiplication have been proposed.
It takes m consecutive bits of an n-bit operand, either starting
from MSB or ending at LSB and apply two segments that
include leading ones from two operands (SSM) to an m x m
multiplier [13]. The partial products are decomposed into two
major units and processed in parallel to reduce the delay in
fixed-width multipliers. This fixed-width multiplier with
column bypassing technique is optimal for low power error
tolerant applications [14]. Various approximate complex
multipliers (wallace, array and dadda) are designed by partial
product perforation technique. This technique is to perforate
any two rows from the original partial products generated. The
perforation skips the generation of partial product and
decreases the number of operands to be accumulated, hence
reducing power consumption of about 50% [15].

The multi-bit adders in digital signal architecture are
designed by using the imprecise full adder cells that results in
a power savings of 69% when compared to that of a design
with precise full adder cells [16]. The usage of compressors
and compressor-adders in complex multipliers reduces the
power consumption and has good area efficiency as well [17].
Different sizes of approximate compressors were used in
building the multiplier using an algorithm that allocates the
compressors with minimum error [18]. Modified approximate
compressors are used in order to design a low-power and high-
speed multiplier with minimum error values [19]. The
proposed approximate complex multiplier design is used in
building the FFT computational units with an average error of
2.5% to 3.5% that consumes low power with less area
utilization. The proposed approximate complex multiplier,
radix-2 FFT butterfly module, 8 point and 16 point FFT
algorithms are synthesized and simulated in Altera Quartus II
simulator tool and implemented in Altera Cyclone II
EP2C35F672C6 FPGA device.

The organization of this paper is as follows. A brief
introduction to approximate multipliers and its structures are
discussed in section II. The implementation of approximate

BUPT

multipliers in FFT/IFFT computations are given in section III.
Comparative analysis and results of approximate with precise
8 and 16 points FFT computations are discussed in section IV.
Concluding remarks are stated in section V.

II. APPROXIMATE MULTIPLIERS
Any arithmetic processing can be performed on an

approximate basis. Implementation of multiplier includes three
phases, generation of partial products, partial product
reduction and final addition. Power consumption, critical path
delay and circuit complexity are dominated by the partial
product reduction stage. Many techniques have been proposed
to reduce the critical path in the multipliers. The most
commonly used technique for partial product reduction is that
use of compressors.

The compressor is made of full adders or half adders to
count the number of one’s in the input. Lower order

compressors consumes lesser area. Hence we use 4-2 and 5-3
compressor for approximating altered partial products.

In this work, an approximate complex 16-bit multiplier is
designed and it is used in building FFT computational
elements. The original generated partial products are altered to
propagate and generate signals using following equation.

 Pm,n = Am,n + An,m

 Gm,n = Am,n . An,m

This propagate signals are approximated using
approximate half adders, approximate full adders, approximate
4:2 compressor adders. The approximation is applied using
simple OR gate for generate signals. The first stage of partial
product reduction using approximation is shown in Figure 1.
The second stage of reduction uses twelve approximate full
adder, four 4:2 approximate compressor adder, eleven 5:3
approximate compressor adder circuits.

Fig. 1. Partial product reduction using approximation

A. Approximate half adder:

In a precise Half Adder (HA), XOR gate is used to

calculate “Sum”. But XOR gates consumes more area and

power [5]. So, XOR gate of the precise half adder is replaced

with OR gate for approximation. The logic difference between

precise and approximate half adder is shown in the table I. The

following equation (3) & (4) illustrates the approximate half

adder circuit.

 Sum = A + B

 Carry = A . B

TABLE I. TRUTH TABLE OF HALF ADDER.
Input Precise HA Approx. HA

A B Sum Carry Sum Carry

0 0 0 0 0 0

0 1 1 0 1 0

1 0 1 0 1 0

1 1 0 1 1 1

B. Approximate full adder:
To calculate the sum and carry of Full Adder (FA) three

XOR gates are necessary. For the approximation of full adder,
one XOR gate is replaced with OR gate in sum computation.
The logic difference between precise and approximate full
adder is shown in the table II. The following equations (5) –
(7) illustrates the approximate full adder circuit.

 X = A + B

 Sum = X xor C

 Carry = X . C

TABLE II. TRUTH TABLE OF FULL ADDER.
Input Precise FA Approx. FA

A B C Sum Carry Sum Carry

0 0 0 0 0 0 0

0 0 1 1 0 1 0

0 1 0 1 0 1 0

0 1 1 0 1 0 1

1 0 0 1 0 1 0

1 0 1 0 1 0 1

1 1 0 0 1 1 0

1 1 1 1 1 0 1

C. Approximate 4:2 and 5:3 compressor:
Compressors and compressor-adders are the fundamental

building blocks of multipliers to accumulate generated partial
products. Compressor-adders are used in the second stage of
multiplier architecture to reduce the number of partial
products and also to reduce the gate count and critical path
delay. The use of approximate compressors in the least
significant bits decreases power consumption and circuit area.
The logic differentiation between precise and approximate 4:2
compressor-adder is shown in the table III. The following
equations (8) – (11) illustrates the approximate 4:3
compressor-adder circuits.

 X = A . B

 Y = C . D

 Sum = (A XOR B) + (C XOR D) + X . Y

 Carry = X + Y

BUPT

In 5:3 compressor-adder, five input bits are summed up to
produce three output bits. This compressor will be used in the
second stage of partial product reduction stage. The logic
differentiation between precise and approximate 5:3
compressor-adder is shown in the table III. The following
equations (12) – (14) illustrates the 5:3 approximate
compressor adder circuits. The outputs S1 and S2 will remain
same for precise as well as approximate 5:3 compressor-
adders. But the output S3 in the precise 5:3 compressor-adder
calculation is replaced by S3’ in approximate 5:3 compressor-
adder which is given in equation (15).

 S1 = A XOR B XOR C XOR D XOR E

 S2 = C XOR D

S3 = A . (~(A XOR B)) + B . (A XOR B) . (C . (~(A XOR B
XOR C XOR D))) + D . (A XOR B XOR C XOR D)

 S3’ = C . D

TABLE III. TRUTH TABLE OF 4:2 COMPRESSOR ADDER.

Input Precise 4:2 Approx. 4:2

A B C D Sum Carry Sum Carry

0 0 0 0 0 0 0 0

0 0 0 1 1 0 1 0

0 0 1 0 1 0 1 0

0 0 1 1 0 1 0 1

0 1 0 0 1 0 1 0

0 1 0 1 0 1 1 0

0 1 1 0 0 1 1 0

0 1 1 1 1 1 1 1

1 0 0 0 1 0 1 0

1 0 0 1 0 1 1 0

1 0 1 0 0 1 1 0

1 0 1 1 1 1 1 1

1 1 0 0 0 1 0 1

1 1 0 1 1 1 1 1

1 1 1 0 1 1 1 1

1 1 1 1 0 0 1 1

III. FFT/IFFT ALGORITHM

A. Preliminaries :
The basic principle behind this FFT algorithm is to

decompose the input sequence of length N into smaller
Discrete Fourier Transform (DFT) sequences. Let x(n) be an
N-point sequence, where N is assumed to be a power of 2. The
DFT X(k) and its inverse (IDFT) x(n) of an N-point sequence
can be mathematically given as,

1Nk0,)n(x)k(X
1N

0n

N/kn2j
e

1Nn0,)k(X
N

1
)n(x

1N

0k

N/kn2j
e

The exponential term specified in equation (16) and (17)
represents the twiddle factor needed for FFT and IFFT
computations respectively. The decomposition can be
classified as Decimation-In-Frequency (DIF) and Decimation-
In-Time (DIT), depending upon the partition that takes place
from input and output data points respectively. For real-valued
application DIT algorithm is preferable as it involves less
number of computation when compared to DIF. Depending
upon the application any of the algorithms can be used.
Approximate multiplier is used in the radix-2 DIT butterfly
used in this work.

B. Radix 2 DIT Butterfly :
The basic radix-2 butterfly algorithm for DIT-FFT is

shown in figure 2. In figure 2, A and B indicate the
complex input from preceding stage while C and D
indicate the complex output of the present stage (or
complex input to the subsequent stage). The twiddle
factors WN are defined as the co-efficients which are used

to compute results from the preceding stage and to form
inputs to the subsequent stages of FFT algorithm.

TABLE. IV. TRUTH TABLE OF 5:3 COMPRESSOR ADDER.
Input Precise 5:3 Approx. 5:3

A B C D E S1 S2 S3 S3’

0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0

0 0 0 1 0 1 0 0 0

0 0 0 1 1 0 1 0 0

0 0 1 0 0 1 0 0 0

0 0 1 0 1 0 1 0 0

0 0 1 1 0 0 1 0 0

0 0 1 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0

0 1 0 0 1 0 1 0 0

0 1 0 1 0 0 1 0 0

0 1 0 1 1 1 1 0 0

0 1 1 0 0 0 1 0 1

0 1 1 0 1 1 1 0 1

0 1 1 1 0 1 1 0 1

0 1 1 1 1 0 0 1 1

1 0 0 0 0 1 0 0 0

1 0 0 0 1 0 1 0 0

1 0 0 1 0 0 1 0 0

1 0 0 1 1 1 1 0 0

1 0 1 0 0 0 1 0 0

1 0 1 0 1 1 1 0 0

1 0 1 1 0 1 1 0 0

1 0 1 1 1 0 0 1 0

1 1 0 0 0 0 1 0 0

1 1 0 0 1 1 1 0 0

1 1 0 1 0 1 1 0 0

1 1 0 1 1 1 0 1 0

1 1 1 0 0 1 1 0 1

1 1 1 0 1 1 0 1 1

1 1 1 1 0 1 0 1 1

1 1 1 1 1 1 0 1 1

Fig. 2. Radix-2 butterfly structure.

From figure 2., C and D can be written as
 Cr + jCj = (Ar+ jAj) + (Br + jBj) (Wr+ jWj)

 Dr + jDj = (Ar+ jAj) - (Br + jBj) (Wr+ jWj)

Rewrite equation (18) – (19) as,

 Cr =Ar + BrWr – BjWj

 Cj = Aj + WjBr + WrBj

 Dr =Ar - BrWr + BjWj

 Cj = Aj - WjBr – WrBj

Fig. 3. Radix 2 butterfly structure with multipliers.

BUPT

From the equations (20) – (23), the radix-2 butterfly
structure for DIT-FFT computation is shown as figure 3. One
radix-2 butterfly operation requires four complex
multiplications, three complex additions and three complex
subtractions. Complex multiplications requires more area and
power when comparing with complex additions and complex
subtractions. So in conventional radix-2 butterfly structures,
the complex precise multiplications are replaced by the
approximate multiplications which requires reduced area
utilization as well as reduced power consumption.

C. 16 Point DIT FFT:
In DIT-FFT algorithm input bits are bit-reversed and

output bits are natural in order. Twiddle factors for every
stages are accessed from the look-up-tables. The twiddle
factors are computed using binary scaling technique. Binary
scaling technique is widely used in digital arithmetic
processing to perform a floating point multiplication using the
integers. The flow graph for 16-point FFT algorithm is shown
in figure 4.

Fig. 4. Flow diagram of FFT 16 point.

IV. RESULTS AND DISCUSSIONS
The approximate 16-bit complex multiplier and radix-2

butterfly architecture incorporating the approximate complex
multiplier using Verilog hardware description language (IEEE
1364) and implemented in Altera EP2C35F672C6 Cyclone II
FPGA device. A precise 16-bit complex multiplier is also
designed and the results were compared with the approximate
16-bit complex multiplier in terms of area utilization, delay
and power consumption. The 8 point and 16 point DIT-FFT
incorporating the approximate complex multiplier are also
designed and results were compared with that of conventional
approaches. The experimental results obtained using Altera
Quartus simulator were presented and discussed in the
succeeding sub-sections.

A. Synthesis results of approximate 16-bit multiplier:
The approximate 16-bit complex multiplier occupies 424

logical elements out of 33216 which achieves an area
utilization of 1.27%. From the table V, it is concluded that
28.97% of logical elements have been reduced in the
approximate multipliers when compared to that of 16-bit
precise multipliers.

TABLE. V. SYNTHESIS RESULTS OF APPROX. 16-BIT MULTIPLIER.

Parameter Precise 16-bit Approx. 16-bit

Logical Elements 597 424

FPGA Area Utilization % 1.79 1.27

Delay (ns) 63.74 23.09

Total Thermal power (mW) 228.61 225.32

Core Dynamic power (mW) 5.88 4.30

Core Static power (mW) 80.32 80.31

I/O Thermal power (mW) 142.41 140.71

B. Timing and Power analysis of approximate multiplier:

The power play analyser and the classic timing analyser
tools are used to analyse the power consumption and timing
parameters. Approximate 16-bit complex multiplier achieves a
worst case propagation delay of 23.09ns. The approximate
multiplier consumes a total thermal power of 225.32mW
which includes a core dynamic power of 4.30mW, core static
power of 80.31mW and I/O thermal power of 140.71mW.
When compared to accurate multiplier, 1.43% of total thermal
power has been reduced in approximate multiplier.

C. Synthesis results of radix-2 using proposed multiplier:
The RTL schematic of radix–2 butterfly using the

proposed approximate 16-bit multiplier is shown in the figure
5. The radix-2 structure occupies 677 logical elements, a total
combinational function of 673 and 64 dedicated logic registers
out of 33216 total logical elements. The table VI illustrates the
synthesis results of radix-2 butterfly incorporating precise 16-
bit complex multiplier and approximate 16-bit complex
multiplier. It is evident that 17.68% of logical elements have
been reduced in the radix-2 butterfly that has approximate
multiplier.

Fig. 5. RTL Schematic of radix–2 butterfly.

TABLE. VI. SYNTHESIS RESULTS OF RADIX-2 BUTTERFLY.

Parameter
Radix-2

(With precise mul.)
Radix-2

(With approx. mul.)

Logical Elements 821 677

FPGA Area Utilization % 2.46 2.03

Delay (ns) 26.29 22.56

Total Thermal power (mW) 334.83 311.88

Core Dynamic power (mW) 15.27 20.13

Core Static power (mW) 80.68 80.60

I/O Thermal power (mW) 238.87 211.15

D. Timing and Power Analysis of radix-2 using proposed

multiplier:
Radix-2 butterfly with approximate multiplier design

achieves a worst case setup time of 22.56ns, combinational
delay of 8.708ns. It consumes a total thermal power of
311.88mW which includes a core dynamic power of
20.13mW, core static power of 80.60mW and I/O thermal
power of 211.15mW. When compared to radix-2 structure
with precise multiplier, 1.43% of total thermal power has been
reduced in radix-2 structure with approximate multiplier.

Fig. 6. Simulation report of 8 point DIT-FFT computation.

BUPT

E. Synthesis Result of 8 & 16 point DIT-FFT
computation:

The 8 point DIT-FFT with approximate multiplier
occupies 1549 logical elements, 1489 combinational function
out of 33216 total elements. It is shown in the table VII that
30% of logical elements have been reduced when compared
with the 8 point DIT-FFT with precise multiplier. The 16 point
DIT-FFT with approximate multiplier occupies 2721 logical
elements, 2663 combinational function out of 33216 total
logical elements. It is also shown in the table VII that 33.47%
of logical elements have been reduced when compared with
the 16 point DIT-FFT with precise multiplier.

The real and imaginary parts of the input sequence and
twiddle factor for all the stages of DIT-FFT have been
assigned in the waveform editor and simulated. The simulation
results for 8 point DIT-FFT and 16 point DIT-FFT were
shown in the figure 6 and 7 respectively.

Fig. 7. Simulation report of 16 point DIT-FFT computation.

F. Timing and Power Analysis of 8 & 16 point DIT-FFT
computation:

The 8 point DIT-FFT with approximate computational
units achieves delay of 12.03ns at 83.15MHz of operating
speed whereas conventional architectures have a delay of
17.95ns at 17.88MHz of operating speed. The 8 point DIT-
FFT with approximate computational units consumes a total
thermal power of 392.91mW whereas conventional
architectures consumes 387.88mW of total power.

Fig. 8. Chip planner view with fan in and fan out.

The 16 point DIT-FFT with approximate computational
units achieves delay of 13.86ns at 72.17MHz of operating

speed whereas conventional architectures have a delay of
20.13ns at 49.68MHz of operating speed. The 16 point DIT-
FFT with approximate computational units consumes a total
thermal power of 417.26mW whereas conventional
architectures consumes 424.84mW of total power. The chip
planner view of 16 point DIT-FFT with approximate
computational elements is given in the figure 8. The chip
planner view provides a visual display of logic utilization, fan-
ins and fan-outs of the proposed system.

TABLE. VII. SYNTHESIS RESULTS OF 8 AND 16 POINT DIT-FFT

Parameter
8 point DIT-FFT 16 point DIT-FFT

Precise Approx. Precise Approx.

Logical Elements 2213 1549 4088 2721

FPGA area utilization (%) 6.66 4.66 12.31 8.19

Combinational Slices 2148 1489 3994 2663

Dedicated Registers 488 496 718 618

Pin Count 321 321 385 385

Delay (ns) 17.95 12.03 20.13 13.86

Power Dissipation (mW) 392.91 387.88 424.84 417.26

Frequency (MHz) 55.70 83.15 49.68 72.17

Throughput (Gbps) 17.88 26.69 31.84 46.20

V. CONCLUSION & FUTURE SCOPE

In this work, an area efficient low-power radix-2
butterfly incorporating approximate computational elements
is used in building 8 point and 16 point DIT-FFT algorithms.
The experimental results show that the usage of approximate
complex multipliers have reduced the power consumption
and a significant reduction in the number of logic slices
required to perform the 8 and 16 point DIT-FFT
computation. The proposed 8 point DIT-FFT achieves an
area utilization of 4.66% consuming 387.88 mW of power at
a maximum throughput of 26.69 Gbps. Similarly, the
proposed 16 point DIT-FFT achieves an area utilization of
8.19% consuming 417.26 mW of power at a maximum
throughput of 46.20 Gbps. The 8 point DIT-FFT
incorporating approximate elements achieves an area
efficiency of 30%, power efficiency of 1.3% and throughput
efficiency of 49.27% when compared with the conventional
architectures. Similarly, the 16 point DIT-FFT incorporating
approximate elements achieves an area efficiency of
33.47%, power efficiency of 1.8% and throughput efficiency
of 45.10% when compared with the conventional
architectures. Implementation of higher points FFT/IFFT
architectures incorporating approximate complex multiplier
design with self-error correction schemes are left for future
work.

REFERENCES

1. E. Konguvel and M. Kannan, “A Survey on FFT/IFFT

Processors for Next Generation Telecommunication

Systems,” Journal of Circuits Systems and Computers,

Vol. 27. No. 3, March 2018.

2. Amjadha, A., E. Konguvel, and J. Raja. "Design of

Multipath Delay Commutator Architecture based FFT

Processor for 4th Generation System." International

Journal of Computer Applications (0975–8887), Vol.

89, No. 12, March 2014.

3. M. Kannan, E. Konguvel, J. Madhumitha, M.

Mohamed Kamil Ashiq and K. Abhishek, “FPGA

implementation of FFT architecture using modified

Radix-4 algorithm,” Asian J. Res. Soc. Sci. Humanit. 7

(2017) 47–57.

4. Manuel, Betsy Rose, E. Konguvel, and M. Kannan.

"An area efficient high speed optimized FFT

algorithm." Signal Processing, Communication and

Networking (ICSCN), 2017 Fourth International

Conference on. IEEE, 2017.

BUPT

5. Suganthi Venkatachalam and Seok-Bum Ko, “Design

of Power and Area Efficient Approximate Multipliers”

in IEEE Transactions On Very Large Scale Integration

(VLSI) Systems, Vol. 25, No. 5, May 2017.

6. C.-H. Lin and C. Lin, “High accuracy approximate

multiplier with error correction,” in Proc. IEEE 31st

Int. Conf. Comput. Design, Sep. 2013, pp. 33–38.

7. E. J. King and E. E. Swartzlander, “Data-dependent

truncation scheme for parallel multipliers,” in Proc.

Conf. Rec. 31st Asilomar Conf. Signals, Syst. Comput.,

Nov. 1998, pp. 1178–1182.

8. M. J. Schulte and E. E. Swartzlander, “Truncated

multiplication with correction constant,” in Proc. 6th

VLSI Signal Process., Oct. 1993, pp. 388–396.

9. R. Venkatesan, A. Agarwal, K. Roy, and A.

Raghunathan, “MACACO: Modeling and analysis of

circuits for approximate computing,” in Proc.

IEEE/ACM Int. Conf. Comput.-Aided Design, Nov.

2011, pp. 667–673.

10. Y. Liu, T. Zhang, and K. K. Parhi, “Computation error

analysis in digital signal processing systems with

overscaled supply voltage,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 18, no. 4, pp. 517–526,

Apr. 2010.

11. P. Kulkarni, P. Gupta, and M. D. Ercegovac, “Trading

accuracy for power in a multiplier architecture,” J. Low

Power Electron., vol. 7, no. 4, pp. 490_501, Dec. 2011.

12. A. Momeni, J. Han, P. Montuschi and F. Lombardi,

“Design and analysis of Approximate compressors for

multiplication,” IEEE Trans. Comput., Vol. 64, No. 4,

pp 984 – 994., Apr. 2015.

13. S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T.

Park, and N. S. Kim, “Energy-efficient approximate

multiplication for digital signal processing and

classification applications,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 23, no. 6, pp. 1180–

1184, Jun. 2015.

14. S. Balamurugan and P. S. Mallick, “Fixed-width

multiplier circuits using column bypassing and

decompositon logic techniques,” Int. J. Elect. Eng.

Inform., vol. 7, no. 4, pp. 655_664, Dec. 2015.

15. G. Zervakis, K. Tsoumanis, S. Xydis, D. Soudris, and

K. Pekmestzi, “Design-efficient approximate

multiplication circuits through partial product

perforation,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 24, no. 10, pp. 3105–3117, Oct. 2016.

16. V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy,

“Low Power digital signal processing using

approximate adders,” IEEE Transaction on Computer

Aided Design of Integrated Circuits and Systems,

Vol.32, no. 1, pp. 124 – 137, Jan 2013.

17. Y. Bansal and C. Madhu, ``A novel high-speed

approach for 16_16 vedic multiplication with

compressor adders,'' Comput. Elect. Eng., vol. 49, pp.

39_49, Jan. 2016.

18. D. Esposito, A. G. M. Strollo, E. Napoli, D. De Caro

and N. Petra, "Approximate Multipliers Based on New

Approximate Compressors," in IEEE Transactions on

Circuits and Systems I: Regular Papers. doi:

10.1109/TCSI.2018.2839266.

19. T. Yang, T. Ukezono and T. Sato, "Low-Power and

High-Speed Approximate Multiplier Design with a

Tree Compressor," 2017 IEEE International

Conference on Computer Design (ICCD), Boston, MA,

2017, pp. 89-96.

BUPT

